| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | //***************************************************************************** |
| 5 | // File: DacDbiImpl.cpp |
| 6 | // |
| 7 | |
| 8 | // |
| 9 | // Implement DAC/DBI interface |
| 10 | // |
| 11 | //***************************************************************************** |
| 12 | |
| 13 | |
| 14 | #include "stdafx.h" |
| 15 | |
| 16 | #include "dacdbiinterface.h" |
| 17 | |
| 18 | #include "typestring.h" |
| 19 | #include "holder.h" |
| 20 | #include "debuginfostore.h" |
| 21 | #include "peimagelayout.inl" |
| 22 | #include "encee.h" |
| 23 | #include "switches.h" |
| 24 | #include "generics.h" |
| 25 | #include "stackwalk.h" |
| 26 | |
| 27 | #include "dacdbiimpl.h" |
| 28 | |
| 29 | #ifdef FEATURE_COMINTEROP |
| 30 | #include "runtimecallablewrapper.h" |
| 31 | #include "comcallablewrapper.h" |
| 32 | #endif // FEATURE_COMINTEROP |
| 33 | |
| 34 | #include "request_common.h" |
| 35 | |
| 36 | //----------------------------------------------------------------------------- |
| 37 | // Have standard enter and leave macros at the DacDbi boundary to enforce |
| 38 | // standard behavior. |
| 39 | // 1. catch exceptions and convert them at the boundary. |
| 40 | // 2. provide a space to hook logging and transitions. |
| 41 | // 3. provide a hook to verify return values. |
| 42 | // |
| 43 | // Usage notes: |
| 44 | // - use this at the DacDbi boundary; but not at internal functions |
| 45 | // - it's ok to Return from the middle. |
| 46 | // |
| 47 | // Expected usage is: |
| 48 | // Foo() |
| 49 | // { |
| 50 | // DD_ENTER_MAY_THROW |
| 51 | // ... |
| 52 | // if (...) { ThrowHr(E_SOME_FAILURE); } |
| 53 | // ... |
| 54 | // if (...) { return; } // early success case |
| 55 | // ... |
| 56 | // } |
| 57 | //----------------------------------------------------------------------------- |
| 58 | |
| 59 | |
| 60 | |
| 61 | |
| 62 | // Global allocator for DD. Access is protected under the g_dacCritSec lock. |
| 63 | IDacDbiInterface::IAllocator * g_pAllocator = NULL; |
| 64 | |
| 65 | //--------------------------------------------------------------------------------------- |
| 66 | // |
| 67 | // Extra sugar for wrapping IAllocator under friendly New/Delete operators. |
| 68 | // |
| 69 | // Sample usage: |
| 70 | // void Foo(TestClass ** ppOut) |
| 71 | // { |
| 72 | // *ppOut = NULL; |
| 73 | // TestClass * p = new (forDbi) TestClass(); |
| 74 | // ... |
| 75 | // if (ok) |
| 76 | // { |
| 77 | // *ppOut = p; |
| 78 | // return; // DBI will then free this memory. |
| 79 | // } |
| 80 | // ... |
| 81 | // DeleteDbiMemory(p); |
| 82 | // } |
| 83 | // |
| 84 | // Be very careful when using this on classes since Dbi and DAC may be in |
| 85 | // separate dlls. This is best used when operating on blittable data-structures. |
| 86 | // (no ctor/dtor, plain data fields) to guarantee the proper DLL isolation. |
| 87 | // You don't want to call the ctor in DAC's context and the dtor in DBI's context |
| 88 | // unless you really know what you're doing and that it's safe. |
| 89 | // |
| 90 | |
| 91 | // Need a class to serve as a tag that we can use to overload New/Delete. |
| 92 | forDbiWorker forDbi; |
| 93 | |
| 94 | void * operator new(size_t lenBytes, const forDbiWorker &) |
| 95 | { |
| 96 | _ASSERTE(g_pAllocator != NULL); |
| 97 | void *result = g_pAllocator->Alloc(lenBytes); |
| 98 | if (result == NULL) |
| 99 | { |
| 100 | ThrowOutOfMemory(); |
| 101 | } |
| 102 | return result; |
| 103 | } |
| 104 | |
| 105 | void * operator new[](size_t lenBytes, const forDbiWorker &) |
| 106 | { |
| 107 | _ASSERTE(g_pAllocator != NULL); |
| 108 | void *result = g_pAllocator->Alloc(lenBytes); |
| 109 | if (result == NULL) |
| 110 | { |
| 111 | ThrowOutOfMemory(); |
| 112 | } |
| 113 | return result; |
| 114 | } |
| 115 | |
| 116 | // Note: there is no C++ syntax for manually invoking this, but if a constructor throws an exception I understand that |
| 117 | // this delete operator will be invoked automatically to destroy the object. |
| 118 | void operator delete(void *p, const forDbiWorker &) |
| 119 | { |
| 120 | if (p == NULL) |
| 121 | { |
| 122 | return; |
| 123 | } |
| 124 | |
| 125 | _ASSERTE(g_pAllocator != NULL); |
| 126 | g_pAllocator->Free((BYTE*) p); |
| 127 | |
| 128 | } |
| 129 | |
| 130 | // Note: there is no C++ syntax for manually invoking this, but if a constructor throws an exception I understand that |
| 131 | // this delete operator will be invoked automatically to destroy the object. |
| 132 | void operator delete[](void *p, const forDbiWorker &) |
| 133 | { |
| 134 | if (p == NULL) |
| 135 | { |
| 136 | return; |
| 137 | } |
| 138 | |
| 139 | _ASSERTE(g_pAllocator != NULL); |
| 140 | g_pAllocator->Free((BYTE*) p); |
| 141 | } |
| 142 | |
| 143 | // @dbgtodo dac support: determine how to handle an array of class instances to ensure the dtors get |
| 144 | // called correctly or document that they won't |
| 145 | // Delete memory and invoke dtor for memory allocated with 'operator (forDbi) new' |
| 146 | template<class T> void DeleteDbiMemory(T *p) |
| 147 | { |
| 148 | if (p == NULL) |
| 149 | { |
| 150 | return; |
| 151 | } |
| 152 | p->~T(); |
| 153 | |
| 154 | _ASSERTE(g_pAllocator != NULL); |
| 155 | g_pAllocator->Free((BYTE*) p); |
| 156 | } |
| 157 | |
| 158 | |
| 159 | //--------------------------------------------------------------------------------------- |
| 160 | // Creates the DacDbiInterface object, used by Dbi. |
| 161 | // |
| 162 | // Arguments: |
| 163 | // pTarget - pointer to a Data-Target |
| 164 | // baseAddress - non-zero base address of mscorwks in target to debug. |
| 165 | // pAllocator - pointer to client allocator object. This lets DD allocate objects and |
| 166 | // pass them out back to the client, which can then delete them. |
| 167 | // DD takes a weak ref to this, so client must keep it alive until it |
| 168 | // calls Destroy. |
| 169 | // pMetadataLookup - callback interface to do internal metadata lookup. This is because |
| 170 | // metadata is not dac-ized. |
| 171 | // ppInterface - mandatory out-parameter |
| 172 | // |
| 173 | // Return Value: |
| 174 | // S_OK on success. |
| 175 | // |
| 176 | // |
| 177 | // Notes: |
| 178 | // On Windows, this is public function that can be retrieved by GetProcAddress. |
| 179 | |
| 180 | // On Mac, this is used internally by DacDbiMarshalStubInstance below |
| 181 | // This will yield an IDacDbiInterface to provide structured access to the |
| 182 | // data-target. |
| 183 | // |
| 184 | // Must call Destroy to on interface to free its resources. |
| 185 | // |
| 186 | //--------------------------------------------------------------------------------------- |
| 187 | STDAPI |
| 188 | DacDbiInterfaceInstance( |
| 189 | ICorDebugDataTarget * pTarget, |
| 190 | CORDB_ADDRESS baseAddress, |
| 191 | IDacDbiInterface::IAllocator * pAllocator, |
| 192 | IDacDbiInterface::IMetaDataLookup * pMetaDataLookup, |
| 193 | IDacDbiInterface ** ppInterface) |
| 194 | { |
| 195 | // No marshalling is done by the instantiationf function - we just need to setup the infrastructure. |
| 196 | // We don't want to warn if this involves creating and accessing undacized data structures, |
| 197 | // because it's for the infrastructure, not DACized code itself. |
| 198 | SUPPORTS_DAC_HOST_ONLY; |
| 199 | |
| 200 | // Since this is public, verify it. |
| 201 | if ((ppInterface == NULL) || (pTarget == NULL) || (baseAddress == 0)) |
| 202 | { |
| 203 | return E_INVALIDARG; |
| 204 | } |
| 205 | |
| 206 | *ppInterface = NULL; |
| 207 | |
| 208 | // |
| 209 | // Actually allocate the real object and initialize it. |
| 210 | // |
| 211 | DacDbiInterfaceImpl * pDac = new (nothrow) DacDbiInterfaceImpl(pTarget, baseAddress, pAllocator, pMetaDataLookup); |
| 212 | if (!pDac) |
| 213 | { |
| 214 | return E_OUTOFMEMORY; |
| 215 | } |
| 216 | |
| 217 | HRESULT hrStatus = pDac->Initialize(); |
| 218 | |
| 219 | if (SUCCEEDED(hrStatus)) |
| 220 | { |
| 221 | *ppInterface = pDac; |
| 222 | } |
| 223 | else |
| 224 | { |
| 225 | delete pDac; |
| 226 | } |
| 227 | return hrStatus; |
| 228 | } |
| 229 | |
| 230 | |
| 231 | //--------------------------------------------------------------------------------------- |
| 232 | // Constructor. Instantiates a DAC/DBI interface around a DataTarget. |
| 233 | // |
| 234 | // Arguments: |
| 235 | // pTarget - pointer to a Data-Target |
| 236 | // baseAddress - non-zero base address of mscorwks in target to debug. |
| 237 | // pAllocator - pointer to client allocator object. This lets DD allocate objects and |
| 238 | // pass them out back to the client, which can then delete them. |
| 239 | // DD takes a weak ref to this, so client must keep it alive until it |
| 240 | // calls Destroy. |
| 241 | // pMetadataLookup - callback interface to do internal metadata lookup. This is because |
| 242 | // metadata is not dac-ized. |
| 243 | // |
| 244 | // Notes: |
| 245 | // pAllocator is a weak reference. |
| 246 | //--------------------------------------------------------------------------------------- |
| 247 | DacDbiInterfaceImpl::DacDbiInterfaceImpl( |
| 248 | ICorDebugDataTarget* pTarget, |
| 249 | CORDB_ADDRESS baseAddress, |
| 250 | IAllocator * pAllocator, |
| 251 | IMetaDataLookup * pMetaDataLookup |
| 252 | ) : ClrDataAccess(pTarget), |
| 253 | m_pAllocator(pAllocator), |
| 254 | m_pMetaDataLookup(pMetaDataLookup), |
| 255 | m_pCachedPEFile(VMPTR_PEFile::NullPtr()), |
| 256 | m_pCachedImporter(NULL), |
| 257 | m_isCachedHijackFunctionValid(FALSE) |
| 258 | { |
| 259 | _ASSERTE(baseAddress != NULL); |
| 260 | m_globalBase = CORDB_ADDRESS_TO_TADDR(baseAddress); |
| 261 | |
| 262 | _ASSERTE(pMetaDataLookup != NULL); |
| 263 | _ASSERTE(pAllocator != NULL); |
| 264 | _ASSERTE(pTarget != NULL); |
| 265 | |
| 266 | #ifdef _DEBUG |
| 267 | // Enable verification asserts in ICorDebug scenarios. ICorDebug never guesses at the DAC path, so any |
| 268 | // mismatch should be fatal, and so always of interest to the user. |
| 269 | // This overrides the assignment in the base class ctor (which runs first). |
| 270 | m_fEnableDllVerificationAsserts = true; |
| 271 | #endif |
| 272 | } |
| 273 | |
| 274 | //----------------------------------------------------------------------------- |
| 275 | // Destructor. |
| 276 | // |
| 277 | // Notes: |
| 278 | // This gets invoked after Destroy(). |
| 279 | //----------------------------------------------------------------------------- |
| 280 | DacDbiInterfaceImpl::~DacDbiInterfaceImpl() |
| 281 | { |
| 282 | SUPPORTS_DAC_HOST_ONLY; |
| 283 | // This will automatically chain to the base class dtor |
| 284 | } |
| 285 | |
| 286 | //----------------------------------------------------------------------------- |
| 287 | // Called from DAC-ized code to get a IMDInternalImport |
| 288 | // |
| 289 | // Arguments: |
| 290 | // pPEFile - PE file for which to get importer for |
| 291 | // fThrowEx - if true, throw instead of returning NULL. |
| 292 | // |
| 293 | // Returns: |
| 294 | // an Internal importer object for this file. |
| 295 | // May return NULL or throw (depending on fThrowEx). |
| 296 | // May throw in exceptional circumstances (eg, corrupt debuggee). |
| 297 | // |
| 298 | // Assumptions: |
| 299 | // This is called from DAC-ized code within the VM, which |
| 300 | // was in turn called from some DD primitive. The returned importer will |
| 301 | // be used by the DAC-ized code in the callstack, but it won't be cached. |
| 302 | // |
| 303 | // Notes: |
| 304 | // This is an Internal importer, not a public Metadata importer. |
| 305 | // |
| 306 | interface IMDInternalImport* DacDbiInterfaceImpl::GetMDImport( |
| 307 | const PEFile* pPEFile, |
| 308 | const ReflectionModule * pReflectionModule, |
| 309 | bool fThrowEx) |
| 310 | { |
| 311 | // Since this is called from an existing DAC-primitive, we already hold the g_dacCritSec lock. |
| 312 | // The lock conveniently protects our cache. |
| 313 | SUPPORTS_DAC; |
| 314 | |
| 315 | IDacDbiInterface::IMetaDataLookup * pLookup = m_pMetaDataLookup; |
| 316 | _ASSERTE(pLookup != NULL); |
| 317 | |
| 318 | VMPTR_PEFile vmPEFile = VMPTR_PEFile::NullPtr(); |
| 319 | |
| 320 | if (pPEFile != NULL) |
| 321 | { |
| 322 | vmPEFile.SetHostPtr(pPEFile); |
| 323 | } |
| 324 | else if (pReflectionModule != NULL) |
| 325 | { |
| 326 | // SOS and ClrDataAccess rely on special logic to find the metadata for methods in dynamic modules. |
| 327 | // We don't need to. The RS has already taken care of the special logic for us. |
| 328 | // So here we just grab the PEFile off of the ReflectionModule and continue down the normal |
| 329 | // code path. See code:ClrDataAccess::GetMDImport for comparison. |
| 330 | vmPEFile.SetHostPtr(pReflectionModule->GetFile()); |
| 331 | } |
| 332 | |
| 333 | // Optimize for the case where the VM queries the same Importer many times in a row. |
| 334 | if (m_pCachedPEFile == vmPEFile) |
| 335 | { |
| 336 | return m_pCachedImporter; |
| 337 | } |
| 338 | |
| 339 | // Go to DBI to find the metadata. |
| 340 | IMDInternalImport * pInternal = NULL; |
| 341 | bool isILMetaDataForNI = false; |
| 342 | EX_TRY |
| 343 | { |
| 344 | // If test needs it in the future, prop isILMetaDataForNI back up to |
| 345 | // ClrDataAccess.m_mdImports.Add() call. |
| 346 | // example in code:ClrDataAccess::GetMDImport |
| 347 | // CordbModule::GetMetaDataInterface also looks up MetaData and would need attention. |
| 348 | |
| 349 | // This is the new codepath that uses ICorDebugMetaDataLookup. |
| 350 | // To get the old codepath that uses the v2 metadata lookup methods, |
| 351 | // you'd have to load DAC only and then you'll get ClrDataAccess's implementation |
| 352 | // of this function. |
| 353 | pInternal = pLookup->LookupMetaData(vmPEFile, isILMetaDataForNI); |
| 354 | } |
| 355 | EX_CATCH |
| 356 | { |
| 357 | // Any expected error we should ignore. |
| 358 | if ((GET_EXCEPTION()->GetHR() != HRESULT_FROM_WIN32(ERROR_PARTIAL_COPY)) && |
| 359 | (GET_EXCEPTION()->GetHR() != CORDBG_E_READVIRTUAL_FAILURE) && |
| 360 | (GET_EXCEPTION()->GetHR() != CORDBG_E_SYMBOLS_NOT_AVAILABLE) && |
| 361 | (GET_EXCEPTION()->GetHR() != CORDBG_E_MODULE_LOADED_FROM_DISK)) |
| 362 | { |
| 363 | EX_RETHROW; |
| 364 | } |
| 365 | } |
| 366 | EX_END_CATCH(SwallowAllExceptions) |
| 367 | |
| 368 | if (pInternal == NULL) |
| 369 | { |
| 370 | SIMPLIFYING_ASSUMPTION(!"MD lookup failed" ); |
| 371 | if (fThrowEx) |
| 372 | { |
| 373 | ThrowHR(E_FAIL); |
| 374 | } |
| 375 | return NULL; |
| 376 | } |
| 377 | else |
| 378 | { |
| 379 | // Cache it such that it we look for the exact same Importer again, we'll return it. |
| 380 | m_pCachedPEFile = vmPEFile; |
| 381 | m_pCachedImporter = pInternal; |
| 382 | } |
| 383 | |
| 384 | return pInternal; |
| 385 | } |
| 386 | |
| 387 | //----------------------------------------------------------------------------- |
| 388 | // Implementation of IDacDbiInterface |
| 389 | // See DacDbiInterface.h for full descriptions of all of these functions |
| 390 | //----------------------------------------------------------------------------- |
| 391 | |
| 392 | // Destroy the connection, freeing up any resources. |
| 393 | void DacDbiInterfaceImpl::Destroy() |
| 394 | { |
| 395 | m_pAllocator = NULL; |
| 396 | |
| 397 | this->Release(); |
| 398 | // Memory is deleted, don't access this object any more |
| 399 | } |
| 400 | |
| 401 | // Check whether the version of the DBI matches the version of the runtime. |
| 402 | // See code:CordbProcess::CordbProcess#DBIVersionChecking for more information regarding version checking. |
| 403 | HRESULT DacDbiInterfaceImpl::CheckDbiVersion(const DbiVersion * pVersion) |
| 404 | { |
| 405 | DD_ENTER_MAY_THROW; |
| 406 | |
| 407 | if (pVersion->m_dwFormat != kCurrentDbiVersionFormat) |
| 408 | { |
| 409 | return CORDBG_E_INCOMPATIBLE_PROTOCOL; |
| 410 | } |
| 411 | |
| 412 | if ((pVersion->m_dwProtocolBreakingChangeCounter != kCurrentDacDbiProtocolBreakingChangeCounter) || |
| 413 | (pVersion->m_dwReservedMustBeZero1 != 0)) |
| 414 | { |
| 415 | return CORDBG_E_INCOMPATIBLE_PROTOCOL; |
| 416 | } |
| 417 | |
| 418 | return S_OK; |
| 419 | } |
| 420 | |
| 421 | // Flush the DAC cache. This should be called when target memory changes. |
| 422 | HRESULT DacDbiInterfaceImpl::FlushCache() |
| 423 | { |
| 424 | // Non-reentrant. We don't want to flush cached instances from a callback. |
| 425 | // That would remove host DAC instances while they're being used. |
| 426 | DD_NON_REENTRANT_MAY_THROW; |
| 427 | |
| 428 | m_pCachedPEFile = VMPTR_PEFile::NullPtr(); |
| 429 | m_pCachedImporter = NULL; |
| 430 | m_isCachedHijackFunctionValid = FALSE; |
| 431 | |
| 432 | HRESULT hr = ClrDataAccess::Flush(); |
| 433 | |
| 434 | // Current impl of Flush() should always succeed. If it ever fails, we want to know. |
| 435 | _ASSERTE(SUCCEEDED(hr)); |
| 436 | return hr; |
| 437 | } |
| 438 | |
| 439 | // enable or disable DAC target consistency checks |
| 440 | void DacDbiInterfaceImpl::DacSetTargetConsistencyChecks(bool fEnableAsserts) |
| 441 | { |
| 442 | // forward on to our ClrDataAccess base class |
| 443 | ClrDataAccess::SetTargetConsistencyChecks(fEnableAsserts); |
| 444 | } |
| 445 | |
| 446 | // Query if Left-side is started up? |
| 447 | BOOL DacDbiInterfaceImpl::IsLeftSideInitialized() |
| 448 | { |
| 449 | DD_ENTER_MAY_THROW; |
| 450 | |
| 451 | if (g_pDebugger != NULL) |
| 452 | { |
| 453 | // This check is "safe". |
| 454 | // The initialize order in the left-side is: |
| 455 | // 1) g_pDebugger is an RVA based global initialized to NULL when the module is loaded. |
| 456 | // 2) Allocate a "Debugger" object. |
| 457 | // 3) run the ctor, which will set m_fLeftSideInitialized = FALSE. |
| 458 | // 4) assign the object to g_pDebugger. |
| 459 | // 5) later, LS initialization code will assign g_pDebugger->m_fLeftSideInitialized = TRUE. |
| 460 | // |
| 461 | // The memory write in #5 is atomic. There is no window where we're reading unitialized data. |
| 462 | |
| 463 | return (g_pDebugger->m_fLeftSideInitialized != 0); |
| 464 | } |
| 465 | |
| 466 | return FALSE; |
| 467 | } |
| 468 | |
| 469 | |
| 470 | // Determines if a given adddress is a CLR stub. |
| 471 | BOOL DacDbiInterfaceImpl::IsTransitionStub(CORDB_ADDRESS address) |
| 472 | { |
| 473 | DD_ENTER_MAY_THROW; |
| 474 | |
| 475 | BOOL fIsStub = FALSE; |
| 476 | |
| 477 | #if defined(FEATURE_PAL) |
| 478 | // Currently IsIPInModule() is not implemented in the PAL. Rather than skipping the check, we should |
| 479 | // either E_NOTIMPL this API or implement IsIPInModule() in the PAL. Since ICDProcess::IsTransitionStub() |
| 480 | // is only called by VS in mixed-mode debugging scenarios, and mixed-mode debugging is not supported on |
| 481 | // POSIX systems, there is really no incentive to implement this API at this point. |
| 482 | ThrowHR(E_NOTIMPL); |
| 483 | |
| 484 | #else // !FEATURE_PAL |
| 485 | |
| 486 | TADDR ip = (TADDR)address; |
| 487 | |
| 488 | if (ip == NULL) |
| 489 | { |
| 490 | fIsStub = FALSE; |
| 491 | } |
| 492 | else |
| 493 | { |
| 494 | fIsStub = StubManager::IsStub(ip); |
| 495 | } |
| 496 | |
| 497 | // If it's in Mscorwks, count that as a stub too. |
| 498 | if (fIsStub == FALSE) |
| 499 | { |
| 500 | fIsStub = IsIPInModule(m_globalBase, ip); |
| 501 | } |
| 502 | |
| 503 | #endif // FEATURE_PAL |
| 504 | |
| 505 | return fIsStub; |
| 506 | } |
| 507 | |
| 508 | // Gets the type of 'address'. |
| 509 | IDacDbiInterface::AddressType DacDbiInterfaceImpl::GetAddressType(CORDB_ADDRESS address) |
| 510 | { |
| 511 | DD_ENTER_MAY_THROW; |
| 512 | TADDR taAddr = CORDB_ADDRESS_TO_TADDR(address); |
| 513 | |
| 514 | if (IsPossibleCodeAddress(taAddr) == S_OK) |
| 515 | { |
| 516 | if (ExecutionManager::IsManagedCode(taAddr)) |
| 517 | { |
| 518 | return kAddressManagedMethod; |
| 519 | } |
| 520 | |
| 521 | if (StubManager::IsStub(taAddr)) |
| 522 | { |
| 523 | return kAddressRuntimeUnmanagedStub; |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | return kAddressUnrecognized; |
| 528 | } |
| 529 | |
| 530 | |
| 531 | // Get a VM appdomain pointer that matches the appdomain ID |
| 532 | VMPTR_AppDomain DacDbiInterfaceImpl::GetAppDomainFromId(ULONG appdomainId) |
| 533 | { |
| 534 | DD_ENTER_MAY_THROW; |
| 535 | |
| 536 | VMPTR_AppDomain vmAppDomain; |
| 537 | |
| 538 | // @dbgtodo dac support - We would like to wean ourselves off the IXClrData interfaces. |
| 539 | IXCLRDataProcess * pDAC = this; |
| 540 | ReleaseHolder<IXCLRDataAppDomain> pDacAppDomain; |
| 541 | |
| 542 | HRESULT hrStatus = pDAC->GetAppDomainByUniqueID(appdomainId, &pDacAppDomain); |
| 543 | IfFailThrow(hrStatus); |
| 544 | |
| 545 | IXCLRDataAppDomain * pIAppDomain = pDacAppDomain; |
| 546 | AppDomain * pAppDomain = (static_cast<ClrDataAppDomain *> (pIAppDomain))->GetAppDomain(); |
| 547 | SIMPLIFYING_ASSUMPTION(pAppDomain != NULL); |
| 548 | if (pAppDomain == NULL) |
| 549 | { |
| 550 | ThrowHR(E_FAIL); // corrupted left-side? |
| 551 | } |
| 552 | |
| 553 | TADDR addrAppDomain = PTR_HOST_TO_TADDR(pAppDomain); |
| 554 | vmAppDomain.SetDacTargetPtr(addrAppDomain); |
| 555 | |
| 556 | return vmAppDomain; |
| 557 | } |
| 558 | |
| 559 | |
| 560 | // Get the AppDomain ID for an AppDomain. |
| 561 | ULONG DacDbiInterfaceImpl::GetAppDomainId(VMPTR_AppDomain vmAppDomain) |
| 562 | { |
| 563 | DD_ENTER_MAY_THROW; |
| 564 | |
| 565 | if (vmAppDomain.IsNull()) |
| 566 | { |
| 567 | return 0; |
| 568 | } |
| 569 | else |
| 570 | { |
| 571 | AppDomain * pAppDomain = vmAppDomain.GetDacPtr(); |
| 572 | return pAppDomain->GetId().m_dwId; |
| 573 | } |
| 574 | } |
| 575 | |
| 576 | // Get the managed AppDomain object for an AppDomain. |
| 577 | VMPTR_OBJECTHANDLE DacDbiInterfaceImpl::GetAppDomainObject(VMPTR_AppDomain vmAppDomain) |
| 578 | { |
| 579 | DD_ENTER_MAY_THROW; |
| 580 | |
| 581 | AppDomain* pAppDomain = vmAppDomain.GetDacPtr(); |
| 582 | OBJECTHANDLE hAppDomainManagedObject = pAppDomain->GetRawExposedObjectHandleForDebugger(); |
| 583 | VMPTR_OBJECTHANDLE vmObj = VMPTR_OBJECTHANDLE::NullPtr(); |
| 584 | vmObj.SetDacTargetPtr(hAppDomainManagedObject); |
| 585 | return vmObj; |
| 586 | |
| 587 | } |
| 588 | |
| 589 | // Determine if the specified AppDomain is the default domain |
| 590 | BOOL DacDbiInterfaceImpl::IsDefaultDomain(VMPTR_AppDomain vmAppDomain) |
| 591 | { |
| 592 | DD_ENTER_MAY_THROW; |
| 593 | |
| 594 | AppDomain * pAppDomain = vmAppDomain.GetDacPtr(); |
| 595 | BOOL fDefaultDomain = pAppDomain->IsDefaultDomain(); |
| 596 | |
| 597 | return fDefaultDomain; |
| 598 | } |
| 599 | |
| 600 | |
| 601 | // Get the full AD friendly name for the given EE AppDomain. |
| 602 | void DacDbiInterfaceImpl::GetAppDomainFullName( |
| 603 | VMPTR_AppDomain vmAppDomain, |
| 604 | IStringHolder * pStrName ) |
| 605 | { |
| 606 | DD_ENTER_MAY_THROW; |
| 607 | AppDomain * pAppDomain = vmAppDomain.GetDacPtr(); |
| 608 | |
| 609 | // Get the AppDomain name from the VM without changing anything |
| 610 | // We might be able to simplify this, eg. by returning an SString. |
| 611 | bool fIsUtf8; |
| 612 | PVOID pRawName = pAppDomain->GetFriendlyNameNoSet(&fIsUtf8); |
| 613 | |
| 614 | if (!pRawName) |
| 615 | { |
| 616 | ThrowHR(E_NOINTERFACE); |
| 617 | } |
| 618 | |
| 619 | HRESULT hrStatus = S_OK; |
| 620 | if (fIsUtf8) |
| 621 | { |
| 622 | // we have to allocate a temporary string |
| 623 | // we could avoid this by adding a version of IStringHolder::AssignCopy that takes a UTF8 string |
| 624 | // We should also probably check to see when fIsUtf8 is ever true (it looks like it should normally be false). |
| 625 | ULONG32 dwNameLen = 0; |
| 626 | hrStatus = ConvertUtf8((LPCUTF8)pRawName, 0, &dwNameLen, NULL); |
| 627 | if (SUCCEEDED( hrStatus )) |
| 628 | { |
| 629 | NewArrayHolder<WCHAR> pwszName(new WCHAR[dwNameLen]); |
| 630 | hrStatus = ConvertUtf8((LPCUTF8)pRawName, dwNameLen, &dwNameLen, pwszName ); |
| 631 | IfFailThrow(hrStatus); |
| 632 | |
| 633 | hrStatus = pStrName->AssignCopy(pwszName); |
| 634 | } |
| 635 | } |
| 636 | else |
| 637 | { |
| 638 | hrStatus = pStrName->AssignCopy(static_cast<PCWSTR>(pRawName)); |
| 639 | } |
| 640 | |
| 641 | // Very important that this either sets pStrName or Throws. |
| 642 | // Don't set it and then then throw. |
| 643 | IfFailThrow(hrStatus); |
| 644 | } |
| 645 | |
| 646 | //- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 647 | // JIT Compiler Flags |
| 648 | //- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 649 | |
| 650 | // Get the values of the JIT Optimization and EnC flags. |
| 651 | void DacDbiInterfaceImpl::GetCompilerFlags ( |
| 652 | VMPTR_DomainFile vmDomainFile, |
| 653 | BOOL *pfAllowJITOpts, |
| 654 | BOOL *pfEnableEnC) |
| 655 | { |
| 656 | DD_ENTER_MAY_THROW; |
| 657 | |
| 658 | DomainFile * pDomainFile = vmDomainFile.GetDacPtr(); |
| 659 | |
| 660 | if (pDomainFile == NULL) |
| 661 | { |
| 662 | ThrowHR(E_FAIL); |
| 663 | } |
| 664 | |
| 665 | // Get the underlying module - none of this is AppDomain specific |
| 666 | Module * pModule = pDomainFile->GetModule(); |
| 667 | DWORD dwBits = pModule->GetDebuggerInfoBits(); |
| 668 | *pfAllowJITOpts = !CORDisableJITOptimizations(dwBits); |
| 669 | *pfEnableEnC = pModule->IsEditAndContinueEnabled(); |
| 670 | |
| 671 | |
| 672 | } //GetCompilerFlags |
| 673 | |
| 674 | //----------------------------------------------------------------------------- |
| 675 | // Helper function for SetCompilerFlags to set EnC status. |
| 676 | // Arguments: |
| 677 | // Input: |
| 678 | // pModule - The runtime module for which flags are being set. |
| 679 | // |
| 680 | // Return value: |
| 681 | // true if the Enc bits can be set on this module |
| 682 | //----------------------------------------------------------------------------- |
| 683 | |
| 684 | bool DacDbiInterfaceImpl::CanSetEnCBits(Module * pModule) |
| 685 | { |
| 686 | _ASSERTE(pModule != NULL); |
| 687 | #ifdef EnC_SUPPORTED |
| 688 | // If we're using explicit sequence points (from the PDB), then we can't do EnC |
| 689 | // because EnC won't get updated pdbs and so the sequence points will be wrong. |
| 690 | bool fIgnorePdbs = ((pModule->GetDebuggerInfoBits() & DACF_IGNORE_PDBS) != 0); |
| 691 | |
| 692 | bool fAllowEnc = pModule->IsEditAndContinueCapable() && |
| 693 | |
| 694 | #ifdef PROFILING_SUPPORTED_DATA |
| 695 | !CORProfilerPresent() && // this queries target |
| 696 | #endif |
| 697 | fIgnorePdbs; |
| 698 | #else // ! EnC_SUPPORTED |
| 699 | // Enc not supported on any other platforms. |
| 700 | bool fAllowEnc = false; |
| 701 | #endif |
| 702 | |
| 703 | return fAllowEnc; |
| 704 | } // DacDbiInterfaceImpl::SetEnCBits |
| 705 | |
| 706 | // Set the values of the JIT optimization and EnC flags. |
| 707 | HRESULT DacDbiInterfaceImpl::SetCompilerFlags(VMPTR_DomainFile vmDomainFile, |
| 708 | BOOL fAllowJitOpts, |
| 709 | BOOL fEnableEnC) |
| 710 | { |
| 711 | DD_ENTER_MAY_THROW; |
| 712 | |
| 713 | DWORD dwBits = 0; |
| 714 | DomainFile * pDomainFile = vmDomainFile.GetDacPtr(); |
| 715 | Module * pModule = pDomainFile->GetCurrentModule(); |
| 716 | HRESULT hr = S_OK; |
| 717 | |
| 718 | |
| 719 | #ifdef FEATURE_PREJIT |
| 720 | if (pModule->HasNativeImage()) |
| 721 | { |
| 722 | ThrowHR(CORDBG_E_CANT_CHANGE_JIT_SETTING_FOR_ZAP_MODULE); |
| 723 | } |
| 724 | #endif |
| 725 | _ASSERTE(pModule != NULL); |
| 726 | |
| 727 | // Initialize dwBits. |
| 728 | dwBits = (pModule->GetDebuggerInfoBits() & ~(DACF_ALLOW_JIT_OPTS | DACF_ENC_ENABLED)); |
| 729 | dwBits &= DACF_CONTROL_FLAGS_MASK; |
| 730 | |
| 731 | if (fAllowJitOpts) |
| 732 | { |
| 733 | dwBits |= DACF_ALLOW_JIT_OPTS; |
| 734 | } |
| 735 | if (fEnableEnC) |
| 736 | { |
| 737 | if (CanSetEnCBits(pModule)) |
| 738 | { |
| 739 | dwBits |= DACF_ENC_ENABLED; |
| 740 | } |
| 741 | else |
| 742 | { |
| 743 | hr = CORDBG_S_NOT_ALL_BITS_SET; |
| 744 | } |
| 745 | } |
| 746 | // Settings from the debugger take precedence over all other settings. |
| 747 | dwBits |= DACF_USER_OVERRIDE; |
| 748 | |
| 749 | // set flags. This will write back to the target |
| 750 | pModule->SetDebuggerInfoBits((DebuggerAssemblyControlFlags)dwBits); |
| 751 | |
| 752 | |
| 753 | LOG((LF_CORDB, LL_INFO100, "D::HIPCE, Changed Jit-Debug-Info: fOpt=%d, fEnableEnC=%d, new bits=0x%08x\n" , |
| 754 | (dwBits & DACF_ALLOW_JIT_OPTS) != 0, |
| 755 | (dwBits & DACF_ENC_ENABLED) != 0, |
| 756 | dwBits)); |
| 757 | |
| 758 | _ASSERTE(SUCCEEDED(hr)); |
| 759 | return hr; |
| 760 | |
| 761 | } // DacDbiInterfaceImpl::SetCompilerFlags |
| 762 | |
| 763 | |
| 764 | //- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 765 | // sequence points and var info |
| 766 | //- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 767 | |
| 768 | // Initialize the native/IL sequence points and native var info for a function. |
| 769 | void DacDbiInterfaceImpl::GetNativeCodeSequencePointsAndVarInfo(VMPTR_MethodDesc vmMethodDesc, |
| 770 | CORDB_ADDRESS startAddr, |
| 771 | BOOL fCodeAvailable, |
| 772 | NativeVarData * pNativeVarData, |
| 773 | SequencePoints * pSequencePoints) |
| 774 | { |
| 775 | DD_ENTER_MAY_THROW; |
| 776 | |
| 777 | _ASSERTE(!vmMethodDesc.IsNull()); |
| 778 | |
| 779 | MethodDesc * pMD = vmMethodDesc.GetDacPtr(); |
| 780 | |
| 781 | _ASSERTE(fCodeAvailable != 0); |
| 782 | |
| 783 | // get information about the locations of arguments and local variables |
| 784 | GetNativeVarData(pMD, startAddr, GetArgCount(pMD), pNativeVarData); |
| 785 | |
| 786 | // get the sequence points |
| 787 | GetSequencePoints(pMD, startAddr, pSequencePoints); |
| 788 | |
| 789 | } // GetNativeCodeSequencePointsAndVarInfo |
| 790 | |
| 791 | //----------------------------------------------------------------------------- |
| 792 | // Get the number of fixed arguments to a function, i.e., the explicit args and the "this" pointer. |
| 793 | // This does not include other implicit arguments or varargs. This is used to compute a variable ID |
| 794 | // (see comment in CordbJITILFrame::ILVariableToNative for more detail) |
| 795 | // Arguments: |
| 796 | // input: pMD pointer to the method desc for the function |
| 797 | // output: none |
| 798 | // Return value: |
| 799 | // the number of fixed arguments to the function |
| 800 | //----------------------------------------------------------------------------- |
| 801 | SIZE_T DacDbiInterfaceImpl::GetArgCount(MethodDesc * pMD) |
| 802 | { |
| 803 | |
| 804 | // Create a MetaSig for the given method's sig. (Easier than |
| 805 | // picking the sig apart ourselves.) |
| 806 | PCCOR_SIGNATURE pCallSig; |
| 807 | DWORD cbCallSigSize; |
| 808 | |
| 809 | pMD->GetSig(&pCallSig, &cbCallSigSize); |
| 810 | |
| 811 | if (pCallSig == NULL) |
| 812 | { |
| 813 | // Sig should only be null if the image is corrupted. (Even for lightweight-codegen) |
| 814 | // We expect the jit+verifier to catch this, so that we never land here. |
| 815 | // But just in case ... |
| 816 | CONSISTENCY_CHECK_MSGF(false, ("Corrupted image, null sig.(%s::%s)" , |
| 817 | pMD->m_pszDebugClassName, pMD->m_pszDebugMethodName)); |
| 818 | return 0; |
| 819 | } |
| 820 | |
| 821 | MetaSig msig(pCallSig, cbCallSigSize, pMD->GetModule(), NULL, MetaSig::sigMember); |
| 822 | |
| 823 | // Get the arg count. |
| 824 | UINT32 NumArguments = msig.NumFixedArgs(); |
| 825 | |
| 826 | // Account for the 'this' argument. |
| 827 | if (!pMD->IsStatic()) |
| 828 | { |
| 829 | NumArguments++; |
| 830 | } |
| 831 | /* |
| 832 | SigParser sigParser(pCallSig, cbCallSigSize); |
| 833 | sigParser.SkipMethodHeaderSignature(&m_allArgsCount); |
| 834 | */ |
| 835 | return NumArguments; |
| 836 | } //GetArgCount |
| 837 | |
| 838 | // Allocator to pass to DebugInfoStores, allocating forDBI |
| 839 | BYTE* InfoStoreForDbiNew(void * pData, size_t cBytes) |
| 840 | { |
| 841 | return new(forDbi) BYTE[cBytes]; |
| 842 | } |
| 843 | |
| 844 | // Allocator to pass to the debug-info-stores... |
| 845 | BYTE* InfoStoreNew(void * pData, size_t cBytes) |
| 846 | { |
| 847 | return new BYTE[cBytes]; |
| 848 | } |
| 849 | |
| 850 | //----------------------------------------------------------------------------- |
| 851 | // Get locations and code offsets for local variables and arguments in a function |
| 852 | // This information is used to find the location of a value at a given IP. |
| 853 | // Arguments: |
| 854 | // input: |
| 855 | // pMethodDesc pointer to the method desc for the function |
| 856 | // startAddr starting address of the function--used to differentiate |
| 857 | // EnC versions |
| 858 | // fixedArgCount number of fixed arguments to the function |
| 859 | // output: |
| 860 | // pVarInfo data structure containing a list of variable and |
| 861 | // argument locations by range of IP offsets |
| 862 | // Note: this function may throw |
| 863 | //----------------------------------------------------------------------------- |
| 864 | void DacDbiInterfaceImpl::GetNativeVarData(MethodDesc * pMethodDesc, |
| 865 | CORDB_ADDRESS startAddr, |
| 866 | SIZE_T fixedArgCount, |
| 867 | NativeVarData * pVarInfo) |
| 868 | { |
| 869 | // make sure we haven't done this already |
| 870 | if (pVarInfo->IsInitialized()) |
| 871 | { |
| 872 | return; |
| 873 | } |
| 874 | |
| 875 | NewHolder<ICorDebugInfo::NativeVarInfo> nativeVars(NULL); |
| 876 | |
| 877 | DebugInfoRequest request; |
| 878 | request.InitFromStartingAddr(pMethodDesc, CORDB_ADDRESS_TO_TADDR(startAddr)); |
| 879 | |
| 880 | ULONG32 entryCount; |
| 881 | |
| 882 | BOOL success = DebugInfoManager::GetBoundariesAndVars(request, |
| 883 | InfoStoreNew, NULL, // allocator |
| 884 | NULL, NULL, |
| 885 | &entryCount, &nativeVars); |
| 886 | |
| 887 | if (!success) |
| 888 | ThrowHR(E_FAIL); |
| 889 | |
| 890 | // set key fields of pVarInfo |
| 891 | pVarInfo->InitVarDataList(nativeVars, (int)fixedArgCount, (int)entryCount); |
| 892 | } // GetNativeVarData |
| 893 | |
| 894 | |
| 895 | //----------------------------------------------------------------------------- |
| 896 | // Given a instrumented IL map from the profiler that maps: |
| 897 | // Original offset IL_A -> Instrumentend offset IL_B |
| 898 | // And a native mapping from the JIT that maps: |
| 899 | // Instrumented offset IL_B -> native offset Native_C |
| 900 | // This function merges the two maps and stores the result back into the nativeMap. |
| 901 | // The nativeMap now maps: |
| 902 | // Original offset IL_A -> native offset Native_C |
| 903 | // pEntryCount is the number of valid entries in nativeMap, and it may be adjusted downwards |
| 904 | // as part of the composition. |
| 905 | //----------------------------------------------------------------------------- |
| 906 | void DacDbiInterfaceImpl::ComposeMapping(const InstrumentedILOffsetMapping * pProfilerILMap, ICorDebugInfo::OffsetMapping nativeMap[], ULONG32* pEntryCount) |
| 907 | { |
| 908 | // Translate the IL offset if the profiler has provided us with a mapping. |
| 909 | // The ICD public API should always expose the original IL offsets, but GetBoundaries() |
| 910 | // directly accesses the debug info, which stores the instrumented IL offsets. |
| 911 | |
| 912 | ULONG32 entryCount = *pEntryCount; |
| 913 | // The map pointer could be NULL or there could be no entries in the map, in either case no work to do |
| 914 | if (pProfilerILMap && !pProfilerILMap->IsNull()) |
| 915 | { |
| 916 | // If we did instrument, then we can't have any sequence points that |
| 917 | // are "in-between" the old-->new map that the profiler gave us. |
| 918 | // Ex, if map is: |
| 919 | // (6 old -> 36 new) |
| 920 | // (8 old -> 50 new) |
| 921 | // And the jit gives us an entry for 44 new, that will map back to 6 old. |
| 922 | // Since the map can only have one entry for 6 old, we remove 44 new. |
| 923 | |
| 924 | // First Pass: invalidate all the duplicate entries by setting their IL offset to MAX_ILNUM |
| 925 | ULONG32 cDuplicate = 0; |
| 926 | ULONG32 prevILOffset = (ULONG32)(ICorDebugInfo::MAX_ILNUM); |
| 927 | for (ULONG32 i = 0; i < entryCount; i++) |
| 928 | { |
| 929 | ULONG32 origILOffset = TranslateInstrumentedILOffsetToOriginal(nativeMap[i].ilOffset, pProfilerILMap); |
| 930 | |
| 931 | if (origILOffset == prevILOffset) |
| 932 | { |
| 933 | // mark this sequence point as invalid; refer to the comment above |
| 934 | nativeMap[i].ilOffset = (ULONG32)(ICorDebugInfo::MAX_ILNUM); |
| 935 | cDuplicate += 1; |
| 936 | } |
| 937 | else |
| 938 | { |
| 939 | // overwrite the instrumented IL offset with the original IL offset |
| 940 | nativeMap[i].ilOffset = origILOffset; |
| 941 | prevILOffset = origILOffset; |
| 942 | } |
| 943 | } |
| 944 | |
| 945 | // Second Pass: move all the valid entries up front |
| 946 | ULONG32 realIndex = 0; |
| 947 | for (ULONG32 curIndex = 0; curIndex < entryCount; curIndex++) |
| 948 | { |
| 949 | if (nativeMap[curIndex].ilOffset != (ULONG32)(ICorDebugInfo::MAX_ILNUM)) |
| 950 | { |
| 951 | // This is a valid entry. Move it up front. |
| 952 | nativeMap[realIndex] = nativeMap[curIndex]; |
| 953 | realIndex += 1; |
| 954 | } |
| 955 | } |
| 956 | |
| 957 | // make sure we have done the bookkeeping correctly |
| 958 | _ASSERTE((realIndex + cDuplicate) == entryCount); |
| 959 | |
| 960 | // Final Pass: derecement entryCount |
| 961 | entryCount -= cDuplicate; |
| 962 | *pEntryCount = entryCount; |
| 963 | } |
| 964 | } |
| 965 | |
| 966 | |
| 967 | //----------------------------------------------------------------------------- |
| 968 | // Get the native/IL sequence points for a function |
| 969 | // Arguments: |
| 970 | // input: |
| 971 | // pMethodDesc pointer to the method desc for the function |
| 972 | // startAddr starting address of the function--used to differentiate |
| 973 | // output: |
| 974 | // pNativeMap data structure containing a list of sequence points |
| 975 | // Note: this function may throw |
| 976 | //----------------------------------------------------------------------------- |
| 977 | void DacDbiInterfaceImpl::GetSequencePoints(MethodDesc * pMethodDesc, |
| 978 | CORDB_ADDRESS startAddr, |
| 979 | SequencePoints * pSeqPoints) |
| 980 | { |
| 981 | |
| 982 | // make sure we haven't done this already |
| 983 | if (pSeqPoints->IsInitialized()) |
| 984 | { |
| 985 | return; |
| 986 | } |
| 987 | |
| 988 | // Use the DebugInfoStore to get IL->Native maps. |
| 989 | // It doesn't matter whether we're jitted, ngenned etc. |
| 990 | DebugInfoRequest request; |
| 991 | request.InitFromStartingAddr(pMethodDesc, CORDB_ADDRESS_TO_TADDR(startAddr)); |
| 992 | |
| 993 | |
| 994 | // Bounds info. |
| 995 | NewArrayHolder<ICorDebugInfo::OffsetMapping> mapCopy(NULL); |
| 996 | |
| 997 | ULONG32 entryCount; |
| 998 | BOOL success = DebugInfoManager::GetBoundariesAndVars(request, |
| 999 | InfoStoreNew, NULL, // allocator |
| 1000 | &entryCount, &mapCopy, |
| 1001 | NULL, NULL); |
| 1002 | if (!success) |
| 1003 | ThrowHR(E_FAIL); |
| 1004 | |
| 1005 | // if there is a rejit IL map for this function, apply that in preference to load-time mapping |
| 1006 | #ifdef FEATURE_REJIT |
| 1007 | CodeVersionManager * pCodeVersionManager = pMethodDesc->GetCodeVersionManager(); |
| 1008 | NativeCodeVersion nativeCodeVersion = pCodeVersionManager->GetNativeCodeVersion(dac_cast<PTR_MethodDesc>(pMethodDesc), (PCODE)startAddr); |
| 1009 | if (!nativeCodeVersion.IsNull()) |
| 1010 | { |
| 1011 | const InstrumentedILOffsetMapping * pRejitMapping = nativeCodeVersion.GetILCodeVersion().GetInstrumentedILMap(); |
| 1012 | ComposeMapping(pRejitMapping, mapCopy, &entryCount); |
| 1013 | } |
| 1014 | else |
| 1015 | { |
| 1016 | #endif |
| 1017 | // if there is a profiler load-time mapping and not a rejit mapping, apply that instead |
| 1018 | InstrumentedILOffsetMapping loadTimeMapping = |
| 1019 | pMethodDesc->GetModule()->GetInstrumentedILOffsetMapping(pMethodDesc->GetMemberDef()); |
| 1020 | ComposeMapping(&loadTimeMapping, mapCopy, &entryCount); |
| 1021 | #ifdef FEATURE_REJIT |
| 1022 | } |
| 1023 | #endif |
| 1024 | |
| 1025 | pSeqPoints->InitSequencePoints(entryCount); |
| 1026 | |
| 1027 | // mapCopy and pSeqPoints have elements of different types. Thus, we |
| 1028 | // need to copy the individual members from the elements of mapCopy to the |
| 1029 | // elements of pSeqPoints. Once we're done, we can release mapCopy |
| 1030 | pSeqPoints->CopyAndSortSequencePoints(mapCopy); |
| 1031 | |
| 1032 | } // GetSequencePoints |
| 1033 | |
| 1034 | // ---------------------------------------------------------------------------- |
| 1035 | // DacDbiInterfaceImpl::TranslateInstrumentedILOffsetToOriginal |
| 1036 | // |
| 1037 | // Description: |
| 1038 | // Helper function to convert an instrumented IL offset to the corresponding original IL offset. |
| 1039 | // |
| 1040 | // Arguments: |
| 1041 | // * ilOffset - offset to be translated |
| 1042 | // * pMapping - the profiler-provided mapping between original IL offsets and instrumented IL offsets |
| 1043 | // |
| 1044 | // Return Value: |
| 1045 | // Return the translated offset. |
| 1046 | // |
| 1047 | |
| 1048 | ULONG DacDbiInterfaceImpl::TranslateInstrumentedILOffsetToOriginal(ULONG ilOffset, |
| 1049 | const InstrumentedILOffsetMapping * pMapping) |
| 1050 | { |
| 1051 | SIZE_T cMap = pMapping->GetCount(); |
| 1052 | ARRAY_PTR_COR_IL_MAP rgMap = pMapping->GetOffsets(); |
| 1053 | |
| 1054 | _ASSERTE((cMap == 0) == (rgMap == NULL)); |
| 1055 | |
| 1056 | // Early out if there is no mapping, or if we are dealing with a special IL offset such as |
| 1057 | // prolog, epilog, etc. |
| 1058 | if ((cMap == 0) || ((int)ilOffset < 0)) |
| 1059 | { |
| 1060 | return ilOffset; |
| 1061 | } |
| 1062 | |
| 1063 | SIZE_T i = 0; |
| 1064 | for (i = 1; i < cMap; i++) |
| 1065 | { |
| 1066 | if (ilOffset < rgMap[i].newOffset) |
| 1067 | { |
| 1068 | return rgMap[i - 1].oldOffset; |
| 1069 | } |
| 1070 | } |
| 1071 | return rgMap[i - 1].oldOffset; |
| 1072 | } |
| 1073 | |
| 1074 | //- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 1075 | // Function Data |
| 1076 | //- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 1077 | |
| 1078 | |
| 1079 | // GetILCodeAndSig returns the function's ILCode and SigToken given |
| 1080 | // a module and a token. The info will come from a MethodDesc, if |
| 1081 | // one exists or from metadata. |
| 1082 | // |
| 1083 | void DacDbiInterfaceImpl::GetILCodeAndSig(VMPTR_DomainFile vmDomainFile, |
| 1084 | mdToken functionToken, |
| 1085 | TargetBuffer * pCodeInfo, |
| 1086 | mdToken * pLocalSigToken) |
| 1087 | { |
| 1088 | DD_ENTER_MAY_THROW; |
| 1089 | |
| 1090 | DomainFile * pDomainFile = vmDomainFile.GetDacPtr(); |
| 1091 | Module * pModule = pDomainFile->GetCurrentModule(); |
| 1092 | RVA methodRVA = 0; |
| 1093 | DWORD implFlags; |
| 1094 | |
| 1095 | // preinitialize out params |
| 1096 | pCodeInfo->Clear(); |
| 1097 | *pLocalSigToken = mdSignatureNil; |
| 1098 | |
| 1099 | // Get the RVA and impl flags for this method. |
| 1100 | IfFailThrow(pModule->GetMDImport()->GetMethodImplProps(functionToken, |
| 1101 | &methodRVA, |
| 1102 | &implFlags)); |
| 1103 | |
| 1104 | MethodDesc* pMethodDesc = |
| 1105 | FindLoadedMethodRefOrDef(pModule, functionToken); |
| 1106 | |
| 1107 | // If the RVA is 0 or it's native, then the method is not IL |
| 1108 | if (methodRVA == 0) |
| 1109 | { |
| 1110 | LOG((LF_CORDB,LL_INFO100000, "DDI::GICAS: Function is not IL - methodRVA == NULL!\n" )); |
| 1111 | // return (CORDBG_E_FUNCTION_NOT_IL); |
| 1112 | // Sanity check this.... |
| 1113 | |
| 1114 | if(!pMethodDesc || !pMethodDesc->IsIL()) |
| 1115 | { |
| 1116 | LOG((LF_CORDB,LL_INFO100000, "DDI::GICAS: And the MD agrees..\n" )); |
| 1117 | ThrowHR(CORDBG_E_FUNCTION_NOT_IL); |
| 1118 | } |
| 1119 | else |
| 1120 | { |
| 1121 | LOG((LF_CORDB,LL_INFO100000, "DDI::GICAS: But the MD says it's IL..\n" )); |
| 1122 | } |
| 1123 | |
| 1124 | if (pMethodDesc != NULL && pMethodDesc->GetRVA() == 0) |
| 1125 | { |
| 1126 | LOG((LF_CORDB,LL_INFO100000, "DDI::GICAS: Actually, MD says RVA is 0 too - keep going...!\n" )); |
| 1127 | } |
| 1128 | } |
| 1129 | if (IsMiNative(implFlags)) |
| 1130 | { |
| 1131 | LOG((LF_CORDB,LL_INFO100000, "DDI::GICAS: Function is not IL - IsMiNative!\n" )); |
| 1132 | ThrowHR(CORDBG_E_FUNCTION_NOT_IL); |
| 1133 | } |
| 1134 | |
| 1135 | *pLocalSigToken = GetILCodeAndSigHelper(pModule, pMethodDesc, functionToken, methodRVA, pCodeInfo); |
| 1136 | |
| 1137 | #ifdef LOGGING |
| 1138 | else |
| 1139 | { |
| 1140 | LOG((LF_CORDB,LL_INFO100000, "DDI::GICAS: GetMethodImplProps failed!\n" )); |
| 1141 | } |
| 1142 | #endif |
| 1143 | } // GetILCodeAndSig |
| 1144 | |
| 1145 | //--------------------------------------------------------------------------------------- |
| 1146 | // |
| 1147 | // This is just a worker function for GetILCodeAndSig. It returns the function's ILCode and SigToken |
| 1148 | // given a module, a token, and the RVA. If a MethodDesc is provided, it has to be consistent with |
| 1149 | // the token and the RVA. |
| 1150 | // |
| 1151 | // Arguments: |
| 1152 | // pModule - the Module containing the specified method |
| 1153 | // pMD - the specified method; can be NULL |
| 1154 | // mdMethodToken - the MethodDef token of the specified method |
| 1155 | // methodRVA - the RVA of the IL for the specified method |
| 1156 | // pIL - out parameter; return the target address and size of the IL of the specified method |
| 1157 | // |
| 1158 | // Return Value: |
| 1159 | // Return the local variable signature token of the specified method. Can be mdSignatureNil. |
| 1160 | // |
| 1161 | |
| 1162 | mdSignature DacDbiInterfaceImpl::GetILCodeAndSigHelper(Module * pModule, |
| 1163 | MethodDesc * pMD, |
| 1164 | mdMethodDef mdMethodToken, |
| 1165 | RVA methodRVA, |
| 1166 | TargetBuffer * pIL) |
| 1167 | { |
| 1168 | _ASSERTE(pModule != NULL); |
| 1169 | |
| 1170 | // If a MethodDesc is provided, it has to be consistent with the MethodDef token and the RVA. |
| 1171 | _ASSERTE((pMD == NULL) || ((pMD->GetMemberDef() == mdMethodToken) && (pMD->GetRVA() == methodRVA))); |
| 1172 | |
| 1173 | TADDR pTargetIL; // target address of start of IL blob |
| 1174 | |
| 1175 | // This works for methods in dynamic modules, and methods overriden by a profiler. |
| 1176 | pTargetIL = pModule->GetDynamicIL(mdMethodToken, TRUE); |
| 1177 | |
| 1178 | // Method not overriden - get the original copy of the IL by going to the PE file/RVA |
| 1179 | // If this is in a dynamic module then don't even attempt this since ReflectionModule::GetIL isn't |
| 1180 | // implemend for DAC. |
| 1181 | if (pTargetIL == 0 && !pModule->IsReflection()) |
| 1182 | { |
| 1183 | pTargetIL = (TADDR)pModule->GetIL(methodRVA); |
| 1184 | } |
| 1185 | |
| 1186 | mdSignature mdSig = mdSignatureNil; |
| 1187 | if (pTargetIL == 0) |
| 1188 | { |
| 1189 | // Currently this should only happen for LCG methods (including IL stubs). |
| 1190 | // LCG methods have a 0 RVA, and so we don't currently have any way to get the IL here. |
| 1191 | _ASSERTE(pMD->IsDynamicMethod()); |
| 1192 | _ASSERTE(pMD->AsDynamicMethodDesc()->IsLCGMethod()|| |
| 1193 | pMD->AsDynamicMethodDesc()->IsILStub()); |
| 1194 | |
| 1195 | // Clear the buffer. |
| 1196 | pIL->Clear(); |
| 1197 | } |
| 1198 | else |
| 1199 | { |
| 1200 | // Now we have the target address of the IL blob, we need to bring it over to the host. |
| 1201 | // DacGetILMethod will copy the COR_ILMETHOD information that we need |
| 1202 | COR_ILMETHOD * pHostIL = DacGetIlMethod(pTargetIL); // host address of start of IL blob |
| 1203 | COR_ILMETHOD_DECODER (pHostIL); // host address of header |
| 1204 | |
| 1205 | |
| 1206 | // Get the IL code info. We need the address of the IL itself, which will be beyond the header |
| 1207 | // at the beginning of the blob. We ultimately need the target address. To get this, we take |
| 1208 | // target address of the target IL blob and add the offset from the beginning of the host IL blob |
| 1209 | // (the header) to the beginning of the IL itself (we get this information from the header). |
| 1210 | pIL->pAddress = pTargetIL + ((SIZE_T)(header.Code) - (SIZE_T)pHostIL); |
| 1211 | pIL->cbSize = header.GetCodeSize(); |
| 1212 | |
| 1213 | // Now we get the signature token |
| 1214 | if (header.LocalVarSigTok != NULL) |
| 1215 | { |
| 1216 | mdSig = header.GetLocalVarSigTok(); |
| 1217 | } |
| 1218 | else |
| 1219 | { |
| 1220 | mdSig = mdSignatureNil; |
| 1221 | } |
| 1222 | } |
| 1223 | |
| 1224 | return mdSig; |
| 1225 | } |
| 1226 | |
| 1227 | |
| 1228 | bool DacDbiInterfaceImpl::GetMetaDataFileInfoFromPEFile(VMPTR_PEFile vmPEFile, |
| 1229 | DWORD &dwTimeStamp, |
| 1230 | DWORD &dwSize, |
| 1231 | bool &isNGEN, |
| 1232 | IStringHolder* pStrFilename) |
| 1233 | { |
| 1234 | #if !defined(FEATURE_PREJIT) |
| 1235 | |
| 1236 | return false; |
| 1237 | |
| 1238 | #else // defined(FEATURE_PREJIT) |
| 1239 | |
| 1240 | DD_ENTER_MAY_THROW; |
| 1241 | |
| 1242 | DWORD dwDataSize; |
| 1243 | DWORD dwRvaHint; |
| 1244 | PEFile * pPEFile = vmPEFile.GetDacPtr(); |
| 1245 | _ASSERTE(pPEFile != NULL); |
| 1246 | if (pPEFile == NULL) |
| 1247 | return false; |
| 1248 | |
| 1249 | WCHAR wszFilePath[MAX_LONGPATH] = {0}; |
| 1250 | DWORD cchFilePath = MAX_LONGPATH; |
| 1251 | bool ret = ClrDataAccess::GetMetaDataFileInfoFromPEFile(pPEFile, |
| 1252 | dwTimeStamp, |
| 1253 | dwSize, |
| 1254 | dwDataSize, |
| 1255 | dwRvaHint, |
| 1256 | isNGEN, |
| 1257 | wszFilePath, |
| 1258 | cchFilePath); |
| 1259 | |
| 1260 | pStrFilename->AssignCopy(wszFilePath); |
| 1261 | return ret; |
| 1262 | #endif // !defined(FEATURE_PREJIT) |
| 1263 | } |
| 1264 | |
| 1265 | |
| 1266 | bool DacDbiInterfaceImpl::GetILImageInfoFromNgenPEFile(VMPTR_PEFile vmPEFile, |
| 1267 | DWORD &dwTimeStamp, |
| 1268 | DWORD &dwSize, |
| 1269 | IStringHolder* pStrFilename) |
| 1270 | { |
| 1271 | #if !defined(FEATURE_PREJIT) |
| 1272 | |
| 1273 | return false; |
| 1274 | |
| 1275 | #else // defined(FEATURE_PREJIT) |
| 1276 | |
| 1277 | DD_ENTER_MAY_THROW; |
| 1278 | |
| 1279 | PEFile * pPEFile = vmPEFile.GetDacPtr(); |
| 1280 | _ASSERTE(pPEFile != NULL); |
| 1281 | if (pPEFile == NULL) |
| 1282 | { |
| 1283 | return false; |
| 1284 | } |
| 1285 | |
| 1286 | WCHAR wszFilePath[MAX_LONGPATH] = {0}; |
| 1287 | DWORD cchFilePath = MAX_LONGPATH; |
| 1288 | bool ret = ClrDataAccess::GetILImageInfoFromNgenPEFile(pPEFile, |
| 1289 | dwTimeStamp, |
| 1290 | dwSize, |
| 1291 | wszFilePath, |
| 1292 | cchFilePath); |
| 1293 | |
| 1294 | pStrFilename->AssignCopy(wszFilePath); |
| 1295 | return ret; |
| 1296 | #endif // !defined(FEATURE_PREJIT) |
| 1297 | } |
| 1298 | |
| 1299 | // Get start addresses and sizes for hot and cold regions for a native code blob. |
| 1300 | // Arguments: |
| 1301 | // Input: |
| 1302 | // pMethodDesc - method desc for the function we are inspecting |
| 1303 | // Output (required): |
| 1304 | // pCodeInfo - initializes the m_rgCodeRegions field of this structure |
| 1305 | // if the native code is available. Otherwise, |
| 1306 | // pCodeInfo->IsValid() is false. |
| 1307 | |
| 1308 | void DacDbiInterfaceImpl::GetMethodRegionInfo(MethodDesc * pMethodDesc, |
| 1309 | NativeCodeFunctionData * pCodeInfo) |
| 1310 | { |
| 1311 | CONTRACTL |
| 1312 | { |
| 1313 | SO_INTOLERANT; |
| 1314 | GC_NOTRIGGER; |
| 1315 | PRECONDITION(CheckPointer(pCodeInfo)); |
| 1316 | } |
| 1317 | CONTRACTL_END; |
| 1318 | |
| 1319 | IJitManager::MethodRegionInfo methodRegionInfo = {NULL, 0, NULL, 0}; |
| 1320 | PCODE functionAddress = pMethodDesc->GetNativeCode(); |
| 1321 | |
| 1322 | // get the start address of the hot region and initialize the jit manager |
| 1323 | pCodeInfo->m_rgCodeRegions[kHot].pAddress = CORDB_ADDRESS(PCODEToPINSTR(functionAddress)); |
| 1324 | |
| 1325 | // if the start address is NULL, the code isn't available yet, so just return |
| 1326 | if (functionAddress != NULL) |
| 1327 | { |
| 1328 | EECodeInfo codeInfo(functionAddress); |
| 1329 | _ASSERTE(codeInfo.IsValid()); |
| 1330 | |
| 1331 | codeInfo.GetMethodRegionInfo(&methodRegionInfo); |
| 1332 | |
| 1333 | // now get the rest of the region information |
| 1334 | pCodeInfo->m_rgCodeRegions[kHot].cbSize = (ULONG)methodRegionInfo.hotSize; |
| 1335 | pCodeInfo->m_rgCodeRegions[kCold].Init(PCODEToPINSTR(methodRegionInfo.coldStartAddress), |
| 1336 | (ULONG)methodRegionInfo.coldSize); |
| 1337 | _ASSERTE(pCodeInfo->IsValid()); |
| 1338 | } |
| 1339 | else |
| 1340 | { |
| 1341 | _ASSERTE(!pCodeInfo->IsValid()); |
| 1342 | } |
| 1343 | } // GetMethodRegionInfo |
| 1344 | |
| 1345 | |
| 1346 | // Gets the following information about a native code blob: |
| 1347 | // - its method desc |
| 1348 | // - whether it's an instantiated generic |
| 1349 | // - its EnC version number |
| 1350 | // - hot and cold region information. |
| 1351 | // If the hot region start address is NULL at the end, it means the native code |
| 1352 | // isn't currently available. In this case, all values in pCodeInfo will be |
| 1353 | // cleared. |
| 1354 | |
| 1355 | void DacDbiInterfaceImpl::GetNativeCodeInfo(VMPTR_DomainFile vmDomainFile, |
| 1356 | mdToken functionToken, |
| 1357 | NativeCodeFunctionData * pCodeInfo) |
| 1358 | { |
| 1359 | DD_ENTER_MAY_THROW; |
| 1360 | |
| 1361 | _ASSERTE(pCodeInfo != NULL); |
| 1362 | |
| 1363 | // pre-initialize: |
| 1364 | pCodeInfo->Clear(); |
| 1365 | |
| 1366 | DomainFile * pDomainFile = vmDomainFile.GetDacPtr(); |
| 1367 | Module * pModule = pDomainFile->GetCurrentModule(); |
| 1368 | |
| 1369 | MethodDesc* pMethodDesc = FindLoadedMethodRefOrDef(pModule, functionToken); |
| 1370 | pCodeInfo->vmNativeCodeMethodDescToken.SetHostPtr(pMethodDesc); |
| 1371 | |
| 1372 | // if we are loading a module and trying to bind a previously set breakpoint, we may not have |
| 1373 | // a method desc yet, so check for that situation |
| 1374 | if(pMethodDesc != NULL) |
| 1375 | { |
| 1376 | GetMethodRegionInfo(pMethodDesc, pCodeInfo); |
| 1377 | if (pCodeInfo->m_rgCodeRegions[kHot].pAddress != NULL) |
| 1378 | { |
| 1379 | pCodeInfo->isInstantiatedGeneric = pMethodDesc->HasClassOrMethodInstantiation(); |
| 1380 | LookupEnCVersions(pModule, |
| 1381 | pCodeInfo->vmNativeCodeMethodDescToken, |
| 1382 | functionToken, |
| 1383 | pCodeInfo->m_rgCodeRegions[kHot].pAddress, |
| 1384 | &(pCodeInfo->encVersion)); |
| 1385 | } |
| 1386 | } |
| 1387 | } // GetNativeCodeInfo |
| 1388 | |
| 1389 | // Gets the following information about a native code blob: |
| 1390 | // - its method desc |
| 1391 | // - whether it's an instantiated generic |
| 1392 | // - its EnC version number |
| 1393 | // - hot and cold region information. |
| 1394 | void DacDbiInterfaceImpl::GetNativeCodeInfoForAddr(VMPTR_MethodDesc vmMethodDesc, |
| 1395 | CORDB_ADDRESS hotCodeStartAddr, |
| 1396 | NativeCodeFunctionData * pCodeInfo) |
| 1397 | { |
| 1398 | DD_ENTER_MAY_THROW; |
| 1399 | |
| 1400 | _ASSERTE(pCodeInfo != NULL); |
| 1401 | |
| 1402 | if (hotCodeStartAddr == NULL) |
| 1403 | { |
| 1404 | // if the start address is NULL, the code isn't available yet, so just return |
| 1405 | _ASSERTE(!pCodeInfo->IsValid()); |
| 1406 | return; |
| 1407 | } |
| 1408 | |
| 1409 | IJitManager::MethodRegionInfo methodRegionInfo = {NULL, 0, NULL, 0}; |
| 1410 | TADDR codeAddr = CORDB_ADDRESS_TO_TADDR(hotCodeStartAddr); |
| 1411 | |
| 1412 | #ifdef _TARGET_ARM_ |
| 1413 | // TADDR should not have the thumb code bit set. |
| 1414 | _ASSERTE((codeAddr & THUMB_CODE) == 0); |
| 1415 | codeAddr &= ~THUMB_CODE; |
| 1416 | #endif |
| 1417 | |
| 1418 | EECodeInfo codeInfo(codeAddr); |
| 1419 | _ASSERTE(codeInfo.IsValid()); |
| 1420 | |
| 1421 | // We may not have the memory for the cold code region in a minidump. |
| 1422 | // Do not fail stackwalking because of this. |
| 1423 | EX_TRY_ALLOW_DATATARGET_MISSING_MEMORY |
| 1424 | { |
| 1425 | codeInfo.GetMethodRegionInfo(&methodRegionInfo); |
| 1426 | } |
| 1427 | EX_END_CATCH_ALLOW_DATATARGET_MISSING_MEMORY; |
| 1428 | |
| 1429 | // Even if GetMethodRegionInfo() fails to retrieve the cold code region info, |
| 1430 | // we should still be able to get the hot code region info. We are counting on this for |
| 1431 | // stackwalking to work in dump debugging scenarios. |
| 1432 | _ASSERTE(methodRegionInfo.hotStartAddress == codeAddr); |
| 1433 | |
| 1434 | // now get the rest of the region information |
| 1435 | pCodeInfo->m_rgCodeRegions[kHot].Init(PCODEToPINSTR(methodRegionInfo.hotStartAddress), |
| 1436 | (ULONG)methodRegionInfo.hotSize); |
| 1437 | pCodeInfo->m_rgCodeRegions[kCold].Init(PCODEToPINSTR(methodRegionInfo.coldStartAddress), |
| 1438 | (ULONG)methodRegionInfo.coldSize); |
| 1439 | _ASSERTE(pCodeInfo->IsValid()); |
| 1440 | |
| 1441 | MethodDesc* pMethodDesc = vmMethodDesc.GetDacPtr(); |
| 1442 | pCodeInfo->isInstantiatedGeneric = pMethodDesc->HasClassOrMethodInstantiation(); |
| 1443 | pCodeInfo->vmNativeCodeMethodDescToken = vmMethodDesc; |
| 1444 | |
| 1445 | SIZE_T unusedLatestEncVersion; |
| 1446 | Module * pModule = pMethodDesc->GetModule(); |
| 1447 | _ASSERTE(pModule != NULL); |
| 1448 | LookupEnCVersions(pModule, |
| 1449 | vmMethodDesc, |
| 1450 | pMethodDesc->GetMemberDef(), |
| 1451 | codeAddr, |
| 1452 | &unusedLatestEncVersion, //unused by caller |
| 1453 | &(pCodeInfo->encVersion)); |
| 1454 | |
| 1455 | } // GetNativeCodeInfo |
| 1456 | |
| 1457 | |
| 1458 | //- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 1459 | // |
| 1460 | // Functions to get Type and Class information |
| 1461 | // |
| 1462 | //- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 1463 | //----------------------------------------------------------------------------- |
| 1464 | //DacDbiInterfaceImpl::GetTypeHandles |
| 1465 | // Get the approximate and exact type handles for a type |
| 1466 | // Arguments: |
| 1467 | // input: |
| 1468 | // vmThExact - VMPTR of the exact type handle. If this method is called |
| 1469 | // to get information for a new generic instantiation, this will already |
| 1470 | // be initialized. If it's called to get type information for an arbitrary |
| 1471 | // type (i.e., called to initialize an instance of CordbClass), it will be NULL |
| 1472 | // vmThApprox - VMPTR of the approximate type handle. If this method is called |
| 1473 | // to get information for a new generic instantiation, this will already |
| 1474 | // be initialized. If it's called to get type information for an arbitrary |
| 1475 | // type (i.e., called to initialize an instance of CordbClass), it will be NULL |
| 1476 | // output: |
| 1477 | // pThExact - handle for exact type information for a generic instantiation |
| 1478 | // pThApprox - handle for type information |
| 1479 | // Notes: |
| 1480 | // pThExact and pTHApprox must be pointers to existing memory. |
| 1481 | //----------------------------------------------------------------------------- |
| 1482 | void DacDbiInterfaceImpl::GetTypeHandles(VMPTR_TypeHandle vmThExact, |
| 1483 | VMPTR_TypeHandle vmThApprox, |
| 1484 | TypeHandle * pThExact, |
| 1485 | TypeHandle * pThApprox) |
| 1486 | { |
| 1487 | _ASSERTE((pThExact != NULL) && (pThApprox != NULL)); |
| 1488 | |
| 1489 | *pThExact = TypeHandle::FromPtr(vmThExact.GetDacPtr()); |
| 1490 | *pThApprox = TypeHandle::FromPtr(vmThApprox.GetDacPtr()); |
| 1491 | |
| 1492 | // If we can't find the class, return the proper HR to the right side. Note: if the class is not a value class and |
| 1493 | // the class is also not restored, then we must pretend that the class is still not loaded. We are gonna let |
| 1494 | // unrestored value classes slide, though, and special case access to the class's parent below. |
| 1495 | if ((pThApprox->IsNull()) || ((!pThApprox->IsValueType()) && (!pThApprox->IsRestored()))) |
| 1496 | { |
| 1497 | LOG((LF_CORDB, LL_INFO10000, "D::GASCI: class isn't loaded.\n" )); |
| 1498 | ThrowHR(CORDBG_E_CLASS_NOT_LOADED); |
| 1499 | } |
| 1500 | // If the exact type handle is not restored ignore it. |
| 1501 | if (!pThExact->IsNull() && !pThExact->IsRestored()) |
| 1502 | { |
| 1503 | *pThExact = TypeHandle(); |
| 1504 | } |
| 1505 | } // DacDbiInterfaceImpl::GetTypeHandles |
| 1506 | |
| 1507 | //----------------------------------------------------------------------------- |
| 1508 | // DacDbiInterfaceImpl::GetTotalFieldCount |
| 1509 | // Gets the total number of fields for a type. |
| 1510 | // Input Argument: thApprox - type handle used to determine the number of fields |
| 1511 | // Return Value: count of the total fields of the type. |
| 1512 | //----------------------------------------------------------------------------- |
| 1513 | unsigned int DacDbiInterfaceImpl::GetTotalFieldCount(TypeHandle thApprox) |
| 1514 | { |
| 1515 | MethodTable *pMT = thApprox.GetMethodTable(); |
| 1516 | |
| 1517 | // Count the instance and static fields for this class (not including parent). |
| 1518 | // This will not include any newly added EnC fields. |
| 1519 | unsigned int IFCount = pMT->GetNumIntroducedInstanceFields(); |
| 1520 | unsigned int SFCount = pMT->GetNumStaticFields(); |
| 1521 | |
| 1522 | #ifdef EnC_SUPPORTED |
| 1523 | PTR_Module pModule = pMT->GetModule(); |
| 1524 | |
| 1525 | // Stats above don't include EnC fields. So add them now. |
| 1526 | if (pModule->IsEditAndContinueEnabled()) |
| 1527 | { |
| 1528 | PTR_EnCEEClassData pEncData = |
| 1529 | (dac_cast<PTR_EditAndContinueModule>(pModule))->GetEnCEEClassData(pMT, TRUE); |
| 1530 | |
| 1531 | if (pEncData != NULL) |
| 1532 | { |
| 1533 | _ASSERTE(pEncData->GetMethodTable() == pMT); |
| 1534 | |
| 1535 | // EnC only adds fields, never removes them. |
| 1536 | IFCount += pEncData->GetAddedInstanceFields(); |
| 1537 | SFCount += pEncData->GetAddedStaticFields(); |
| 1538 | } |
| 1539 | } |
| 1540 | #endif |
| 1541 | return IFCount + SFCount; |
| 1542 | } // DacDbiInterfaceImpl::GetTotalFieldCount |
| 1543 | |
| 1544 | //----------------------------------------------------------------------------- |
| 1545 | // DacDbiInterfaceImpl::InitClassData |
| 1546 | // initializes various values of the ClassInfo data structure, including the |
| 1547 | // field count, generic args count, size and value class flag |
| 1548 | // Arguments: |
| 1549 | // input: thApprox - used to get access to all the necessary values |
| 1550 | // fIsInstantiatedType - used to determine how to compute the size |
| 1551 | // output: pData - contains fields to be initialized |
| 1552 | //----------------------------------------------------------------------------- |
| 1553 | void DacDbiInterfaceImpl::InitClassData(TypeHandle thApprox, |
| 1554 | BOOL fIsInstantiatedType, |
| 1555 | ClassInfo * pData) |
| 1556 | { |
| 1557 | pData->m_fieldList.Alloc(GetTotalFieldCount(thApprox)); |
| 1558 | |
| 1559 | // For Generic classes you must get the object size via the type handle, which |
| 1560 | // will get you to the right information for the particular instantiation |
| 1561 | // you're working with... |
| 1562 | pData->m_objectSize = 0; |
| 1563 | if ((!thApprox.GetNumGenericArgs()) || fIsInstantiatedType) |
| 1564 | { |
| 1565 | pData->m_objectSize = thApprox.GetMethodTable()->GetNumInstanceFieldBytes(); |
| 1566 | } |
| 1567 | |
| 1568 | } // DacDbiInterfaceImpl::InitClassData |
| 1569 | |
| 1570 | //----------------------------------------------------------------------------- |
| 1571 | // DacDbiInterfaceImpl::GetStaticsBases |
| 1572 | // Gets the base table addresses for both GC and non-GC statics |
| 1573 | // Arguments: |
| 1574 | // input: thExact - exact type handle for the class |
| 1575 | // pAppDomain - AppDomain in which the class is loaded |
| 1576 | // output: ppGCStaticsBase - base pointer for GC statics |
| 1577 | // ppNonGCStaticsBase - base pointer for non GC statics |
| 1578 | // Notes: |
| 1579 | // If this is a non-generic type, or an instantiated type, then we'll be able to get the static var bases |
| 1580 | // If the typeHandle represents a generic type constructor (i.e. an uninstantiated generic class), then |
| 1581 | // the static bases will be null (since statics are per-instantiation). |
| 1582 | //----------------------------------------------------------------------------- |
| 1583 | void DacDbiInterfaceImpl::GetStaticsBases(TypeHandle thExact, |
| 1584 | AppDomain * pAppDomain, |
| 1585 | PTR_BYTE * ppGCStaticsBase, |
| 1586 | PTR_BYTE * ppNonGCStaticsBase) |
| 1587 | { |
| 1588 | MethodTable * pMT = thExact.GetMethodTable(); |
| 1589 | Module * pModuleForStatics = pMT->GetModuleForStatics(); |
| 1590 | if (pModuleForStatics != NULL) |
| 1591 | { |
| 1592 | PTR_DomainLocalModule pLocalModule = pModuleForStatics->GetDomainLocalModule(pAppDomain); |
| 1593 | if (pLocalModule != NULL) |
| 1594 | { |
| 1595 | *ppGCStaticsBase = pLocalModule->GetGCStaticsBasePointer(pMT); |
| 1596 | *ppNonGCStaticsBase = pLocalModule->GetNonGCStaticsBasePointer(pMT); |
| 1597 | } |
| 1598 | } |
| 1599 | } // DacDbiInterfaceImpl::GetStaticsBases |
| 1600 | |
| 1601 | //----------------------------------------------------------------------------- |
| 1602 | // DacDbiInterfaceImpl::ComputeFieldData |
| 1603 | // Computes the field info for pFD and stores it in pcurrentFieldData |
| 1604 | // Arguments: |
| 1605 | // input: pFD - FieldDesc used to get necessary information |
| 1606 | // pGCStaticsBase - base table address for GC statics |
| 1607 | // pNonGCStaticsBase - base table address for non-GC statics |
| 1608 | // output: pCurrentFieldData - contains fields to be initialized |
| 1609 | //----------------------------------------------------------------------------- |
| 1610 | void DacDbiInterfaceImpl::ComputeFieldData(PTR_FieldDesc pFD, |
| 1611 | PTR_BYTE pGCStaticsBase, |
| 1612 | PTR_BYTE pNonGCStaticsBase, |
| 1613 | FieldData * pCurrentFieldData) |
| 1614 | { |
| 1615 | pCurrentFieldData->Initialize(pFD->IsStatic(), pFD->IsPrimitive(), pFD->GetMemberDef()); |
| 1616 | |
| 1617 | #ifdef EnC_SUPPORTED |
| 1618 | // If the field was newly introduced via EnC, and hasn't yet |
| 1619 | // been fixed up, then we'll send back a marker indicating |
| 1620 | // that it isn't yet available. |
| 1621 | if (pFD->IsEnCNew()) |
| 1622 | { |
| 1623 | // @dbgtodo Microsoft inspection: eliminate the debugger token when ICDClass and ICDType are |
| 1624 | // completely DACized |
| 1625 | pCurrentFieldData->m_vmFieldDesc.SetHostPtr(pFD); |
| 1626 | pCurrentFieldData->m_fFldStorageAvailable = FALSE; |
| 1627 | pCurrentFieldData->m_fFldIsTLS = FALSE; |
| 1628 | pCurrentFieldData->m_fFldIsRVA = FALSE; |
| 1629 | pCurrentFieldData->m_fFldIsCollectibleStatic = FALSE; |
| 1630 | } |
| 1631 | else |
| 1632 | #endif // EnC_SUPPORTED |
| 1633 | { |
| 1634 | // Otherwise, we'll compute the info & send it back. |
| 1635 | pCurrentFieldData->m_fFldStorageAvailable = TRUE; |
| 1636 | // @dbgtodo Microsoft inspection: eliminate the debugger token when ICDClass and ICDType are |
| 1637 | // completely DACized |
| 1638 | pCurrentFieldData->m_vmFieldDesc.SetHostPtr(pFD); |
| 1639 | pCurrentFieldData->m_fFldIsTLS = (pFD->IsThreadStatic() == TRUE); |
| 1640 | pCurrentFieldData->m_fFldIsRVA = (pFD->IsRVA() == TRUE); |
| 1641 | pCurrentFieldData->m_fFldIsCollectibleStatic = (pFD->IsStatic() == TRUE && |
| 1642 | pFD->GetEnclosingMethodTable()->Collectible()); |
| 1643 | |
| 1644 | // Compute the address of the field |
| 1645 | if (pFD->IsStatic()) |
| 1646 | { |
| 1647 | // statics are addressed using an absolute address. |
| 1648 | if (pFD->IsRVA()) |
| 1649 | { |
| 1650 | // RVA statics are relative to a base module address |
| 1651 | DWORD offset = pFD->GetOffset(); |
| 1652 | PTR_VOID addr = pFD->GetModule()->GetRvaField(offset, pFD->IsZapped()); |
| 1653 | if (pCurrentFieldData->OkToGetOrSetStaticAddress()) |
| 1654 | { |
| 1655 | pCurrentFieldData->SetStaticAddress(PTR_TO_TADDR(addr)); |
| 1656 | } |
| 1657 | } |
| 1658 | else if (pFD->IsThreadStatic() || |
| 1659 | pCurrentFieldData->m_fFldIsCollectibleStatic) |
| 1660 | { |
| 1661 | // this is a special type of static that must be queried using DB_IPCE_GET_SPECIAL_STATIC |
| 1662 | } |
| 1663 | else |
| 1664 | { |
| 1665 | // This is a normal static variable in the GC or Non-GC static base table |
| 1666 | PTR_BYTE base = pFD->IsPrimitive() ? pNonGCStaticsBase : pGCStaticsBase; |
| 1667 | if (base == NULL) |
| 1668 | { |
| 1669 | // static var not available. This may be an open generic class (not an instantiated type), |
| 1670 | // or we might only have approximate type information because the type hasn't been |
| 1671 | // initialized yet. |
| 1672 | |
| 1673 | if (pCurrentFieldData->OkToGetOrSetStaticAddress()) |
| 1674 | { |
| 1675 | pCurrentFieldData->SetStaticAddress(NULL); |
| 1676 | } |
| 1677 | } |
| 1678 | else |
| 1679 | { |
| 1680 | if (pCurrentFieldData->OkToGetOrSetStaticAddress()) |
| 1681 | { |
| 1682 | // calculate the absolute address using the base and the offset from the base |
| 1683 | pCurrentFieldData->SetStaticAddress(PTR_TO_TADDR(base) + pFD->GetOffset()); |
| 1684 | } |
| 1685 | } |
| 1686 | } |
| 1687 | } |
| 1688 | else |
| 1689 | { |
| 1690 | // instance variables are addressed using an offset within the instance |
| 1691 | if (pCurrentFieldData->OkToGetOrSetInstanceOffset()) |
| 1692 | { |
| 1693 | pCurrentFieldData->SetInstanceOffset(pFD->GetOffset()); |
| 1694 | } |
| 1695 | } |
| 1696 | } |
| 1697 | |
| 1698 | } // DacDbiInterfaceImpl::ComputeFieldData |
| 1699 | |
| 1700 | //----------------------------------------------------------------------------- |
| 1701 | // DacDbiInterfaceImpl::CollectFields |
| 1702 | // Gets information for all the fields for a given type |
| 1703 | // Arguments: |
| 1704 | // input: thExact - used to determine whether we need to get statics base tables |
| 1705 | // thApprox - used to get the field desc iterator |
| 1706 | // pAppDomain - used to get statics base tables |
| 1707 | // output: |
| 1708 | // pFieldList - contains fields to be initialized |
| 1709 | // Note: the caller must ensure that *ppFields is NULL (i.e., any previously allocated memory |
| 1710 | // must have been deallocated. |
| 1711 | //----------------------------------------------------------------------------- |
| 1712 | void DacDbiInterfaceImpl::CollectFields(TypeHandle thExact, |
| 1713 | TypeHandle thApprox, |
| 1714 | AppDomain * pAppDomain, |
| 1715 | DacDbiArrayList<FieldData> * pFieldList) |
| 1716 | { |
| 1717 | PTR_BYTE pGCStaticsBase = NULL; |
| 1718 | PTR_BYTE pNonGCStaticsBase = NULL; |
| 1719 | if (!thExact.IsNull() && !thExact.GetMethodTable()->Collectible()) |
| 1720 | { |
| 1721 | // get base tables for static fields |
| 1722 | GetStaticsBases(thExact, pAppDomain, &pGCStaticsBase, &pNonGCStaticsBase); |
| 1723 | } |
| 1724 | |
| 1725 | unsigned int fieldCount = 0; |
| 1726 | |
| 1727 | // <TODO> we are losing exact type information for static fields in generic types. We have |
| 1728 | // field desc iterators only for approximate types, but statics are per instantiation, so we |
| 1729 | // need an exact type to be able to handle these correctly. We need to use |
| 1730 | // FieldDesc::GetExactDeclaringType to get at the correct field. This requires the exact |
| 1731 | // TypeHandle. </TODO> |
| 1732 | EncApproxFieldDescIterator fdIterator(thApprox.GetMethodTable(), |
| 1733 | ApproxFieldDescIterator::ALL_FIELDS, |
| 1734 | FALSE); // don't fixup EnC (we can't, we're stopped) |
| 1735 | |
| 1736 | PTR_FieldDesc pCurrentFD; |
| 1737 | int index = 0; |
| 1738 | while (((pCurrentFD = fdIterator.Next()) != NULL) && (index < pFieldList->Count())) |
| 1739 | { |
| 1740 | // fill in the pCurrentEntry structure |
| 1741 | ComputeFieldData(pCurrentFD, pGCStaticsBase, pNonGCStaticsBase, &((*pFieldList)[index])); |
| 1742 | |
| 1743 | // Bump our counts and pointers. |
| 1744 | fieldCount++; |
| 1745 | index++; |
| 1746 | } |
| 1747 | _ASSERTE(fieldCount == (unsigned int)pFieldList->Count()); |
| 1748 | |
| 1749 | } // DacDbiInterfaceImpl::CollectFields |
| 1750 | |
| 1751 | |
| 1752 | // Determine if a type is a ValueType |
| 1753 | BOOL DacDbiInterfaceImpl::IsValueType (VMPTR_TypeHandle vmTypeHandle) |
| 1754 | { |
| 1755 | DD_ENTER_MAY_THROW; |
| 1756 | |
| 1757 | TypeHandle th = TypeHandle::FromPtr(vmTypeHandle.GetDacPtr()); |
| 1758 | return th.IsValueType(); |
| 1759 | } |
| 1760 | |
| 1761 | // Determine if a type has generic parameters |
| 1762 | BOOL DacDbiInterfaceImpl::HasTypeParams (VMPTR_TypeHandle vmTypeHandle) |
| 1763 | { |
| 1764 | DD_ENTER_MAY_THROW; |
| 1765 | |
| 1766 | TypeHandle th = TypeHandle::FromPtr(vmTypeHandle.GetDacPtr()); |
| 1767 | return th.ContainsGenericVariables(); |
| 1768 | } |
| 1769 | |
| 1770 | // DacDbi API: Get type information for a class |
| 1771 | void DacDbiInterfaceImpl::GetClassInfo(VMPTR_AppDomain vmAppDomain, |
| 1772 | VMPTR_TypeHandle vmThExact, |
| 1773 | ClassInfo * pData) |
| 1774 | { |
| 1775 | DD_ENTER_MAY_THROW; |
| 1776 | |
| 1777 | AppDomain * pAppDomain = vmAppDomain.GetDacPtr(); |
| 1778 | |
| 1779 | TypeHandle thExact; |
| 1780 | TypeHandle thApprox; |
| 1781 | |
| 1782 | GetTypeHandles(vmThExact, vmThExact, &thExact, &thApprox); |
| 1783 | |
| 1784 | // initialize field count, generic args count, size and value class flag |
| 1785 | InitClassData(thApprox, false, pData); |
| 1786 | |
| 1787 | if (pAppDomain != NULL) |
| 1788 | CollectFields(thExact, thApprox, pAppDomain, &(pData->m_fieldList)); |
| 1789 | } // DacDbiInterfaceImpl::GetClassInfo |
| 1790 | |
| 1791 | // DacDbi API: Get field information and object size for an instantiated generic type |
| 1792 | void DacDbiInterfaceImpl::GetInstantiationFieldInfo (VMPTR_DomainFile vmDomainFile, |
| 1793 | VMPTR_TypeHandle vmThExact, |
| 1794 | VMPTR_TypeHandle vmThApprox, |
| 1795 | DacDbiArrayList<FieldData> * pFieldList, |
| 1796 | SIZE_T * pObjectSize) |
| 1797 | { |
| 1798 | DD_ENTER_MAY_THROW; |
| 1799 | |
| 1800 | DomainFile * pDomainFile = vmDomainFile.GetDacPtr(); |
| 1801 | _ASSERTE(pDomainFile != NULL); |
| 1802 | AppDomain * pAppDomain = pDomainFile->GetAppDomain(); |
| 1803 | TypeHandle thExact; |
| 1804 | TypeHandle thApprox; |
| 1805 | |
| 1806 | GetTypeHandles(vmThExact, vmThApprox, &thExact, &thApprox); |
| 1807 | |
| 1808 | *pObjectSize = thApprox.GetMethodTable()->GetNumInstanceFieldBytes(); |
| 1809 | |
| 1810 | pFieldList->Alloc(GetTotalFieldCount(thApprox)); |
| 1811 | |
| 1812 | CollectFields(thExact, thApprox, pAppDomain, pFieldList); |
| 1813 | |
| 1814 | } // DacDbiInterfaceImpl::GetInstantiationFieldInfo |
| 1815 | |
| 1816 | //----------------------------------------------------------------------------------- |
| 1817 | // DacDbiInterfaceImpl::TypeDataWalk member functions |
| 1818 | //----------------------------------------------------------------------------------- |
| 1819 | |
| 1820 | //----------------------------------------------------------------------------- |
| 1821 | // TypeDataWalk constructor--initialize the buffer and number of remaining items from input data |
| 1822 | // Arguments: pData - pointer to a list of records containing information about type parameters for an |
| 1823 | // instantiated type |
| 1824 | // nData - number of entries in pData |
| 1825 | //----------------------------------------------------------------------------- |
| 1826 | DacDbiInterfaceImpl::TypeDataWalk::TypeDataWalk(DebuggerIPCE_TypeArgData * pData, unsigned int nData) |
| 1827 | { |
| 1828 | m_pCurrentData = pData; |
| 1829 | m_nRemaining = nData; |
| 1830 | } // DacDbiInterfaceImpl::TypeDataWalk::TypeDataWalk |
| 1831 | |
| 1832 | //----------------------------------------------------------------------------- |
| 1833 | // DacDbiInterfaceImpl::TypeDataWalk::ReadOne |
| 1834 | // read and return a single node from the list of type parameters |
| 1835 | // Arguments: none (uses internal state) |
| 1836 | // Return value: information about the next type parameter in m_pCurrentData |
| 1837 | //----------------------------------------------------------------------------- |
| 1838 | DebuggerIPCE_TypeArgData * DacDbiInterfaceImpl::TypeDataWalk::ReadOne() |
| 1839 | { |
| 1840 | LIMITED_METHOD_CONTRACT; |
| 1841 | if (m_nRemaining) |
| 1842 | { |
| 1843 | m_nRemaining--; |
| 1844 | return m_pCurrentData++; |
| 1845 | } |
| 1846 | else |
| 1847 | { |
| 1848 | return NULL; |
| 1849 | } |
| 1850 | } // DacDbiInterfaceImpl::TypeDataWalk::ReadOne |
| 1851 | |
| 1852 | //----------------------------------------------------------------------------- |
| 1853 | // DacDbiInterfaceImpl::TypeDataWalk::Skip |
| 1854 | // Skip a single node from the list of type handles along with any children it might have |
| 1855 | // Arguments: none (uses internal state) |
| 1856 | // Return value: none (updates internal state) |
| 1857 | //----------------------------------------------------------------------------- |
| 1858 | void DacDbiInterfaceImpl::TypeDataWalk::Skip() |
| 1859 | { |
| 1860 | LIMITED_METHOD_CONTRACT; |
| 1861 | |
| 1862 | DebuggerIPCE_TypeArgData * pData = ReadOne(); |
| 1863 | if (pData) |
| 1864 | { |
| 1865 | for (unsigned int i = 0; i < pData->numTypeArgs; i++) |
| 1866 | { |
| 1867 | Skip(); |
| 1868 | } |
| 1869 | } |
| 1870 | } // DacDbiInterfaceImpl::TypeDataWalk::Skip |
| 1871 | |
| 1872 | //----------------------------------------------------------------------------- |
| 1873 | // DacDbiInterfaceImpl::TypeDataWalk::ReadLoadedTypeArg |
| 1874 | // Read a type handle when it is used in the position of a generic argument or |
| 1875 | // argument of an array or address type. Take into account generic code sharing if we |
| 1876 | // have been requested to find the canonical representation amongst a set of shared- |
| 1877 | // code generic types. That is, if generics code sharing is enabled then return "Object" |
| 1878 | // for all reference types, and canonicalize underneath value types, e.g. V<string> --> V<object>. |
| 1879 | // Return TypeHandle() if any of the type handles are not loaded. |
| 1880 | // |
| 1881 | // Arguments: retrieveWhich - indicates whether to retrieve a canonical representation or |
| 1882 | // an exact representation |
| 1883 | // Return value: the type handle for the type parameter |
| 1884 | //----------------------------------------------------------------------------- |
| 1885 | TypeHandle DacDbiInterfaceImpl::TypeDataWalk::ReadLoadedTypeArg(TypeHandleReadType retrieveWhich) |
| 1886 | { |
| 1887 | CONTRACTL |
| 1888 | { |
| 1889 | NOTHROW; |
| 1890 | GC_NOTRIGGER; |
| 1891 | } |
| 1892 | CONTRACTL_END; |
| 1893 | |
| 1894 | #if !defined(FEATURE_SHARE_GENERIC_CODE) |
| 1895 | return ReadLoadedTypeHandle(kGetExact); |
| 1896 | #else |
| 1897 | |
| 1898 | if (retrieveWhich == kGetExact) |
| 1899 | return ReadLoadedTypeHandle(kGetExact); |
| 1900 | |
| 1901 | // This nasty bit of code works out what the "canonicalization" of a |
| 1902 | // parameter to a generic is once we take into account generics code sharing. |
| 1903 | // |
| 1904 | // This logic is somewhat a duplication of logic in vm\typehandle.cpp, though |
| 1905 | // that logic operates on a TypeHandle format, i.e. assumes we're finding the |
| 1906 | // canonical form of a type that has already been loaded. Here we are finding |
| 1907 | // the canonical form of a type that may not have been loaded (but where we expect |
| 1908 | // its canonical form to have been loaded). |
| 1909 | // |
| 1910 | // Ideally this logic would not be duplicated in this way, but it is difficult |
| 1911 | // to arrange for that. |
| 1912 | DebuggerIPCE_TypeArgData * pData = ReadOne(); |
| 1913 | if (!pData) |
| 1914 | return TypeHandle(); |
| 1915 | |
| 1916 | // If we have code sharing then the process of canonicalizing is trickier. |
| 1917 | // unfortunately we have to include the exact specification of compatibility at |
| 1918 | // this point. |
| 1919 | CorElementType elementType = pData->data.elementType; |
| 1920 | |
| 1921 | switch (elementType) |
| 1922 | { |
| 1923 | case ELEMENT_TYPE_PTR: |
| 1924 | _ASSERTE(pData->numTypeArgs == 1); |
| 1925 | return PtrOrByRefTypeArg(pData, retrieveWhich); |
| 1926 | break; |
| 1927 | |
| 1928 | case ELEMENT_TYPE_CLASS: |
| 1929 | case ELEMENT_TYPE_VALUETYPE: |
| 1930 | return ClassTypeArg(pData, retrieveWhich); |
| 1931 | break; |
| 1932 | |
| 1933 | case ELEMENT_TYPE_FNPTR: |
| 1934 | return FnPtrTypeArg(pData, retrieveWhich); |
| 1935 | break; |
| 1936 | |
| 1937 | default: |
| 1938 | return ObjRefOrPrimitiveTypeArg(pData, elementType); |
| 1939 | break; |
| 1940 | } |
| 1941 | |
| 1942 | #endif // FEATURE_SHARE_GENERIC_CODE |
| 1943 | } // DacDbiInterfaceImpl::TypeDataWalk::ReadLoadedTypeArg |
| 1944 | |
| 1945 | //----------------------------------------------------------------------------- |
| 1946 | // DacDbiInterfaceImpl::TypeDataWalk::ReadLoadedTypeHandles |
| 1947 | // Iterate through the type argument data, creating type handles as we go. |
| 1948 | // |
| 1949 | // Arguments: |
| 1950 | // input: retrieveWhich - indicates whether we can return a canonical type handle |
| 1951 | // or we must return an exact type handle |
| 1952 | // nTypeArgs - number of type arguments to be read |
| 1953 | // output: ppResults - pointer to a list of TypeHandles that will hold the type handles |
| 1954 | // for each type parameter |
| 1955 | // |
| 1956 | // Return Value: FALSE iff any of the type handles are not loaded. |
| 1957 | //----------------------------------------------------------------------------- |
| 1958 | BOOL DacDbiInterfaceImpl::TypeDataWalk::ReadLoadedTypeHandles(TypeHandleReadType retrieveWhich, |
| 1959 | unsigned int nTypeArgs, |
| 1960 | TypeHandle * ppResults) |
| 1961 | { |
| 1962 | WRAPPER_NO_CONTRACT; |
| 1963 | |
| 1964 | BOOL allOK = true; |
| 1965 | for (unsigned int i = 0; i < nTypeArgs; i++) |
| 1966 | { |
| 1967 | ppResults[i] = ReadLoadedTypeArg(retrieveWhich); |
| 1968 | allOK &= !ppResults[i].IsNull(); |
| 1969 | } |
| 1970 | return allOK; |
| 1971 | } // DacDbiInterfaceImpl::TypeDataWalk::ReadLoadedTypeHandles |
| 1972 | |
| 1973 | //----------------------------------------------------------------------------- |
| 1974 | // DacDbiInterfaceImpl::TypeDataWalk::ReadLoadedInstantiation |
| 1975 | // Read an instantiation of a generic type if it has already been created. |
| 1976 | // |
| 1977 | // Arguments: |
| 1978 | // input: retrieveWhich - indicates whether we can return a canonical type handle |
| 1979 | // or we must return an exact type handle |
| 1980 | // pModule - module in which the instantiated type is loaded |
| 1981 | // mdToken - metadata token for the type |
| 1982 | // nTypeArgs - number of type arguments to be read |
| 1983 | // Return value: the type handle for the instantiated type |
| 1984 | //----------------------------------------------------------------------------- |
| 1985 | TypeHandle DacDbiInterfaceImpl::TypeDataWalk::ReadLoadedInstantiation(TypeHandleReadType retrieveWhich, |
| 1986 | Module * pModule, |
| 1987 | mdTypeDef mdToken, |
| 1988 | unsigned int nTypeArgs) |
| 1989 | { |
| 1990 | WRAPPER_NO_CONTRACT; |
| 1991 | |
| 1992 | NewHolder<TypeHandle> pInst(new TypeHandle[nTypeArgs]); |
| 1993 | |
| 1994 | // get the type handle for each of the type parameters |
| 1995 | if (!ReadLoadedTypeHandles(retrieveWhich, nTypeArgs, pInst)) |
| 1996 | { |
| 1997 | return TypeHandle(); |
| 1998 | } |
| 1999 | |
| 2000 | // get the type handle for the particular instantiation that corresponds to |
| 2001 | // the given type parameters |
| 2002 | return FindLoadedInstantiation(pModule, mdToken, nTypeArgs, pInst); |
| 2003 | |
| 2004 | } // DacDbiInterfaceImpl::TypeDataWalk::ReadLoadedInstantiation |
| 2005 | |
| 2006 | |
| 2007 | //----------------------------------------------------------------------------- |
| 2008 | // DacDbiInterfaceImpl::TypeDataWalk::ReadLoadedTypeHandle |
| 2009 | // |
| 2010 | // Compute the type handle for a given type. |
| 2011 | // This is the top-level function that will return the type handle for an |
| 2012 | // arbitrary type. It uses mutual recursion with ReadLoadedTypeArg to get |
| 2013 | // the type handle for a (possibly parameterized) type. Note that the referent of |
| 2014 | // address types or the element type of an array type are viewed as type parameters. |
| 2015 | // |
| 2016 | // For example, assume that we are retrieving only exact types, and we have as our |
| 2017 | // top level type an array defined as int [][]. |
| 2018 | // We start by noting that the type is an array type, so we call ReadLoadedTypeArg to |
| 2019 | // get the element type. We find that the element type is also an array:int []. |
| 2020 | // ReadLoadedTypeArg will call ReadLoadedTypeHandle with this type information. |
| 2021 | // Again, we determine that the top-level type is an array, so we call ReadLoadedTypeArg |
| 2022 | // to get the element type, int. ReadLoadedTypeArg will again call ReadLoadedTypeHandle |
| 2023 | // which will find that this time, the top-level type is a primitive type. It will request |
| 2024 | // the loaded type handle from the loader and return it. On return, we get the type handle |
| 2025 | // for an array of int from the loader. We return again and request the type handle for an |
| 2026 | // array of arrays of int. This is the type handle we will return. |
| 2027 | // |
| 2028 | // Arguments: |
| 2029 | // input: retrieveWhich - determines whether we can return the type handle for |
| 2030 | // a canonical type or only for an exact type |
| 2031 | // we use the list of type data stored in the TypeDataWalk data members |
| 2032 | // for other input information |
| 2033 | // Return value: type handle for the current type. |
| 2034 | //----------------------------------------------------------------------------- |
| 2035 | TypeHandle DacDbiInterfaceImpl::TypeDataWalk::ReadLoadedTypeHandle(TypeHandleReadType retrieveWhich) |
| 2036 | { |
| 2037 | CONTRACTL |
| 2038 | { |
| 2039 | NOTHROW; |
| 2040 | GC_NOTRIGGER; |
| 2041 | } |
| 2042 | CONTRACTL_END; |
| 2043 | |
| 2044 | // get the type information at the head of the list m_pCurrentData |
| 2045 | DebuggerIPCE_TypeArgData * pData = ReadOne(); |
| 2046 | if (!pData) |
| 2047 | return TypeHandle(); |
| 2048 | |
| 2049 | // get the type handle that corresponds to its elementType |
| 2050 | TypeHandle typeHandle; |
| 2051 | switch (pData->data.elementType) |
| 2052 | { |
| 2053 | case ELEMENT_TYPE_ARRAY: |
| 2054 | case ELEMENT_TYPE_SZARRAY: |
| 2055 | typeHandle = ArrayTypeArg(pData, retrieveWhich); |
| 2056 | break; |
| 2057 | |
| 2058 | case ELEMENT_TYPE_PTR: |
| 2059 | case ELEMENT_TYPE_BYREF: |
| 2060 | typeHandle = PtrOrByRefTypeArg(pData, retrieveWhich); |
| 2061 | break; |
| 2062 | case ELEMENT_TYPE_CLASS: |
| 2063 | case ELEMENT_TYPE_VALUETYPE: |
| 2064 | { |
| 2065 | Module * pModule = pData->data.ClassTypeData.vmModule.GetDacPtr(); |
| 2066 | typeHandle = ReadLoadedInstantiation(retrieveWhich, |
| 2067 | pModule, |
| 2068 | pData->data.ClassTypeData.metadataToken, |
| 2069 | pData->numTypeArgs); |
| 2070 | } |
| 2071 | break; |
| 2072 | |
| 2073 | case ELEMENT_TYPE_FNPTR: |
| 2074 | { |
| 2075 | typeHandle = FnPtrTypeArg(pData, retrieveWhich); |
| 2076 | } |
| 2077 | break; |
| 2078 | |
| 2079 | default: |
| 2080 | typeHandle = FindLoadedElementType(pData->data.elementType); |
| 2081 | break; |
| 2082 | } |
| 2083 | return typeHandle; |
| 2084 | } // DacDbiInterfaceImpl::TypeDataWalk::ReadLoadedTypeHandle |
| 2085 | |
| 2086 | //----------------------------------------------------------------------------- |
| 2087 | // DacDbiInterfaceImpl::TypeDataWalk::ArrayTypeArg |
| 2088 | // get a loaded type handle for an array type (E_T_ARRAY or E_T_SZARRAY) |
| 2089 | // |
| 2090 | // Arguments: |
| 2091 | // input: pArrayTypeInfo - type information for an array type |
| 2092 | // Although this is in fact a pointer (in)to a list, we treat it here |
| 2093 | // simply as a pointer to a single instance of DebuggerIPCE_TypeArgData |
| 2094 | // which holds type information for an array. |
| 2095 | // This is the most recent type node (for an array type) retrieved |
| 2096 | // by TypeDataWalk::ReadOne(). The call to ReadLoadedTypeArg will |
| 2097 | // result in call(s) to ReadOne to retrieve one or more type nodes |
| 2098 | // that are needed to compute the type handle for the |
| 2099 | // element type of the array. When we return from that call, we pass |
| 2100 | // pArrayTypeInfo along with arrayElementTypeArg to FindLoadedArrayType |
| 2101 | // to get the type handle for this particular array type. |
| 2102 | // Note: |
| 2103 | // On entry, we know that pArrayTypeInfo is the same as m_pCurrentData - 1, |
| 2104 | // but by the time we need to use it, this is no longer true. Because |
| 2105 | // we can't predict how many nodes will be consumed by the call to |
| 2106 | // ReadLoadedTypeArg, we can't compute this value from the member fields |
| 2107 | // of TypeDataWalk and therefore pass it as a parameter. |
| 2108 | // retrieveWhich - determines whether we can return the type handle for |
| 2109 | // a canonical type or only for an exact type |
| 2110 | // Return value: the type handle corresponding to the array type |
| 2111 | //----------------------------------------------------------------------------- |
| 2112 | |
| 2113 | TypeHandle DacDbiInterfaceImpl::TypeDataWalk::ArrayTypeArg(DebuggerIPCE_TypeArgData * pArrayTypeInfo, |
| 2114 | TypeHandleReadType retrieveWhich) |
| 2115 | { |
| 2116 | TypeHandle arrayElementTypeArg = ReadLoadedTypeArg(retrieveWhich); |
| 2117 | if (!arrayElementTypeArg.IsNull()) |
| 2118 | { |
| 2119 | return FindLoadedArrayType(pArrayTypeInfo->data.elementType, |
| 2120 | arrayElementTypeArg, |
| 2121 | pArrayTypeInfo->data.ArrayTypeData.arrayRank); |
| 2122 | } |
| 2123 | return TypeHandle(); |
| 2124 | } // DacDbiInterfaceImpl::TypeDataWalk::ArrayTypeArg |
| 2125 | |
| 2126 | |
| 2127 | //----------------------------------------------------------------------------- |
| 2128 | // DacDbiInterfaceImpl::TypeDataWalk::PtrOrByRefTypeArg |
| 2129 | // get a loaded type handle for an address type (E_T_PTR or E_T_BYREF) |
| 2130 | // |
| 2131 | // Arguments: |
| 2132 | // input: pPtrOrByRefTypeInfo - type information for a pointer or byref type |
| 2133 | // Although this is in fact a pointer (in)to a list, we treat it here |
| 2134 | // simply as a pointer to a single instance of DebuggerIPCE_TypeArgData |
| 2135 | // which holds type information for a pointer or byref type. |
| 2136 | // This is the most recent type node (for a pointer or byref type) retrieved |
| 2137 | // by TypeDataWalk::ReadOne(). The call to ReadLoadedTypeArg will |
| 2138 | // result in call(s) to ReadOne to retrieve one or more type nodes |
| 2139 | // that are needed to compute the type handle for the |
| 2140 | // referent type of the pointer. When we return from that call, we pass |
| 2141 | // pPtrOrByRefTypeInfo along with referentTypeArg to FindLoadedPointerOrByrefType |
| 2142 | // to get the type handle for this particular pointer or byref type. |
| 2143 | // Note: |
| 2144 | // On entry, we know that pPtrOrByRefTypeInfo is the same as m_pCurrentData - 1, |
| 2145 | // but by the time we need to use it, this is no longer true. Because |
| 2146 | // we can't predict how many nodes will be consumed by the call to |
| 2147 | // ReadLoadedTypeArg, we can't compute this value from the member fields |
| 2148 | // of TypeDataWalk and therefore pass it as a parameter. |
| 2149 | // retrieveWhich - determines whether we can return the type handle for |
| 2150 | // a canonical type or only for an exact type |
| 2151 | // Return value: the type handle corresponding to the address type |
| 2152 | //----------------------------------------------------------------------------- |
| 2153 | TypeHandle DacDbiInterfaceImpl::TypeDataWalk::PtrOrByRefTypeArg(DebuggerIPCE_TypeArgData * pPtrOrByRefTypeInfo, |
| 2154 | TypeHandleReadType retrieveWhich) |
| 2155 | { |
| 2156 | TypeHandle referentTypeArg = ReadLoadedTypeArg(retrieveWhich); |
| 2157 | if (!referentTypeArg.IsNull()) |
| 2158 | { |
| 2159 | return FindLoadedPointerOrByrefType(pPtrOrByRefTypeInfo->data.elementType, referentTypeArg); |
| 2160 | } |
| 2161 | |
| 2162 | return TypeHandle(); |
| 2163 | |
| 2164 | } // DacDbiInterfaceImpl::TypeDataWalk::PtrOrByRefTypeArg |
| 2165 | |
| 2166 | //----------------------------------------------------------------------------- |
| 2167 | // DacDbiInterfaceImpl::TypeDataWalk::ClassTypeArg |
| 2168 | // get a loaded type handle for a class type (E_T_CLASS or E_T_VALUETYPE) |
| 2169 | // |
| 2170 | // Arguments: |
| 2171 | // input: pClassTypeInfo - type information for a class type |
| 2172 | // Although this is in fact a pointer (in)to a list, we treat it here |
| 2173 | // simply as a pointer to a single instance of DebuggerIPCE_TypeArgData |
| 2174 | // which holds type information for a pointer or byref type. |
| 2175 | // This is the most recent type node (for a pointer or byref type) retrieved |
| 2176 | // by TypeDataWalk::ReadOne(). The call to ReadLoadedInstantiation will |
| 2177 | // result in call(s) to ReadOne to retrieve one or more type nodes |
| 2178 | // that are needed to compute the type handle for the type parameters |
| 2179 | // for the class. If we can't find an exact loaded type for the class, we will |
| 2180 | // instead return a canonical method table. In this case, we need to skip |
| 2181 | // the type parameter information for each actual parameter to the class. |
| 2182 | // This is necessary because we may be getting a type handle for a class which is |
| 2183 | // in turn an argument to a parent type. If the parent type has more arguments, we |
| 2184 | // need to be at the right place in the list when we return. We use |
| 2185 | // pClassTypeInfo to get the number of type arguments that we need to skip. |
| 2186 | // retrieveWhich - determines whether we can return the type handle for |
| 2187 | // a canonical type or only for an exact type |
| 2188 | // Return value: the type handle corresponding to the class type |
| 2189 | //----------------------------------------------------------------------------- |
| 2190 | TypeHandle DacDbiInterfaceImpl::TypeDataWalk::ClassTypeArg(DebuggerIPCE_TypeArgData * pClassTypeInfo, |
| 2191 | TypeHandleReadType retrieveWhich) |
| 2192 | { |
| 2193 | Module * pModule = pClassTypeInfo->data.ClassTypeData.vmModule.GetDacPtr(); |
| 2194 | TypeHandle typeDef = ClassLoader::LookupTypeDefOrRefInModule(pModule, |
| 2195 | pClassTypeInfo->data.ClassTypeData.metadataToken); |
| 2196 | |
| 2197 | if ((!typeDef.IsNull() && typeDef.IsValueType()) || (pClassTypeInfo->data.elementType == ELEMENT_TYPE_VALUETYPE)) |
| 2198 | { |
| 2199 | return ReadLoadedInstantiation(retrieveWhich, |
| 2200 | pModule, |
| 2201 | pClassTypeInfo->data.ClassTypeData.metadataToken, |
| 2202 | pClassTypeInfo->numTypeArgs); |
| 2203 | } |
| 2204 | else |
| 2205 | { |
| 2206 | _ASSERTE(retrieveWhich == kGetCanonical); |
| 2207 | // skip the instantiation - no need to look at it since the type canonicalizes to "Object" |
| 2208 | for (unsigned int i = 0; i < pClassTypeInfo->numTypeArgs; i++) |
| 2209 | { |
| 2210 | Skip(); |
| 2211 | } |
| 2212 | return TypeHandle(g_pCanonMethodTableClass); |
| 2213 | } |
| 2214 | }// DacDbiInterfaceImpl::TypeDataWalk::ClassTypeArg |
| 2215 | |
| 2216 | //----------------------------------------------------------------------------- |
| 2217 | // DacDbiInterfaceImpl::TypeDataWalk::FnPtrTypeArg |
| 2218 | // get a loaded type handle for a function pointer type (E_T_FNPTR) |
| 2219 | // |
| 2220 | // Arguments: |
| 2221 | // input: pFnPtrTypeInfo - type information for a pointer or byref type |
| 2222 | // Although this is in fact a pointer (in)to a list, we treat it here |
| 2223 | // simply as a pointer to a single instance of DebuggerIPCE_TypeArgData |
| 2224 | // which holds type information for a function pointer type. |
| 2225 | // This is the most recent type node (for a function pointer type) retrieved |
| 2226 | // by TypeDataWalk::ReadOne(). The call to ReadLoadedTypeHandles will |
| 2227 | // result in call(s) to ReadOne to retrieve one or more type nodes |
| 2228 | // that are needed to compute the type handle for the return type and |
| 2229 | // parameter types of the function. When we return from that call, we pass |
| 2230 | // pFnPtrTypeInfo along with pInst to FindLoadedFnptrType |
| 2231 | // to get the type handle for this particular function pointer type. |
| 2232 | // retrieveWhich - determines whether we can return the type handle for |
| 2233 | // a canonical type or only for an exact type |
| 2234 | // Return value: the type handle corresponding to the function pointer type |
| 2235 | //----------------------------------------------------------------------------- |
| 2236 | TypeHandle DacDbiInterfaceImpl::TypeDataWalk::FnPtrTypeArg(DebuggerIPCE_TypeArgData * pFnPtrTypeInfo, |
| 2237 | TypeHandleReadType retrieveWhich) |
| 2238 | { |
| 2239 | // allocate space to store a list of type handles, one for the return type and one for each |
| 2240 | // of the parameter types of the function to which the FnPtr type refers. |
| 2241 | NewHolder<TypeHandle> pInst(new TypeHandle[sizeof(TypeHandle) * pFnPtrTypeInfo->numTypeArgs]); |
| 2242 | |
| 2243 | if (ReadLoadedTypeHandles(retrieveWhich, pFnPtrTypeInfo->numTypeArgs, pInst)) |
| 2244 | { |
| 2245 | return FindLoadedFnptrType(pFnPtrTypeInfo->numTypeArgs, pInst); |
| 2246 | } |
| 2247 | |
| 2248 | return TypeHandle(); |
| 2249 | |
| 2250 | } // DacDbiInterfaceImpl::TypeDataWalk::FnPtrTypeArg |
| 2251 | |
| 2252 | //----------------------------------------------------------------------------- |
| 2253 | // DacDbiInterfaceImpl::TypeDataWalk::ObjRefOrPrimitiveTypeArg |
| 2254 | // get a loaded type handle for a primitive type or ObjRef |
| 2255 | // |
| 2256 | // Arguments: |
| 2257 | // input: pArgInfo - type information for an objref or primitive type. |
| 2258 | // This is called only when the objref or primitive type |
| 2259 | // is a type argument for a parent type. In this case, |
| 2260 | // we treat all objrefs the same, that is, we don't care |
| 2261 | // about type parameters for the referent. Instead, we will |
| 2262 | // simply return the canonical object type handle as the type |
| 2263 | // of the referent. <@dbgtodo Microsoft: why is this?> |
| 2264 | // If this is a primitive type, we'll simply get the |
| 2265 | // type handle for that type. |
| 2266 | // elementType - type of the argument |
| 2267 | // Return value: the type handle corresponding to the elementType |
| 2268 | //----------------------------------------------------------------------------- |
| 2269 | TypeHandle DacDbiInterfaceImpl::TypeDataWalk::ObjRefOrPrimitiveTypeArg(DebuggerIPCE_TypeArgData * pArgInfo, |
| 2270 | CorElementType elementType) |
| 2271 | { |
| 2272 | // If there are any type args (e.g. for arrays) they can be skipped. The thing |
| 2273 | // is a reference type anyway. |
| 2274 | for (unsigned int i = 0; i < pArgInfo->numTypeArgs; i++) |
| 2275 | { |
| 2276 | Skip(); |
| 2277 | } |
| 2278 | |
| 2279 | // for an ObjRef, just return the CLASS____CANON type handle |
| 2280 | if (CorTypeInfo::IsObjRef_NoThrow(elementType)) |
| 2281 | { |
| 2282 | return TypeHandle(g_pCanonMethodTableClass); |
| 2283 | } |
| 2284 | else |
| 2285 | { |
| 2286 | return FindLoadedElementType(elementType); |
| 2287 | } |
| 2288 | } // DacDbiInterfaceImpl::TypeDataWalk::ObjRefOrPrimitiveTypeArg |
| 2289 | |
| 2290 | |
| 2291 | //------------------------------------------------------------------------- |
| 2292 | // end of TypeDataWalk implementations |
| 2293 | //------------------------------------------------------------------------- |
| 2294 | //------------------------------------------------------------------------- |
| 2295 | // functions to use loader to get type handles |
| 2296 | // ------------------------------------------------------------------------ |
| 2297 | |
| 2298 | // Note, in these functions, the use of ClassLoader::DontLoadTypes was chosen |
| 2299 | // instead of FailIfNotLoaded because, although we may want to debug unrestored |
| 2300 | // VCs, we can't do it because the debug API is not set up to handle them. |
| 2301 | // |
| 2302 | //----------------------------------------------------------------------------- |
| 2303 | // DacDbiInterfaceImpl::FindLoadedArrayType |
| 2304 | // Use ClassLoader to find a loaded type handle for an array type (E_T_ARRAY or E_T_SZARRAY) |
| 2305 | // Arguments: |
| 2306 | // input: arrayType - type of the array |
| 2307 | // TypeArg - type handle for the base type |
| 2308 | // rank - array rank |
| 2309 | // Return Value: type handle for the array type |
| 2310 | //----------------------------------------------------------------------------- |
| 2311 | // static |
| 2312 | TypeHandle DacDbiInterfaceImpl::FindLoadedArrayType(CorElementType arrayType, |
| 2313 | TypeHandle typeArg, |
| 2314 | unsigned rank) |
| 2315 | { |
| 2316 | // Lookup operations run the class loader in non-load mode. |
| 2317 | ENABLE_FORBID_GC_LOADER_USE_IN_THIS_SCOPE(); |
| 2318 | |
| 2319 | if (typeArg.IsNull()) |
| 2320 | { |
| 2321 | return TypeHandle(); |
| 2322 | } |
| 2323 | else |
| 2324 | { |
| 2325 | return ClassLoader::LoadArrayTypeThrowing(typeArg, |
| 2326 | arrayType, |
| 2327 | rank, |
| 2328 | ClassLoader::DontLoadTypes ); |
| 2329 | } |
| 2330 | } // DacDbiInterfaceImpl::FindLoadedArrayType; |
| 2331 | |
| 2332 | //----------------------------------------------------------------------------- |
| 2333 | // DacDbiInterfaceImpl::FindLoadedPointerOrByrefType |
| 2334 | // Use ClassLoader to find a loaded type handle for an address type (E_T_PTR or E_T_BYREF) |
| 2335 | // Arguments: |
| 2336 | // input: addressType - type of the address type |
| 2337 | // TypeArg - type handle for the base type |
| 2338 | // Return Value: type handle for the address type |
| 2339 | //----------------------------------------------------------------------------- |
| 2340 | // static |
| 2341 | TypeHandle DacDbiInterfaceImpl::FindLoadedPointerOrByrefType(CorElementType addressType, TypeHandle typeArg) |
| 2342 | { |
| 2343 | // Lookup operations run the class loader in non-load mode. |
| 2344 | ENABLE_FORBID_GC_LOADER_USE_IN_THIS_SCOPE(); |
| 2345 | |
| 2346 | return ClassLoader::LoadPointerOrByrefTypeThrowing(addressType, |
| 2347 | typeArg, |
| 2348 | ClassLoader::DontLoadTypes); |
| 2349 | } // DacDbiInterfaceImpl::FindLoadedPointerOrByrefType |
| 2350 | |
| 2351 | //----------------------------------------------------------------------------- |
| 2352 | // DacDbiInterfaceImpl::FindLoadedFnptrType |
| 2353 | // Use ClassLoader to find a loaded type handle for a function pointer type (E_T_FNPTR) |
| 2354 | // Arguments: |
| 2355 | // input: pInst - type handles of the function's return value and arguments |
| 2356 | // numTypeArgs - number of type handles in pInst |
| 2357 | // Return Value: type handle for the function pointer type |
| 2358 | //----------------------------------------------------------------------------- |
| 2359 | // static |
| 2360 | TypeHandle DacDbiInterfaceImpl::FindLoadedFnptrType(DWORD numTypeArgs, TypeHandle * pInst) |
| 2361 | { |
| 2362 | // Lookup operations run the class loader in non-load mode. |
| 2363 | ENABLE_FORBID_GC_LOADER_USE_IN_THIS_SCOPE(); |
| 2364 | |
| 2365 | // @dbgtodo : Do we need to worry about calling convention here? |
| 2366 | // LoadFnptrTypeThrowing expects the count of arguments, not |
| 2367 | // including return value, so we subtract 1 from numTypeArgs. |
| 2368 | return ClassLoader::LoadFnptrTypeThrowing(0, |
| 2369 | numTypeArgs - 1, |
| 2370 | pInst, |
| 2371 | ClassLoader::DontLoadTypes); |
| 2372 | } // DacDbiInterfaceImpl::FindLoadedFnptrType |
| 2373 | |
| 2374 | //----------------------------------------------------------------------------- |
| 2375 | // DacDbiInterfaceImpl::FindLoadedInstantiation |
| 2376 | // Use ClassLoader to find a loaded type handle for a particular instantiation of a |
| 2377 | // class type (E_T_CLASS or E_T_VALUECLASS) |
| 2378 | // |
| 2379 | // Arguments: |
| 2380 | // input: pModule - module in which the type is loaded |
| 2381 | // mdToken - metadata token for the type |
| 2382 | // nTypeArgs - number of type arguments in pInst |
| 2383 | // pInst - list of type handles for the type parameters |
| 2384 | // Return value: type handle for the instantiated class type |
| 2385 | //----------------------------------------------------------------------------- |
| 2386 | // static |
| 2387 | TypeHandle DacDbiInterfaceImpl::FindLoadedInstantiation(Module * pModule, |
| 2388 | mdTypeDef mdToken, |
| 2389 | DWORD nTypeArgs, |
| 2390 | TypeHandle * pInst) |
| 2391 | { |
| 2392 | // Lookup operations run the class loader in non-load mode. |
| 2393 | ENABLE_FORBID_GC_LOADER_USE_IN_THIS_SCOPE(); |
| 2394 | |
| 2395 | return ClassLoader::LoadGenericInstantiationThrowing(pModule, |
| 2396 | mdToken, |
| 2397 | Instantiation(pInst,nTypeArgs), |
| 2398 | ClassLoader::DontLoadTypes); |
| 2399 | |
| 2400 | } // DacDbiInterfaceImpl::FindLoadedInstantiation |
| 2401 | |
| 2402 | //----------------------------------------------------------------------------- |
| 2403 | // DacDbiInterfaceImpl::FindLoadedElementType |
| 2404 | // Get the type handle for a primitive type |
| 2405 | // Arguments: |
| 2406 | // input: elementType - type of the primitive type |
| 2407 | // Return Value: Type handle for the primitive type |
| 2408 | //----------------------------------------------------------------------------- |
| 2409 | // static |
| 2410 | TypeHandle DacDbiInterfaceImpl::FindLoadedElementType(CorElementType elementType) |
| 2411 | { |
| 2412 | // Lookup operations run the class loader in non-load mode. |
| 2413 | ENABLE_FORBID_GC_LOADER_USE_IN_THIS_SCOPE(); |
| 2414 | |
| 2415 | MethodTable * pMethodTable = (&g_Mscorlib)->GetElementType(elementType); |
| 2416 | |
| 2417 | return TypeHandle(pMethodTable); |
| 2418 | } // DacDbiInterfaceImpl::FindLoadedElementType |
| 2419 | |
| 2420 | |
| 2421 | //----------------------------------------------------------------------------- |
| 2422 | // DacDbiInterfaceImpl::GetArrayTypeInfo |
| 2423 | // Gets additional information to convert a type handle to an instance of CordbType if the type is E_T_ARRAY. |
| 2424 | // Specifically, we get the rank and the type of the array elements |
| 2425 | // |
| 2426 | // Arguments: |
| 2427 | // input: typeHandle - type handle for the array type |
| 2428 | // pAppDomain - AppDomain into which the type is loaded |
| 2429 | // output: pTypeInfo - information for the array rank and element type |
| 2430 | // |
| 2431 | //----------------------------------------------------------------------------- |
| 2432 | void DacDbiInterfaceImpl::GetArrayTypeInfo(TypeHandle typeHandle, |
| 2433 | DebuggerIPCE_ExpandedTypeData * pTypeInfo, |
| 2434 | AppDomain * pAppDomain) |
| 2435 | { |
| 2436 | _ASSERTE(typeHandle.IsArray()); |
| 2437 | pTypeInfo->ArrayTypeData.arrayRank = typeHandle.AsArray()->GetRank(); |
| 2438 | TypeHandleToBasicTypeInfo(typeHandle.AsArray()->GetArrayElementTypeHandle(), |
| 2439 | &(pTypeInfo->ArrayTypeData.arrayTypeArg), |
| 2440 | pAppDomain); |
| 2441 | } // DacDbiInterfaceImpl::GetArrayTypeInfo |
| 2442 | |
| 2443 | //----------------------------------------------------------------------------- |
| 2444 | // DacDbiInterfaceImpl::GetPtrTypeInfo |
| 2445 | // Gets additional information to convert a type handle to an instance of CordbType if the type is |
| 2446 | // E_T_PTR or E_T_BYREF. Specifically, we get the type for the referent of the address type |
| 2447 | // |
| 2448 | // Arguments: |
| 2449 | // input: boxed - indicates what, if anything, is boxed (see code:AreValueTypesBoxed for |
| 2450 | // more specific information) |
| 2451 | // typeHandle - type handle for the address type |
| 2452 | // pAppDomain - AppDomain into which the type is loaded |
| 2453 | // output: pTypeInfo - information for the referent type |
| 2454 | // |
| 2455 | //----------------------------------------------------------------------------- |
| 2456 | void DacDbiInterfaceImpl::GetPtrTypeInfo(AreValueTypesBoxed boxed, |
| 2457 | TypeHandle typeHandle, |
| 2458 | DebuggerIPCE_ExpandedTypeData * pTypeInfo, |
| 2459 | AppDomain * pAppDomain) |
| 2460 | { |
| 2461 | if (boxed == AllBoxed) |
| 2462 | { |
| 2463 | GetClassTypeInfo(typeHandle, pTypeInfo, pAppDomain); |
| 2464 | } |
| 2465 | else |
| 2466 | { |
| 2467 | _ASSERTE(typeHandle.IsTypeDesc()); |
| 2468 | TypeHandleToBasicTypeInfo(typeHandle.AsTypeDesc()->GetTypeParam(), |
| 2469 | &(pTypeInfo->UnaryTypeData.unaryTypeArg), |
| 2470 | pAppDomain); |
| 2471 | } |
| 2472 | } // DacDbiInterfaceImpl::GetPtrTypeInfo |
| 2473 | |
| 2474 | //----------------------------------------------------------------------------- |
| 2475 | // DacDbiInterfaceImpl::GetFnPtrTypeInfo |
| 2476 | // Gets additional information to convert a type handle to an instance of CordbType if the type is |
| 2477 | // E_T_FNPTR, specifically the typehandle for the referent. |
| 2478 | // |
| 2479 | // Arguments |
| 2480 | // input: boxed - indicates what, if anything, is boxed (see code:AreValueTypesBoxed for |
| 2481 | // more specific information) |
| 2482 | // typeHandle - type handle for the address type |
| 2483 | // pAppDomain - AppDomain into which the type is loaded |
| 2484 | // output: pTypeInfo - information for the referent type |
| 2485 | // |
| 2486 | //----------------------------------------------------------------------------- |
| 2487 | void DacDbiInterfaceImpl::GetFnPtrTypeInfo(AreValueTypesBoxed boxed, |
| 2488 | TypeHandle typeHandle, |
| 2489 | DebuggerIPCE_ExpandedTypeData * pTypeInfo, |
| 2490 | AppDomain * pAppDomain) |
| 2491 | { |
| 2492 | if (boxed == AllBoxed) |
| 2493 | { |
| 2494 | GetClassTypeInfo(typeHandle, pTypeInfo, pAppDomain); |
| 2495 | } |
| 2496 | else |
| 2497 | { |
| 2498 | pTypeInfo->NaryTypeData.typeHandle.SetDacTargetPtr(typeHandle.AsTAddr()); |
| 2499 | } |
| 2500 | } // DacDbiInterfaceImpl::GetFnPtrTypeInfo |
| 2501 | |
| 2502 | |
| 2503 | //----------------------------------------------------------------------------- |
| 2504 | // DacDbiInterfaceImpl::GetClassTypeInfo |
| 2505 | // Gets additional information to convert a type handle to an instance of CordbType if the type is |
| 2506 | // E_T_CLASS or E_T_VALUETYPE |
| 2507 | // |
| 2508 | // Arguments |
| 2509 | // input: typeHandle - type handle for the address type |
| 2510 | // pAppDomain - AppDomain into which the type is loaded |
| 2511 | // output: pTypeInfo - information for the referent type |
| 2512 | // |
| 2513 | //----------------------------------------------------------------------------- |
| 2514 | void DacDbiInterfaceImpl::GetClassTypeInfo(TypeHandle typeHandle, |
| 2515 | DebuggerIPCE_ExpandedTypeData * pTypeInfo, |
| 2516 | AppDomain * pAppDomain) |
| 2517 | { |
| 2518 | Module * pModule = typeHandle.GetModule(); |
| 2519 | |
| 2520 | if (typeHandle.HasInstantiation()) // the type handle represents a generic instantiation |
| 2521 | { |
| 2522 | pTypeInfo->ClassTypeData.typeHandle.SetDacTargetPtr(typeHandle.AsTAddr()); |
| 2523 | } |
| 2524 | else // non-generic |
| 2525 | { |
| 2526 | pTypeInfo->ClassTypeData.typeHandle = VMPTR_TypeHandle::NullPtr(); |
| 2527 | } |
| 2528 | |
| 2529 | pTypeInfo->ClassTypeData.metadataToken = typeHandle.GetCl(); |
| 2530 | |
| 2531 | _ASSERTE(pModule); |
| 2532 | pTypeInfo->ClassTypeData.vmModule.SetDacTargetPtr(PTR_HOST_TO_TADDR(pModule)); |
| 2533 | if (pAppDomain) |
| 2534 | { |
| 2535 | pTypeInfo->ClassTypeData.vmDomainFile.SetDacTargetPtr(PTR_HOST_TO_TADDR(pModule->GetDomainFile(pAppDomain))); |
| 2536 | } |
| 2537 | else |
| 2538 | { |
| 2539 | pTypeInfo->ClassTypeData.vmDomainFile = VMPTR_DomainFile::NullPtr(); |
| 2540 | } |
| 2541 | } // DacDbiInterfaceImpl::GetClassTypeInfo |
| 2542 | |
| 2543 | //----------------------------------------------------------------------------- |
| 2544 | // DacDbiInterfaceImpl::GetElementType |
| 2545 | // Gets the correct CorElementType value from a type handle |
| 2546 | // |
| 2547 | // Arguments |
| 2548 | // input: typeHandle - type handle for the address type |
| 2549 | // Return Value: the CorElementType enum value for the type handle |
| 2550 | //----------------------------------------------------------------------------- |
| 2551 | CorElementType DacDbiInterfaceImpl::GetElementType (TypeHandle typeHandle) |
| 2552 | { |
| 2553 | if (typeHandle.IsNull()) |
| 2554 | { |
| 2555 | return ELEMENT_TYPE_VOID; |
| 2556 | } |
| 2557 | else if (typeHandle.GetMethodTable() == g_pObjectClass) |
| 2558 | { |
| 2559 | return ELEMENT_TYPE_OBJECT; |
| 2560 | } |
| 2561 | else if (typeHandle.GetMethodTable() == g_pStringClass) |
| 2562 | { |
| 2563 | return ELEMENT_TYPE_STRING; |
| 2564 | } |
| 2565 | else |
| 2566 | { |
| 2567 | // GetSignatureCorElementType returns E_T_CLASS for E_T_STRING... :-( |
| 2568 | return typeHandle.GetSignatureCorElementType(); |
| 2569 | } |
| 2570 | |
| 2571 | } // DacDbiInterfaceImpl::GetElementType |
| 2572 | |
| 2573 | //----------------------------------------------------------------------------- |
| 2574 | // DacDbiInterfaceImpl::TypeHandleToBasicTypeInfo |
| 2575 | // Gets additional information to convert a type handle to an instance of CordbType for the referent of an |
| 2576 | // E_T_BYREF or E_T_PTR or for the element type of an E_T_ARRAY or E_T_SZARRAY |
| 2577 | // |
| 2578 | // Arguments: |
| 2579 | // input: typeHandle - type handle for the address type |
| 2580 | // pAppDomain - AppDomain into which the type is loaded |
| 2581 | // output: pTypeInfo - information for the referent type |
| 2582 | // |
| 2583 | //----------------------------------------------------------------------------- |
| 2584 | void DacDbiInterfaceImpl::TypeHandleToBasicTypeInfo(TypeHandle typeHandle, |
| 2585 | DebuggerIPCE_BasicTypeData * pTypeInfo, |
| 2586 | AppDomain * pAppDomain) |
| 2587 | { |
| 2588 | pTypeInfo->elementType = GetElementType(typeHandle); |
| 2589 | |
| 2590 | switch (pTypeInfo->elementType) |
| 2591 | { |
| 2592 | case ELEMENT_TYPE_ARRAY: |
| 2593 | case ELEMENT_TYPE_SZARRAY: |
| 2594 | case ELEMENT_TYPE_FNPTR: |
| 2595 | case ELEMENT_TYPE_PTR: |
| 2596 | case ELEMENT_TYPE_BYREF: |
| 2597 | pTypeInfo->vmTypeHandle.SetDacTargetPtr(typeHandle.AsTAddr()); |
| 2598 | pTypeInfo->metadataToken = mdTokenNil; |
| 2599 | pTypeInfo->vmDomainFile = VMPTR_DomainFile::NullPtr(); |
| 2600 | break; |
| 2601 | |
| 2602 | case ELEMENT_TYPE_CLASS: |
| 2603 | case ELEMENT_TYPE_VALUETYPE: |
| 2604 | { |
| 2605 | Module * pModule = typeHandle.GetModule(); |
| 2606 | |
| 2607 | if (typeHandle.HasInstantiation()) // only set if instantiated |
| 2608 | { |
| 2609 | pTypeInfo->vmTypeHandle.SetDacTargetPtr(typeHandle.AsTAddr()); |
| 2610 | } |
| 2611 | else |
| 2612 | { |
| 2613 | pTypeInfo->vmTypeHandle = VMPTR_TypeHandle::NullPtr(); |
| 2614 | } |
| 2615 | |
| 2616 | pTypeInfo->metadataToken = typeHandle.GetCl(); |
| 2617 | _ASSERTE(pModule); |
| 2618 | |
| 2619 | pTypeInfo->vmModule.SetDacTargetPtr(PTR_HOST_TO_TADDR(pModule)); |
| 2620 | if (pAppDomain) |
| 2621 | { |
| 2622 | pTypeInfo->vmDomainFile.SetDacTargetPtr(PTR_HOST_TO_TADDR(pModule->GetDomainFile(pAppDomain))); |
| 2623 | } |
| 2624 | else |
| 2625 | { |
| 2626 | pTypeInfo->vmDomainFile = VMPTR_DomainFile::NullPtr(); |
| 2627 | } |
| 2628 | break; |
| 2629 | } |
| 2630 | |
| 2631 | default: |
| 2632 | pTypeInfo->vmTypeHandle = VMPTR_TypeHandle::NullPtr(); |
| 2633 | pTypeInfo->metadataToken = mdTokenNil; |
| 2634 | pTypeInfo->vmDomainFile = VMPTR_DomainFile::NullPtr(); |
| 2635 | break; |
| 2636 | } |
| 2637 | return; |
| 2638 | } // DacDbiInterfaceImpl::TypeHandleToBasicTypeInfo |
| 2639 | |
| 2640 | |
| 2641 | void DacDbiInterfaceImpl::GetObjectExpandedTypeInfoFromID(AreValueTypesBoxed boxed, |
| 2642 | VMPTR_AppDomain vmAppDomain, |
| 2643 | COR_TYPEID id, |
| 2644 | DebuggerIPCE_ExpandedTypeData *pTypeInfo) |
| 2645 | { |
| 2646 | DD_ENTER_MAY_THROW; |
| 2647 | |
| 2648 | PTR_MethodTable pMT(TO_TADDR(id.token1)); |
| 2649 | |
| 2650 | if (pMT->IsArray()) |
| 2651 | { |
| 2652 | // ArrayBase::GetTypeHandle() may return a NULL handle in corner case scenarios. This check prevents |
| 2653 | // us from an AV but doesn't actually fix the problem. See DevDiv 653441 for more info. |
| 2654 | TypeHandle arrayHandle = ArrayBase::GetTypeHandle(pMT); |
| 2655 | if (arrayHandle.IsNull()) |
| 2656 | { |
| 2657 | ThrowHR(CORDBG_E_CLASS_NOT_LOADED); |
| 2658 | } |
| 2659 | |
| 2660 | TypeHandleToExpandedTypeInfoImpl(boxed, vmAppDomain, arrayHandle, pTypeInfo); |
| 2661 | } |
| 2662 | else |
| 2663 | { |
| 2664 | TypeHandleToExpandedTypeInfoImpl(boxed, vmAppDomain, TypeHandle::FromPtr(TO_TADDR(id.token1)), pTypeInfo); |
| 2665 | } |
| 2666 | } |
| 2667 | |
| 2668 | void DacDbiInterfaceImpl::GetObjectExpandedTypeInfo(AreValueTypesBoxed boxed, |
| 2669 | VMPTR_AppDomain vmAppDomain, |
| 2670 | CORDB_ADDRESS addr, |
| 2671 | DebuggerIPCE_ExpandedTypeData *pTypeInfo) |
| 2672 | { |
| 2673 | DD_ENTER_MAY_THROW; |
| 2674 | |
| 2675 | PTR_Object obj(TO_TADDR(addr)); |
| 2676 | TypeHandleToExpandedTypeInfoImpl(boxed, vmAppDomain, obj->GetGCSafeTypeHandle(), pTypeInfo); |
| 2677 | } |
| 2678 | |
| 2679 | // DacDbi API: use a type handle to get the information needed to create the corresponding RS CordbType instance |
| 2680 | void DacDbiInterfaceImpl::TypeHandleToExpandedTypeInfo(AreValueTypesBoxed boxed, |
| 2681 | VMPTR_AppDomain vmAppDomain, |
| 2682 | VMPTR_TypeHandle vmTypeHandle, |
| 2683 | DebuggerIPCE_ExpandedTypeData * pTypeInfo) |
| 2684 | { |
| 2685 | DD_ENTER_MAY_THROW; |
| 2686 | |
| 2687 | |
| 2688 | TypeHandle typeHandle = TypeHandle::FromPtr(vmTypeHandle.GetDacPtr()); |
| 2689 | TypeHandleToExpandedTypeInfoImpl(boxed, vmAppDomain, typeHandle, pTypeInfo); |
| 2690 | } |
| 2691 | |
| 2692 | |
| 2693 | void DacDbiInterfaceImpl::TypeHandleToExpandedTypeInfoImpl(AreValueTypesBoxed boxed, |
| 2694 | VMPTR_AppDomain vmAppDomain, |
| 2695 | TypeHandle typeHandle, |
| 2696 | DebuggerIPCE_ExpandedTypeData * pTypeInfo) |
| 2697 | { |
| 2698 | AppDomain * pAppDomain = vmAppDomain.GetDacPtr(); |
| 2699 | pTypeInfo->elementType = GetElementType(typeHandle); |
| 2700 | |
| 2701 | switch (pTypeInfo->elementType) |
| 2702 | { |
| 2703 | case ELEMENT_TYPE_ARRAY: |
| 2704 | case ELEMENT_TYPE_SZARRAY: |
| 2705 | GetArrayTypeInfo(typeHandle, pTypeInfo, pAppDomain); |
| 2706 | break; |
| 2707 | |
| 2708 | case ELEMENT_TYPE_PTR: |
| 2709 | case ELEMENT_TYPE_BYREF: |
| 2710 | GetPtrTypeInfo(boxed, typeHandle, pTypeInfo, pAppDomain); |
| 2711 | break; |
| 2712 | |
| 2713 | case ELEMENT_TYPE_VALUETYPE: |
| 2714 | if (boxed == OnlyPrimitivesUnboxed || boxed == AllBoxed) |
| 2715 | { |
| 2716 | pTypeInfo->elementType = ELEMENT_TYPE_CLASS; |
| 2717 | } |
| 2718 | GetClassTypeInfo(typeHandle, pTypeInfo, pAppDomain); |
| 2719 | break; |
| 2720 | |
| 2721 | case ELEMENT_TYPE_CLASS: |
| 2722 | GetClassTypeInfo(typeHandle, pTypeInfo, pAppDomain); |
| 2723 | break; |
| 2724 | |
| 2725 | case ELEMENT_TYPE_FNPTR: |
| 2726 | GetFnPtrTypeInfo(boxed, typeHandle, pTypeInfo, pAppDomain); |
| 2727 | break; |
| 2728 | default: |
| 2729 | if (boxed == AllBoxed) |
| 2730 | { |
| 2731 | pTypeInfo->elementType = ELEMENT_TYPE_CLASS; |
| 2732 | GetClassTypeInfo(typeHandle, pTypeInfo, pAppDomain); |
| 2733 | } |
| 2734 | // else the element type is sufficient |
| 2735 | break; |
| 2736 | } |
| 2737 | LOG((LF_CORDB, LL_INFO10000, "D::THTETI: converted left-side type handle to expanded right-side type info, pTypeInfo->ClassTypeData.typeHandle = 0x%08x.\n" , pTypeInfo->ClassTypeData.typeHandle.GetRawPtr())); |
| 2738 | return; |
| 2739 | } // DacDbiInterfaceImpl::TypeHandleToExpandedTypeInfo |
| 2740 | |
| 2741 | // Get type handle for a TypeDef token, if one exists. For generics this returns the open type. |
| 2742 | VMPTR_TypeHandle DacDbiInterfaceImpl::GetTypeHandle(VMPTR_Module vmModule, |
| 2743 | mdTypeDef metadataToken) |
| 2744 | { |
| 2745 | DD_ENTER_MAY_THROW; |
| 2746 | Module* pModule = vmModule.GetDacPtr(); |
| 2747 | VMPTR_TypeHandle vmTypeHandle = VMPTR_TypeHandle::NullPtr(); |
| 2748 | |
| 2749 | TypeHandle th = ClassLoader::LookupTypeDefOrRefInModule(pModule, metadataToken); |
| 2750 | if (th.IsNull()) |
| 2751 | { |
| 2752 | LOG((LF_CORDB, LL_INFO10000, "D::GTH: class isn't loaded.\n" )); |
| 2753 | ThrowHR(CORDBG_E_CLASS_NOT_LOADED); |
| 2754 | } |
| 2755 | |
| 2756 | vmTypeHandle.SetDacTargetPtr(th.AsTAddr()); |
| 2757 | return vmTypeHandle; |
| 2758 | } |
| 2759 | |
| 2760 | // DacDbi API: GetAndSendApproxTypeHandle finds the type handle for the layout of the instance fields of an |
| 2761 | // instantiated type if it is available. |
| 2762 | VMPTR_TypeHandle DacDbiInterfaceImpl::GetApproxTypeHandle(TypeInfoList * pTypeData) |
| 2763 | { |
| 2764 | DD_ENTER_MAY_THROW; |
| 2765 | |
| 2766 | LOG((LF_CORDB, LL_INFO10000, "D::GATH: getting info.\n" )); |
| 2767 | |
| 2768 | |
| 2769 | TypeDataWalk walk(&((*pTypeData)[0]), pTypeData->Count()); |
| 2770 | TypeHandle typeHandle = walk.ReadLoadedTypeHandle(TypeDataWalk::kGetCanonical); |
| 2771 | VMPTR_TypeHandle vmTypeHandle = VMPTR_TypeHandle::NullPtr(); |
| 2772 | |
| 2773 | vmTypeHandle.SetDacTargetPtr(typeHandle.AsTAddr()); |
| 2774 | if (!typeHandle.IsNull()) |
| 2775 | { |
| 2776 | vmTypeHandle.SetDacTargetPtr(typeHandle.AsTAddr()); |
| 2777 | } |
| 2778 | else |
| 2779 | { |
| 2780 | ThrowHR(CORDBG_E_CLASS_NOT_LOADED); |
| 2781 | } |
| 2782 | |
| 2783 | LOG((LF_CORDB, LL_INFO10000, |
| 2784 | "D::GATH: sending result, result = 0x%0x8\n" , |
| 2785 | typeHandle)); |
| 2786 | return vmTypeHandle; |
| 2787 | } // DacDbiInterfaceImpl::GetApproxTypeHandle |
| 2788 | |
| 2789 | // DacDbiInterface API: Get the exact type handle from type data |
| 2790 | HRESULT DacDbiInterfaceImpl::GetExactTypeHandle(DebuggerIPCE_ExpandedTypeData * pTypeData, |
| 2791 | ArgInfoList * pArgInfo, |
| 2792 | VMPTR_TypeHandle& vmTypeHandle) |
| 2793 | { |
| 2794 | DD_ENTER_MAY_THROW; |
| 2795 | |
| 2796 | LOG((LF_CORDB, LL_INFO10000, "D::GETH: getting info.\n" )); |
| 2797 | |
| 2798 | HRESULT hr = S_OK; |
| 2799 | |
| 2800 | EX_TRY |
| 2801 | { |
| 2802 | vmTypeHandle = vmTypeHandle.NullPtr(); |
| 2803 | |
| 2804 | // convert the type information to a type handle |
| 2805 | TypeHandle typeHandle = ExpandedTypeInfoToTypeHandle(pTypeData, pArgInfo); |
| 2806 | _ASSERTE(!typeHandle.IsNull()); |
| 2807 | vmTypeHandle.SetDacTargetPtr(typeHandle.AsTAddr()); |
| 2808 | } |
| 2809 | EX_CATCH_HRESULT(hr); |
| 2810 | |
| 2811 | return hr; |
| 2812 | } // DacDbiInterfaceImpl::GetExactTypeHandle |
| 2813 | |
| 2814 | // Retrieve the generic type params for a given MethodDesc. This function is specifically |
| 2815 | // for stackwalking because it requires the generic type token on the stack. |
| 2816 | void DacDbiInterfaceImpl::GetMethodDescParams( |
| 2817 | VMPTR_AppDomain vmAppDomain, |
| 2818 | VMPTR_MethodDesc vmMethodDesc, |
| 2819 | GENERICS_TYPE_TOKEN genericsToken, |
| 2820 | UINT32 * pcGenericClassTypeParams, |
| 2821 | TypeParamsList * pGenericTypeParams) |
| 2822 | { |
| 2823 | DD_ENTER_MAY_THROW; |
| 2824 | |
| 2825 | if (vmAppDomain.IsNull() || vmMethodDesc.IsNull()) |
| 2826 | { |
| 2827 | ThrowHR(E_INVALIDARG); |
| 2828 | } |
| 2829 | |
| 2830 | _ASSERTE((pcGenericClassTypeParams != NULL) && (pGenericTypeParams != NULL)); |
| 2831 | |
| 2832 | MethodDesc * pMD = vmMethodDesc.GetDacPtr(); |
| 2833 | |
| 2834 | // Retrieve the number of type parameters for the class and |
| 2835 | // the number of type parameters for the method itself. |
| 2836 | // For example, the method Foo<T, U>::Bar<V>() has 2 class type parameters and 1 method type parameters. |
| 2837 | UINT32 cGenericClassTypeParams = pMD->GetNumGenericClassArgs(); |
| 2838 | UINT32 cGenericMethodTypeParams = pMD->GetNumGenericMethodArgs(); |
| 2839 | UINT32 cTotalGenericTypeParams = cGenericClassTypeParams + cGenericMethodTypeParams; |
| 2840 | |
| 2841 | // Set the out parameter. |
| 2842 | *pcGenericClassTypeParams = cGenericClassTypeParams; |
| 2843 | |
| 2844 | TypeHandle thSpecificClass; |
| 2845 | MethodDesc * pSpecificMethod; |
| 2846 | |
| 2847 | // Try to retrieve a more specific MethodDesc and TypeHandle via the generics type token. |
| 2848 | // The generics token is not always guaranteed to be available. |
| 2849 | // For example, it may be unavailable in prologs and epilogs. |
| 2850 | // In dumps, not available can also mean a thrown exception for missing memory. |
| 2851 | BOOL fExact = FALSE; |
| 2852 | ALLOW_DATATARGET_MISSING_MEMORY( |
| 2853 | fExact = Generics::GetExactInstantiationsOfMethodAndItsClassFromCallInformation( |
| 2854 | pMD, |
| 2855 | PTR_VOID((TADDR)genericsToken), |
| 2856 | &thSpecificClass, |
| 2857 | &pSpecificMethod); |
| 2858 | ); |
| 2859 | if (!fExact || |
| 2860 | !thSpecificClass.GetMethodTable()->SanityCheck() || |
| 2861 | !pSpecificMethod->GetMethodTable()->SanityCheck()) |
| 2862 | { |
| 2863 | // Use the canonical MethodTable and MethodDesc if the exact generics token is not available. |
| 2864 | thSpecificClass = TypeHandle(pMD->GetMethodTable()); |
| 2865 | pSpecificMethod = pMD; |
| 2866 | } |
| 2867 | |
| 2868 | // Retrieve the array of class type parameters and the array of method type parameters. |
| 2869 | Instantiation classInst = pSpecificMethod->GetExactClassInstantiation(thSpecificClass); |
| 2870 | Instantiation methodInst = pSpecificMethod->GetMethodInstantiation(); |
| 2871 | |
| 2872 | _ASSERTE((classInst.IsEmpty()) == (cGenericClassTypeParams == 0)); |
| 2873 | _ASSERTE((methodInst.IsEmpty()) == (cGenericMethodTypeParams == 0)); |
| 2874 | |
| 2875 | // allocate memory for the return array |
| 2876 | pGenericTypeParams->Alloc(cTotalGenericTypeParams); |
| 2877 | |
| 2878 | for (UINT32 i = 0; i < cTotalGenericTypeParams; i++) |
| 2879 | { |
| 2880 | // Retrieve the current type parameter depending on the index. |
| 2881 | TypeHandle thCurrent; |
| 2882 | if (i < cGenericClassTypeParams) |
| 2883 | { |
| 2884 | thCurrent = classInst[i]; |
| 2885 | } |
| 2886 | else |
| 2887 | { |
| 2888 | thCurrent = methodInst[i - cGenericClassTypeParams]; |
| 2889 | } |
| 2890 | |
| 2891 | // There is the possiblity that we'll get this far with a dump and not fail, but still |
| 2892 | // not be able to get full info for a particular param. |
| 2893 | EX_TRY_ALLOW_DATATARGET_MISSING_MEMORY_WITH_HANDLER |
| 2894 | { |
| 2895 | // Fill in the struct using the TypeHandle of the current type parameter if we can. |
| 2896 | VMPTR_TypeHandle vmTypeHandle = VMPTR_TypeHandle::NullPtr(); |
| 2897 | vmTypeHandle.SetDacTargetPtr(thCurrent.AsTAddr()); |
| 2898 | TypeHandleToExpandedTypeInfo(NoValueTypeBoxing, |
| 2899 | vmAppDomain, |
| 2900 | vmTypeHandle, |
| 2901 | &((*pGenericTypeParams)[i])); |
| 2902 | } |
| 2903 | EX_CATCH_ALLOW_DATATARGET_MISSING_MEMORY_WITH_HANDLER |
| 2904 | { |
| 2905 | // On failure for a particular type, default it back to System.__Canon. |
| 2906 | VMPTR_TypeHandle vmTHCanon = VMPTR_TypeHandle::NullPtr(); |
| 2907 | TypeHandle thCanon = TypeHandle(g_pCanonMethodTableClass); |
| 2908 | vmTHCanon.SetDacTargetPtr(thCanon.AsTAddr()); |
| 2909 | TypeHandleToExpandedTypeInfo(NoValueTypeBoxing, |
| 2910 | vmAppDomain, |
| 2911 | vmTHCanon, |
| 2912 | &((*pGenericTypeParams)[i])); |
| 2913 | } |
| 2914 | EX_END_CATCH_ALLOW_DATATARGET_MISSING_MEMORY_WITH_HANDLER |
| 2915 | } |
| 2916 | } |
| 2917 | |
| 2918 | //----------------------------------------------------------------------------- |
| 2919 | // DacDbiInterfaceImpl::GetClassOrValueTypeHandle |
| 2920 | // get a typehandle for a class or valuetype from basic type data (metadata token |
| 2921 | // and domain file). |
| 2922 | // Arguments: |
| 2923 | // input: pData - contains the metadata token and domain file |
| 2924 | // Return value: the type handle for the corresponding type |
| 2925 | //----------------------------------------------------------------------------- |
| 2926 | TypeHandle DacDbiInterfaceImpl::GetClassOrValueTypeHandle(DebuggerIPCE_BasicTypeData * pData) |
| 2927 | { |
| 2928 | TypeHandle typeHandle; |
| 2929 | |
| 2930 | // if we already have a type handle, just return it |
| 2931 | if (!pData->vmTypeHandle.IsNull()) |
| 2932 | { |
| 2933 | typeHandle = TypeHandle::FromPtr(pData->vmTypeHandle.GetDacPtr()); |
| 2934 | } |
| 2935 | // otherwise, have the loader look it up using the metadata token and domain file |
| 2936 | else |
| 2937 | { |
| 2938 | DomainFile * pDomainFile = pData->vmDomainFile.GetDacPtr(); |
| 2939 | Module * pModule = pDomainFile->GetModule(); |
| 2940 | |
| 2941 | typeHandle = ClassLoader::LookupTypeDefOrRefInModule(pModule, pData->metadataToken); |
| 2942 | if (typeHandle.IsNull()) |
| 2943 | { |
| 2944 | LOG((LF_CORDB, LL_INFO10000, "D::BTITTH: class isn't loaded.\n" )); |
| 2945 | ThrowHR(CORDBG_E_CLASS_NOT_LOADED); |
| 2946 | } |
| 2947 | |
| 2948 | _ASSERTE(typeHandle.GetNumGenericArgs() == 0); |
| 2949 | } |
| 2950 | |
| 2951 | return typeHandle; |
| 2952 | |
| 2953 | } // DacDbiInterfaceImpl::GetClassOrValueTypeHandle |
| 2954 | |
| 2955 | //----------------------------------------------------------------------------- |
| 2956 | // DacDbiInterfaceImpl::GetExactArrayTypeHandle |
| 2957 | // get an exact type handle for an array type |
| 2958 | // Arguments: |
| 2959 | // input: pTopLevelTypeData - type information for a top-level array type |
| 2960 | // pArgInfo - contains the following information: |
| 2961 | // m_genericArgsCount - number of generic parameters for the element type--this should be 1 |
| 2962 | // m_pGenericArgs - pointer to the generic parameter for the element type--this is |
| 2963 | // effectively a one-element list. These are the actual parameters |
| 2964 | // Return Value: the exact type handle for the type |
| 2965 | //----------------------------------------------------------------------------- |
| 2966 | TypeHandle DacDbiInterfaceImpl::GetExactArrayTypeHandle(DebuggerIPCE_ExpandedTypeData * pTopLevelTypeData, |
| 2967 | ArgInfoList * pArgInfo) |
| 2968 | { |
| 2969 | TypeHandle typeArg; |
| 2970 | |
| 2971 | _ASSERTE(pArgInfo->Count() == 1); |
| 2972 | |
| 2973 | // get the type handle for the element type |
| 2974 | typeArg = BasicTypeInfoToTypeHandle(&((*pArgInfo)[0])); |
| 2975 | |
| 2976 | // get the exact type handle for the array type |
| 2977 | return FindLoadedArrayType(pTopLevelTypeData->elementType, |
| 2978 | typeArg, |
| 2979 | pTopLevelTypeData->ArrayTypeData.arrayRank); |
| 2980 | |
| 2981 | } // DacDbiInterfaceImpl::GetExactArrayTypeHandle |
| 2982 | |
| 2983 | //----------------------------------------------------------------------------- |
| 2984 | // DacDbiInterfaceImpl::GetExactPtrOrByRefTypeHandle |
| 2985 | // get an exact type handle for a PTR or BYREF type |
| 2986 | // Arguments: |
| 2987 | // input: pTopLevelTypeData - type information for the PTR or BYREF type |
| 2988 | // pArgInfo - contains the following information: |
| 2989 | // m_genericArgsCount - number of generic parameters for the element type--this should be 1 |
| 2990 | // m_pGenericArgs - pointer to the generic parameter for the element type--this is |
| 2991 | // effectively a one-element list. These are the actual parameters |
| 2992 | // Return Value: the exact type handle for the type |
| 2993 | //----------------------------------------------------------------------------- |
| 2994 | TypeHandle DacDbiInterfaceImpl::GetExactPtrOrByRefTypeHandle(DebuggerIPCE_ExpandedTypeData * pTopLevelTypeData, |
| 2995 | ArgInfoList * pArgInfo) |
| 2996 | { |
| 2997 | TypeHandle typeArg; |
| 2998 | _ASSERTE(pArgInfo->Count() == 1); |
| 2999 | |
| 3000 | // get the type handle for the referent |
| 3001 | typeArg = BasicTypeInfoToTypeHandle(&((*pArgInfo)[0])); |
| 3002 | |
| 3003 | // get the exact type handle for the PTR or BYREF type |
| 3004 | return FindLoadedPointerOrByrefType(pTopLevelTypeData->elementType, typeArg); |
| 3005 | |
| 3006 | } // DacDbiInterfaceImpl::GetExactPtrOrByRefTypeHandle |
| 3007 | |
| 3008 | //----------------------------------------------------------------------------- |
| 3009 | // DacDbiInterfaceImpl::GetExactClassTypeHandle |
| 3010 | // get an exact type handle for a CLASS or VALUETYPE type |
| 3011 | // Arguments: |
| 3012 | // input: pTopLevelTypeData - type information for the CLASS or VALUETYPE type |
| 3013 | // pArgInfo - contains the following information: |
| 3014 | // m_genericArgsCount - number of generic parameters for the class |
| 3015 | // m_pGenericArgs - list of generic parameters for the class--these |
| 3016 | // are the actual parameters |
| 3017 | // Return Value: the exact type handle for the type |
| 3018 | //----------------------------------------------------------------------------- |
| 3019 | TypeHandle DacDbiInterfaceImpl::GetExactClassTypeHandle(DebuggerIPCE_ExpandedTypeData * pTopLevelTypeData, |
| 3020 | ArgInfoList * pArgInfo) |
| 3021 | { |
| 3022 | Module * pModule = pTopLevelTypeData->ClassTypeData.vmModule.GetDacPtr(); |
| 3023 | int argCount = pArgInfo->Count(); |
| 3024 | |
| 3025 | TypeHandle typeConstructor = |
| 3026 | ClassLoader::LookupTypeDefOrRefInModule(pModule, pTopLevelTypeData->ClassTypeData.metadataToken); |
| 3027 | |
| 3028 | // If we can't find the class, throw the appropriate HR. Note: if the class is not a value class and |
| 3029 | // the class is also not restored, then we must pretend that the class is still not loaded. We are gonna let |
| 3030 | // unrestored value classes slide, though, and special case access to the class's parent below. |
| 3031 | if (typeConstructor.IsNull()) |
| 3032 | { |
| 3033 | LOG((LF_CORDB, LL_INFO10000, "D::ETITTH: class isn't loaded.\n" )); |
| 3034 | ThrowHR(CORDBG_E_CLASS_NOT_LOADED); |
| 3035 | } |
| 3036 | |
| 3037 | // if there are no generic parameters, we already have the correct type handle |
| 3038 | if (argCount == 0) |
| 3039 | { |
| 3040 | return typeConstructor; |
| 3041 | } |
| 3042 | |
| 3043 | // we have generic parameters--first validate we have a number consistent with the list |
| 3044 | // of parameters we received |
| 3045 | if ((unsigned int)argCount != typeConstructor.GetNumGenericArgs()) |
| 3046 | { |
| 3047 | LOG((LF_CORDB, LL_INFO10000, |
| 3048 | "D::ETITTH: wrong number of type parameters, %d given, %d expected\n" , |
| 3049 | argCount, typeConstructor.GetNumGenericArgs())); |
| 3050 | _ASSERTE((unsigned int)argCount == typeConstructor.GetNumGenericArgs()); |
| 3051 | ThrowHR(E_FAIL); |
| 3052 | } |
| 3053 | |
| 3054 | // now we allocate a list to store the type handles for each parameter |
| 3055 | S_UINT32 allocSize = S_UINT32(argCount) * S_UINT32(sizeof(TypeHandle)); |
| 3056 | if (allocSize.IsOverflow()) |
| 3057 | { |
| 3058 | ThrowHR(E_OUTOFMEMORY); |
| 3059 | } |
| 3060 | |
| 3061 | NewHolder<TypeHandle> pInst(new TypeHandle[allocSize.Value()]); |
| 3062 | |
| 3063 | // convert the type information for each parameter to its corresponding type handle |
| 3064 | // and store it in the list |
| 3065 | for (unsigned int i = 0; i < (unsigned int)argCount; i++) |
| 3066 | { |
| 3067 | pInst[i] = BasicTypeInfoToTypeHandle(&((*pArgInfo)[i])); |
| 3068 | } |
| 3069 | |
| 3070 | // Finally, we find the type handle corresponding to this particular instantiation |
| 3071 | return FindLoadedInstantiation(typeConstructor.GetModule(), |
| 3072 | typeConstructor.GetCl(), |
| 3073 | argCount, |
| 3074 | pInst); |
| 3075 | |
| 3076 | } // DacDbiInterfaceImpl::GetExactClassTypeHandle |
| 3077 | |
| 3078 | //----------------------------------------------------------------------------- |
| 3079 | // DacDbiInterfaceImpl::GetExactFnPtrTypeHandle |
| 3080 | // get an exact type handle for a FNPTR type |
| 3081 | // Arguments: |
| 3082 | // input: pArgInfo - Contains the following information: |
| 3083 | // m_genericArgsCount - number of generic parameters for the referent |
| 3084 | // m_pGenericArgs - list of generic parameters for the referent--these |
| 3085 | // are the actual parameters for the function signature |
| 3086 | // Return Value: the exact type handle for the type |
| 3087 | //----------------------------------------------------------------------------- |
| 3088 | TypeHandle DacDbiInterfaceImpl::GetExactFnPtrTypeHandle(ArgInfoList * pArgInfo) |
| 3089 | { |
| 3090 | // allocate a list to store the type handles for each parameter |
| 3091 | S_UINT32 allocSize = S_UINT32(pArgInfo->Count()) * S_UINT32(sizeof(TypeHandle)); |
| 3092 | if( allocSize.IsOverflow() ) |
| 3093 | { |
| 3094 | ThrowHR(E_OUTOFMEMORY); |
| 3095 | } |
| 3096 | NewHolder<TypeHandle> pInst(new TypeHandle[allocSize.Value()]); |
| 3097 | |
| 3098 | // convert the type information for each parameter to its corresponding type handle |
| 3099 | // and store it in the list |
| 3100 | for (int i = 0; i < pArgInfo->Count(); i++) |
| 3101 | { |
| 3102 | pInst[i] = BasicTypeInfoToTypeHandle(&((*pArgInfo)[i])); |
| 3103 | } |
| 3104 | |
| 3105 | // find the type handle corresponding to this particular FNPTR |
| 3106 | return FindLoadedFnptrType(pArgInfo->Count(), pInst); |
| 3107 | } // DacDbiInterfaceImpl::GetExactFnPtrTypeHandle |
| 3108 | |
| 3109 | //----------------------------------------------------------------------------- |
| 3110 | // DacDbiInterfaceImpl::BasicTypeInfoToTypeHandle |
| 3111 | // Convert basic type info for a type parameter that came from a top-level type to |
| 3112 | // the corresponding type handle. If the type parameter is an array or pointer |
| 3113 | // type, we simply extract the LS type handle from the VMPTR_TypeHandle that is |
| 3114 | // part of the type information. If the type parameter is a class or value type, |
| 3115 | // we use the metadata token and domain file in the type info to look up the |
| 3116 | // appropriate type handle. If the type parameter is any other types, we get the |
| 3117 | // type handle by having the loader look up the type handle for the element type. |
| 3118 | // Arguments: |
| 3119 | // input: pArgTypeData - basic type information for the type. |
| 3120 | // Return Value: the type handle for the type. |
| 3121 | //----------------------------------------------------------------------------- |
| 3122 | TypeHandle DacDbiInterfaceImpl::BasicTypeInfoToTypeHandle(DebuggerIPCE_BasicTypeData * pArgTypeData) |
| 3123 | { |
| 3124 | LOG((LF_CORDB, LL_INFO10000, |
| 3125 | "D::BTITTH: expanding basic right-side type to left-side type, ELEMENT_TYPE: %d.\n" , |
| 3126 | pArgTypeData->elementType)); |
| 3127 | TypeHandle typeHandle = TypeHandle(); |
| 3128 | |
| 3129 | switch (pArgTypeData->elementType) |
| 3130 | { |
| 3131 | case ELEMENT_TYPE_ARRAY: |
| 3132 | case ELEMENT_TYPE_SZARRAY: |
| 3133 | case ELEMENT_TYPE_PTR: |
| 3134 | case ELEMENT_TYPE_BYREF: |
| 3135 | case ELEMENT_TYPE_FNPTR: |
| 3136 | _ASSERTE(!pArgTypeData->vmTypeHandle.IsNull()); |
| 3137 | typeHandle = TypeHandle::FromPtr(pArgTypeData->vmTypeHandle.GetDacPtr()); |
| 3138 | break; |
| 3139 | |
| 3140 | case ELEMENT_TYPE_CLASS: |
| 3141 | case ELEMENT_TYPE_VALUETYPE: |
| 3142 | typeHandle = GetClassOrValueTypeHandle(pArgTypeData); |
| 3143 | break; |
| 3144 | |
| 3145 | default: |
| 3146 | typeHandle = FindLoadedElementType(pArgTypeData->elementType); |
| 3147 | break; |
| 3148 | } |
| 3149 | if (typeHandle.IsNull()) |
| 3150 | { |
| 3151 | ThrowHR(CORDBG_E_CLASS_NOT_LOADED); |
| 3152 | } |
| 3153 | return typeHandle; |
| 3154 | } // DacDbiInterfaceImpl::BasicTypeInfoToTypeHandle |
| 3155 | |
| 3156 | |
| 3157 | //----------------------------------------------------------------------------- |
| 3158 | // DacDbiInterfaceImpl::ExpandedTypeInfoToTypeHandle |
| 3159 | // Convert type information for a top-level type to an exact type handle. This |
| 3160 | // information includes information about the element type if the top-level type is |
| 3161 | // an array type, the referent if the top-level type is a pointer type, or actual |
| 3162 | // parameters if the top-level type is a generic class or value type. |
| 3163 | // Arguments: |
| 3164 | // input: pTopLevelTypeData - type information for the top-level type |
| 3165 | // pArgInfo - contains the following information: |
| 3166 | // m_genericArtsCount - number of parameters |
| 3167 | // m_pGenericArgs - list of actual parameters |
| 3168 | // Return Value: the exact type handle corresponding to the type represented by |
| 3169 | // pTopLevelTypeData |
| 3170 | //----------------------------------------------------------------------------- |
| 3171 | TypeHandle DacDbiInterfaceImpl::ExpandedTypeInfoToTypeHandle(DebuggerIPCE_ExpandedTypeData * pTopLevelTypeData, |
| 3172 | ArgInfoList * pArgInfo) |
| 3173 | { |
| 3174 | WRAPPER_NO_CONTRACT; |
| 3175 | |
| 3176 | LOG((LF_CORDB, LL_INFO10000, |
| 3177 | "D::ETITTH: expanding right-side type to left-side type, ELEMENT_TYPE: %d.\n" , |
| 3178 | pData->elementType)); |
| 3179 | |
| 3180 | TypeHandle typeHandle = TypeHandle(); |
| 3181 | // depending on the top-level type, get the type handle incorporating information about any type arguments |
| 3182 | switch (pTopLevelTypeData->elementType) |
| 3183 | { |
| 3184 | case ELEMENT_TYPE_ARRAY: |
| 3185 | case ELEMENT_TYPE_SZARRAY: |
| 3186 | typeHandle = GetExactArrayTypeHandle(pTopLevelTypeData, pArgInfo); |
| 3187 | break; |
| 3188 | |
| 3189 | case ELEMENT_TYPE_PTR: |
| 3190 | case ELEMENT_TYPE_BYREF: |
| 3191 | typeHandle = GetExactPtrOrByRefTypeHandle(pTopLevelTypeData, pArgInfo); |
| 3192 | break; |
| 3193 | |
| 3194 | case ELEMENT_TYPE_CLASS: |
| 3195 | case ELEMENT_TYPE_VALUETYPE: |
| 3196 | typeHandle = GetExactClassTypeHandle(pTopLevelTypeData, pArgInfo); |
| 3197 | break; |
| 3198 | case ELEMENT_TYPE_FNPTR: |
| 3199 | typeHandle = GetExactFnPtrTypeHandle(pArgInfo); |
| 3200 | break; |
| 3201 | default: |
| 3202 | typeHandle = FindLoadedElementType(pTopLevelTypeData->elementType); |
| 3203 | break; |
| 3204 | } // end switch (pData->elementType) |
| 3205 | |
| 3206 | if (typeHandle.IsNull()) |
| 3207 | { |
| 3208 | // This may fail because there are cases when a type can be used (and so visible to the |
| 3209 | // debugger), but not yet loaded to the point of being available in the EETypeHashTable. |
| 3210 | // For example, generic value types (without explicit constructors) may not need their |
| 3211 | // exact instantiation type to be loaded in order to be used as a field of an object |
| 3212 | // created on the heap |
| 3213 | LOG((LF_CORDB, LL_INFO10000, "D::ETITTH: type isn't loaded.\n" )); |
| 3214 | ThrowHR(CORDBG_E_CLASS_NOT_LOADED); |
| 3215 | } |
| 3216 | return typeHandle; |
| 3217 | } // DacDbiInterfaceImpl::ExpandedTypeInfoToTypeHandle |
| 3218 | |
| 3219 | // ---------------------------------------------------------------------------- |
| 3220 | // DacDbi API: GetThreadStaticAddress |
| 3221 | // Get the target field address of a thread local static. |
| 3222 | // |
| 3223 | // Notes: |
| 3224 | // The address is constant and could be cached. |
| 3225 | // |
| 3226 | // This can commonly fail, in which case, it will return NULL. |
| 3227 | // ---------------------------------------------------------------------------- |
| 3228 | CORDB_ADDRESS DacDbiInterfaceImpl::GetThreadStaticAddress(VMPTR_FieldDesc vmField, |
| 3229 | VMPTR_Thread vmRuntimeThread) |
| 3230 | { |
| 3231 | DD_ENTER_MAY_THROW; |
| 3232 | |
| 3233 | Thread * pRuntimeThread = vmRuntimeThread.GetDacPtr(); |
| 3234 | PTR_FieldDesc pFieldDesc = vmField.GetDacPtr(); |
| 3235 | TADDR fieldAddress = NULL; |
| 3236 | |
| 3237 | _ASSERTE(pRuntimeThread != NULL); |
| 3238 | |
| 3239 | // Find out whether the field is thread local and get its address. |
| 3240 | if (pFieldDesc->IsThreadStatic()) |
| 3241 | { |
| 3242 | fieldAddress = pRuntimeThread->GetStaticFieldAddrNoCreate(pFieldDesc); |
| 3243 | } |
| 3244 | else |
| 3245 | { |
| 3246 | // In case we have more special cases added later, this will allow us to notice the need to |
| 3247 | // update this function. |
| 3248 | ThrowHR(E_NOTIMPL); |
| 3249 | } |
| 3250 | return fieldAddress; |
| 3251 | |
| 3252 | } // DacDbiInterfaceImpl::GetThreadStaticAddress |
| 3253 | |
| 3254 | // Get the target field address of a collectible types static. |
| 3255 | CORDB_ADDRESS DacDbiInterfaceImpl::GetCollectibleTypeStaticAddress(VMPTR_FieldDesc vmField, |
| 3256 | VMPTR_AppDomain vmAppDomain) |
| 3257 | { |
| 3258 | DD_ENTER_MAY_THROW; |
| 3259 | |
| 3260 | AppDomain * pAppDomain = vmAppDomain.GetDacPtr(); |
| 3261 | PTR_FieldDesc pFieldDesc = vmField.GetDacPtr(); |
| 3262 | _ASSERTE(pAppDomain != NULL); |
| 3263 | |
| 3264 | // |
| 3265 | // Verify this field is of the right type |
| 3266 | // |
| 3267 | if(!pFieldDesc->IsStatic() || |
| 3268 | pFieldDesc->IsSpecialStatic()) |
| 3269 | { |
| 3270 | _ASSERTE(!"BUG: Unsupported static field type for collectible types" ); |
| 3271 | } |
| 3272 | |
| 3273 | // |
| 3274 | // Check that the data is available |
| 3275 | // |
| 3276 | /* TODO: Ideally we should be checking if the class is allocated first, however |
| 3277 | we don't appear to be doing this even for non-collectible statics and |
| 3278 | we have never seen an issue. |
| 3279 | */ |
| 3280 | |
| 3281 | // |
| 3282 | // Get the address |
| 3283 | // |
| 3284 | PTR_VOID base = pFieldDesc->GetBaseInDomain(pAppDomain); |
| 3285 | if (base == PTR_NULL) |
| 3286 | { |
| 3287 | return PTR_HOST_TO_TADDR(NULL); |
| 3288 | } |
| 3289 | |
| 3290 | // |
| 3291 | // Store the result and return |
| 3292 | // |
| 3293 | PTR_VOID addr = pFieldDesc->GetStaticAddressHandle(base); |
| 3294 | return PTR_TO_TADDR(addr); |
| 3295 | |
| 3296 | } // DacDbiInterfaceImpl::GetCollectibleTypeStaticAddress |
| 3297 | |
| 3298 | // DacDbi API: GetTypeHandleParams |
| 3299 | // - gets the necessary data for a type handle, i.e. its type parameters, e.g. "String" and "List<int>" from the type handle |
| 3300 | // for "Dict<String,List<int>>", and sends it back to the right side. |
| 3301 | // - pParams is allocated and initialized by this function |
| 3302 | // - This should not fail except for OOM |
| 3303 | void DacDbiInterfaceImpl::GetTypeHandleParams(VMPTR_AppDomain vmAppDomain, |
| 3304 | VMPTR_TypeHandle vmTypeHandle, |
| 3305 | TypeParamsList * pParams) |
| 3306 | { |
| 3307 | DD_ENTER_MAY_THROW |
| 3308 | |
| 3309 | TypeHandle typeHandle = TypeHandle::FromPtr(vmTypeHandle.GetDacPtr()); |
| 3310 | LOG((LF_CORDB, LL_INFO10000, "D::GTHP: getting type parameters for 0x%08x 0x%0x8.\n" , |
| 3311 | vmAppDomain.GetDacPtr(), typeHandle.AsPtr())); |
| 3312 | |
| 3313 | |
| 3314 | // Find the class given its type handle. |
| 3315 | _ASSERTE(pParams->IsEmpty()); |
| 3316 | pParams->Alloc(typeHandle.GetNumGenericArgs()); |
| 3317 | |
| 3318 | // collect type information for each type parameter |
| 3319 | for (int i = 0; i < pParams->Count(); ++i) |
| 3320 | { |
| 3321 | VMPTR_TypeHandle thInst = VMPTR_TypeHandle::NullPtr(); |
| 3322 | thInst.SetDacTargetPtr(typeHandle.GetInstantiation()[i].AsTAddr()); |
| 3323 | |
| 3324 | TypeHandleToExpandedTypeInfo(NoValueTypeBoxing, |
| 3325 | vmAppDomain, |
| 3326 | thInst, |
| 3327 | &((*pParams)[i])); |
| 3328 | } |
| 3329 | |
| 3330 | LOG((LF_CORDB, LL_INFO10000, "D::GTHP: sending result" )); |
| 3331 | } // DacDbiInterfaceImpl::GetTypeHandleParams |
| 3332 | |
| 3333 | //----------------------------------------------------------------------------- |
| 3334 | // DacDbi API: GetSimpleType |
| 3335 | // gets the metadata token and domain file corresponding to a simple type |
| 3336 | //----------------------------------------------------------------------------- |
| 3337 | void DacDbiInterfaceImpl::GetSimpleType(VMPTR_AppDomain vmAppDomain, |
| 3338 | CorElementType simpleType, |
| 3339 | mdTypeDef *pMetadataToken, |
| 3340 | VMPTR_Module *pVmModule, |
| 3341 | VMPTR_DomainFile *pVmDomainFile) |
| 3342 | { |
| 3343 | DD_ENTER_MAY_THROW; |
| 3344 | |
| 3345 | AppDomain *pAppDomain = vmAppDomain.GetDacPtr(); |
| 3346 | |
| 3347 | // if we fail to get either a valid type handle or module, we will want to send back |
| 3348 | // a NULL domain file too, so we'll to preinitialize this here. |
| 3349 | _ASSERTE(pVmDomainFile != NULL); |
| 3350 | *pVmDomainFile = VMPTR_DomainFile::NullPtr(); |
| 3351 | // FindLoadedElementType will return NULL if the type hasn't been loaded yet. |
| 3352 | TypeHandle typeHandle = FindLoadedElementType(simpleType); |
| 3353 | |
| 3354 | if (typeHandle.IsNull()) |
| 3355 | { |
| 3356 | ThrowHR(CORDBG_E_CLASS_NOT_LOADED); |
| 3357 | } |
| 3358 | else |
| 3359 | { |
| 3360 | _ASSERTE(pMetadataToken != NULL); |
| 3361 | *pMetadataToken = typeHandle.GetCl(); |
| 3362 | |
| 3363 | Module * pModule = typeHandle.GetModule(); |
| 3364 | if (pModule == NULL) |
| 3365 | ThrowHR(CORDBG_E_TARGET_INCONSISTENT); |
| 3366 | |
| 3367 | pVmModule->SetHostPtr(pModule); |
| 3368 | |
| 3369 | if (pAppDomain) |
| 3370 | { |
| 3371 | pVmDomainFile->SetHostPtr(pModule->GetDomainFile(pAppDomain)); |
| 3372 | if (pVmDomainFile->IsNull()) |
| 3373 | ThrowHR(CORDBG_E_TARGET_INCONSISTENT); |
| 3374 | } |
| 3375 | } |
| 3376 | |
| 3377 | LOG((LF_CORDB, LL_INFO10000, "D::STI: sending result.\n" )); |
| 3378 | } // DacDbiInterfaceImpl::GetSimpleType |
| 3379 | |
| 3380 | BOOL DacDbiInterfaceImpl::IsExceptionObject(VMPTR_Object vmObject) |
| 3381 | { |
| 3382 | DD_ENTER_MAY_THROW; |
| 3383 | |
| 3384 | Object* objPtr = vmObject.GetDacPtr(); |
| 3385 | MethodTable* pMT = objPtr->GetMethodTable(); |
| 3386 | |
| 3387 | return IsExceptionObject(pMT); |
| 3388 | } |
| 3389 | |
| 3390 | BOOL DacDbiInterfaceImpl::IsExceptionObject(MethodTable* pMT) |
| 3391 | { |
| 3392 | PTR_MethodTable pExMT = g_pExceptionClass; |
| 3393 | |
| 3394 | TADDR targetMT = dac_cast<TADDR>(pMT); |
| 3395 | TADDR exceptionMT = dac_cast<TADDR>(pExMT); |
| 3396 | |
| 3397 | do |
| 3398 | { |
| 3399 | if (targetMT == exceptionMT) |
| 3400 | return TRUE; |
| 3401 | |
| 3402 | pMT = pMT->GetParentMethodTable(); |
| 3403 | targetMT = dac_cast<TADDR>(pMT); |
| 3404 | } while (pMT); |
| 3405 | |
| 3406 | return FALSE; |
| 3407 | } |
| 3408 | |
| 3409 | void DacDbiInterfaceImpl::GetStackFramesFromException(VMPTR_Object vmObject, DacDbiArrayList<DacExceptionCallStackData>& dacStackFrames) |
| 3410 | { |
| 3411 | DD_ENTER_MAY_THROW; |
| 3412 | |
| 3413 | PTR_Object objPtr = vmObject.GetDacPtr(); |
| 3414 | |
| 3415 | #ifdef _DEBUG |
| 3416 | // ensure we have an Exception object |
| 3417 | MethodTable* pMT = objPtr->GetMethodTable(); |
| 3418 | _ASSERTE(IsExceptionObject(pMT)); |
| 3419 | #endif |
| 3420 | |
| 3421 | OBJECTREF objRef = ObjectToOBJECTREF(objPtr); |
| 3422 | |
| 3423 | DebugStackTrace::GetStackFramesData stackFramesData; |
| 3424 | |
| 3425 | stackFramesData.pDomain = NULL; |
| 3426 | stackFramesData.skip = 0; |
| 3427 | stackFramesData.NumFramesRequested = 0; |
| 3428 | |
| 3429 | DebugStackTrace::GetStackFramesFromException(&objRef, &stackFramesData); |
| 3430 | |
| 3431 | INT32 dacStackFramesLength = stackFramesData.cElements; |
| 3432 | |
| 3433 | if (dacStackFramesLength > 0) |
| 3434 | { |
| 3435 | dacStackFrames.Alloc(dacStackFramesLength); |
| 3436 | |
| 3437 | for (INT32 index = 0; index < dacStackFramesLength; ++index) |
| 3438 | { |
| 3439 | DebugStackTrace::DebugStackTraceElement const& currentElement = stackFramesData.pElements[index]; |
| 3440 | DacExceptionCallStackData& currentFrame = dacStackFrames[index]; |
| 3441 | |
| 3442 | Module* pModule = currentElement.pFunc->GetModule(); |
| 3443 | BaseDomain* pBaseDomain = currentElement.pFunc->GetAssembly()->GetDomain(); |
| 3444 | |
| 3445 | AppDomain* pDomain = NULL; |
| 3446 | DomainFile* pDomainFile = NULL; |
| 3447 | |
| 3448 | pDomain = pBaseDomain->AsAppDomain(); |
| 3449 | |
| 3450 | _ASSERTE(pDomain != NULL); |
| 3451 | |
| 3452 | pDomainFile = pModule->FindDomainFile(pDomain); |
| 3453 | _ASSERTE(pDomainFile != NULL); |
| 3454 | |
| 3455 | currentFrame.vmAppDomain.SetHostPtr(pDomain); |
| 3456 | currentFrame.vmDomainFile.SetHostPtr(pDomainFile); |
| 3457 | currentFrame.ip = currentElement.ip; |
| 3458 | currentFrame.methodDef = currentElement.pFunc->GetMemberDef(); |
| 3459 | currentFrame.isLastForeignExceptionFrame = currentElement.fIsLastFrameFromForeignStackTrace; |
| 3460 | } |
| 3461 | } |
| 3462 | } |
| 3463 | |
| 3464 | #ifdef FEATURE_COMINTEROP |
| 3465 | |
| 3466 | PTR_RCW GetRcwFromVmptrObject(VMPTR_Object vmObject) |
| 3467 | { |
| 3468 | PTR_RCW pRCW = NULL; |
| 3469 | |
| 3470 | Object* objPtr = vmObject.GetDacPtr(); |
| 3471 | |
| 3472 | PTR_SyncBlock pSyncBlock = NULL; |
| 3473 | pSyncBlock = objPtr->PassiveGetSyncBlock(); |
| 3474 | if (pSyncBlock == NULL) |
| 3475 | return pRCW; |
| 3476 | |
| 3477 | PTR_InteropSyncBlockInfo pInfo = NULL; |
| 3478 | pInfo = pSyncBlock->GetInteropInfoNoCreate(); |
| 3479 | if (pInfo == NULL) |
| 3480 | return pRCW; |
| 3481 | |
| 3482 | pRCW = dac_cast<PTR_RCW>(pInfo->DacGetRawRCW()); |
| 3483 | |
| 3484 | return pRCW; |
| 3485 | } |
| 3486 | |
| 3487 | #endif |
| 3488 | |
| 3489 | BOOL DacDbiInterfaceImpl::IsRcw(VMPTR_Object vmObject) |
| 3490 | { |
| 3491 | #ifdef FEATURE_COMINTEROP |
| 3492 | DD_ENTER_MAY_THROW; |
| 3493 | return GetRcwFromVmptrObject(vmObject) != NULL; |
| 3494 | #else |
| 3495 | return FALSE; |
| 3496 | #endif // FEATURE_COMINTEROP |
| 3497 | |
| 3498 | } |
| 3499 | |
| 3500 | void DacDbiInterfaceImpl::GetRcwCachedInterfaceTypes( |
| 3501 | VMPTR_Object vmObject, |
| 3502 | VMPTR_AppDomain vmAppDomain, |
| 3503 | BOOL bIInspectableOnly, |
| 3504 | DacDbiArrayList<DebuggerIPCE_ExpandedTypeData> * pDacInterfaces) |
| 3505 | { |
| 3506 | #ifdef FEATURE_COMINTEROP |
| 3507 | |
| 3508 | DD_ENTER_MAY_THROW; |
| 3509 | |
| 3510 | Object* objPtr = vmObject.GetDacPtr(); |
| 3511 | |
| 3512 | InlineSArray<PTR_MethodTable, INTERFACE_ENTRY_CACHE_SIZE> rgMT; |
| 3513 | |
| 3514 | PTR_RCW pRCW = GetRcwFromVmptrObject(vmObject); |
| 3515 | if (pRCW != NULL) |
| 3516 | { |
| 3517 | pRCW->GetCachedInterfaceTypes(bIInspectableOnly, &rgMT); |
| 3518 | |
| 3519 | pDacInterfaces->Alloc(rgMT.GetCount()); |
| 3520 | |
| 3521 | for (COUNT_T i = 0; i < rgMT.GetCount(); ++i) |
| 3522 | { |
| 3523 | // There is the possiblity that we'll get this far with a dump and not fail, but still |
| 3524 | // not be able to get full info for a particular param. |
| 3525 | EX_TRY_ALLOW_DATATARGET_MISSING_MEMORY_WITH_HANDLER |
| 3526 | { |
| 3527 | // Fill in the struct using the current TypeHandle |
| 3528 | VMPTR_TypeHandle vmTypeHandle = VMPTR_TypeHandle::NullPtr(); |
| 3529 | TypeHandle th = TypeHandle::FromTAddr(dac_cast<TADDR>(rgMT[i])); |
| 3530 | vmTypeHandle.SetDacTargetPtr(th.AsTAddr()); |
| 3531 | TypeHandleToExpandedTypeInfo(NoValueTypeBoxing, |
| 3532 | vmAppDomain, |
| 3533 | vmTypeHandle, |
| 3534 | &((*pDacInterfaces)[i])); |
| 3535 | } |
| 3536 | EX_CATCH_ALLOW_DATATARGET_MISSING_MEMORY_WITH_HANDLER |
| 3537 | { |
| 3538 | // On failure for a particular type, default it to NULL. |
| 3539 | (*pDacInterfaces)[i].elementType = ELEMENT_TYPE_END; |
| 3540 | } |
| 3541 | EX_END_CATCH_ALLOW_DATATARGET_MISSING_MEMORY_WITH_HANDLER |
| 3542 | |
| 3543 | } |
| 3544 | |
| 3545 | } |
| 3546 | else |
| 3547 | #endif // FEATURE_COMINTEROP |
| 3548 | { |
| 3549 | pDacInterfaces->Alloc(0); |
| 3550 | } |
| 3551 | } |
| 3552 | |
| 3553 | void DacDbiInterfaceImpl::GetRcwCachedInterfacePointers( |
| 3554 | VMPTR_Object vmObject, |
| 3555 | BOOL bIInspectableOnly, |
| 3556 | DacDbiArrayList<CORDB_ADDRESS> * pDacItfPtrs) |
| 3557 | { |
| 3558 | #ifdef FEATURE_COMINTEROP |
| 3559 | |
| 3560 | DD_ENTER_MAY_THROW; |
| 3561 | |
| 3562 | Object* objPtr = vmObject.GetDacPtr(); |
| 3563 | |
| 3564 | InlineSArray<TADDR, INTERFACE_ENTRY_CACHE_SIZE> rgUnks; |
| 3565 | |
| 3566 | PTR_RCW pRCW = GetRcwFromVmptrObject(vmObject); |
| 3567 | if (pRCW != NULL) |
| 3568 | { |
| 3569 | pRCW->GetCachedInterfacePointers(bIInspectableOnly, &rgUnks); |
| 3570 | |
| 3571 | pDacItfPtrs->Alloc(rgUnks.GetCount()); |
| 3572 | |
| 3573 | for (COUNT_T i = 0; i < rgUnks.GetCount(); ++i) |
| 3574 | { |
| 3575 | (*pDacItfPtrs)[i] = (CORDB_ADDRESS)(rgUnks[i]); |
| 3576 | } |
| 3577 | |
| 3578 | } |
| 3579 | else |
| 3580 | #endif // FEATURE_COMINTEROP |
| 3581 | { |
| 3582 | pDacItfPtrs->Alloc(0); |
| 3583 | } |
| 3584 | } |
| 3585 | |
| 3586 | void DacDbiInterfaceImpl::GetCachedWinRTTypesForIIDs( |
| 3587 | VMPTR_AppDomain vmAppDomain, |
| 3588 | DacDbiArrayList<GUID> & iids, |
| 3589 | OUT DacDbiArrayList<DebuggerIPCE_ExpandedTypeData> * pTypes) |
| 3590 | { |
| 3591 | #ifdef FEATURE_COMINTEROP |
| 3592 | |
| 3593 | DD_ENTER_MAY_THROW; |
| 3594 | |
| 3595 | AppDomain * pAppDomain = vmAppDomain.GetDacPtr(); |
| 3596 | |
| 3597 | { |
| 3598 | pTypes->Alloc(iids.Count()); |
| 3599 | |
| 3600 | for (int i = 0; i < iids.Count(); ++i) |
| 3601 | { |
| 3602 | // There is the possiblity that we'll get this far with a dump and not fail, but still |
| 3603 | // not be able to get full info for a particular param. |
| 3604 | EX_TRY_ALLOW_DATATARGET_MISSING_MEMORY_WITH_HANDLER |
| 3605 | { |
| 3606 | PTR_MethodTable pMT = pAppDomain->LookupTypeByGuid(iids[i]); |
| 3607 | |
| 3608 | // Fill in the struct using the current TypeHandle |
| 3609 | VMPTR_TypeHandle vmTypeHandle = VMPTR_TypeHandle::NullPtr(); |
| 3610 | TypeHandle th = TypeHandle::FromTAddr(dac_cast<TADDR>(pMT)); |
| 3611 | vmTypeHandle.SetDacTargetPtr(th.AsTAddr()); |
| 3612 | TypeHandleToExpandedTypeInfo(NoValueTypeBoxing, |
| 3613 | vmAppDomain, |
| 3614 | vmTypeHandle, |
| 3615 | &((*pTypes)[i])); |
| 3616 | } |
| 3617 | EX_CATCH_ALLOW_DATATARGET_MISSING_MEMORY_WITH_HANDLER |
| 3618 | { |
| 3619 | // On failure for a particular type, default it to NULL. |
| 3620 | (*pTypes)[i].elementType = ELEMENT_TYPE_END; |
| 3621 | } |
| 3622 | EX_END_CATCH_ALLOW_DATATARGET_MISSING_MEMORY_WITH_HANDLER |
| 3623 | } |
| 3624 | } |
| 3625 | #else // FEATURE_COMINTEROP |
| 3626 | { |
| 3627 | pTypes->Alloc(0); |
| 3628 | } |
| 3629 | #endif // FEATURE_COMINTEROP |
| 3630 | } |
| 3631 | |
| 3632 | void DacDbiInterfaceImpl::GetCachedWinRTTypes( |
| 3633 | VMPTR_AppDomain vmAppDomain, |
| 3634 | OUT DacDbiArrayList<GUID> * pGuids, |
| 3635 | OUT DacDbiArrayList<DebuggerIPCE_ExpandedTypeData> * pTypes) |
| 3636 | { |
| 3637 | #ifdef FEATURE_COMINTEROP |
| 3638 | |
| 3639 | DD_ENTER_MAY_THROW; |
| 3640 | |
| 3641 | AppDomain * pAppDomain = vmAppDomain.GetDacPtr(); |
| 3642 | |
| 3643 | InlineSArray<PTR_MethodTable, 32> rgMT; |
| 3644 | InlineSArray<GUID, 32> rgGuid; |
| 3645 | |
| 3646 | { |
| 3647 | pAppDomain->GetCachedWinRTTypes(&rgMT, &rgGuid, 0, NULL); |
| 3648 | |
| 3649 | pTypes->Alloc(rgMT.GetCount()); |
| 3650 | pGuids->Alloc(rgGuid.GetCount()); |
| 3651 | |
| 3652 | for (COUNT_T i = 0; i < rgMT.GetCount(); ++i) |
| 3653 | { |
| 3654 | // There is the possiblity that we'll get this far with a dump and not fail, but still |
| 3655 | // not be able to get full info for a particular param. |
| 3656 | EX_TRY_ALLOW_DATATARGET_MISSING_MEMORY_WITH_HANDLER |
| 3657 | { |
| 3658 | // Fill in the struct using the current TypeHandle |
| 3659 | VMPTR_TypeHandle vmTypeHandle = VMPTR_TypeHandle::NullPtr(); |
| 3660 | TypeHandle th = TypeHandle::FromTAddr(dac_cast<TADDR>(rgMT[i])); |
| 3661 | vmTypeHandle.SetDacTargetPtr(th.AsTAddr()); |
| 3662 | TypeHandleToExpandedTypeInfo(NoValueTypeBoxing, |
| 3663 | vmAppDomain, |
| 3664 | vmTypeHandle, |
| 3665 | &((*pTypes)[i])); |
| 3666 | } |
| 3667 | EX_CATCH_ALLOW_DATATARGET_MISSING_MEMORY_WITH_HANDLER |
| 3668 | { |
| 3669 | // On failure for a particular type, default it to NULL. |
| 3670 | (*pTypes)[i].elementType = ELEMENT_TYPE_END; |
| 3671 | } |
| 3672 | EX_END_CATCH_ALLOW_DATATARGET_MISSING_MEMORY_WITH_HANDLER |
| 3673 | (*pGuids)[i] = rgGuid[i]; |
| 3674 | |
| 3675 | } |
| 3676 | |
| 3677 | } |
| 3678 | #else // FEATURE_COMINTEROP |
| 3679 | { |
| 3680 | pTypes->Alloc(0); |
| 3681 | } |
| 3682 | #endif // FEATURE_COMINTEROP |
| 3683 | } |
| 3684 | |
| 3685 | //----------------------------------------------------------------------------- |
| 3686 | // DacDbiInterfaceImpl::FindField |
| 3687 | // Finds information for a particular class field |
| 3688 | // Arguments: |
| 3689 | // input: thApprox - type handle for the type to which the field belongs |
| 3690 | // fldToken - metadata token for the field |
| 3691 | // Return Value: FieldDesc containing information for the field if found or NULL otherwise |
| 3692 | //----------------------------------------------------------------------------- |
| 3693 | PTR_FieldDesc DacDbiInterfaceImpl::FindField(TypeHandle thApprox, mdFieldDef fldToken) |
| 3694 | { |
| 3695 | EncApproxFieldDescIterator fdIterator(thApprox.GetMethodTable(), |
| 3696 | ApproxFieldDescIterator::ALL_FIELDS, |
| 3697 | FALSE); // don't fixup EnC (we can't, we're stopped) |
| 3698 | |
| 3699 | PTR_FieldDesc pCurrentFD; |
| 3700 | |
| 3701 | while ((pCurrentFD = fdIterator.Next()) != NULL) |
| 3702 | { |
| 3703 | // We're looking for a specific fieldDesc, see if we got it. |
| 3704 | if (pCurrentFD->GetMemberDef() == fldToken) |
| 3705 | { |
| 3706 | return pCurrentFD; |
| 3707 | } |
| 3708 | } |
| 3709 | |
| 3710 | // we never found it... |
| 3711 | return NULL; |
| 3712 | } // DacDbiInterfaceImpl::FindField |
| 3713 | |
| 3714 | //----------------------------------------------------------------------------- |
| 3715 | // DacDbiInterfaceImpl::GetEnCFieldDesc |
| 3716 | // Get the FieldDesc corresponding to a particular EnC field token |
| 3717 | // Arguments: |
| 3718 | // input: pEnCFieldInfo |
| 3719 | // Return Value: pointer to the FieldDesc that corresponds to the EnC field |
| 3720 | // Note: this function may throw |
| 3721 | //----------------------------------------------------------------------------- |
| 3722 | FieldDesc * DacDbiInterfaceImpl::GetEnCFieldDesc(const EnCHangingFieldInfo * pEnCFieldInfo) |
| 3723 | { |
| 3724 | FieldDesc * pFD = NULL; |
| 3725 | |
| 3726 | DomainFile * pDomainFile = pEnCFieldInfo->GetObjectTypeData().vmDomainFile.GetDacPtr(); |
| 3727 | Module * pModule = pDomainFile->GetModule(); |
| 3728 | |
| 3729 | // get the type handle for the object |
| 3730 | TypeHandle typeHandle = ClassLoader::LookupTypeDefOrRefInModule(pModule, |
| 3731 | pEnCFieldInfo->GetObjectTypeData().metadataToken); |
| 3732 | if (typeHandle == NULL) |
| 3733 | { |
| 3734 | ThrowHR(CORDBG_E_CLASS_NOT_LOADED); |
| 3735 | } |
| 3736 | // and find the field desc |
| 3737 | pFD = FindField(typeHandle, pEnCFieldInfo->GetFieldToken()); |
| 3738 | if (pFD == NULL) |
| 3739 | { |
| 3740 | // FieldDesc is not yet available, so can't get EnC field info |
| 3741 | ThrowHR(CORDBG_E_ENC_HANGING_FIELD); |
| 3742 | } |
| 3743 | return pFD; |
| 3744 | |
| 3745 | } // DacDbiInterfaceImpl::GetEnCFieldDesc |
| 3746 | |
| 3747 | //----------------------------------------------------------------------------- |
| 3748 | // DacDbiInterfaceImpl::GetPtrToEnCField |
| 3749 | // Get the address of a field added with EnC. |
| 3750 | // Arguments: |
| 3751 | // input: pFD - field desc for the added field |
| 3752 | // pEnCFieldInfo - information about the new field |
| 3753 | // Return Value: The field address if the field is available (i.e., it has been accessed) |
| 3754 | // or NULL otherwise |
| 3755 | // Note: this function may throw |
| 3756 | //----------------------------------------------------------------------------- |
| 3757 | PTR_CBYTE DacDbiInterfaceImpl::GetPtrToEnCField(FieldDesc * pFD, const EnCHangingFieldInfo * pEnCFieldInfo) |
| 3758 | { |
| 3759 | #ifndef EnC_SUPPORTED |
| 3760 | _ASSERTE(!"Trying to get the address of an EnC field where EnC is not supported! " ); |
| 3761 | return NULL; |
| 3762 | #else |
| 3763 | |
| 3764 | PTR_EditAndContinueModule pEnCModule; |
| 3765 | DomainFile * pDomainFile = pEnCFieldInfo->GetObjectTypeData().vmDomainFile.GetDacPtr(); |
| 3766 | Module * pModule = pDomainFile->GetModule(); |
| 3767 | |
| 3768 | // make sure we actually have an EditAndContinueModule |
| 3769 | _ASSERTE(pModule->IsEditAndContinueCapable()); |
| 3770 | pEnCModule = dac_cast<PTR_EditAndContinueModule>(pModule); |
| 3771 | |
| 3772 | // we should also have an EnCFieldDesc |
| 3773 | _ASSERTE(pFD->IsEnCNew()); |
| 3774 | EnCFieldDesc * pEnCFieldDesc; |
| 3775 | pEnCFieldDesc = dac_cast<PTR_EnCFieldDesc>(pFD); |
| 3776 | |
| 3777 | // If it hasn't been fixed up yet, then we can't return the pointer. |
| 3778 | if (pEnCFieldDesc->NeedsFixup()) |
| 3779 | { |
| 3780 | ThrowHR(CORDBG_E_ENC_HANGING_FIELD); |
| 3781 | } |
| 3782 | // Get a pointer to the field |
| 3783 | PTR_CBYTE pORField = NULL; |
| 3784 | |
| 3785 | PTR_Object pObject = pEnCFieldInfo->GetVmObject().GetDacPtr(); |
| 3786 | pORField = pEnCModule->ResolveField(ObjectToOBJECTREF(pObject), |
| 3787 | pEnCFieldDesc); |
| 3788 | |
| 3789 | // The field could be absent because the code hasn't accessed it yet. If so, we're not going to add it |
| 3790 | // since we can't allocate anyway. |
| 3791 | if (pORField == NULL) |
| 3792 | { |
| 3793 | ThrowHR(CORDBG_E_ENC_HANGING_FIELD); |
| 3794 | } |
| 3795 | return pORField; |
| 3796 | #endif // EnC_SUPPORTED |
| 3797 | } // DacDbiInterfaceImpl::GetPtrToEnCField |
| 3798 | |
| 3799 | //----------------------------------------------------------------------------- |
| 3800 | // DacDbiInterfaceImpl::InitFieldData |
| 3801 | // Initialize information about a field added with EnC |
| 3802 | // Arguments : |
| 3803 | // input: |
| 3804 | // pFD - provides information about whether the field is static, |
| 3805 | // the metadata token, etc. |
| 3806 | // pORField - provides the field address or offset |
| 3807 | // pEnCFieldData - provides the offset to the fields of the object |
| 3808 | // output: pFieldData - initialized in accordance with the input information |
| 3809 | //----------------------------------------------------------------------------- |
| 3810 | void DacDbiInterfaceImpl::InitFieldData(const FieldDesc * pFD, |
| 3811 | const PTR_CBYTE pORField, |
| 3812 | const EnCHangingFieldInfo * pEnCFieldData, |
| 3813 | FieldData * pFieldData) |
| 3814 | { |
| 3815 | |
| 3816 | pFieldData->ClearFields(); |
| 3817 | |
| 3818 | pFieldData->m_fFldIsStatic = (pFD->IsStatic() != 0); |
| 3819 | pFieldData->m_vmFieldDesc.SetHostPtr(pFD); |
| 3820 | pFieldData->m_fFldIsTLS = (pFD->IsThreadStatic() == TRUE); |
| 3821 | pFieldData->m_fldMetadataToken = pFD->GetMemberDef(); |
| 3822 | pFieldData->m_fFldIsRVA = (pFD->IsRVA() == TRUE); |
| 3823 | pFieldData->m_fFldIsCollectibleStatic = FALSE; |
| 3824 | pFieldData->m_fFldStorageAvailable = true; |
| 3825 | |
| 3826 | if (pFieldData->m_fFldIsStatic) |
| 3827 | { |
| 3828 | //EnC is only supported on regular static fields |
| 3829 | _ASSERTE(!pFieldData->m_fFldIsTLS); |
| 3830 | _ASSERTE(!pFieldData->m_fFldIsRVA); |
| 3831 | |
| 3832 | // pORField contains the absolute address |
| 3833 | pFieldData->SetStaticAddress(PTR_TO_TADDR(pORField)); |
| 3834 | } |
| 3835 | else |
| 3836 | { |
| 3837 | // fldInstanceOffset is computed to work correctly with GetFieldValue |
| 3838 | // which computes: |
| 3839 | // addr of pORField = object + pEnCFieldInfo->m_offsetToVars + offsetToFld |
| 3840 | pFieldData->SetInstanceOffset(PTR_TO_TADDR(pORField) - |
| 3841 | (PTR_TO_TADDR(pEnCFieldData->GetVmObject().GetDacPtr()) + |
| 3842 | pEnCFieldData->GetOffsetToVars())); |
| 3843 | } |
| 3844 | } // DacDbiInterfaceImpl::InitFieldData |
| 3845 | |
| 3846 | |
| 3847 | // ---------------------------------------------------------------------------- |
| 3848 | // DacDbi API: GetEnCHangingFieldInfo |
| 3849 | // After a class has been loaded, if a field has been added via EnC we'll have to jump through |
| 3850 | // some hoops to get at it (it hangs off the sync block or FieldDesc). |
| 3851 | // |
| 3852 | // GENERICS: TODO: this method will need to be modified if we ever support EnC on |
| 3853 | // generic classes. |
| 3854 | //----------------------------------------------------------------------------- |
| 3855 | void DacDbiInterfaceImpl::GetEnCHangingFieldInfo(const EnCHangingFieldInfo * pEnCFieldInfo, |
| 3856 | FieldData * pFieldData, |
| 3857 | BOOL * pfStatic) |
| 3858 | { |
| 3859 | DD_ENTER_MAY_THROW; |
| 3860 | |
| 3861 | LOG((LF_CORDB, LL_INFO100000, "DDI::IEnCHFI: Obj:0x%x, objType" |
| 3862 | ":0x%x, offset:0x%x\n" , pEnCFieldInfo->m_pObject, pEnCFieldInfo->m_objectTypeData.elementType, |
| 3863 | pEnCFieldInfo->m_offsetToVars)); |
| 3864 | |
| 3865 | FieldDesc * pFD = NULL; |
| 3866 | PTR_CBYTE pORField = NULL; |
| 3867 | |
| 3868 | pFD = GetEnCFieldDesc(pEnCFieldInfo); |
| 3869 | _ASSERTE(pFD->IsEnCNew()); // We shouldn't be here if it wasn't added to an |
| 3870 | // already loaded class. |
| 3871 | |
| 3872 | #ifdef EnC_SUPPORTED |
| 3873 | pORField = GetPtrToEnCField(pFD, pEnCFieldInfo); |
| 3874 | #else |
| 3875 | _ASSERTE(!"We shouldn't be here: EnC not supported" ); |
| 3876 | #endif // EnC_SUPPORTED |
| 3877 | |
| 3878 | InitFieldData(pFD, pORField, pEnCFieldInfo, pFieldData); |
| 3879 | *pfStatic = (pFD->IsStatic() != 0); |
| 3880 | |
| 3881 | } // DacDbiInterfaceImpl::GetEnCHangingFieldInfo |
| 3882 | |
| 3883 | //- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
| 3884 | |
| 3885 | |
| 3886 | void DacDbiInterfaceImpl::GetAssemblyFromDomainAssembly(VMPTR_DomainAssembly vmDomainAssembly, VMPTR_Assembly *vmAssembly) |
| 3887 | { |
| 3888 | DD_ENTER_MAY_THROW; |
| 3889 | |
| 3890 | _ASSERTE(vmAssembly != NULL); |
| 3891 | |
| 3892 | DomainAssembly * pDomainAssembly = vmDomainAssembly.GetDacPtr(); |
| 3893 | vmAssembly->SetHostPtr(pDomainAssembly->GetAssembly()); |
| 3894 | } |
| 3895 | |
| 3896 | // Determines whether the runtime security system has assigned full-trust to this assembly. |
| 3897 | BOOL DacDbiInterfaceImpl::IsAssemblyFullyTrusted(VMPTR_DomainAssembly vmDomainAssembly) |
| 3898 | { |
| 3899 | DD_ENTER_MAY_THROW; |
| 3900 | |
| 3901 | return TRUE; |
| 3902 | } |
| 3903 | |
| 3904 | // Get the full path and file name to the assembly's manifest module. |
| 3905 | BOOL DacDbiInterfaceImpl::GetAssemblyPath( |
| 3906 | VMPTR_Assembly vmAssembly, |
| 3907 | IStringHolder * pStrFilename) |
| 3908 | { |
| 3909 | DD_ENTER_MAY_THROW; |
| 3910 | |
| 3911 | // Get the manifest module for this assembly |
| 3912 | Assembly * pAssembly = vmAssembly.GetDacPtr(); |
| 3913 | Module * pManifestModule = pAssembly->GetManifestModule(); |
| 3914 | |
| 3915 | // Get the path for the manifest module. |
| 3916 | // since we no longer support Win9x, we assume all paths will be in unicode format already |
| 3917 | const WCHAR * szPath = pManifestModule->GetPath().DacGetRawUnicode(); |
| 3918 | HRESULT hrStatus = pStrFilename->AssignCopy(szPath); |
| 3919 | IfFailThrow(hrStatus); |
| 3920 | |
| 3921 | if(szPath == NULL || *szPath=='\0') |
| 3922 | { |
| 3923 | // The asembly has no (and will never have a) file name, but we didn't really fail |
| 3924 | return FALSE; |
| 3925 | } |
| 3926 | |
| 3927 | return TRUE; |
| 3928 | } |
| 3929 | |
| 3930 | // DAC/DBI API |
| 3931 | // Get a resolved type def from a type ref. The type ref may come from a module other than the |
| 3932 | // referencing module. |
| 3933 | void DacDbiInterfaceImpl::ResolveTypeReference(const TypeRefData * pTypeRefInfo, |
| 3934 | TypeRefData * pTargetRefInfo) |
| 3935 | { |
| 3936 | DD_ENTER_MAY_THROW; |
| 3937 | DomainFile * pDomainFile = pTypeRefInfo->vmDomainFile.GetDacPtr(); |
| 3938 | Module * pReferencingModule = pDomainFile->GetCurrentModule(); |
| 3939 | BOOL fSuccess = FALSE; |
| 3940 | |
| 3941 | // Resolve the type ref |
| 3942 | // g_pEEInterface->FindLoadedClass is almost what we want, but it isn't guaranteed to work if |
| 3943 | // the typeRef was originally loaded from a different assembly. Also, we need to ensure that |
| 3944 | // we can resolve even unloaded types in fully loaded assemblies, so APIs such as |
| 3945 | // LoadTypeDefOrRefThrowing aren't acceptable. |
| 3946 | |
| 3947 | Module * pTargetModule = NULL; |
| 3948 | mdTypeDef targetTypeDef = mdTokenNil; |
| 3949 | |
| 3950 | // The loader won't need to trigger a GC or throw because we've told it not to load anything |
| 3951 | ENABLE_FORBID_GC_LOADER_USE_IN_THIS_SCOPE(); |
| 3952 | |
| 3953 | fSuccess = ClassLoader::ResolveTokenToTypeDefThrowing(pReferencingModule, |
| 3954 | pTypeRefInfo->typeToken, |
| 3955 | &pTargetModule, |
| 3956 | &targetTypeDef, |
| 3957 | Loader::SafeLookup //don't load, no locks/allocations |
| 3958 | ); |
| 3959 | if (fSuccess) |
| 3960 | { |
| 3961 | _ASSERTE(pTargetModule != NULL); |
| 3962 | _ASSERTE( TypeFromToken(targetTypeDef) == mdtTypeDef ); |
| 3963 | |
| 3964 | AppDomain * pAppDomain = pDomainFile->GetAppDomain(); |
| 3965 | |
| 3966 | pTargetRefInfo->vmDomainFile.SetDacTargetPtr(PTR_HOST_TO_TADDR(pTargetModule->GetDomainFile(pAppDomain))); |
| 3967 | pTargetRefInfo->typeToken = targetTypeDef; |
| 3968 | } |
| 3969 | else |
| 3970 | { |
| 3971 | // failed - presumably because the target assembly isn't loaded |
| 3972 | ThrowHR(CORDBG_E_CLASS_NOT_LOADED); |
| 3973 | } |
| 3974 | } // DacDbiInterfaceImpl::ResolveTypeReference |
| 3975 | |
| 3976 | |
| 3977 | // Get the full path and file name to the module (if any). |
| 3978 | BOOL DacDbiInterfaceImpl::GetModulePath(VMPTR_Module vmModule, |
| 3979 | IStringHolder * pStrFilename) |
| 3980 | { |
| 3981 | DD_ENTER_MAY_THROW; |
| 3982 | |
| 3983 | Module * pModule = vmModule.GetDacPtr(); |
| 3984 | PEFile * pFile = pModule->GetFile(); |
| 3985 | if (pFile != NULL) |
| 3986 | { |
| 3987 | if( !pFile->GetPath().IsEmpty() ) |
| 3988 | { |
| 3989 | // Module has an on-disk path |
| 3990 | const WCHAR * szPath = pFile->GetPath().DacGetRawUnicode(); |
| 3991 | if (szPath == NULL) |
| 3992 | { |
| 3993 | szPath = pFile->GetModuleFileNameHint().DacGetRawUnicode(); |
| 3994 | if (szPath == NULL) |
| 3995 | { |
| 3996 | goto NoFileName; |
| 3997 | } |
| 3998 | } |
| 3999 | IfFailThrow(pStrFilename->AssignCopy(szPath)); |
| 4000 | return TRUE; |
| 4001 | } |
| 4002 | } |
| 4003 | |
| 4004 | NoFileName: |
| 4005 | // no filename |
| 4006 | IfFailThrow(pStrFilename->AssignCopy(W("" ))); |
| 4007 | return FALSE; |
| 4008 | } |
| 4009 | |
| 4010 | // Get the full path and file name to the ngen image for the module (if any). |
| 4011 | BOOL DacDbiInterfaceImpl::GetModuleNGenPath(VMPTR_Module vmModule, |
| 4012 | IStringHolder * pStrFilename) |
| 4013 | { |
| 4014 | DD_ENTER_MAY_THROW; |
| 4015 | #ifdef FEATURE_PREJIT |
| 4016 | Module * pModule = vmModule.GetDacPtr(); |
| 4017 | PEFile * pFile = pModule->GetFile(); |
| 4018 | if (pFile != NULL && pFile->HasNativeImage()) |
| 4019 | { |
| 4020 | PEImage * pImage = pFile->GetPersistentNativeImage(); |
| 4021 | if (pImage != NULL && pImage->IsFile()) |
| 4022 | { |
| 4023 | // We have an on-disk ngen image. Return the path. |
| 4024 | // since we no longer support Win9x, we assume all paths will be in unicode format already |
| 4025 | const WCHAR * szPath = pImage->GetPath().DacGetRawUnicode(); |
| 4026 | if (szPath == NULL) |
| 4027 | { |
| 4028 | szPath = pFile->GetModuleFileNameHint().DacGetRawUnicode(); |
| 4029 | if (szPath == NULL) |
| 4030 | { |
| 4031 | goto NoFileName; |
| 4032 | } |
| 4033 | } |
| 4034 | IfFailThrow(pStrFilename->AssignCopy(szPath)); |
| 4035 | return TRUE; |
| 4036 | } |
| 4037 | } |
| 4038 | NoFileName: |
| 4039 | #endif // FEATURE_PREJIT |
| 4040 | |
| 4041 | // no ngen filename |
| 4042 | IfFailThrow(pStrFilename->AssignCopy(W("" ))); |
| 4043 | return FALSE; |
| 4044 | } |
| 4045 | |
| 4046 | // Implementation of IDacDbiInterface::GetModuleSimpleName |
| 4047 | void DacDbiInterfaceImpl::GetModuleSimpleName(VMPTR_Module vmModule, IStringHolder * pStrFilename) |
| 4048 | { |
| 4049 | DD_ENTER_MAY_THROW; |
| 4050 | |
| 4051 | _ASSERTE(pStrFilename != NULL); |
| 4052 | |
| 4053 | Module * pModule = vmModule.GetDacPtr(); |
| 4054 | LPCUTF8 szNameUtf8 = pModule->GetSimpleName(); |
| 4055 | |
| 4056 | SString convert(SString::Utf8, szNameUtf8); |
| 4057 | IfFailThrow(pStrFilename->AssignCopy(convert.GetUnicode())); |
| 4058 | } |
| 4059 | |
| 4060 | // Helper to intialize a TargetBuffer from a MemoryRange |
| 4061 | // |
| 4062 | // Arguments: |
| 4063 | // memoryRange - memory range. |
| 4064 | // pTargetBuffer - required out parameter to be initialized to value of memory range. |
| 4065 | // |
| 4066 | // Notes: |
| 4067 | // MemoryRange and TargetBuffer both conceptually describe a single contiguous buffer of memory in the |
| 4068 | // target. MemoryRange is a VM structure, which can't bleed across the DacDbi boundary. TargetBuffer is |
| 4069 | // a DacDbi structure, which can cross the DacDbi boundary. |
| 4070 | void InitTargetBufferFromMemoryRange(const MemoryRange memoryRange, TargetBuffer * pTargetBuffer) |
| 4071 | { |
| 4072 | SUPPORTS_DAC; |
| 4073 | |
| 4074 | _ASSERTE(pTargetBuffer != NULL); |
| 4075 | PTR_CVOID p = memoryRange.StartAddress(); |
| 4076 | CORDB_ADDRESS addr = PTR_TO_CORDB_ADDRESS(PTR_TO_TADDR(p)); |
| 4077 | |
| 4078 | _ASSERTE(memoryRange.Size() <= 0xffffffff); |
| 4079 | pTargetBuffer->Init(addr, (ULONG)memoryRange.Size()); |
| 4080 | } |
| 4081 | |
| 4082 | // Helper to intialize a TargetBuffer (host representation of target) from an SBuffer (target) |
| 4083 | // |
| 4084 | // Arguments: |
| 4085 | // pBuffer - target pointer to a SBuffer structure. If pBuffer is NULL, then target buffer will be empty. |
| 4086 | // pTargetBuffer - required out pointer to hold buffer description. |
| 4087 | // |
| 4088 | // Notes: |
| 4089 | // PTR_SBuffer and TargetBuffer are both semantically equivalent structures. They both are a pointer and length |
| 4090 | // describing a buffer in the target address space. (SBufer also has ownership semantics, but for DAC's |
| 4091 | // read-only nature, that doesn't matter). |
| 4092 | // Neither of these will actually copy the target buffer into the host without explicit action. |
| 4093 | // The important difference is that TargetBuffer is a host datastructure and so easier to manipulate. |
| 4094 | // |
| 4095 | void InitTargetBufferFromTargetSBuffer(PTR_SBuffer pBuffer, TargetBuffer * pTargetBuffer) |
| 4096 | { |
| 4097 | SUPPORTS_DAC; |
| 4098 | |
| 4099 | _ASSERTE(pTargetBuffer != NULL); |
| 4100 | |
| 4101 | SBuffer * pBufferHost = pBuffer; |
| 4102 | if (pBufferHost == NULL) |
| 4103 | { |
| 4104 | pTargetBuffer->Clear(); |
| 4105 | return; |
| 4106 | } |
| 4107 | |
| 4108 | MemoryRange m = pBufferHost->DacGetRawBuffer(); |
| 4109 | InitTargetBufferFromMemoryRange(m, pTargetBuffer); |
| 4110 | } |
| 4111 | |
| 4112 | |
| 4113 | // Implementation of IDacDbiInterface::GetMetadata |
| 4114 | void DacDbiInterfaceImpl::GetMetadata(VMPTR_Module vmModule, TargetBuffer * pTargetBuffer) |
| 4115 | { |
| 4116 | DD_ENTER_MAY_THROW; |
| 4117 | |
| 4118 | pTargetBuffer->Clear(); |
| 4119 | |
| 4120 | Module * pModule = vmModule.GetDacPtr(); |
| 4121 | |
| 4122 | // Target should only be asking about modules that are visible to debugger. |
| 4123 | _ASSERTE(pModule->IsVisibleToDebugger()); |
| 4124 | |
| 4125 | // For dynamic modules, metadata is stored as an eagerly-serialized buffer hanging off the Reflection Module. |
| 4126 | if (pModule->IsReflection()) |
| 4127 | { |
| 4128 | // Here is the fetch. |
| 4129 | ReflectionModule * pReflectionModule = pModule->GetReflectionModule(); |
| 4130 | InitTargetBufferFromTargetSBuffer(pReflectionModule->GetDynamicMetadataBuffer(), pTargetBuffer); |
| 4131 | } |
| 4132 | else |
| 4133 | { |
| 4134 | PEFile * pFile = pModule->GetFile(); |
| 4135 | |
| 4136 | // For non-dynamic modules, metadata is in the pe-image. |
| 4137 | COUNT_T size; |
| 4138 | CORDB_ADDRESS address = PTR_TO_CORDB_ADDRESS(dac_cast<TADDR>(pFile->GetLoadedMetadata(&size))); |
| 4139 | |
| 4140 | pTargetBuffer->Init(address, (ULONG) size); |
| 4141 | } |
| 4142 | |
| 4143 | if (pTargetBuffer->IsEmpty()) |
| 4144 | { |
| 4145 | // We never expect this to happen in a well-behaved scenario. But just in case. |
| 4146 | ThrowHR(CORDBG_E_MISSING_METADATA); |
| 4147 | } |
| 4148 | |
| 4149 | } |
| 4150 | |
| 4151 | // Implementation of IDacDbiInterface::GetSymbolsBuffer |
| 4152 | void DacDbiInterfaceImpl::GetSymbolsBuffer(VMPTR_Module vmModule, TargetBuffer * pTargetBuffer, SymbolFormat * pSymbolFormat) |
| 4153 | { |
| 4154 | DD_ENTER_MAY_THROW; |
| 4155 | |
| 4156 | pTargetBuffer->Clear(); |
| 4157 | *pSymbolFormat = kSymbolFormatNone; |
| 4158 | |
| 4159 | Module * pModule = vmModule.GetDacPtr(); |
| 4160 | |
| 4161 | // Target should only be asking about modules that are visible to debugger. |
| 4162 | _ASSERTE(pModule->IsVisibleToDebugger()); |
| 4163 | |
| 4164 | PTR_CGrowableStream pStream = pModule->GetInMemorySymbolStream(); |
| 4165 | if (pStream == NULL) |
| 4166 | { |
| 4167 | // Common case is to not have PDBs in-memory. |
| 4168 | return; |
| 4169 | } |
| 4170 | |
| 4171 | const MemoryRange m = pStream->GetRawBuffer(); |
| 4172 | if (m.Size() == 0) |
| 4173 | { |
| 4174 | // We may be prepared to store symbols (in some particular format) but none are there yet. |
| 4175 | // We treat this the same as not having any symbols above. |
| 4176 | return; |
| 4177 | } |
| 4178 | InitTargetBufferFromMemoryRange(m, pTargetBuffer); |
| 4179 | |
| 4180 | // Set the symbol format appropriately |
| 4181 | ESymbolFormat symFormat = pModule->GetInMemorySymbolStreamFormat(); |
| 4182 | switch (symFormat) |
| 4183 | { |
| 4184 | case eSymbolFormatPDB: |
| 4185 | *pSymbolFormat = kSymbolFormatPDB; |
| 4186 | break; |
| 4187 | |
| 4188 | case eSymbolFormatILDB: |
| 4189 | *pSymbolFormat = kSymbolFormatILDB; |
| 4190 | break; |
| 4191 | |
| 4192 | default: |
| 4193 | CONSISTENCY_CHECK_MSGF(false, "Unexpected symbol format" ); |
| 4194 | pTargetBuffer->Clear(); |
| 4195 | ThrowHR(E_UNEXPECTED); |
| 4196 | } |
| 4197 | } |
| 4198 | |
| 4199 | |
| 4200 | |
| 4201 | void DacDbiInterfaceImpl::GetModuleForDomainFile(VMPTR_DomainFile vmDomainFile, OUT VMPTR_Module * pModule) |
| 4202 | { |
| 4203 | DD_ENTER_MAY_THROW; |
| 4204 | |
| 4205 | _ASSERTE(pModule != NULL); |
| 4206 | |
| 4207 | DomainFile * pDomainFile = vmDomainFile.GetDacPtr(); |
| 4208 | pModule->SetHostPtr(pDomainFile->GetModule()); |
| 4209 | } |
| 4210 | |
| 4211 | |
| 4212 | // Implement IDacDbiInterface::GetDomainFileData |
| 4213 | void DacDbiInterfaceImpl::GetDomainFileData(VMPTR_DomainFile vmDomainFile, DomainFileInfo * pData) |
| 4214 | { |
| 4215 | DD_ENTER_MAY_THROW; |
| 4216 | |
| 4217 | _ASSERTE(pData != NULL); |
| 4218 | |
| 4219 | ZeroMemory(pData, sizeof(*pData)); |
| 4220 | |
| 4221 | DomainFile * pDomainFile = vmDomainFile.GetDacPtr(); |
| 4222 | AppDomain * pAppDomain = pDomainFile->GetAppDomain(); |
| 4223 | |
| 4224 | // @dbgtodo - is this efficient DAC usage (perhaps a dac-cop rule)? Are we round-tripping the pointer? |
| 4225 | // Should we have a GetDomainAssembly() that returns a PTR_DomainAssembly? |
| 4226 | pData->vmDomainAssembly.SetHostPtr(pDomainFile->GetDomainAssembly()); |
| 4227 | pData->vmAppDomain.SetHostPtr(pAppDomain); |
| 4228 | } |
| 4229 | |
| 4230 | // Implement IDacDbiInterface::GetModuleData |
| 4231 | void DacDbiInterfaceImpl::GetModuleData(VMPTR_Module vmModule, ModuleInfo * pData) |
| 4232 | { |
| 4233 | DD_ENTER_MAY_THROW; |
| 4234 | |
| 4235 | _ASSERTE(pData != NULL); |
| 4236 | |
| 4237 | ZeroMemory(pData, sizeof(*pData)); |
| 4238 | |
| 4239 | Module * pModule = vmModule.GetDacPtr(); |
| 4240 | PEFile * pFile = pModule->GetFile(); |
| 4241 | |
| 4242 | pData->vmPEFile.SetHostPtr(pFile); |
| 4243 | pData->vmAssembly.SetHostPtr(pModule->GetAssembly()); |
| 4244 | |
| 4245 | // Is it dynamic? |
| 4246 | BOOL fIsDynamic = pModule->IsReflection(); |
| 4247 | pData->fIsDynamic = fIsDynamic; |
| 4248 | |
| 4249 | // Get PE BaseAddress and Size |
| 4250 | // For dynamic modules, these are 0. Else, |
| 4251 | pData->pPEBaseAddress = NULL; |
| 4252 | pData->nPESize = 0; |
| 4253 | |
| 4254 | if (!fIsDynamic) |
| 4255 | { |
| 4256 | COUNT_T size = 0; |
| 4257 | pData->pPEBaseAddress = PTR_TO_TADDR(pFile->GetDebuggerContents(&size)); |
| 4258 | pData->nPESize = (ULONG) size; |
| 4259 | } |
| 4260 | |
| 4261 | // In-memory is determined by whether the module has a filename. |
| 4262 | pData->fInMemory = FALSE; |
| 4263 | if (pFile != NULL) |
| 4264 | { |
| 4265 | pData->fInMemory = pFile->GetPath().IsEmpty(); |
| 4266 | } |
| 4267 | } |
| 4268 | |
| 4269 | |
| 4270 | // Enumerate all AppDomains in the process. |
| 4271 | void DacDbiInterfaceImpl::EnumerateAppDomains( |
| 4272 | FP_APPDOMAIN_ENUMERATION_CALLBACK fpCallback, |
| 4273 | void * pUserData) |
| 4274 | { |
| 4275 | DD_ENTER_MAY_THROW; |
| 4276 | |
| 4277 | _ASSERTE(fpCallback != NULL); |
| 4278 | |
| 4279 | // Only include active appdomains in the enumeration. |
| 4280 | // This includes appdomains sent before the AD load event, |
| 4281 | // and does not include appdomains that are in shutdown after the AD exit event. |
| 4282 | const BOOL bOnlyActive = TRUE; |
| 4283 | AppDomainIterator iterator(bOnlyActive); |
| 4284 | |
| 4285 | while(iterator.Next()) |
| 4286 | { |
| 4287 | // It's critical that we don't yield appdomains after the unload event has been sent. |
| 4288 | // See code:IDacDbiInterface#Enumeration for details. |
| 4289 | AppDomain * pAppDomain = iterator.GetDomain(); |
| 4290 | |
| 4291 | VMPTR_AppDomain vmAppDomain = VMPTR_AppDomain::NullPtr(); |
| 4292 | vmAppDomain.SetHostPtr(pAppDomain); |
| 4293 | |
| 4294 | fpCallback(vmAppDomain, pUserData); |
| 4295 | } |
| 4296 | } |
| 4297 | |
| 4298 | // Enumerate all Assemblies in an appdomain. |
| 4299 | void DacDbiInterfaceImpl::EnumerateAssembliesInAppDomain( |
| 4300 | VMPTR_AppDomain vmAppDomain, |
| 4301 | FP_ASSEMBLY_ENUMERATION_CALLBACK fpCallback, |
| 4302 | void * pUserData |
| 4303 | ) |
| 4304 | { |
| 4305 | DD_ENTER_MAY_THROW; |
| 4306 | |
| 4307 | _ASSERTE(fpCallback != NULL); |
| 4308 | |
| 4309 | // Iterate through all Assemblies (including shared) in the appdomain. |
| 4310 | AppDomain::AssemblyIterator iterator; |
| 4311 | |
| 4312 | // If the containing appdomain is unloading, then don't enumerate any assemblies |
| 4313 | // in the domain. This is to enforce rules at code:IDacDbiInterface#Enumeration. |
| 4314 | // See comment in code:DacDbiInterfaceImpl::EnumerateModulesInAssembly code for details. |
| 4315 | AppDomain * pAppDomain = vmAppDomain.GetDacPtr(); |
| 4316 | |
| 4317 | // Pass the magical flags to the loader enumerator to get all Execution-only assemblies. |
| 4318 | iterator = pAppDomain->IterateAssembliesEx((AssemblyIterationFlags)(kIncludeLoading | kIncludeLoaded | kIncludeExecution)); |
| 4319 | CollectibleAssemblyHolder<DomainAssembly *> pDomainAssembly; |
| 4320 | |
| 4321 | while (iterator.Next(pDomainAssembly.This())) |
| 4322 | { |
| 4323 | if (!pDomainAssembly->IsVisibleToDebugger()) |
| 4324 | { |
| 4325 | continue; |
| 4326 | } |
| 4327 | |
| 4328 | VMPTR_DomainAssembly vmDomainAssembly = VMPTR_DomainAssembly::NullPtr(); |
| 4329 | vmDomainAssembly.SetHostPtr(pDomainAssembly); |
| 4330 | |
| 4331 | fpCallback(vmDomainAssembly, pUserData); |
| 4332 | } |
| 4333 | } |
| 4334 | |
| 4335 | // Implementation of IDacDbiInterface::EnumerateModulesInAssembly, |
| 4336 | // Enumerate all the modules (non-resource) in an assembly. |
| 4337 | void DacDbiInterfaceImpl::EnumerateModulesInAssembly( |
| 4338 | VMPTR_DomainAssembly vmAssembly, |
| 4339 | FP_MODULE_ENUMERATION_CALLBACK fpCallback, |
| 4340 | void * pUserData) |
| 4341 | { |
| 4342 | DD_ENTER_MAY_THROW; |
| 4343 | |
| 4344 | _ASSERTE(fpCallback != NULL); |
| 4345 | |
| 4346 | DomainAssembly * pDomainAssembly = vmAssembly.GetDacPtr(); |
| 4347 | |
| 4348 | // If the domain is not yet fully-loaded, don't advertise it yet. |
| 4349 | // It's not ready to be inspected. |
| 4350 | DomainModuleIterator iterator = pDomainAssembly->IterateModules(kModIterIncludeLoaded); |
| 4351 | |
| 4352 | while (iterator.Next()) |
| 4353 | { |
| 4354 | DomainFile * pDomainFile = iterator.GetDomainFile(); |
| 4355 | |
| 4356 | // Debugger isn't notified of Resource / Inspection-only modules. |
| 4357 | if (!pDomainFile->GetModule()->IsVisibleToDebugger()) |
| 4358 | { |
| 4359 | continue; |
| 4360 | } |
| 4361 | |
| 4362 | _ASSERTE(pDomainFile->IsLoaded()); |
| 4363 | |
| 4364 | VMPTR_DomainFile vmDomainFile = VMPTR_DomainFile::NullPtr(); |
| 4365 | vmDomainFile.SetHostPtr(pDomainFile); |
| 4366 | |
| 4367 | fpCallback(vmDomainFile, pUserData); |
| 4368 | } |
| 4369 | } |
| 4370 | |
| 4371 | // Implementation of IDacDbiInterface::ResolveAssembly |
| 4372 | // Returns NULL if not found. |
| 4373 | VMPTR_DomainAssembly DacDbiInterfaceImpl::ResolveAssembly( |
| 4374 | VMPTR_DomainFile vmScope, |
| 4375 | mdToken tkAssemblyRef) |
| 4376 | { |
| 4377 | DD_ENTER_MAY_THROW; |
| 4378 | |
| 4379 | |
| 4380 | DomainFile * pDomainFile = vmScope.GetDacPtr(); |
| 4381 | AppDomain * pAppDomain = pDomainFile->GetAppDomain(); |
| 4382 | Module * pModule = pDomainFile->GetCurrentModule(); |
| 4383 | |
| 4384 | VMPTR_DomainAssembly vmDomainAssembly = VMPTR_DomainAssembly::NullPtr(); |
| 4385 | |
| 4386 | Assembly * pAssembly = pModule->LookupAssemblyRef(tkAssemblyRef); |
| 4387 | if (pAssembly != NULL) |
| 4388 | { |
| 4389 | DomainAssembly * pDomainAssembly = pAssembly->FindDomainAssembly(pAppDomain); |
| 4390 | vmDomainAssembly.SetHostPtr(pDomainAssembly); |
| 4391 | } |
| 4392 | return vmDomainAssembly; |
| 4393 | } |
| 4394 | |
| 4395 | // When stopped at an event, request a synchronization. |
| 4396 | // See DacDbiInterface.h for full comments |
| 4397 | void DacDbiInterfaceImpl::RequestSyncAtEvent() |
| 4398 | { |
| 4399 | DD_ENTER_MAY_THROW; |
| 4400 | |
| 4401 | // To request a sync, we just need to set g_pDebugger->m_RSRequestedSync high. |
| 4402 | if (g_pDebugger != NULL) |
| 4403 | { |
| 4404 | TADDR addr = PTR_HOST_MEMBER_TADDR(Debugger, g_pDebugger, m_RSRequestedSync); |
| 4405 | |
| 4406 | BOOL fTrue = TRUE; |
| 4407 | SafeWriteStructOrThrow<BOOL>(addr, &fTrue); |
| 4408 | |
| 4409 | } |
| 4410 | } |
| 4411 | |
| 4412 | HRESULT DacDbiInterfaceImpl::SetSendExceptionsOutsideOfJMC(BOOL sendExceptionsOutsideOfJMC) |
| 4413 | { |
| 4414 | DD_ENTER_MAY_THROW |
| 4415 | |
| 4416 | HRESULT hr = S_OK; |
| 4417 | EX_TRY |
| 4418 | { |
| 4419 | if (g_pDebugger != NULL) |
| 4420 | { |
| 4421 | TADDR addr = PTR_HOST_MEMBER_TADDR(Debugger, g_pDebugger, m_sendExceptionsOutsideOfJMC); |
| 4422 | SafeWriteStructOrThrow<BOOL>(addr, &sendExceptionsOutsideOfJMC); |
| 4423 | } |
| 4424 | } |
| 4425 | EX_CATCH_HRESULT(hr); |
| 4426 | return hr; |
| 4427 | } |
| 4428 | |
| 4429 | // Notify the debuggee that a debugger attach is pending. |
| 4430 | // See DacDbiInterface.h for full comments |
| 4431 | void DacDbiInterfaceImpl::MarkDebuggerAttachPending() |
| 4432 | { |
| 4433 | DD_ENTER_MAY_THROW; |
| 4434 | |
| 4435 | if (g_pDebugger != NULL) |
| 4436 | { |
| 4437 | DWORD flags = g_CORDebuggerControlFlags; |
| 4438 | flags |= DBCF_PENDING_ATTACH; |
| 4439 | |
| 4440 | // Uses special DAC writing. PTR_TO_TADDR doesn't fetch for globals. |
| 4441 | // @dbgtodo dac support - the exact mechanism of writing to the target needs to be flushed out, |
| 4442 | // especially as it relates to DAC cop and enforcing undac-ized writes. |
| 4443 | g_CORDebuggerControlFlags = flags; |
| 4444 | } |
| 4445 | else |
| 4446 | { |
| 4447 | // Caller should have guaranteed that the LS is loaded. |
| 4448 | // If we're detaching, then don't throw because we don't care. |
| 4449 | ThrowHR(CORDBG_E_NOTREADY); |
| 4450 | } |
| 4451 | } |
| 4452 | |
| 4453 | |
| 4454 | // Notify the debuggee that a debugger is attached. |
| 4455 | // See DacDbiInterface.h for full comments |
| 4456 | void DacDbiInterfaceImpl::MarkDebuggerAttached(BOOL fAttached) |
| 4457 | { |
| 4458 | DD_ENTER_MAY_THROW; |
| 4459 | |
| 4460 | if (g_pDebugger != NULL) |
| 4461 | { |
| 4462 | // To be attached, we need to set the following |
| 4463 | // g_CORDebuggerControlFlags |= DBCF_ATTACHED; |
| 4464 | // To detach (if !fAttached), we need to do the opposite. |
| 4465 | |
| 4466 | DWORD flags = g_CORDebuggerControlFlags; |
| 4467 | if (fAttached) |
| 4468 | { |
| 4469 | flags |= DBCF_ATTACHED; |
| 4470 | } |
| 4471 | else |
| 4472 | { |
| 4473 | flags &= ~ (DBCF_ATTACHED | DBCF_PENDING_ATTACH); |
| 4474 | } |
| 4475 | |
| 4476 | // Uses special DAC writing. PTR_TO_TADDR doesn't fetch for globals. |
| 4477 | // @dbgtodo dac support - the exact mechanism of writing to the target needs to be flushed out, |
| 4478 | // especially as it relates to DAC cop and enforcing undac-ized writes. |
| 4479 | g_CORDebuggerControlFlags = flags; |
| 4480 | } |
| 4481 | else if (fAttached) |
| 4482 | { |
| 4483 | // Caller should have guaranteed that the LS is loaded. |
| 4484 | // If we're detaching, then don't throw because we don't care. |
| 4485 | ThrowHR(CORDBG_E_NOTREADY); |
| 4486 | } |
| 4487 | |
| 4488 | } |
| 4489 | |
| 4490 | |
| 4491 | |
| 4492 | // Enumerate all threads in the process. |
| 4493 | void DacDbiInterfaceImpl::EnumerateThreads(FP_THREAD_ENUMERATION_CALLBACK fpCallback, void * pUserData) |
| 4494 | { |
| 4495 | DD_ENTER_MAY_THROW; |
| 4496 | |
| 4497 | if (ThreadStore::s_pThreadStore == NULL) |
| 4498 | { |
| 4499 | return; |
| 4500 | } |
| 4501 | |
| 4502 | Thread *pThread = ThreadStore::GetThreadList(NULL); |
| 4503 | |
| 4504 | while (pThread != NULL) |
| 4505 | { |
| 4506 | |
| 4507 | // Don't want to publish threads via enumeration before they're ready to be inspected. |
| 4508 | // Use the same window that we used in whidbey. |
| 4509 | Thread::ThreadState threadState = pThread->GetSnapshotState(); |
| 4510 | if (!((IsThreadMarkedDeadWorker(pThread)) || (threadState & Thread::TS_Unstarted))) |
| 4511 | { |
| 4512 | VMPTR_Thread vmThread = VMPTR_Thread::NullPtr(); |
| 4513 | vmThread.SetHostPtr(pThread); |
| 4514 | fpCallback(vmThread, pUserData); |
| 4515 | } |
| 4516 | |
| 4517 | pThread = ThreadStore::GetThreadList(pThread); |
| 4518 | } |
| 4519 | } |
| 4520 | |
| 4521 | // public implementation of IsThreadMarkedDead |
| 4522 | bool DacDbiInterfaceImpl::IsThreadMarkedDead(VMPTR_Thread vmThread) |
| 4523 | { |
| 4524 | DD_ENTER_MAY_THROW; |
| 4525 | Thread * pThread = vmThread.GetDacPtr(); |
| 4526 | return IsThreadMarkedDeadWorker(pThread); |
| 4527 | } |
| 4528 | |
| 4529 | // Private worker for IsThreadMarkedDead |
| 4530 | // |
| 4531 | // Arguments: |
| 4532 | // pThread - valid thread to check if dead |
| 4533 | // |
| 4534 | // Returns: |
| 4535 | // true iff thread is marked as dead. |
| 4536 | // |
| 4537 | // Notes: |
| 4538 | // This is an internal method that skips public validation. |
| 4539 | // See code:IDacDbiInterface::#IsThreadMarkedDead for purpose. |
| 4540 | bool DacDbiInterfaceImpl::IsThreadMarkedDeadWorker(Thread * pThread) |
| 4541 | { |
| 4542 | _ASSERTE(pThread != NULL); |
| 4543 | |
| 4544 | Thread::ThreadState threadState = pThread->GetSnapshotState(); |
| 4545 | |
| 4546 | bool fIsDead = (threadState & Thread::TS_Dead) != 0; |
| 4547 | |
| 4548 | return fIsDead; |
| 4549 | } |
| 4550 | |
| 4551 | |
| 4552 | // Return the handle of the specified thread. |
| 4553 | HANDLE DacDbiInterfaceImpl::GetThreadHandle(VMPTR_Thread vmThread) |
| 4554 | { |
| 4555 | DD_ENTER_MAY_THROW; |
| 4556 | |
| 4557 | Thread * pThread = vmThread.GetDacPtr(); |
| 4558 | return pThread->GetThreadHandle(); |
| 4559 | } |
| 4560 | |
| 4561 | // Return the object handle for the managed Thread object corresponding to the specified thread. |
| 4562 | VMPTR_OBJECTHANDLE DacDbiInterfaceImpl::GetThreadObject(VMPTR_Thread vmThread) |
| 4563 | { |
| 4564 | DD_ENTER_MAY_THROW; |
| 4565 | |
| 4566 | Thread * pThread = vmThread.GetDacPtr(); |
| 4567 | Thread::ThreadState threadState = pThread->GetSnapshotState(); |
| 4568 | |
| 4569 | if ( (threadState & Thread::TS_Dead) || |
| 4570 | (threadState & Thread::TS_Unstarted) || |
| 4571 | (threadState & Thread::TS_Detached) || |
| 4572 | g_fProcessDetach ) |
| 4573 | { |
| 4574 | ThrowHR(CORDBG_E_BAD_THREAD_STATE); |
| 4575 | } |
| 4576 | else |
| 4577 | { |
| 4578 | VMPTR_OBJECTHANDLE vmObjHandle = VMPTR_OBJECTHANDLE::NullPtr(); |
| 4579 | vmObjHandle.SetDacTargetPtr(pThread->GetExposedObjectHandleForDebugger()); |
| 4580 | return vmObjHandle; |
| 4581 | } |
| 4582 | } |
| 4583 | |
| 4584 | // Set and reset the TSNC_DebuggerUserSuspend bit on the state of the specified thread |
| 4585 | // according to the CorDebugThreadState. |
| 4586 | void DacDbiInterfaceImpl::SetDebugState(VMPTR_Thread vmThread, |
| 4587 | CorDebugThreadState debugState) |
| 4588 | { |
| 4589 | DD_ENTER_MAY_THROW; |
| 4590 | |
| 4591 | Thread * pThread = vmThread.GetDacPtr(); |
| 4592 | |
| 4593 | // update the field on the host copy |
| 4594 | if (debugState == THREAD_SUSPEND) |
| 4595 | { |
| 4596 | pThread->SetThreadStateNC(Thread::TSNC_DebuggerUserSuspend); |
| 4597 | } |
| 4598 | else if (debugState == THREAD_RUN) |
| 4599 | { |
| 4600 | pThread->ResetThreadStateNC(Thread::TSNC_DebuggerUserSuspend); |
| 4601 | } |
| 4602 | else |
| 4603 | { |
| 4604 | ThrowHR(E_INVALIDARG); |
| 4605 | } |
| 4606 | |
| 4607 | // update the field on the target copy |
| 4608 | TADDR taThreadState = PTR_HOST_MEMBER_TADDR(Thread, pThread, m_StateNC); |
| 4609 | SafeWriteStructOrThrow<Thread::ThreadStateNoConcurrency>(taThreadState, &(pThread->m_StateNC)); |
| 4610 | } |
| 4611 | |
| 4612 | // Gets the debugger unhandled exception threadstate flag |
| 4613 | BOOL DacDbiInterfaceImpl::HasUnhandledException(VMPTR_Thread vmThread) |
| 4614 | { |
| 4615 | DD_ENTER_MAY_THROW; |
| 4616 | |
| 4617 | Thread * pThread = vmThread.GetDacPtr(); |
| 4618 | |
| 4619 | // some managed exceptions don't have any underlying |
| 4620 | // native exception processing going on. They just consist |
| 4621 | // of a managed throwable that we have stashed away followed |
| 4622 | // by a debugger notification and some form of failfast. |
| 4623 | // Everything that comes through EEFatalError is in this category |
| 4624 | if(pThread->IsLastThrownObjectUnhandled()) |
| 4625 | { |
| 4626 | return TRUE; |
| 4627 | } |
| 4628 | |
| 4629 | // most managed exceptions are just a throwable bound to a |
| 4630 | // native exception. In that case this handle will be non-null |
| 4631 | OBJECTHANDLE ohException = pThread->GetThrowableAsHandle(); |
| 4632 | if (ohException != NULL) |
| 4633 | { |
| 4634 | // during the UEF we set the unhandled bit, if it is set the exception |
| 4635 | // was unhandled |
| 4636 | // however if the exception has intercept info then we consider it handled |
| 4637 | // again |
| 4638 | return pThread->GetExceptionState()->GetFlags()->IsUnhandled() && |
| 4639 | !(pThread->GetExceptionState()->GetFlags()->DebuggerInterceptInfo()); |
| 4640 | } |
| 4641 | |
| 4642 | return FALSE; |
| 4643 | } |
| 4644 | |
| 4645 | // Return the user state of the specified thread. |
| 4646 | CorDebugUserState DacDbiInterfaceImpl::GetUserState(VMPTR_Thread vmThread) |
| 4647 | { |
| 4648 | DD_ENTER_MAY_THROW; |
| 4649 | |
| 4650 | UINT result = 0; |
| 4651 | result = GetPartialUserState(vmThread); |
| 4652 | |
| 4653 | if (!IsThreadAtGCSafePlace(vmThread)) |
| 4654 | { |
| 4655 | result |= USER_UNSAFE_POINT; |
| 4656 | } |
| 4657 | |
| 4658 | return (CorDebugUserState)result; |
| 4659 | } |
| 4660 | |
| 4661 | |
| 4662 | // Return the connection ID of the specified thread. |
| 4663 | CONNID DacDbiInterfaceImpl::GetConnectionID(VMPTR_Thread vmThread) |
| 4664 | { |
| 4665 | DD_ENTER_MAY_THROW; |
| 4666 | |
| 4667 | return INVALID_CONNECTION_ID; |
| 4668 | } |
| 4669 | |
| 4670 | // Return the task ID of the specified thread. |
| 4671 | TASKID DacDbiInterfaceImpl::GetTaskID(VMPTR_Thread vmThread) |
| 4672 | { |
| 4673 | DD_ENTER_MAY_THROW; |
| 4674 | |
| 4675 | return INVALID_TASK_ID; |
| 4676 | } |
| 4677 | |
| 4678 | // Return the OS thread ID of the specified thread |
| 4679 | DWORD DacDbiInterfaceImpl::TryGetVolatileOSThreadID(VMPTR_Thread vmThread) |
| 4680 | { |
| 4681 | DD_ENTER_MAY_THROW; |
| 4682 | |
| 4683 | Thread * pThread = vmThread.GetDacPtr(); |
| 4684 | _ASSERTE(pThread != NULL); |
| 4685 | |
| 4686 | DWORD dwThreadId = pThread->GetOSThreadIdForDebugger(); |
| 4687 | |
| 4688 | // If the thread ID is a the magical cookie value, then this is really |
| 4689 | // a switched out thread and doesn't have an OS tid. In that case, the |
| 4690 | // DD contract is to return 0 (a much more sane value) |
| 4691 | const DWORD dwSwitchedOutThreadId = SWITCHED_OUT_FIBER_OSID; |
| 4692 | if (dwThreadId == dwSwitchedOutThreadId) |
| 4693 | { |
| 4694 | return 0; |
| 4695 | } |
| 4696 | return dwThreadId; |
| 4697 | } |
| 4698 | |
| 4699 | // Return the unique thread ID of the specified thread. |
| 4700 | DWORD DacDbiInterfaceImpl::GetUniqueThreadID(VMPTR_Thread vmThread) |
| 4701 | { |
| 4702 | DD_ENTER_MAY_THROW; |
| 4703 | |
| 4704 | Thread * pThread = vmThread.GetDacPtr(); |
| 4705 | _ASSERTE(pThread != NULL); |
| 4706 | |
| 4707 | return pThread->GetOSThreadId(); |
| 4708 | } |
| 4709 | |
| 4710 | // Return the object handle to the managed Exception object of the current exception |
| 4711 | // on the specified thread. The return value could be NULL if there is no current exception. |
| 4712 | VMPTR_OBJECTHANDLE DacDbiInterfaceImpl::GetCurrentException(VMPTR_Thread vmThread) |
| 4713 | { |
| 4714 | DD_ENTER_MAY_THROW; |
| 4715 | |
| 4716 | Thread * pThread = vmThread.GetDacPtr(); |
| 4717 | |
| 4718 | // OBJECTHANDLEs are really just TADDRs. |
| 4719 | OBJECTHANDLE ohException = pThread->GetThrowableAsHandle(); // ohException can be NULL |
| 4720 | |
| 4721 | if (ohException == NULL) |
| 4722 | { |
| 4723 | if (pThread->IsLastThrownObjectUnhandled()) |
| 4724 | { |
| 4725 | ohException = pThread->LastThrownObjectHandle(); |
| 4726 | } |
| 4727 | } |
| 4728 | |
| 4729 | VMPTR_OBJECTHANDLE vmObjHandle; |
| 4730 | vmObjHandle.SetDacTargetPtr(ohException); |
| 4731 | return vmObjHandle; |
| 4732 | } |
| 4733 | |
| 4734 | // Return the object handle to the managed object for a given CCW pointer. |
| 4735 | VMPTR_OBJECTHANDLE DacDbiInterfaceImpl::GetObjectForCCW(CORDB_ADDRESS ccwPtr) |
| 4736 | { |
| 4737 | DD_ENTER_MAY_THROW; |
| 4738 | |
| 4739 | OBJECTHANDLE ohCCW = NULL; |
| 4740 | |
| 4741 | #ifdef FEATURE_COMINTEROP |
| 4742 | ComCallWrapper *pCCW = DACGetCCWFromAddress(ccwPtr); |
| 4743 | if (pCCW) |
| 4744 | { |
| 4745 | ohCCW = pCCW->GetObjectHandle(); |
| 4746 | } |
| 4747 | #endif |
| 4748 | |
| 4749 | VMPTR_OBJECTHANDLE vmObjHandle; |
| 4750 | vmObjHandle.SetDacTargetPtr(ohCCW); |
| 4751 | return vmObjHandle; |
| 4752 | } |
| 4753 | |
| 4754 | // Return the object handle to the managed CustomNotification object of the current notification |
| 4755 | // on the specified thread. The return value could be NULL if there is no current notification. |
| 4756 | // Arguments: |
| 4757 | // input: vmThread - the thread on which the notification occurred |
| 4758 | // Return value: object handle for the current notification (if any) on the thread. This will return non-null |
| 4759 | // if and only if we are currently inside a CustomNotification Callback (or a dump was generated while in this |
| 4760 | // callback) |
| 4761 | // |
| 4762 | VMPTR_OBJECTHANDLE DacDbiInterfaceImpl::GetCurrentCustomDebuggerNotification(VMPTR_Thread vmThread) |
| 4763 | { |
| 4764 | DD_ENTER_MAY_THROW; |
| 4765 | |
| 4766 | Thread * pThread = vmThread.GetDacPtr(); |
| 4767 | |
| 4768 | // OBJECTHANDLEs are really just TADDRs. |
| 4769 | OBJECTHANDLE ohNotification = pThread->GetThreadCurrNotification(); // ohNotification can be NULL |
| 4770 | |
| 4771 | VMPTR_OBJECTHANDLE vmObjHandle; |
| 4772 | vmObjHandle.SetDacTargetPtr(ohNotification); |
| 4773 | return vmObjHandle; |
| 4774 | } |
| 4775 | |
| 4776 | // Return the current appdomain the specified thread is in. |
| 4777 | VMPTR_AppDomain DacDbiInterfaceImpl::GetCurrentAppDomain(VMPTR_Thread vmThread) |
| 4778 | { |
| 4779 | DD_ENTER_MAY_THROW; |
| 4780 | |
| 4781 | Thread * pThread = vmThread.GetDacPtr(); |
| 4782 | AppDomain * pAppDomain = pThread->GetDomain(); |
| 4783 | |
| 4784 | if (pAppDomain == NULL) |
| 4785 | { |
| 4786 | ThrowHR(E_FAIL); |
| 4787 | } |
| 4788 | |
| 4789 | VMPTR_AppDomain vmAppDomain = VMPTR_AppDomain::NullPtr(); |
| 4790 | vmAppDomain.SetDacTargetPtr(PTR_HOST_TO_TADDR(pAppDomain)); |
| 4791 | return vmAppDomain; |
| 4792 | } |
| 4793 | |
| 4794 | |
| 4795 | // Returns a bitfield reflecting the managed debugging state at the time of |
| 4796 | // the jit attach. |
| 4797 | CLR_DEBUGGING_PROCESS_FLAGS DacDbiInterfaceImpl::GetAttachStateFlags() |
| 4798 | { |
| 4799 | DD_ENTER_MAY_THROW; |
| 4800 | |
| 4801 | CLR_DEBUGGING_PROCESS_FLAGS res = (CLR_DEBUGGING_PROCESS_FLAGS)0; |
| 4802 | if (g_pDebugger != NULL) |
| 4803 | { |
| 4804 | res = g_pDebugger->GetAttachStateFlags(); |
| 4805 | } |
| 4806 | else |
| 4807 | { |
| 4808 | // When launching the process under a managed debugger we |
| 4809 | // request these flags when CLR is loaded (before g_pDebugger |
| 4810 | // had a chance to be initialized). In these cases simply |
| 4811 | // return 0 |
| 4812 | } |
| 4813 | return res; |
| 4814 | } |
| 4815 | |
| 4816 | //--------------------------------------------------------------------------------------- |
| 4817 | // Helper to get the address of the 2nd-chance hijack function Or throw |
| 4818 | // |
| 4819 | // Returns: |
| 4820 | // Non-null Target Address of hijack function. |
| 4821 | TADDR DacDbiInterfaceImpl::GetHijackAddress() |
| 4822 | { |
| 4823 | TADDR addr = NULL; |
| 4824 | if (g_pDebugger != NULL) |
| 4825 | { |
| 4826 | // Get the start address of the redirect function for unhandled exceptions. |
| 4827 | addr = dac_cast<TADDR>(g_pDebugger->m_rgHijackFunction[Debugger::kUnhandledException].StartAddress()); |
| 4828 | } |
| 4829 | if (addr == NULL) |
| 4830 | { |
| 4831 | ThrowHR(CORDBG_E_NOTREADY); |
| 4832 | } |
| 4833 | return addr; |
| 4834 | } |
| 4835 | |
| 4836 | //--------------------------------------------------------------------------------------- |
| 4837 | // Helper to determine whether a control PC is in any native stub which the runtime knows how to unwind. |
| 4838 | // |
| 4839 | // Arguments: |
| 4840 | // taControlPC - control PC to be checked |
| 4841 | // |
| 4842 | // Returns: |
| 4843 | // Returns true if the control PC is in a runtime unwindable stub. |
| 4844 | // |
| 4845 | // Notes: |
| 4846 | // Currently this function only recognizes the ExceptionHijack() stub, |
| 4847 | // which is used for unhandled exceptions. |
| 4848 | // |
| 4849 | |
| 4850 | bool DacDbiInterfaceImpl::IsRuntimeUnwindableStub(PCODE targetControlPC) |
| 4851 | { |
| 4852 | |
| 4853 | TADDR controlPC = PCODEToPINSTR(targetControlPC); |
| 4854 | // we call this function a lot while walking the stack and the values here will never change |
| 4855 | // Getting the g_pDebugger and each entry in the m_rgHijackFunction is potentially ~7 DAC |
| 4856 | // accesses per frame. Caching the data into a single local array is much faster. This optimization |
| 4857 | // recovered a few % of DAC stackwalking time |
| 4858 | if(!m_isCachedHijackFunctionValid) |
| 4859 | { |
| 4860 | Debugger* pDebugger = g_pDebugger; |
| 4861 | if ((pDebugger == NULL) || (pDebugger->m_rgHijackFunction == NULL)) |
| 4862 | { |
| 4863 | // The in-process debugging infrastructure hasn't been fully initialized, which means that we could |
| 4864 | // NOT have hijacked anything yet. |
| 4865 | return false; |
| 4866 | } |
| 4867 | |
| 4868 | // PERF NOTE: if needed this array copy could probably be made more efficient |
| 4869 | // hitting the DAC only once for a single memory block, or even better |
| 4870 | // put the array inline in the Debugger object so that we only do 1 DAC |
| 4871 | // access for this entire thing |
| 4872 | for (int i = 0; i < Debugger::kMaxHijackFunctions; i++) |
| 4873 | { |
| 4874 | InitTargetBufferFromMemoryRange(pDebugger->m_rgHijackFunction[i], &m_pCachedHijackFunction[i] ); |
| 4875 | } |
| 4876 | m_isCachedHijackFunctionValid = TRUE; |
| 4877 | } |
| 4878 | |
| 4879 | // Check whether the control PC is in any of the thread redirection functions. |
| 4880 | for (int i = 0; i < Debugger::kMaxHijackFunctions; i++) |
| 4881 | { |
| 4882 | CORDB_ADDRESS start = m_pCachedHijackFunction[i].pAddress; |
| 4883 | CORDB_ADDRESS end = start + m_pCachedHijackFunction[i].cbSize; |
| 4884 | if ((start <= controlPC) && (controlPC < end)) |
| 4885 | { |
| 4886 | return true; |
| 4887 | } |
| 4888 | } |
| 4889 | return false; |
| 4890 | } |
| 4891 | |
| 4892 | //--------------------------------------------------------------------------------------- |
| 4893 | // Align a stack pointer for the given architecture |
| 4894 | // |
| 4895 | // Arguments: |
| 4896 | // pEsp - in/out: pointer to stack pointer. |
| 4897 | // |
| 4898 | void DacDbiInterfaceImpl::AlignStackPointer(CORDB_ADDRESS * pEsp) |
| 4899 | { |
| 4900 | SUPPORTS_DAC; |
| 4901 | |
| 4902 | // Nop on x86. |
| 4903 | #if defined(_WIN64) |
| 4904 | // on 64-bit, stack pointer must be 16-byte aligned. |
| 4905 | // Stacks grown down, so round down to nearest 0xF bits. |
| 4906 | *pEsp &= ~((CORDB_ADDRESS) 0xF); |
| 4907 | #endif |
| 4908 | } |
| 4909 | |
| 4910 | //--------------------------------------------------------------------------------------- |
| 4911 | // Emulate pushing something on a thread's stack. |
| 4912 | // |
| 4913 | // Arguments: |
| 4914 | // pEsp - in/out: pointer to stack pointer to push object at. On output, |
| 4915 | // updated stack pointer. |
| 4916 | // pData - object to push on the stack. |
| 4917 | // fAlignStack - whether to align the stack pointer before and after the push. |
| 4918 | // Callers which specify FALSE must be very careful and know exactly |
| 4919 | // what they are doing. |
| 4920 | // |
| 4921 | // Return: |
| 4922 | // address of pushed object. Throws on error. |
| 4923 | template <class T> |
| 4924 | CORDB_ADDRESS DacDbiInterfaceImpl::PushHelper(CORDB_ADDRESS * pEsp, |
| 4925 | const T * pData, |
| 4926 | BOOL fAlignStack) |
| 4927 | { |
| 4928 | SUPPORTS_DAC; |
| 4929 | |
| 4930 | if (fAlignStack == TRUE) |
| 4931 | { |
| 4932 | AlignStackPointer(pEsp); |
| 4933 | } |
| 4934 | *pEsp -= sizeof(T); |
| 4935 | if (fAlignStack == TRUE) |
| 4936 | { |
| 4937 | AlignStackPointer(pEsp); |
| 4938 | } |
| 4939 | SafeWriteStructOrThrow(*pEsp, pData); |
| 4940 | return *pEsp; |
| 4941 | } |
| 4942 | |
| 4943 | //--------------------------------------------------------------------------------------- |
| 4944 | // Write an EXCEPTION_RECORD structure to the remote target at the specified address while taking |
| 4945 | // into account the number of exception parameters. On 64-bit OS and on the WOW64, the OS always |
| 4946 | // pushes the entire EXCEPTION_RECORD onto the stack. However, on native x86 OS, the OS only pushes |
| 4947 | // enough of the EXCEPTION_RECORD to cover the specified number of exception parameters. Thus we |
| 4948 | // need to be extra careful when we overwrite an EXCEPTION_RECORD on the stack. |
| 4949 | // |
| 4950 | // Arguments: |
| 4951 | // pRemotePtr - address of the EXCEPTION_RECORD in the remote target |
| 4952 | // pExcepRecord - EXCEPTION_RECORD to be written |
| 4953 | // |
| 4954 | // Notes: |
| 4955 | // This function is only used by the code which hijacks a therad when there's an unhandled exception. |
| 4956 | // It only works when we are actually debugging a live process, not a dump. |
| 4957 | // |
| 4958 | |
| 4959 | void DacDbiInterfaceImpl::WriteExceptionRecordHelper(CORDB_ADDRESS pRemotePtr, |
| 4960 | const EXCEPTION_RECORD * pExcepRecord) |
| 4961 | { |
| 4962 | // Calculate the correct size to push onto the stack. |
| 4963 | ULONG32 cbSize = offsetof(EXCEPTION_RECORD, ExceptionInformation); |
| 4964 | cbSize += pExcepRecord->NumberParameters * sizeof(pExcepRecord->ExceptionInformation[0]); |
| 4965 | |
| 4966 | // Use the data target to write to the remote target. Here we are assuming that we are debugging a |
| 4967 | // live process, since this function is only called by the hijacking code for unhandled exceptions. |
| 4968 | HRESULT hr = m_pMutableTarget->WriteVirtual(pRemotePtr, |
| 4969 | reinterpret_cast<const BYTE *>(pExcepRecord), |
| 4970 | cbSize); |
| 4971 | |
| 4972 | if (FAILED(hr)) |
| 4973 | { |
| 4974 | ThrowHR(hr); |
| 4975 | } |
| 4976 | } |
| 4977 | |
| 4978 | // Implement IDacDbiInterface::Hijack |
| 4979 | void DacDbiInterfaceImpl::Hijack( |
| 4980 | VMPTR_Thread vmThread, |
| 4981 | ULONG32 dwThreadId, |
| 4982 | const EXCEPTION_RECORD * pRecord, |
| 4983 | T_CONTEXT * pOriginalContext, |
| 4984 | ULONG32 cbSizeContext, |
| 4985 | EHijackReason::EHijackReason reason, |
| 4986 | void * pUserData, |
| 4987 | CORDB_ADDRESS * pRemoteContextAddr) |
| 4988 | { |
| 4989 | DD_ENTER_MAY_THROW; |
| 4990 | |
| 4991 | // |
| 4992 | // Validate parameters |
| 4993 | // |
| 4994 | |
| 4995 | // pRecord may be NULL if we're not hijacking at an exception |
| 4996 | // pOriginalContext may be NULL if caller doesn't want a copy of the context. |
| 4997 | // (The hijack function already has the context) |
| 4998 | _ASSERTE((pOriginalContext == NULL) == (cbSizeContext == 0)); |
| 4999 | _ASSERTE(EHijackReason::IsValid(reason)); |
| 5000 | #ifdef PLATFORM_UNIX |
| 5001 | _ASSERTE(!"Not supported on this platform" ); |
| 5002 | #endif |
| 5003 | |
| 5004 | // |
| 5005 | // If we hijack a thread which might not be managed we can set vmThread = NULL |
| 5006 | // The only side-effect in this case is that we can't reuse CONTEXT and |
| 5007 | // EXCEPTION_RECORD space on the stack by an already underway in-process exception |
| 5008 | // filter. If you depend on those being used and updated you must provide the vmThread |
| 5009 | // |
| 5010 | Thread* pThread = NULL; |
| 5011 | if(!vmThread.IsNull()) |
| 5012 | { |
| 5013 | pThread = vmThread.GetDacPtr(); |
| 5014 | _ASSERTE(pThread->GetOSThreadIdForDebugger() == dwThreadId); |
| 5015 | } |
| 5016 | |
| 5017 | TADDR pfnHijackFunction = GetHijackAddress(); |
| 5018 | |
| 5019 | // |
| 5020 | // Setup context for hijack |
| 5021 | // |
| 5022 | T_CONTEXT ctx; |
| 5023 | HRESULT hr = m_pTarget->GetThreadContext( |
| 5024 | dwThreadId, |
| 5025 | CONTEXT_FULL, |
| 5026 | sizeof(ctx), |
| 5027 | (BYTE*) &ctx); |
| 5028 | IfFailThrow(hr); |
| 5029 | |
| 5030 | // If caller requested, copy back the original context that we're hijacking from. |
| 5031 | if (pOriginalContext != NULL) |
| 5032 | { |
| 5033 | // Since Dac + DBI are tightly coupled, context sizes should be the same. |
| 5034 | if (cbSizeContext != sizeof(T_CONTEXT)) |
| 5035 | { |
| 5036 | ThrowHR(E_INVALIDARG); |
| 5037 | } |
| 5038 | |
| 5039 | memcpy(pOriginalContext, &ctx, cbSizeContext); |
| 5040 | } |
| 5041 | |
| 5042 | // Make sure the trace flag isn't on. This can happen if we were single stepping the thread when we faulted. This |
| 5043 | // will ensure that we don't try to single step through the OS's exception logic, which greatly confuses our second |
| 5044 | // chance hijack logic. This also mimics what the OS does for us automaically when single stepping in process, i.e., |
| 5045 | // when you turn the trace flag on in-process and go, if there is a fault, the fault is reported and the trace flag |
| 5046 | // is automatically turned off. |
| 5047 | // |
| 5048 | // The debugger could always re-enable the single-step flag if it wants to. |
| 5049 | #ifndef _TARGET_ARM_ |
| 5050 | UnsetSSFlag(reinterpret_cast<DT_CONTEXT *>(&ctx)); |
| 5051 | #endif |
| 5052 | |
| 5053 | // Push pointers |
| 5054 | void* espContext = NULL; |
| 5055 | void* espRecord = NULL; |
| 5056 | const void* pData = pUserData; |
| 5057 | |
| 5058 | // @dbgtodo cross-plat - this is not cross plat |
| 5059 | CORDB_ADDRESS esp = GetSP(&ctx); |
| 5060 | |
| 5061 | // |
| 5062 | // Find out where the OS exception dispatcher has pushed the EXCEPTION_RECORD and CONTEXT. The ExInfo and |
| 5063 | // ExceptionTracker have pointers to these data structures, but when we get the unhandled exception |
| 5064 | // notification, the OS exception dispatcher is no longer on the stack, so these pointers are no longer |
| 5065 | // valid. We need to either update these pointers in the ExInfo/ExcepionTracker, or reuse the stack |
| 5066 | // space used by the OS exception dispatcher. We are using the latter approach here. |
| 5067 | // |
| 5068 | |
| 5069 | CORDB_ADDRESS espOSContext = NULL; |
| 5070 | CORDB_ADDRESS espOSRecord = NULL; |
| 5071 | if (pThread != NULL && pThread->IsExceptionInProgress()) |
| 5072 | { |
| 5073 | espOSContext = (CORDB_ADDRESS)PTR_TO_TADDR(pThread->GetExceptionState()->GetContextRecord()); |
| 5074 | espOSRecord = (CORDB_ADDRESS)PTR_TO_TADDR(pThread->GetExceptionState()->GetExceptionRecord()); |
| 5075 | |
| 5076 | // The managed exception may not be related to the unhandled exception for which we are trying to |
| 5077 | // hijack. An example would be when a thread hits a managed exception, VS tries to do func eval on |
| 5078 | // the thread, but the func eval causes an unhandled exception (e.g. AV in mscorwks.dll). In this |
| 5079 | // case, the pointers stored on the ExInfo/ExceptionTracker are closer to the root than the current |
| 5080 | // SP of the thread. The check below makes sure we don't reuse the pointers in this case. |
| 5081 | if (espOSContext < esp) |
| 5082 | { |
| 5083 | SafeWriteStructOrThrow(espOSContext, &ctx); |
| 5084 | espContext = CORDB_ADDRESS_TO_PTR(espOSContext); |
| 5085 | |
| 5086 | // We should have an EXCEPTION_RECORD if we are hijacked at an exception. |
| 5087 | // We need to be careful when we overwrite the exception record. On x86, the OS doesn't |
| 5088 | // always push the full record onto the stack, and so we can't blindly use sizeof(EXCEPTION_RECORD). |
| 5089 | // Instead, we have to look at the number of exception parameters and calculate the size. |
| 5090 | _ASSERTE(pRecord != NULL); |
| 5091 | WriteExceptionRecordHelper(espOSRecord, pRecord); |
| 5092 | espRecord = CORDB_ADDRESS_TO_PTR(espOSRecord); |
| 5093 | |
| 5094 | esp = min(espOSContext, espOSRecord); |
| 5095 | } |
| 5096 | } |
| 5097 | |
| 5098 | // If we haven't reused the pointers, then push everything at the leaf of the stack. |
| 5099 | if (espContext == NULL) |
| 5100 | { |
| 5101 | _ASSERTE(espRecord == NULL); |
| 5102 | |
| 5103 | // Push on full Context and ExceptionRecord structures. We'll then push pointers to these, |
| 5104 | // and those pointers will serve as the actual args to the function. |
| 5105 | espContext = CORDB_ADDRESS_TO_PTR(PushHelper(&esp, &ctx, TRUE)); |
| 5106 | |
| 5107 | // If caller didn't pass an exception-record, then we're not being hijacked at an exception. |
| 5108 | // We'll just pass NULL for the exception-record to the Hijack function. |
| 5109 | if (pRecord != NULL) |
| 5110 | { |
| 5111 | espRecord = CORDB_ADDRESS_TO_PTR(PushHelper(&esp, pRecord, TRUE)); |
| 5112 | } |
| 5113 | } |
| 5114 | |
| 5115 | if(pRemoteContextAddr != NULL) |
| 5116 | { |
| 5117 | *pRemoteContextAddr = PTR_TO_CORDB_ADDRESS(espContext); |
| 5118 | } |
| 5119 | |
| 5120 | // |
| 5121 | // Push args onto the stack to be able to call the hijack function |
| 5122 | // |
| 5123 | |
| 5124 | // Prototype of hijack is: |
| 5125 | // void __stdcall ExceptionHijackWorker(CONTEXT * pContext, EXCEPTION_RECORD * pRecord, EHijackReason, void * pData) |
| 5126 | // Set up everything so that the hijack stub can just do a "call" instruction. |
| 5127 | // |
| 5128 | // Regarding stack overflow: We could do an explicit check against the thread's stack base limit. |
| 5129 | // However, we don't need an explicit overflow check because if the stack does overflow, |
| 5130 | // the hijack will just hit a regular stack-overflow exception. |
| 5131 | #if defined(_TARGET_X86_) // TARGET |
| 5132 | // X86 calling convention is to push args on the stack in reverse order. |
| 5133 | // If we fail here, the stack is written, but esp hasn't been committed yet so it shouldn't matter. |
| 5134 | PushHelper(&esp, &pData, TRUE); |
| 5135 | PushHelper(&esp, &reason, TRUE); |
| 5136 | PushHelper(&esp, &espRecord, TRUE); |
| 5137 | PushHelper(&esp, &espContext, TRUE); |
| 5138 | #elif defined (_TARGET_AMD64_) // TARGET |
| 5139 | // AMD64 calling convention is to place first 4 parameters in: rcx, rdx, r8 and r9 |
| 5140 | ctx.Rcx = (DWORD64) espContext; |
| 5141 | ctx.Rdx = (DWORD64) espRecord; |
| 5142 | ctx.R8 = (DWORD64) reason; |
| 5143 | ctx.R9 = (DWORD64) pData; |
| 5144 | |
| 5145 | // Caller must allocate stack space to spill for args. |
| 5146 | // Push the arguments onto the outgoing argument homes. |
| 5147 | // Make sure we push pointer-sized values to keep the stack aligned. |
| 5148 | PushHelper(&esp, reinterpret_cast<SIZE_T *>(&(ctx.R9)), FALSE); |
| 5149 | PushHelper(&esp, reinterpret_cast<SIZE_T *>(&(ctx.R8)), FALSE); |
| 5150 | PushHelper(&esp, reinterpret_cast<SIZE_T *>(&(ctx.Rdx)), FALSE); |
| 5151 | PushHelper(&esp, reinterpret_cast<SIZE_T *>(&(ctx.Rcx)), FALSE); |
| 5152 | #elif defined(_TARGET_ARM_) |
| 5153 | ctx.R0 = (DWORD)espContext; |
| 5154 | ctx.R1 = (DWORD)espRecord; |
| 5155 | ctx.R2 = (DWORD)reason; |
| 5156 | ctx.R3 = (DWORD)pData; |
| 5157 | #elif defined(_TARGET_ARM64_) |
| 5158 | ctx.X0 = (DWORD64)espContext; |
| 5159 | ctx.X1 = (DWORD64)espRecord; |
| 5160 | ctx.X2 = (DWORD64)reason; |
| 5161 | ctx.X3 = (DWORD64)pData; |
| 5162 | #else |
| 5163 | PORTABILITY_ASSERT("CordbThread::HijackForUnhandledException is not implemented on this platform." ); |
| 5164 | #endif |
| 5165 | SetSP(&ctx, CORDB_ADDRESS_TO_TADDR(esp)); |
| 5166 | |
| 5167 | // @dbgtodo cross-plat - not cross-platform safe |
| 5168 | SetIP(&ctx, pfnHijackFunction); |
| 5169 | |
| 5170 | // |
| 5171 | // Commit the context. |
| 5172 | // |
| 5173 | hr = m_pMutableTarget->SetThreadContext(dwThreadId, sizeof(ctx), reinterpret_cast<BYTE*> (&ctx)); |
| 5174 | IfFailThrow(hr); |
| 5175 | } |
| 5176 | |
| 5177 | // Return the filter CONTEXT on the LS. |
| 5178 | VMPTR_CONTEXT DacDbiInterfaceImpl::GetManagedStoppedContext(VMPTR_Thread vmThread) |
| 5179 | { |
| 5180 | DD_ENTER_MAY_THROW; |
| 5181 | |
| 5182 | VMPTR_CONTEXT vmContext = VMPTR_CONTEXT::NullPtr(); |
| 5183 | |
| 5184 | Thread * pThread = vmThread.GetDacPtr(); |
| 5185 | if (pThread->GetInteropDebuggingHijacked()) |
| 5186 | { |
| 5187 | _ASSERTE(!ISREDIRECTEDTHREAD(pThread)); |
| 5188 | vmContext = VMPTR_CONTEXT::NullPtr(); |
| 5189 | } |
| 5190 | else |
| 5191 | { |
| 5192 | DT_CONTEXT * pLSContext = reinterpret_cast<DT_CONTEXT *>(pThread->GetFilterContext()); |
| 5193 | if (pLSContext != NULL) |
| 5194 | { |
| 5195 | _ASSERTE(!ISREDIRECTEDTHREAD(pThread)); |
| 5196 | vmContext.SetHostPtr(pLSContext); |
| 5197 | } |
| 5198 | else if (ISREDIRECTEDTHREAD(pThread)) |
| 5199 | { |
| 5200 | pLSContext = reinterpret_cast<DT_CONTEXT *>(GETREDIRECTEDCONTEXT(pThread)); |
| 5201 | _ASSERTE(pLSContext != NULL); |
| 5202 | |
| 5203 | if (pLSContext != NULL) |
| 5204 | { |
| 5205 | vmContext.SetHostPtr(pLSContext); |
| 5206 | } |
| 5207 | } |
| 5208 | } |
| 5209 | |
| 5210 | return vmContext; |
| 5211 | } |
| 5212 | |
| 5213 | // Return a TargetBuffer for the raw vararg signature. |
| 5214 | TargetBuffer DacDbiInterfaceImpl::GetVarArgSig(CORDB_ADDRESS VASigCookieAddr, |
| 5215 | CORDB_ADDRESS * pArgBase) |
| 5216 | { |
| 5217 | DD_ENTER_MAY_THROW; |
| 5218 | |
| 5219 | _ASSERTE(pArgBase != NULL); |
| 5220 | *pArgBase = NULL; |
| 5221 | |
| 5222 | // First, read the VASigCookie pointer. |
| 5223 | TADDR taVASigCookie = NULL; |
| 5224 | SafeReadStructOrThrow(VASigCookieAddr, &taVASigCookie); |
| 5225 | |
| 5226 | // Now create a DAC copy of VASigCookie. |
| 5227 | VASigCookie * pVACookie = PTR_VASigCookie(taVASigCookie); |
| 5228 | |
| 5229 | // Figure out where the first argument is. |
| 5230 | #if defined(_TARGET_X86_) // (STACK_GROWS_DOWN_ON_ARGS_WALK) |
| 5231 | *pArgBase = VASigCookieAddr + pVACookie->sizeOfArgs; |
| 5232 | #else // !_TARGET_X86_ (STACK_GROWS_UP_ON_ARGS_WALK) |
| 5233 | *pArgBase = VASigCookieAddr + sizeof(VASigCookie *); |
| 5234 | #endif // !_TARGET_X86_ (STACK_GROWS_UP_ON_ARGS_WALK) |
| 5235 | |
| 5236 | return TargetBuffer(PTR_TO_CORDB_ADDRESS(pVACookie->signature.GetRawSig()), |
| 5237 | pVACookie->signature.GetRawSigLen()); |
| 5238 | } |
| 5239 | |
| 5240 | // returns TRUE if the type requires 8-byte alignment |
| 5241 | BOOL DacDbiInterfaceImpl::RequiresAlign8(VMPTR_TypeHandle thExact) |
| 5242 | { |
| 5243 | DD_ENTER_MAY_THROW; |
| 5244 | |
| 5245 | #ifdef FEATURE_64BIT_ALIGNMENT |
| 5246 | TypeHandle th = TypeHandle::FromPtr(thExact.GetDacPtr()); |
| 5247 | PTR_MethodTable mt = th.AsMethodTable(); |
| 5248 | |
| 5249 | return mt->RequiresAlign8(); |
| 5250 | #else |
| 5251 | ThrowHR(E_NOTIMPL); |
| 5252 | #endif |
| 5253 | } |
| 5254 | |
| 5255 | // Resolve the raw generics token to the real generics type token. The resolution is based on the |
| 5256 | // given index. |
| 5257 | GENERICS_TYPE_TOKEN DacDbiInterfaceImpl::ResolveExactGenericArgsToken(DWORD dwExactGenericArgsTokenIndex, |
| 5258 | GENERICS_TYPE_TOKEN rawToken) |
| 5259 | { |
| 5260 | DD_ENTER_MAY_THROW; |
| 5261 | |
| 5262 | if (dwExactGenericArgsTokenIndex == 0) |
| 5263 | { |
| 5264 | // In this case the real generics type token is the MethodTable of the "this" object. |
| 5265 | // Note that we want the target address here. |
| 5266 | |
| 5267 | // Incoming rawToken is actually a PTR_Object for the 'this' pointer. |
| 5268 | // Need to do some casting to convert GENERICS_TYPE_TOKEN --> PTR_Object |
| 5269 | TADDR addrObjThis = CORDB_ADDRESS_TO_TADDR(rawToken); |
| 5270 | PTR_Object pObjThis = dac_cast<PTR_Object>(addrObjThis); |
| 5271 | |
| 5272 | |
| 5273 | PTR_MethodTable pMT = pObjThis->GetMethodTable(); |
| 5274 | |
| 5275 | // Now package up the PTR_MethodTable back into a GENERICS_TYPE_TOKEN |
| 5276 | TADDR addrMT = dac_cast<TADDR>(pMT); |
| 5277 | GENERICS_TYPE_TOKEN realToken = (GENERICS_TYPE_TOKEN) addrMT; |
| 5278 | return realToken; |
| 5279 | } |
| 5280 | else if (dwExactGenericArgsTokenIndex == (DWORD)ICorDebugInfo::TYPECTXT_ILNUM) |
| 5281 | { |
| 5282 | // rawToken is already initialized correctly. Nothing to do here. |
| 5283 | return rawToken; |
| 5284 | } |
| 5285 | |
| 5286 | // The index of the generics type token should not be anything else. |
| 5287 | // This is indeed an error condition, and so we throw here. |
| 5288 | _ASSERTE(!"DDII::REGAT - Unexpected generics type token index." ); |
| 5289 | ThrowHR(CORDBG_E_TARGET_INCONSISTENT); |
| 5290 | } |
| 5291 | |
| 5292 | // Check if the given method is an IL stub or an LCD method. |
| 5293 | IDacDbiInterface::DynamicMethodType DacDbiInterfaceImpl::IsILStubOrLCGMethod(VMPTR_MethodDesc vmMethodDesc) |
| 5294 | { |
| 5295 | DD_ENTER_MAY_THROW; |
| 5296 | |
| 5297 | MethodDesc * pMD = vmMethodDesc.GetDacPtr(); |
| 5298 | |
| 5299 | if (pMD->IsILStub()) |
| 5300 | { |
| 5301 | return kILStub; |
| 5302 | } |
| 5303 | else if (pMD->IsLCGMethod()) |
| 5304 | { |
| 5305 | return kLCGMethod; |
| 5306 | } |
| 5307 | else |
| 5308 | { |
| 5309 | return kNone; |
| 5310 | } |
| 5311 | } |
| 5312 | |
| 5313 | //--------------------------------------------------------------------------------------- |
| 5314 | // |
| 5315 | // Determine whether the specified thread is at a GC safe place. |
| 5316 | // |
| 5317 | // Arguments: |
| 5318 | // vmThread - the thread to be examined |
| 5319 | // |
| 5320 | // Return Value: |
| 5321 | // Return TRUE if the thread is at a GC safe place. |
| 5322 | // and under what conditions |
| 5323 | // |
| 5324 | // Notes: |
| 5325 | // This function basically does a one-frame stackwalk. |
| 5326 | // The logic is adopted from Debugger::IsThreadAtSafePlace(). |
| 5327 | // |
| 5328 | |
| 5329 | BOOL DacDbiInterfaceImpl::IsThreadAtGCSafePlace(VMPTR_Thread vmThread) |
| 5330 | { |
| 5331 | DD_ENTER_MAY_THROW; |
| 5332 | |
| 5333 | BOOL fIsGCSafe = FALSE; |
| 5334 | Thread * pThread = vmThread.GetDacPtr(); |
| 5335 | |
| 5336 | // Check if the runtime has entered "Shutdown for Finalizer" mode. |
| 5337 | if ((g_fEEShutDown & ShutDown_Finalize2) != 0) |
| 5338 | { |
| 5339 | fIsGCSafe = TRUE; |
| 5340 | } |
| 5341 | else |
| 5342 | { |
| 5343 | T_CONTEXT ctx; |
| 5344 | REGDISPLAY rd; |
| 5345 | SetUpRegdisplayForStackWalk(pThread, &ctx, &rd); |
| 5346 | |
| 5347 | ULONG32 flags = (QUICKUNWIND | HANDLESKIPPEDFRAMES | DISABLE_MISSING_FRAME_DETECTION); |
| 5348 | |
| 5349 | StackFrameIterator iter; |
| 5350 | iter.Init(pThread, pThread->GetFrame(), &rd, flags); |
| 5351 | |
| 5352 | CrawlFrame * pCF = &(iter.m_crawl); |
| 5353 | if (pCF->IsFrameless() && pCF->IsActiveFunc()) |
| 5354 | { |
| 5355 | if (pCF->IsGcSafe()) |
| 5356 | { |
| 5357 | fIsGCSafe = TRUE; |
| 5358 | } |
| 5359 | } |
| 5360 | } |
| 5361 | |
| 5362 | return fIsGCSafe; |
| 5363 | } |
| 5364 | |
| 5365 | //--------------------------------------------------------------------------------------- |
| 5366 | // |
| 5367 | // Return a partial user state of the specified thread. The returned user state doesn't contain |
| 5368 | // information about USER_UNSAFE_POINT. The caller needs to call IsThreadAtGCSafePlace() to get |
| 5369 | // the full user state. |
| 5370 | // |
| 5371 | // Arguments: |
| 5372 | // vmThread - the specified thread |
| 5373 | // |
| 5374 | // Return Value: |
| 5375 | // Return the partial user state except for USER_UNSAFE_POINT |
| 5376 | // |
| 5377 | |
| 5378 | CorDebugUserState DacDbiInterfaceImpl::GetPartialUserState(VMPTR_Thread vmThread) |
| 5379 | { |
| 5380 | DD_ENTER_MAY_THROW; |
| 5381 | |
| 5382 | Thread * pThread = vmThread.GetDacPtr(); |
| 5383 | Thread::ThreadState ts = pThread->GetSnapshotState(); |
| 5384 | |
| 5385 | UINT result = 0; |
| 5386 | if (ts & Thread::TS_Background) |
| 5387 | { |
| 5388 | result |= USER_BACKGROUND; |
| 5389 | } |
| 5390 | |
| 5391 | if (ts & Thread::TS_Unstarted) |
| 5392 | { |
| 5393 | result |= USER_UNSTARTED; |
| 5394 | } |
| 5395 | |
| 5396 | // Don't report a StopRequested if the thread has actually stopped. |
| 5397 | if (ts & Thread::TS_Dead) |
| 5398 | { |
| 5399 | result |= USER_STOPPED; |
| 5400 | } |
| 5401 | |
| 5402 | // The interruptible flag is unreliable (see issue 699245) |
| 5403 | // The Debugger_SleepWaitJoin is always accurate when it is present, but it is still |
| 5404 | // just a band-aid fix to cover some of the race conditions interruptible has. |
| 5405 | |
| 5406 | if (ts & Thread::TS_Interruptible || pThread->HasThreadStateNC(Thread::TSNC_DebuggerSleepWaitJoin)) |
| 5407 | { |
| 5408 | result |= USER_WAIT_SLEEP_JOIN; |
| 5409 | } |
| 5410 | |
| 5411 | // CoreCLR does not support user-requested thread suspension |
| 5412 | _ASSERTE(!(ts & Thread::TS_UserSuspendPending)); |
| 5413 | |
| 5414 | if (pThread->IsThreadPoolThread()) |
| 5415 | { |
| 5416 | result |= USER_THREADPOOL; |
| 5417 | } |
| 5418 | |
| 5419 | return (CorDebugUserState)result; |
| 5420 | } |
| 5421 | |
| 5422 | //--------------------------------------------------------------------------------------- |
| 5423 | // |
| 5424 | // Look up the EnC version number of a particular jitted instance of a managed method. |
| 5425 | // |
| 5426 | // Arguments: |
| 5427 | // pModule - the module containing the managed method |
| 5428 | // vmMethodDesc - the MethodDesc of the managed method |
| 5429 | // mdMethod - the MethodDef metadata token of the managed method |
| 5430 | // pNativeStartAddress - the native start address of the jitted code |
| 5431 | // pJittedInstanceEnCVersion - out parameter; the version number of the version |
| 5432 | // corresponding to the specified native start address |
| 5433 | // pLatestEnCVersion - out parameter; the version number of the latest version |
| 5434 | // |
| 5435 | // Assumptions: |
| 5436 | // vmMethodDesc and mdMethod must match (see below). |
| 5437 | // |
| 5438 | // Notes: |
| 5439 | // mdMethod is not strictly necessary, since we can always get that from vmMethodDesc. |
| 5440 | // It is just a perf optimization since the caller has the metadata token around already. |
| 5441 | // |
| 5442 | // Today, there is no way to retrieve the EnC version number from the RS data structures. |
| 5443 | // This primitive uses DAC to retrieve it from the LS data structures. This function may |
| 5444 | // very well be ripped out in the future if we DACize this information, but the current |
| 5445 | // thinking is that some of the RS data structures will remain, most likely in a reduced form. |
| 5446 | // |
| 5447 | |
| 5448 | void DacDbiInterfaceImpl::LookupEnCVersions(Module* pModule, |
| 5449 | VMPTR_MethodDesc vmMethodDesc, |
| 5450 | mdMethodDef mdMethod, |
| 5451 | CORDB_ADDRESS pNativeStartAddress, |
| 5452 | SIZE_T * pLatestEnCVersion, |
| 5453 | SIZE_T * pJittedInstanceEnCVersion /* = NULL */) |
| 5454 | { |
| 5455 | MethodDesc * pMD = vmMethodDesc.GetDacPtr(); |
| 5456 | |
| 5457 | // make sure the vmMethodDesc and mdMethod match |
| 5458 | _ASSERTE(pMD->GetMemberDef() == mdMethod); |
| 5459 | |
| 5460 | _ASSERTE(pLatestEnCVersion != NULL); |
| 5461 | |
| 5462 | // @dbgtodo inspection - once we do EnC, stop using DMIs. |
| 5463 | // If the method wasn't EnCed, DMIs may not exist. And since this is DAC, we can't create them. |
| 5464 | |
| 5465 | // We may not have the memory for the DebuggerMethodInfos in a minidump. |
| 5466 | // When dump debugging EnC information isn't very useful so just fallback |
| 5467 | // to default version. |
| 5468 | DebuggerMethodInfo * pDMI = NULL; |
| 5469 | DebuggerJitInfo * pDJI = NULL; |
| 5470 | EX_TRY_ALLOW_DATATARGET_MISSING_MEMORY |
| 5471 | { |
| 5472 | pDMI = g_pDebugger->GetOrCreateMethodInfo(pModule, mdMethod); |
| 5473 | if (pDMI != NULL) |
| 5474 | { |
| 5475 | pDJI = pDMI->FindJitInfo(pMD, CORDB_ADDRESS_TO_TADDR(pNativeStartAddress)); |
| 5476 | } |
| 5477 | } |
| 5478 | EX_END_CATCH_ALLOW_DATATARGET_MISSING_MEMORY; |
| 5479 | if (pDJI != NULL) |
| 5480 | { |
| 5481 | if (pJittedInstanceEnCVersion != NULL) |
| 5482 | { |
| 5483 | *pJittedInstanceEnCVersion = pDJI->m_encVersion; |
| 5484 | } |
| 5485 | *pLatestEnCVersion = pDMI->GetCurrentEnCVersion(); |
| 5486 | } |
| 5487 | else |
| 5488 | { |
| 5489 | // If we have no DMI/DJI, then we must never have EnCed. So we can use default EnC info |
| 5490 | // Several cases where we don't have a DMI/DJI: |
| 5491 | // - LCG methods |
| 5492 | // - method was never "touched" by debugger. (DJIs are created lazily). |
| 5493 | if (pJittedInstanceEnCVersion != NULL) |
| 5494 | { |
| 5495 | *pJittedInstanceEnCVersion = CorDB_DEFAULT_ENC_FUNCTION_VERSION; |
| 5496 | } |
| 5497 | *pLatestEnCVersion = CorDB_DEFAULT_ENC_FUNCTION_VERSION; |
| 5498 | } |
| 5499 | } |
| 5500 | |
| 5501 | // Get the address of the Debugger control block on the helper thread |
| 5502 | // Arguments: none |
| 5503 | // Return Value: The remote address of the Debugger control block allocated on the helper thread |
| 5504 | // if it has been successfully allocated or NULL otherwise. |
| 5505 | CORDB_ADDRESS DacDbiInterfaceImpl::GetDebuggerControlBlockAddress() |
| 5506 | { |
| 5507 | DD_ENTER_MAY_THROW; |
| 5508 | |
| 5509 | if ((g_pDebugger != NULL) && |
| 5510 | (g_pDebugger->m_pRCThread != NULL)) |
| 5511 | { |
| 5512 | return CORDB_ADDRESS(dac_cast<TADDR>(g_pDebugger->m_pRCThread->GetDCB())); |
| 5513 | } |
| 5514 | |
| 5515 | return NULL; |
| 5516 | } |
| 5517 | |
| 5518 | // DacDbi API: Get the context for a particular thread of the target process |
| 5519 | void DacDbiInterfaceImpl::GetContext(VMPTR_Thread vmThread, DT_CONTEXT * pContextBuffer) |
| 5520 | { |
| 5521 | DD_ENTER_MAY_THROW |
| 5522 | |
| 5523 | _ASSERTE(pContextBuffer != NULL); |
| 5524 | |
| 5525 | Thread * pThread = vmThread.GetDacPtr(); |
| 5526 | |
| 5527 | // @dbgtodo Once the filter context is removed, then we should always |
| 5528 | // start with the leaf CONTEXT. |
| 5529 | DT_CONTEXT * pFilterContext = reinterpret_cast<DT_CONTEXT *>(pThread->GetFilterContext()); |
| 5530 | |
| 5531 | if (pFilterContext == NULL) |
| 5532 | { |
| 5533 | // If the filter context is NULL, then we use the true context of the thread. |
| 5534 | pContextBuffer->ContextFlags = CONTEXT_ALL; |
| 5535 | HRESULT hr = m_pTarget->GetThreadContext(pThread->GetOSThreadId(), |
| 5536 | pContextBuffer->ContextFlags, |
| 5537 | sizeof(*pContextBuffer), |
| 5538 | reinterpret_cast<BYTE *>(pContextBuffer)); |
| 5539 | if (hr == E_NOTIMPL) |
| 5540 | { |
| 5541 | // GetThreadContext is not implemented on this data target. |
| 5542 | // That's why we have to make do with context we can obtain from Frames explicitly stored in Thread object. |
| 5543 | // It suffices for managed debugging stackwalk. |
| 5544 | REGDISPLAY tmpRd = {}; |
| 5545 | T_CONTEXT tmpContext = {}; |
| 5546 | FillRegDisplay(&tmpRd, &tmpContext); |
| 5547 | |
| 5548 | // Going through thread Frames and looking for first (deepest one) one that |
| 5549 | // that has context available for stackwalking (SP and PC) |
| 5550 | // For example: RedirectedThreadFrame, InlinedCallFrame, HelperMethodFrame, ComPlusMethodFrame |
| 5551 | Frame *frame = pThread->GetFrame(); |
| 5552 | while (frame != NULL && frame != FRAME_TOP) |
| 5553 | { |
| 5554 | frame->UpdateRegDisplay(&tmpRd); |
| 5555 | if (GetRegdisplaySP(&tmpRd) != 0 && GetControlPC(&tmpRd) != 0) |
| 5556 | { |
| 5557 | UpdateContextFromRegDisp(&tmpRd, &tmpContext); |
| 5558 | CopyMemory(pContextBuffer, &tmpContext, sizeof(*pContextBuffer)); |
| 5559 | pContextBuffer->ContextFlags = DT_CONTEXT_CONTROL; |
| 5560 | return; |
| 5561 | } |
| 5562 | frame = frame->Next(); |
| 5563 | } |
| 5564 | |
| 5565 | // It looks like this thread is not running managed code. |
| 5566 | ZeroMemory(pContextBuffer, sizeof(*pContextBuffer)); |
| 5567 | } |
| 5568 | else |
| 5569 | { |
| 5570 | IfFailThrow(hr); |
| 5571 | } |
| 5572 | } |
| 5573 | else |
| 5574 | { |
| 5575 | *pContextBuffer = *pFilterContext; |
| 5576 | } |
| 5577 | |
| 5578 | } // DacDbiInterfaceImpl::GetContext |
| 5579 | |
| 5580 | // Create a VMPTR_Object from a target object address |
| 5581 | // @dbgtodo validate the VMPTR_Object is in fact a object, possibly by DACizing |
| 5582 | // Object::Validate |
| 5583 | VMPTR_Object DacDbiInterfaceImpl::GetObject(CORDB_ADDRESS ptr) |
| 5584 | { |
| 5585 | DD_ENTER_MAY_THROW; |
| 5586 | |
| 5587 | VMPTR_Object vmObj = VMPTR_Object::NullPtr(); |
| 5588 | vmObj.SetDacTargetPtr(CORDB_ADDRESS_TO_TADDR(ptr)); |
| 5589 | return vmObj; |
| 5590 | } |
| 5591 | |
| 5592 | HRESULT DacDbiInterfaceImpl::EnableNGENPolicy(CorDebugNGENPolicy ePolicy) |
| 5593 | { |
| 5594 | return E_NOTIMPL; |
| 5595 | } |
| 5596 | |
| 5597 | HRESULT DacDbiInterfaceImpl::SetNGENCompilerFlags(DWORD dwFlags) |
| 5598 | { |
| 5599 | DD_ENTER_MAY_THROW; |
| 5600 | |
| 5601 | #ifndef FEATURE_PREJIT |
| 5602 | return CORDBG_E_NGEN_NOT_SUPPORTED; |
| 5603 | #else |
| 5604 | // verify that we are still early enough in runtime lifecycle to mutate these |
| 5605 | // flags. Typically this is done in the CreateProcess event though it is possible |
| 5606 | // to do it even earlier |
| 5607 | if(!Debugger::s_fCanChangeNgenFlags) |
| 5608 | return CORDBG_E_MUST_BE_IN_CREATE_PROCESS; |
| 5609 | |
| 5610 | BOOL fAllowOpt = |
| 5611 | ((dwFlags & CORDEBUG_JIT_DISABLE_OPTIMIZATION) != CORDEBUG_JIT_DISABLE_OPTIMIZATION); |
| 5612 | PEFile::SetNGENDebugFlags(fAllowOpt); |
| 5613 | return S_OK; |
| 5614 | #endif |
| 5615 | } |
| 5616 | |
| 5617 | HRESULT DacDbiInterfaceImpl::GetNGENCompilerFlags(DWORD *pdwFlags) |
| 5618 | { |
| 5619 | DD_ENTER_MAY_THROW; |
| 5620 | |
| 5621 | #ifndef FEATURE_PREJIT |
| 5622 | return CORDBG_E_NGEN_NOT_SUPPORTED; |
| 5623 | #else |
| 5624 | BOOL fAllowOpt = TRUE; |
| 5625 | PEFile::GetNGENDebugFlags(&fAllowOpt); |
| 5626 | if(!fAllowOpt) |
| 5627 | { |
| 5628 | *pdwFlags = CORDEBUG_JIT_DISABLE_OPTIMIZATION; |
| 5629 | } |
| 5630 | else |
| 5631 | { |
| 5632 | *pdwFlags = CORDEBUG_JIT_DEFAULT; |
| 5633 | } |
| 5634 | |
| 5635 | return S_OK; |
| 5636 | #endif |
| 5637 | } |
| 5638 | |
| 5639 | typedef DPTR(OBJECTREF) PTR_ObjectRef; |
| 5640 | |
| 5641 | // Create a VMPTR_Object from an address which points to a reference to an object |
| 5642 | // @dbgtodo validate the VMPTR_Object is in fact a object, possibly by DACizing |
| 5643 | // Object::Validate |
| 5644 | VMPTR_Object DacDbiInterfaceImpl::GetObjectFromRefPtr(CORDB_ADDRESS ptr) |
| 5645 | { |
| 5646 | DD_ENTER_MAY_THROW; |
| 5647 | |
| 5648 | VMPTR_Object vmObj = VMPTR_Object::NullPtr(); |
| 5649 | PTR_ObjectRef objRef = PTR_ObjectRef(CORDB_ADDRESS_TO_TADDR(ptr)); |
| 5650 | vmObj.SetDacTargetPtr(PTR_TO_TADDR(*objRef)); |
| 5651 | |
| 5652 | return vmObj; |
| 5653 | } |
| 5654 | |
| 5655 | // Create a VMPTR_OBJECTHANDLE from a handle |
| 5656 | VMPTR_OBJECTHANDLE DacDbiInterfaceImpl::GetVmObjectHandle(CORDB_ADDRESS handleAddress) |
| 5657 | { |
| 5658 | DD_ENTER_MAY_THROW; |
| 5659 | |
| 5660 | VMPTR_OBJECTHANDLE vmObjHandle = VMPTR_OBJECTHANDLE::NullPtr(); |
| 5661 | vmObjHandle.SetDacTargetPtr(CORDB_ADDRESS_TO_TADDR(handleAddress)); |
| 5662 | |
| 5663 | return vmObjHandle; |
| 5664 | } |
| 5665 | |
| 5666 | |
| 5667 | // Validate that the VMPTR_OBJECTHANDLE refers to a legitimate managed object |
| 5668 | BOOL DacDbiInterfaceImpl::IsVmObjectHandleValid(VMPTR_OBJECTHANDLE vmHandle) |
| 5669 | { |
| 5670 | DD_ENTER_MAY_THROW; |
| 5671 | |
| 5672 | BOOL ret = FALSE; |
| 5673 | // this may cause unallocated debuggee memory to be read |
| 5674 | // SEH exceptions will be caught |
| 5675 | EX_TRY |
| 5676 | { |
| 5677 | OBJECTREF objRef = ObjectFromHandle((OBJECTHANDLE)vmHandle.GetDacPtr()); |
| 5678 | |
| 5679 | // NULL is certainly valid... |
| 5680 | if (objRef != NULL) |
| 5681 | { |
| 5682 | if (objRef->ValidateObjectWithPossibleAV()) |
| 5683 | { |
| 5684 | ret = TRUE; |
| 5685 | } |
| 5686 | } |
| 5687 | } |
| 5688 | EX_CATCH |
| 5689 | { |
| 5690 | } |
| 5691 | EX_END_CATCH(SwallowAllExceptions); |
| 5692 | |
| 5693 | return ret; |
| 5694 | } |
| 5695 | |
| 5696 | // determines if the specified module is a WinRT module |
| 5697 | HRESULT DacDbiInterfaceImpl::IsWinRTModule(VMPTR_Module vmModule, BOOL& isWinRT) |
| 5698 | { |
| 5699 | DD_ENTER_MAY_THROW; |
| 5700 | |
| 5701 | HRESULT hr = S_OK; |
| 5702 | isWinRT = FALSE; |
| 5703 | |
| 5704 | EX_TRY |
| 5705 | { |
| 5706 | Module* pModule = vmModule.GetDacPtr(); |
| 5707 | isWinRT = pModule->GetFile()->GetAssembly()->IsWindowsRuntime(); |
| 5708 | } |
| 5709 | EX_CATCH_HRESULT(hr); |
| 5710 | |
| 5711 | return hr; |
| 5712 | } |
| 5713 | |
| 5714 | // Determines the app domain id for the object refered to by a given VMPTR_OBJECTHANDLE |
| 5715 | ULONG DacDbiInterfaceImpl::GetAppDomainIdFromVmObjectHandle(VMPTR_OBJECTHANDLE vmHandle) |
| 5716 | { |
| 5717 | DD_ENTER_MAY_THROW; |
| 5718 | |
| 5719 | OBJECTHANDLE handle = (OBJECTHANDLE) vmHandle.GetDacPtr(); |
| 5720 | return HndGetHandleADIndex(handle).m_dwIndex; |
| 5721 | } |
| 5722 | |
| 5723 | // Get the target address from a VMPTR_OBJECTHANDLE, i.e., the handle address |
| 5724 | CORDB_ADDRESS DacDbiInterfaceImpl::GetHandleAddressFromVmHandle(VMPTR_OBJECTHANDLE vmHandle) |
| 5725 | { |
| 5726 | DD_ENTER_MAY_THROW; |
| 5727 | |
| 5728 | CORDB_ADDRESS handle = vmHandle.GetDacPtr(); |
| 5729 | |
| 5730 | return handle; |
| 5731 | } |
| 5732 | |
| 5733 | // Create a TargetBuffer which describes the location of the object |
| 5734 | TargetBuffer DacDbiInterfaceImpl::GetObjectContents(VMPTR_Object vmObj) |
| 5735 | { |
| 5736 | DD_ENTER_MAY_THROW; |
| 5737 | PTR_Object objPtr = vmObj.GetDacPtr(); |
| 5738 | |
| 5739 | _ASSERTE(objPtr->GetSize() <= 0xffffffff); |
| 5740 | return TargetBuffer(PTR_TO_TADDR(objPtr), (ULONG)objPtr->GetSize()); |
| 5741 | } |
| 5742 | |
| 5743 | // ============================================================================ |
| 5744 | // functions to get information about objects referenced via an instance of CordbReferenceValue or |
| 5745 | // CordbHandleValue |
| 5746 | // ============================================================================ |
| 5747 | |
| 5748 | // DacDbiInterfaceImpl::FastSanityCheckObject |
| 5749 | // Helper function for CheckRef. Sanity check an object. |
| 5750 | // We use a fast and easy check to improve confidence that objPtr points to a valid object. |
| 5751 | // We can't tell cheaply if this is really a valid object (that would require walking the GC heap), but at |
| 5752 | // least we can check if we get an EEClass from the supposed method table and then get the method table from |
| 5753 | // the class. If we can, we have improved the probability that the object is valid. |
| 5754 | // Arguments: |
| 5755 | // input: objPtr - address of the object we are checking |
| 5756 | // Return Value: E_INVALIDARG or S_OK. |
| 5757 | HRESULT DacDbiInterfaceImpl::FastSanityCheckObject(PTR_Object objPtr) |
| 5758 | { |
| 5759 | CONTRACTL |
| 5760 | { |
| 5761 | SO_NOT_MAINLINE; |
| 5762 | NOTHROW; |
| 5763 | GC_NOTRIGGER; |
| 5764 | } |
| 5765 | CONTRACTL_END; |
| 5766 | |
| 5767 | HRESULT hr = S_OK; |
| 5768 | |
| 5769 | EX_TRY |
| 5770 | { |
| 5771 | // NULL is certainly valid... |
| 5772 | if (objPtr != NULL) |
| 5773 | { |
| 5774 | if (!objPtr->ValidateObjectWithPossibleAV()) |
| 5775 | { |
| 5776 | LOG((LF_CORDB, LL_INFO10000, "GOI: object methodtable-class invariant doesn't hold.\n" )); |
| 5777 | hr = E_INVALIDARG; |
| 5778 | } |
| 5779 | } |
| 5780 | } |
| 5781 | EX_CATCH |
| 5782 | { |
| 5783 | LOG((LF_CORDB, LL_INFO10000, "GOI: exception indicated ref is bad.\n" )); |
| 5784 | hr = E_INVALIDARG; |
| 5785 | } |
| 5786 | EX_END_CATCH(SwallowAllExceptions); |
| 5787 | |
| 5788 | return hr; |
| 5789 | } // DacDbiInterfaceImpl::FastSanityCheckObject |
| 5790 | |
| 5791 | // Perform a sanity check on an object address to determine if this _could be_ a valid object. |
| 5792 | // We can't tell this for certain without walking the GC heap, but we do some fast tests to rule |
| 5793 | // out clearly invalid object addresses. See code:DacDbiInterfaceImpl::FastSanityCheckObject for more |
| 5794 | // details. |
| 5795 | // Arguments: |
| 5796 | // input: objPtr - address of the object we are checking |
| 5797 | // Return Value: |
| 5798 | // objRefBad - true iff we have determined the address cannot be pointing to a valid object. |
| 5799 | // Note that a value of false doesn't necessarily guarantee the object is really |
| 5800 | // valid |
| 5801 | bool DacDbiInterfaceImpl::CheckRef(PTR_Object objPtr) |
| 5802 | { |
| 5803 | bool objRefBad = false; |
| 5804 | |
| 5805 | // Shortcut null references now... |
| 5806 | if (objPtr == NULL) |
| 5807 | { |
| 5808 | LOG((LF_CORDB, LL_INFO10000, "D::GOI: ref is NULL.\n" )); |
| 5809 | |
| 5810 | objRefBad = true; |
| 5811 | } |
| 5812 | else |
| 5813 | { |
| 5814 | // Try to verify the integrity of the object. This is not fool proof. |
| 5815 | // @todo - this whole idea of expecting AVs is broken, but it does rule |
| 5816 | // out a fair bit of rubbish. Find another |
| 5817 | // way to test if the object is valid? |
| 5818 | if (FAILED(FastSanityCheckObject(objPtr))) |
| 5819 | { |
| 5820 | LOG((LF_CORDB, LL_INFO10000, "D::GOI: address is not a valid object.\n" )); |
| 5821 | |
| 5822 | objRefBad = true; |
| 5823 | } |
| 5824 | } |
| 5825 | |
| 5826 | return objRefBad; |
| 5827 | } // DacDbiInterfaceImpl::CheckRef |
| 5828 | |
| 5829 | // DacDbiInterfaceImpl::InitObjectData |
| 5830 | // Initialize basic object information: type handle, object size, offset to fields and expanded type |
| 5831 | // information. |
| 5832 | // Arguments: |
| 5833 | // input: objPtr - address of object of interest |
| 5834 | // vmAppDomain - AppDomain for the type f the object |
| 5835 | // output: pObjectData - object information |
| 5836 | // Note: It is assumed that pObjectData is non-null. |
| 5837 | void DacDbiInterfaceImpl::InitObjectData(PTR_Object objPtr, |
| 5838 | VMPTR_AppDomain vmAppDomain, |
| 5839 | DebuggerIPCE_ObjectData * pObjectData) |
| 5840 | { |
| 5841 | _ASSERTE(pObjectData != NULL); |
| 5842 | // @todo - this is still dangerous because the object may still be invalid. |
| 5843 | VMPTR_TypeHandle vmTypeHandle = VMPTR_TypeHandle::NullPtr(); |
| 5844 | vmTypeHandle.SetDacTargetPtr(objPtr->GetGCSafeTypeHandle().AsTAddr()); |
| 5845 | |
| 5846 | // Save basic object info. |
| 5847 | pObjectData->objSize = objPtr->GetSize(); |
| 5848 | pObjectData->objOffsetToVars = dac_cast<TADDR>((objPtr)->GetData()) - dac_cast<TADDR>(objPtr); |
| 5849 | |
| 5850 | TypeHandleToExpandedTypeInfo(AllBoxed, vmAppDomain, vmTypeHandle, &(pObjectData->objTypeData)); |
| 5851 | |
| 5852 | // If this is a string object, set the type to ELEMENT_TYPE_STRING. |
| 5853 | if (objPtr->GetGCSafeMethodTable() == g_pStringClass) |
| 5854 | { |
| 5855 | pObjectData->objTypeData.elementType = ELEMENT_TYPE_STRING; |
| 5856 | if(pObjectData->objSize < MIN_OBJECT_SIZE) |
| 5857 | { |
| 5858 | pObjectData->objSize = PtrAlign(pObjectData->objSize); |
| 5859 | } |
| 5860 | } |
| 5861 | } // DacDbiInterfaceImpl::InitObjectData |
| 5862 | |
| 5863 | // DAC/DBI API |
| 5864 | |
| 5865 | // Get object information for a TypedByRef object (System.TypedReference). |
| 5866 | |
| 5867 | // These are objects that contain a managed pointer to a location and the type of the value at that location. |
| 5868 | // They are most commonly used for varargs but also may be used for parameters and locals. They are |
| 5869 | // stack-allocated. They provide a means for adding dynamic type information to a value type, whereas boxing |
| 5870 | // provides only static type information. This means they can be passed as reference parameters to |
| 5871 | // polymorphic methods that don't statically restrict the type of arguments they can receive. |
| 5872 | |
| 5873 | // Although they are represented simply as an address, unlike other object references, they don't point |
| 5874 | // directly to the object. Instead, there is an extra level of indirection. The reference points to a struct |
| 5875 | // that contains the address of the object, so we need to treat them differently. They have their own |
| 5876 | // CorElementType (ELEMENT_TYPE_TYPEDBYREF) which makes it possible to identify this special case. |
| 5877 | |
| 5878 | // Example: |
| 5879 | // static int AddABunchOfInts (__arglist) |
| 5880 | // { |
| 5881 | // int result = 0; |
| 5882 | // |
| 5883 | // System.ArgIterator iter = new System.ArgIterator (__arglist); |
| 5884 | // int argCount = iter.GetRemainingCount(); |
| 5885 | // |
| 5886 | // for (int i = 0; i < argCount; i++) |
| 5887 | // { |
| 5888 | // System.TypedReference typedRef = iter.GetNextArg(); |
| 5889 | // result += (int)TypedReference.ToObject(typedRef); |
| 5890 | // } |
| 5891 | // |
| 5892 | // return result; |
| 5893 | // } |
| 5894 | // |
| 5895 | // static int Main (string[] args) |
| 5896 | // { |
| 5897 | // int result = AddABunchOfInts (__arglist (2, 3, 4)); |
| 5898 | // Console.WriteLine ("Answer: {0}", result); |
| 5899 | // |
| 5900 | // if (result != 9) |
| 5901 | // return 1; |
| 5902 | // |
| 5903 | // return 0; |
| 5904 | // } |
| 5905 | |
| 5906 | // Initializes the objRef and typedByRefType fields of pObjectData (type info for the referent). |
| 5907 | void DacDbiInterfaceImpl::GetTypedByRefInfo(CORDB_ADDRESS pTypedByRef, |
| 5908 | VMPTR_AppDomain vmAppDomain, |
| 5909 | DebuggerIPCE_ObjectData * pObjectData) |
| 5910 | { |
| 5911 | DD_ENTER_MAY_THROW; |
| 5912 | |
| 5913 | // pTypedByRef is really the address of a TypedByRef struct rather than of a normal object. |
| 5914 | // The data field of the TypedByRef struct is the actual object ref. |
| 5915 | PTR_TypedByRef refAddr = PTR_TypedByRef(TADDR(pTypedByRef)); |
| 5916 | |
| 5917 | _ASSERTE(refAddr != NULL); |
| 5918 | _ASSERTE(pObjectData != NULL); |
| 5919 | |
| 5920 | // The type of the referent is in the type field of the TypedByRef. We need to initialize the object |
| 5921 | // data type information. |
| 5922 | TypeHandleToBasicTypeInfo(refAddr->type, |
| 5923 | &(pObjectData->typedByrefInfo.typedByrefType), |
| 5924 | vmAppDomain.GetDacPtr()); |
| 5925 | |
| 5926 | // The reference to the object is in the data field of the TypedByRef. |
| 5927 | CORDB_ADDRESS tempRef = dac_cast<TADDR>(refAddr->data); |
| 5928 | pObjectData->objRef = CORDB_ADDRESS_TO_PTR(tempRef); |
| 5929 | |
| 5930 | LOG((LF_CORDB, LL_INFO10000, "D::GASOI: sending REFANY result: " |
| 5931 | "ref=0x%08x, cls=0x%08x, mod=0x%p\n" , |
| 5932 | pObjectData->objRef, |
| 5933 | pObjectData->typedByrefType.metadataToken, |
| 5934 | pObjectData->typedByrefType.vmDomainFile.GetDacPtr())); |
| 5935 | } // DacDbiInterfaceImpl::GetTypedByRefInfo |
| 5936 | |
| 5937 | // Get the string data associated withn obj and put it into the pointers |
| 5938 | // DAC/DBI API |
| 5939 | // Get the string length and offset to string base for a string object |
| 5940 | void DacDbiInterfaceImpl::GetStringData(CORDB_ADDRESS objectAddress, DebuggerIPCE_ObjectData * pObjectData) |
| 5941 | { |
| 5942 | DD_ENTER_MAY_THROW; |
| 5943 | |
| 5944 | PTR_Object objPtr = PTR_Object(TADDR(objectAddress)); |
| 5945 | LOG((LF_CORDB, LL_INFO10000, "D::GOI: The referent is a string.\n" )); |
| 5946 | |
| 5947 | if (objPtr->GetGCSafeMethodTable() != g_pStringClass) |
| 5948 | { |
| 5949 | ThrowHR(CORDBG_E_TARGET_INCONSISTENT); |
| 5950 | } |
| 5951 | |
| 5952 | PTR_StringObject pStrObj = dac_cast<PTR_StringObject>(objPtr); |
| 5953 | |
| 5954 | _ASSERTE(pStrObj != NULL); |
| 5955 | pObjectData->stringInfo.length = pStrObj->GetStringLength(); |
| 5956 | pObjectData->stringInfo.offsetToStringBase = (UINT_PTR) pStrObj->GetBufferOffset(); |
| 5957 | |
| 5958 | } // DacDbiInterfaceImpl::GetStringData |
| 5959 | |
| 5960 | |
| 5961 | // DAC/DBI API |
| 5962 | // Get information for an array type referent of an objRef, including rank, upper and lower |
| 5963 | // bounds, element size and type, and the number of elements. |
| 5964 | void DacDbiInterfaceImpl::GetArrayData(CORDB_ADDRESS objectAddress, DebuggerIPCE_ObjectData * pObjectData) |
| 5965 | { |
| 5966 | DD_ENTER_MAY_THROW; |
| 5967 | |
| 5968 | PTR_Object objPtr = PTR_Object(TADDR(objectAddress)); |
| 5969 | PTR_MethodTable pMT = objPtr->GetGCSafeMethodTable(); |
| 5970 | |
| 5971 | if (!objPtr->GetGCSafeTypeHandle().IsArray()) |
| 5972 | { |
| 5973 | LOG((LF_CORDB, LL_INFO10000, |
| 5974 | "D::GASOI: object should be an array.\n" )); |
| 5975 | |
| 5976 | pObjectData->objRefBad = true; |
| 5977 | } |
| 5978 | else |
| 5979 | { |
| 5980 | PTR_ArrayBase arrPtr = dac_cast<PTR_ArrayBase>(objPtr); |
| 5981 | |
| 5982 | // this is also returned in the type information for the array - we return both for sanity checking... |
| 5983 | pObjectData->arrayInfo.rank = arrPtr->GetRank(); |
| 5984 | pObjectData->arrayInfo.componentCount = arrPtr->GetNumComponents(); |
| 5985 | pObjectData->arrayInfo.offsetToArrayBase = arrPtr->GetDataPtrOffset(pMT); |
| 5986 | |
| 5987 | if (arrPtr->IsMultiDimArray()) |
| 5988 | { |
| 5989 | pObjectData->arrayInfo.offsetToUpperBounds = SIZE_T(arrPtr->GetBoundsOffset(pMT)); |
| 5990 | |
| 5991 | pObjectData->arrayInfo.offsetToLowerBounds = SIZE_T(arrPtr->GetLowerBoundsOffset(pMT)); |
| 5992 | } |
| 5993 | else |
| 5994 | { |
| 5995 | pObjectData->arrayInfo.offsetToUpperBounds = 0; |
| 5996 | pObjectData->arrayInfo.offsetToLowerBounds = 0; |
| 5997 | } |
| 5998 | |
| 5999 | pObjectData->arrayInfo.elementSize = arrPtr->GetComponentSize(); |
| 6000 | |
| 6001 | LOG((LF_CORDB, LL_INFO10000, "D::GOI: array info: " |
| 6002 | "baseOff=%d, lowerOff=%d, upperOff=%d, cnt=%d, rank=%d, rank (2) = %d," |
| 6003 | "eleSize=%d, eleType=0x%02x\n" , |
| 6004 | pObjectData->arrayInfo.offsetToArrayBase, |
| 6005 | pObjectData->arrayInfo.offsetToLowerBounds, |
| 6006 | pObjectData->arrayInfo.offsetToUpperBounds, |
| 6007 | pObjectData->arrayInfo.componentCount, |
| 6008 | pObjectData->arrayInfo.rank, |
| 6009 | pObjectData->objTypeData.ArrayTypeData.arrayRank, |
| 6010 | pObjectData->arrayInfo.elementSize, |
| 6011 | pObjectData->objTypeData.ArrayTypeData.arrayTypeArg.elementType)); |
| 6012 | } |
| 6013 | } // DacDbiInterfaceImpl::GetArrayData |
| 6014 | |
| 6015 | // DAC/DBI API: Get information about an object for which we have a reference, including the object size and |
| 6016 | // type information. |
| 6017 | void DacDbiInterfaceImpl::GetBasicObjectInfo(CORDB_ADDRESS objectAddress, |
| 6018 | CorElementType type, |
| 6019 | VMPTR_AppDomain vmAppDomain, |
| 6020 | DebuggerIPCE_ObjectData * pObjectData) |
| 6021 | { |
| 6022 | DD_ENTER_MAY_THROW; |
| 6023 | |
| 6024 | PTR_Object objPtr = PTR_Object(TADDR(objectAddress)); |
| 6025 | pObjectData->objRefBad = CheckRef(objPtr); |
| 6026 | if (pObjectData->objRefBad != true) |
| 6027 | { |
| 6028 | // initialize object type, size, offset information. Note: We may have a different element type |
| 6029 | // after this. For example, we may start with E_T_CLASS but return with something more specific. |
| 6030 | InitObjectData (objPtr, vmAppDomain, pObjectData); |
| 6031 | } |
| 6032 | } // DacDbiInterfaceImpl::GetBasicObjectInfo |
| 6033 | |
| 6034 | // This is the data passed to EnumerateBlockingObjectsCallback below |
| 6035 | struct BlockingObjectUserDataWrapper |
| 6036 | { |
| 6037 | CALLBACK_DATA pUserData; |
| 6038 | IDacDbiInterface::FP_BLOCKINGOBJECT_ENUMERATION_CALLBACK fpCallback; |
| 6039 | }; |
| 6040 | |
| 6041 | // The callback helper used by EnumerateBlockingObjects below, this |
| 6042 | // callback in turn invokes the user's callback with the right arguments |
| 6043 | void EnumerateBlockingObjectsCallback(PTR_DebugBlockingItem obj, VOID* pUserData) |
| 6044 | { |
| 6045 | BlockingObjectUserDataWrapper* wrapper = (BlockingObjectUserDataWrapper*)pUserData; |
| 6046 | DacBlockingObject dacObj; |
| 6047 | |
| 6048 | // init to an arbitrary value to avoid mac compiler error about unintialized use |
| 6049 | // it will be correctly set in the switch and is never used with only this init here |
| 6050 | dacObj.blockingReason = DacBlockReason_MonitorCriticalSection; |
| 6051 | |
| 6052 | dacObj.vmBlockingObject.SetDacTargetPtr(dac_cast<TADDR>(OBJECTREFToObject(obj->pMonitor->GetOwningObject()))); |
| 6053 | dacObj.dwTimeout = obj->dwTimeout; |
| 6054 | dacObj.vmAppDomain.SetDacTargetPtr(dac_cast<TADDR>(obj->pAppDomain)); |
| 6055 | switch(obj->type) |
| 6056 | { |
| 6057 | case DebugBlock_MonitorCriticalSection: |
| 6058 | dacObj.blockingReason = DacBlockReason_MonitorCriticalSection; |
| 6059 | break; |
| 6060 | case DebugBlock_MonitorEvent: |
| 6061 | dacObj.blockingReason = DacBlockReason_MonitorEvent; |
| 6062 | break; |
| 6063 | default: |
| 6064 | _ASSERTE(!"obj->type has an invalid value" ); |
| 6065 | return; |
| 6066 | } |
| 6067 | |
| 6068 | wrapper->fpCallback(dacObj, wrapper->pUserData); |
| 6069 | } |
| 6070 | |
| 6071 | // DAC/DBI API: |
| 6072 | // Enumerate all monitors blocking a thread |
| 6073 | void DacDbiInterfaceImpl::EnumerateBlockingObjects(VMPTR_Thread vmThread, |
| 6074 | FP_BLOCKINGOBJECT_ENUMERATION_CALLBACK fpCallback, |
| 6075 | CALLBACK_DATA pUserData) |
| 6076 | { |
| 6077 | DD_ENTER_MAY_THROW; |
| 6078 | |
| 6079 | Thread * pThread = vmThread.GetDacPtr(); |
| 6080 | _ASSERTE(pThread != NULL); |
| 6081 | |
| 6082 | BlockingObjectUserDataWrapper wrapper; |
| 6083 | wrapper.fpCallback = fpCallback; |
| 6084 | wrapper.pUserData = pUserData; |
| 6085 | |
| 6086 | pThread->DebugBlockingInfo.VisitBlockingItems((DebugBlockingItemVisitor)EnumerateBlockingObjectsCallback, |
| 6087 | (VOID*)&wrapper); |
| 6088 | } |
| 6089 | |
| 6090 | // DAC/DBI API: |
| 6091 | // Returns the thread which owns the monitor lock on an object and the acquisition count |
| 6092 | MonitorLockInfo DacDbiInterfaceImpl::GetThreadOwningMonitorLock(VMPTR_Object vmObject) |
| 6093 | { |
| 6094 | DD_ENTER_MAY_THROW; |
| 6095 | MonitorLockInfo info; |
| 6096 | info.lockOwner = VMPTR_Thread::NullPtr(); |
| 6097 | info.acquisitionCount = 0; |
| 6098 | |
| 6099 | Object* pObj = vmObject.GetDacPtr(); |
| 6100 | DWORD threadId; |
| 6101 | DWORD acquisitionCount; |
| 6102 | if(!pObj->GetHeader()->GetThreadOwningMonitorLock(&threadId, &acquisitionCount)) |
| 6103 | { |
| 6104 | return info; |
| 6105 | } |
| 6106 | |
| 6107 | Thread *pThread = ThreadStore::GetThreadList(NULL); |
| 6108 | while (pThread != NULL) |
| 6109 | { |
| 6110 | if(pThread->GetThreadId() == threadId) |
| 6111 | { |
| 6112 | info.lockOwner.SetDacTargetPtr(PTR_HOST_TO_TADDR(pThread)); |
| 6113 | info.acquisitionCount = acquisitionCount; |
| 6114 | return info; |
| 6115 | } |
| 6116 | pThread = ThreadStore::GetThreadList(pThread); |
| 6117 | } |
| 6118 | _ASSERTE(!"A thread should have been found" ); |
| 6119 | return info; |
| 6120 | } |
| 6121 | |
| 6122 | // The data passed to EnumerateThreadsCallback below |
| 6123 | struct ThreadUserDataWrapper |
| 6124 | { |
| 6125 | CALLBACK_DATA pUserData; |
| 6126 | IDacDbiInterface::FP_THREAD_ENUMERATION_CALLBACK fpCallback; |
| 6127 | }; |
| 6128 | |
| 6129 | // The callback helper used for EnumerateMonitorEventWaitList below. This callback |
| 6130 | // invokes the user's callback with the correct arguments. |
| 6131 | void EnumerateThreadsCallback(PTR_Thread pThread, VOID* pUserData) |
| 6132 | { |
| 6133 | ThreadUserDataWrapper* wrapper = (ThreadUserDataWrapper*)pUserData; |
| 6134 | VMPTR_Thread vmThread = VMPTR_Thread::NullPtr(); |
| 6135 | vmThread.SetDacTargetPtr(dac_cast<TADDR>(pThread)); |
| 6136 | wrapper->fpCallback(vmThread, wrapper->pUserData); |
| 6137 | } |
| 6138 | |
| 6139 | // DAC/DBI API: |
| 6140 | // Enumerate all threads waiting on the monitor event for an object |
| 6141 | void DacDbiInterfaceImpl::EnumerateMonitorEventWaitList(VMPTR_Object vmObject, |
| 6142 | FP_THREAD_ENUMERATION_CALLBACK fpCallback, |
| 6143 | CALLBACK_DATA pUserData) |
| 6144 | { |
| 6145 | DD_ENTER_MAY_THROW; |
| 6146 | |
| 6147 | Object* pObj = vmObject.GetDacPtr(); |
| 6148 | SyncBlock* psb = pObj->PassiveGetSyncBlock(); |
| 6149 | |
| 6150 | // no sync block means no wait list |
| 6151 | if(psb == NULL) |
| 6152 | return; |
| 6153 | |
| 6154 | ThreadUserDataWrapper wrapper; |
| 6155 | wrapper.fpCallback = fpCallback; |
| 6156 | wrapper.pUserData = pUserData; |
| 6157 | ThreadQueue::EnumerateThreads(psb, (FP_TQ_THREAD_ENUMERATION_CALLBACK)EnumerateThreadsCallback, (VOID*) &wrapper); |
| 6158 | } |
| 6159 | |
| 6160 | |
| 6161 | bool DacDbiInterfaceImpl::AreGCStructuresValid() |
| 6162 | { |
| 6163 | return true; |
| 6164 | } |
| 6165 | |
| 6166 | HeapData::HeapData() |
| 6167 | : YoungestGenPtr(0), YoungestGenLimit(0), Gen0Start(0), Gen0End(0), SegmentCount(0), Segments(0) |
| 6168 | { |
| 6169 | } |
| 6170 | |
| 6171 | HeapData::~HeapData() |
| 6172 | { |
| 6173 | if (Segments) |
| 6174 | delete [] Segments; |
| 6175 | } |
| 6176 | |
| 6177 | LinearReadCache::LinearReadCache() |
| 6178 | : mCurrPageStart(0), mPageSize(0), mCurrPageSize(0), mPage(0) |
| 6179 | { |
| 6180 | SYSTEM_INFO si; |
| 6181 | GetSystemInfo(&si); |
| 6182 | |
| 6183 | mPageSize = si.dwPageSize; |
| 6184 | mPage = new (nothrow) BYTE[mPageSize]; |
| 6185 | } |
| 6186 | |
| 6187 | LinearReadCache::~LinearReadCache() |
| 6188 | { |
| 6189 | if (mPage) |
| 6190 | delete [] mPage; |
| 6191 | } |
| 6192 | |
| 6193 | bool LinearReadCache::MoveToPage(CORDB_ADDRESS addr) |
| 6194 | { |
| 6195 | mCurrPageStart = addr - (addr % mPageSize); |
| 6196 | HRESULT hr = g_dacImpl->m_pTarget->ReadVirtual(mCurrPageStart, mPage, mPageSize, &mCurrPageSize); |
| 6197 | |
| 6198 | if (hr != S_OK) |
| 6199 | { |
| 6200 | mCurrPageStart = 0; |
| 6201 | mCurrPageSize = 0; |
| 6202 | return false; |
| 6203 | } |
| 6204 | |
| 6205 | return true; |
| 6206 | } |
| 6207 | |
| 6208 | |
| 6209 | CORDB_ADDRESS DacHeapWalker::HeapStart = 0; |
| 6210 | CORDB_ADDRESS DacHeapWalker::HeapEnd = ~0; |
| 6211 | |
| 6212 | DacHeapWalker::DacHeapWalker() |
| 6213 | : mThreadCount(0), mAllocInfo(0), mHeapCount(0), mHeaps(0), |
| 6214 | mCurrObj(0), mCurrSize(0), mCurrMT(0), |
| 6215 | mCurrHeap(0), mCurrSeg(0), mStart((TADDR)HeapStart), mEnd((TADDR)HeapEnd) |
| 6216 | { |
| 6217 | } |
| 6218 | |
| 6219 | DacHeapWalker::~DacHeapWalker() |
| 6220 | { |
| 6221 | if (mAllocInfo) |
| 6222 | delete [] mAllocInfo; |
| 6223 | |
| 6224 | if (mHeaps) |
| 6225 | delete [] mHeaps; |
| 6226 | } |
| 6227 | |
| 6228 | SegmentData *DacHeapWalker::FindSegment(CORDB_ADDRESS obj) |
| 6229 | { |
| 6230 | for (size_t i = 0; i < mHeapCount; ++i) |
| 6231 | for (size_t j = 0; j < mHeaps[i].SegmentCount; ++j) |
| 6232 | if (mHeaps[i].Segments[j].Start <= obj && obj <= mHeaps[i].Segments[j].End) |
| 6233 | return &mHeaps[i].Segments[j]; |
| 6234 | |
| 6235 | return NULL; |
| 6236 | } |
| 6237 | |
| 6238 | HRESULT DacHeapWalker::Next(CORDB_ADDRESS *pValue, CORDB_ADDRESS *pMT, ULONG64 *pSize) |
| 6239 | { |
| 6240 | if (!HasMoreObjects()) |
| 6241 | return E_FAIL; |
| 6242 | |
| 6243 | if (pValue) |
| 6244 | *pValue = mCurrObj; |
| 6245 | |
| 6246 | if (pMT) |
| 6247 | *pMT = (CORDB_ADDRESS)mCurrMT; |
| 6248 | |
| 6249 | if (pSize) |
| 6250 | *pSize = (ULONG64)mCurrSize; |
| 6251 | |
| 6252 | HRESULT hr = MoveToNextObject(); |
| 6253 | return FAILED(hr) ? hr : S_OK; |
| 6254 | } |
| 6255 | |
| 6256 | |
| 6257 | |
| 6258 | HRESULT DacHeapWalker::MoveToNextObject() |
| 6259 | { |
| 6260 | do |
| 6261 | { |
| 6262 | // Move to the next object |
| 6263 | mCurrObj += mCurrSize; |
| 6264 | |
| 6265 | // Check to see if we are in the correct bounds. |
| 6266 | if (mHeaps[mCurrHeap].Gen0Start <= mCurrObj && mHeaps[mCurrHeap].Gen0End > mCurrObj) |
| 6267 | CheckAllocAndSegmentRange(); |
| 6268 | |
| 6269 | // Check to see if we've moved off the end of a segment |
| 6270 | if (mCurrObj >= mHeaps[mCurrHeap].Segments[mCurrSeg].End || mCurrObj > mEnd) |
| 6271 | { |
| 6272 | HRESULT hr = NextSegment(); |
| 6273 | if (FAILED(hr) || hr == S_FALSE) |
| 6274 | return hr; |
| 6275 | } |
| 6276 | |
| 6277 | // Get the method table pointer |
| 6278 | if (!mCache.ReadMT(mCurrObj, &mCurrMT)) |
| 6279 | return E_FAIL; |
| 6280 | |
| 6281 | if (!GetSize(mCurrMT, mCurrSize)) |
| 6282 | return E_FAIL; |
| 6283 | } while (mCurrObj < mStart); |
| 6284 | |
| 6285 | _ASSERTE(mStart <= mCurrObj && mCurrObj <= mEnd); |
| 6286 | return S_OK; |
| 6287 | } |
| 6288 | |
| 6289 | bool DacHeapWalker::GetSize(TADDR tMT, size_t &size) |
| 6290 | { |
| 6291 | // With heap corruption, it's entierly possible that the MethodTable |
| 6292 | // we get is bad. This could cause exceptions, which we will catch |
| 6293 | // and return false. This causes the heapwalker to move to the next |
| 6294 | // segment. |
| 6295 | bool ret = true; |
| 6296 | EX_TRY |
| 6297 | { |
| 6298 | MethodTable *mt = PTR_MethodTable(tMT); |
| 6299 | size_t cs = mt->GetComponentSize(); |
| 6300 | |
| 6301 | if (cs) |
| 6302 | { |
| 6303 | DWORD tmp = 0; |
| 6304 | if (mCache.Read(mCurrObj+sizeof(TADDR), &tmp)) |
| 6305 | cs *= tmp; |
| 6306 | else |
| 6307 | ret = false; |
| 6308 | } |
| 6309 | |
| 6310 | size = mt->GetBaseSize() + cs; |
| 6311 | |
| 6312 | // The size is not guaranteed to be aligned, we have to |
| 6313 | // do that ourself. |
| 6314 | if (mHeaps[mCurrHeap].Segments[mCurrSeg].Generation == 3) |
| 6315 | size = AlignLarge(size); |
| 6316 | else |
| 6317 | size = Align(size); |
| 6318 | } |
| 6319 | EX_CATCH |
| 6320 | { |
| 6321 | ret = false; |
| 6322 | } |
| 6323 | EX_END_CATCH(SwallowAllExceptions) |
| 6324 | |
| 6325 | return ret; |
| 6326 | } |
| 6327 | |
| 6328 | |
| 6329 | HRESULT DacHeapWalker::NextSegment() |
| 6330 | { |
| 6331 | mCurrObj = 0; |
| 6332 | mCurrMT = 0; |
| 6333 | mCurrSize = 0; |
| 6334 | |
| 6335 | do |
| 6336 | { |
| 6337 | mCurrSeg++; |
| 6338 | while (mCurrSeg >= mHeaps[mCurrHeap].SegmentCount) |
| 6339 | { |
| 6340 | mCurrSeg = 0; |
| 6341 | mCurrHeap++; |
| 6342 | |
| 6343 | if (mCurrHeap >= mHeapCount) |
| 6344 | { |
| 6345 | return S_FALSE; |
| 6346 | } |
| 6347 | } |
| 6348 | |
| 6349 | mCurrObj = mHeaps[mCurrHeap].Segments[mCurrSeg].Start; |
| 6350 | |
| 6351 | if (mHeaps[mCurrHeap].Gen0Start <= mCurrObj && mHeaps[mCurrHeap].Gen0End > mCurrObj) |
| 6352 | CheckAllocAndSegmentRange(); |
| 6353 | |
| 6354 | if (!mCache.ReadMT(mCurrObj, &mCurrMT)) |
| 6355 | { |
| 6356 | return E_FAIL; |
| 6357 | } |
| 6358 | |
| 6359 | if (!GetSize(mCurrMT, mCurrSize)) |
| 6360 | { |
| 6361 | return E_FAIL; |
| 6362 | } |
| 6363 | } while((mHeaps[mCurrHeap].Segments[mCurrSeg].Start > mEnd) || (mHeaps[mCurrHeap].Segments[mCurrSeg].End < mStart)); |
| 6364 | |
| 6365 | return S_OK; |
| 6366 | } |
| 6367 | |
| 6368 | void DacHeapWalker::CheckAllocAndSegmentRange() |
| 6369 | { |
| 6370 | const size_t MinObjSize = sizeof(TADDR)*3; |
| 6371 | |
| 6372 | for (int i = 0; i < mThreadCount; ++i) |
| 6373 | if (mCurrObj == mAllocInfo[i].Ptr) |
| 6374 | { |
| 6375 | mCurrObj = mAllocInfo[i].Limit + Align(MinObjSize); |
| 6376 | break; |
| 6377 | } |
| 6378 | |
| 6379 | if (mCurrObj == mHeaps[mCurrHeap].YoungestGenPtr) |
| 6380 | { |
| 6381 | mCurrObj = mHeaps[mCurrHeap].YoungestGenLimit + Align(MinObjSize); |
| 6382 | } |
| 6383 | } |
| 6384 | |
| 6385 | HRESULT DacHeapWalker::Init(CORDB_ADDRESS start, CORDB_ADDRESS end) |
| 6386 | { |
| 6387 | // Collect information about the allocation contexts in the process. |
| 6388 | ThreadStore* threadStore = ThreadStore::s_pThreadStore; |
| 6389 | if (threadStore != NULL) |
| 6390 | { |
| 6391 | int count = (int)threadStore->ThreadCountInEE(); |
| 6392 | mAllocInfo = new (nothrow) AllocInfo[count]; |
| 6393 | if (mAllocInfo == NULL) |
| 6394 | return E_OUTOFMEMORY; |
| 6395 | |
| 6396 | Thread *thread = NULL; |
| 6397 | int j = 0; |
| 6398 | for (int i = 0; i < count; ++i) |
| 6399 | { |
| 6400 | // The thread or allocation context being null is troubling, but not fatal. |
| 6401 | // We may have stopped the process where the thread list or thread's alloc |
| 6402 | // context was in an inconsistent state. We will simply skip over affected |
| 6403 | // segments during the heap walk if we encounter problems due to this. |
| 6404 | thread = ThreadStore::GetThreadList(thread); |
| 6405 | if (thread == NULL) |
| 6406 | continue; |
| 6407 | |
| 6408 | gc_alloc_context *ctx = thread->GetAllocContext(); |
| 6409 | if (ctx == NULL) |
| 6410 | continue; |
| 6411 | |
| 6412 | if ((CORDB_ADDRESS)ctx->alloc_ptr != NULL) |
| 6413 | { |
| 6414 | mAllocInfo[j].Ptr = (CORDB_ADDRESS)ctx->alloc_ptr; |
| 6415 | mAllocInfo[j].Limit = (CORDB_ADDRESS)ctx->alloc_limit; |
| 6416 | j++; |
| 6417 | } |
| 6418 | } |
| 6419 | |
| 6420 | mThreadCount = j; |
| 6421 | } |
| 6422 | |
| 6423 | #ifdef FEATURE_SVR_GC |
| 6424 | HRESULT hr = GCHeapUtilities::IsServerHeap() ? InitHeapDataSvr(mHeaps, mHeapCount) : InitHeapDataWks(mHeaps, mHeapCount); |
| 6425 | #else |
| 6426 | HRESULT hr = InitHeapDataWks(mHeaps, mHeapCount); |
| 6427 | #endif |
| 6428 | |
| 6429 | // Set up mCurrObj/mCurrMT. |
| 6430 | if (SUCCEEDED(hr)) |
| 6431 | hr = Reset(start, end); |
| 6432 | |
| 6433 | // Collect information about GC heaps |
| 6434 | return hr; |
| 6435 | } |
| 6436 | |
| 6437 | HRESULT DacHeapWalker::Reset(CORDB_ADDRESS start, CORDB_ADDRESS end) |
| 6438 | { |
| 6439 | _ASSERTE(mHeaps); |
| 6440 | _ASSERTE(mHeapCount > 0); |
| 6441 | _ASSERTE(mHeaps[0].Segments); |
| 6442 | _ASSERTE(mHeaps[0].SegmentCount > 0); |
| 6443 | |
| 6444 | mStart = start; |
| 6445 | mEnd = end; |
| 6446 | |
| 6447 | // Set up first object |
| 6448 | mCurrObj = mHeaps[0].Segments[0].Start; |
| 6449 | mCurrMT = 0; |
| 6450 | mCurrSize = 0; |
| 6451 | mCurrHeap = 0; |
| 6452 | mCurrSeg = 0; |
| 6453 | |
| 6454 | if (!mCache.ReadMT(mCurrObj, &mCurrMT)) |
| 6455 | return E_FAIL; |
| 6456 | |
| 6457 | if (!GetSize(mCurrMT, mCurrSize)) |
| 6458 | return E_FAIL; |
| 6459 | |
| 6460 | if (mCurrObj < mStart || mCurrObj > mEnd) |
| 6461 | MoveToNextObject(); |
| 6462 | |
| 6463 | return S_OK; |
| 6464 | } |
| 6465 | |
| 6466 | HRESULT DacHeapWalker::ListNearObjects(CORDB_ADDRESS obj, CORDB_ADDRESS *pPrev, CORDB_ADDRESS *pContaining, CORDB_ADDRESS *pNext) |
| 6467 | { |
| 6468 | SegmentData *seg = FindSegment(obj); |
| 6469 | |
| 6470 | if (seg == NULL) |
| 6471 | return E_FAIL; |
| 6472 | |
| 6473 | HRESULT hr = Reset(seg->Start, seg->End); |
| 6474 | if (SUCCEEDED(hr)) |
| 6475 | { |
| 6476 | CORDB_ADDRESS prev = 0; |
| 6477 | CORDB_ADDRESS curr = 0; |
| 6478 | ULONG64 size = 0; |
| 6479 | bool found = false; |
| 6480 | |
| 6481 | while (!found && HasMoreObjects()) |
| 6482 | { |
| 6483 | prev = curr; |
| 6484 | hr = Next(&curr, NULL, &size); |
| 6485 | if (FAILED(hr)) |
| 6486 | break; |
| 6487 | |
| 6488 | if (obj >= curr && obj < curr + size) |
| 6489 | found = true; |
| 6490 | } |
| 6491 | |
| 6492 | if (found) |
| 6493 | { |
| 6494 | if (pPrev) |
| 6495 | *pPrev = prev; |
| 6496 | |
| 6497 | if (pContaining) |
| 6498 | *pContaining = curr; |
| 6499 | |
| 6500 | if (pNext) |
| 6501 | { |
| 6502 | if (HasMoreObjects()) |
| 6503 | { |
| 6504 | hr = Next(&curr, NULL, NULL); |
| 6505 | if (SUCCEEDED(hr)) |
| 6506 | *pNext = curr; |
| 6507 | } |
| 6508 | else |
| 6509 | { |
| 6510 | *pNext = 0; |
| 6511 | } |
| 6512 | } |
| 6513 | |
| 6514 | hr = S_OK; |
| 6515 | } |
| 6516 | else if (SUCCEEDED(hr)) |
| 6517 | { |
| 6518 | hr = E_FAIL; |
| 6519 | } |
| 6520 | } |
| 6521 | |
| 6522 | return hr; |
| 6523 | } |
| 6524 | |
| 6525 | HRESULT DacHeapWalker::InitHeapDataWks(HeapData *&pHeaps, size_t &pCount) |
| 6526 | { |
| 6527 | // Scrape basic heap details |
| 6528 | pCount = 1; |
| 6529 | pHeaps = new (nothrow) HeapData[1]; |
| 6530 | if (pHeaps == NULL) |
| 6531 | return E_OUTOFMEMORY; |
| 6532 | |
| 6533 | dac_generation gen0 = *GenerationTableIndex(g_gcDacGlobals->generation_table, 0); |
| 6534 | dac_generation gen1 = *GenerationTableIndex(g_gcDacGlobals->generation_table, 1); |
| 6535 | dac_generation gen2 = *GenerationTableIndex(g_gcDacGlobals->generation_table, 2); |
| 6536 | dac_generation loh = *GenerationTableIndex(g_gcDacGlobals->generation_table, 3); |
| 6537 | pHeaps[0].YoungestGenPtr = (CORDB_ADDRESS)gen0.allocation_context.alloc_ptr; |
| 6538 | pHeaps[0].YoungestGenLimit = (CORDB_ADDRESS)gen0.allocation_context.alloc_limit; |
| 6539 | |
| 6540 | pHeaps[0].Gen0Start = (CORDB_ADDRESS)gen0.allocation_start; |
| 6541 | pHeaps[0].Gen0End = (CORDB_ADDRESS)*g_gcDacGlobals->alloc_allocated; |
| 6542 | pHeaps[0].Gen1Start = (CORDB_ADDRESS)gen1.allocation_start; |
| 6543 | |
| 6544 | // Segments |
| 6545 | int count = GetSegmentCount(loh.start_segment); |
| 6546 | count += GetSegmentCount(gen2.start_segment); |
| 6547 | |
| 6548 | pHeaps[0].SegmentCount = count; |
| 6549 | pHeaps[0].Segments = new (nothrow) SegmentData[count]; |
| 6550 | if (pHeaps[0].Segments == NULL) |
| 6551 | return E_OUTOFMEMORY; |
| 6552 | |
| 6553 | // Small object heap segments |
| 6554 | DPTR(dac_heap_segment) seg = gen2.start_segment; |
| 6555 | int i = 0; |
| 6556 | for (; seg && (i < count); ++i) |
| 6557 | { |
| 6558 | pHeaps[0].Segments[i].Start = (CORDB_ADDRESS)seg->mem; |
| 6559 | if (seg.GetAddr() == (TADDR)*g_gcDacGlobals->ephemeral_heap_segment) |
| 6560 | { |
| 6561 | pHeaps[0].Segments[i].End = (CORDB_ADDRESS)*g_gcDacGlobals->alloc_allocated; |
| 6562 | pHeaps[0].Segments[i].Generation = 1; |
| 6563 | pHeaps[0].EphemeralSegment = i; |
| 6564 | } |
| 6565 | else |
| 6566 | { |
| 6567 | pHeaps[0].Segments[i].End = (CORDB_ADDRESS)seg->allocated; |
| 6568 | pHeaps[0].Segments[i].Generation = 2; |
| 6569 | } |
| 6570 | |
| 6571 | seg = seg->next; |
| 6572 | } |
| 6573 | |
| 6574 | // Large object heap segments |
| 6575 | seg = loh.start_segment; |
| 6576 | for (; seg && (i < count); ++i) |
| 6577 | { |
| 6578 | pHeaps[0].Segments[i].Generation = 3; |
| 6579 | pHeaps[0].Segments[i].Start = (CORDB_ADDRESS)seg->mem; |
| 6580 | pHeaps[0].Segments[i].End = (CORDB_ADDRESS)seg->allocated; |
| 6581 | |
| 6582 | seg = seg->next; |
| 6583 | } |
| 6584 | |
| 6585 | return S_OK; |
| 6586 | } |
| 6587 | |
| 6588 | HRESULT DacDbiInterfaceImpl::CreateHeapWalk(IDacDbiInterface::HeapWalkHandle *pHandle) |
| 6589 | { |
| 6590 | DD_ENTER_MAY_THROW; |
| 6591 | |
| 6592 | DacHeapWalker *data = new (nothrow) DacHeapWalker; |
| 6593 | if (data == NULL) |
| 6594 | return E_OUTOFMEMORY; |
| 6595 | |
| 6596 | HRESULT hr = data->Init(); |
| 6597 | if (SUCCEEDED(hr)) |
| 6598 | *pHandle = reinterpret_cast<HeapWalkHandle>(data); |
| 6599 | else |
| 6600 | delete data; |
| 6601 | |
| 6602 | return hr; |
| 6603 | } |
| 6604 | |
| 6605 | void DacDbiInterfaceImpl::DeleteHeapWalk(HeapWalkHandle handle) |
| 6606 | { |
| 6607 | DD_ENTER_MAY_THROW; |
| 6608 | |
| 6609 | DacHeapWalker *data = reinterpret_cast<DacHeapWalker*>(handle); |
| 6610 | if (data) |
| 6611 | delete data; |
| 6612 | } |
| 6613 | |
| 6614 | HRESULT DacDbiInterfaceImpl::WalkHeap(HeapWalkHandle handle, |
| 6615 | ULONG count, |
| 6616 | OUT COR_HEAPOBJECT * objects, |
| 6617 | OUT ULONG *fetched) |
| 6618 | { |
| 6619 | DD_ENTER_MAY_THROW; |
| 6620 | if (fetched == NULL) |
| 6621 | return E_INVALIDARG; |
| 6622 | |
| 6623 | DacHeapWalker *walk = reinterpret_cast<DacHeapWalker*>(handle); |
| 6624 | *fetched = 0; |
| 6625 | |
| 6626 | if (!walk->HasMoreObjects()) |
| 6627 | return S_FALSE; |
| 6628 | |
| 6629 | CORDB_ADDRESS freeMT = (CORDB_ADDRESS)g_pFreeObjectMethodTable.GetAddr(); |
| 6630 | |
| 6631 | HRESULT hr = S_OK; |
| 6632 | CORDB_ADDRESS addr, mt; |
| 6633 | ULONG64 size; |
| 6634 | |
| 6635 | ULONG i = 0; |
| 6636 | while (i < count && walk->HasMoreObjects()) |
| 6637 | { |
| 6638 | hr = walk->Next(&addr, &mt, &size); |
| 6639 | |
| 6640 | if (FAILED(hr)) |
| 6641 | break; |
| 6642 | |
| 6643 | if (mt != freeMT) |
| 6644 | { |
| 6645 | objects[i].address = addr; |
| 6646 | objects[i].type.token1 = mt; |
| 6647 | objects[i].type.token2 = NULL; |
| 6648 | objects[i].size = size; |
| 6649 | i++; |
| 6650 | } |
| 6651 | } |
| 6652 | |
| 6653 | if (SUCCEEDED(hr)) |
| 6654 | hr = (i < count) ? S_FALSE : S_OK; |
| 6655 | |
| 6656 | *fetched = i; |
| 6657 | return hr; |
| 6658 | } |
| 6659 | |
| 6660 | |
| 6661 | |
| 6662 | HRESULT DacDbiInterfaceImpl::GetHeapSegments(OUT DacDbiArrayList<COR_SEGMENT> *pSegments) |
| 6663 | { |
| 6664 | DD_ENTER_MAY_THROW; |
| 6665 | |
| 6666 | |
| 6667 | size_t heapCount = 0; |
| 6668 | HeapData *heaps = 0; |
| 6669 | |
| 6670 | #ifdef FEATURE_SVR_GC |
| 6671 | HRESULT hr = GCHeapUtilities::IsServerHeap() ? DacHeapWalker::InitHeapDataSvr(heaps, heapCount) : DacHeapWalker::InitHeapDataWks(heaps, heapCount); |
| 6672 | #else |
| 6673 | HRESULT hr = DacHeapWalker::InitHeapDataWks(heaps, heapCount); |
| 6674 | #endif |
| 6675 | |
| 6676 | NewArrayHolder<HeapData> _heapHolder = heaps; |
| 6677 | |
| 6678 | // Count the number of segments to know how much to allocate. |
| 6679 | int total = 0; |
| 6680 | for (size_t i = 0; i < heapCount; ++i) |
| 6681 | { |
| 6682 | // SegmentCount is +1 due to the ephemeral segment containing more than one |
| 6683 | // generation (Gen1 + Gen0, and sometimes part of Gen2). |
| 6684 | total += (int)heaps[i].SegmentCount + 1; |
| 6685 | |
| 6686 | // It's possible that part of Gen2 lives on the ephemeral segment. If so, |
| 6687 | // we need to add one more to the output. |
| 6688 | const size_t eph = heaps[i].EphemeralSegment; |
| 6689 | _ASSERTE(eph < heaps[i].SegmentCount); |
| 6690 | if (heaps[i].Segments[eph].Start != heaps[i].Gen1Start) |
| 6691 | total++; |
| 6692 | } |
| 6693 | |
| 6694 | pSegments->Alloc(total); |
| 6695 | |
| 6696 | // Now walk all segments and write them to the array. |
| 6697 | int curr = 0; |
| 6698 | for (size_t i = 0; i < heapCount; ++i) |
| 6699 | { |
| 6700 | // Generation 0 is not in the segment list. |
| 6701 | _ASSERTE(curr < total); |
| 6702 | { |
| 6703 | COR_SEGMENT &seg = (*pSegments)[curr++]; |
| 6704 | seg.start = heaps[i].Gen0Start; |
| 6705 | seg.end = heaps[i].Gen0End; |
| 6706 | seg.type = CorDebug_Gen0; |
| 6707 | seg.heap = (ULONG)i; |
| 6708 | } |
| 6709 | |
| 6710 | for (size_t j = 0; j < heaps[i].SegmentCount; ++j) |
| 6711 | { |
| 6712 | if (heaps[i].Segments[j].Generation == 1) |
| 6713 | { |
| 6714 | // This is the ephemeral segment. We have already written Gen0, |
| 6715 | // now write Gen1. |
| 6716 | _ASSERTE(heaps[i].Segments[j].Start <= heaps[i].Gen1Start); |
| 6717 | _ASSERTE(heaps[i].Segments[j].End > heaps[i].Gen1Start); |
| 6718 | |
| 6719 | { |
| 6720 | _ASSERTE(curr < total); |
| 6721 | COR_SEGMENT &seg = (*pSegments)[curr++]; |
| 6722 | seg.start = heaps[i].Gen1Start; |
| 6723 | seg.end = heaps[i].Gen0Start; |
| 6724 | seg.type = CorDebug_Gen1; |
| 6725 | seg.heap = (ULONG)i; |
| 6726 | } |
| 6727 | |
| 6728 | // It's possible for Gen2 to take up a portion of the ephemeral segment. |
| 6729 | // We test for that here. |
| 6730 | if (heaps[i].Segments[j].Start != heaps[i].Gen1Start) |
| 6731 | { |
| 6732 | _ASSERTE(curr < total); |
| 6733 | COR_SEGMENT &seg = (*pSegments)[curr++]; |
| 6734 | seg.start = heaps[i].Segments[j].Start; |
| 6735 | seg.end = heaps[i].Gen1Start; |
| 6736 | seg.type = CorDebug_Gen2; |
| 6737 | seg.heap = (ULONG)i; |
| 6738 | } |
| 6739 | } |
| 6740 | else |
| 6741 | { |
| 6742 | // Otherwise, we have a gen2 or gen3 (LOH) segment |
| 6743 | _ASSERTE(curr < total); |
| 6744 | COR_SEGMENT &seg = (*pSegments)[curr++]; |
| 6745 | seg.start = heaps[i].Segments[j].Start; |
| 6746 | seg.end = heaps[i].Segments[j].End; |
| 6747 | |
| 6748 | _ASSERTE(heaps[i].Segments[j].Generation <= CorDebug_LOH); |
| 6749 | seg.type = (CorDebugGenerationTypes)heaps[i].Segments[j].Generation; |
| 6750 | seg.heap = (ULONG)i; |
| 6751 | } |
| 6752 | } |
| 6753 | } |
| 6754 | |
| 6755 | _ASSERTE(total == curr); |
| 6756 | return hr; |
| 6757 | } |
| 6758 | |
| 6759 | bool DacDbiInterfaceImpl::IsValidObject(CORDB_ADDRESS addr) |
| 6760 | { |
| 6761 | DD_ENTER_MAY_THROW; |
| 6762 | |
| 6763 | bool isValid = false; |
| 6764 | |
| 6765 | if (addr != 0 && addr != (CORDB_ADDRESS)-1) |
| 6766 | { |
| 6767 | EX_TRY |
| 6768 | { |
| 6769 | PTR_Object obj(TO_TADDR(addr)); |
| 6770 | |
| 6771 | PTR_MethodTable mt = obj->GetMethodTable(); |
| 6772 | PTR_EEClass cls = mt->GetClass(); |
| 6773 | |
| 6774 | if (mt == cls->GetMethodTable()) |
| 6775 | isValid = true; |
| 6776 | else if (!mt->IsCanonicalMethodTable()) |
| 6777 | isValid = cls->GetMethodTable()->GetClass() == cls; |
| 6778 | } |
| 6779 | EX_CATCH |
| 6780 | { |
| 6781 | isValid = false; |
| 6782 | } |
| 6783 | EX_END_CATCH(SwallowAllExceptions) |
| 6784 | } |
| 6785 | |
| 6786 | return isValid; |
| 6787 | } |
| 6788 | |
| 6789 | bool DacDbiInterfaceImpl::GetAppDomainForObject(CORDB_ADDRESS addr, OUT VMPTR_AppDomain * pAppDomain, |
| 6790 | OUT VMPTR_Module *pModule, OUT VMPTR_DomainFile *pDomainFile) |
| 6791 | { |
| 6792 | DD_ENTER_MAY_THROW; |
| 6793 | |
| 6794 | if (addr == 0 || addr == (CORDB_ADDRESS)-1) |
| 6795 | { |
| 6796 | return false; |
| 6797 | } |
| 6798 | |
| 6799 | PTR_Object obj(TO_TADDR(addr)); |
| 6800 | MethodTable *mt = obj->GetMethodTable(); |
| 6801 | |
| 6802 | PTR_Module module = mt->GetModule(); |
| 6803 | PTR_Assembly assembly = module->GetAssembly(); |
| 6804 | BaseDomain *baseDomain = assembly->GetDomain(); |
| 6805 | |
| 6806 | if (baseDomain->IsAppDomain()) |
| 6807 | { |
| 6808 | pAppDomain->SetDacTargetPtr(PTR_HOST_TO_TADDR(baseDomain->AsAppDomain())); |
| 6809 | pModule->SetDacTargetPtr(PTR_HOST_TO_TADDR(module)); |
| 6810 | pDomainFile->SetDacTargetPtr(PTR_HOST_TO_TADDR(module->GetDomainFile(baseDomain->AsAppDomain()))); |
| 6811 | } |
| 6812 | else |
| 6813 | { |
| 6814 | return false; |
| 6815 | } |
| 6816 | |
| 6817 | return true; |
| 6818 | } |
| 6819 | |
| 6820 | HRESULT DacDbiInterfaceImpl::CreateRefWalk(OUT RefWalkHandle * pHandle, BOOL walkStacks, BOOL walkFQ, UINT32 handleWalkMask) |
| 6821 | { |
| 6822 | DD_ENTER_MAY_THROW; |
| 6823 | |
| 6824 | DacRefWalker *walker = new (nothrow) DacRefWalker(this, walkStacks, walkFQ, handleWalkMask); |
| 6825 | |
| 6826 | if (walker == NULL) |
| 6827 | return E_OUTOFMEMORY; |
| 6828 | |
| 6829 | HRESULT hr = walker->Init(); |
| 6830 | if (FAILED(hr)) |
| 6831 | { |
| 6832 | delete walker; |
| 6833 | } |
| 6834 | else |
| 6835 | { |
| 6836 | *pHandle = reinterpret_cast<RefWalkHandle>(walker); |
| 6837 | } |
| 6838 | |
| 6839 | return hr; |
| 6840 | } |
| 6841 | |
| 6842 | |
| 6843 | void DacDbiInterfaceImpl::DeleteRefWalk(IN RefWalkHandle handle) |
| 6844 | { |
| 6845 | DD_ENTER_MAY_THROW; |
| 6846 | |
| 6847 | DacRefWalker *walker = reinterpret_cast<DacRefWalker*>(handle); |
| 6848 | |
| 6849 | if (walker) |
| 6850 | delete walker; |
| 6851 | } |
| 6852 | |
| 6853 | |
| 6854 | HRESULT DacDbiInterfaceImpl::WalkRefs(RefWalkHandle handle, ULONG count, OUT DacGcReference * objects, OUT ULONG *pFetched) |
| 6855 | { |
| 6856 | if (objects == NULL || pFetched == NULL) |
| 6857 | return E_POINTER; |
| 6858 | |
| 6859 | DD_ENTER_MAY_THROW; |
| 6860 | |
| 6861 | DacRefWalker *walker = reinterpret_cast<DacRefWalker*>(handle); |
| 6862 | if (!walker) |
| 6863 | return E_INVALIDARG; |
| 6864 | |
| 6865 | return walker->Next(count, objects, pFetched); |
| 6866 | } |
| 6867 | |
| 6868 | HRESULT DacDbiInterfaceImpl::GetTypeID(CORDB_ADDRESS dbgObj, COR_TYPEID *pID) |
| 6869 | { |
| 6870 | DD_ENTER_MAY_THROW; |
| 6871 | |
| 6872 | TADDR obj[3]; |
| 6873 | ULONG32 read = 0; |
| 6874 | HRESULT hr = g_dacImpl->m_pTarget->ReadVirtual(dbgObj, (BYTE*)obj, sizeof(obj), &read); |
| 6875 | if (FAILED(hr)) |
| 6876 | return hr; |
| 6877 | |
| 6878 | pID->token1 = (UINT64)(obj[0] & ~1); |
| 6879 | pID->token2 = 0; |
| 6880 | |
| 6881 | return hr; |
| 6882 | } |
| 6883 | |
| 6884 | HRESULT DacDbiInterfaceImpl::GetTypeIDForType(VMPTR_TypeHandle vmTypeHandle, COR_TYPEID *pID) |
| 6885 | { |
| 6886 | DD_ENTER_MAY_THROW; |
| 6887 | |
| 6888 | _ASSERTE(pID != NULL); |
| 6889 | _ASSERTE(!vmTypeHandle.IsNull()); |
| 6890 | |
| 6891 | TypeHandle th = TypeHandle::FromPtr(vmTypeHandle.GetDacPtr()); |
| 6892 | PTR_MethodTable pMT = th.GetMethodTable(); |
| 6893 | pID->token1 = pMT.GetAddr(); |
| 6894 | _ASSERTE(pID->token1 != 0); |
| 6895 | pID->token2 = 0; |
| 6896 | return S_OK; |
| 6897 | } |
| 6898 | |
| 6899 | HRESULT DacDbiInterfaceImpl::GetObjectFields(COR_TYPEID id, ULONG32 celt, COR_FIELD *layout, ULONG32 *pceltFetched) |
| 6900 | { |
| 6901 | if (layout == NULL || pceltFetched == NULL) |
| 6902 | return E_POINTER; |
| 6903 | |
| 6904 | if (id.token1 == 0) |
| 6905 | return CORDBG_E_CLASS_NOT_LOADED; |
| 6906 | |
| 6907 | DD_ENTER_MAY_THROW; |
| 6908 | |
| 6909 | HRESULT hr = S_OK; |
| 6910 | |
| 6911 | TypeHandle typeHandle = TypeHandle::FromPtr(TO_TADDR(id.token1)); |
| 6912 | |
| 6913 | if (typeHandle.IsTypeDesc()) |
| 6914 | return E_INVALIDARG; |
| 6915 | |
| 6916 | ApproxFieldDescIterator fieldDescIterator(typeHandle.AsMethodTable(), ApproxFieldDescIterator::INSTANCE_FIELDS); |
| 6917 | |
| 6918 | ULONG32 cFields = fieldDescIterator.Count(); |
| 6919 | |
| 6920 | // Handle case where user only wanted to know the number of fields. |
| 6921 | if (layout == NULL) |
| 6922 | { |
| 6923 | *pceltFetched = cFields; |
| 6924 | return S_FALSE; |
| 6925 | } |
| 6926 | |
| 6927 | if (celt < cFields) |
| 6928 | { |
| 6929 | cFields = celt; |
| 6930 | |
| 6931 | // we are returning less than the total |
| 6932 | hr = S_FALSE; |
| 6933 | } |
| 6934 | |
| 6935 | // This must be non-null due to check at beginning of function. |
| 6936 | *pceltFetched = celt; |
| 6937 | |
| 6938 | CorElementType componentType = typeHandle.AsMethodTable()->GetInternalCorElementType(); |
| 6939 | BOOL fReferenceType = CorTypeInfo::IsObjRef_NoThrow(componentType); |
| 6940 | for (ULONG32 i = 0; i < cFields; ++i) |
| 6941 | { |
| 6942 | FieldDesc *pField = fieldDescIterator.Next(); |
| 6943 | layout[i].token = pField->GetMemberDef(); |
| 6944 | layout[i].offset = (ULONG32)pField->GetOffset() + (fReferenceType ? Object::GetOffsetOfFirstField() : 0); |
| 6945 | |
| 6946 | TypeHandle fieldHandle = pField->LookupFieldTypeHandle(); |
| 6947 | |
| 6948 | if (fieldHandle.IsNull()) |
| 6949 | { |
| 6950 | layout[i].id.token1 = 0; |
| 6951 | layout[i].id.token2 = 0; |
| 6952 | layout[i].fieldType = (CorElementType)0; |
| 6953 | } |
| 6954 | else |
| 6955 | { |
| 6956 | PTR_MethodTable mt = fieldHandle.GetMethodTable(); |
| 6957 | layout[i].fieldType = mt->GetInternalCorElementType(); |
| 6958 | layout[i].id.token1 = (ULONG64)mt.GetAddr(); |
| 6959 | |
| 6960 | if (!mt->IsArray()) |
| 6961 | { |
| 6962 | layout[i].id.token2 = 0; |
| 6963 | } |
| 6964 | else |
| 6965 | { |
| 6966 | TypeHandle hnd = mt->GetApproxArrayElementTypeHandle(); |
| 6967 | PTR_MethodTable cmt = hnd.GetMethodTable(); |
| 6968 | layout[i].id.token2 = (ULONG64)cmt.GetAddr(); |
| 6969 | } |
| 6970 | } |
| 6971 | } |
| 6972 | |
| 6973 | return hr; |
| 6974 | } |
| 6975 | |
| 6976 | |
| 6977 | HRESULT DacDbiInterfaceImpl::GetTypeLayout(COR_TYPEID id, COR_TYPE_LAYOUT *pLayout) |
| 6978 | { |
| 6979 | if (pLayout == NULL) |
| 6980 | return E_POINTER; |
| 6981 | |
| 6982 | if (id.token1 == 0) |
| 6983 | return CORDBG_E_CLASS_NOT_LOADED; |
| 6984 | |
| 6985 | DD_ENTER_MAY_THROW; |
| 6986 | |
| 6987 | PTR_MethodTable mt = PTR_MethodTable(TO_TADDR(id.token1)); |
| 6988 | PTR_MethodTable parentMT = mt->GetParentMethodTable(); |
| 6989 | |
| 6990 | COR_TYPEID parent = {parentMT.GetAddr(), 0}; |
| 6991 | pLayout->parentID = parent; |
| 6992 | |
| 6993 | DWORD size = mt->GetBaseSize(); |
| 6994 | ApproxFieldDescIterator fieldDescIterator(mt, ApproxFieldDescIterator::INSTANCE_FIELDS); |
| 6995 | |
| 6996 | pLayout->objectSize = size; |
| 6997 | pLayout->numFields = fieldDescIterator.Count(); |
| 6998 | |
| 6999 | // Get type |
| 7000 | CorElementType componentType = mt->IsString() ? ELEMENT_TYPE_STRING : mt->GetInternalCorElementType(); |
| 7001 | pLayout->type = componentType; |
| 7002 | pLayout->boxOffset = CorTypeInfo::IsObjRef_NoThrow(componentType) ? 0 : sizeof(TADDR); |
| 7003 | |
| 7004 | return S_OK; |
| 7005 | } |
| 7006 | |
| 7007 | HRESULT DacDbiInterfaceImpl::GetArrayLayout(COR_TYPEID id, COR_ARRAY_LAYOUT *pLayout) |
| 7008 | { |
| 7009 | if (pLayout == NULL) |
| 7010 | return E_POINTER; |
| 7011 | |
| 7012 | if (id.token1 == 0) |
| 7013 | return CORDBG_E_CLASS_NOT_LOADED; |
| 7014 | |
| 7015 | DD_ENTER_MAY_THROW; |
| 7016 | |
| 7017 | PTR_MethodTable mt = PTR_MethodTable(TO_TADDR(id.token1)); |
| 7018 | |
| 7019 | if (!mt->IsStringOrArray()) |
| 7020 | return E_INVALIDARG; |
| 7021 | |
| 7022 | if (mt->IsString()) |
| 7023 | { |
| 7024 | COR_TYPEID token; |
| 7025 | token.token1 = MscorlibBinder::GetElementType(ELEMENT_TYPE_CHAR).GetAddr(); |
| 7026 | token.token2 = 0; |
| 7027 | |
| 7028 | pLayout->componentID = token; |
| 7029 | |
| 7030 | pLayout->rankSize = 4; |
| 7031 | pLayout->numRanks = 1; |
| 7032 | pLayout->rankOffset = sizeof(TADDR); |
| 7033 | pLayout->firstElementOffset = sizeof(TADDR) + 4; |
| 7034 | pLayout->countOffset = sizeof(TADDR); |
| 7035 | pLayout->componentType = ELEMENT_TYPE_CHAR; |
| 7036 | pLayout->elementSize = 2; |
| 7037 | } |
| 7038 | else |
| 7039 | { |
| 7040 | DWORD ranks = mt->GetRank(); |
| 7041 | pLayout->rankSize = 4; |
| 7042 | pLayout->numRanks = ranks; |
| 7043 | bool multiDim = (ranks > 1); |
| 7044 | |
| 7045 | pLayout->rankOffset = multiDim ? sizeof(TADDR)*2 : sizeof(TADDR); |
| 7046 | pLayout->countOffset = sizeof(TADDR); |
| 7047 | pLayout->firstElementOffset = ArrayBase::GetDataPtrOffset(mt); |
| 7048 | |
| 7049 | |
| 7050 | TypeHandle hnd = mt->GetApproxArrayElementTypeHandle(); |
| 7051 | PTR_MethodTable cmt = hnd.GetMethodTable(); |
| 7052 | |
| 7053 | CorElementType componentType = cmt->GetInternalCorElementType(); |
| 7054 | if ((UINT64)cmt.GetAddr() == (UINT64)g_pStringClass.GetAddr()) |
| 7055 | componentType = ELEMENT_TYPE_STRING; |
| 7056 | |
| 7057 | COR_TYPEID token; |
| 7058 | token.token1 = cmt.GetAddr(); // This could be type handle |
| 7059 | token.token2 = 0; |
| 7060 | pLayout->componentID = token; |
| 7061 | pLayout->componentType = componentType; |
| 7062 | |
| 7063 | if (CorTypeInfo::IsObjRef_NoThrow(componentType)) |
| 7064 | pLayout->elementSize = sizeof(TADDR); |
| 7065 | else if (CorIsPrimitiveType(componentType)) |
| 7066 | pLayout->elementSize = gElementTypeInfo[componentType].m_cbSize; |
| 7067 | else |
| 7068 | pLayout->elementSize = cmt->GetNumInstanceFieldBytes(); |
| 7069 | } |
| 7070 | |
| 7071 | return S_OK; |
| 7072 | } |
| 7073 | |
| 7074 | |
| 7075 | void DacDbiInterfaceImpl::GetGCHeapInformation(COR_HEAPINFO * pHeapInfo) |
| 7076 | { |
| 7077 | DD_ENTER_MAY_THROW; |
| 7078 | |
| 7079 | size_t heapCount = 0; |
| 7080 | pHeapInfo->areGCStructuresValid = *g_gcDacGlobals->gc_structures_invalid_cnt == 0; |
| 7081 | |
| 7082 | #ifdef FEATURE_SVR_GC |
| 7083 | if (GCHeapUtilities::IsServerHeap()) |
| 7084 | { |
| 7085 | pHeapInfo->gcType = CorDebugServerGC; |
| 7086 | pHeapInfo->numHeaps = DacGetNumHeaps(); |
| 7087 | } |
| 7088 | else |
| 7089 | #endif |
| 7090 | { |
| 7091 | pHeapInfo->gcType = CorDebugWorkstationGC; |
| 7092 | pHeapInfo->numHeaps = 1; |
| 7093 | } |
| 7094 | |
| 7095 | pHeapInfo->pointerSize = sizeof(TADDR); |
| 7096 | pHeapInfo->concurrent = g_pConfig->GetGCconcurrent() ? TRUE : FALSE; |
| 7097 | } |
| 7098 | |
| 7099 | |
| 7100 | HRESULT DacDbiInterfaceImpl::GetPEFileMDInternalRW(VMPTR_PEFile vmPEFile, OUT TADDR* pAddrMDInternalRW) |
| 7101 | { |
| 7102 | DD_ENTER_MAY_THROW; |
| 7103 | if (pAddrMDInternalRW == NULL) |
| 7104 | return E_INVALIDARG; |
| 7105 | PEFile * pPEFile = vmPEFile.GetDacPtr(); |
| 7106 | *pAddrMDInternalRW = pPEFile->GetMDInternalRWAddress(); |
| 7107 | return S_OK; |
| 7108 | } |
| 7109 | |
| 7110 | HRESULT DacDbiInterfaceImpl::GetReJitInfo(VMPTR_Module vmModule, mdMethodDef methodTk, OUT VMPTR_ReJitInfo* pvmReJitInfo) |
| 7111 | { |
| 7112 | DD_ENTER_MAY_THROW; |
| 7113 | _ASSERTE(!"You shouldn't be calling this - use GetActiveRejitILCodeVersionNode instead" ); |
| 7114 | return S_OK; |
| 7115 | } |
| 7116 | |
| 7117 | HRESULT DacDbiInterfaceImpl::GetActiveRejitILCodeVersionNode(VMPTR_Module vmModule, mdMethodDef methodTk, OUT VMPTR_ILCodeVersionNode* pVmILCodeVersionNode) |
| 7118 | { |
| 7119 | DD_ENTER_MAY_THROW; |
| 7120 | if (pVmILCodeVersionNode == NULL) |
| 7121 | return E_INVALIDARG; |
| 7122 | #ifdef FEATURE_REJIT |
| 7123 | PTR_Module pModule = vmModule.GetDacPtr(); |
| 7124 | CodeVersionManager * pCodeVersionManager = pModule->GetCodeVersionManager(); |
| 7125 | // Be careful, there are two different definitions of 'active' being used here |
| 7126 | // For the CodeVersionManager, the active IL version is whatever one should be used in the next invocation of the method |
| 7127 | // 'rejit active' narrows that to only include rejit IL bodies where the profiler has already provided the definition |
| 7128 | // for the new IL (ilCodeVersion.GetRejitState()==ILCodeVersion::kStateActive). It is possible that the code version |
| 7129 | // manager's active IL version hasn't yet asked the profiler for the IL body to use, in which case we want to filter it |
| 7130 | // out from the return in this method. |
| 7131 | ILCodeVersion activeILVersion = pCodeVersionManager->GetActiveILCodeVersion(pModule, methodTk); |
| 7132 | if (activeILVersion.IsNull() || activeILVersion.IsDefaultVersion() || activeILVersion.GetRejitState() != ILCodeVersion::kStateActive) |
| 7133 | { |
| 7134 | pVmILCodeVersionNode->SetDacTargetPtr(0); |
| 7135 | } |
| 7136 | else |
| 7137 | { |
| 7138 | pVmILCodeVersionNode->SetDacTargetPtr(PTR_TO_TADDR(activeILVersion.AsNode())); |
| 7139 | } |
| 7140 | #else |
| 7141 | _ASSERTE(!"You shouldn't be calling this - rejit is not supported in this build" ); |
| 7142 | pVmILCodeVersionNode->SetDacTargetPtr(0); |
| 7143 | #endif |
| 7144 | return S_OK; |
| 7145 | } |
| 7146 | |
| 7147 | HRESULT DacDbiInterfaceImpl::GetReJitInfo(VMPTR_MethodDesc vmMethod, CORDB_ADDRESS codeStartAddress, OUT VMPTR_ReJitInfo* pvmReJitInfo) |
| 7148 | { |
| 7149 | DD_ENTER_MAY_THROW; |
| 7150 | _ASSERTE(!"You shouldn't be calling this - use GetNativeCodeVersionNode instead" ); |
| 7151 | return S_OK; |
| 7152 | } |
| 7153 | |
| 7154 | HRESULT DacDbiInterfaceImpl::GetNativeCodeVersionNode(VMPTR_MethodDesc vmMethod, CORDB_ADDRESS codeStartAddress, OUT VMPTR_NativeCodeVersionNode* pVmNativeCodeVersionNode) |
| 7155 | { |
| 7156 | DD_ENTER_MAY_THROW; |
| 7157 | if (pVmNativeCodeVersionNode == NULL) |
| 7158 | return E_INVALIDARG; |
| 7159 | #ifdef FEATURE_REJIT |
| 7160 | PTR_MethodDesc pMD = vmMethod.GetDacPtr(); |
| 7161 | CodeVersionManager * pCodeVersionManager = pMD->GetCodeVersionManager(); |
| 7162 | NativeCodeVersion codeVersion = pCodeVersionManager->GetNativeCodeVersion(pMD, (PCODE)codeStartAddress); |
| 7163 | pVmNativeCodeVersionNode->SetDacTargetPtr(PTR_TO_TADDR(codeVersion.AsNode())); |
| 7164 | #else |
| 7165 | pVmNativeCodeVersionNode->SetDacTargetPtr(0); |
| 7166 | #endif |
| 7167 | return S_OK; |
| 7168 | } |
| 7169 | |
| 7170 | HRESULT DacDbiInterfaceImpl::GetSharedReJitInfo(VMPTR_ReJitInfo vmReJitInfo, OUT VMPTR_SharedReJitInfo* pvmSharedReJitInfo) |
| 7171 | { |
| 7172 | DD_ENTER_MAY_THROW; |
| 7173 | _ASSERTE(!"You shouldn't be calling this - use GetLCodeVersionNode instead" ); |
| 7174 | return S_OK; |
| 7175 | } |
| 7176 | |
| 7177 | HRESULT DacDbiInterfaceImpl::GetILCodeVersionNode(VMPTR_NativeCodeVersionNode vmNativeCodeVersionNode, VMPTR_ILCodeVersionNode* pVmILCodeVersionNode) |
| 7178 | { |
| 7179 | DD_ENTER_MAY_THROW; |
| 7180 | if (pVmILCodeVersionNode == NULL) |
| 7181 | return E_INVALIDARG; |
| 7182 | #ifdef FEATURE_REJIT |
| 7183 | NativeCodeVersionNode* pNativeCodeVersionNode = vmNativeCodeVersionNode.GetDacPtr(); |
| 7184 | ILCodeVersion ilCodeVersion = pNativeCodeVersionNode->GetILCodeVersion(); |
| 7185 | if (ilCodeVersion.IsDefaultVersion()) |
| 7186 | { |
| 7187 | pVmILCodeVersionNode->SetDacTargetPtr(0); |
| 7188 | } |
| 7189 | else |
| 7190 | { |
| 7191 | pVmILCodeVersionNode->SetDacTargetPtr(PTR_TO_TADDR(ilCodeVersion.AsNode())); |
| 7192 | } |
| 7193 | |
| 7194 | #else |
| 7195 | _ASSERTE(!"You shouldn't be calling this - rejit is not supported in this build" ); |
| 7196 | pVmILCodeVersionNode->SetDacTargetPtr(0); |
| 7197 | #endif |
| 7198 | return S_OK; |
| 7199 | } |
| 7200 | |
| 7201 | HRESULT DacDbiInterfaceImpl::GetSharedReJitInfoData(VMPTR_SharedReJitInfo vmSharedReJitInfo, DacSharedReJitInfo* pData) |
| 7202 | { |
| 7203 | DD_ENTER_MAY_THROW; |
| 7204 | _ASSERTE(!"You shouldn't be calling this - use GetILCodeVersionNodeData instead" ); |
| 7205 | return S_OK; |
| 7206 | } |
| 7207 | |
| 7208 | HRESULT DacDbiInterfaceImpl::GetILCodeVersionNodeData(VMPTR_ILCodeVersionNode vmILCodeVersionNode, DacSharedReJitInfo* pData) |
| 7209 | { |
| 7210 | DD_ENTER_MAY_THROW; |
| 7211 | #ifdef FEATURE_REJIT |
| 7212 | ILCodeVersion ilCode(vmILCodeVersionNode.GetDacPtr()); |
| 7213 | pData->m_state = ilCode.GetRejitState(); |
| 7214 | pData->m_pbIL = PTR_TO_CORDB_ADDRESS(dac_cast<ULONG_PTR>(ilCode.GetIL())); |
| 7215 | pData->m_dwCodegenFlags = ilCode.GetJitFlags(); |
| 7216 | const InstrumentedILOffsetMapping* pMapping = ilCode.GetInstrumentedILMap(); |
| 7217 | if (pMapping) |
| 7218 | { |
| 7219 | pData->m_cInstrumentedMapEntries = (ULONG)pMapping->GetCount(); |
| 7220 | pData->m_rgInstrumentedMapEntries = PTR_TO_CORDB_ADDRESS(dac_cast<ULONG_PTR>(pMapping->GetOffsets())); |
| 7221 | } |
| 7222 | else |
| 7223 | { |
| 7224 | pData->m_cInstrumentedMapEntries = 0; |
| 7225 | pData->m_rgInstrumentedMapEntries = 0; |
| 7226 | } |
| 7227 | #else |
| 7228 | _ASSERTE(!"You shouldn't be calling this - rejit isn't supported in this build" ); |
| 7229 | #endif |
| 7230 | return S_OK; |
| 7231 | } |
| 7232 | |
| 7233 | HRESULT DacDbiInterfaceImpl::GetDefinesBitField(ULONG32 *pDefines) |
| 7234 | { |
| 7235 | DD_ENTER_MAY_THROW; |
| 7236 | if (pDefines == NULL) |
| 7237 | return E_INVALIDARG; |
| 7238 | *pDefines = g_pDebugger->m_defines; |
| 7239 | return S_OK; |
| 7240 | } |
| 7241 | |
| 7242 | HRESULT DacDbiInterfaceImpl::GetMDStructuresVersion(ULONG32* pMDStructuresVersion) |
| 7243 | { |
| 7244 | DD_ENTER_MAY_THROW; |
| 7245 | if (pMDStructuresVersion == NULL) |
| 7246 | return E_INVALIDARG; |
| 7247 | *pMDStructuresVersion = g_pDebugger->m_mdDataStructureVersion; |
| 7248 | return S_OK; |
| 7249 | } |
| 7250 | |
| 7251 | HRESULT DacDbiInterfaceImpl::EnableGCNotificationEvents(BOOL fEnable) |
| 7252 | { |
| 7253 | DD_ENTER_MAY_THROW |
| 7254 | |
| 7255 | HRESULT hr = S_OK; |
| 7256 | EX_TRY |
| 7257 | { |
| 7258 | if (g_pDebugger != NULL) |
| 7259 | { |
| 7260 | TADDR addr = PTR_HOST_MEMBER_TADDR(Debugger, g_pDebugger, m_isGarbageCollectionEventsEnabled); |
| 7261 | SafeWriteStructOrThrow<BOOL>(addr, &fEnable); |
| 7262 | } |
| 7263 | } |
| 7264 | EX_CATCH_HRESULT(hr); |
| 7265 | return hr; |
| 7266 | } |
| 7267 | |
| 7268 | DacRefWalker::DacRefWalker(ClrDataAccess *dac, BOOL walkStacks, BOOL walkFQ, UINT32 handleMask) |
| 7269 | : mDac(dac), mWalkStacks(walkStacks), mWalkFQ(walkFQ), mHandleMask(handleMask), mStackWalker(NULL), |
| 7270 | mHandleWalker(NULL), mFQStart(PTR_NULL), mFQEnd(PTR_NULL), mFQCurr(PTR_NULL) |
| 7271 | { |
| 7272 | } |
| 7273 | |
| 7274 | DacRefWalker::~DacRefWalker() |
| 7275 | { |
| 7276 | Clear(); |
| 7277 | } |
| 7278 | |
| 7279 | HRESULT DacRefWalker::Init() |
| 7280 | { |
| 7281 | HRESULT hr = S_OK; |
| 7282 | if (mHandleMask) |
| 7283 | { |
| 7284 | // Will throw on OOM, which is fine. |
| 7285 | mHandleWalker = new DacHandleWalker(); |
| 7286 | |
| 7287 | hr = mHandleWalker->Init(GetHandleWalkerMask()); |
| 7288 | } |
| 7289 | |
| 7290 | if (mWalkStacks && SUCCEEDED(hr)) |
| 7291 | { |
| 7292 | hr = NextThread(); |
| 7293 | } |
| 7294 | |
| 7295 | return hr; |
| 7296 | } |
| 7297 | |
| 7298 | void DacRefWalker::Clear() |
| 7299 | { |
| 7300 | if (mHandleWalker) |
| 7301 | { |
| 7302 | delete mHandleWalker; |
| 7303 | mHandleWalker = NULL; |
| 7304 | } |
| 7305 | |
| 7306 | if (mStackWalker) |
| 7307 | { |
| 7308 | delete mStackWalker; |
| 7309 | mStackWalker = NULL; |
| 7310 | } |
| 7311 | } |
| 7312 | |
| 7313 | |
| 7314 | |
| 7315 | UINT32 DacRefWalker::GetHandleWalkerMask() |
| 7316 | { |
| 7317 | UINT32 result = 0; |
| 7318 | if (mHandleMask & CorHandleStrong) |
| 7319 | result |= (1 << HNDTYPE_STRONG); |
| 7320 | |
| 7321 | if (mHandleMask & CorHandleStrongPinning) |
| 7322 | result |= (1 << HNDTYPE_PINNED); |
| 7323 | |
| 7324 | if (mHandleMask & CorHandleWeakShort) |
| 7325 | result |= (1 << HNDTYPE_WEAK_SHORT); |
| 7326 | |
| 7327 | if (mHandleMask & CorHandleWeakLong) |
| 7328 | result |= (1 << HNDTYPE_WEAK_LONG); |
| 7329 | |
| 7330 | #ifdef FEATURE_COMINTEROP |
| 7331 | if ((mHandleMask & CorHandleWeakRefCount) || (mHandleMask & CorHandleStrongRefCount)) |
| 7332 | result |= (1 << HNDTYPE_REFCOUNTED); |
| 7333 | |
| 7334 | if (mHandleMask & CorHandleWeakWinRT) |
| 7335 | result |= (1 << HNDTYPE_WEAK_WINRT); |
| 7336 | #endif // FEATURE_COMINTEROP |
| 7337 | |
| 7338 | if (mHandleMask & CorHandleStrongDependent) |
| 7339 | result |= (1 << HNDTYPE_DEPENDENT); |
| 7340 | |
| 7341 | if (mHandleMask & CorHandleStrongAsyncPinned) |
| 7342 | result |= (1 << HNDTYPE_ASYNCPINNED); |
| 7343 | |
| 7344 | if (mHandleMask & CorHandleStrongSizedByref) |
| 7345 | result |= (1 << HNDTYPE_SIZEDREF); |
| 7346 | |
| 7347 | return result; |
| 7348 | } |
| 7349 | |
| 7350 | |
| 7351 | |
| 7352 | HRESULT DacRefWalker::Next(ULONG celt, DacGcReference roots[], ULONG *pceltFetched) |
| 7353 | { |
| 7354 | if (roots == NULL || pceltFetched == NULL) |
| 7355 | return E_POINTER; |
| 7356 | |
| 7357 | ULONG total = 0; |
| 7358 | HRESULT hr = S_OK; |
| 7359 | |
| 7360 | if (mHandleWalker) |
| 7361 | { |
| 7362 | hr = mHandleWalker->Next(celt, roots, &total); |
| 7363 | |
| 7364 | if (hr == S_FALSE || FAILED(hr)) |
| 7365 | { |
| 7366 | delete mHandleWalker; |
| 7367 | mHandleWalker = NULL; |
| 7368 | |
| 7369 | if (FAILED(hr)) |
| 7370 | return hr; |
| 7371 | } |
| 7372 | } |
| 7373 | |
| 7374 | if (total < celt) |
| 7375 | { |
| 7376 | while (total < celt && mFQCurr < mFQEnd) |
| 7377 | { |
| 7378 | DacGcReference &ref = roots[total++]; |
| 7379 | |
| 7380 | ref.vmDomain = VMPTR_AppDomain::NullPtr(); |
| 7381 | ref.objHnd.SetDacTargetPtr(mFQCurr.GetAddr()); |
| 7382 | ref.dwType = (DWORD)CorReferenceFinalizer; |
| 7383 | ref.i64ExtraData = 0; |
| 7384 | |
| 7385 | mFQCurr++; |
| 7386 | } |
| 7387 | } |
| 7388 | |
| 7389 | while (total < celt && mStackWalker) |
| 7390 | { |
| 7391 | ULONG fetched = 0; |
| 7392 | hr = mStackWalker->Next(celt-total, roots+total, &fetched); |
| 7393 | |
| 7394 | if (FAILED(hr)) |
| 7395 | return hr; |
| 7396 | |
| 7397 | if (hr == S_FALSE) |
| 7398 | { |
| 7399 | hr = NextThread(); |
| 7400 | |
| 7401 | if (FAILED(hr)) |
| 7402 | return hr; |
| 7403 | } |
| 7404 | |
| 7405 | total += fetched; |
| 7406 | } |
| 7407 | |
| 7408 | *pceltFetched = total; |
| 7409 | |
| 7410 | return total < celt ? S_FALSE : S_OK; |
| 7411 | } |
| 7412 | |
| 7413 | HRESULT DacRefWalker::NextThread() |
| 7414 | { |
| 7415 | Thread *pThread = NULL; |
| 7416 | if (mStackWalker) |
| 7417 | { |
| 7418 | pThread = mStackWalker->GetThread(); |
| 7419 | delete mStackWalker; |
| 7420 | mStackWalker = NULL; |
| 7421 | } |
| 7422 | |
| 7423 | pThread = ThreadStore::GetThreadList(pThread); |
| 7424 | |
| 7425 | if (!pThread) |
| 7426 | return S_FALSE; |
| 7427 | |
| 7428 | mStackWalker = new DacStackReferenceWalker(mDac, pThread->GetOSThreadId()); |
| 7429 | return mStackWalker->Init(); |
| 7430 | } |
| 7431 | |
| 7432 | HRESULT DacHandleWalker::Next(ULONG celt, DacGcReference roots[], ULONG *pceltFetched) |
| 7433 | { |
| 7434 | SUPPORTS_DAC; |
| 7435 | |
| 7436 | if (roots == NULL || pceltFetched == NULL) |
| 7437 | return E_POINTER; |
| 7438 | |
| 7439 | return DoHandleWalk<DacGcReference, ULONG, DacHandleWalker::EnumCallbackDac>(celt, roots, pceltFetched); |
| 7440 | } |
| 7441 | |
| 7442 | |
| 7443 | void CALLBACK DacHandleWalker::EnumCallbackDac(PTR_UNCHECKED_OBJECTREF handle, uintptr_t *, uintptr_t param1, uintptr_t param2) |
| 7444 | { |
| 7445 | SUPPORTS_DAC; |
| 7446 | |
| 7447 | DacHandleWalkerParam *param = (DacHandleWalkerParam *)param1; |
| 7448 | HandleChunkHead *curr = param->Curr; |
| 7449 | |
| 7450 | // If we failed on a previous call (OOM) don't keep trying to allocate, it's not going to work. |
| 7451 | if (FAILED(param->Result)) |
| 7452 | return; |
| 7453 | |
| 7454 | // We've moved past the size of the current chunk. We'll allocate a new chunk |
| 7455 | // and stuff the handles there. These are cleaned up by the destructor |
| 7456 | if (curr->Count >= (curr->Size/sizeof(DacGcReference))) |
| 7457 | { |
| 7458 | if (curr->Next == NULL) |
| 7459 | { |
| 7460 | HandleChunk *next = new (nothrow) HandleChunk; |
| 7461 | if (next != NULL) |
| 7462 | { |
| 7463 | curr->Next = next; |
| 7464 | } |
| 7465 | else |
| 7466 | { |
| 7467 | param->Result = E_OUTOFMEMORY; |
| 7468 | return; |
| 7469 | } |
| 7470 | } |
| 7471 | |
| 7472 | curr = param->Curr = param->Curr->Next; |
| 7473 | } |
| 7474 | |
| 7475 | // Fill the current handle. |
| 7476 | DacGcReference *dataArray = (DacGcReference*)curr->pData; |
| 7477 | DacGcReference &data = dataArray[curr->Count++]; |
| 7478 | |
| 7479 | data.objHnd.SetDacTargetPtr(handle.GetAddr()); |
| 7480 | data.vmDomain.SetDacTargetPtr(TO_TADDR(param->AppDomain)); |
| 7481 | |
| 7482 | data.i64ExtraData = 0; |
| 7483 | unsigned int refCnt = 0; |
| 7484 | |
| 7485 | switch (param->Type) |
| 7486 | { |
| 7487 | case HNDTYPE_STRONG: |
| 7488 | data.dwType = (DWORD)CorHandleStrong; |
| 7489 | break; |
| 7490 | |
| 7491 | case HNDTYPE_PINNED: |
| 7492 | data.dwType = (DWORD)CorHandleStrongPinning; |
| 7493 | break; |
| 7494 | |
| 7495 | case HNDTYPE_WEAK_SHORT: |
| 7496 | data.dwType = (DWORD)CorHandleWeakShort; |
| 7497 | break; |
| 7498 | |
| 7499 | case HNDTYPE_WEAK_LONG: |
| 7500 | data.dwType = (DWORD)CorHandleWeakLong; |
| 7501 | break; |
| 7502 | |
| 7503 | #ifdef FEATURE_COMINTEROP |
| 7504 | case HNDTYPE_REFCOUNTED: |
| 7505 | data.dwType = (DWORD)(data.i64ExtraData ? CorHandleStrongRefCount : CorHandleWeakRefCount); |
| 7506 | GetRefCountedHandleInfo((OBJECTREF)*handle, param->Type, &refCnt, NULL, NULL, NULL); |
| 7507 | data.i64ExtraData = refCnt; |
| 7508 | break; |
| 7509 | |
| 7510 | case HNDTYPE_WEAK_WINRT: |
| 7511 | data.dwType = (DWORD)CorHandleWeakWinRT; |
| 7512 | break; |
| 7513 | #endif |
| 7514 | |
| 7515 | case HNDTYPE_DEPENDENT: |
| 7516 | data.dwType = (DWORD)CorHandleStrongDependent; |
| 7517 | data.i64ExtraData = GetDependentHandleSecondary(handle.GetAddr()).GetAddr(); |
| 7518 | break; |
| 7519 | |
| 7520 | case HNDTYPE_ASYNCPINNED: |
| 7521 | data.dwType = (DWORD)CorHandleStrongAsyncPinned; |
| 7522 | break; |
| 7523 | |
| 7524 | case HNDTYPE_SIZEDREF: |
| 7525 | data.dwType = (DWORD)CorHandleStrongSizedByref; |
| 7526 | break; |
| 7527 | } |
| 7528 | } |
| 7529 | |
| 7530 | |
| 7531 | void DacStackReferenceWalker::GCEnumCallbackDac(LPVOID hCallback, OBJECTREF *pObject, uint32_t flags, DacSlotLocation loc) |
| 7532 | { |
| 7533 | GCCONTEXT *gcctx = (GCCONTEXT *)hCallback; |
| 7534 | DacScanContext *dsc = (DacScanContext*)gcctx->sc; |
| 7535 | |
| 7536 | CORDB_ADDRESS obj = 0; |
| 7537 | |
| 7538 | if (flags & GC_CALL_INTERIOR) |
| 7539 | { |
| 7540 | if (loc.targetPtr) |
| 7541 | obj = (CORDB_ADDRESS)(*PTR_PTR_Object((TADDR)pObject)).GetAddr(); |
| 7542 | else |
| 7543 | obj = (CORDB_ADDRESS)TO_TADDR(pObject); |
| 7544 | |
| 7545 | HRESULT hr = dsc->pWalker->mHeap.ListNearObjects(obj, NULL, &obj, NULL); |
| 7546 | |
| 7547 | // If we failed don't add this instance to the list. ICorDebug doesn't handle invalid pointers |
| 7548 | // very well, and the only way the heap walker's ListNearObjects will fail is if we have heap |
| 7549 | // corruption...which ICorDebug doesn't deal with anyway. |
| 7550 | if (FAILED(hr)) |
| 7551 | return; |
| 7552 | } |
| 7553 | |
| 7554 | DacGcReference *data = dsc->pWalker->GetNextObject<DacGcReference>(dsc); |
| 7555 | if (data != NULL) |
| 7556 | { |
| 7557 | data->vmDomain.SetDacTargetPtr(dac_cast<PTR_AppDomain>(dsc->pCurrentDomain).GetAddr()); |
| 7558 | if (obj) |
| 7559 | data->pObject = obj | 1; |
| 7560 | else if (loc.targetPtr) |
| 7561 | data->objHnd.SetDacTargetPtr(TO_TADDR(pObject)); |
| 7562 | else |
| 7563 | data->pObject = pObject->GetAddr() | 1; |
| 7564 | |
| 7565 | data->dwType = CorReferenceStack; |
| 7566 | data->i64ExtraData = 0; |
| 7567 | } |
| 7568 | } |
| 7569 | |
| 7570 | |
| 7571 | void DacStackReferenceWalker::GCReportCallbackDac(PTR_PTR_Object ppObj, ScanContext *sc, uint32_t flags) |
| 7572 | { |
| 7573 | DacScanContext *dsc = (DacScanContext*)sc; |
| 7574 | |
| 7575 | TADDR obj = ppObj.GetAddr(); |
| 7576 | if (flags & GC_CALL_INTERIOR) |
| 7577 | { |
| 7578 | CORDB_ADDRESS fixed_addr = 0; |
| 7579 | HRESULT hr = dsc->pWalker->mHeap.ListNearObjects((CORDB_ADDRESS)obj, NULL, &fixed_addr, NULL); |
| 7580 | |
| 7581 | // If we failed don't add this instance to the list. ICorDebug doesn't handle invalid pointers |
| 7582 | // very well, and the only way the heap walker's ListNearObjects will fail is if we have heap |
| 7583 | // corruption...which ICorDebug doesn't deal with anyway. |
| 7584 | if (FAILED(hr)) |
| 7585 | return; |
| 7586 | |
| 7587 | obj = TO_TADDR(fixed_addr); |
| 7588 | } |
| 7589 | |
| 7590 | DacGcReference *data = dsc->pWalker->GetNextObject<DacGcReference>(dsc); |
| 7591 | if (data != NULL) |
| 7592 | { |
| 7593 | data->vmDomain.SetDacTargetPtr(dac_cast<PTR_AppDomain>(dsc->pCurrentDomain).GetAddr()); |
| 7594 | data->objHnd.SetDacTargetPtr(obj); |
| 7595 | data->dwType = CorReferenceStack; |
| 7596 | data->i64ExtraData = 0; |
| 7597 | } |
| 7598 | } |
| 7599 | |
| 7600 | |
| 7601 | |
| 7602 | HRESULT DacStackReferenceWalker::Next(ULONG count, DacGcReference stackRefs[], ULONG *pFetched) |
| 7603 | { |
| 7604 | if (stackRefs == NULL || pFetched == NULL) |
| 7605 | return E_POINTER; |
| 7606 | |
| 7607 | HRESULT hr = DoStackWalk<ULONG, DacGcReference, |
| 7608 | DacStackReferenceWalker::GCReportCallbackDac, |
| 7609 | DacStackReferenceWalker::GCEnumCallbackDac> |
| 7610 | (count, stackRefs, pFetched); |
| 7611 | |
| 7612 | return hr; |
| 7613 | } |
| 7614 | |