1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | /* |
6 | * Generational GC handle manager. Core Table Implementation. |
7 | * |
8 | * Implementation of core table management routines. |
9 | * |
10 | |
11 | * |
12 | */ |
13 | |
14 | #include "common.h" |
15 | |
16 | #include "gcenv.h" |
17 | #include "gcenv.inl" |
18 | #include "gc.h" |
19 | #include "handletablepriv.h" |
20 | |
21 | /**************************************************************************** |
22 | * |
23 | * RANDOM HELPERS |
24 | * |
25 | ****************************************************************************/ |
26 | |
27 | const uint8_t c_rgLowBitIndex[256] = |
28 | { |
29 | 0xff, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
30 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
31 | 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
32 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
33 | 0x05, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
34 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
35 | 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
36 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
37 | 0x06, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
38 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
39 | 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
40 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
41 | 0x05, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
42 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
43 | 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
44 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
45 | 0x07, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
46 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
47 | 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
48 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
49 | 0x05, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
50 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
51 | 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
52 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
53 | 0x06, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
54 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
55 | 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
56 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
57 | 0x05, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
58 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
59 | 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
60 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
61 | }; |
62 | |
63 | #ifndef DACCESS_COMPILE |
64 | |
65 | /* |
66 | * A 32/64 neutral quicksort |
67 | */ |
68 | //<TODO>@TODO: move/merge into common util file</TODO> |
69 | typedef int (*PFNCOMPARE)(uintptr_t p, uintptr_t q); |
70 | void QuickSort(uintptr_t *pData, int left, int right, PFNCOMPARE pfnCompare) |
71 | { |
72 | WRAPPER_NO_CONTRACT; |
73 | |
74 | do |
75 | { |
76 | int i = left; |
77 | int j = right; |
78 | |
79 | uintptr_t x = pData[(i + j + 1) / 2]; |
80 | |
81 | do |
82 | { |
83 | while (pfnCompare(pData[i], x) < 0) |
84 | i++; |
85 | |
86 | while (pfnCompare(x, pData[j]) < 0) |
87 | j--; |
88 | |
89 | if (i > j) |
90 | break; |
91 | |
92 | if (i < j) |
93 | { |
94 | uintptr_t t = pData[i]; |
95 | pData[i] = pData[j]; |
96 | pData[j] = t; |
97 | } |
98 | |
99 | i++; |
100 | j--; |
101 | |
102 | } while (i <= j); |
103 | |
104 | if ((j - left) <= (right - i)) |
105 | { |
106 | if (left < j) |
107 | QuickSort(pData, left, j, pfnCompare); |
108 | |
109 | left = i; |
110 | } |
111 | else |
112 | { |
113 | if (i < right) |
114 | QuickSort(pData, i, right, pfnCompare); |
115 | |
116 | right = j; |
117 | } |
118 | |
119 | } while (left < right); |
120 | } |
121 | |
122 | |
123 | /* |
124 | * CompareHandlesByFreeOrder |
125 | * |
126 | * Returns: |
127 | * <0 - handle P should be freed before handle Q |
128 | * =0 - handles are eqivalent for free order purposes |
129 | * >0 - handle Q should be freed before handle P |
130 | * |
131 | */ |
132 | int CompareHandlesByFreeOrder(uintptr_t p, uintptr_t q) |
133 | { |
134 | LIMITED_METHOD_CONTRACT; |
135 | |
136 | // compute the segments for the handles |
137 | TableSegment *pSegmentP = (TableSegment *)(p & HANDLE_SEGMENT_ALIGN_MASK); |
138 | TableSegment *pSegmentQ = (TableSegment *)(q & HANDLE_SEGMENT_ALIGN_MASK); |
139 | |
140 | // are the handles in the same segment? |
141 | if (pSegmentP == pSegmentQ) |
142 | { |
143 | // return the in-segment handle free order |
144 | return (int)((intptr_t)q - (intptr_t)p); |
145 | } |
146 | else if (pSegmentP) |
147 | { |
148 | // do we have two valid segments? |
149 | if (pSegmentQ) |
150 | { |
151 | // return the sequence order of the two segments |
152 | return (int)(uint32_t)pSegmentQ->bSequence - (int)(uint32_t)pSegmentP->bSequence; |
153 | } |
154 | else |
155 | { |
156 | // only the P handle is valid - free Q first |
157 | return 1; |
158 | } |
159 | } |
160 | else if (pSegmentQ) |
161 | { |
162 | // only the Q handle is valid - free P first |
163 | return -1; |
164 | } |
165 | |
166 | // neither handle is valid |
167 | return 0; |
168 | } |
169 | |
170 | |
171 | /* |
172 | * ZeroHandles |
173 | * |
174 | * Zeroes the object pointers for an array of handles. |
175 | * |
176 | */ |
177 | void ZeroHandles(OBJECTHANDLE *pHandleBase, uint32_t uCount) |
178 | { |
179 | LIMITED_METHOD_CONTRACT; |
180 | |
181 | // compute our stopping point |
182 | OBJECTHANDLE *pLastHandle = pHandleBase + uCount; |
183 | |
184 | // loop over the array, zeroing as we go |
185 | while (pHandleBase < pLastHandle) |
186 | { |
187 | // get the current handle from the array |
188 | OBJECTHANDLE handle = *pHandleBase; |
189 | |
190 | // advance to the next handle |
191 | pHandleBase++; |
192 | |
193 | // zero the handle's object pointer |
194 | *(_UNCHECKED_OBJECTREF *)handle = NULL; |
195 | } |
196 | } |
197 | |
198 | #ifdef _DEBUG |
199 | void CALLBACK DbgCountEnumeratedBlocks(TableSegment *pSegment, uint32_t uBlock, uint32_t uCount, ScanCallbackInfo *pInfo) |
200 | { |
201 | LIMITED_METHOD_CONTRACT; |
202 | UNREFERENCED_PARAMETER(pSegment); |
203 | UNREFERENCED_PARAMETER(uBlock); |
204 | |
205 | // accumulate the block count in pInfo->param1 |
206 | pInfo->param1 += uCount; |
207 | } |
208 | #endif |
209 | |
210 | /*--------------------------------------------------------------------------*/ |
211 | |
212 | |
213 | |
214 | /**************************************************************************** |
215 | * |
216 | * CORE TABLE MANAGEMENT |
217 | * |
218 | ****************************************************************************/ |
219 | |
220 | /* |
221 | * TableCanFreeSegmentNow |
222 | * |
223 | * Determines if it is OK to free the specified segment at this time. |
224 | * |
225 | */ |
226 | BOOL TableCanFreeSegmentNow(HandleTable *pTable, TableSegment *pSegment) |
227 | { |
228 | LIMITED_METHOD_CONTRACT; |
229 | |
230 | // sanity |
231 | _ASSERTE(pTable); |
232 | _ASSERTE(pSegment); |
233 | #ifdef _DEBUG |
234 | // there have been cases in the past where the original assert would |
235 | // fail but by the time a dump was created the lock was unowned so |
236 | // there was no way to tell who the previous owner was. |
237 | EEThreadId threadId = pTable->Lock.GetHolderThreadId(); |
238 | _ASSERTE(threadId.IsCurrentThread()); |
239 | #endif // _DEBUG |
240 | |
241 | // deterine if any segment is currently being scanned asynchronously |
242 | TableSegment *pSegmentAsync = NULL; |
243 | |
244 | // do we have async info? |
245 | AsyncScanInfo *pAsyncInfo = pTable->pAsyncScanInfo; |
246 | if (pAsyncInfo) |
247 | { |
248 | // must always have underlying callback info in an async scan |
249 | _ASSERTE(pAsyncInfo->pCallbackInfo); |
250 | |
251 | // yes - if a segment is being scanned asynchronously it is listed here |
252 | pSegmentAsync = pAsyncInfo->pCallbackInfo->pCurrentSegment; |
253 | } |
254 | |
255 | // we can free our segment if it isn't being scanned asynchronously right now |
256 | return (pSegment != pSegmentAsync); |
257 | } |
258 | |
259 | #endif // !DACCESS_COMPILE |
260 | |
261 | /* |
262 | * BlockFetchUserDataPointer |
263 | * |
264 | * Gets the user data pointer for the first handle in a block. |
265 | * |
266 | */ |
267 | PTR_uintptr_t (PTR__TableSegmentHeader pSegment, uint32_t uBlock, BOOL fAssertOnError) |
268 | { |
269 | LIMITED_METHOD_DAC_CONTRACT; |
270 | |
271 | // assume NULL until we actually find the data |
272 | PTR_uintptr_t pUserData = NULL; |
273 | // get the user data index for this block |
274 | uint32_t blockIndex = pSegment->rgUserData[uBlock]; |
275 | |
276 | // is there user data for the block? |
277 | if (blockIndex != BLOCK_INVALID) |
278 | { |
279 | // In DAC builds, we may not have the entire segment table mapped and in any case it will be quite |
280 | // large. Since we only need one element, we'll retrieve just that one element. |
281 | pUserData = PTR_uintptr_t(PTR_TO_TADDR(pSegment) + offsetof(TableSegment, rgValue) + |
282 | (blockIndex * HANDLE_BYTES_PER_BLOCK)); |
283 | } |
284 | else if (fAssertOnError) |
285 | { |
286 | // no user data is associated with this block |
287 | // |
288 | // we probably got here for one of the following reasons: |
289 | // 1) an outside caller tried to do a user data operation on an incompatible handle |
290 | // 2) the user data map in the segment is corrupt |
291 | // 3) the global type flags are corrupt |
292 | // |
293 | _ASSERTE(FALSE); |
294 | } |
295 | |
296 | // return the result |
297 | return pUserData; |
298 | } |
299 | |
300 | |
301 | /* |
302 | * HandleFetchSegmentPointer |
303 | * |
304 | * Computes the segment pointer for a given handle. |
305 | * |
306 | */ |
307 | __inline PTR__TableSegmentHeader HandleFetchSegmentPointer(OBJECTHANDLE handle) |
308 | { |
309 | LIMITED_METHOD_DAC_CONTRACT; |
310 | |
311 | // find the segment for this handle |
312 | PTR__TableSegmentHeader pSegment = PTR__TableSegmentHeader((uintptr_t)handle & HANDLE_SEGMENT_ALIGN_MASK); |
313 | |
314 | // sanity |
315 | _ASSERTE(pSegment); |
316 | |
317 | // return the segment pointer |
318 | return pSegment; |
319 | } |
320 | |
321 | |
322 | /* |
323 | * HandleValidateAndFetchUserDataPointer |
324 | * |
325 | * Gets the user data pointer for the specified handle. |
326 | * ASSERTs and returns NULL if handle is not of the expected type. |
327 | * |
328 | */ |
329 | uintptr_t *HandleValidateAndFetchUserDataPointer(OBJECTHANDLE handle, uint32_t uTypeExpected) |
330 | { |
331 | WRAPPER_NO_CONTRACT; |
332 | |
333 | // get the segment for this handle |
334 | PTR__TableSegmentHeader pSegment = HandleFetchSegmentPointer(handle); |
335 | |
336 | // find the offset of this handle into the segment |
337 | uintptr_t offset = (uintptr_t)handle & HANDLE_SEGMENT_CONTENT_MASK; |
338 | |
339 | // make sure it is in the handle area and not the header |
340 | _ASSERTE(offset >= HANDLE_HEADER_SIZE); |
341 | |
342 | // convert the offset to a handle index |
343 | uint32_t uHandle = (uint32_t)((offset - HANDLE_HEADER_SIZE) / HANDLE_SIZE); |
344 | |
345 | // compute the block this handle resides in |
346 | uint32_t uBlock = uHandle / HANDLE_HANDLES_PER_BLOCK; |
347 | |
348 | // fetch the user data for this block |
349 | PTR_uintptr_t pUserData = BlockFetchUserDataPointer(pSegment, uBlock, TRUE); |
350 | |
351 | // did we get the user data block? |
352 | if (pUserData) |
353 | { |
354 | // yup - adjust the pointer to be handle-specific |
355 | pUserData += (uHandle - (uBlock * HANDLE_HANDLES_PER_BLOCK)); |
356 | |
357 | // validate the block type before returning the pointer |
358 | if (pSegment->rgBlockType[uBlock] != uTypeExpected) |
359 | { |
360 | // type mismatch - caller error |
361 | _ASSERTE(FALSE); |
362 | |
363 | // don't return a pointer to the caller |
364 | pUserData = NULL; |
365 | } |
366 | } |
367 | |
368 | // return the result |
369 | return pUserData; |
370 | } |
371 | |
372 | /* |
373 | * HandleQuickFetchUserDataPointer |
374 | * |
375 | * Gets the user data pointer for a handle. |
376 | * Less validation is performed. |
377 | * |
378 | */ |
379 | PTR_uintptr_t HandleQuickFetchUserDataPointer(OBJECTHANDLE handle) |
380 | { |
381 | WRAPPER_NO_CONTRACT; |
382 | |
383 | /* |
384 | NOTHROW; |
385 | GC_NOTRIGGER; |
386 | MODE_ANY; |
387 | */ |
388 | SUPPORTS_DAC; |
389 | |
390 | // get the segment for this handle |
391 | PTR__TableSegmentHeader pSegment = HandleFetchSegmentPointer(handle); |
392 | |
393 | // find the offset of this handle into the segment |
394 | uintptr_t offset = (uintptr_t)handle & HANDLE_SEGMENT_CONTENT_MASK; |
395 | |
396 | // make sure it is in the handle area and not the header |
397 | _ASSERTE(offset >= HANDLE_HEADER_SIZE); |
398 | |
399 | // convert the offset to a handle index |
400 | uint32_t uHandle = (uint32_t)((offset - HANDLE_HEADER_SIZE) / HANDLE_SIZE); |
401 | |
402 | // compute the block this handle resides in |
403 | uint32_t uBlock = uHandle / HANDLE_HANDLES_PER_BLOCK; |
404 | |
405 | // fetch the user data for this block |
406 | PTR_uintptr_t pUserData = BlockFetchUserDataPointer(pSegment, uBlock, TRUE); |
407 | |
408 | // if we got the user data block then adjust the pointer to be handle-specific |
409 | if (pUserData) |
410 | pUserData += (uHandle - (uBlock * HANDLE_HANDLES_PER_BLOCK)); |
411 | |
412 | // return the result |
413 | return pUserData; |
414 | } |
415 | |
416 | #ifndef DACCESS_COMPILE |
417 | /* |
418 | * HandleQuickSetUserData |
419 | * |
420 | * Stores user data with a handle. |
421 | * |
422 | */ |
423 | void HandleQuickSetUserData(OBJECTHANDLE handle, uintptr_t lUserData) |
424 | { |
425 | WRAPPER_NO_CONTRACT; |
426 | |
427 | /* |
428 | NOTHROW; |
429 | GC_NOTRIGGER; |
430 | MODE_ANY; |
431 | */ |
432 | |
433 | // fetch the user data slot for this handle |
434 | uintptr_t *pUserData = HandleQuickFetchUserDataPointer(handle); |
435 | |
436 | // is there a slot? |
437 | if (pUserData) |
438 | { |
439 | // yes - store the info |
440 | *pUserData = lUserData; |
441 | } |
442 | } |
443 | |
444 | #endif // !DACCESS_COMPILE |
445 | |
446 | /* |
447 | * HandleFetchType |
448 | * |
449 | * Computes the type index for a given handle. |
450 | * |
451 | */ |
452 | uint32_t HandleFetchType(OBJECTHANDLE handle) |
453 | { |
454 | WRAPPER_NO_CONTRACT; |
455 | |
456 | // get the segment for this handle |
457 | PTR__TableSegmentHeader pSegment = HandleFetchSegmentPointer(handle); |
458 | |
459 | // find the offset of this handle into the segment |
460 | uintptr_t offset = (uintptr_t)handle & HANDLE_SEGMENT_CONTENT_MASK; |
461 | |
462 | // make sure it is in the handle area and not the header |
463 | _ASSERTE(offset >= HANDLE_HEADER_SIZE); |
464 | |
465 | // convert the offset to a handle index |
466 | uint32_t uHandle = (uint32_t)((offset - HANDLE_HEADER_SIZE) / HANDLE_SIZE); |
467 | |
468 | // compute the block this handle resides in |
469 | uint32_t uBlock = uHandle / HANDLE_HANDLES_PER_BLOCK; |
470 | |
471 | // return the block's type |
472 | return pSegment->rgBlockType[uBlock]; |
473 | } |
474 | |
475 | /* |
476 | * HandleFetchHandleTable |
477 | * |
478 | * Computes the type index for a given handle. |
479 | * |
480 | */ |
481 | PTR_HandleTable HandleFetchHandleTable(OBJECTHANDLE handle) |
482 | { |
483 | WRAPPER_NO_CONTRACT; |
484 | SUPPORTS_DAC; |
485 | |
486 | // get the segment for this handle |
487 | PTR__TableSegmentHeader pSegment = HandleFetchSegmentPointer(handle); |
488 | |
489 | // return the table |
490 | return pSegment->pHandleTable; |
491 | } |
492 | |
493 | #ifndef DACCESS_COMPILE |
494 | /* |
495 | * SegmentInitialize |
496 | * |
497 | * Initializes a segment. |
498 | * |
499 | */ |
500 | BOOL SegmentInitialize(TableSegment *pSegment, HandleTable *pTable) |
501 | { |
502 | LIMITED_METHOD_CONTRACT; |
503 | |
504 | /* |
505 | NOTHROW; |
506 | GC_NOTRIGGER; |
507 | MODE_ANY; |
508 | */ |
509 | |
510 | // we want to commit enough for the header PLUS some handles |
511 | size_t dwCommit = ALIGN_UP(HANDLE_HEADER_SIZE, OS_PAGE_SIZE); |
512 | |
513 | // commit the header |
514 | if (!GCToOSInterface::VirtualCommit(pSegment, dwCommit)) |
515 | { |
516 | //_ASSERTE(FALSE); |
517 | return FALSE; |
518 | } |
519 | |
520 | // remember how many blocks we commited |
521 | pSegment->bCommitLine = (uint8_t)((dwCommit - HANDLE_HEADER_SIZE) / HANDLE_BYTES_PER_BLOCK); |
522 | |
523 | // now preinitialize the 0xFF guys |
524 | memset(pSegment->rgGeneration, 0xFF, sizeof(pSegment->rgGeneration)); |
525 | memset(pSegment->rgTail, BLOCK_INVALID, sizeof(pSegment->rgTail)); |
526 | memset(pSegment->rgHint, BLOCK_INVALID, sizeof(pSegment->rgHint)); |
527 | memset(pSegment->rgFreeMask, 0xFF, sizeof(pSegment->rgFreeMask)); |
528 | memset(pSegment->rgBlockType, TYPE_INVALID, sizeof(pSegment->rgBlockType)); |
529 | memset(pSegment->rgUserData, BLOCK_INVALID, sizeof(pSegment->rgUserData)); |
530 | |
531 | // prelink the free chain |
532 | _ASSERTE(FitsInU1(HANDLE_BLOCKS_PER_SEGMENT)); |
533 | uint8_t u = 0; |
534 | while (u < (HANDLE_BLOCKS_PER_SEGMENT - 1)) |
535 | { |
536 | uint8_t next = u + 1; |
537 | pSegment->rgAllocation[u] = next; |
538 | u = next; |
539 | } |
540 | |
541 | // and terminate the last node |
542 | pSegment->rgAllocation[u] = BLOCK_INVALID; |
543 | |
544 | // store the back pointer from our new segment to its owning table |
545 | pSegment->pHandleTable = pTable; |
546 | |
547 | // all done |
548 | return TRUE; |
549 | } |
550 | |
551 | |
552 | /* |
553 | * SegmentFree |
554 | * |
555 | * Frees the specified segment. |
556 | * |
557 | */ |
558 | void SegmentFree(TableSegment *pSegment) |
559 | { |
560 | WRAPPER_NO_CONTRACT; |
561 | |
562 | /* |
563 | NOTHROW; |
564 | GC_NOTRIGGER; |
565 | MODE_ANY; |
566 | */ |
567 | |
568 | // free the segment's memory |
569 | GCToOSInterface::VirtualRelease(pSegment, HANDLE_SEGMENT_SIZE); |
570 | } |
571 | |
572 | |
573 | /* |
574 | * SegmentAlloc |
575 | * |
576 | * Allocates a new segment. |
577 | * |
578 | */ |
579 | TableSegment *SegmentAlloc(HandleTable *pTable) |
580 | { |
581 | LIMITED_METHOD_CONTRACT; |
582 | |
583 | /* |
584 | NOTHROW; |
585 | GC_NOTRIGGER; |
586 | MODE_ANY; |
587 | */ |
588 | |
589 | // allocate the segment's address space |
590 | TableSegment *pSegment = NULL; |
591 | |
592 | // All platforms currently require 64Kb aligned table segments, which is what VirtualAlloc guarantees. |
593 | // The actual requirement is that the alignment of the reservation equals or exceeds the size of the |
594 | // reservation. This requirement stems from the method the handle table uses to map quickly from a handle |
595 | // address back to the handle table segment header. |
596 | _ASSERTE(HANDLE_SEGMENT_ALIGNMENT >= HANDLE_SEGMENT_SIZE); |
597 | _ASSERTE(HANDLE_SEGMENT_ALIGNMENT == 0x10000); |
598 | |
599 | pSegment = (TableSegment *)GCToOSInterface::VirtualReserve(HANDLE_SEGMENT_SIZE, HANDLE_SEGMENT_ALIGNMENT, VirtualReserveFlags::None); |
600 | _ASSERTE(((size_t)pSegment % HANDLE_SEGMENT_ALIGNMENT) == 0); |
601 | |
602 | // bail out if we couldn't get any memory |
603 | if (!pSegment) |
604 | { |
605 | return NULL; |
606 | } |
607 | |
608 | // initialize the header |
609 | if (!SegmentInitialize(pSegment, pTable)) |
610 | { |
611 | SegmentFree(pSegment); |
612 | pSegment = NULL; |
613 | } |
614 | |
615 | // all done |
616 | return pSegment; |
617 | } |
618 | |
619 | // Mark a handle being free. |
620 | __inline void SegmentMarkFreeMask(TableSegment *pSegment, _UNCHECKED_OBJECTREF* h) |
621 | { |
622 | CONTRACTL |
623 | { |
624 | NOTHROW; |
625 | GC_NOTRIGGER; |
626 | MODE_COOPERATIVE; |
627 | } |
628 | CONTRACTL_END; |
629 | |
630 | uint32_t uMask = (uint32_t)(h - pSegment->rgValue); |
631 | uint32_t uBit = uMask % HANDLE_HANDLES_PER_MASK; |
632 | uMask = uMask / HANDLE_HANDLES_PER_MASK; |
633 | pSegment->rgFreeMask[uMask] |= (1<<uBit); |
634 | } |
635 | |
636 | // Mark a handle being used. |
637 | __inline void SegmentUnMarkFreeMask(TableSegment *pSegment, _UNCHECKED_OBJECTREF* h) |
638 | { |
639 | CONTRACTL |
640 | { |
641 | NOTHROW; |
642 | GC_NOTRIGGER; |
643 | MODE_COOPERATIVE; |
644 | } |
645 | CONTRACTL_END; |
646 | |
647 | uint32_t uMask = (uint32_t)(h - pSegment->rgValue); |
648 | uint32_t uBit = uMask % HANDLE_HANDLES_PER_MASK; |
649 | uMask = uMask / HANDLE_HANDLES_PER_MASK; |
650 | pSegment->rgFreeMask[uMask] &= ~(1<<uBit); |
651 | } |
652 | |
653 | // Prepare a segment to be moved to default domain. |
654 | // Remove all non-async pin handles. |
655 | void SegmentPreCompactAsyncPinHandles(TableSegment *pSegment, void (*clearIfComplete)(Object*)) |
656 | { |
657 | CONTRACTL |
658 | { |
659 | NOTHROW; |
660 | GC_NOTRIGGER; |
661 | MODE_COOPERATIVE; |
662 | } |
663 | CONTRACTL_END; |
664 | |
665 | pSegment->fResortChains = true; |
666 | pSegment->fNeedsScavenging = true; |
667 | |
668 | // Zero out all non-async pin handles |
669 | uint32_t uBlock; |
670 | for (uBlock = 0; uBlock < pSegment->bEmptyLine; uBlock ++) |
671 | { |
672 | if (pSegment->rgBlockType[uBlock] == TYPE_INVALID) |
673 | { |
674 | continue; |
675 | } |
676 | else if (pSegment->rgBlockType[uBlock] != HNDTYPE_ASYNCPINNED) |
677 | { |
678 | _UNCHECKED_OBJECTREF *pValue = pSegment->rgValue + (uBlock * HANDLE_HANDLES_PER_BLOCK); |
679 | _UNCHECKED_OBJECTREF *pLast = pValue + HANDLE_HANDLES_PER_BLOCK; |
680 | do |
681 | { |
682 | *pValue = NULL; |
683 | pValue ++; |
684 | } while (pValue < pLast); |
685 | |
686 | ((uint32_t*)pSegment->rgGeneration)[uBlock] = (uint32_t)-1; |
687 | |
688 | uint32_t *pdwMask = pSegment->rgFreeMask + (uBlock * HANDLE_MASKS_PER_BLOCK); |
689 | uint32_t *pdwMaskLast = pdwMask + HANDLE_MASKS_PER_BLOCK; |
690 | do |
691 | { |
692 | *pdwMask = MASK_EMPTY; |
693 | pdwMask ++; |
694 | } while (pdwMask < pdwMaskLast); |
695 | |
696 | pSegment->rgBlockType[uBlock] = TYPE_INVALID; |
697 | pSegment->rgUserData[uBlock] = BLOCK_INVALID; |
698 | pSegment->rgLocks[uBlock] = 0; |
699 | } |
700 | } |
701 | |
702 | // Return all non-async pin handles to free list |
703 | uint32_t uType; |
704 | for (uType = 0; uType < HANDLE_MAX_INTERNAL_TYPES; uType ++) |
705 | { |
706 | if (uType == HNDTYPE_ASYNCPINNED) |
707 | { |
708 | continue; |
709 | } |
710 | pSegment->rgFreeCount[uType] = 0; |
711 | if (pSegment->rgHint[uType] != BLOCK_INVALID) |
712 | { |
713 | uint32_t uLast = pSegment->rgHint[uType]; |
714 | uint8_t uFirst = pSegment->rgAllocation[uLast]; |
715 | pSegment->rgAllocation[uLast] = pSegment->bFreeList; |
716 | pSegment->bFreeList = uFirst; |
717 | pSegment->rgHint[uType] = BLOCK_INVALID; |
718 | pSegment->rgTail[uType] = BLOCK_INVALID; |
719 | } |
720 | } |
721 | |
722 | // make sure the remaining async handle has MethodTable that exists in default domain |
723 | uBlock = pSegment->rgHint[HNDTYPE_ASYNCPINNED]; |
724 | if (uBlock == BLOCK_INVALID) |
725 | { |
726 | return; |
727 | } |
728 | uint32_t freeCount = 0; |
729 | for (uBlock = 0; uBlock < pSegment->bEmptyLine; uBlock ++) |
730 | { |
731 | if (pSegment->rgBlockType[uBlock] != HNDTYPE_ASYNCPINNED) |
732 | { |
733 | continue; |
734 | } |
735 | if (pSegment->rgFreeMask[uBlock*2] == (uint32_t)-1 && pSegment->rgFreeMask[uBlock*2+1] == (uint32_t)-1) |
736 | { |
737 | continue; |
738 | } |
739 | _UNCHECKED_OBJECTREF *pValue = pSegment->rgValue + (uBlock * HANDLE_HANDLES_PER_BLOCK); |
740 | _UNCHECKED_OBJECTREF *pLast = pValue + HANDLE_HANDLES_PER_BLOCK; |
741 | |
742 | do |
743 | { |
744 | _UNCHECKED_OBJECTREF value = *pValue; |
745 | if (!HndIsNullOrDestroyedHandle(value)) |
746 | { |
747 | clearIfComplete((Object*)value); |
748 | } |
749 | else |
750 | { |
751 | // reset free mask |
752 | SegmentMarkFreeMask(pSegment, pValue); |
753 | freeCount ++; |
754 | } |
755 | pValue ++; |
756 | } while (pValue != pLast); |
757 | } |
758 | |
759 | pSegment->rgFreeCount[HNDTYPE_ASYNCPINNED] = freeCount; |
760 | } |
761 | |
762 | // Copy a handle to a different segment in the same HandleTable |
763 | BOOL SegmentCopyAsyncPinHandle(TableSegment *pSegment, _UNCHECKED_OBJECTREF *h) |
764 | { |
765 | CONTRACTL |
766 | { |
767 | NOTHROW; |
768 | GC_NOTRIGGER; |
769 | MODE_COOPERATIVE; |
770 | } |
771 | CONTRACTL_END; |
772 | |
773 | _ASSERTE (HandleFetchSegmentPointer((OBJECTHANDLE)h) != pSegment); |
774 | |
775 | if (pSegment->rgFreeCount[HNDTYPE_ASYNCPINNED] == 0) |
776 | { |
777 | uint8_t uBlock = pSegment->bFreeList; |
778 | if (uBlock == BLOCK_INVALID) |
779 | { |
780 | // All slots are used up. |
781 | return FALSE; |
782 | } |
783 | pSegment->bFreeList = pSegment->rgAllocation[uBlock]; |
784 | pSegment->rgBlockType[uBlock] = HNDTYPE_ASYNCPINNED; |
785 | pSegment->rgAllocation[uBlock] = pSegment->rgHint[HNDTYPE_ASYNCPINNED]; |
786 | pSegment->rgHint[HNDTYPE_ASYNCPINNED] = uBlock; |
787 | pSegment->rgFreeCount[HNDTYPE_ASYNCPINNED] += HANDLE_HANDLES_PER_BLOCK; |
788 | } |
789 | uint8_t uBlock = pSegment->rgHint[HNDTYPE_ASYNCPINNED]; |
790 | uint8_t uLast = uBlock; |
791 | do |
792 | { |
793 | uint32_t n = uBlock * (HANDLE_HANDLES_PER_BLOCK/HANDLE_HANDLES_PER_MASK); |
794 | uint32_t* pMask = pSegment->rgFreeMask + n; |
795 | if (pMask[0] != 0 || pMask[1] != 0) |
796 | { |
797 | break; |
798 | } |
799 | uBlock = pSegment->rgAllocation[uBlock]; |
800 | } while (uBlock != uLast); |
801 | _ASSERTE (uBlock != uLast); |
802 | pSegment->rgHint[HNDTYPE_ASYNCPINNED] = uBlock; |
803 | _UNCHECKED_OBJECTREF *pValue = pSegment->rgValue + (uBlock * HANDLE_HANDLES_PER_BLOCK); |
804 | _UNCHECKED_OBJECTREF *pLast = pValue + HANDLE_HANDLES_PER_BLOCK; |
805 | do |
806 | { |
807 | if (*pValue == NULL) |
808 | { |
809 | SegmentUnMarkFreeMask(pSegment,pValue); |
810 | *pValue = *h; |
811 | *h = NULL; |
812 | break; |
813 | } |
814 | pValue ++; |
815 | } while (pValue != pLast); |
816 | _ASSERTE (pValue != pLast); |
817 | pSegment->rgFreeCount[HNDTYPE_ASYNCPINNED] --; |
818 | return TRUE; |
819 | } |
820 | |
821 | void SegmentCompactAsyncPinHandles(TableSegment *pSegment, TableSegment **ppWorkerSegment, void (*clearIfComplete)(Object*)) |
822 | { |
823 | CONTRACTL |
824 | { |
825 | NOTHROW; |
826 | GC_NOTRIGGER; |
827 | MODE_COOPERATIVE; |
828 | } |
829 | CONTRACTL_END; |
830 | |
831 | uint32_t uBlock = pSegment->rgHint[HNDTYPE_ASYNCPINNED]; |
832 | if (uBlock == BLOCK_INVALID) |
833 | { |
834 | return; |
835 | } |
836 | for (uBlock = 0; uBlock < pSegment->bEmptyLine; uBlock ++) |
837 | { |
838 | if (pSegment->rgBlockType[uBlock] != HNDTYPE_ASYNCPINNED) |
839 | { |
840 | continue; |
841 | } |
842 | if (pSegment->rgFreeMask[uBlock*2] == (uint32_t)-1 && pSegment->rgFreeMask[uBlock*2+1] == (uint32_t)-1) |
843 | { |
844 | continue; |
845 | } |
846 | _UNCHECKED_OBJECTREF *pValue = pSegment->rgValue + (uBlock * HANDLE_HANDLES_PER_BLOCK); |
847 | _UNCHECKED_OBJECTREF *pLast = pValue + HANDLE_HANDLES_PER_BLOCK; |
848 | |
849 | do |
850 | { |
851 | BOOL fNeedNewSegment = FALSE; |
852 | _UNCHECKED_OBJECTREF value = *pValue; |
853 | if (!HndIsNullOrDestroyedHandle(value)) |
854 | { |
855 | clearIfComplete((Object*)value); |
856 | fNeedNewSegment = !SegmentCopyAsyncPinHandle(*ppWorkerSegment,pValue); |
857 | } |
858 | if (fNeedNewSegment) |
859 | { |
860 | _ASSERTE ((*ppWorkerSegment)->rgFreeCount[HNDTYPE_ASYNCPINNED] == 0 && |
861 | (*ppWorkerSegment)->bFreeList == BLOCK_INVALID); |
862 | TableSegment *pNextSegment = (*ppWorkerSegment)->pNextSegment; |
863 | SegmentPreCompactAsyncPinHandles(pNextSegment, clearIfComplete); |
864 | *ppWorkerSegment = pNextSegment; |
865 | if (pNextSegment == pSegment) |
866 | { |
867 | // The current segment will be moved to default domain. |
868 | return; |
869 | } |
870 | } |
871 | else |
872 | { |
873 | pValue ++; |
874 | } |
875 | } while (pValue != pLast); |
876 | } |
877 | } |
878 | |
879 | |
880 | // Mark AsyncPinHandles ready to be cleaned when the marker job is processed |
881 | BOOL SegmentHandleAsyncPinHandles (TableSegment *pSegment, const AsyncPinCallbackContext &callbackCtx) |
882 | { |
883 | CONTRACTL |
884 | { |
885 | GC_NOTRIGGER; |
886 | NOTHROW; |
887 | MODE_COOPERATIVE; |
888 | } |
889 | CONTRACTL_END; |
890 | |
891 | uint32_t uBlock = pSegment->rgHint[HNDTYPE_ASYNCPINNED]; |
892 | if (uBlock == BLOCK_INVALID) |
893 | { |
894 | // There is no pinning handles. |
895 | return FALSE; |
896 | } |
897 | |
898 | BOOL result = FALSE; |
899 | |
900 | for (uBlock = 0; uBlock < pSegment->bEmptyLine; uBlock ++) |
901 | { |
902 | if (pSegment->rgBlockType[uBlock] != HNDTYPE_ASYNCPINNED) |
903 | { |
904 | continue; |
905 | } |
906 | if (pSegment->rgFreeMask[uBlock*2] == (uint32_t)-1 && pSegment->rgFreeMask[uBlock*2+1] == (uint32_t)-1) |
907 | { |
908 | continue; |
909 | } |
910 | _UNCHECKED_OBJECTREF *pValue = pSegment->rgValue + (uBlock * HANDLE_HANDLES_PER_BLOCK); |
911 | _UNCHECKED_OBJECTREF *pLast = pValue + HANDLE_HANDLES_PER_BLOCK; |
912 | |
913 | do |
914 | { |
915 | _UNCHECKED_OBJECTREF value = *pValue; |
916 | if (!HndIsNullOrDestroyedHandle(value)) |
917 | { |
918 | // calls back into the VM using the callback given to |
919 | // Ref_HandleAsyncPinHandles |
920 | if (callbackCtx.Invoke((Object*)value)) |
921 | { |
922 | result = TRUE; |
923 | } |
924 | } |
925 | pValue ++; |
926 | } while (pValue != pLast); |
927 | } |
928 | |
929 | return result; |
930 | } |
931 | |
932 | // Replace an async pin handle with one from default domain |
933 | bool SegmentRelocateAsyncPinHandles (TableSegment *pSegment, |
934 | HandleTable *pTargetTable, |
935 | void (*clearIfComplete)(Object*), |
936 | void (*setHandle)(Object*, OBJECTHANDLE)) |
937 | { |
938 | CONTRACTL |
939 | { |
940 | GC_NOTRIGGER; |
941 | NOTHROW; |
942 | MODE_COOPERATIVE; |
943 | } |
944 | CONTRACTL_END; |
945 | |
946 | uint32_t uBlock = pSegment->rgHint[HNDTYPE_ASYNCPINNED]; |
947 | if (uBlock == BLOCK_INVALID) |
948 | { |
949 | // There is no pinning handles. |
950 | return true; |
951 | } |
952 | for (uBlock = 0; uBlock < pSegment->bEmptyLine; uBlock ++) |
953 | { |
954 | if (pSegment->rgBlockType[uBlock] != HNDTYPE_ASYNCPINNED) |
955 | { |
956 | continue; |
957 | } |
958 | if (pSegment->rgFreeMask[uBlock*2] == (uint32_t)-1 && pSegment->rgFreeMask[uBlock*2+1] == (uint32_t)-1) |
959 | { |
960 | continue; |
961 | } |
962 | _UNCHECKED_OBJECTREF *pValue = pSegment->rgValue + (uBlock * HANDLE_HANDLES_PER_BLOCK); |
963 | _UNCHECKED_OBJECTREF *pLast = pValue + HANDLE_HANDLES_PER_BLOCK; |
964 | |
965 | do |
966 | { |
967 | _UNCHECKED_OBJECTREF value = *pValue; |
968 | if (!HndIsNullOrDestroyedHandle(value)) |
969 | { |
970 | clearIfComplete((Object*)value); |
971 | OBJECTHANDLE selfHandle = HndCreateHandle((HHANDLETABLE)pTargetTable, HNDTYPE_ASYNCPINNED, ObjectToOBJECTREF(value)); |
972 | if (!selfHandle) |
973 | { |
974 | // failed to allocate a new handle - callers have to handle this. |
975 | return false; |
976 | } |
977 | |
978 | setHandle((Object*)value, selfHandle); |
979 | *pValue = NULL; |
980 | } |
981 | pValue ++; |
982 | } while (pValue != pLast); |
983 | } |
984 | |
985 | return true; |
986 | } |
987 | |
988 | // Mark all non-pending AsyncPinHandle ready for cleanup. |
989 | // We will queue a marker Overlapped to io completion port. We use the marker |
990 | // to make sure that all iocompletion jobs before this marker have been processed. |
991 | // After that we can free the async pinned handles. |
992 | BOOL TableHandleAsyncPinHandles(HandleTable *pTable, const AsyncPinCallbackContext &callbackCtx) |
993 | { |
994 | CONTRACTL |
995 | { |
996 | GC_NOTRIGGER; |
997 | NOTHROW; |
998 | MODE_COOPERATIVE; |
999 | } |
1000 | CONTRACTL_END; |
1001 | |
1002 | BOOL result = FALSE; |
1003 | TableSegment *pSegment = pTable->pSegmentList; |
1004 | |
1005 | CrstHolder ch(&pTable->Lock); |
1006 | |
1007 | while (pSegment) |
1008 | { |
1009 | if (SegmentHandleAsyncPinHandles (pSegment, callbackCtx)) |
1010 | { |
1011 | result = TRUE; |
1012 | } |
1013 | pSegment = pSegment->pNextSegment; |
1014 | } |
1015 | |
1016 | return result; |
1017 | } |
1018 | |
1019 | // Keep needed async Pin Handle by moving them to default domain. |
1020 | // Strategy: |
1021 | // 1. Try to create pin handles in default domain to replace it. |
1022 | // 2. If 1 failed due to OOM, we will relocate segments from this HandleTable to default domain. |
1023 | // a. Clean the segment so that only saved pin handles exist. This segment becomes the worker segment. |
1024 | // b. Copy pin handles from remaining segments to the worker segment. If worker segment is full, start |
1025 | // from a again. |
1026 | // c. After copying all handles to worker segments, move the segments to default domain. |
1027 | // It is very important that in step 2, we should not fail for OOM, which means no memory allocation. |
1028 | void TableRelocateAsyncPinHandles(HandleTable *pTable, |
1029 | HandleTable *pTargetTable, |
1030 | void (*clearIfComplete)(Object*), |
1031 | void (*setHandle)(Object*, OBJECTHANDLE)) |
1032 | { |
1033 | CONTRACTL |
1034 | { |
1035 | GC_TRIGGERS; |
1036 | NOTHROW; |
1037 | MODE_COOPERATIVE; |
1038 | } |
1039 | CONTRACTL_END; |
1040 | |
1041 | _ASSERTE (pTargetTable->uADIndex == ADIndex(GCToEEInterface::GetDefaultDomainIndex())); // must be for default domain |
1042 | |
1043 | BOOL fGotException = FALSE; |
1044 | TableSegment *pSegment = pTable->pSegmentList; |
1045 | bool wasSuccessful = true; |
1046 | |
1047 | #ifdef _DEBUG |
1048 | // on debug builds, execute the OOM path 10% of the time. |
1049 | if (GetRandomInt(100) < 10) |
1050 | goto SLOW_PATH; |
1051 | #endif |
1052 | |
1053 | // Step 1: replace pinning handles with ones from default domain |
1054 | while (pSegment) |
1055 | { |
1056 | wasSuccessful = wasSuccessful && SegmentRelocateAsyncPinHandles (pSegment, pTargetTable, clearIfComplete, setHandle); |
1057 | if (!wasSuccessful) |
1058 | { |
1059 | break; |
1060 | } |
1061 | |
1062 | pSegment = pSegment->pNextSegment; |
1063 | } |
1064 | |
1065 | if (wasSuccessful) |
1066 | { |
1067 | return; |
1068 | } |
1069 | |
1070 | #ifdef _DEBUG |
1071 | SLOW_PATH: |
1072 | #endif |
1073 | |
1074 | // step 2: default domain runs out of space |
1075 | // compact all remaining pinning handles and move the segments to default domain |
1076 | |
1077 | while (true) |
1078 | { |
1079 | CrstHolderWithState ch(&pTable->Lock); |
1080 | |
1081 | // We cannot move segments to a different table if we're asynchronously scanning the current table as |
1082 | // part of a concurrent GC. That's because the async table scanning code does most of its work without |
1083 | // the table lock held. So we'll take the table lock and then look to see if we're in a concurrent GC. |
1084 | // If we are we'll back out and try again. This doesn't prevent a concurrent GC from initiating while |
1085 | // we have the lock held but the part we care about (the async table scan) takes the table lock during |
1086 | // a preparation step so we'll be able to complete our segment moves before the async scan has a |
1087 | // chance to interfere with us (or vice versa). |
1088 | if (g_theGCHeap->IsConcurrentGCInProgress()) |
1089 | { |
1090 | // A concurrent GC is in progress so someone might be scanning our segments asynchronously. |
1091 | // Release the lock, wait for the GC to complete and try again. The order is important; if we wait |
1092 | // before releasing the table lock we can deadlock with an async table scan. |
1093 | ch.Release(); |
1094 | g_theGCHeap->WaitUntilConcurrentGCComplete(); |
1095 | continue; |
1096 | } |
1097 | |
1098 | // If we get here then we managed to acquire the table lock and observe that no concurrent GC was in |
1099 | // progress. A concurrent GC could start at any time so that state may have changed, but since we took |
1100 | // the table lock first we know that the GC could only have gotten as far as attempting to initiate an |
1101 | // async handle table scan (which attempts to acquire the table lock). So as long as we complete our |
1102 | // segment compaction and moves without releasing the table lock we're guaranteed to complete before |
1103 | // the async scan can get in and observe any of the segments. |
1104 | |
1105 | // Compact async pinning handles into the smallest number of leading segments we can (the worker |
1106 | // segments). |
1107 | TableSegment *pWorkerSegment = pTable->pSegmentList; |
1108 | SegmentPreCompactAsyncPinHandles (pWorkerSegment, clearIfComplete); |
1109 | |
1110 | pSegment = pWorkerSegment->pNextSegment; |
1111 | while (pSegment) |
1112 | { |
1113 | SegmentCompactAsyncPinHandles (pSegment, &pWorkerSegment, clearIfComplete); |
1114 | pSegment= pSegment->pNextSegment; |
1115 | } |
1116 | |
1117 | // Empty the remaining segments. |
1118 | pSegment = pWorkerSegment->pNextSegment; |
1119 | while (pSegment) |
1120 | { |
1121 | memset(pSegment->rgValue, 0, (uint32_t)pSegment->bCommitLine * HANDLE_BYTES_PER_BLOCK); |
1122 | pSegment = pSegment->pNextSegment; |
1123 | } |
1124 | |
1125 | // Move the worker segments over to the tail end of the default domain's segment list. |
1126 | { |
1127 | CrstHolder ch1(&pTargetTable->Lock); |
1128 | |
1129 | // Locate the segment currently at the tail of the default domain's segment list. |
1130 | TableSegment *pTargetSegment = pTargetTable->pSegmentList; |
1131 | while (pTargetSegment->pNextSegment) |
1132 | { |
1133 | pTargetSegment = pTargetSegment->pNextSegment; |
1134 | } |
1135 | |
1136 | // Take the worker segments and point them to their new handle table and recalculate their |
1137 | // sequence numbers to be consistent with the queue they're moving to. |
1138 | uint8_t bLastSequence = pTargetSegment->bSequence; |
1139 | pSegment = pTable->pSegmentList; |
1140 | while (pSegment != pWorkerSegment->pNextSegment) |
1141 | { |
1142 | pSegment->pHandleTable = pTargetTable; |
1143 | pSegment->bSequence = (uint8_t)(((uint32_t)bLastSequence + 1) % 0x100); |
1144 | bLastSequence = pSegment->bSequence; |
1145 | pSegment = pSegment->pNextSegment; |
1146 | } |
1147 | |
1148 | // Join the worker segments to the tail of the default domain segment list. |
1149 | pTargetSegment->pNextSegment = pTable->pSegmentList; |
1150 | |
1151 | // Reset the current handle table segment list to omit the removed worker segments and start at |
1152 | // the first non-worker. |
1153 | pTable->pSegmentList = pWorkerSegment->pNextSegment; |
1154 | |
1155 | // The last worker segment is now the end of the default domain's segment list. |
1156 | pWorkerSegment->pNextSegment = NULL; |
1157 | } |
1158 | |
1159 | break; |
1160 | } |
1161 | } |
1162 | |
1163 | /* |
1164 | * Check if a handle is part of a HandleTable |
1165 | */ |
1166 | BOOL TableContainHandle(HandleTable *pTable, OBJECTHANDLE handle) |
1167 | { |
1168 | _ASSERTE (handle); |
1169 | |
1170 | // get the segment for this handle |
1171 | TableSegment *pSegment = (TableSegment *)HandleFetchSegmentPointer(handle); |
1172 | |
1173 | CrstHolder ch(&pTable->Lock); |
1174 | TableSegment *pWorkerSegment = pTable->pSegmentList; |
1175 | while (pWorkerSegment) |
1176 | { |
1177 | if (pWorkerSegment == pSegment) |
1178 | { |
1179 | return TRUE; |
1180 | } |
1181 | pWorkerSegment = pWorkerSegment->pNextSegment; |
1182 | } |
1183 | return FALSE; |
1184 | } |
1185 | |
1186 | /* |
1187 | * SegmentRemoveFreeBlocks |
1188 | * |
1189 | * Scans a segment for free blocks of the specified type |
1190 | * and moves them to the segment's free list. |
1191 | * |
1192 | */ |
1193 | void SegmentRemoveFreeBlocks(TableSegment *pSegment, uint32_t uType, BOOL *pfScavengeLater) |
1194 | { |
1195 | WRAPPER_NO_CONTRACT; |
1196 | |
1197 | /* |
1198 | NOTHROW; |
1199 | GC_NOTRIGGER; |
1200 | MODE_ANY; |
1201 | */ |
1202 | |
1203 | // fetch the tail block for the specified chain |
1204 | uint32_t uPrev = pSegment->rgTail[uType]; |
1205 | |
1206 | // if it's a terminator then there are no blocks in the chain |
1207 | if (uPrev == BLOCK_INVALID) |
1208 | return; |
1209 | |
1210 | // we may need to clean up user data blocks later |
1211 | BOOL fCleanupUserData = FALSE; |
1212 | |
1213 | // start iterating with the head block |
1214 | uint32_t uStart = pSegment->rgAllocation[uPrev]; |
1215 | uint32_t uBlock = uStart; |
1216 | |
1217 | // keep track of how many blocks we removed |
1218 | uint32_t uRemoved = 0; |
1219 | |
1220 | // we want to preserve the relative order of any blocks we free |
1221 | // this is the best we can do until the free list is resorted |
1222 | uint32_t uFirstFreed = BLOCK_INVALID; |
1223 | uint32_t uLastFreed = BLOCK_INVALID; |
1224 | |
1225 | // loop until we've processed the whole chain |
1226 | for (;;) |
1227 | { |
1228 | // fetch the next block index |
1229 | uint32_t uNext = pSegment->rgAllocation[uBlock]; |
1230 | |
1231 | #ifdef HANDLE_OPTIMIZE_FOR_64_HANDLE_BLOCKS |
1232 | // determine whether this block is empty |
1233 | if (((uint64_t*)pSegment->rgFreeMask)[uBlock] == UI64(0xFFFFFFFFFFFFFFFF)) |
1234 | #else |
1235 | // assume this block is empty until we know otherwise |
1236 | BOOL fEmpty = TRUE; |
1237 | |
1238 | // get the first mask for this block |
1239 | uint32_t *pdwMask = pSegment->rgFreeMask + (uBlock * HANDLE_MASKS_PER_BLOCK); |
1240 | uint32_t *pdwMaskLast = pdwMask + HANDLE_MASKS_PER_BLOCK; |
1241 | |
1242 | // loop through the masks until we've processed them all or we've found handles |
1243 | do |
1244 | { |
1245 | // is this mask empty? |
1246 | if (*pdwMask != MASK_EMPTY) |
1247 | { |
1248 | // nope - this block still has handles in it |
1249 | fEmpty = FALSE; |
1250 | break; |
1251 | } |
1252 | |
1253 | // on to the next mask |
1254 | pdwMask++; |
1255 | |
1256 | } while (pdwMask < pdwMaskLast); |
1257 | |
1258 | // is this block empty? |
1259 | if (fEmpty) |
1260 | #endif |
1261 | { |
1262 | // is this block currently locked? |
1263 | if (BlockIsLocked(pSegment, uBlock)) |
1264 | { |
1265 | // block cannot be freed, if we were passed a scavenge flag then set it |
1266 | if (pfScavengeLater) |
1267 | *pfScavengeLater = TRUE; |
1268 | } |
1269 | else |
1270 | { |
1271 | // safe to free - did it have user data associated? |
1272 | uint32_t uData = pSegment->rgUserData[uBlock]; |
1273 | if (uData != BLOCK_INVALID) |
1274 | { |
1275 | // data blocks are 'empty' so we keep them locked |
1276 | // unlock the block so it can be reclaimed below |
1277 | BlockUnlock(pSegment, uData); |
1278 | |
1279 | // unlink the data block from the handle block |
1280 | pSegment->rgUserData[uBlock] = BLOCK_INVALID; |
1281 | |
1282 | // remember that we need to scavenge the data block chain |
1283 | fCleanupUserData = TRUE; |
1284 | } |
1285 | |
1286 | // mark the block as free |
1287 | pSegment->rgBlockType[uBlock] = TYPE_INVALID; |
1288 | |
1289 | // have we freed any other blocks yet? |
1290 | if (uFirstFreed == BLOCK_INVALID) |
1291 | { |
1292 | // no - this is the first one - remember it as the new head |
1293 | uFirstFreed = uBlock; |
1294 | } |
1295 | else |
1296 | { |
1297 | // yes - link this block to the other ones in order |
1298 | pSegment->rgAllocation[uLastFreed] = (uint8_t)uBlock; |
1299 | } |
1300 | |
1301 | // remember this block for later |
1302 | uLastFreed = uBlock; |
1303 | |
1304 | // are there other blocks in the chain? |
1305 | if (uPrev != uBlock) |
1306 | { |
1307 | // yes - unlink this block from the chain |
1308 | pSegment->rgAllocation[uPrev] = (uint8_t)uNext; |
1309 | |
1310 | // if we are removing the tail then pick a new tail |
1311 | if (pSegment->rgTail[uType] == uBlock) |
1312 | pSegment->rgTail[uType] = (uint8_t)uPrev; |
1313 | |
1314 | // if we are removing the hint then pick a new hint |
1315 | if (pSegment->rgHint[uType] == uBlock) |
1316 | pSegment->rgHint[uType] = (uint8_t)uNext; |
1317 | |
1318 | // we removed the current block - reset uBlock to a valid block |
1319 | uBlock = uPrev; |
1320 | |
1321 | // N.B. we'll check if we freed uStart later when it's safe to recover |
1322 | } |
1323 | else |
1324 | { |
1325 | // we're removing last block - sanity check the loop condition |
1326 | _ASSERTE(uNext == uStart); |
1327 | |
1328 | // mark this chain as completely empty |
1329 | pSegment->rgAllocation[uBlock] = BLOCK_INVALID; |
1330 | pSegment->rgTail[uType] = BLOCK_INVALID; |
1331 | pSegment->rgHint[uType] = BLOCK_INVALID; |
1332 | } |
1333 | |
1334 | // update the number of blocks we've removed |
1335 | uRemoved++; |
1336 | } |
1337 | } |
1338 | |
1339 | // if we are back at the beginning then it is time to stop |
1340 | if (uNext == uStart) |
1341 | break; |
1342 | |
1343 | // now see if we need to reset our start block |
1344 | if (uStart == uLastFreed) |
1345 | uStart = uNext; |
1346 | |
1347 | // on to the next block |
1348 | uPrev = uBlock; |
1349 | uBlock = uNext; |
1350 | } |
1351 | |
1352 | // did we remove any blocks? |
1353 | if (uRemoved) |
1354 | { |
1355 | // yes - link the new blocks into the free list |
1356 | pSegment->rgAllocation[uLastFreed] = pSegment->bFreeList; |
1357 | pSegment->bFreeList = (uint8_t)uFirstFreed; |
1358 | |
1359 | // update the free count for this chain |
1360 | pSegment->rgFreeCount[uType] -= (uRemoved * HANDLE_HANDLES_PER_BLOCK); |
1361 | |
1362 | // mark for a resort - the free list (and soon allocation chains) may be out of order |
1363 | pSegment->fResortChains = TRUE; |
1364 | |
1365 | // if we removed blocks that had user data then we need to reclaim those too |
1366 | if (fCleanupUserData) |
1367 | SegmentRemoveFreeBlocks(pSegment, HNDTYPE_INTERNAL_DATABLOCK, NULL); |
1368 | } |
1369 | } |
1370 | |
1371 | |
1372 | /* |
1373 | * SegmentInsertBlockFromFreeListWorker |
1374 | * |
1375 | * Inserts a block into a block list within a segment. Blocks are obtained from the |
1376 | * segment's free list. Returns the index of the block inserted, or BLOCK_INVALID |
1377 | * if no blocks were avaliable. |
1378 | * |
1379 | * This routine is the core implementation for SegmentInsertBlockFromFreeList. |
1380 | * |
1381 | */ |
1382 | uint32_t SegmentInsertBlockFromFreeListWorker(TableSegment *pSegment, uint32_t uType, BOOL fUpdateHint) |
1383 | { |
1384 | WRAPPER_NO_CONTRACT; |
1385 | |
1386 | /* |
1387 | NOTHROW |
1388 | GC_NOTRIGGER; |
1389 | MODE_ANY; |
1390 | */ |
1391 | |
1392 | |
1393 | // fetch the next block from the free list |
1394 | uint8_t uBlock = pSegment->bFreeList; |
1395 | |
1396 | // if we got the terminator then there are no more blocks |
1397 | if (uBlock != BLOCK_INVALID) |
1398 | { |
1399 | // are we eating out of the last empty range of blocks? |
1400 | if (uBlock >= pSegment->bEmptyLine) |
1401 | { |
1402 | // get the current commit line |
1403 | uint32_t uCommitLine = pSegment->bCommitLine; |
1404 | |
1405 | // if this block is uncommitted then commit some memory now |
1406 | if (uBlock >= uCommitLine) |
1407 | { |
1408 | // figure out where to commit next |
1409 | void * pvCommit = pSegment->rgValue + (uCommitLine * HANDLE_HANDLES_PER_BLOCK); |
1410 | |
1411 | // we should commit one more page of handles |
1412 | uint32_t dwCommit = OS_PAGE_SIZE; |
1413 | |
1414 | // commit the memory |
1415 | if (!GCToOSInterface::VirtualCommit(pvCommit, dwCommit)) |
1416 | return BLOCK_INVALID; |
1417 | |
1418 | // use the previous commit line as the new decommit line |
1419 | pSegment->bDecommitLine = (uint8_t)uCommitLine; |
1420 | |
1421 | // adjust the commit line by the number of blocks we commited |
1422 | pSegment->bCommitLine = (uint8_t)(uCommitLine + (dwCommit / HANDLE_BYTES_PER_BLOCK)); |
1423 | } |
1424 | |
1425 | // update our empty line |
1426 | pSegment->bEmptyLine = uBlock + 1; |
1427 | } |
1428 | |
1429 | // unlink our block from the free list |
1430 | pSegment->bFreeList = pSegment->rgAllocation[uBlock]; |
1431 | |
1432 | // link our block into the specified chain |
1433 | uint32_t uOldTail = pSegment->rgTail[uType]; |
1434 | if (uOldTail == BLOCK_INVALID) |
1435 | { |
1436 | // first block, set as head and link to itself |
1437 | pSegment->rgAllocation[uBlock] = (uint8_t)uBlock; |
1438 | |
1439 | // there are no other blocks - update the hint anyway |
1440 | fUpdateHint = TRUE; |
1441 | } |
1442 | else |
1443 | { |
1444 | // not first block - link circularly |
1445 | pSegment->rgAllocation[uBlock] = pSegment->rgAllocation[uOldTail]; |
1446 | pSegment->rgAllocation[uOldTail] = (uint8_t)uBlock; |
1447 | |
1448 | // chain may need resorting depending on what we added |
1449 | pSegment->fResortChains = TRUE; |
1450 | } |
1451 | |
1452 | // mark this block with the type we're using it for |
1453 | pSegment->rgBlockType[uBlock] = (uint8_t)uType; |
1454 | |
1455 | // update the chain tail |
1456 | pSegment->rgTail[uType] = (uint8_t)uBlock; |
1457 | |
1458 | // if we are supposed to update the hint, then point it at the new block |
1459 | if (fUpdateHint) |
1460 | pSegment->rgHint[uType] = (uint8_t)uBlock; |
1461 | |
1462 | // increment the chain's free count to reflect the additional block |
1463 | pSegment->rgFreeCount[uType] += HANDLE_HANDLES_PER_BLOCK; |
1464 | } |
1465 | |
1466 | // all done |
1467 | return uBlock; |
1468 | } |
1469 | |
1470 | |
1471 | /* |
1472 | * SegmentInsertBlockFromFreeList |
1473 | * |
1474 | * Inserts a block into a block list within a segment. Blocks are obtained from the |
1475 | * segment's free list. Returns the index of the block inserted, or BLOCK_INVALID |
1476 | * if no blocks were avaliable. |
1477 | * |
1478 | * This routine does the work of securing a parallel user data block if required. |
1479 | * |
1480 | */ |
1481 | uint32_t SegmentInsertBlockFromFreeList(TableSegment *pSegment, uint32_t uType, BOOL fUpdateHint) |
1482 | { |
1483 | LIMITED_METHOD_CONTRACT; |
1484 | |
1485 | /* |
1486 | NOTHROW; |
1487 | GC_NOTRIGGER; |
1488 | MODE_ANY; |
1489 | */ |
1490 | |
1491 | uint32_t uBlock, uData = 0; |
1492 | |
1493 | // does this block type require user data? |
1494 | BOOL fUserData = TypeHasUserData(pSegment->pHandleTable, uType); |
1495 | |
1496 | // if we need user data then we need to make sure it can go in the same segment as the handles |
1497 | if (fUserData) |
1498 | { |
1499 | // if we can't also fit the user data in this segment then bail |
1500 | uBlock = pSegment->bFreeList; |
1501 | if ((uBlock == BLOCK_INVALID) || (pSegment->rgAllocation[uBlock] == BLOCK_INVALID)) |
1502 | return BLOCK_INVALID; |
1503 | |
1504 | // allocate our user data block (we do it in this order so that free order is nicer) |
1505 | uData = SegmentInsertBlockFromFreeListWorker(pSegment, HNDTYPE_INTERNAL_DATABLOCK, FALSE); |
1506 | } |
1507 | |
1508 | // now allocate the requested block |
1509 | uBlock = SegmentInsertBlockFromFreeListWorker(pSegment, uType, fUpdateHint); |
1510 | |
1511 | // should we have a block for user data too? |
1512 | if (fUserData) |
1513 | { |
1514 | // did we get them both? |
1515 | if ((uBlock != BLOCK_INVALID) && (uData != BLOCK_INVALID)) |
1516 | { |
1517 | // link the data block to the requested block |
1518 | pSegment->rgUserData[uBlock] = (uint8_t)uData; |
1519 | |
1520 | // no handles are ever allocated out of a data block |
1521 | // lock the block so it won't be reclaimed accidentally |
1522 | BlockLock(pSegment, uData); |
1523 | } |
1524 | else |
1525 | { |
1526 | // NOTE: We pre-screened that the blocks exist above, so we should only |
1527 | // get here under heavy load when a MEM_COMMIT operation fails. |
1528 | |
1529 | // if the type block allocation succeeded then scavenge the type block list |
1530 | if (uBlock != BLOCK_INVALID) |
1531 | SegmentRemoveFreeBlocks(pSegment, uType, NULL); |
1532 | |
1533 | // if the user data allocation succeeded then scavenge the user data list |
1534 | if (uData != BLOCK_INVALID) |
1535 | SegmentRemoveFreeBlocks(pSegment, HNDTYPE_INTERNAL_DATABLOCK, NULL); |
1536 | |
1537 | // make sure we return failure |
1538 | uBlock = BLOCK_INVALID; |
1539 | } |
1540 | } |
1541 | |
1542 | // all done |
1543 | return uBlock; |
1544 | } |
1545 | |
1546 | |
1547 | /* |
1548 | * SegmentResortChains |
1549 | * |
1550 | * Sorts the block chains for optimal scanning order. |
1551 | * Sorts the free list to combat fragmentation. |
1552 | * |
1553 | */ |
1554 | void SegmentResortChains(TableSegment *pSegment) |
1555 | { |
1556 | WRAPPER_NO_CONTRACT; |
1557 | |
1558 | // clear the sort flag for this segment |
1559 | pSegment->fResortChains = FALSE; |
1560 | BOOL fScavengingOccurred = FALSE; |
1561 | |
1562 | // first, do we need to scavenge any blocks? |
1563 | if (pSegment->fNeedsScavenging) |
1564 | { |
1565 | // clear the scavenge flag |
1566 | pSegment->fNeedsScavenging = FALSE; |
1567 | |
1568 | fScavengingOccurred = TRUE; |
1569 | |
1570 | // we may need to explicitly scan the user data chain too |
1571 | BOOL fCleanupUserData = FALSE; |
1572 | |
1573 | // fetch the empty line for this segment |
1574 | uint32_t uLast = pSegment->bEmptyLine; |
1575 | |
1576 | // loop over all active blocks, scavenging the empty ones as we go |
1577 | for (uint32_t uBlock = 0; uBlock < uLast; uBlock++) |
1578 | { |
1579 | // fetch the block type of this block |
1580 | uint32_t uType = pSegment->rgBlockType[uBlock]; |
1581 | |
1582 | // only process public block types - we handle data blocks separately |
1583 | if (uType < HANDLE_MAX_PUBLIC_TYPES) |
1584 | { |
1585 | #ifdef HANDLE_OPTIMIZE_FOR_64_HANDLE_BLOCKS |
1586 | // determine whether this block is empty |
1587 | if (((uint64_t*)pSegment->rgFreeMask)[uBlock] == UI64(0xFFFFFFFFFFFFFFFF)) |
1588 | #else |
1589 | // assume this block is empty until we know otherwise |
1590 | BOOL fEmpty = TRUE; |
1591 | |
1592 | // get the first mask for this block |
1593 | uint32_t *pdwMask = pSegment->rgFreeMask + (uBlock * HANDLE_MASKS_PER_BLOCK); |
1594 | uint32_t *pdwMaskLast = pdwMask + HANDLE_MASKS_PER_BLOCK; |
1595 | |
1596 | // loop through the masks until we've processed them all or we've found handles |
1597 | do |
1598 | { |
1599 | // is this mask empty? |
1600 | if (*pdwMask != MASK_EMPTY) |
1601 | { |
1602 | // nope - this block still has handles in it |
1603 | fEmpty = FALSE; |
1604 | break; |
1605 | } |
1606 | |
1607 | // on to the next mask |
1608 | pdwMask++; |
1609 | |
1610 | } while (pdwMask < pdwMaskLast); |
1611 | |
1612 | // is this block empty? |
1613 | if (fEmpty) |
1614 | #endif |
1615 | { |
1616 | // is the block unlocked? |
1617 | if (!BlockIsLocked(pSegment, uBlock)) |
1618 | { |
1619 | // safe to free - did it have user data associated? |
1620 | uint32_t uData = pSegment->rgUserData[uBlock]; |
1621 | if (uData != BLOCK_INVALID) |
1622 | { |
1623 | // data blocks are 'empty' so we keep them locked |
1624 | // unlock the block so it can be reclaimed below |
1625 | BlockUnlock(pSegment, uData); |
1626 | |
1627 | // unlink the data block from the handle block |
1628 | pSegment->rgUserData[uBlock] = BLOCK_INVALID; |
1629 | |
1630 | // remember that we need to scavenge the data block chain |
1631 | fCleanupUserData = TRUE; |
1632 | } |
1633 | |
1634 | // mark the block as free |
1635 | pSegment->rgBlockType[uBlock] = TYPE_INVALID; |
1636 | |
1637 | // fix up the free count for the block's type |
1638 | pSegment->rgFreeCount[uType] -= HANDLE_HANDLES_PER_BLOCK; |
1639 | |
1640 | // N.B. we don't update the list linkages here since they are rebuilt below |
1641 | } |
1642 | } |
1643 | } |
1644 | } |
1645 | |
1646 | // if we have to clean up user data then do that now |
1647 | if (fCleanupUserData) |
1648 | SegmentRemoveFreeBlocks(pSegment, HNDTYPE_INTERNAL_DATABLOCK, NULL); |
1649 | } |
1650 | |
1651 | // keep some per-chain data |
1652 | uint8_t rgChainCurr[HANDLE_MAX_INTERNAL_TYPES]; |
1653 | uint8_t rgChainHigh[HANDLE_MAX_INTERNAL_TYPES]; |
1654 | uint8_t bChainFree = BLOCK_INVALID; |
1655 | uint32_t uEmptyLine = BLOCK_INVALID; |
1656 | BOOL fContiguousWithFreeList = TRUE; |
1657 | |
1658 | // preinit the chain data to no blocks |
1659 | uint32_t uType; |
1660 | for (uType = 0; uType < HANDLE_MAX_INTERNAL_TYPES; uType++) |
1661 | rgChainHigh[uType] = rgChainCurr[uType] = BLOCK_INVALID; |
1662 | |
1663 | // scan back through the block types |
1664 | uint8_t uBlock = HANDLE_BLOCKS_PER_SEGMENT; |
1665 | while (uBlock > 0) |
1666 | { |
1667 | // decrement the block index |
1668 | uBlock--; |
1669 | |
1670 | // fetch the type for this block |
1671 | uType = pSegment->rgBlockType[uBlock]; |
1672 | |
1673 | // is this block allocated? |
1674 | if (uType != TYPE_INVALID) |
1675 | { |
1676 | // looks allocated |
1677 | fContiguousWithFreeList = FALSE; |
1678 | |
1679 | // hope the segment's not corrupt :) |
1680 | _ASSERTE(uType < HANDLE_MAX_INTERNAL_TYPES); |
1681 | |
1682 | // remember the first block we see for each type |
1683 | if (rgChainHigh[uType] == BLOCK_INVALID) |
1684 | rgChainHigh[uType] = uBlock; |
1685 | |
1686 | // link this block to the last one we saw of this type |
1687 | pSegment->rgAllocation[uBlock] = rgChainCurr[uType]; |
1688 | |
1689 | // remember this block in type chain |
1690 | rgChainCurr[uType] = (uint8_t)uBlock; |
1691 | } |
1692 | else |
1693 | { |
1694 | // block is free - is it also contiguous with the free list? |
1695 | if (fContiguousWithFreeList) |
1696 | uEmptyLine = uBlock; |
1697 | |
1698 | // link this block to the last one in the free chain |
1699 | pSegment->rgAllocation[uBlock] = bChainFree; |
1700 | |
1701 | // add this block to the free list |
1702 | bChainFree = (uint8_t)uBlock; |
1703 | } |
1704 | } |
1705 | |
1706 | // now close the loops and store the tails |
1707 | for (uType = 0; uType < HANDLE_MAX_INTERNAL_TYPES; uType++) |
1708 | { |
1709 | // get the first block in the list |
1710 | uint8_t bBlock = rgChainCurr[uType]; |
1711 | |
1712 | // if there is a list then make it circular and save it |
1713 | if (bBlock != BLOCK_INVALID) |
1714 | { |
1715 | // highest block we saw becomes tail |
1716 | uint32_t uTail = rgChainHigh[uType]; |
1717 | |
1718 | // store tail in segment |
1719 | pSegment->rgTail[uType] = (uint8_t)uTail; |
1720 | |
1721 | // link tail to head |
1722 | pSegment->rgAllocation[uTail] = bBlock; |
1723 | |
1724 | // If we scavenged blocks above then we might have left the hint pointing at the free chain. Reset |
1725 | // it back into this chain if so (the choice of block is arbitrary, this case is very rare). |
1726 | if (pSegment->rgBlockType[pSegment->rgHint[uType]] != uType) |
1727 | pSegment->rgHint[uType] = bBlock; |
1728 | } |
1729 | else |
1730 | { |
1731 | // No blocks of this type were found in the rgBlockType array, meaning either there were no |
1732 | // such blocks on entry to this function (in which case the associated tail is guaranteed |
1733 | // to already be marked invalid) OR that there were blocks but all of them were reclaimed |
1734 | // by the scavenging logic above (in which case the associated tail is guaranteed to point |
1735 | // to one of the scavenged blocks). In the latter case, the tail is currently "stale" |
1736 | // and therefore needs to be manually updated. |
1737 | if (pSegment->rgTail[uType] != BLOCK_INVALID) |
1738 | { |
1739 | _ASSERTE(fScavengingOccurred); |
1740 | pSegment->rgTail[uType] = BLOCK_INVALID; |
1741 | pSegment->rgHint[uType] = BLOCK_INVALID; |
1742 | } |
1743 | } |
1744 | } |
1745 | |
1746 | // store the new free list head |
1747 | pSegment->bFreeList = bChainFree; |
1748 | |
1749 | // compute the new empty line |
1750 | if (uEmptyLine > HANDLE_BLOCKS_PER_SEGMENT) |
1751 | uEmptyLine = HANDLE_BLOCKS_PER_SEGMENT; |
1752 | |
1753 | // store the updated empty line |
1754 | pSegment->bEmptyLine = (uint8_t)uEmptyLine; |
1755 | } |
1756 | |
1757 | /* |
1758 | * DoesSegmentNeedsToTrimExcessPages |
1759 | * |
1760 | * Checks to see if any pages can be decommitted from the segment |
1761 | * |
1762 | */ |
1763 | BOOL DoesSegmentNeedsToTrimExcessPages(TableSegment *pSegment) |
1764 | { |
1765 | WRAPPER_NO_CONTRACT; |
1766 | |
1767 | // fetch the empty and decommit lines |
1768 | uint32_t uEmptyLine = pSegment->bEmptyLine; |
1769 | uint32_t uDecommitLine = pSegment->bDecommitLine; |
1770 | |
1771 | // check to see if we can decommit some handles |
1772 | // NOTE: we use '<' here to avoid playing ping-pong on page boundaries |
1773 | // this is OK since the zero case is handled elsewhere (segment gets freed) |
1774 | if (uEmptyLine < uDecommitLine) |
1775 | { |
1776 | // derive some useful info about the page size |
1777 | uintptr_t = (uintptr_t)OS_PAGE_SIZE - 1; |
1778 | uintptr_t dwPageMask = ~dwPageRound; |
1779 | |
1780 | // compute the address corresponding to the empty line |
1781 | uintptr_t dwLo = (uintptr_t)pSegment->rgValue + (uEmptyLine * HANDLE_BYTES_PER_BLOCK); |
1782 | |
1783 | // adjust the empty line address to the start of the nearest whole empty page |
1784 | dwLo = (dwLo + dwPageRound) & dwPageMask; |
1785 | |
1786 | // compute the address corresponding to the old commit line |
1787 | uintptr_t dwHi = (uintptr_t)pSegment->rgValue + ((uint32_t)pSegment->bCommitLine * HANDLE_BYTES_PER_BLOCK); |
1788 | |
1789 | // is there anything to decommit? |
1790 | if (dwHi > dwLo) |
1791 | { |
1792 | return TRUE; |
1793 | } |
1794 | } |
1795 | |
1796 | return FALSE; |
1797 | } |
1798 | |
1799 | |
1800 | /* |
1801 | * SegmentTrimExcessPages |
1802 | * |
1803 | * Checks to see if any pages can be decommitted from the segment. |
1804 | * In case there any unused pages it goes and decommits them. |
1805 | * |
1806 | */ |
1807 | void SegmentTrimExcessPages(TableSegment *pSegment) |
1808 | { |
1809 | WRAPPER_NO_CONTRACT; |
1810 | |
1811 | // fetch the empty and decommit lines |
1812 | uint32_t uEmptyLine = pSegment->bEmptyLine; |
1813 | uint32_t uDecommitLine = pSegment->bDecommitLine; |
1814 | |
1815 | // check to see if we can decommit some handles |
1816 | // NOTE: we use '<' here to avoid playing ping-pong on page boundaries |
1817 | // this is OK since the zero case is handled elsewhere (segment gets freed) |
1818 | if (uEmptyLine < uDecommitLine) |
1819 | { |
1820 | // derive some useful info about the page size |
1821 | uintptr_t = (uintptr_t)OS_PAGE_SIZE - 1; |
1822 | uintptr_t dwPageMask = ~dwPageRound; |
1823 | |
1824 | // compute the address corresponding to the empty line |
1825 | uintptr_t dwLo = (uintptr_t)pSegment->rgValue + (uEmptyLine * HANDLE_BYTES_PER_BLOCK); |
1826 | |
1827 | // adjust the empty line address to the start of the nearest whole empty page |
1828 | dwLo = (dwLo + dwPageRound) & dwPageMask; |
1829 | |
1830 | // compute the address corresponding to the old commit line |
1831 | uintptr_t dwHi = (uintptr_t)pSegment->rgValue + ((uint32_t)pSegment->bCommitLine * HANDLE_BYTES_PER_BLOCK); |
1832 | |
1833 | // is there anything to decommit? |
1834 | if (dwHi > dwLo) |
1835 | { |
1836 | // decommit the memory |
1837 | GCToOSInterface::VirtualDecommit((void *)dwLo, dwHi - dwLo); |
1838 | |
1839 | // update the commit line |
1840 | pSegment->bCommitLine = (uint8_t)((dwLo - (size_t)pSegment->rgValue) / HANDLE_BYTES_PER_BLOCK); |
1841 | |
1842 | // compute the address for the new decommit line |
1843 | size_t dwDecommitAddr = dwLo - OS_PAGE_SIZE; |
1844 | |
1845 | // assume a decommit line of zero until we know otherwise |
1846 | uDecommitLine = 0; |
1847 | |
1848 | // if the address is within the handle area then compute the line from the address |
1849 | if (dwDecommitAddr > (size_t)pSegment->rgValue) |
1850 | uDecommitLine = (uint32_t)((dwDecommitAddr - (size_t)pSegment->rgValue) / HANDLE_BYTES_PER_BLOCK); |
1851 | |
1852 | // update the decommit line |
1853 | pSegment->bDecommitLine = (uint8_t)uDecommitLine; |
1854 | } |
1855 | } |
1856 | } |
1857 | |
1858 | |
1859 | /* |
1860 | * BlockAllocHandlesInMask |
1861 | * |
1862 | * Attempts to allocate the requested number of handes of the specified type, |
1863 | * from the specified mask of the specified handle block. |
1864 | * |
1865 | * Returns the number of available handles actually allocated. |
1866 | * |
1867 | */ |
1868 | uint32_t BlockAllocHandlesInMask(TableSegment *pSegment, uint32_t uBlock, |
1869 | uint32_t *pdwMask, uint32_t uHandleMaskDisplacement, |
1870 | OBJECTHANDLE *pHandleBase, uint32_t uCount) |
1871 | { |
1872 | LIMITED_METHOD_CONTRACT; |
1873 | UNREFERENCED_PARAMETER(uBlock); |
1874 | |
1875 | // keep track of how many handles we have left to allocate |
1876 | uint32_t uRemain = uCount; |
1877 | |
1878 | // fetch the free mask into a local so we can play with it |
1879 | uint32_t dwFree = *pdwMask; |
1880 | |
1881 | // keep track of our displacement within the mask |
1882 | uint32_t uByteDisplacement = 0; |
1883 | |
1884 | // examine the mask byte by byte for free handles |
1885 | do |
1886 | { |
1887 | // grab the low byte of the mask |
1888 | uint32_t dwLowByte = (dwFree & MASK_LOBYTE); |
1889 | |
1890 | // are there any free handles here? |
1891 | if (dwLowByte) |
1892 | { |
1893 | // remember which handles we've taken |
1894 | uint32_t dwAlloc = 0; |
1895 | |
1896 | // loop until we've allocated all the handles we can from here |
1897 | do |
1898 | { |
1899 | // get the index of the next handle |
1900 | uint32_t uIndex = c_rgLowBitIndex[dwLowByte]; |
1901 | |
1902 | // compute the mask for the handle we chose |
1903 | dwAlloc |= (1 << uIndex); |
1904 | |
1905 | // remove this handle from the mask byte |
1906 | dwLowByte &= ~dwAlloc; |
1907 | |
1908 | // compute the index of this handle in the segment |
1909 | uIndex += uHandleMaskDisplacement + uByteDisplacement; |
1910 | |
1911 | // store the allocated handle in the handle array |
1912 | *pHandleBase = (OBJECTHANDLE)(pSegment->rgValue + uIndex); |
1913 | |
1914 | // adjust our count and array pointer |
1915 | uRemain--; |
1916 | pHandleBase++; |
1917 | |
1918 | } while (dwLowByte && uRemain); |
1919 | |
1920 | // shift the allocation mask into position |
1921 | dwAlloc <<= uByteDisplacement; |
1922 | |
1923 | // update the mask to account for the handles we allocated |
1924 | *pdwMask &= ~dwAlloc; |
1925 | } |
1926 | |
1927 | // on to the next byte in the mask |
1928 | dwFree >>= BITS_PER_BYTE; |
1929 | uByteDisplacement += BITS_PER_BYTE; |
1930 | |
1931 | } while (uRemain && dwFree); |
1932 | |
1933 | // return the number of handles we got |
1934 | return (uCount - uRemain); |
1935 | |
1936 | } |
1937 | |
1938 | |
1939 | /* |
1940 | * BlockAllocHandlesInitial |
1941 | * |
1942 | * Allocates a specified number of handles from a newly committed (empty) block. |
1943 | * |
1944 | */ |
1945 | uint32_t BlockAllocHandlesInitial(TableSegment *pSegment, uint32_t uType, uint32_t uBlock, |
1946 | OBJECTHANDLE *pHandleBase, uint32_t uCount) |
1947 | { |
1948 | LIMITED_METHOD_CONTRACT; |
1949 | UNREFERENCED_PARAMETER(uType); |
1950 | |
1951 | // sanity check |
1952 | _ASSERTE(uCount); |
1953 | |
1954 | // validate the number of handles we were asked to allocate |
1955 | if (uCount > HANDLE_HANDLES_PER_BLOCK) |
1956 | { |
1957 | _ASSERTE(FALSE); |
1958 | uCount = HANDLE_HANDLES_PER_BLOCK; |
1959 | } |
1960 | |
1961 | // keep track of how many handles we have left to mark in masks |
1962 | uint32_t uRemain = uCount; |
1963 | |
1964 | // get the first mask for this block |
1965 | uint32_t *pdwMask = pSegment->rgFreeMask + (uBlock * HANDLE_MASKS_PER_BLOCK); |
1966 | |
1967 | // loop through the masks, zeroing the appropriate free bits |
1968 | do |
1969 | { |
1970 | // this is a brand new block - all masks we encounter should be totally free |
1971 | _ASSERTE(*pdwMask == MASK_EMPTY); |
1972 | |
1973 | // pick an initial guess at the number to allocate |
1974 | uint32_t uAlloc = uRemain; |
1975 | |
1976 | // compute the default mask based on that count |
1977 | uint32_t dwNewMask; |
1978 | // are we allocating all of them? |
1979 | if (uAlloc >= HANDLE_HANDLES_PER_MASK) |
1980 | { |
1981 | dwNewMask = MASK_FULL; // avoid unpredictable shift |
1982 | uAlloc = HANDLE_HANDLES_PER_MASK; |
1983 | } |
1984 | else |
1985 | { |
1986 | dwNewMask = (MASK_EMPTY << uAlloc); |
1987 | } |
1988 | |
1989 | // set the free mask |
1990 | *pdwMask = dwNewMask; |
1991 | |
1992 | // update our count and mask pointer |
1993 | uRemain -= uAlloc; |
1994 | pdwMask++; |
1995 | |
1996 | } while (uRemain); |
1997 | |
1998 | // compute the bounds for allocation so we can copy the handles |
1999 | _UNCHECKED_OBJECTREF *pValue = pSegment->rgValue + (uBlock * HANDLE_HANDLES_PER_BLOCK); |
2000 | _UNCHECKED_OBJECTREF *pLast = pValue + uCount; |
2001 | |
2002 | // loop through filling in the output array with handles |
2003 | do |
2004 | { |
2005 | // store the next handle in the next array slot |
2006 | *pHandleBase = (OBJECTHANDLE)pValue; |
2007 | |
2008 | // increment our source and destination |
2009 | pValue++; |
2010 | pHandleBase++; |
2011 | |
2012 | } while (pValue < pLast); |
2013 | |
2014 | // return the number of handles we allocated |
2015 | return uCount; |
2016 | } |
2017 | |
2018 | |
2019 | /* |
2020 | * BlockAllocHandles |
2021 | * |
2022 | * Attempts to allocate the requested number of handes of the specified type, |
2023 | * from the specified handle block. |
2024 | * |
2025 | * Returns the number of available handles actually allocated. |
2026 | * |
2027 | */ |
2028 | uint32_t BlockAllocHandles(TableSegment *pSegment, uint32_t uBlock, OBJECTHANDLE *pHandleBase, uint32_t uCount) |
2029 | { |
2030 | WRAPPER_NO_CONTRACT; |
2031 | |
2032 | /* |
2033 | NOTHROW; |
2034 | GC_NOTRIGGER; |
2035 | MODE_ANY; |
2036 | */ |
2037 | |
2038 | // keep track of how many handles we have left to allocate |
2039 | uint32_t uRemain = uCount; |
2040 | |
2041 | // set up our loop and limit mask pointers |
2042 | uint32_t *pdwMask = pSegment->rgFreeMask + (uBlock * HANDLE_MASKS_PER_BLOCK); |
2043 | uint32_t *pdwMaskLast = pdwMask + HANDLE_MASKS_PER_BLOCK; |
2044 | |
2045 | // keep track of the handle displacement for the mask we're scanning |
2046 | uint32_t uDisplacement = uBlock * HANDLE_HANDLES_PER_BLOCK; |
2047 | |
2048 | // loop through all the masks, allocating handles as we go |
2049 | do |
2050 | { |
2051 | // if this mask indicates free handles then grab them |
2052 | if (*pdwMask) |
2053 | { |
2054 | // allocate as many handles as we need from this mask |
2055 | uint32_t uSatisfied = BlockAllocHandlesInMask(pSegment, uBlock, pdwMask, uDisplacement, pHandleBase, uRemain); |
2056 | |
2057 | // adjust our count and array pointer |
2058 | uRemain -= uSatisfied; |
2059 | pHandleBase += uSatisfied; |
2060 | |
2061 | // if there are no remaining slots to be filled then we are done |
2062 | if (!uRemain) |
2063 | break; |
2064 | } |
2065 | |
2066 | // on to the next mask |
2067 | pdwMask++; |
2068 | uDisplacement += HANDLE_HANDLES_PER_MASK; |
2069 | |
2070 | } while (pdwMask < pdwMaskLast); |
2071 | |
2072 | // return the number of handles we got |
2073 | return (uCount - uRemain); |
2074 | } |
2075 | |
2076 | |
2077 | /* |
2078 | * SegmentAllocHandlesFromTypeChain |
2079 | * |
2080 | * Attempts to allocate the requested number of handes of the specified type, |
2081 | * from the specified segment's block chain for the specified type. This routine |
2082 | * ONLY scavenges existing blocks in the type chain. No new blocks are committed. |
2083 | * |
2084 | * Returns the number of available handles actually allocated. |
2085 | * |
2086 | */ |
2087 | uint32_t SegmentAllocHandlesFromTypeChain(TableSegment *pSegment, uint32_t uType, OBJECTHANDLE *pHandleBase, uint32_t uCount) |
2088 | { |
2089 | WRAPPER_NO_CONTRACT; |
2090 | |
2091 | /* |
2092 | NOTHROW; |
2093 | GC_NOTRIGGER; |
2094 | MODE_ANY; |
2095 | */ |
2096 | |
2097 | // fetch the number of handles available in this chain |
2098 | uint32_t uAvail = pSegment->rgFreeCount[uType]; |
2099 | |
2100 | // is the available count greater than the requested count? |
2101 | if (uAvail > uCount) |
2102 | { |
2103 | // yes - all requested handles are available |
2104 | uAvail = uCount; |
2105 | } |
2106 | else |
2107 | { |
2108 | // no - we can only satisfy some of the request |
2109 | uCount = uAvail; |
2110 | } |
2111 | |
2112 | // did we find that any handles are available? |
2113 | if (uAvail) |
2114 | { |
2115 | // yes - fetch the head of the block chain and set up a loop limit |
2116 | uint32_t uBlock = pSegment->rgHint[uType]; |
2117 | uint32_t uLast = uBlock; |
2118 | |
2119 | // loop until we have found all handles known to be available |
2120 | for (;;) |
2121 | { |
2122 | // try to allocate handles from the current block |
2123 | uint32_t uSatisfied = BlockAllocHandles(pSegment, uBlock, pHandleBase, uAvail); |
2124 | |
2125 | // did we get everything we needed? |
2126 | if (uSatisfied == uAvail) |
2127 | { |
2128 | // yes - update the hint for this type chain and get out |
2129 | pSegment->rgHint[uType] = (uint8_t)uBlock; |
2130 | break; |
2131 | } |
2132 | |
2133 | // adjust our count and array pointer |
2134 | uAvail -= uSatisfied; |
2135 | pHandleBase += uSatisfied; |
2136 | |
2137 | // fetch the next block in the type chain |
2138 | uBlock = pSegment->rgAllocation[uBlock]; |
2139 | |
2140 | // are we out of blocks? |
2141 | if (uBlock == uLast) |
2142 | { |
2143 | // free count is corrupt |
2144 | _ASSERTE(FALSE); |
2145 | |
2146 | // avoid making the problem any worse |
2147 | uCount -= uAvail; |
2148 | break; |
2149 | } |
2150 | } |
2151 | |
2152 | // update the free count |
2153 | pSegment->rgFreeCount[uType] -= uCount; |
2154 | } |
2155 | |
2156 | // return the number of handles we got |
2157 | return uCount; |
2158 | } |
2159 | |
2160 | |
2161 | /* |
2162 | * SegmentAllocHandlesFromFreeList |
2163 | * |
2164 | * Attempts to allocate the requested number of handes of the specified type, |
2165 | * by committing blocks from the free list to that type's type chain. |
2166 | * |
2167 | * Returns the number of available handles actually allocated. |
2168 | * |
2169 | */ |
2170 | uint32_t SegmentAllocHandlesFromFreeList(TableSegment *pSegment, uint32_t uType, OBJECTHANDLE *pHandleBase, uint32_t uCount) |
2171 | { |
2172 | LIMITED_METHOD_CONTRACT; |
2173 | |
2174 | /* |
2175 | NOTHROW; |
2176 | GC_NOTRIGGER; |
2177 | MODE_ANY; |
2178 | */ |
2179 | |
2180 | // keep track of how many handles we have left to allocate |
2181 | uint32_t uRemain = uCount; |
2182 | |
2183 | // loop allocating handles until we are done or we run out of free blocks |
2184 | do |
2185 | { |
2186 | // start off assuming we can allocate all the handles |
2187 | uint32_t uAlloc = uRemain; |
2188 | |
2189 | // we can only get a block-full of handles at a time |
2190 | if (uAlloc > HANDLE_HANDLES_PER_BLOCK) |
2191 | uAlloc = HANDLE_HANDLES_PER_BLOCK; |
2192 | |
2193 | // try to get a block from the free list |
2194 | uint32_t uBlock = SegmentInsertBlockFromFreeList(pSegment, uType, (uRemain == uCount)); |
2195 | |
2196 | // if there are no free blocks left then we are done |
2197 | if (uBlock == BLOCK_INVALID) |
2198 | break; |
2199 | |
2200 | // initialize the block by allocating the required handles into the array |
2201 | uAlloc = BlockAllocHandlesInitial(pSegment, uType, uBlock, pHandleBase, uAlloc); |
2202 | |
2203 | // adjust our count and array pointer |
2204 | uRemain -= uAlloc; |
2205 | pHandleBase += uAlloc; |
2206 | |
2207 | } while (uRemain); |
2208 | |
2209 | // compute the number of handles we took |
2210 | uCount -= uRemain; |
2211 | |
2212 | // update the free count by the number of handles we took |
2213 | pSegment->rgFreeCount[uType] -= uCount; |
2214 | |
2215 | // return the number of handles we got |
2216 | return uCount; |
2217 | } |
2218 | |
2219 | |
2220 | /* |
2221 | * SegmentAllocHandles |
2222 | * |
2223 | * Attempts to allocate the requested number of handes of the specified type, |
2224 | * from the specified segment. |
2225 | * |
2226 | * Returns the number of available handles actually allocated. |
2227 | * |
2228 | */ |
2229 | uint32_t SegmentAllocHandles(TableSegment *pSegment, uint32_t uType, OBJECTHANDLE *pHandleBase, uint32_t uCount) |
2230 | { |
2231 | LIMITED_METHOD_CONTRACT; |
2232 | |
2233 | /* |
2234 | NOTHROW; |
2235 | GC_NOTRIGGER; |
2236 | MODE_ANY; |
2237 | */ |
2238 | |
2239 | // first try to get some handles from the existing type chain |
2240 | uint32_t uSatisfied = SegmentAllocHandlesFromTypeChain(pSegment, uType, pHandleBase, uCount); |
2241 | |
2242 | // if there are still slots to be filled then we need to commit more blocks to the type chain |
2243 | if (uSatisfied < uCount) |
2244 | { |
2245 | // adjust our count and array pointer |
2246 | uCount -= uSatisfied; |
2247 | pHandleBase += uSatisfied; |
2248 | |
2249 | // get remaining handles by committing blocks from the free list |
2250 | uSatisfied += SegmentAllocHandlesFromFreeList(pSegment, uType, pHandleBase, uCount); |
2251 | } |
2252 | |
2253 | // return the number of handles we got |
2254 | return uSatisfied; |
2255 | } |
2256 | |
2257 | |
2258 | /* |
2259 | * TableAllocBulkHandles |
2260 | * |
2261 | * Attempts to allocate the requested number of handes of the specified type. |
2262 | * |
2263 | * Returns the number of handles that were actually allocated. This is always |
2264 | * the same as the number of handles requested except in out-of-memory conditions, |
2265 | * in which case it is the number of handles that were successfully allocated. |
2266 | * |
2267 | */ |
2268 | uint32_t TableAllocBulkHandles(HandleTable *pTable, uint32_t uType, OBJECTHANDLE *pHandleBase, uint32_t uCount) |
2269 | { |
2270 | WRAPPER_NO_CONTRACT; |
2271 | |
2272 | /* |
2273 | NOTHROW; |
2274 | GC_NOTRIGGER; |
2275 | MODE_ANY; |
2276 | */ |
2277 | |
2278 | // keep track of how many handles we have left to allocate |
2279 | uint32_t uRemain = uCount; |
2280 | |
2281 | // start with the first segment and loop until we are done |
2282 | TableSegment *pSegment = pTable->pSegmentList; |
2283 | |
2284 | uint8_t bLastSequence = 0; |
2285 | BOOL fNewSegment = FALSE; |
2286 | |
2287 | for (;;) |
2288 | { |
2289 | // get some handles from the current segment |
2290 | uint32_t uSatisfied = SegmentAllocHandles(pSegment, uType, pHandleBase, uRemain); |
2291 | |
2292 | // adjust our count and array pointer |
2293 | uRemain -= uSatisfied; |
2294 | pHandleBase += uSatisfied; |
2295 | |
2296 | // if there are no remaining slots to be filled then we are done |
2297 | if (!uRemain) |
2298 | break; |
2299 | |
2300 | // fetch the next segment in the chain. |
2301 | TableSegment *pNextSegment = NULL; |
2302 | |
2303 | if (!fNewSegment) |
2304 | { |
2305 | pNextSegment = pSegment->pNextSegment; |
2306 | if (!pNextSegment) |
2307 | { |
2308 | bLastSequence = pSegment->bSequence; |
2309 | fNewSegment = TRUE; |
2310 | } |
2311 | } |
2312 | |
2313 | // if are no more segments then allocate another |
2314 | if (fNewSegment) |
2315 | { |
2316 | // ok if this fails then we're out of luck |
2317 | pNextSegment = SegmentAlloc(pTable); |
2318 | if (!pNextSegment) |
2319 | { |
2320 | // we ran out of memory allocating a new segment. |
2321 | // this may not be catastrophic - if there are still some |
2322 | // handles in the cache then some allocations may succeed. |
2323 | break; |
2324 | } |
2325 | |
2326 | // set up the correct sequence number for the new segment |
2327 | pNextSegment->bSequence = (uint8_t)(((uint32_t)bLastSequence + 1) % 0x100); |
2328 | bLastSequence = pNextSegment->bSequence; |
2329 | |
2330 | // link the new segment into the list by the order of segment address |
2331 | TableSegment* pWalk = pTable->pSegmentList; |
2332 | if ((uintptr_t)pNextSegment < (uintptr_t)pWalk) |
2333 | { |
2334 | pNextSegment->pNextSegment = pWalk; |
2335 | pTable->pSegmentList = pNextSegment; |
2336 | } |
2337 | else |
2338 | { |
2339 | while (pWalk) |
2340 | { |
2341 | if (pWalk->pNextSegment == NULL) |
2342 | { |
2343 | pWalk->pNextSegment = pNextSegment; |
2344 | break; |
2345 | } |
2346 | else if ((uintptr_t)pWalk->pNextSegment > (uintptr_t)pNextSegment) |
2347 | { |
2348 | pNextSegment->pNextSegment = pWalk->pNextSegment; |
2349 | pWalk->pNextSegment = pNextSegment; |
2350 | break; |
2351 | } |
2352 | pWalk = pWalk->pNextSegment; |
2353 | } |
2354 | } |
2355 | } |
2356 | |
2357 | // try again with new segment |
2358 | pSegment = pNextSegment; |
2359 | } |
2360 | |
2361 | // compute the number of handles we actually got |
2362 | uint32_t uAllocated = (uCount - uRemain); |
2363 | |
2364 | // update the count of handles marked as "used" |
2365 | pTable->dwCount += uAllocated; |
2366 | |
2367 | // return the number of handles we actually got |
2368 | return uAllocated; |
2369 | } |
2370 | |
2371 | |
2372 | /* |
2373 | * BlockFreeHandlesInMask |
2374 | * |
2375 | * Frees some portion of an array of handles of the specified type. |
2376 | * The array is scanned forward and handles are freed until a handle |
2377 | * from a different mask is encountered. |
2378 | * |
2379 | * Returns the number of handles that were freed from the front of the array. |
2380 | * |
2381 | */ |
2382 | uint32_t BlockFreeHandlesInMask(TableSegment *pSegment, uint32_t uBlock, uint32_t uMask, OBJECTHANDLE *pHandleBase, uint32_t uCount, |
2383 | uintptr_t *pUserData, uint32_t *puActualFreed, BOOL *pfAllMasksFree) |
2384 | { |
2385 | LIMITED_METHOD_CONTRACT; |
2386 | |
2387 | // keep track of how many handles we have left to free |
2388 | uint32_t uRemain = uCount; |
2389 | |
2390 | #ifdef _PREFAST_ |
2391 | #pragma warning(push) |
2392 | #pragma warning(disable:6305) // "This code deals with a bit vector mapped piece of code, so there is no mismatch between sizeof and countof" |
2393 | #endif |
2394 | |
2395 | // if this block has user data, convert the pointer to be mask-relative |
2396 | if (pUserData) |
2397 | pUserData += (uMask * HANDLE_HANDLES_PER_MASK); |
2398 | |
2399 | // convert our mask index to be segment-relative |
2400 | uMask += (uBlock * HANDLE_MASKS_PER_BLOCK); |
2401 | |
2402 | // compute the handle bounds for our mask |
2403 | OBJECTHANDLE firstHandle = (OBJECTHANDLE)(pSegment->rgValue + (uMask * HANDLE_HANDLES_PER_MASK)); |
2404 | OBJECTHANDLE lastHandle = (OBJECTHANDLE)((_UNCHECKED_OBJECTREF *)firstHandle + HANDLE_HANDLES_PER_MASK); |
2405 | |
2406 | #ifdef _PREFAST_ |
2407 | #pragma warning(pop) |
2408 | #endif |
2409 | |
2410 | // keep a local copy of the free mask to update as we free handles |
2411 | uint32_t dwFreeMask = pSegment->rgFreeMask[uMask]; |
2412 | |
2413 | // keep track of how many bogus frees we are asked to do |
2414 | uint32_t uBogus = 0; |
2415 | |
2416 | // loop freeing handles until we encounter one outside our block or there are none left |
2417 | do |
2418 | { |
2419 | // fetch the next handle in the array |
2420 | OBJECTHANDLE handle = *pHandleBase; |
2421 | |
2422 | // if the handle is outside our segment then we are done |
2423 | if ((handle < firstHandle) || (handle >= lastHandle)) |
2424 | break; |
2425 | |
2426 | // sanity check - the handle should no longer refer to an object here |
2427 | _ASSERTE(HndIsNullOrDestroyedHandle(*(_UNCHECKED_OBJECTREF *)handle)); |
2428 | |
2429 | // compute the handle index within the mask |
2430 | uint32_t uHandle = (uint32_t)(handle - firstHandle); |
2431 | |
2432 | // if there is user data then clear the user data for this handle |
2433 | if (pUserData) |
2434 | pUserData[uHandle] = 0L; |
2435 | |
2436 | // compute the mask bit for this handle |
2437 | uint32_t dwFreeBit = (1 << uHandle); |
2438 | |
2439 | // the handle should not already be free |
2440 | if ((dwFreeMask & dwFreeBit) != 0) |
2441 | { |
2442 | // SOMEONE'S FREEING A HANDLE THAT ISN'T ALLOCATED |
2443 | uBogus++; |
2444 | _ASSERTE(FALSE); |
2445 | } |
2446 | |
2447 | // add this handle to the tally of freed handles |
2448 | dwFreeMask |= dwFreeBit; |
2449 | |
2450 | // adjust our count and array pointer |
2451 | uRemain--; |
2452 | pHandleBase++; |
2453 | |
2454 | } while (uRemain); |
2455 | |
2456 | // update the mask to reflect the handles we changed |
2457 | pSegment->rgFreeMask[uMask] = dwFreeMask; |
2458 | |
2459 | // if not all handles in this mask are free then tell our caller not to check the block |
2460 | if (dwFreeMask != MASK_EMPTY) |
2461 | *pfAllMasksFree = FALSE; |
2462 | |
2463 | // compute the number of handles we processed from the array |
2464 | uint32_t uFreed = (uCount - uRemain); |
2465 | |
2466 | // tell the caller how many handles we actually freed |
2467 | *puActualFreed += (uFreed - uBogus); |
2468 | |
2469 | // return the number of handles we actually freed |
2470 | return uFreed; |
2471 | } |
2472 | |
2473 | |
2474 | /* |
2475 | * BlockFreeHandles |
2476 | * |
2477 | * Frees some portion of an array of handles of the specified type. |
2478 | * The array is scanned forward and handles are freed until a handle |
2479 | * from a different block is encountered. |
2480 | * |
2481 | * Returns the number of handles that were freed from the front of the array. |
2482 | * |
2483 | */ |
2484 | uint32_t BlockFreeHandles(TableSegment *pSegment, uint32_t uBlock, OBJECTHANDLE *pHandleBase, uint32_t uCount, |
2485 | uint32_t *puActualFreed, BOOL *pfScanForFreeBlocks) |
2486 | { |
2487 | WRAPPER_NO_CONTRACT; |
2488 | |
2489 | /* |
2490 | NOTHROW; |
2491 | GC_NOTRIGGER; |
2492 | MODE_ANY; |
2493 | */ |
2494 | |
2495 | // keep track of how many handles we have left to free |
2496 | uint32_t uRemain = uCount; |
2497 | |
2498 | // fetch the user data for this block, if any |
2499 | uintptr_t *pBlockUserData = BlockFetchUserDataPointer(pSegment, uBlock, FALSE); |
2500 | |
2501 | // compute the handle bounds for our block |
2502 | OBJECTHANDLE firstHandle = (OBJECTHANDLE)(pSegment->rgValue + (uBlock * HANDLE_HANDLES_PER_BLOCK)); |
2503 | OBJECTHANDLE lastHandle = (OBJECTHANDLE)((_UNCHECKED_OBJECTREF *)firstHandle + HANDLE_HANDLES_PER_BLOCK); |
2504 | |
2505 | // this variable will only stay TRUE if all masks we touch end up in the free state |
2506 | BOOL fAllMasksWeTouchedAreFree = TRUE; |
2507 | |
2508 | // loop freeing handles until we encounter one outside our block or there are none left |
2509 | do |
2510 | { |
2511 | // fetch the next handle in the array |
2512 | OBJECTHANDLE handle = *pHandleBase; |
2513 | |
2514 | // if the handle is outside our segment then we are done |
2515 | if ((handle < firstHandle) || (handle >= lastHandle)) |
2516 | break; |
2517 | |
2518 | // compute the mask that this handle resides in |
2519 | uint32_t uMask = (uint32_t)((handle - firstHandle) / HANDLE_HANDLES_PER_MASK); |
2520 | |
2521 | // free as many handles as this mask owns from the front of the array |
2522 | uint32_t uFreed = BlockFreeHandlesInMask(pSegment, uBlock, uMask, pHandleBase, uRemain, |
2523 | pBlockUserData, puActualFreed, &fAllMasksWeTouchedAreFree); |
2524 | |
2525 | // adjust our count and array pointer |
2526 | uRemain -= uFreed; |
2527 | pHandleBase += uFreed; |
2528 | |
2529 | } while (uRemain); |
2530 | |
2531 | // are all masks we touched free? |
2532 | if (fAllMasksWeTouchedAreFree) |
2533 | { |
2534 | // is the block unlocked? |
2535 | // NOTE: This check is incorrect and defeats the intended purpose of scavenging. If the |
2536 | // current block is locked and has just been emptied, then it cannot be removed right now |
2537 | // and therefore will nominally need to be scavenged. The only code that triggers |
2538 | // scavenging is in SegmentRemoveFreeBlocks, and setting the flag is the only way to |
2539 | // trigger a call into SegmentRemoveFreeBlocks call. As a result, by NOT setting the flag |
2540 | // this code is generally PREVENTING scavenging in exactly the cases where scavenging is |
2541 | // needed. The code is not being changed because it has always been this way and scavenging |
2542 | // itself generally has extremely low value. |
2543 | if (!BlockIsLocked(pSegment, uBlock)) |
2544 | { |
2545 | // tell the caller it might be a good idea to scan for free blocks |
2546 | *pfScanForFreeBlocks = TRUE; |
2547 | } |
2548 | } |
2549 | |
2550 | // return the number of handles we actually freed |
2551 | return (uCount - uRemain); |
2552 | } |
2553 | |
2554 | |
2555 | /* |
2556 | * SegmentFreeHandles |
2557 | * |
2558 | * Frees some portion of an array of handles of the specified type. |
2559 | * The array is scanned forward and handles are freed until a handle |
2560 | * from a different segment is encountered. |
2561 | * |
2562 | * Returns the number of handles that were freed from the front of the array. |
2563 | * |
2564 | */ |
2565 | uint32_t SegmentFreeHandles(TableSegment *pSegment, uint32_t uType, OBJECTHANDLE *pHandleBase, uint32_t uCount) |
2566 | { |
2567 | WRAPPER_NO_CONTRACT; |
2568 | |
2569 | /* |
2570 | NOTHROW; |
2571 | GC_NOTRIGGER; |
2572 | MODE_ANY; |
2573 | */ |
2574 | |
2575 | // keep track of how many handles we have left to free |
2576 | uint32_t uRemain = uCount; |
2577 | |
2578 | // compute the handle bounds for our segment |
2579 | OBJECTHANDLE firstHandle = (OBJECTHANDLE)pSegment->rgValue; |
2580 | OBJECTHANDLE lastHandle = (OBJECTHANDLE)((_UNCHECKED_OBJECTREF *)firstHandle + HANDLE_HANDLES_PER_SEGMENT); |
2581 | |
2582 | // the per-block free routines will set this if there is a chance some blocks went free |
2583 | BOOL fScanForFreeBlocks = FALSE; |
2584 | |
2585 | // track the number of handles we actually free |
2586 | uint32_t uActualFreed = 0; |
2587 | |
2588 | // loop freeing handles until we encounter one outside our segment or there are none left |
2589 | do |
2590 | { |
2591 | // fetch the next handle in the array |
2592 | OBJECTHANDLE handle = *pHandleBase; |
2593 | |
2594 | // if the handle is outside our segment then we are done |
2595 | if ((handle < firstHandle) || (handle >= lastHandle)) |
2596 | break; |
2597 | |
2598 | // compute the block that this handle resides in |
2599 | uint32_t uBlock = (uint32_t)(((uintptr_t)handle - (uintptr_t)firstHandle) / (HANDLE_SIZE * HANDLE_HANDLES_PER_BLOCK)); |
2600 | |
2601 | // sanity check that this block is the type we expect to be freeing |
2602 | _ASSERTE(pSegment->rgBlockType[uBlock] == uType); |
2603 | |
2604 | // free as many handles as this block owns from the front of the array |
2605 | uint32_t uFreed = BlockFreeHandles(pSegment, uBlock, pHandleBase, uRemain, &uActualFreed, &fScanForFreeBlocks); |
2606 | |
2607 | // adjust our count and array pointer |
2608 | uRemain -= uFreed; |
2609 | pHandleBase += uFreed; |
2610 | |
2611 | } while (uRemain); |
2612 | |
2613 | // compute the number of handles we actually freed |
2614 | uint32_t uFreed = (uCount - uRemain); |
2615 | |
2616 | // update the free count |
2617 | pSegment->rgFreeCount[uType] += uActualFreed; |
2618 | |
2619 | // if we saw blocks that may have gone totally free then do a free scan |
2620 | if (fScanForFreeBlocks) |
2621 | { |
2622 | // assume we no scavenging is required |
2623 | BOOL fNeedsScavenging = FALSE; |
2624 | |
2625 | // try to remove any free blocks we may have created |
2626 | SegmentRemoveFreeBlocks(pSegment, uType, &fNeedsScavenging); |
2627 | |
2628 | // did SegmentRemoveFreeBlocks have to skip over any free blocks? |
2629 | if (fNeedsScavenging) |
2630 | { |
2631 | // yup, arrange to scavenge them later |
2632 | pSegment->fResortChains = TRUE; |
2633 | pSegment->fNeedsScavenging = TRUE; |
2634 | } |
2635 | } |
2636 | |
2637 | // return the total number of handles we freed |
2638 | return uFreed; |
2639 | } |
2640 | |
2641 | |
2642 | /* |
2643 | * TableFreeBulkPreparedHandles |
2644 | * |
2645 | * Frees an array of handles of the specified type. |
2646 | * |
2647 | * This routine is optimized for a sorted array of handles but will accept any order. |
2648 | * |
2649 | */ |
2650 | void TableFreeBulkPreparedHandles(HandleTable *pTable, uint32_t uType, OBJECTHANDLE *pHandleBase, uint32_t uCount) |
2651 | { |
2652 | //Update the count of handles marked as "used" |
2653 | pTable->dwCount -= uCount; |
2654 | |
2655 | WRAPPER_NO_CONTRACT; |
2656 | |
2657 | /* |
2658 | NOTHROW; |
2659 | GC_NOTRIGGER; |
2660 | MODE_ANY; |
2661 | */ |
2662 | |
2663 | // loop until all handles are freed |
2664 | do |
2665 | { |
2666 | // get the segment for the first handle |
2667 | TableSegment * pSegment = (TableSegment *)HandleFetchSegmentPointer(*pHandleBase); |
2668 | |
2669 | // sanity |
2670 | _ASSERTE(pSegment->pHandleTable == pTable); |
2671 | |
2672 | // free as many handles as this segment owns from the front of the array |
2673 | uint32_t uFreed = SegmentFreeHandles(pSegment, uType, pHandleBase, uCount); |
2674 | |
2675 | // adjust our count and array pointer |
2676 | uCount -= uFreed; |
2677 | pHandleBase += uFreed; |
2678 | |
2679 | } while (uCount); |
2680 | } |
2681 | |
2682 | |
2683 | /* |
2684 | * TableFreeBulkUnpreparedHandlesWorker |
2685 | * |
2686 | * Frees an array of handles of the specified type by preparing them and calling TableFreeBulkPreparedHandles. |
2687 | * Uses the supplied scratch buffer to prepare the handles. |
2688 | * |
2689 | */ |
2690 | void TableFreeBulkUnpreparedHandlesWorker(HandleTable *pTable, uint32_t uType, const OBJECTHANDLE *pHandles, uint32_t uCount, |
2691 | OBJECTHANDLE *pScratchBuffer) |
2692 | { |
2693 | WRAPPER_NO_CONTRACT; |
2694 | |
2695 | // copy the handles into the destination buffer |
2696 | memcpy(pScratchBuffer, pHandles, uCount * sizeof(OBJECTHANDLE)); |
2697 | |
2698 | // sort them for optimal free order |
2699 | QuickSort((uintptr_t *)pScratchBuffer, 0, uCount - 1, CompareHandlesByFreeOrder); |
2700 | |
2701 | // make sure the handles are zeroed too |
2702 | ZeroHandles(pScratchBuffer, uCount); |
2703 | |
2704 | // prepare and free these handles |
2705 | TableFreeBulkPreparedHandles(pTable, uType, pScratchBuffer, uCount); |
2706 | } |
2707 | |
2708 | |
2709 | /* |
2710 | * TableFreeBulkUnpreparedHandles |
2711 | * |
2712 | * Frees an array of handles of the specified type by preparing them and calling |
2713 | * TableFreeBulkPreparedHandlesWorker one or more times. |
2714 | * |
2715 | */ |
2716 | void TableFreeBulkUnpreparedHandles(HandleTable *pTable, uint32_t uType, const OBJECTHANDLE *pHandles, uint32_t uCount) |
2717 | { |
2718 | CONTRACTL |
2719 | { |
2720 | NOTHROW; |
2721 | WRAPPER(GC_TRIGGERS); |
2722 | } |
2723 | CONTRACTL_END; |
2724 | |
2725 | // preparation / free buffer |
2726 | OBJECTHANDLE rgStackHandles[HANDLE_HANDLES_PER_BLOCK]; |
2727 | OBJECTHANDLE *pScratchBuffer = rgStackHandles; |
2728 | OBJECTHANDLE *pLargeScratchBuffer = NULL; |
2729 | uint32_t uFreeGranularity = _countof(rgStackHandles); |
2730 | |
2731 | // if there are more handles than we can put on the stack then try to allocate a sorting buffer |
2732 | if (uCount > uFreeGranularity) |
2733 | { |
2734 | // try to allocate a bigger buffer to work in |
2735 | pLargeScratchBuffer = new (nothrow) OBJECTHANDLE[uCount]; |
2736 | |
2737 | // did we get it? |
2738 | if (pLargeScratchBuffer) |
2739 | { |
2740 | // yes - use this buffer to prepare and free the handles |
2741 | pScratchBuffer = pLargeScratchBuffer; |
2742 | uFreeGranularity = uCount; |
2743 | } |
2744 | } |
2745 | |
2746 | // loop freeing handles until we have freed them all |
2747 | while (uCount) |
2748 | { |
2749 | // decide how many we can process in this iteration |
2750 | if (uFreeGranularity > uCount) |
2751 | uFreeGranularity = uCount; |
2752 | |
2753 | // prepare and free these handles |
2754 | TableFreeBulkUnpreparedHandlesWorker(pTable, uType, pHandles, uFreeGranularity, pScratchBuffer); |
2755 | |
2756 | // adjust our pointers and move on |
2757 | uCount -= uFreeGranularity; |
2758 | pHandles += uFreeGranularity; |
2759 | } |
2760 | |
2761 | // if we allocated a sorting buffer then free it now |
2762 | if (pLargeScratchBuffer) |
2763 | delete [] pLargeScratchBuffer; |
2764 | } |
2765 | |
2766 | #endif // !DACCESS_COMPILE |
2767 | |
2768 | /*--------------------------------------------------------------------------*/ |
2769 | |
2770 | |
2771 | |