| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | //***************************************************************************** |
| 5 | // File: Amd64walker.cpp |
| 6 | // |
| 7 | |
| 8 | // |
| 9 | // AMD64 instruction decoding/stepping logic |
| 10 | // |
| 11 | //***************************************************************************** |
| 12 | |
| 13 | #include "stdafx.h" |
| 14 | |
| 15 | #include "walker.h" |
| 16 | |
| 17 | #include "frames.h" |
| 18 | #include "openum.h" |
| 19 | |
| 20 | #ifdef _TARGET_AMD64_ |
| 21 | |
| 22 | // |
| 23 | // The AMD64 walker is currently pretty minimal. It only recognizes call and return opcodes, plus a few jumps. The rest |
| 24 | // is treated as unknown. |
| 25 | // |
| 26 | void NativeWalker::Decode() |
| 27 | { |
| 28 | const BYTE *ip = m_ip; |
| 29 | |
| 30 | m_type = WALK_UNKNOWN; |
| 31 | m_skipIP = NULL; |
| 32 | m_nextIP = NULL; |
| 33 | |
| 34 | BYTE rex = NULL; |
| 35 | |
| 36 | LOG((LF_CORDB, LL_INFO100000, "NW:Decode: m_ip 0x%x\n" , m_ip)); |
| 37 | |
| 38 | BYTE prefix = *ip; |
| 39 | if (prefix == 0xcc) |
| 40 | { |
| 41 | prefix = (BYTE)DebuggerController::GetPatchedOpcode(m_ip); |
| 42 | LOG((LF_CORDB, LL_INFO100000, "NW:Decode 1st byte was patched, might have been prefix\n" )); |
| 43 | } |
| 44 | |
| 45 | // |
| 46 | // Skip instruction prefixes |
| 47 | // |
| 48 | do |
| 49 | { |
| 50 | switch (prefix) |
| 51 | { |
| 52 | // Segment overrides |
| 53 | case 0x26: // ES |
| 54 | case 0x2E: // CS |
| 55 | case 0x36: // SS |
| 56 | case 0x3E: // DS |
| 57 | case 0x64: // FS |
| 58 | case 0x65: // GS |
| 59 | |
| 60 | // Size overrides |
| 61 | case 0x66: // Operand-Size |
| 62 | case 0x67: // Address-Size |
| 63 | |
| 64 | // Lock |
| 65 | case 0xf0: |
| 66 | |
| 67 | // String REP prefixes |
| 68 | case 0xf2: // REPNE/REPNZ |
| 69 | case 0xf3: |
| 70 | LOG((LF_CORDB, LL_INFO10000, "NW:Decode: prefix:%0.2x " , prefix)); |
| 71 | ip++; |
| 72 | continue; |
| 73 | |
| 74 | // REX register extension prefixes |
| 75 | case 0x40: |
| 76 | case 0x41: |
| 77 | case 0x42: |
| 78 | case 0x43: |
| 79 | case 0x44: |
| 80 | case 0x45: |
| 81 | case 0x46: |
| 82 | case 0x47: |
| 83 | case 0x48: |
| 84 | case 0x49: |
| 85 | case 0x4a: |
| 86 | case 0x4b: |
| 87 | case 0x4c: |
| 88 | case 0x4d: |
| 89 | case 0x4e: |
| 90 | case 0x4f: |
| 91 | LOG((LF_CORDB, LL_INFO10000, "NW:Decode: REX prefix:%0.2x " , prefix)); |
| 92 | // make sure to set rex to prefix, not *ip because *ip still represents the |
| 93 | // codestream which has a 0xcc in it. |
| 94 | rex = prefix; |
| 95 | ip++; |
| 96 | continue; |
| 97 | |
| 98 | default: |
| 99 | break; |
| 100 | } |
| 101 | } while (0); |
| 102 | |
| 103 | // Read the opcode |
| 104 | m_opcode = *ip++; |
| 105 | |
| 106 | LOG((LF_CORDB, LL_INFO100000, "NW:Decode: ip 0x%x, m_opcode:%0.2x\n" , ip, m_opcode)); |
| 107 | |
| 108 | // Don't remove this, when we did the check above for the prefix we didn't modify the codestream |
| 109 | // and since m_opcode was just taken directly from the code stream it will be patched if we |
| 110 | // didn't have a prefix |
| 111 | if (m_opcode == 0xcc) |
| 112 | { |
| 113 | m_opcode = (BYTE)DebuggerController::GetPatchedOpcode(m_ip); |
| 114 | LOG((LF_CORDB, LL_INFO100000, "NW:Decode after patch look up: m_opcode:%0.2x\n" , m_opcode)); |
| 115 | } |
| 116 | |
| 117 | // Setup rex bits if needed |
| 118 | BYTE rex_b = 0; |
| 119 | BYTE rex_x = 0; |
| 120 | BYTE rex_r = 0; |
| 121 | |
| 122 | if (rex != NULL) |
| 123 | { |
| 124 | rex_b = (rex & 0x1); // high bit to modrm r/m field or SIB base field or OPCODE reg field -- Hmm, when which? |
| 125 | rex_x = (rex & 0x2) >> 1; // high bit to sib index field |
| 126 | rex_r = (rex & 0x4) >> 2; // high bit to modrm reg field |
| 127 | } |
| 128 | |
| 129 | // Analyze what we can of the opcode |
| 130 | switch (m_opcode) |
| 131 | { |
| 132 | case 0xff: |
| 133 | { |
| 134 | BYTE modrm = *ip++; |
| 135 | |
| 136 | // Ignore "inc dword ptr [reg]" instructions |
| 137 | if (modrm == 0) |
| 138 | break; |
| 139 | |
| 140 | BYTE mod = (modrm & 0xC0) >> 6; |
| 141 | BYTE reg = (modrm & 0x38) >> 3; |
| 142 | BYTE rm = (modrm & 0x07); |
| 143 | |
| 144 | reg |= (rex_r << 3); |
| 145 | rm |= (rex_b << 3); |
| 146 | |
| 147 | if ((reg < 2) || (reg > 5 && reg < 8) || (reg > 15)) { |
| 148 | // not a valid register for a CALL or BRANCH |
| 149 | return; |
| 150 | } |
| 151 | |
| 152 | BYTE *result; |
| 153 | WORD displace; |
| 154 | |
| 155 | // See: Tables A-15,16,17 in AMD Dev Manual 3 for information |
| 156 | // about how the ModRM/SIB/REX bytes interact. |
| 157 | |
| 158 | switch (mod) |
| 159 | { |
| 160 | case 0: |
| 161 | case 1: |
| 162 | case 2: |
| 163 | if ((rm & 0x07) == 4) // we have an SIB byte following |
| 164 | { |
| 165 | // |
| 166 | // Get values from the SIB byte |
| 167 | // |
| 168 | BYTE sib = *ip; |
| 169 | |
| 170 | _ASSERT(sib != NULL); |
| 171 | |
| 172 | BYTE ss = (sib & 0xC0) >> 6; |
| 173 | BYTE index = (sib & 0x38) >> 3; |
| 174 | BYTE base = (sib & 0x07); |
| 175 | |
| 176 | index |= (rex_x << 3); |
| 177 | base |= (rex_b << 3); |
| 178 | |
| 179 | ip++; |
| 180 | |
| 181 | // |
| 182 | // Get starting value |
| 183 | // |
| 184 | if ((mod == 0) && ((base & 0x07) == 5)) |
| 185 | { |
| 186 | result = 0; |
| 187 | } |
| 188 | else |
| 189 | { |
| 190 | result = (BYTE *)(size_t)GetRegisterValue(base); |
| 191 | } |
| 192 | |
| 193 | // |
| 194 | // Add in the [index] |
| 195 | // |
| 196 | if (index != 0x4) |
| 197 | { |
| 198 | result = result + (GetRegisterValue(index) << ss); |
| 199 | } |
| 200 | |
| 201 | // |
| 202 | // Finally add in the offset |
| 203 | // |
| 204 | if (mod == 0) |
| 205 | { |
| 206 | if ((base & 0x07) == 5) |
| 207 | { |
| 208 | result = result + *((INT32*)ip); |
| 209 | displace = 7; |
| 210 | } |
| 211 | else |
| 212 | { |
| 213 | displace = 3; |
| 214 | } |
| 215 | } |
| 216 | else if (mod == 1) |
| 217 | { |
| 218 | result = result + *((INT8*)ip); |
| 219 | displace = 4; |
| 220 | } |
| 221 | else // mod == 2 |
| 222 | { |
| 223 | result = result + *((INT32*)ip); |
| 224 | displace = 7; |
| 225 | } |
| 226 | |
| 227 | } |
| 228 | else |
| 229 | { |
| 230 | // |
| 231 | // Get the value we need from the register. |
| 232 | // |
| 233 | |
| 234 | // Check for RIP-relative addressing mode. |
| 235 | if ((mod == 0) && ((rm & 0x07) == 5)) |
| 236 | { |
| 237 | displace = 6; // 1 byte opcode + 1 byte modrm + 4 byte displacement (signed) |
| 238 | result = const_cast<BYTE *>(m_ip) + displace + *(reinterpret_cast<const INT32*>(ip)); |
| 239 | } |
| 240 | else |
| 241 | { |
| 242 | result = (BYTE *)GetRegisterValue(rm); |
| 243 | |
| 244 | if (mod == 0) |
| 245 | { |
| 246 | displace = 2; |
| 247 | } |
| 248 | else if (mod == 1) |
| 249 | { |
| 250 | result = result + *((INT8*)ip); |
| 251 | displace = 3; |
| 252 | } |
| 253 | else // mod == 2 |
| 254 | { |
| 255 | result = result + *((INT32*)ip); |
| 256 | displace = 6; |
| 257 | } |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | // |
| 262 | // Now dereference thru the result to get the resulting IP. |
| 263 | // |
| 264 | result = (BYTE *)(*((UINT64*)result)); |
| 265 | |
| 266 | break; |
| 267 | |
| 268 | case 3: |
| 269 | default: |
| 270 | // The operand is stored in a register. |
| 271 | result = (BYTE *)GetRegisterValue(rm); |
| 272 | displace = 2; |
| 273 | |
| 274 | break; |
| 275 | |
| 276 | } |
| 277 | |
| 278 | // the instruction uses r8-r15, add in the extra byte to the displacement |
| 279 | // for the REX prefix which was used to specify the extended register |
| 280 | if (rex != NULL) |
| 281 | { |
| 282 | displace++; |
| 283 | } |
| 284 | |
| 285 | // because we already checked register validity for CALL/BRANCH |
| 286 | // instructions above we can assume that there is no other option |
| 287 | if ((reg == 4) || (reg == 5)) |
| 288 | { |
| 289 | m_type = WALK_BRANCH; |
| 290 | } |
| 291 | else |
| 292 | { |
| 293 | m_type = WALK_CALL; |
| 294 | } |
| 295 | m_nextIP = result; |
| 296 | m_skipIP = m_ip + displace; |
| 297 | break; |
| 298 | } |
| 299 | case 0xe8: |
| 300 | { |
| 301 | m_type = WALK_CALL; |
| 302 | |
| 303 | // Sign-extend the displacement is necessary. |
| 304 | INT32 disp = *((INT32*)ip); |
| 305 | m_nextIP = ip + 4 + (disp < 0 ? (disp | 0xffffffff00000000) : disp); |
| 306 | m_skipIP = ip + 4; |
| 307 | |
| 308 | break; |
| 309 | } |
| 310 | case 0xe9: |
| 311 | { |
| 312 | m_type = WALK_BRANCH; |
| 313 | |
| 314 | // Sign-extend the displacement is necessary. |
| 315 | INT32 disp = *((INT32*)ip); |
| 316 | m_nextIP = ip + 4 + (disp < 0 ? (disp | 0xffffffff00000000) : disp); |
| 317 | m_skipIP = ip + 4; |
| 318 | |
| 319 | break; |
| 320 | } |
| 321 | case 0xc2: |
| 322 | case 0xc3: |
| 323 | case 0xca: |
| 324 | case 0xcb: |
| 325 | { |
| 326 | m_type = WALK_RETURN; |
| 327 | break; |
| 328 | } |
| 329 | default: |
| 330 | break; |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | |
| 335 | // |
| 336 | // Given a regdisplay and a register number, return the value of the register. |
| 337 | // |
| 338 | |
| 339 | UINT64 NativeWalker::GetRegisterValue(int registerNumber) |
| 340 | { |
| 341 | if (m_registers == NULL) { |
| 342 | return 0; |
| 343 | } |
| 344 | |
| 345 | switch (registerNumber) |
| 346 | { |
| 347 | case 0: |
| 348 | return m_registers->pCurrentContext->Rax; |
| 349 | break; |
| 350 | case 1: |
| 351 | return m_registers->pCurrentContext->Rcx; |
| 352 | break; |
| 353 | case 2: |
| 354 | return m_registers->pCurrentContext->Rdx; |
| 355 | break; |
| 356 | case 3: |
| 357 | return m_registers->pCurrentContext->Rbx; |
| 358 | break; |
| 359 | case 4: |
| 360 | return m_registers->pCurrentContext->Rsp; |
| 361 | break; |
| 362 | case 5: |
| 363 | return m_registers->pCurrentContext->Rbp; |
| 364 | break; |
| 365 | case 6: |
| 366 | return m_registers->pCurrentContext->Rsi; |
| 367 | break; |
| 368 | case 7: |
| 369 | return m_registers->pCurrentContext->Rdi; |
| 370 | break; |
| 371 | case 8: |
| 372 | return m_registers->pCurrentContext->R8; |
| 373 | break; |
| 374 | case 9: |
| 375 | return m_registers->pCurrentContext->R9; |
| 376 | break; |
| 377 | case 10: |
| 378 | return m_registers->pCurrentContext->R10; |
| 379 | break; |
| 380 | case 11: |
| 381 | return m_registers->pCurrentContext->R11; |
| 382 | break; |
| 383 | case 12: |
| 384 | return m_registers->pCurrentContext->R12; |
| 385 | break; |
| 386 | case 13: |
| 387 | return m_registers->pCurrentContext->R13; |
| 388 | break; |
| 389 | case 14: |
| 390 | return m_registers->pCurrentContext->R14; |
| 391 | break; |
| 392 | case 15: |
| 393 | return m_registers->pCurrentContext->R15; |
| 394 | break; |
| 395 | default: |
| 396 | _ASSERTE(!"Invalid register number!" ); |
| 397 | } |
| 398 | |
| 399 | return 0; |
| 400 | } |
| 401 | |
| 402 | |
| 403 | // mod reg r/m |
| 404 | // bits 7-6 5-3 2-0 |
| 405 | struct ModRMByte |
| 406 | { |
| 407 | BYTE rm :3; |
| 408 | BYTE reg:3; |
| 409 | BYTE mod:2; |
| 410 | }; |
| 411 | |
| 412 | // fixed W R X B |
| 413 | // bits 7-4 3 2 1 0 |
| 414 | struct RexByte |
| 415 | { |
| 416 | BYTE b:1; |
| 417 | BYTE x:1; |
| 418 | BYTE r:1; |
| 419 | BYTE w:1; |
| 420 | BYTE fixed:4; |
| 421 | }; |
| 422 | |
| 423 | // static |
| 424 | void NativeWalker::DecodeInstructionForPatchSkip(const BYTE *address, InstructionAttribute * pInstrAttrib) |
| 425 | { |
| 426 | // |
| 427 | // Skip instruction prefixes |
| 428 | // |
| 429 | |
| 430 | LOG((LF_CORDB, LL_INFO10000, "Patch decode: " )); |
| 431 | |
| 432 | // for reads and writes where the destination is a RIP-relative address pInstrAttrib->m_cOperandSize will contain the size in bytes of the pointee; in all other |
| 433 | // cases it will be zero. if the RIP-relative address is being written to then pInstrAttrib->m_fIsWrite will be true; in all other cases it will be false. |
| 434 | // similar to cbImmedSize in some cases we'll set pInstrAttrib->m_cOperandSize to 0x3 meaning that the prefix will determine the size if one is specified. |
| 435 | pInstrAttrib->m_cOperandSize = 0; |
| 436 | pInstrAttrib->m_fIsWrite = false; |
| 437 | |
| 438 | if (pInstrAttrib == NULL) |
| 439 | { |
| 440 | return; |
| 441 | } |
| 442 | |
| 443 | // These three legacy prefixes are used to modify some of the two-byte opcodes. |
| 444 | bool fPrefix66 = false; |
| 445 | bool fPrefixF2 = false; |
| 446 | bool fPrefixF3 = false; |
| 447 | |
| 448 | bool fRex = false; |
| 449 | bool fModRM = false; |
| 450 | |
| 451 | RexByte rex = {0}; |
| 452 | ModRMByte modrm = {0}; |
| 453 | |
| 454 | // We use 0x3 to indicate that we need to look at the operand-size override and the rex byte |
| 455 | // to determine whether the immediate size is 2 bytes or 4 bytes. |
| 456 | BYTE cbImmedSize = 0; |
| 457 | |
| 458 | const BYTE* originalAddr = address; |
| 459 | |
| 460 | do |
| 461 | { |
| 462 | switch (*address) |
| 463 | { |
| 464 | // Operand-Size override |
| 465 | case 0x66: |
| 466 | fPrefix66 = true; |
| 467 | goto LLegacyPrefix; |
| 468 | |
| 469 | // Repeat (REP/REPE/REPZ) |
| 470 | case 0xf2: |
| 471 | fPrefixF2 = true; |
| 472 | goto LLegacyPrefix; |
| 473 | |
| 474 | // Repeat (REPNE/REPNZ) |
| 475 | case 0xf3: |
| 476 | fPrefixF3 = true; |
| 477 | goto LLegacyPrefix; |
| 478 | |
| 479 | // Address-Size override |
| 480 | case 0x67: // fall through |
| 481 | |
| 482 | // Segment overrides |
| 483 | case 0x26: // ES |
| 484 | case 0x2E: // CS |
| 485 | case 0x36: // SS |
| 486 | case 0x3E: // DS |
| 487 | case 0x64: // FS |
| 488 | case 0x65: // GS // fall through |
| 489 | |
| 490 | // Lock |
| 491 | case 0xf0: |
| 492 | LLegacyPrefix: |
| 493 | LOG((LF_CORDB, LL_INFO10000, "prefix:%0.2x " , *address)); |
| 494 | address++; |
| 495 | continue; |
| 496 | |
| 497 | // REX register extension prefixes |
| 498 | case 0x40: |
| 499 | case 0x41: |
| 500 | case 0x42: |
| 501 | case 0x43: |
| 502 | case 0x44: |
| 503 | case 0x45: |
| 504 | case 0x46: |
| 505 | case 0x47: |
| 506 | case 0x48: |
| 507 | case 0x49: |
| 508 | case 0x4a: |
| 509 | case 0x4b: |
| 510 | case 0x4c: |
| 511 | case 0x4d: |
| 512 | case 0x4e: |
| 513 | case 0x4f: |
| 514 | LOG((LF_CORDB, LL_INFO10000, "prefix:%0.2x " , *address)); |
| 515 | fRex = true; |
| 516 | rex = *(RexByte*)address; |
| 517 | address++; |
| 518 | continue; |
| 519 | |
| 520 | default: |
| 521 | break; |
| 522 | } |
| 523 | } while (0); |
| 524 | |
| 525 | pInstrAttrib->Reset(); |
| 526 | |
| 527 | BYTE opcode0 = *address; |
| 528 | BYTE opcode1 = *(address + 1); // this is only valid if the first opcode byte is 0x0F |
| 529 | |
| 530 | // Handle AVX encodings. Note that these can mostly be handled as if they are aliases |
| 531 | // for a corresponding SSE encoding. |
| 532 | // See Figure 2-9 in "Intel 64 and IA-32 Architectures Software Developer's Manual". |
| 533 | |
| 534 | if (opcode0 == 0xC4 || opcode0 == 0xC5) |
| 535 | { |
| 536 | BYTE pp; |
| 537 | if (opcode0 == 0xC4) |
| 538 | { |
| 539 | BYTE opcode2 = *(address + 2); |
| 540 | address++; |
| 541 | |
| 542 | // REX bits are encoded in inverted form. |
| 543 | // R,X, and B are the top bits (in that order) of opcode1. |
| 544 | // W is the top bit of opcode2. |
| 545 | if ((opcode1 & 0x80) != 0) |
| 546 | { |
| 547 | rex.b = 1; |
| 548 | fRex = true; |
| 549 | } |
| 550 | if ((opcode1 & 0x40) == 0) |
| 551 | { |
| 552 | rex.x = 1; |
| 553 | fRex = true; |
| 554 | } |
| 555 | if ((opcode1 & 0x20) == 0) |
| 556 | { |
| 557 | rex.b = 1; |
| 558 | fRex = true; |
| 559 | } |
| 560 | if ((opcode2 & 0x80) != 0) |
| 561 | { |
| 562 | rex.w = 1; |
| 563 | fRex = true; |
| 564 | } |
| 565 | |
| 566 | pp = opcode2 & 0x3; |
| 567 | |
| 568 | BYTE mmBits = opcode1 & 0x1f; |
| 569 | BYTE impliedOpcode1 = 0; |
| 570 | switch(mmBits) |
| 571 | { |
| 572 | case 1: break; // No implied leading byte. |
| 573 | case 2: impliedOpcode1 = 0x38; break; |
| 574 | case 3: impliedOpcode1 = 0x3A; break; |
| 575 | default: _ASSERTE(!"NW::DIFPS - invalid opcode" ); break; |
| 576 | } |
| 577 | |
| 578 | if (impliedOpcode1 != 0) |
| 579 | { |
| 580 | opcode1 = impliedOpcode1; |
| 581 | } |
| 582 | else |
| 583 | { |
| 584 | opcode1 = *address; |
| 585 | address++; |
| 586 | } |
| 587 | } |
| 588 | else |
| 589 | { |
| 590 | pp = opcode1 & 0x3; |
| 591 | if ((opcode1 & 0x80) == 0) |
| 592 | { |
| 593 | // The two-byte VEX encoding only encodes the 'R' bit. |
| 594 | fRex = true; |
| 595 | rex.r = 1; |
| 596 | } |
| 597 | opcode1 = *address; |
| 598 | address++; |
| 599 | } |
| 600 | opcode0 = 0x0f; |
| 601 | switch (pp) |
| 602 | { |
| 603 | case 1: fPrefix66 = true; break; |
| 604 | case 2: fPrefixF3 = true; break; |
| 605 | case 3: fPrefixF2 = true; break; |
| 606 | } |
| 607 | } |
| 608 | |
| 609 | // The following opcode decoding follows the tables in "Appendix A Opcode and Operand Encodings" of |
| 610 | // "AMD64 Architecture Programmer's Manual Volume 3" |
| 611 | |
| 612 | // one-byte opcodes |
| 613 | if (opcode0 != 0x0F) |
| 614 | { |
| 615 | BYTE highNibble = (opcode0 & 0xF0) >> 4; |
| 616 | BYTE lowNibble = (opcode0 & 0x0F); |
| 617 | |
| 618 | switch (highNibble) |
| 619 | { |
| 620 | case 0x0: |
| 621 | case 0x1: |
| 622 | case 0x2: |
| 623 | case 0x3: |
| 624 | if ((lowNibble == 0x6) || (lowNibble == 0x7) || (lowNibble == 0xE) || (lowNibble == 0xF)) |
| 625 | { |
| 626 | _ASSERTE(!"NW::DIFPS - invalid opcode" ); |
| 627 | } |
| 628 | |
| 629 | // CMP |
| 630 | if ( (lowNibble <= 0x3) || |
| 631 | ((lowNibble >= 0x8) && (lowNibble <= 0xB)) ) |
| 632 | { |
| 633 | fModRM = true; |
| 634 | } |
| 635 | |
| 636 | // ADD/XOR reg/mem, reg |
| 637 | if (lowNibble == 0x0) |
| 638 | { |
| 639 | pInstrAttrib->m_cOperandSize = 0x1; |
| 640 | pInstrAttrib->m_fIsWrite = true; |
| 641 | } |
| 642 | else if (lowNibble == 0x1) |
| 643 | { |
| 644 | pInstrAttrib->m_cOperandSize = 0x3; |
| 645 | pInstrAttrib->m_fIsWrite = true; |
| 646 | } |
| 647 | // XOR reg, reg/mem |
| 648 | else if (lowNibble == 0x2) |
| 649 | { |
| 650 | pInstrAttrib->m_cOperandSize = 0x1; |
| 651 | } |
| 652 | else if (lowNibble == 0x3) |
| 653 | { |
| 654 | pInstrAttrib->m_cOperandSize = 0x3; |
| 655 | } |
| 656 | |
| 657 | break; |
| 658 | |
| 659 | case 0x4: |
| 660 | case 0x5: |
| 661 | break; |
| 662 | |
| 663 | case 0x6: |
| 664 | // IMUL |
| 665 | if (lowNibble == 0x9) |
| 666 | { |
| 667 | fModRM = true; |
| 668 | cbImmedSize = 0x3; |
| 669 | } |
| 670 | else if (lowNibble == 0xB) |
| 671 | { |
| 672 | fModRM = true; |
| 673 | cbImmedSize = 0x1; |
| 674 | } |
| 675 | else if (lowNibble == 0x3) |
| 676 | { |
| 677 | if (fRex) |
| 678 | { |
| 679 | // MOVSXD |
| 680 | fModRM = true; |
| 681 | } |
| 682 | } |
| 683 | break; |
| 684 | |
| 685 | case 0x7: |
| 686 | break; |
| 687 | |
| 688 | case 0x8: |
| 689 | fModRM = true; |
| 690 | |
| 691 | // Group 1: lowNibble in [0x0, 0x3] |
| 692 | _ASSERTE(lowNibble != 0x2); |
| 693 | |
| 694 | // ADD/XOR reg/mem, imm |
| 695 | if (lowNibble == 0x0) |
| 696 | { |
| 697 | cbImmedSize = 1; |
| 698 | pInstrAttrib->m_cOperandSize = 1; |
| 699 | pInstrAttrib->m_fIsWrite = true; |
| 700 | } |
| 701 | else if (lowNibble == 0x1) |
| 702 | { |
| 703 | cbImmedSize = 3; |
| 704 | pInstrAttrib->m_cOperandSize = 3; |
| 705 | pInstrAttrib->m_fIsWrite = true; |
| 706 | } |
| 707 | else if (lowNibble == 0x3) |
| 708 | { |
| 709 | cbImmedSize = 1; |
| 710 | pInstrAttrib->m_cOperandSize = 3; |
| 711 | pInstrAttrib->m_fIsWrite = true; |
| 712 | } |
| 713 | // MOV reg/mem, reg |
| 714 | else if (lowNibble == 0x8) |
| 715 | { |
| 716 | pInstrAttrib->m_cOperandSize = 0x1; |
| 717 | pInstrAttrib->m_fIsWrite = true; |
| 718 | } |
| 719 | else if (lowNibble == 0x9) |
| 720 | { |
| 721 | pInstrAttrib->m_cOperandSize = 0x3; |
| 722 | pInstrAttrib->m_fIsWrite = true; |
| 723 | } |
| 724 | // MOV reg, reg/mem |
| 725 | else if (lowNibble == 0xA) |
| 726 | { |
| 727 | pInstrAttrib->m_cOperandSize = 0x1; |
| 728 | } |
| 729 | else if (lowNibble == 0xB) |
| 730 | { |
| 731 | pInstrAttrib->m_cOperandSize = 0x3; |
| 732 | } |
| 733 | |
| 734 | break; |
| 735 | |
| 736 | case 0x9: |
| 737 | case 0xA: |
| 738 | case 0xB: |
| 739 | break; |
| 740 | |
| 741 | case 0xC: |
| 742 | if ((lowNibble == 0x4) || (lowNibble == 0x5) || (lowNibble == 0xE)) |
| 743 | { |
| 744 | _ASSERTE(!"NW::DIFPS - invalid opcode" ); |
| 745 | } |
| 746 | |
| 747 | // RET |
| 748 | if ((lowNibble == 0x2) || (lowNibble == 0x3)) |
| 749 | { |
| 750 | break; |
| 751 | } |
| 752 | |
| 753 | // Group 2 (part 1): lowNibble in [0x0, 0x1] |
| 754 | // RCL reg/mem, imm |
| 755 | if (lowNibble == 0x0) |
| 756 | { |
| 757 | fModRM = true; |
| 758 | cbImmedSize = 0x1; |
| 759 | pInstrAttrib->m_cOperandSize = 0x1; |
| 760 | pInstrAttrib->m_fIsWrite = true; |
| 761 | } |
| 762 | else if (lowNibble == 0x1) |
| 763 | { |
| 764 | fModRM = true; |
| 765 | cbImmedSize = 0x1; |
| 766 | pInstrAttrib->m_cOperandSize = 0x3; |
| 767 | pInstrAttrib->m_fIsWrite = true; |
| 768 | } |
| 769 | // Group 11: lowNibble in [0x6, 0x7] |
| 770 | // MOV reg/mem, imm |
| 771 | else if (lowNibble == 0x6) |
| 772 | { |
| 773 | fModRM = true; |
| 774 | cbImmedSize = 1; |
| 775 | pInstrAttrib->m_cOperandSize = 1; |
| 776 | pInstrAttrib->m_fIsWrite = true; |
| 777 | } |
| 778 | else if (lowNibble == 0x7) |
| 779 | { |
| 780 | fModRM = true; |
| 781 | cbImmedSize = 3; |
| 782 | pInstrAttrib->m_cOperandSize = 3; |
| 783 | pInstrAttrib->m_fIsWrite = true; |
| 784 | } |
| 785 | break; |
| 786 | |
| 787 | case 0xD: |
| 788 | // Group 2 (part 2): lowNibble in [0x0, 0x3] |
| 789 | // RCL reg/mem, 1/reg |
| 790 | if (lowNibble == 0x0 || lowNibble == 0x2) |
| 791 | { |
| 792 | fModRM = true; |
| 793 | pInstrAttrib->m_cOperandSize = 0x1; |
| 794 | pInstrAttrib->m_fIsWrite = true; |
| 795 | } |
| 796 | else if (lowNibble == 0x1 || lowNibble == 0x3) |
| 797 | { |
| 798 | fModRM = true; |
| 799 | pInstrAttrib->m_cOperandSize = 0x3; |
| 800 | pInstrAttrib->m_fIsWrite = true; |
| 801 | } |
| 802 | |
| 803 | // x87 instructions: lowNibble in [0x8, 0xF] |
| 804 | // - the entire ModRM byte is used to modify the opcode, |
| 805 | // so the ModRM byte cannot be used in RIP-relative addressing |
| 806 | break; |
| 807 | |
| 808 | case 0xE: |
| 809 | break; |
| 810 | |
| 811 | case 0xF: |
| 812 | // Group 3: lowNibble in [0x6, 0x7] |
| 813 | // TEST |
| 814 | if ((lowNibble == 0x6) || (lowNibble == 0x7)) |
| 815 | { |
| 816 | fModRM = true; |
| 817 | |
| 818 | modrm = *(ModRMByte*)(address + 1); |
| 819 | if ((modrm.reg == 0x0) || (modrm.reg == 0x1)) |
| 820 | { |
| 821 | if (lowNibble == 0x6) |
| 822 | { |
| 823 | cbImmedSize = 0x1; |
| 824 | } |
| 825 | else |
| 826 | { |
| 827 | cbImmedSize = 0x3; |
| 828 | } |
| 829 | } |
| 830 | } |
| 831 | // Group 4: lowNibble == 0xE |
| 832 | // INC reg/mem |
| 833 | else if (lowNibble == 0xE) |
| 834 | { |
| 835 | fModRM = true; |
| 836 | pInstrAttrib->m_cOperandSize = 1; |
| 837 | pInstrAttrib->m_fIsWrite = true; |
| 838 | } |
| 839 | // Group 5: lowNibble == 0xF |
| 840 | else if (lowNibble == 0xF) |
| 841 | { |
| 842 | fModRM = true; |
| 843 | pInstrAttrib->m_cOperandSize = 3; |
| 844 | pInstrAttrib->m_fIsWrite = true; |
| 845 | } |
| 846 | break; |
| 847 | } |
| 848 | |
| 849 | address += 1; |
| 850 | if (fModRM) |
| 851 | { |
| 852 | modrm = *(ModRMByte*)address; |
| 853 | address += 1; |
| 854 | } |
| 855 | } |
| 856 | // two-byte opcodes |
| 857 | else |
| 858 | { |
| 859 | BYTE highNibble = (opcode1 & 0xF0) >> 4; |
| 860 | BYTE lowNibble = (opcode1 & 0x0F); |
| 861 | |
| 862 | switch (highNibble) |
| 863 | { |
| 864 | case 0x0: |
| 865 | // Group 6: lowNibble == 0x0 |
| 866 | if (lowNibble == 0x0) |
| 867 | { |
| 868 | fModRM = true; |
| 869 | } |
| 870 | // Group 7: lowNibble == 0x1 |
| 871 | else if (lowNibble == 0x1) |
| 872 | { |
| 873 | fModRM = true; |
| 874 | } |
| 875 | else if ((lowNibble == 0x2) || (lowNibble == 0x3)) |
| 876 | { |
| 877 | fModRM = true; |
| 878 | } |
| 879 | // Group p: lowNibble == 0xD |
| 880 | else if (lowNibble == 0xD) |
| 881 | { |
| 882 | fModRM = true; |
| 883 | } |
| 884 | // 3DNow! instructions: lowNibble == 0xF |
| 885 | // - all 3DNow! instructions use the ModRM byte |
| 886 | else if (lowNibble == 0xF) |
| 887 | { |
| 888 | fModRM = true; |
| 889 | cbImmedSize = 0x1; |
| 890 | } |
| 891 | break; |
| 892 | |
| 893 | case 0x1: // Group 16: lowNibble == 0x8 |
| 894 | // MOVSS xmm, xmm/mem (low nibble 0x0) |
| 895 | // MOVSS xmm/mem, xmm (low nibble 0x1) |
| 896 | if (lowNibble <= 0x1) |
| 897 | { |
| 898 | fModRM = true; |
| 899 | if (fPrefixF2 || fPrefixF3) |
| 900 | pInstrAttrib->m_cOperandSize = 0x8; |
| 901 | else |
| 902 | pInstrAttrib->m_cOperandSize = 0x10; |
| 903 | |
| 904 | if (lowNibble == 0x1) |
| 905 | pInstrAttrib->m_fIsWrite = true; |
| 906 | |
| 907 | break; |
| 908 | } |
| 909 | case 0x2: // fall through |
| 910 | fModRM = true; |
| 911 | if (lowNibble == 0x8 || lowNibble == 0x9) |
| 912 | { |
| 913 | pInstrAttrib->m_cOperandSize = 0x10; |
| 914 | |
| 915 | if (lowNibble == 0x9) |
| 916 | pInstrAttrib->m_fIsWrite = true; |
| 917 | } |
| 918 | break; |
| 919 | |
| 920 | case 0x3: |
| 921 | break; |
| 922 | |
| 923 | case 0x4: |
| 924 | case 0x5: |
| 925 | case 0x6: // fall through |
| 926 | fModRM = true; |
| 927 | break; |
| 928 | |
| 929 | case 0x7: |
| 930 | if (lowNibble == 0x0) |
| 931 | { |
| 932 | fModRM = true; |
| 933 | cbImmedSize = 0x1; |
| 934 | } |
| 935 | else if ((lowNibble >= 0x1) && (lowNibble <= 0x3)) |
| 936 | { |
| 937 | _ASSERTE(!fPrefixF2 && !fPrefixF3); |
| 938 | |
| 939 | // Group 12: lowNibble == 0x1 |
| 940 | // Group 13: lowNibble == 0x2 |
| 941 | // Group 14: lowNibble == 0x3 |
| 942 | fModRM = true; |
| 943 | cbImmedSize = 0x1; |
| 944 | } |
| 945 | else if ((lowNibble >= 0x4) && (lowNibble <= 0x6)) |
| 946 | { |
| 947 | fModRM = true; |
| 948 | } |
| 949 | // MOVD reg/mem, mmx for 0F 7E |
| 950 | else if ((lowNibble == 0xE) || (lowNibble == 0xF)) |
| 951 | { |
| 952 | _ASSERTE(!fPrefixF2); |
| 953 | |
| 954 | fModRM = true; |
| 955 | } |
| 956 | break; |
| 957 | |
| 958 | case 0x8: |
| 959 | break; |
| 960 | |
| 961 | case 0x9: |
| 962 | fModRM = true; |
| 963 | break; |
| 964 | |
| 965 | case 0xA: |
| 966 | if ((lowNibble >= 0x3) && (lowNibble <= 0x5)) |
| 967 | { |
| 968 | // BT reg/mem, reg |
| 969 | fModRM = true; |
| 970 | if (lowNibble == 0x3) |
| 971 | { |
| 972 | pInstrAttrib->m_cOperandSize = 0x3; |
| 973 | pInstrAttrib->m_fIsWrite = true; |
| 974 | } |
| 975 | // SHLD reg/mem, imm |
| 976 | else if (lowNibble == 0x4) |
| 977 | { |
| 978 | cbImmedSize = 0x1; |
| 979 | } |
| 980 | } |
| 981 | else if (lowNibble >= 0xB) |
| 982 | { |
| 983 | fModRM = true; |
| 984 | // BTS reg/mem, reg |
| 985 | if (lowNibble == 0xB) |
| 986 | { |
| 987 | pInstrAttrib->m_cOperandSize = 0x3; |
| 988 | pInstrAttrib->m_fIsWrite = true; |
| 989 | } |
| 990 | // SHRD reg/mem, imm |
| 991 | else if (lowNibble == 0xC) |
| 992 | { |
| 993 | cbImmedSize = 0x1; |
| 994 | } |
| 995 | // Group 15: lowNibble == 0xE |
| 996 | } |
| 997 | break; |
| 998 | |
| 999 | case 0xB: |
| 1000 | // Group 10: lowNibble == 0x9 |
| 1001 | // - this entire group is invalid |
| 1002 | _ASSERTE((lowNibble != 0x8) && (lowNibble != 0x9)); |
| 1003 | |
| 1004 | fModRM = true; |
| 1005 | // CMPXCHG reg/mem, reg |
| 1006 | if (lowNibble == 0x0) |
| 1007 | { |
| 1008 | pInstrAttrib->m_cOperandSize = 0x1; |
| 1009 | pInstrAttrib->m_fIsWrite = true; |
| 1010 | } |
| 1011 | else if (lowNibble == 0x1) |
| 1012 | { |
| 1013 | pInstrAttrib->m_cOperandSize = 0x3; |
| 1014 | pInstrAttrib->m_fIsWrite = true; |
| 1015 | } |
| 1016 | // Group 8: lowNibble == 0xA |
| 1017 | // BTS reg/mem, imm |
| 1018 | else if (lowNibble == 0xA) |
| 1019 | { |
| 1020 | cbImmedSize = 0x1; |
| 1021 | pInstrAttrib->m_cOperandSize = 0x3; |
| 1022 | pInstrAttrib->m_fIsWrite = true; |
| 1023 | } |
| 1024 | // MOVSX reg, reg/mem |
| 1025 | else if (lowNibble == 0xE) |
| 1026 | { |
| 1027 | pInstrAttrib->m_cOperandSize = 1; |
| 1028 | } |
| 1029 | else if (lowNibble == 0xF) |
| 1030 | { |
| 1031 | pInstrAttrib->m_cOperandSize = 2; |
| 1032 | } |
| 1033 | break; |
| 1034 | |
| 1035 | case 0xC: |
| 1036 | if (lowNibble <= 0x7) |
| 1037 | { |
| 1038 | fModRM = true; |
| 1039 | // XADD reg/mem, reg |
| 1040 | if (lowNibble == 0x0) |
| 1041 | { |
| 1042 | pInstrAttrib->m_cOperandSize = 0x1; |
| 1043 | pInstrAttrib->m_fIsWrite = true; |
| 1044 | } |
| 1045 | else if (lowNibble == 0x1) |
| 1046 | { |
| 1047 | pInstrAttrib->m_cOperandSize = 0x3; |
| 1048 | pInstrAttrib->m_fIsWrite = true; |
| 1049 | } |
| 1050 | else if ( (lowNibble == 0x2) || |
| 1051 | ((lowNibble >= 0x4) && (lowNibble <= 0x6)) ) |
| 1052 | { |
| 1053 | cbImmedSize = 0x1; |
| 1054 | } |
| 1055 | } |
| 1056 | break; |
| 1057 | |
| 1058 | case 0xD: |
| 1059 | case 0xE: |
| 1060 | case 0xF: // fall through |
| 1061 | fModRM = true; |
| 1062 | break; |
| 1063 | } |
| 1064 | |
| 1065 | address += 2; |
| 1066 | if (fModRM) |
| 1067 | { |
| 1068 | modrm = *(ModRMByte*)address; |
| 1069 | address += 1; |
| 1070 | } |
| 1071 | } |
| 1072 | |
| 1073 | // Check for RIP-relative addressing |
| 1074 | if (fModRM && (modrm.mod == 0x0) && (modrm.rm == 0x5)) |
| 1075 | { |
| 1076 | // SIB byte cannot be present with RIP-relative addressing. |
| 1077 | |
| 1078 | pInstrAttrib->m_dwOffsetToDisp = (DWORD)(address - originalAddr); |
| 1079 | _ASSERTE(pInstrAttrib->m_dwOffsetToDisp <= MAX_INSTRUCTION_LENGTH); |
| 1080 | |
| 1081 | // Add 4 to the address for the displacement. |
| 1082 | address += 4; |
| 1083 | |
| 1084 | // Further adjust the address by the size of the cbImmedSize (if any). |
| 1085 | if (cbImmedSize == 0x3) |
| 1086 | { |
| 1087 | // The size of the cbImmedSizeiate depends on the effective operand size: |
| 1088 | // 2 bytes if the effective operand size is 16-bit, or |
| 1089 | // 4 bytes if the effective operand size is 32- or 64-bit. |
| 1090 | if (fPrefix66) |
| 1091 | { |
| 1092 | cbImmedSize = 0x2; |
| 1093 | } |
| 1094 | else |
| 1095 | { |
| 1096 | cbImmedSize = 0x4; |
| 1097 | } |
| 1098 | } |
| 1099 | address += cbImmedSize; |
| 1100 | |
| 1101 | // if this is a read or write to a RIP-relative address then update pInstrAttrib->m_cOperandSize with the size of the pointee. |
| 1102 | if (pInstrAttrib->m_cOperandSize == 0x3) |
| 1103 | { |
| 1104 | if (fPrefix66) |
| 1105 | pInstrAttrib->m_cOperandSize = 0x2; // WORD* |
| 1106 | else |
| 1107 | pInstrAttrib->m_cOperandSize = 0x4; // DWORD* |
| 1108 | |
| 1109 | if (fRex && rex.w == 0x1) |
| 1110 | { |
| 1111 | _ASSERTE(pInstrAttrib->m_cOperandSize == 0x4); |
| 1112 | pInstrAttrib->m_cOperandSize = 0x8; // QWORD* |
| 1113 | } |
| 1114 | } |
| 1115 | |
| 1116 | pInstrAttrib->m_cbInstr = (DWORD)(address - originalAddr); |
| 1117 | _ASSERTE(pInstrAttrib->m_cbInstr <= MAX_INSTRUCTION_LENGTH); |
| 1118 | } |
| 1119 | else |
| 1120 | { |
| 1121 | // not a RIP-relative address so set to default values |
| 1122 | pInstrAttrib->m_cOperandSize = 0; |
| 1123 | pInstrAttrib->m_fIsWrite = false; |
| 1124 | } |
| 1125 | |
| 1126 | // |
| 1127 | // Look at opcode to tell if it's a call or an |
| 1128 | // absolute branch. |
| 1129 | // |
| 1130 | switch (opcode0) |
| 1131 | { |
| 1132 | case 0xC2: // RET |
| 1133 | case 0xC3: // RET N |
| 1134 | pInstrAttrib->m_fIsAbsBranch = true; |
| 1135 | LOG((LF_CORDB, LL_INFO10000, "ABS:%0.2x\n" , opcode0)); |
| 1136 | break; |
| 1137 | |
| 1138 | case 0xE8: // CALL relative |
| 1139 | pInstrAttrib->m_fIsCall = true; |
| 1140 | LOG((LF_CORDB, LL_INFO10000, "CALL REL:%0.2x\n" , opcode0)); |
| 1141 | break; |
| 1142 | |
| 1143 | case 0xC8: // ENTER |
| 1144 | pInstrAttrib->m_fIsCall = true; |
| 1145 | pInstrAttrib->m_fIsAbsBranch = true; |
| 1146 | LOG((LF_CORDB, LL_INFO10000, "CALL ABS:%0.2x\n" , opcode0)); |
| 1147 | break; |
| 1148 | |
| 1149 | case 0xFF: // CALL/JMP modr/m |
| 1150 | // |
| 1151 | // Read opcode modifier from modr/m |
| 1152 | // |
| 1153 | |
| 1154 | _ASSERTE(fModRM); |
| 1155 | switch (modrm.reg) |
| 1156 | { |
| 1157 | case 2: |
| 1158 | case 3: |
| 1159 | pInstrAttrib->m_fIsCall = true; |
| 1160 | // fall through |
| 1161 | case 4: |
| 1162 | case 5: |
| 1163 | pInstrAttrib->m_fIsAbsBranch = true; |
| 1164 | } |
| 1165 | LOG((LF_CORDB, LL_INFO10000, "CALL/JMP modr/m:%0.2x\n" , opcode0)); |
| 1166 | break; |
| 1167 | |
| 1168 | default: |
| 1169 | LOG((LF_CORDB, LL_INFO10000, "NORMAL:%0.2x\n" , opcode0)); |
| 1170 | } |
| 1171 | |
| 1172 | if (pInstrAttrib->m_cOperandSize == 0x0) |
| 1173 | { |
| 1174 | // if an operand size wasn't computed (likely because the decoder didn't understand the instruction) then set |
| 1175 | // the size to the max buffer size. this is a fall-back to the dev10 behavior and is applicable for reads only. |
| 1176 | _ASSERTE(!pInstrAttrib->m_fIsWrite); |
| 1177 | pInstrAttrib->m_cOperandSize = SharedPatchBypassBuffer::cbBufferBypass; |
| 1178 | } |
| 1179 | } |
| 1180 | |
| 1181 | |
| 1182 | #endif |
| 1183 | |