| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /* |
| 6 | * Generational GC handle manager. Handle Caching Routines. |
| 7 | * |
| 8 | * Implementation of handle table allocation cache. |
| 9 | * |
| 10 | |
| 11 | * |
| 12 | */ |
| 13 | |
| 14 | #include "common.h" |
| 15 | |
| 16 | #include "gcenv.h" |
| 17 | |
| 18 | #ifdef Sleep // TODO(segilles) |
| 19 | #undef Sleep |
| 20 | #endif // Sleep |
| 21 | |
| 22 | #include "env/gcenv.os.h" |
| 23 | |
| 24 | #include "handletablepriv.h" |
| 25 | |
| 26 | /**************************************************************************** |
| 27 | * |
| 28 | * RANDOM HELPERS |
| 29 | * |
| 30 | ****************************************************************************/ |
| 31 | |
| 32 | /* |
| 33 | * SpinUntil |
| 34 | * |
| 35 | * Spins on a variable until its state matches a desired state. |
| 36 | * |
| 37 | * This routine will assert if it spins for a very long time. |
| 38 | * |
| 39 | */ |
| 40 | void SpinUntil(void *pCond, BOOL fNonZero) |
| 41 | { |
| 42 | WRAPPER_NO_CONTRACT; |
| 43 | |
| 44 | /* |
| 45 | NOTHROW; |
| 46 | GC_NOTRIGGER; |
| 47 | MODE_ANY; |
| 48 | */ |
| 49 | |
| 50 | // if we have to sleep then we will keep track of a sleep period |
| 51 | uint32_t dwThisSleepPeriod = 1; // first just give up our timeslice |
| 52 | uint32_t dwNextSleepPeriod = 10; // next try a real delay |
| 53 | |
| 54 | #ifdef _DEBUG |
| 55 | uint32_t dwTotalSlept = 0; |
| 56 | uint32_t dwNextComplain = 1000; |
| 57 | #endif //_DEBUG |
| 58 | |
| 59 | // on MP machines, allow ourselves some spin time before sleeping |
| 60 | static uint32_t uNonSleepSpins = 8 * (GCToOSInterface::GetCurrentProcessCpuCount() - 1); |
| 61 | |
| 62 | // spin until the specificed condition is met |
| 63 | while ((*(uintptr_t *)pCond != 0) != (fNonZero != 0)) |
| 64 | { |
| 65 | // have we exhausted the non-sleep spin count? |
| 66 | if (!uNonSleepSpins) |
| 67 | { |
| 68 | #ifdef _DEBUG |
| 69 | // yes, missed again - before sleeping, check our current sleep time |
| 70 | if (dwTotalSlept >= dwNextComplain) |
| 71 | { |
| 72 | // |
| 73 | // THIS SHOULD NOT NORMALLY HAPPEN |
| 74 | // |
| 75 | // The only time this assert can be ignored is if you have |
| 76 | // another thread intentionally suspended in a way that either |
| 77 | // directly or indirectly leaves a thread suspended in the |
| 78 | // handle table while the current thread (this assert) is |
| 79 | // running normally. |
| 80 | // |
| 81 | // Otherwise, this assert should be investigated as a bug. |
| 82 | // |
| 83 | _ASSERTE(FALSE); |
| 84 | |
| 85 | // slow down the assert rate so people can investigate |
| 86 | dwNextComplain = 3 * dwNextComplain; |
| 87 | } |
| 88 | |
| 89 | // now update our total sleep time |
| 90 | dwTotalSlept += dwThisSleepPeriod; |
| 91 | #endif //_DEBUG |
| 92 | |
| 93 | // sleep for a little while |
| 94 | GCToOSInterface::Sleep(dwThisSleepPeriod); |
| 95 | |
| 96 | // now update our sleep period |
| 97 | dwThisSleepPeriod = dwNextSleepPeriod; |
| 98 | |
| 99 | // now increase the next sleep period if it is still small |
| 100 | if (dwNextSleepPeriod < 1000) |
| 101 | dwNextSleepPeriod += 10; |
| 102 | } |
| 103 | else |
| 104 | { |
| 105 | // nope - just spin again |
| 106 | YieldProcessor(); // indicate to the processor that we are spining |
| 107 | uNonSleepSpins--; |
| 108 | } |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | |
| 113 | /* |
| 114 | * ReadAndZeroCacheHandles |
| 115 | * |
| 116 | * Reads a set of handles from a bank in the handle cache, zeroing them as they are taken. |
| 117 | * |
| 118 | * This routine will assert if a requested handle is missing. |
| 119 | * |
| 120 | */ |
| 121 | OBJECTHANDLE *ReadAndZeroCacheHandles(OBJECTHANDLE *pDst, OBJECTHANDLE *pSrc, uint32_t uCount) |
| 122 | { |
| 123 | LIMITED_METHOD_CONTRACT; |
| 124 | |
| 125 | // set up to loop |
| 126 | OBJECTHANDLE *pLast = pDst + uCount; |
| 127 | |
| 128 | // loop until we've copied all of them |
| 129 | while (pDst < pLast) |
| 130 | { |
| 131 | // this version assumes we have handles to read |
| 132 | _ASSERTE(*pSrc); |
| 133 | |
| 134 | // copy the handle and zero it from the source |
| 135 | *pDst = *pSrc; |
| 136 | *pSrc = 0; |
| 137 | |
| 138 | // set up for another handle |
| 139 | pDst++; |
| 140 | pSrc++; |
| 141 | } |
| 142 | |
| 143 | // return the next unfilled slot after what we filled in |
| 144 | return pLast; |
| 145 | } |
| 146 | |
| 147 | |
| 148 | /* |
| 149 | * SyncReadAndZeroCacheHandles |
| 150 | * |
| 151 | * Reads a set of handles from a bank in the handle cache, zeroing them as they are taken. |
| 152 | * |
| 153 | * This routine will spin until all requested handles are obtained. |
| 154 | * |
| 155 | */ |
| 156 | OBJECTHANDLE *SyncReadAndZeroCacheHandles(OBJECTHANDLE *pDst, OBJECTHANDLE *pSrc, uint32_t uCount) |
| 157 | { |
| 158 | WRAPPER_NO_CONTRACT; |
| 159 | |
| 160 | /* |
| 161 | NOTHROW; |
| 162 | GC_NOTRIGGER; |
| 163 | MODE_ANY; |
| 164 | */ |
| 165 | |
| 166 | // set up to loop |
| 167 | // we loop backwards since that is the order handles are added to the bank |
| 168 | // this is designed to reduce the chance that we will have to spin on a handle |
| 169 | OBJECTHANDLE *pBase = pDst; |
| 170 | pSrc += uCount; |
| 171 | pDst += uCount; |
| 172 | |
| 173 | // remember the end of the array |
| 174 | OBJECTHANDLE *pLast = pDst; |
| 175 | |
| 176 | // loop until we've copied all of them |
| 177 | while (pDst > pBase) |
| 178 | { |
| 179 | // advance to the next slot |
| 180 | pDst--; |
| 181 | pSrc--; |
| 182 | |
| 183 | // this version spins if there is no handle to read |
| 184 | if (!*pSrc) |
| 185 | SpinUntil(pSrc, TRUE); |
| 186 | |
| 187 | // copy the handle and zero it from the source |
| 188 | *pDst = *pSrc; |
| 189 | *pSrc = 0; |
| 190 | } |
| 191 | |
| 192 | // return the next unfilled slot after what we filled in |
| 193 | return pLast; |
| 194 | } |
| 195 | |
| 196 | |
| 197 | /* |
| 198 | * WriteCacheHandles |
| 199 | * |
| 200 | * Writes a set of handles to a bank in the handle cache. |
| 201 | * |
| 202 | * This routine will assert if it is about to clobber an existing handle. |
| 203 | * |
| 204 | */ |
| 205 | void WriteCacheHandles(OBJECTHANDLE *pDst, OBJECTHANDLE *pSrc, uint32_t uCount) |
| 206 | { |
| 207 | LIMITED_METHOD_CONTRACT; |
| 208 | |
| 209 | // set up to loop |
| 210 | OBJECTHANDLE *pLimit = pSrc + uCount; |
| 211 | |
| 212 | // loop until we've copied all of them |
| 213 | while (pSrc < pLimit) |
| 214 | { |
| 215 | // this version assumes we have space to store the handles |
| 216 | _ASSERTE(!*pDst); |
| 217 | |
| 218 | // copy the handle |
| 219 | *pDst = *pSrc; |
| 220 | |
| 221 | // set up for another handle |
| 222 | pDst++; |
| 223 | pSrc++; |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | |
| 228 | /* |
| 229 | * SyncWriteCacheHandles |
| 230 | * |
| 231 | * Writes a set of handles to a bank in the handle cache. |
| 232 | * |
| 233 | * This routine will spin until lingering handles in the cache bank are gone. |
| 234 | * |
| 235 | */ |
| 236 | void SyncWriteCacheHandles(OBJECTHANDLE *pDst, OBJECTHANDLE *pSrc, uint32_t uCount) |
| 237 | { |
| 238 | WRAPPER_NO_CONTRACT; |
| 239 | |
| 240 | /* |
| 241 | NOTHROW; |
| 242 | GC_NOTRIGGER; |
| 243 | MODE_ANY; |
| 244 | */ |
| 245 | |
| 246 | // set up to loop |
| 247 | // we loop backwards since that is the order handles are removed from the bank |
| 248 | // this is designed to reduce the chance that we will have to spin on a handle |
| 249 | OBJECTHANDLE *pBase = pSrc; |
| 250 | pSrc += uCount; |
| 251 | pDst += uCount; |
| 252 | |
| 253 | // loop until we've copied all of them |
| 254 | while (pSrc > pBase) |
| 255 | { |
| 256 | // set up for another handle |
| 257 | pDst--; |
| 258 | pSrc--; |
| 259 | |
| 260 | // this version spins if there is no handle to read |
| 261 | if (*pDst) |
| 262 | SpinUntil(pDst, FALSE); |
| 263 | |
| 264 | // copy the handle |
| 265 | *pDst = *pSrc; |
| 266 | } |
| 267 | } |
| 268 | |
| 269 | |
| 270 | /* |
| 271 | * SyncTransferCacheHandles |
| 272 | * |
| 273 | * Transfers a set of handles from one bank of the handle cache to another, |
| 274 | * zeroing the source bank as the handles are removed. |
| 275 | * |
| 276 | * The routine will spin until all requested handles can be transferred. |
| 277 | * |
| 278 | * This routine is equivalent to SyncReadAndZeroCacheHandles + SyncWriteCacheHandles |
| 279 | * |
| 280 | */ |
| 281 | void SyncTransferCacheHandles(OBJECTHANDLE *pDst, OBJECTHANDLE *pSrc, uint32_t uCount) |
| 282 | { |
| 283 | WRAPPER_NO_CONTRACT; |
| 284 | |
| 285 | /* |
| 286 | NOTHROW; |
| 287 | GC_NOTRIGGER; |
| 288 | MODE_ANY; |
| 289 | */ |
| 290 | |
| 291 | // set up to loop |
| 292 | // we loop backwards since that is the order handles are added to the bank |
| 293 | // this is designed to reduce the chance that we will have to spin on a handle |
| 294 | OBJECTHANDLE *pBase = pDst; |
| 295 | pSrc += uCount; |
| 296 | pDst += uCount; |
| 297 | |
| 298 | // loop until we've copied all of them |
| 299 | while (pDst > pBase) |
| 300 | { |
| 301 | // advance to the next slot |
| 302 | pDst--; |
| 303 | pSrc--; |
| 304 | |
| 305 | // this version spins if there is no handle to read or no place to write it |
| 306 | if (*pDst || !*pSrc) |
| 307 | { |
| 308 | SpinUntil(pSrc, TRUE); |
| 309 | SpinUntil(pDst, FALSE); |
| 310 | } |
| 311 | |
| 312 | // copy the handle and zero it from the source |
| 313 | *pDst = *pSrc; |
| 314 | *pSrc = 0; |
| 315 | } |
| 316 | } |
| 317 | |
| 318 | /*--------------------------------------------------------------------------*/ |
| 319 | |
| 320 | |
| 321 | |
| 322 | /**************************************************************************** |
| 323 | * |
| 324 | * HANDLE CACHE |
| 325 | * |
| 326 | ****************************************************************************/ |
| 327 | |
| 328 | /* |
| 329 | * TableFullRebalanceCache |
| 330 | * |
| 331 | * Rebalances a handle cache by transferring handles from the cache's |
| 332 | * free bank to its reserve bank. If the free bank does not provide |
| 333 | * enough handles to replenish the reserve bank, handles are allocated |
| 334 | * in bulk from the main handle table. If too many handles remain in |
| 335 | * the free bank, the extra handles are returned in bulk to the main |
| 336 | * handle table. |
| 337 | * |
| 338 | * This routine attempts to reduce fragmentation in the main handle |
| 339 | * table by sorting the handles according to table order, preferring to |
| 340 | * refill the reserve bank with lower handles while freeing higher ones. |
| 341 | * The sorting also allows the free routine to operate more efficiently, |
| 342 | * as it can optimize the case where handles near each other are freed. |
| 343 | * |
| 344 | */ |
| 345 | void TableFullRebalanceCache(HandleTable *pTable, |
| 346 | HandleTypeCache *pCache, |
| 347 | uint32_t uType, |
| 348 | int32_t lMinReserveIndex, |
| 349 | int32_t lMinFreeIndex, |
| 350 | OBJECTHANDLE *pExtraOutHandle, |
| 351 | OBJECTHANDLE extraInHandle) |
| 352 | { |
| 353 | LIMITED_METHOD_CONTRACT; |
| 354 | |
| 355 | /* |
| 356 | NOTHROW; |
| 357 | GC_NOTRIGGER; |
| 358 | MODE_ANY; |
| 359 | */ |
| 360 | |
| 361 | // we need a temporary space to sort our free handles in |
| 362 | OBJECTHANDLE rgHandles[HANDLE_CACHE_TYPE_SIZE]; |
| 363 | |
| 364 | // set up a base handle pointer to keep track of where we are |
| 365 | OBJECTHANDLE *pHandleBase = rgHandles; |
| 366 | |
| 367 | // do we have a spare incoming handle? |
| 368 | if (extraInHandle) |
| 369 | { |
| 370 | // remember the extra handle now |
| 371 | *pHandleBase = extraInHandle; |
| 372 | pHandleBase++; |
| 373 | } |
| 374 | |
| 375 | // if there are handles in the reserve bank then gather them up |
| 376 | // (we don't need to wait on these since they are only put there by this |
| 377 | // function inside our own lock) |
| 378 | if (lMinReserveIndex > 0) |
| 379 | pHandleBase = ReadAndZeroCacheHandles(pHandleBase, pCache->rgReserveBank, (uint32_t)lMinReserveIndex); |
| 380 | else |
| 381 | lMinReserveIndex = 0; |
| 382 | |
| 383 | // if there are handles in the free bank then gather them up |
| 384 | if (lMinFreeIndex < HANDLES_PER_CACHE_BANK) |
| 385 | { |
| 386 | // this may have underflowed |
| 387 | if (lMinFreeIndex < 0) |
| 388 | lMinFreeIndex = 0; |
| 389 | |
| 390 | // here we need to wait for all pending freed handles to be written by other threads |
| 391 | pHandleBase = SyncReadAndZeroCacheHandles(pHandleBase, |
| 392 | pCache->rgFreeBank + lMinFreeIndex, |
| 393 | HANDLES_PER_CACHE_BANK - (uint32_t)lMinFreeIndex); |
| 394 | } |
| 395 | |
| 396 | // compute the number of handles we have |
| 397 | uint32_t uHandleCount = (uint32_t) (pHandleBase - rgHandles); |
| 398 | |
| 399 | // do we have enough handles for a balanced cache? |
| 400 | if (uHandleCount < REBALANCE_LOWATER_MARK) |
| 401 | { |
| 402 | // nope - allocate some more |
| 403 | uint32_t uAlloc = HANDLES_PER_CACHE_BANK - uHandleCount; |
| 404 | |
| 405 | // if we have an extra outgoing handle then plan for that too |
| 406 | if (pExtraOutHandle) |
| 407 | uAlloc++; |
| 408 | |
| 409 | { |
| 410 | // allocate the new handles - we intentionally don't check for success here |
| 411 | FAULT_NOT_FATAL(); |
| 412 | |
| 413 | uHandleCount += TableAllocBulkHandles(pTable, uType, pHandleBase, uAlloc); |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | // reset the base handle pointer |
| 418 | pHandleBase = rgHandles; |
| 419 | |
| 420 | // by default the whole free bank is available |
| 421 | lMinFreeIndex = HANDLES_PER_CACHE_BANK; |
| 422 | |
| 423 | // if we have handles left over then we need to do some more work |
| 424 | if (uHandleCount) |
| 425 | { |
| 426 | // do we have too many handles for a balanced cache? |
| 427 | if (uHandleCount > REBALANCE_HIWATER_MARK) |
| 428 | { |
| 429 | // |
| 430 | // sort the array by reverse handle order - this does two things: |
| 431 | // (1) combats handle fragmentation by preferring low-address handles to high ones |
| 432 | // (2) allows the free routine to run much more efficiently over the ones we free |
| 433 | // |
| 434 | QuickSort((uintptr_t *)pHandleBase, 0, uHandleCount - 1, CompareHandlesByFreeOrder); |
| 435 | |
| 436 | // yup, we need to free some - calculate how many |
| 437 | uint32_t uFree = uHandleCount - HANDLES_PER_CACHE_BANK; |
| 438 | |
| 439 | // free the handles - they are already 'prepared' (eg zeroed and sorted) |
| 440 | TableFreeBulkPreparedHandles(pTable, uType, pHandleBase, uFree); |
| 441 | |
| 442 | // update our array base and length |
| 443 | uHandleCount -= uFree; |
| 444 | pHandleBase += uFree; |
| 445 | } |
| 446 | |
| 447 | // if we have an extra outgoing handle then fill it now |
| 448 | if (pExtraOutHandle) |
| 449 | { |
| 450 | // account for the handle we're giving away |
| 451 | uHandleCount--; |
| 452 | |
| 453 | // now give it away |
| 454 | *pExtraOutHandle = pHandleBase[uHandleCount]; |
| 455 | } |
| 456 | |
| 457 | // if we have more than a reserve bank of handles then put some in the free bank |
| 458 | if (uHandleCount > HANDLES_PER_CACHE_BANK) |
| 459 | { |
| 460 | // compute the number of extra handles we need to save away |
| 461 | uint32_t uStore = uHandleCount - HANDLES_PER_CACHE_BANK; |
| 462 | |
| 463 | // compute the index to start writing the handles to |
| 464 | lMinFreeIndex = HANDLES_PER_CACHE_BANK - uStore; |
| 465 | |
| 466 | // store the handles |
| 467 | // (we don't need to wait on these since we already waited while reading them) |
| 468 | WriteCacheHandles(pCache->rgFreeBank + lMinFreeIndex, pHandleBase, uStore); |
| 469 | |
| 470 | // update our array base and length |
| 471 | uHandleCount -= uStore; |
| 472 | pHandleBase += uStore; |
| 473 | } |
| 474 | } |
| 475 | |
| 476 | // update the write index for the free bank |
| 477 | // NOTE: we use an interlocked exchange here to guarantee relative store order on MP |
| 478 | // AFTER THIS POINT THE FREE BANK IS LIVE AND COULD RECEIVE NEW HANDLES |
| 479 | Interlocked::Exchange(&pCache->lFreeIndex, lMinFreeIndex); |
| 480 | |
| 481 | // now if we have any handles left, store them in the reserve bank |
| 482 | if (uHandleCount) |
| 483 | { |
| 484 | // store the handles |
| 485 | // (here we need to wait for all pending allocated handles to be taken |
| 486 | // before we set up new ones in their places) |
| 487 | SyncWriteCacheHandles(pCache->rgReserveBank, pHandleBase, uHandleCount); |
| 488 | } |
| 489 | |
| 490 | // compute the index to start serving handles from |
| 491 | lMinReserveIndex = (int32_t)uHandleCount; |
| 492 | |
| 493 | // update the read index for the reserve bank |
| 494 | // NOTE: we use an interlocked exchange here to guarantee relative store order on MP |
| 495 | // AT THIS POINT THE RESERVE BANK IS LIVE AND HANDLES COULD BE ALLOCATED FROM IT |
| 496 | Interlocked::Exchange(&pCache->lReserveIndex, lMinReserveIndex); |
| 497 | } |
| 498 | |
| 499 | |
| 500 | /* |
| 501 | * TableQuickRebalanceCache |
| 502 | * |
| 503 | * Rebalances a handle cache by transferring handles from the cache's free bank |
| 504 | * to its reserve bank. If the free bank does not provide enough handles to |
| 505 | * replenish the reserve bank or too many handles remain in the free bank, the |
| 506 | * routine just punts and calls TableFullRebalanceCache. |
| 507 | * |
| 508 | */ |
| 509 | void TableQuickRebalanceCache(HandleTable *pTable, |
| 510 | HandleTypeCache *pCache, |
| 511 | uint32_t uType, |
| 512 | int32_t lMinReserveIndex, |
| 513 | int32_t lMinFreeIndex, |
| 514 | OBJECTHANDLE *pExtraOutHandle, |
| 515 | OBJECTHANDLE extraInHandle) |
| 516 | { |
| 517 | WRAPPER_NO_CONTRACT; |
| 518 | |
| 519 | /* |
| 520 | NOTHROW; |
| 521 | GC_NOTRIGGER; |
| 522 | MODE_ANY; |
| 523 | */ |
| 524 | |
| 525 | // clamp the min free index to be non-negative |
| 526 | if (lMinFreeIndex < 0) |
| 527 | lMinFreeIndex = 0; |
| 528 | |
| 529 | // clamp the min reserve index to be non-negative |
| 530 | if (lMinReserveIndex < 0) |
| 531 | lMinReserveIndex = 0; |
| 532 | |
| 533 | // compute the number of slots in the free bank taken by handles |
| 534 | uint32_t uFreeAvail = HANDLES_PER_CACHE_BANK - (uint32_t)lMinFreeIndex; |
| 535 | |
| 536 | // compute the number of handles we have to fiddle with |
| 537 | uint32_t uHandleCount = (uint32_t)lMinReserveIndex + uFreeAvail + (extraInHandle != 0); |
| 538 | |
| 539 | // can we rebalance these handles in place? |
| 540 | if ((uHandleCount < REBALANCE_LOWATER_MARK) || |
| 541 | (uHandleCount > REBALANCE_HIWATER_MARK)) |
| 542 | { |
| 543 | // nope - perform a full rebalance of the handle cache |
| 544 | TableFullRebalanceCache(pTable, pCache, uType, lMinReserveIndex, lMinFreeIndex, |
| 545 | pExtraOutHandle, extraInHandle); |
| 546 | |
| 547 | // all done |
| 548 | return; |
| 549 | } |
| 550 | |
| 551 | // compute the number of empty slots in the reserve bank |
| 552 | uint32_t uEmptyReserve = HANDLES_PER_CACHE_BANK - lMinReserveIndex; |
| 553 | |
| 554 | // we want to transfer as many handles as we can from the free bank |
| 555 | uint32_t uTransfer = uFreeAvail; |
| 556 | |
| 557 | // but only as many as we have room to store in the reserve bank |
| 558 | if (uTransfer > uEmptyReserve) |
| 559 | uTransfer = uEmptyReserve; |
| 560 | |
| 561 | // transfer the handles |
| 562 | SyncTransferCacheHandles(pCache->rgReserveBank + lMinReserveIndex, |
| 563 | pCache->rgFreeBank + lMinFreeIndex, |
| 564 | uTransfer); |
| 565 | |
| 566 | // adjust the free and reserve indices to reflect the transfer |
| 567 | lMinFreeIndex += uTransfer; |
| 568 | lMinReserveIndex += uTransfer; |
| 569 | |
| 570 | // do we have an extra incoming handle to store? |
| 571 | if (extraInHandle) |
| 572 | { |
| 573 | // |
| 574 | // Workaround: For code size reasons, we don't handle all cases here. |
| 575 | // We assume an extra IN handle means a cache overflow during a free. |
| 576 | // |
| 577 | // After the rebalance above, the reserve bank should be full, and |
| 578 | // there may be a few handles sitting in the free bank. The HIWATER |
| 579 | // check above guarantees that we have room to store the handle. |
| 580 | // |
| 581 | _ASSERTE(!pExtraOutHandle); |
| 582 | |
| 583 | // store the handle in the next available free bank slot |
| 584 | pCache->rgFreeBank[--lMinFreeIndex] = extraInHandle; |
| 585 | } |
| 586 | else if (pExtraOutHandle) // do we have an extra outgoing handle to satisfy? |
| 587 | { |
| 588 | // |
| 589 | // For code size reasons, we don't handle all cases here. |
| 590 | // We assume an extra OUT handle means a cache underflow during an alloc. |
| 591 | // |
| 592 | // After the rebalance above, the free bank should be empty, and |
| 593 | // the reserve bank may not be fully populated. The LOWATER check above |
| 594 | // guarantees that the reserve bank has at least one handle we can steal. |
| 595 | // |
| 596 | |
| 597 | // take the handle from the reserve bank and update the reserve index |
| 598 | *pExtraOutHandle = pCache->rgReserveBank[--lMinReserveIndex]; |
| 599 | |
| 600 | // zero the cache slot we chose |
| 601 | pCache->rgReserveBank[lMinReserveIndex] = NULL; |
| 602 | } |
| 603 | |
| 604 | // update the write index for the free bank |
| 605 | // NOTE: we use an interlocked exchange here to guarantee relative store order on MP |
| 606 | // AFTER THIS POINT THE FREE BANK IS LIVE AND COULD RECEIVE NEW HANDLES |
| 607 | Interlocked::Exchange(&pCache->lFreeIndex, lMinFreeIndex); |
| 608 | |
| 609 | // update the read index for the reserve bank |
| 610 | // NOTE: we use an interlocked exchange here to guarantee relative store order on MP |
| 611 | // AT THIS POINT THE RESERVE BANK IS LIVE AND HANDLES COULD BE ALLOCATED FROM IT |
| 612 | Interlocked::Exchange(&pCache->lReserveIndex, lMinReserveIndex); |
| 613 | } |
| 614 | |
| 615 | |
| 616 | /* |
| 617 | * TableCacheMissOnAlloc |
| 618 | * |
| 619 | * Gets a single handle of the specified type from the handle table, |
| 620 | * making the assumption that the reserve cache for that type was |
| 621 | * recently emptied. This routine acquires the handle manager lock and |
| 622 | * attempts to get a handle from the reserve cache again. If this second |
| 623 | * get operation also fails, the handle is allocated by means of a cache |
| 624 | * rebalance. |
| 625 | * |
| 626 | */ |
| 627 | OBJECTHANDLE TableCacheMissOnAlloc(HandleTable *pTable, HandleTypeCache *pCache, uint32_t uType) |
| 628 | { |
| 629 | WRAPPER_NO_CONTRACT; |
| 630 | |
| 631 | // assume we get no handle |
| 632 | OBJECTHANDLE handle = NULL; |
| 633 | |
| 634 | // acquire the handle manager lock |
| 635 | CrstHolder ch(&pTable->Lock); |
| 636 | |
| 637 | // try again to take a handle (somebody else may have rebalanced) |
| 638 | int32_t lReserveIndex = Interlocked::Decrement(&pCache->lReserveIndex); |
| 639 | |
| 640 | // are we still waiting for handles? |
| 641 | if (lReserveIndex < 0) |
| 642 | { |
| 643 | // yup, suspend free list usage... |
| 644 | int32_t lFreeIndex = Interlocked::Exchange(&pCache->lFreeIndex, 0); |
| 645 | |
| 646 | // ...and rebalance the cache... |
| 647 | TableQuickRebalanceCache(pTable, pCache, uType, lReserveIndex, lFreeIndex, &handle, NULL); |
| 648 | } |
| 649 | else |
| 650 | { |
| 651 | // somebody else rebalanced the cache for us - take the handle |
| 652 | handle = pCache->rgReserveBank[lReserveIndex]; |
| 653 | |
| 654 | // zero the handle slot |
| 655 | pCache->rgReserveBank[lReserveIndex] = 0; |
| 656 | } |
| 657 | |
| 658 | // return the handle we got |
| 659 | return handle; |
| 660 | } |
| 661 | |
| 662 | |
| 663 | /* |
| 664 | * TableCacheMissOnFree |
| 665 | * |
| 666 | * Returns a single handle of the specified type to the handle table, |
| 667 | * making the assumption that the free cache for that type was recently |
| 668 | * filled. This routine acquires the handle manager lock and attempts |
| 669 | * to store the handle in the free cache again. If this second store |
| 670 | * operation also fails, the handle is freed by means of a cache |
| 671 | * rebalance. |
| 672 | * |
| 673 | */ |
| 674 | void TableCacheMissOnFree(HandleTable *pTable, HandleTypeCache *pCache, uint32_t uType, OBJECTHANDLE handle) |
| 675 | { |
| 676 | WRAPPER_NO_CONTRACT; |
| 677 | |
| 678 | /* |
| 679 | NOTHROW; |
| 680 | GC_NOTRIGGER; |
| 681 | MODE_ANY; |
| 682 | */ |
| 683 | |
| 684 | // acquire the handle manager lock |
| 685 | CrstHolder ch(&pTable->Lock); |
| 686 | |
| 687 | // try again to take a slot (somebody else may have rebalanced) |
| 688 | int32_t lFreeIndex = Interlocked::Decrement(&pCache->lFreeIndex); |
| 689 | |
| 690 | // are we still waiting for free slots? |
| 691 | if (lFreeIndex < 0) |
| 692 | { |
| 693 | // yup, suspend reserve list usage... |
| 694 | int32_t lReserveIndex = Interlocked::Exchange(&pCache->lReserveIndex, 0); |
| 695 | |
| 696 | // ...and rebalance the cache... |
| 697 | TableQuickRebalanceCache(pTable, pCache, uType, lReserveIndex, lFreeIndex, NULL, handle); |
| 698 | } |
| 699 | else |
| 700 | { |
| 701 | // somebody else rebalanced the cache for us - free the handle |
| 702 | pCache->rgFreeBank[lFreeIndex] = handle; |
| 703 | } |
| 704 | } |
| 705 | |
| 706 | |
| 707 | /* |
| 708 | * TableAllocSingleHandleFromCache |
| 709 | * |
| 710 | * Gets a single handle of the specified type from the handle table by |
| 711 | * trying to fetch it from the reserve cache for that handle type. If the |
| 712 | * reserve cache is empty, this routine calls TableCacheMissOnAlloc. |
| 713 | * |
| 714 | */ |
| 715 | OBJECTHANDLE TableAllocSingleHandleFromCache(HandleTable *pTable, uint32_t uType) |
| 716 | { |
| 717 | WRAPPER_NO_CONTRACT; |
| 718 | |
| 719 | // we use this in two places |
| 720 | OBJECTHANDLE handle; |
| 721 | |
| 722 | // first try to get a handle from the quick cache |
| 723 | if (pTable->rgQuickCache[uType]) |
| 724 | { |
| 725 | // try to grab the handle we saw |
| 726 | handle = Interlocked::ExchangePointer(pTable->rgQuickCache + uType, (OBJECTHANDLE)NULL); |
| 727 | |
| 728 | // if it worked then we're done |
| 729 | if (handle) |
| 730 | return handle; |
| 731 | } |
| 732 | |
| 733 | // ok, get the main handle cache for this type |
| 734 | HandleTypeCache *pCache = pTable->rgMainCache + uType; |
| 735 | |
| 736 | // try to take a handle from the main cache |
| 737 | int32_t lReserveIndex = Interlocked::Decrement(&pCache->lReserveIndex); |
| 738 | |
| 739 | // did we underflow? |
| 740 | if (lReserveIndex < 0) |
| 741 | { |
| 742 | // yep - the cache is out of handles |
| 743 | return TableCacheMissOnAlloc(pTable, pCache, uType); |
| 744 | } |
| 745 | |
| 746 | // get our handle |
| 747 | handle = pCache->rgReserveBank[lReserveIndex]; |
| 748 | |
| 749 | // zero the handle slot |
| 750 | pCache->rgReserveBank[lReserveIndex] = 0; |
| 751 | |
| 752 | // sanity |
| 753 | _ASSERTE(handle); |
| 754 | |
| 755 | // return our handle |
| 756 | return handle; |
| 757 | } |
| 758 | |
| 759 | |
| 760 | /* |
| 761 | * TableFreeSingleHandleToCache |
| 762 | * |
| 763 | * Returns a single handle of the specified type to the handle table |
| 764 | * by trying to store it in the free cache for that handle type. If the |
| 765 | * free cache is full, this routine calls TableCacheMissOnFree. |
| 766 | * |
| 767 | */ |
| 768 | void TableFreeSingleHandleToCache(HandleTable *pTable, uint32_t uType, OBJECTHANDLE handle) |
| 769 | { |
| 770 | CONTRACTL |
| 771 | { |
| 772 | NOTHROW; |
| 773 | GC_NOTRIGGER; |
| 774 | MODE_ANY; |
| 775 | SO_TOLERANT; |
| 776 | CAN_TAKE_LOCK; // because of TableCacheMissOnFree |
| 777 | } |
| 778 | CONTRACTL_END; |
| 779 | |
| 780 | #ifdef DEBUG_DestroyedHandleValue |
| 781 | *(_UNCHECKED_OBJECTREF *)handle = DEBUG_DestroyedHandleValue; |
| 782 | #else |
| 783 | // zero the handle's object pointer |
| 784 | *(_UNCHECKED_OBJECTREF *)handle = NULL; |
| 785 | #endif |
| 786 | |
| 787 | // if this handle type has user data then clear it - AFTER the referent is cleared! |
| 788 | if (TypeHasUserData(pTable, uType)) |
| 789 | HandleQuickSetUserData(handle, 0L); |
| 790 | |
| 791 | // is there room in the quick cache? |
| 792 | if (!pTable->rgQuickCache[uType]) |
| 793 | { |
| 794 | // yup - try to stuff our handle in the slot we saw |
| 795 | handle = Interlocked::ExchangePointer(&pTable->rgQuickCache[uType], handle); |
| 796 | |
| 797 | // if we didn't end up with another handle then we're done |
| 798 | if (!handle) |
| 799 | return; |
| 800 | } |
| 801 | |
| 802 | // ok, get the main handle cache for this type |
| 803 | HandleTypeCache *pCache = pTable->rgMainCache + uType; |
| 804 | |
| 805 | // try to take a free slot from the main cache |
| 806 | int32_t lFreeIndex = Interlocked::Decrement(&pCache->lFreeIndex); |
| 807 | |
| 808 | // did we underflow? |
| 809 | if (lFreeIndex < 0) |
| 810 | { |
| 811 | // yep - we're out of free slots |
| 812 | TableCacheMissOnFree(pTable, pCache, uType, handle); |
| 813 | return; |
| 814 | } |
| 815 | |
| 816 | // we got a slot - save the handle in the free bank |
| 817 | pCache->rgFreeBank[lFreeIndex] = handle; |
| 818 | } |
| 819 | |
| 820 | |
| 821 | /* |
| 822 | * TableAllocHandlesFromCache |
| 823 | * |
| 824 | * Allocates multiple handles of the specified type by repeatedly |
| 825 | * calling TableAllocSingleHandleFromCache. |
| 826 | * |
| 827 | */ |
| 828 | uint32_t TableAllocHandlesFromCache(HandleTable *pTable, uint32_t uType, OBJECTHANDLE *pHandleBase, uint32_t uCount) |
| 829 | { |
| 830 | WRAPPER_NO_CONTRACT; |
| 831 | |
| 832 | // loop until we have satisfied all the handles we need to allocate |
| 833 | uint32_t uSatisfied = 0; |
| 834 | while (uSatisfied < uCount) |
| 835 | { |
| 836 | // get a handle from the cache |
| 837 | OBJECTHANDLE handle = TableAllocSingleHandleFromCache(pTable, uType); |
| 838 | |
| 839 | // if we can't get any more then bail out |
| 840 | if (!handle) |
| 841 | break; |
| 842 | |
| 843 | // store the handle in the caller's array |
| 844 | *pHandleBase = handle; |
| 845 | |
| 846 | // on to the next one |
| 847 | uSatisfied++; |
| 848 | pHandleBase++; |
| 849 | } |
| 850 | |
| 851 | // return the number of handles we allocated |
| 852 | return uSatisfied; |
| 853 | } |
| 854 | |
| 855 | |
| 856 | /* |
| 857 | * TableFreeHandlesToCache |
| 858 | * |
| 859 | * Frees multiple handles of the specified type by repeatedly |
| 860 | * calling TableFreeSingleHandleToCache. |
| 861 | * |
| 862 | */ |
| 863 | void TableFreeHandlesToCache(HandleTable *pTable, uint32_t uType, const OBJECTHANDLE *pHandleBase, uint32_t uCount) |
| 864 | { |
| 865 | WRAPPER_NO_CONTRACT; |
| 866 | |
| 867 | // loop until we have freed all the handles |
| 868 | while (uCount) |
| 869 | { |
| 870 | // get the next handle to free |
| 871 | OBJECTHANDLE handle = *pHandleBase; |
| 872 | |
| 873 | // advance our state |
| 874 | uCount--; |
| 875 | pHandleBase++; |
| 876 | |
| 877 | // sanity |
| 878 | _ASSERTE(handle); |
| 879 | |
| 880 | // return the handle to the cache |
| 881 | TableFreeSingleHandleToCache(pTable, uType, handle); |
| 882 | } |
| 883 | } |
| 884 | |
| 885 | /*--------------------------------------------------------------------------*/ |
| 886 | |
| 887 | |
| 888 | |