| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /* |
| 6 | * Generational GC handle manager. Core Table Implementation. |
| 7 | * |
| 8 | * Implementation of core table management routines. |
| 9 | * |
| 10 | |
| 11 | * |
| 12 | */ |
| 13 | |
| 14 | #include "common.h" |
| 15 | |
| 16 | #include "gcenv.h" |
| 17 | #include "gcenv.inl" |
| 18 | #include "gc.h" |
| 19 | #include "handletablepriv.h" |
| 20 | |
| 21 | /**************************************************************************** |
| 22 | * |
| 23 | * RANDOM HELPERS |
| 24 | * |
| 25 | ****************************************************************************/ |
| 26 | |
| 27 | const uint8_t c_rgLowBitIndex[256] = |
| 28 | { |
| 29 | 0xff, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 30 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 31 | 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 32 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 33 | 0x05, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 34 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 35 | 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 36 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 37 | 0x06, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 38 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 39 | 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 40 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 41 | 0x05, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 42 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 43 | 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 44 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 45 | 0x07, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 46 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 47 | 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 48 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 49 | 0x05, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 50 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 51 | 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 52 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 53 | 0x06, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 54 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 55 | 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 56 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 57 | 0x05, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 58 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 59 | 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 60 | 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, |
| 61 | }; |
| 62 | |
| 63 | #ifndef DACCESS_COMPILE |
| 64 | |
| 65 | /* |
| 66 | * A 32/64 neutral quicksort |
| 67 | */ |
| 68 | //<TODO>@TODO: move/merge into common util file</TODO> |
| 69 | typedef int (*PFNCOMPARE)(uintptr_t p, uintptr_t q); |
| 70 | void QuickSort(uintptr_t *pData, int left, int right, PFNCOMPARE pfnCompare) |
| 71 | { |
| 72 | WRAPPER_NO_CONTRACT; |
| 73 | |
| 74 | do |
| 75 | { |
| 76 | int i = left; |
| 77 | int j = right; |
| 78 | |
| 79 | uintptr_t x = pData[(i + j + 1) / 2]; |
| 80 | |
| 81 | do |
| 82 | { |
| 83 | while (pfnCompare(pData[i], x) < 0) |
| 84 | i++; |
| 85 | |
| 86 | while (pfnCompare(x, pData[j]) < 0) |
| 87 | j--; |
| 88 | |
| 89 | if (i > j) |
| 90 | break; |
| 91 | |
| 92 | if (i < j) |
| 93 | { |
| 94 | uintptr_t t = pData[i]; |
| 95 | pData[i] = pData[j]; |
| 96 | pData[j] = t; |
| 97 | } |
| 98 | |
| 99 | i++; |
| 100 | j--; |
| 101 | |
| 102 | } while (i <= j); |
| 103 | |
| 104 | if ((j - left) <= (right - i)) |
| 105 | { |
| 106 | if (left < j) |
| 107 | QuickSort(pData, left, j, pfnCompare); |
| 108 | |
| 109 | left = i; |
| 110 | } |
| 111 | else |
| 112 | { |
| 113 | if (i < right) |
| 114 | QuickSort(pData, i, right, pfnCompare); |
| 115 | |
| 116 | right = j; |
| 117 | } |
| 118 | |
| 119 | } while (left < right); |
| 120 | } |
| 121 | |
| 122 | |
| 123 | /* |
| 124 | * CompareHandlesByFreeOrder |
| 125 | * |
| 126 | * Returns: |
| 127 | * <0 - handle P should be freed before handle Q |
| 128 | * =0 - handles are eqivalent for free order purposes |
| 129 | * >0 - handle Q should be freed before handle P |
| 130 | * |
| 131 | */ |
| 132 | int CompareHandlesByFreeOrder(uintptr_t p, uintptr_t q) |
| 133 | { |
| 134 | LIMITED_METHOD_CONTRACT; |
| 135 | |
| 136 | // compute the segments for the handles |
| 137 | TableSegment *pSegmentP = (TableSegment *)(p & HANDLE_SEGMENT_ALIGN_MASK); |
| 138 | TableSegment *pSegmentQ = (TableSegment *)(q & HANDLE_SEGMENT_ALIGN_MASK); |
| 139 | |
| 140 | // are the handles in the same segment? |
| 141 | if (pSegmentP == pSegmentQ) |
| 142 | { |
| 143 | // return the in-segment handle free order |
| 144 | return (int)((intptr_t)q - (intptr_t)p); |
| 145 | } |
| 146 | else if (pSegmentP) |
| 147 | { |
| 148 | // do we have two valid segments? |
| 149 | if (pSegmentQ) |
| 150 | { |
| 151 | // return the sequence order of the two segments |
| 152 | return (int)(uint32_t)pSegmentQ->bSequence - (int)(uint32_t)pSegmentP->bSequence; |
| 153 | } |
| 154 | else |
| 155 | { |
| 156 | // only the P handle is valid - free Q first |
| 157 | return 1; |
| 158 | } |
| 159 | } |
| 160 | else if (pSegmentQ) |
| 161 | { |
| 162 | // only the Q handle is valid - free P first |
| 163 | return -1; |
| 164 | } |
| 165 | |
| 166 | // neither handle is valid |
| 167 | return 0; |
| 168 | } |
| 169 | |
| 170 | |
| 171 | /* |
| 172 | * ZeroHandles |
| 173 | * |
| 174 | * Zeroes the object pointers for an array of handles. |
| 175 | * |
| 176 | */ |
| 177 | void ZeroHandles(OBJECTHANDLE *pHandleBase, uint32_t uCount) |
| 178 | { |
| 179 | LIMITED_METHOD_CONTRACT; |
| 180 | |
| 181 | // compute our stopping point |
| 182 | OBJECTHANDLE *pLastHandle = pHandleBase + uCount; |
| 183 | |
| 184 | // loop over the array, zeroing as we go |
| 185 | while (pHandleBase < pLastHandle) |
| 186 | { |
| 187 | // get the current handle from the array |
| 188 | OBJECTHANDLE handle = *pHandleBase; |
| 189 | |
| 190 | // advance to the next handle |
| 191 | pHandleBase++; |
| 192 | |
| 193 | // zero the handle's object pointer |
| 194 | *(_UNCHECKED_OBJECTREF *)handle = NULL; |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | #ifdef _DEBUG |
| 199 | void CALLBACK DbgCountEnumeratedBlocks(TableSegment *pSegment, uint32_t uBlock, uint32_t uCount, ScanCallbackInfo *pInfo) |
| 200 | { |
| 201 | LIMITED_METHOD_CONTRACT; |
| 202 | UNREFERENCED_PARAMETER(pSegment); |
| 203 | UNREFERENCED_PARAMETER(uBlock); |
| 204 | |
| 205 | // accumulate the block count in pInfo->param1 |
| 206 | pInfo->param1 += uCount; |
| 207 | } |
| 208 | #endif |
| 209 | |
| 210 | /*--------------------------------------------------------------------------*/ |
| 211 | |
| 212 | |
| 213 | |
| 214 | /**************************************************************************** |
| 215 | * |
| 216 | * CORE TABLE MANAGEMENT |
| 217 | * |
| 218 | ****************************************************************************/ |
| 219 | |
| 220 | /* |
| 221 | * TableCanFreeSegmentNow |
| 222 | * |
| 223 | * Determines if it is OK to free the specified segment at this time. |
| 224 | * |
| 225 | */ |
| 226 | BOOL TableCanFreeSegmentNow(HandleTable *pTable, TableSegment *pSegment) |
| 227 | { |
| 228 | LIMITED_METHOD_CONTRACT; |
| 229 | |
| 230 | // sanity |
| 231 | _ASSERTE(pTable); |
| 232 | _ASSERTE(pSegment); |
| 233 | #ifdef _DEBUG |
| 234 | // there have been cases in the past where the original assert would |
| 235 | // fail but by the time a dump was created the lock was unowned so |
| 236 | // there was no way to tell who the previous owner was. |
| 237 | EEThreadId threadId = pTable->Lock.GetHolderThreadId(); |
| 238 | _ASSERTE(threadId.IsCurrentThread()); |
| 239 | #endif // _DEBUG |
| 240 | |
| 241 | // deterine if any segment is currently being scanned asynchronously |
| 242 | TableSegment *pSegmentAsync = NULL; |
| 243 | |
| 244 | // do we have async info? |
| 245 | AsyncScanInfo *pAsyncInfo = pTable->pAsyncScanInfo; |
| 246 | if (pAsyncInfo) |
| 247 | { |
| 248 | // must always have underlying callback info in an async scan |
| 249 | _ASSERTE(pAsyncInfo->pCallbackInfo); |
| 250 | |
| 251 | // yes - if a segment is being scanned asynchronously it is listed here |
| 252 | pSegmentAsync = pAsyncInfo->pCallbackInfo->pCurrentSegment; |
| 253 | } |
| 254 | |
| 255 | // we can free our segment if it isn't being scanned asynchronously right now |
| 256 | return (pSegment != pSegmentAsync); |
| 257 | } |
| 258 | |
| 259 | #endif // !DACCESS_COMPILE |
| 260 | |
| 261 | /* |
| 262 | * BlockFetchUserDataPointer |
| 263 | * |
| 264 | * Gets the user data pointer for the first handle in a block. |
| 265 | * |
| 266 | */ |
| 267 | PTR_uintptr_t (PTR__TableSegmentHeader pSegment, uint32_t uBlock, BOOL fAssertOnError) |
| 268 | { |
| 269 | LIMITED_METHOD_DAC_CONTRACT; |
| 270 | |
| 271 | // assume NULL until we actually find the data |
| 272 | PTR_uintptr_t pUserData = NULL; |
| 273 | // get the user data index for this block |
| 274 | uint32_t blockIndex = pSegment->rgUserData[uBlock]; |
| 275 | |
| 276 | // is there user data for the block? |
| 277 | if (blockIndex != BLOCK_INVALID) |
| 278 | { |
| 279 | // In DAC builds, we may not have the entire segment table mapped and in any case it will be quite |
| 280 | // large. Since we only need one element, we'll retrieve just that one element. |
| 281 | pUserData = PTR_uintptr_t(PTR_TO_TADDR(pSegment) + offsetof(TableSegment, rgValue) + |
| 282 | (blockIndex * HANDLE_BYTES_PER_BLOCK)); |
| 283 | } |
| 284 | else if (fAssertOnError) |
| 285 | { |
| 286 | // no user data is associated with this block |
| 287 | // |
| 288 | // we probably got here for one of the following reasons: |
| 289 | // 1) an outside caller tried to do a user data operation on an incompatible handle |
| 290 | // 2) the user data map in the segment is corrupt |
| 291 | // 3) the global type flags are corrupt |
| 292 | // |
| 293 | _ASSERTE(FALSE); |
| 294 | } |
| 295 | |
| 296 | // return the result |
| 297 | return pUserData; |
| 298 | } |
| 299 | |
| 300 | |
| 301 | /* |
| 302 | * HandleFetchSegmentPointer |
| 303 | * |
| 304 | * Computes the segment pointer for a given handle. |
| 305 | * |
| 306 | */ |
| 307 | __inline PTR__TableSegmentHeader HandleFetchSegmentPointer(OBJECTHANDLE handle) |
| 308 | { |
| 309 | LIMITED_METHOD_DAC_CONTRACT; |
| 310 | |
| 311 | // find the segment for this handle |
| 312 | PTR__TableSegmentHeader pSegment = PTR__TableSegmentHeader((uintptr_t)handle & HANDLE_SEGMENT_ALIGN_MASK); |
| 313 | |
| 314 | // sanity |
| 315 | _ASSERTE(pSegment); |
| 316 | |
| 317 | // return the segment pointer |
| 318 | return pSegment; |
| 319 | } |
| 320 | |
| 321 | |
| 322 | /* |
| 323 | * HandleValidateAndFetchUserDataPointer |
| 324 | * |
| 325 | * Gets the user data pointer for the specified handle. |
| 326 | * ASSERTs and returns NULL if handle is not of the expected type. |
| 327 | * |
| 328 | */ |
| 329 | uintptr_t *HandleValidateAndFetchUserDataPointer(OBJECTHANDLE handle, uint32_t uTypeExpected) |
| 330 | { |
| 331 | WRAPPER_NO_CONTRACT; |
| 332 | |
| 333 | // get the segment for this handle |
| 334 | PTR__TableSegmentHeader pSegment = HandleFetchSegmentPointer(handle); |
| 335 | |
| 336 | // find the offset of this handle into the segment |
| 337 | uintptr_t offset = (uintptr_t)handle & HANDLE_SEGMENT_CONTENT_MASK; |
| 338 | |
| 339 | // make sure it is in the handle area and not the header |
| 340 | _ASSERTE(offset >= HANDLE_HEADER_SIZE); |
| 341 | |
| 342 | // convert the offset to a handle index |
| 343 | uint32_t uHandle = (uint32_t)((offset - HANDLE_HEADER_SIZE) / HANDLE_SIZE); |
| 344 | |
| 345 | // compute the block this handle resides in |
| 346 | uint32_t uBlock = uHandle / HANDLE_HANDLES_PER_BLOCK; |
| 347 | |
| 348 | // fetch the user data for this block |
| 349 | PTR_uintptr_t pUserData = BlockFetchUserDataPointer(pSegment, uBlock, TRUE); |
| 350 | |
| 351 | // did we get the user data block? |
| 352 | if (pUserData) |
| 353 | { |
| 354 | // yup - adjust the pointer to be handle-specific |
| 355 | pUserData += (uHandle - (uBlock * HANDLE_HANDLES_PER_BLOCK)); |
| 356 | |
| 357 | // validate the block type before returning the pointer |
| 358 | if (pSegment->rgBlockType[uBlock] != uTypeExpected) |
| 359 | { |
| 360 | // type mismatch - caller error |
| 361 | _ASSERTE(FALSE); |
| 362 | |
| 363 | // don't return a pointer to the caller |
| 364 | pUserData = NULL; |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | // return the result |
| 369 | return pUserData; |
| 370 | } |
| 371 | |
| 372 | /* |
| 373 | * HandleQuickFetchUserDataPointer |
| 374 | * |
| 375 | * Gets the user data pointer for a handle. |
| 376 | * Less validation is performed. |
| 377 | * |
| 378 | */ |
| 379 | PTR_uintptr_t HandleQuickFetchUserDataPointer(OBJECTHANDLE handle) |
| 380 | { |
| 381 | WRAPPER_NO_CONTRACT; |
| 382 | |
| 383 | /* |
| 384 | NOTHROW; |
| 385 | GC_NOTRIGGER; |
| 386 | MODE_ANY; |
| 387 | */ |
| 388 | SUPPORTS_DAC; |
| 389 | |
| 390 | // get the segment for this handle |
| 391 | PTR__TableSegmentHeader pSegment = HandleFetchSegmentPointer(handle); |
| 392 | |
| 393 | // find the offset of this handle into the segment |
| 394 | uintptr_t offset = (uintptr_t)handle & HANDLE_SEGMENT_CONTENT_MASK; |
| 395 | |
| 396 | // make sure it is in the handle area and not the header |
| 397 | _ASSERTE(offset >= HANDLE_HEADER_SIZE); |
| 398 | |
| 399 | // convert the offset to a handle index |
| 400 | uint32_t uHandle = (uint32_t)((offset - HANDLE_HEADER_SIZE) / HANDLE_SIZE); |
| 401 | |
| 402 | // compute the block this handle resides in |
| 403 | uint32_t uBlock = uHandle / HANDLE_HANDLES_PER_BLOCK; |
| 404 | |
| 405 | // fetch the user data for this block |
| 406 | PTR_uintptr_t pUserData = BlockFetchUserDataPointer(pSegment, uBlock, TRUE); |
| 407 | |
| 408 | // if we got the user data block then adjust the pointer to be handle-specific |
| 409 | if (pUserData) |
| 410 | pUserData += (uHandle - (uBlock * HANDLE_HANDLES_PER_BLOCK)); |
| 411 | |
| 412 | // return the result |
| 413 | return pUserData; |
| 414 | } |
| 415 | |
| 416 | #ifndef DACCESS_COMPILE |
| 417 | /* |
| 418 | * HandleQuickSetUserData |
| 419 | * |
| 420 | * Stores user data with a handle. |
| 421 | * |
| 422 | */ |
| 423 | void HandleQuickSetUserData(OBJECTHANDLE handle, uintptr_t lUserData) |
| 424 | { |
| 425 | WRAPPER_NO_CONTRACT; |
| 426 | |
| 427 | /* |
| 428 | NOTHROW; |
| 429 | GC_NOTRIGGER; |
| 430 | MODE_ANY; |
| 431 | */ |
| 432 | |
| 433 | // fetch the user data slot for this handle |
| 434 | uintptr_t *pUserData = HandleQuickFetchUserDataPointer(handle); |
| 435 | |
| 436 | // is there a slot? |
| 437 | if (pUserData) |
| 438 | { |
| 439 | // yes - store the info |
| 440 | *pUserData = lUserData; |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | #endif // !DACCESS_COMPILE |
| 445 | |
| 446 | /* |
| 447 | * HandleFetchType |
| 448 | * |
| 449 | * Computes the type index for a given handle. |
| 450 | * |
| 451 | */ |
| 452 | uint32_t HandleFetchType(OBJECTHANDLE handle) |
| 453 | { |
| 454 | WRAPPER_NO_CONTRACT; |
| 455 | |
| 456 | // get the segment for this handle |
| 457 | PTR__TableSegmentHeader pSegment = HandleFetchSegmentPointer(handle); |
| 458 | |
| 459 | // find the offset of this handle into the segment |
| 460 | uintptr_t offset = (uintptr_t)handle & HANDLE_SEGMENT_CONTENT_MASK; |
| 461 | |
| 462 | // make sure it is in the handle area and not the header |
| 463 | _ASSERTE(offset >= HANDLE_HEADER_SIZE); |
| 464 | |
| 465 | // convert the offset to a handle index |
| 466 | uint32_t uHandle = (uint32_t)((offset - HANDLE_HEADER_SIZE) / HANDLE_SIZE); |
| 467 | |
| 468 | // compute the block this handle resides in |
| 469 | uint32_t uBlock = uHandle / HANDLE_HANDLES_PER_BLOCK; |
| 470 | |
| 471 | // return the block's type |
| 472 | return pSegment->rgBlockType[uBlock]; |
| 473 | } |
| 474 | |
| 475 | /* |
| 476 | * HandleFetchHandleTable |
| 477 | * |
| 478 | * Computes the type index for a given handle. |
| 479 | * |
| 480 | */ |
| 481 | PTR_HandleTable HandleFetchHandleTable(OBJECTHANDLE handle) |
| 482 | { |
| 483 | WRAPPER_NO_CONTRACT; |
| 484 | SUPPORTS_DAC; |
| 485 | |
| 486 | // get the segment for this handle |
| 487 | PTR__TableSegmentHeader pSegment = HandleFetchSegmentPointer(handle); |
| 488 | |
| 489 | // return the table |
| 490 | return pSegment->pHandleTable; |
| 491 | } |
| 492 | |
| 493 | #ifndef DACCESS_COMPILE |
| 494 | /* |
| 495 | * SegmentInitialize |
| 496 | * |
| 497 | * Initializes a segment. |
| 498 | * |
| 499 | */ |
| 500 | BOOL SegmentInitialize(TableSegment *pSegment, HandleTable *pTable) |
| 501 | { |
| 502 | LIMITED_METHOD_CONTRACT; |
| 503 | |
| 504 | /* |
| 505 | NOTHROW; |
| 506 | GC_NOTRIGGER; |
| 507 | MODE_ANY; |
| 508 | */ |
| 509 | |
| 510 | // we want to commit enough for the header PLUS some handles |
| 511 | size_t dwCommit = ALIGN_UP(HANDLE_HEADER_SIZE, OS_PAGE_SIZE); |
| 512 | |
| 513 | // commit the header |
| 514 | if (!GCToOSInterface::VirtualCommit(pSegment, dwCommit)) |
| 515 | { |
| 516 | //_ASSERTE(FALSE); |
| 517 | return FALSE; |
| 518 | } |
| 519 | |
| 520 | // remember how many blocks we commited |
| 521 | pSegment->bCommitLine = (uint8_t)((dwCommit - HANDLE_HEADER_SIZE) / HANDLE_BYTES_PER_BLOCK); |
| 522 | |
| 523 | // now preinitialize the 0xFF guys |
| 524 | memset(pSegment->rgGeneration, 0xFF, sizeof(pSegment->rgGeneration)); |
| 525 | memset(pSegment->rgTail, BLOCK_INVALID, sizeof(pSegment->rgTail)); |
| 526 | memset(pSegment->rgHint, BLOCK_INVALID, sizeof(pSegment->rgHint)); |
| 527 | memset(pSegment->rgFreeMask, 0xFF, sizeof(pSegment->rgFreeMask)); |
| 528 | memset(pSegment->rgBlockType, TYPE_INVALID, sizeof(pSegment->rgBlockType)); |
| 529 | memset(pSegment->rgUserData, BLOCK_INVALID, sizeof(pSegment->rgUserData)); |
| 530 | |
| 531 | // prelink the free chain |
| 532 | _ASSERTE(FitsInU1(HANDLE_BLOCKS_PER_SEGMENT)); |
| 533 | uint8_t u = 0; |
| 534 | while (u < (HANDLE_BLOCKS_PER_SEGMENT - 1)) |
| 535 | { |
| 536 | uint8_t next = u + 1; |
| 537 | pSegment->rgAllocation[u] = next; |
| 538 | u = next; |
| 539 | } |
| 540 | |
| 541 | // and terminate the last node |
| 542 | pSegment->rgAllocation[u] = BLOCK_INVALID; |
| 543 | |
| 544 | // store the back pointer from our new segment to its owning table |
| 545 | pSegment->pHandleTable = pTable; |
| 546 | |
| 547 | // all done |
| 548 | return TRUE; |
| 549 | } |
| 550 | |
| 551 | |
| 552 | /* |
| 553 | * SegmentFree |
| 554 | * |
| 555 | * Frees the specified segment. |
| 556 | * |
| 557 | */ |
| 558 | void SegmentFree(TableSegment *pSegment) |
| 559 | { |
| 560 | WRAPPER_NO_CONTRACT; |
| 561 | |
| 562 | /* |
| 563 | NOTHROW; |
| 564 | GC_NOTRIGGER; |
| 565 | MODE_ANY; |
| 566 | */ |
| 567 | |
| 568 | // free the segment's memory |
| 569 | GCToOSInterface::VirtualRelease(pSegment, HANDLE_SEGMENT_SIZE); |
| 570 | } |
| 571 | |
| 572 | |
| 573 | /* |
| 574 | * SegmentAlloc |
| 575 | * |
| 576 | * Allocates a new segment. |
| 577 | * |
| 578 | */ |
| 579 | TableSegment *SegmentAlloc(HandleTable *pTable) |
| 580 | { |
| 581 | LIMITED_METHOD_CONTRACT; |
| 582 | |
| 583 | /* |
| 584 | NOTHROW; |
| 585 | GC_NOTRIGGER; |
| 586 | MODE_ANY; |
| 587 | */ |
| 588 | |
| 589 | // allocate the segment's address space |
| 590 | TableSegment *pSegment = NULL; |
| 591 | |
| 592 | // All platforms currently require 64Kb aligned table segments, which is what VirtualAlloc guarantees. |
| 593 | // The actual requirement is that the alignment of the reservation equals or exceeds the size of the |
| 594 | // reservation. This requirement stems from the method the handle table uses to map quickly from a handle |
| 595 | // address back to the handle table segment header. |
| 596 | _ASSERTE(HANDLE_SEGMENT_ALIGNMENT >= HANDLE_SEGMENT_SIZE); |
| 597 | _ASSERTE(HANDLE_SEGMENT_ALIGNMENT == 0x10000); |
| 598 | |
| 599 | pSegment = (TableSegment *)GCToOSInterface::VirtualReserve(HANDLE_SEGMENT_SIZE, HANDLE_SEGMENT_ALIGNMENT, VirtualReserveFlags::None); |
| 600 | _ASSERTE(((size_t)pSegment % HANDLE_SEGMENT_ALIGNMENT) == 0); |
| 601 | |
| 602 | // bail out if we couldn't get any memory |
| 603 | if (!pSegment) |
| 604 | { |
| 605 | return NULL; |
| 606 | } |
| 607 | |
| 608 | // initialize the header |
| 609 | if (!SegmentInitialize(pSegment, pTable)) |
| 610 | { |
| 611 | SegmentFree(pSegment); |
| 612 | pSegment = NULL; |
| 613 | } |
| 614 | |
| 615 | // all done |
| 616 | return pSegment; |
| 617 | } |
| 618 | |
| 619 | // Mark a handle being free. |
| 620 | __inline void SegmentMarkFreeMask(TableSegment *pSegment, _UNCHECKED_OBJECTREF* h) |
| 621 | { |
| 622 | CONTRACTL |
| 623 | { |
| 624 | NOTHROW; |
| 625 | GC_NOTRIGGER; |
| 626 | MODE_COOPERATIVE; |
| 627 | } |
| 628 | CONTRACTL_END; |
| 629 | |
| 630 | uint32_t uMask = (uint32_t)(h - pSegment->rgValue); |
| 631 | uint32_t uBit = uMask % HANDLE_HANDLES_PER_MASK; |
| 632 | uMask = uMask / HANDLE_HANDLES_PER_MASK; |
| 633 | pSegment->rgFreeMask[uMask] |= (1<<uBit); |
| 634 | } |
| 635 | |
| 636 | // Mark a handle being used. |
| 637 | __inline void SegmentUnMarkFreeMask(TableSegment *pSegment, _UNCHECKED_OBJECTREF* h) |
| 638 | { |
| 639 | CONTRACTL |
| 640 | { |
| 641 | NOTHROW; |
| 642 | GC_NOTRIGGER; |
| 643 | MODE_COOPERATIVE; |
| 644 | } |
| 645 | CONTRACTL_END; |
| 646 | |
| 647 | uint32_t uMask = (uint32_t)(h - pSegment->rgValue); |
| 648 | uint32_t uBit = uMask % HANDLE_HANDLES_PER_MASK; |
| 649 | uMask = uMask / HANDLE_HANDLES_PER_MASK; |
| 650 | pSegment->rgFreeMask[uMask] &= ~(1<<uBit); |
| 651 | } |
| 652 | |
| 653 | // Prepare a segment to be moved to default domain. |
| 654 | // Remove all non-async pin handles. |
| 655 | void SegmentPreCompactAsyncPinHandles(TableSegment *pSegment, void (*clearIfComplete)(Object*)) |
| 656 | { |
| 657 | CONTRACTL |
| 658 | { |
| 659 | NOTHROW; |
| 660 | GC_NOTRIGGER; |
| 661 | MODE_COOPERATIVE; |
| 662 | } |
| 663 | CONTRACTL_END; |
| 664 | |
| 665 | pSegment->fResortChains = true; |
| 666 | pSegment->fNeedsScavenging = true; |
| 667 | |
| 668 | // Zero out all non-async pin handles |
| 669 | uint32_t uBlock; |
| 670 | for (uBlock = 0; uBlock < pSegment->bEmptyLine; uBlock ++) |
| 671 | { |
| 672 | if (pSegment->rgBlockType[uBlock] == TYPE_INVALID) |
| 673 | { |
| 674 | continue; |
| 675 | } |
| 676 | else if (pSegment->rgBlockType[uBlock] != HNDTYPE_ASYNCPINNED) |
| 677 | { |
| 678 | _UNCHECKED_OBJECTREF *pValue = pSegment->rgValue + (uBlock * HANDLE_HANDLES_PER_BLOCK); |
| 679 | _UNCHECKED_OBJECTREF *pLast = pValue + HANDLE_HANDLES_PER_BLOCK; |
| 680 | do |
| 681 | { |
| 682 | *pValue = NULL; |
| 683 | pValue ++; |
| 684 | } while (pValue < pLast); |
| 685 | |
| 686 | ((uint32_t*)pSegment->rgGeneration)[uBlock] = (uint32_t)-1; |
| 687 | |
| 688 | uint32_t *pdwMask = pSegment->rgFreeMask + (uBlock * HANDLE_MASKS_PER_BLOCK); |
| 689 | uint32_t *pdwMaskLast = pdwMask + HANDLE_MASKS_PER_BLOCK; |
| 690 | do |
| 691 | { |
| 692 | *pdwMask = MASK_EMPTY; |
| 693 | pdwMask ++; |
| 694 | } while (pdwMask < pdwMaskLast); |
| 695 | |
| 696 | pSegment->rgBlockType[uBlock] = TYPE_INVALID; |
| 697 | pSegment->rgUserData[uBlock] = BLOCK_INVALID; |
| 698 | pSegment->rgLocks[uBlock] = 0; |
| 699 | } |
| 700 | } |
| 701 | |
| 702 | // Return all non-async pin handles to free list |
| 703 | uint32_t uType; |
| 704 | for (uType = 0; uType < HANDLE_MAX_INTERNAL_TYPES; uType ++) |
| 705 | { |
| 706 | if (uType == HNDTYPE_ASYNCPINNED) |
| 707 | { |
| 708 | continue; |
| 709 | } |
| 710 | pSegment->rgFreeCount[uType] = 0; |
| 711 | if (pSegment->rgHint[uType] != BLOCK_INVALID) |
| 712 | { |
| 713 | uint32_t uLast = pSegment->rgHint[uType]; |
| 714 | uint8_t uFirst = pSegment->rgAllocation[uLast]; |
| 715 | pSegment->rgAllocation[uLast] = pSegment->bFreeList; |
| 716 | pSegment->bFreeList = uFirst; |
| 717 | pSegment->rgHint[uType] = BLOCK_INVALID; |
| 718 | pSegment->rgTail[uType] = BLOCK_INVALID; |
| 719 | } |
| 720 | } |
| 721 | |
| 722 | // make sure the remaining async handle has MethodTable that exists in default domain |
| 723 | uBlock = pSegment->rgHint[HNDTYPE_ASYNCPINNED]; |
| 724 | if (uBlock == BLOCK_INVALID) |
| 725 | { |
| 726 | return; |
| 727 | } |
| 728 | uint32_t freeCount = 0; |
| 729 | for (uBlock = 0; uBlock < pSegment->bEmptyLine; uBlock ++) |
| 730 | { |
| 731 | if (pSegment->rgBlockType[uBlock] != HNDTYPE_ASYNCPINNED) |
| 732 | { |
| 733 | continue; |
| 734 | } |
| 735 | if (pSegment->rgFreeMask[uBlock*2] == (uint32_t)-1 && pSegment->rgFreeMask[uBlock*2+1] == (uint32_t)-1) |
| 736 | { |
| 737 | continue; |
| 738 | } |
| 739 | _UNCHECKED_OBJECTREF *pValue = pSegment->rgValue + (uBlock * HANDLE_HANDLES_PER_BLOCK); |
| 740 | _UNCHECKED_OBJECTREF *pLast = pValue + HANDLE_HANDLES_PER_BLOCK; |
| 741 | |
| 742 | do |
| 743 | { |
| 744 | _UNCHECKED_OBJECTREF value = *pValue; |
| 745 | if (!HndIsNullOrDestroyedHandle(value)) |
| 746 | { |
| 747 | clearIfComplete((Object*)value); |
| 748 | } |
| 749 | else |
| 750 | { |
| 751 | // reset free mask |
| 752 | SegmentMarkFreeMask(pSegment, pValue); |
| 753 | freeCount ++; |
| 754 | } |
| 755 | pValue ++; |
| 756 | } while (pValue != pLast); |
| 757 | } |
| 758 | |
| 759 | pSegment->rgFreeCount[HNDTYPE_ASYNCPINNED] = freeCount; |
| 760 | } |
| 761 | |
| 762 | // Copy a handle to a different segment in the same HandleTable |
| 763 | BOOL SegmentCopyAsyncPinHandle(TableSegment *pSegment, _UNCHECKED_OBJECTREF *h) |
| 764 | { |
| 765 | CONTRACTL |
| 766 | { |
| 767 | NOTHROW; |
| 768 | GC_NOTRIGGER; |
| 769 | MODE_COOPERATIVE; |
| 770 | } |
| 771 | CONTRACTL_END; |
| 772 | |
| 773 | _ASSERTE (HandleFetchSegmentPointer((OBJECTHANDLE)h) != pSegment); |
| 774 | |
| 775 | if (pSegment->rgFreeCount[HNDTYPE_ASYNCPINNED] == 0) |
| 776 | { |
| 777 | uint8_t uBlock = pSegment->bFreeList; |
| 778 | if (uBlock == BLOCK_INVALID) |
| 779 | { |
| 780 | // All slots are used up. |
| 781 | return FALSE; |
| 782 | } |
| 783 | pSegment->bFreeList = pSegment->rgAllocation[uBlock]; |
| 784 | pSegment->rgBlockType[uBlock] = HNDTYPE_ASYNCPINNED; |
| 785 | pSegment->rgAllocation[uBlock] = pSegment->rgHint[HNDTYPE_ASYNCPINNED]; |
| 786 | pSegment->rgHint[HNDTYPE_ASYNCPINNED] = uBlock; |
| 787 | pSegment->rgFreeCount[HNDTYPE_ASYNCPINNED] += HANDLE_HANDLES_PER_BLOCK; |
| 788 | } |
| 789 | uint8_t uBlock = pSegment->rgHint[HNDTYPE_ASYNCPINNED]; |
| 790 | uint8_t uLast = uBlock; |
| 791 | do |
| 792 | { |
| 793 | uint32_t n = uBlock * (HANDLE_HANDLES_PER_BLOCK/HANDLE_HANDLES_PER_MASK); |
| 794 | uint32_t* pMask = pSegment->rgFreeMask + n; |
| 795 | if (pMask[0] != 0 || pMask[1] != 0) |
| 796 | { |
| 797 | break; |
| 798 | } |
| 799 | uBlock = pSegment->rgAllocation[uBlock]; |
| 800 | } while (uBlock != uLast); |
| 801 | _ASSERTE (uBlock != uLast); |
| 802 | pSegment->rgHint[HNDTYPE_ASYNCPINNED] = uBlock; |
| 803 | _UNCHECKED_OBJECTREF *pValue = pSegment->rgValue + (uBlock * HANDLE_HANDLES_PER_BLOCK); |
| 804 | _UNCHECKED_OBJECTREF *pLast = pValue + HANDLE_HANDLES_PER_BLOCK; |
| 805 | do |
| 806 | { |
| 807 | if (*pValue == NULL) |
| 808 | { |
| 809 | SegmentUnMarkFreeMask(pSegment,pValue); |
| 810 | *pValue = *h; |
| 811 | *h = NULL; |
| 812 | break; |
| 813 | } |
| 814 | pValue ++; |
| 815 | } while (pValue != pLast); |
| 816 | _ASSERTE (pValue != pLast); |
| 817 | pSegment->rgFreeCount[HNDTYPE_ASYNCPINNED] --; |
| 818 | return TRUE; |
| 819 | } |
| 820 | |
| 821 | void SegmentCompactAsyncPinHandles(TableSegment *pSegment, TableSegment **ppWorkerSegment, void (*clearIfComplete)(Object*)) |
| 822 | { |
| 823 | CONTRACTL |
| 824 | { |
| 825 | NOTHROW; |
| 826 | GC_NOTRIGGER; |
| 827 | MODE_COOPERATIVE; |
| 828 | } |
| 829 | CONTRACTL_END; |
| 830 | |
| 831 | uint32_t uBlock = pSegment->rgHint[HNDTYPE_ASYNCPINNED]; |
| 832 | if (uBlock == BLOCK_INVALID) |
| 833 | { |
| 834 | return; |
| 835 | } |
| 836 | for (uBlock = 0; uBlock < pSegment->bEmptyLine; uBlock ++) |
| 837 | { |
| 838 | if (pSegment->rgBlockType[uBlock] != HNDTYPE_ASYNCPINNED) |
| 839 | { |
| 840 | continue; |
| 841 | } |
| 842 | if (pSegment->rgFreeMask[uBlock*2] == (uint32_t)-1 && pSegment->rgFreeMask[uBlock*2+1] == (uint32_t)-1) |
| 843 | { |
| 844 | continue; |
| 845 | } |
| 846 | _UNCHECKED_OBJECTREF *pValue = pSegment->rgValue + (uBlock * HANDLE_HANDLES_PER_BLOCK); |
| 847 | _UNCHECKED_OBJECTREF *pLast = pValue + HANDLE_HANDLES_PER_BLOCK; |
| 848 | |
| 849 | do |
| 850 | { |
| 851 | BOOL fNeedNewSegment = FALSE; |
| 852 | _UNCHECKED_OBJECTREF value = *pValue; |
| 853 | if (!HndIsNullOrDestroyedHandle(value)) |
| 854 | { |
| 855 | clearIfComplete((Object*)value); |
| 856 | fNeedNewSegment = !SegmentCopyAsyncPinHandle(*ppWorkerSegment,pValue); |
| 857 | } |
| 858 | if (fNeedNewSegment) |
| 859 | { |
| 860 | _ASSERTE ((*ppWorkerSegment)->rgFreeCount[HNDTYPE_ASYNCPINNED] == 0 && |
| 861 | (*ppWorkerSegment)->bFreeList == BLOCK_INVALID); |
| 862 | TableSegment *pNextSegment = (*ppWorkerSegment)->pNextSegment; |
| 863 | SegmentPreCompactAsyncPinHandles(pNextSegment, clearIfComplete); |
| 864 | *ppWorkerSegment = pNextSegment; |
| 865 | if (pNextSegment == pSegment) |
| 866 | { |
| 867 | // The current segment will be moved to default domain. |
| 868 | return; |
| 869 | } |
| 870 | } |
| 871 | else |
| 872 | { |
| 873 | pValue ++; |
| 874 | } |
| 875 | } while (pValue != pLast); |
| 876 | } |
| 877 | } |
| 878 | |
| 879 | |
| 880 | // Mark AsyncPinHandles ready to be cleaned when the marker job is processed |
| 881 | BOOL SegmentHandleAsyncPinHandles (TableSegment *pSegment, const AsyncPinCallbackContext &callbackCtx) |
| 882 | { |
| 883 | CONTRACTL |
| 884 | { |
| 885 | GC_NOTRIGGER; |
| 886 | NOTHROW; |
| 887 | MODE_COOPERATIVE; |
| 888 | } |
| 889 | CONTRACTL_END; |
| 890 | |
| 891 | uint32_t uBlock = pSegment->rgHint[HNDTYPE_ASYNCPINNED]; |
| 892 | if (uBlock == BLOCK_INVALID) |
| 893 | { |
| 894 | // There is no pinning handles. |
| 895 | return FALSE; |
| 896 | } |
| 897 | |
| 898 | BOOL result = FALSE; |
| 899 | |
| 900 | for (uBlock = 0; uBlock < pSegment->bEmptyLine; uBlock ++) |
| 901 | { |
| 902 | if (pSegment->rgBlockType[uBlock] != HNDTYPE_ASYNCPINNED) |
| 903 | { |
| 904 | continue; |
| 905 | } |
| 906 | if (pSegment->rgFreeMask[uBlock*2] == (uint32_t)-1 && pSegment->rgFreeMask[uBlock*2+1] == (uint32_t)-1) |
| 907 | { |
| 908 | continue; |
| 909 | } |
| 910 | _UNCHECKED_OBJECTREF *pValue = pSegment->rgValue + (uBlock * HANDLE_HANDLES_PER_BLOCK); |
| 911 | _UNCHECKED_OBJECTREF *pLast = pValue + HANDLE_HANDLES_PER_BLOCK; |
| 912 | |
| 913 | do |
| 914 | { |
| 915 | _UNCHECKED_OBJECTREF value = *pValue; |
| 916 | if (!HndIsNullOrDestroyedHandle(value)) |
| 917 | { |
| 918 | // calls back into the VM using the callback given to |
| 919 | // Ref_HandleAsyncPinHandles |
| 920 | if (callbackCtx.Invoke((Object*)value)) |
| 921 | { |
| 922 | result = TRUE; |
| 923 | } |
| 924 | } |
| 925 | pValue ++; |
| 926 | } while (pValue != pLast); |
| 927 | } |
| 928 | |
| 929 | return result; |
| 930 | } |
| 931 | |
| 932 | // Replace an async pin handle with one from default domain |
| 933 | bool SegmentRelocateAsyncPinHandles (TableSegment *pSegment, |
| 934 | HandleTable *pTargetTable, |
| 935 | void (*clearIfComplete)(Object*), |
| 936 | void (*setHandle)(Object*, OBJECTHANDLE)) |
| 937 | { |
| 938 | CONTRACTL |
| 939 | { |
| 940 | GC_NOTRIGGER; |
| 941 | NOTHROW; |
| 942 | MODE_COOPERATIVE; |
| 943 | } |
| 944 | CONTRACTL_END; |
| 945 | |
| 946 | uint32_t uBlock = pSegment->rgHint[HNDTYPE_ASYNCPINNED]; |
| 947 | if (uBlock == BLOCK_INVALID) |
| 948 | { |
| 949 | // There is no pinning handles. |
| 950 | return true; |
| 951 | } |
| 952 | for (uBlock = 0; uBlock < pSegment->bEmptyLine; uBlock ++) |
| 953 | { |
| 954 | if (pSegment->rgBlockType[uBlock] != HNDTYPE_ASYNCPINNED) |
| 955 | { |
| 956 | continue; |
| 957 | } |
| 958 | if (pSegment->rgFreeMask[uBlock*2] == (uint32_t)-1 && pSegment->rgFreeMask[uBlock*2+1] == (uint32_t)-1) |
| 959 | { |
| 960 | continue; |
| 961 | } |
| 962 | _UNCHECKED_OBJECTREF *pValue = pSegment->rgValue + (uBlock * HANDLE_HANDLES_PER_BLOCK); |
| 963 | _UNCHECKED_OBJECTREF *pLast = pValue + HANDLE_HANDLES_PER_BLOCK; |
| 964 | |
| 965 | do |
| 966 | { |
| 967 | _UNCHECKED_OBJECTREF value = *pValue; |
| 968 | if (!HndIsNullOrDestroyedHandle(value)) |
| 969 | { |
| 970 | clearIfComplete((Object*)value); |
| 971 | OBJECTHANDLE selfHandle = HndCreateHandle((HHANDLETABLE)pTargetTable, HNDTYPE_ASYNCPINNED, ObjectToOBJECTREF(value)); |
| 972 | if (!selfHandle) |
| 973 | { |
| 974 | // failed to allocate a new handle - callers have to handle this. |
| 975 | return false; |
| 976 | } |
| 977 | |
| 978 | setHandle((Object*)value, selfHandle); |
| 979 | *pValue = NULL; |
| 980 | } |
| 981 | pValue ++; |
| 982 | } while (pValue != pLast); |
| 983 | } |
| 984 | |
| 985 | return true; |
| 986 | } |
| 987 | |
| 988 | // Mark all non-pending AsyncPinHandle ready for cleanup. |
| 989 | // We will queue a marker Overlapped to io completion port. We use the marker |
| 990 | // to make sure that all iocompletion jobs before this marker have been processed. |
| 991 | // After that we can free the async pinned handles. |
| 992 | BOOL TableHandleAsyncPinHandles(HandleTable *pTable, const AsyncPinCallbackContext &callbackCtx) |
| 993 | { |
| 994 | CONTRACTL |
| 995 | { |
| 996 | GC_NOTRIGGER; |
| 997 | NOTHROW; |
| 998 | MODE_COOPERATIVE; |
| 999 | } |
| 1000 | CONTRACTL_END; |
| 1001 | |
| 1002 | BOOL result = FALSE; |
| 1003 | TableSegment *pSegment = pTable->pSegmentList; |
| 1004 | |
| 1005 | CrstHolder ch(&pTable->Lock); |
| 1006 | |
| 1007 | while (pSegment) |
| 1008 | { |
| 1009 | if (SegmentHandleAsyncPinHandles (pSegment, callbackCtx)) |
| 1010 | { |
| 1011 | result = TRUE; |
| 1012 | } |
| 1013 | pSegment = pSegment->pNextSegment; |
| 1014 | } |
| 1015 | |
| 1016 | return result; |
| 1017 | } |
| 1018 | |
| 1019 | // Keep needed async Pin Handle by moving them to default domain. |
| 1020 | // Strategy: |
| 1021 | // 1. Try to create pin handles in default domain to replace it. |
| 1022 | // 2. If 1 failed due to OOM, we will relocate segments from this HandleTable to default domain. |
| 1023 | // a. Clean the segment so that only saved pin handles exist. This segment becomes the worker segment. |
| 1024 | // b. Copy pin handles from remaining segments to the worker segment. If worker segment is full, start |
| 1025 | // from a again. |
| 1026 | // c. After copying all handles to worker segments, move the segments to default domain. |
| 1027 | // It is very important that in step 2, we should not fail for OOM, which means no memory allocation. |
| 1028 | void TableRelocateAsyncPinHandles(HandleTable *pTable, |
| 1029 | HandleTable *pTargetTable, |
| 1030 | void (*clearIfComplete)(Object*), |
| 1031 | void (*setHandle)(Object*, OBJECTHANDLE)) |
| 1032 | { |
| 1033 | CONTRACTL |
| 1034 | { |
| 1035 | GC_TRIGGERS; |
| 1036 | NOTHROW; |
| 1037 | MODE_COOPERATIVE; |
| 1038 | } |
| 1039 | CONTRACTL_END; |
| 1040 | |
| 1041 | _ASSERTE (pTargetTable->uADIndex == ADIndex(GCToEEInterface::GetDefaultDomainIndex())); // must be for default domain |
| 1042 | |
| 1043 | BOOL fGotException = FALSE; |
| 1044 | TableSegment *pSegment = pTable->pSegmentList; |
| 1045 | bool wasSuccessful = true; |
| 1046 | |
| 1047 | #ifdef _DEBUG |
| 1048 | // on debug builds, execute the OOM path 10% of the time. |
| 1049 | if (GetRandomInt(100) < 10) |
| 1050 | goto SLOW_PATH; |
| 1051 | #endif |
| 1052 | |
| 1053 | // Step 1: replace pinning handles with ones from default domain |
| 1054 | while (pSegment) |
| 1055 | { |
| 1056 | wasSuccessful = wasSuccessful && SegmentRelocateAsyncPinHandles (pSegment, pTargetTable, clearIfComplete, setHandle); |
| 1057 | if (!wasSuccessful) |
| 1058 | { |
| 1059 | break; |
| 1060 | } |
| 1061 | |
| 1062 | pSegment = pSegment->pNextSegment; |
| 1063 | } |
| 1064 | |
| 1065 | if (wasSuccessful) |
| 1066 | { |
| 1067 | return; |
| 1068 | } |
| 1069 | |
| 1070 | #ifdef _DEBUG |
| 1071 | SLOW_PATH: |
| 1072 | #endif |
| 1073 | |
| 1074 | // step 2: default domain runs out of space |
| 1075 | // compact all remaining pinning handles and move the segments to default domain |
| 1076 | |
| 1077 | while (true) |
| 1078 | { |
| 1079 | CrstHolderWithState ch(&pTable->Lock); |
| 1080 | |
| 1081 | // We cannot move segments to a different table if we're asynchronously scanning the current table as |
| 1082 | // part of a concurrent GC. That's because the async table scanning code does most of its work without |
| 1083 | // the table lock held. So we'll take the table lock and then look to see if we're in a concurrent GC. |
| 1084 | // If we are we'll back out and try again. This doesn't prevent a concurrent GC from initiating while |
| 1085 | // we have the lock held but the part we care about (the async table scan) takes the table lock during |
| 1086 | // a preparation step so we'll be able to complete our segment moves before the async scan has a |
| 1087 | // chance to interfere with us (or vice versa). |
| 1088 | if (g_theGCHeap->IsConcurrentGCInProgress()) |
| 1089 | { |
| 1090 | // A concurrent GC is in progress so someone might be scanning our segments asynchronously. |
| 1091 | // Release the lock, wait for the GC to complete and try again. The order is important; if we wait |
| 1092 | // before releasing the table lock we can deadlock with an async table scan. |
| 1093 | ch.Release(); |
| 1094 | g_theGCHeap->WaitUntilConcurrentGCComplete(); |
| 1095 | continue; |
| 1096 | } |
| 1097 | |
| 1098 | // If we get here then we managed to acquire the table lock and observe that no concurrent GC was in |
| 1099 | // progress. A concurrent GC could start at any time so that state may have changed, but since we took |
| 1100 | // the table lock first we know that the GC could only have gotten as far as attempting to initiate an |
| 1101 | // async handle table scan (which attempts to acquire the table lock). So as long as we complete our |
| 1102 | // segment compaction and moves without releasing the table lock we're guaranteed to complete before |
| 1103 | // the async scan can get in and observe any of the segments. |
| 1104 | |
| 1105 | // Compact async pinning handles into the smallest number of leading segments we can (the worker |
| 1106 | // segments). |
| 1107 | TableSegment *pWorkerSegment = pTable->pSegmentList; |
| 1108 | SegmentPreCompactAsyncPinHandles (pWorkerSegment, clearIfComplete); |
| 1109 | |
| 1110 | pSegment = pWorkerSegment->pNextSegment; |
| 1111 | while (pSegment) |
| 1112 | { |
| 1113 | SegmentCompactAsyncPinHandles (pSegment, &pWorkerSegment, clearIfComplete); |
| 1114 | pSegment= pSegment->pNextSegment; |
| 1115 | } |
| 1116 | |
| 1117 | // Empty the remaining segments. |
| 1118 | pSegment = pWorkerSegment->pNextSegment; |
| 1119 | while (pSegment) |
| 1120 | { |
| 1121 | memset(pSegment->rgValue, 0, (uint32_t)pSegment->bCommitLine * HANDLE_BYTES_PER_BLOCK); |
| 1122 | pSegment = pSegment->pNextSegment; |
| 1123 | } |
| 1124 | |
| 1125 | // Move the worker segments over to the tail end of the default domain's segment list. |
| 1126 | { |
| 1127 | CrstHolder ch1(&pTargetTable->Lock); |
| 1128 | |
| 1129 | // Locate the segment currently at the tail of the default domain's segment list. |
| 1130 | TableSegment *pTargetSegment = pTargetTable->pSegmentList; |
| 1131 | while (pTargetSegment->pNextSegment) |
| 1132 | { |
| 1133 | pTargetSegment = pTargetSegment->pNextSegment; |
| 1134 | } |
| 1135 | |
| 1136 | // Take the worker segments and point them to their new handle table and recalculate their |
| 1137 | // sequence numbers to be consistent with the queue they're moving to. |
| 1138 | uint8_t bLastSequence = pTargetSegment->bSequence; |
| 1139 | pSegment = pTable->pSegmentList; |
| 1140 | while (pSegment != pWorkerSegment->pNextSegment) |
| 1141 | { |
| 1142 | pSegment->pHandleTable = pTargetTable; |
| 1143 | pSegment->bSequence = (uint8_t)(((uint32_t)bLastSequence + 1) % 0x100); |
| 1144 | bLastSequence = pSegment->bSequence; |
| 1145 | pSegment = pSegment->pNextSegment; |
| 1146 | } |
| 1147 | |
| 1148 | // Join the worker segments to the tail of the default domain segment list. |
| 1149 | pTargetSegment->pNextSegment = pTable->pSegmentList; |
| 1150 | |
| 1151 | // Reset the current handle table segment list to omit the removed worker segments and start at |
| 1152 | // the first non-worker. |
| 1153 | pTable->pSegmentList = pWorkerSegment->pNextSegment; |
| 1154 | |
| 1155 | // The last worker segment is now the end of the default domain's segment list. |
| 1156 | pWorkerSegment->pNextSegment = NULL; |
| 1157 | } |
| 1158 | |
| 1159 | break; |
| 1160 | } |
| 1161 | } |
| 1162 | |
| 1163 | /* |
| 1164 | * Check if a handle is part of a HandleTable |
| 1165 | */ |
| 1166 | BOOL TableContainHandle(HandleTable *pTable, OBJECTHANDLE handle) |
| 1167 | { |
| 1168 | _ASSERTE (handle); |
| 1169 | |
| 1170 | // get the segment for this handle |
| 1171 | TableSegment *pSegment = (TableSegment *)HandleFetchSegmentPointer(handle); |
| 1172 | |
| 1173 | CrstHolder ch(&pTable->Lock); |
| 1174 | TableSegment *pWorkerSegment = pTable->pSegmentList; |
| 1175 | while (pWorkerSegment) |
| 1176 | { |
| 1177 | if (pWorkerSegment == pSegment) |
| 1178 | { |
| 1179 | return TRUE; |
| 1180 | } |
| 1181 | pWorkerSegment = pWorkerSegment->pNextSegment; |
| 1182 | } |
| 1183 | return FALSE; |
| 1184 | } |
| 1185 | |
| 1186 | /* |
| 1187 | * SegmentRemoveFreeBlocks |
| 1188 | * |
| 1189 | * Scans a segment for free blocks of the specified type |
| 1190 | * and moves them to the segment's free list. |
| 1191 | * |
| 1192 | */ |
| 1193 | void SegmentRemoveFreeBlocks(TableSegment *pSegment, uint32_t uType, BOOL *pfScavengeLater) |
| 1194 | { |
| 1195 | WRAPPER_NO_CONTRACT; |
| 1196 | |
| 1197 | /* |
| 1198 | NOTHROW; |
| 1199 | GC_NOTRIGGER; |
| 1200 | MODE_ANY; |
| 1201 | */ |
| 1202 | |
| 1203 | // fetch the tail block for the specified chain |
| 1204 | uint32_t uPrev = pSegment->rgTail[uType]; |
| 1205 | |
| 1206 | // if it's a terminator then there are no blocks in the chain |
| 1207 | if (uPrev == BLOCK_INVALID) |
| 1208 | return; |
| 1209 | |
| 1210 | // we may need to clean up user data blocks later |
| 1211 | BOOL fCleanupUserData = FALSE; |
| 1212 | |
| 1213 | // start iterating with the head block |
| 1214 | uint32_t uStart = pSegment->rgAllocation[uPrev]; |
| 1215 | uint32_t uBlock = uStart; |
| 1216 | |
| 1217 | // keep track of how many blocks we removed |
| 1218 | uint32_t uRemoved = 0; |
| 1219 | |
| 1220 | // we want to preserve the relative order of any blocks we free |
| 1221 | // this is the best we can do until the free list is resorted |
| 1222 | uint32_t uFirstFreed = BLOCK_INVALID; |
| 1223 | uint32_t uLastFreed = BLOCK_INVALID; |
| 1224 | |
| 1225 | // loop until we've processed the whole chain |
| 1226 | for (;;) |
| 1227 | { |
| 1228 | // fetch the next block index |
| 1229 | uint32_t uNext = pSegment->rgAllocation[uBlock]; |
| 1230 | |
| 1231 | #ifdef HANDLE_OPTIMIZE_FOR_64_HANDLE_BLOCKS |
| 1232 | // determine whether this block is empty |
| 1233 | if (((uint64_t*)pSegment->rgFreeMask)[uBlock] == UI64(0xFFFFFFFFFFFFFFFF)) |
| 1234 | #else |
| 1235 | // assume this block is empty until we know otherwise |
| 1236 | BOOL fEmpty = TRUE; |
| 1237 | |
| 1238 | // get the first mask for this block |
| 1239 | uint32_t *pdwMask = pSegment->rgFreeMask + (uBlock * HANDLE_MASKS_PER_BLOCK); |
| 1240 | uint32_t *pdwMaskLast = pdwMask + HANDLE_MASKS_PER_BLOCK; |
| 1241 | |
| 1242 | // loop through the masks until we've processed them all or we've found handles |
| 1243 | do |
| 1244 | { |
| 1245 | // is this mask empty? |
| 1246 | if (*pdwMask != MASK_EMPTY) |
| 1247 | { |
| 1248 | // nope - this block still has handles in it |
| 1249 | fEmpty = FALSE; |
| 1250 | break; |
| 1251 | } |
| 1252 | |
| 1253 | // on to the next mask |
| 1254 | pdwMask++; |
| 1255 | |
| 1256 | } while (pdwMask < pdwMaskLast); |
| 1257 | |
| 1258 | // is this block empty? |
| 1259 | if (fEmpty) |
| 1260 | #endif |
| 1261 | { |
| 1262 | // is this block currently locked? |
| 1263 | if (BlockIsLocked(pSegment, uBlock)) |
| 1264 | { |
| 1265 | // block cannot be freed, if we were passed a scavenge flag then set it |
| 1266 | if (pfScavengeLater) |
| 1267 | *pfScavengeLater = TRUE; |
| 1268 | } |
| 1269 | else |
| 1270 | { |
| 1271 | // safe to free - did it have user data associated? |
| 1272 | uint32_t uData = pSegment->rgUserData[uBlock]; |
| 1273 | if (uData != BLOCK_INVALID) |
| 1274 | { |
| 1275 | // data blocks are 'empty' so we keep them locked |
| 1276 | // unlock the block so it can be reclaimed below |
| 1277 | BlockUnlock(pSegment, uData); |
| 1278 | |
| 1279 | // unlink the data block from the handle block |
| 1280 | pSegment->rgUserData[uBlock] = BLOCK_INVALID; |
| 1281 | |
| 1282 | // remember that we need to scavenge the data block chain |
| 1283 | fCleanupUserData = TRUE; |
| 1284 | } |
| 1285 | |
| 1286 | // mark the block as free |
| 1287 | pSegment->rgBlockType[uBlock] = TYPE_INVALID; |
| 1288 | |
| 1289 | // have we freed any other blocks yet? |
| 1290 | if (uFirstFreed == BLOCK_INVALID) |
| 1291 | { |
| 1292 | // no - this is the first one - remember it as the new head |
| 1293 | uFirstFreed = uBlock; |
| 1294 | } |
| 1295 | else |
| 1296 | { |
| 1297 | // yes - link this block to the other ones in order |
| 1298 | pSegment->rgAllocation[uLastFreed] = (uint8_t)uBlock; |
| 1299 | } |
| 1300 | |
| 1301 | // remember this block for later |
| 1302 | uLastFreed = uBlock; |
| 1303 | |
| 1304 | // are there other blocks in the chain? |
| 1305 | if (uPrev != uBlock) |
| 1306 | { |
| 1307 | // yes - unlink this block from the chain |
| 1308 | pSegment->rgAllocation[uPrev] = (uint8_t)uNext; |
| 1309 | |
| 1310 | // if we are removing the tail then pick a new tail |
| 1311 | if (pSegment->rgTail[uType] == uBlock) |
| 1312 | pSegment->rgTail[uType] = (uint8_t)uPrev; |
| 1313 | |
| 1314 | // if we are removing the hint then pick a new hint |
| 1315 | if (pSegment->rgHint[uType] == uBlock) |
| 1316 | pSegment->rgHint[uType] = (uint8_t)uNext; |
| 1317 | |
| 1318 | // we removed the current block - reset uBlock to a valid block |
| 1319 | uBlock = uPrev; |
| 1320 | |
| 1321 | // N.B. we'll check if we freed uStart later when it's safe to recover |
| 1322 | } |
| 1323 | else |
| 1324 | { |
| 1325 | // we're removing last block - sanity check the loop condition |
| 1326 | _ASSERTE(uNext == uStart); |
| 1327 | |
| 1328 | // mark this chain as completely empty |
| 1329 | pSegment->rgAllocation[uBlock] = BLOCK_INVALID; |
| 1330 | pSegment->rgTail[uType] = BLOCK_INVALID; |
| 1331 | pSegment->rgHint[uType] = BLOCK_INVALID; |
| 1332 | } |
| 1333 | |
| 1334 | // update the number of blocks we've removed |
| 1335 | uRemoved++; |
| 1336 | } |
| 1337 | } |
| 1338 | |
| 1339 | // if we are back at the beginning then it is time to stop |
| 1340 | if (uNext == uStart) |
| 1341 | break; |
| 1342 | |
| 1343 | // now see if we need to reset our start block |
| 1344 | if (uStart == uLastFreed) |
| 1345 | uStart = uNext; |
| 1346 | |
| 1347 | // on to the next block |
| 1348 | uPrev = uBlock; |
| 1349 | uBlock = uNext; |
| 1350 | } |
| 1351 | |
| 1352 | // did we remove any blocks? |
| 1353 | if (uRemoved) |
| 1354 | { |
| 1355 | // yes - link the new blocks into the free list |
| 1356 | pSegment->rgAllocation[uLastFreed] = pSegment->bFreeList; |
| 1357 | pSegment->bFreeList = (uint8_t)uFirstFreed; |
| 1358 | |
| 1359 | // update the free count for this chain |
| 1360 | pSegment->rgFreeCount[uType] -= (uRemoved * HANDLE_HANDLES_PER_BLOCK); |
| 1361 | |
| 1362 | // mark for a resort - the free list (and soon allocation chains) may be out of order |
| 1363 | pSegment->fResortChains = TRUE; |
| 1364 | |
| 1365 | // if we removed blocks that had user data then we need to reclaim those too |
| 1366 | if (fCleanupUserData) |
| 1367 | SegmentRemoveFreeBlocks(pSegment, HNDTYPE_INTERNAL_DATABLOCK, NULL); |
| 1368 | } |
| 1369 | } |
| 1370 | |
| 1371 | |
| 1372 | /* |
| 1373 | * SegmentInsertBlockFromFreeListWorker |
| 1374 | * |
| 1375 | * Inserts a block into a block list within a segment. Blocks are obtained from the |
| 1376 | * segment's free list. Returns the index of the block inserted, or BLOCK_INVALID |
| 1377 | * if no blocks were avaliable. |
| 1378 | * |
| 1379 | * This routine is the core implementation for SegmentInsertBlockFromFreeList. |
| 1380 | * |
| 1381 | */ |
| 1382 | uint32_t SegmentInsertBlockFromFreeListWorker(TableSegment *pSegment, uint32_t uType, BOOL fUpdateHint) |
| 1383 | { |
| 1384 | WRAPPER_NO_CONTRACT; |
| 1385 | |
| 1386 | /* |
| 1387 | NOTHROW |
| 1388 | GC_NOTRIGGER; |
| 1389 | MODE_ANY; |
| 1390 | */ |
| 1391 | |
| 1392 | |
| 1393 | // fetch the next block from the free list |
| 1394 | uint8_t uBlock = pSegment->bFreeList; |
| 1395 | |
| 1396 | // if we got the terminator then there are no more blocks |
| 1397 | if (uBlock != BLOCK_INVALID) |
| 1398 | { |
| 1399 | // are we eating out of the last empty range of blocks? |
| 1400 | if (uBlock >= pSegment->bEmptyLine) |
| 1401 | { |
| 1402 | // get the current commit line |
| 1403 | uint32_t uCommitLine = pSegment->bCommitLine; |
| 1404 | |
| 1405 | // if this block is uncommitted then commit some memory now |
| 1406 | if (uBlock >= uCommitLine) |
| 1407 | { |
| 1408 | // figure out where to commit next |
| 1409 | void * pvCommit = pSegment->rgValue + (uCommitLine * HANDLE_HANDLES_PER_BLOCK); |
| 1410 | |
| 1411 | // we should commit one more page of handles |
| 1412 | uint32_t dwCommit = OS_PAGE_SIZE; |
| 1413 | |
| 1414 | // commit the memory |
| 1415 | if (!GCToOSInterface::VirtualCommit(pvCommit, dwCommit)) |
| 1416 | return BLOCK_INVALID; |
| 1417 | |
| 1418 | // use the previous commit line as the new decommit line |
| 1419 | pSegment->bDecommitLine = (uint8_t)uCommitLine; |
| 1420 | |
| 1421 | // adjust the commit line by the number of blocks we commited |
| 1422 | pSegment->bCommitLine = (uint8_t)(uCommitLine + (dwCommit / HANDLE_BYTES_PER_BLOCK)); |
| 1423 | } |
| 1424 | |
| 1425 | // update our empty line |
| 1426 | pSegment->bEmptyLine = uBlock + 1; |
| 1427 | } |
| 1428 | |
| 1429 | // unlink our block from the free list |
| 1430 | pSegment->bFreeList = pSegment->rgAllocation[uBlock]; |
| 1431 | |
| 1432 | // link our block into the specified chain |
| 1433 | uint32_t uOldTail = pSegment->rgTail[uType]; |
| 1434 | if (uOldTail == BLOCK_INVALID) |
| 1435 | { |
| 1436 | // first block, set as head and link to itself |
| 1437 | pSegment->rgAllocation[uBlock] = (uint8_t)uBlock; |
| 1438 | |
| 1439 | // there are no other blocks - update the hint anyway |
| 1440 | fUpdateHint = TRUE; |
| 1441 | } |
| 1442 | else |
| 1443 | { |
| 1444 | // not first block - link circularly |
| 1445 | pSegment->rgAllocation[uBlock] = pSegment->rgAllocation[uOldTail]; |
| 1446 | pSegment->rgAllocation[uOldTail] = (uint8_t)uBlock; |
| 1447 | |
| 1448 | // chain may need resorting depending on what we added |
| 1449 | pSegment->fResortChains = TRUE; |
| 1450 | } |
| 1451 | |
| 1452 | // mark this block with the type we're using it for |
| 1453 | pSegment->rgBlockType[uBlock] = (uint8_t)uType; |
| 1454 | |
| 1455 | // update the chain tail |
| 1456 | pSegment->rgTail[uType] = (uint8_t)uBlock; |
| 1457 | |
| 1458 | // if we are supposed to update the hint, then point it at the new block |
| 1459 | if (fUpdateHint) |
| 1460 | pSegment->rgHint[uType] = (uint8_t)uBlock; |
| 1461 | |
| 1462 | // increment the chain's free count to reflect the additional block |
| 1463 | pSegment->rgFreeCount[uType] += HANDLE_HANDLES_PER_BLOCK; |
| 1464 | } |
| 1465 | |
| 1466 | // all done |
| 1467 | return uBlock; |
| 1468 | } |
| 1469 | |
| 1470 | |
| 1471 | /* |
| 1472 | * SegmentInsertBlockFromFreeList |
| 1473 | * |
| 1474 | * Inserts a block into a block list within a segment. Blocks are obtained from the |
| 1475 | * segment's free list. Returns the index of the block inserted, or BLOCK_INVALID |
| 1476 | * if no blocks were avaliable. |
| 1477 | * |
| 1478 | * This routine does the work of securing a parallel user data block if required. |
| 1479 | * |
| 1480 | */ |
| 1481 | uint32_t SegmentInsertBlockFromFreeList(TableSegment *pSegment, uint32_t uType, BOOL fUpdateHint) |
| 1482 | { |
| 1483 | LIMITED_METHOD_CONTRACT; |
| 1484 | |
| 1485 | /* |
| 1486 | NOTHROW; |
| 1487 | GC_NOTRIGGER; |
| 1488 | MODE_ANY; |
| 1489 | */ |
| 1490 | |
| 1491 | uint32_t uBlock, uData = 0; |
| 1492 | |
| 1493 | // does this block type require user data? |
| 1494 | BOOL fUserData = TypeHasUserData(pSegment->pHandleTable, uType); |
| 1495 | |
| 1496 | // if we need user data then we need to make sure it can go in the same segment as the handles |
| 1497 | if (fUserData) |
| 1498 | { |
| 1499 | // if we can't also fit the user data in this segment then bail |
| 1500 | uBlock = pSegment->bFreeList; |
| 1501 | if ((uBlock == BLOCK_INVALID) || (pSegment->rgAllocation[uBlock] == BLOCK_INVALID)) |
| 1502 | return BLOCK_INVALID; |
| 1503 | |
| 1504 | // allocate our user data block (we do it in this order so that free order is nicer) |
| 1505 | uData = SegmentInsertBlockFromFreeListWorker(pSegment, HNDTYPE_INTERNAL_DATABLOCK, FALSE); |
| 1506 | } |
| 1507 | |
| 1508 | // now allocate the requested block |
| 1509 | uBlock = SegmentInsertBlockFromFreeListWorker(pSegment, uType, fUpdateHint); |
| 1510 | |
| 1511 | // should we have a block for user data too? |
| 1512 | if (fUserData) |
| 1513 | { |
| 1514 | // did we get them both? |
| 1515 | if ((uBlock != BLOCK_INVALID) && (uData != BLOCK_INVALID)) |
| 1516 | { |
| 1517 | // link the data block to the requested block |
| 1518 | pSegment->rgUserData[uBlock] = (uint8_t)uData; |
| 1519 | |
| 1520 | // no handles are ever allocated out of a data block |
| 1521 | // lock the block so it won't be reclaimed accidentally |
| 1522 | BlockLock(pSegment, uData); |
| 1523 | } |
| 1524 | else |
| 1525 | { |
| 1526 | // NOTE: We pre-screened that the blocks exist above, so we should only |
| 1527 | // get here under heavy load when a MEM_COMMIT operation fails. |
| 1528 | |
| 1529 | // if the type block allocation succeeded then scavenge the type block list |
| 1530 | if (uBlock != BLOCK_INVALID) |
| 1531 | SegmentRemoveFreeBlocks(pSegment, uType, NULL); |
| 1532 | |
| 1533 | // if the user data allocation succeeded then scavenge the user data list |
| 1534 | if (uData != BLOCK_INVALID) |
| 1535 | SegmentRemoveFreeBlocks(pSegment, HNDTYPE_INTERNAL_DATABLOCK, NULL); |
| 1536 | |
| 1537 | // make sure we return failure |
| 1538 | uBlock = BLOCK_INVALID; |
| 1539 | } |
| 1540 | } |
| 1541 | |
| 1542 | // all done |
| 1543 | return uBlock; |
| 1544 | } |
| 1545 | |
| 1546 | |
| 1547 | /* |
| 1548 | * SegmentResortChains |
| 1549 | * |
| 1550 | * Sorts the block chains for optimal scanning order. |
| 1551 | * Sorts the free list to combat fragmentation. |
| 1552 | * |
| 1553 | */ |
| 1554 | void SegmentResortChains(TableSegment *pSegment) |
| 1555 | { |
| 1556 | WRAPPER_NO_CONTRACT; |
| 1557 | |
| 1558 | // clear the sort flag for this segment |
| 1559 | pSegment->fResortChains = FALSE; |
| 1560 | BOOL fScavengingOccurred = FALSE; |
| 1561 | |
| 1562 | // first, do we need to scavenge any blocks? |
| 1563 | if (pSegment->fNeedsScavenging) |
| 1564 | { |
| 1565 | // clear the scavenge flag |
| 1566 | pSegment->fNeedsScavenging = FALSE; |
| 1567 | |
| 1568 | fScavengingOccurred = TRUE; |
| 1569 | |
| 1570 | // we may need to explicitly scan the user data chain too |
| 1571 | BOOL fCleanupUserData = FALSE; |
| 1572 | |
| 1573 | // fetch the empty line for this segment |
| 1574 | uint32_t uLast = pSegment->bEmptyLine; |
| 1575 | |
| 1576 | // loop over all active blocks, scavenging the empty ones as we go |
| 1577 | for (uint32_t uBlock = 0; uBlock < uLast; uBlock++) |
| 1578 | { |
| 1579 | // fetch the block type of this block |
| 1580 | uint32_t uType = pSegment->rgBlockType[uBlock]; |
| 1581 | |
| 1582 | // only process public block types - we handle data blocks separately |
| 1583 | if (uType < HANDLE_MAX_PUBLIC_TYPES) |
| 1584 | { |
| 1585 | #ifdef HANDLE_OPTIMIZE_FOR_64_HANDLE_BLOCKS |
| 1586 | // determine whether this block is empty |
| 1587 | if (((uint64_t*)pSegment->rgFreeMask)[uBlock] == UI64(0xFFFFFFFFFFFFFFFF)) |
| 1588 | #else |
| 1589 | // assume this block is empty until we know otherwise |
| 1590 | BOOL fEmpty = TRUE; |
| 1591 | |
| 1592 | // get the first mask for this block |
| 1593 | uint32_t *pdwMask = pSegment->rgFreeMask + (uBlock * HANDLE_MASKS_PER_BLOCK); |
| 1594 | uint32_t *pdwMaskLast = pdwMask + HANDLE_MASKS_PER_BLOCK; |
| 1595 | |
| 1596 | // loop through the masks until we've processed them all or we've found handles |
| 1597 | do |
| 1598 | { |
| 1599 | // is this mask empty? |
| 1600 | if (*pdwMask != MASK_EMPTY) |
| 1601 | { |
| 1602 | // nope - this block still has handles in it |
| 1603 | fEmpty = FALSE; |
| 1604 | break; |
| 1605 | } |
| 1606 | |
| 1607 | // on to the next mask |
| 1608 | pdwMask++; |
| 1609 | |
| 1610 | } while (pdwMask < pdwMaskLast); |
| 1611 | |
| 1612 | // is this block empty? |
| 1613 | if (fEmpty) |
| 1614 | #endif |
| 1615 | { |
| 1616 | // is the block unlocked? |
| 1617 | if (!BlockIsLocked(pSegment, uBlock)) |
| 1618 | { |
| 1619 | // safe to free - did it have user data associated? |
| 1620 | uint32_t uData = pSegment->rgUserData[uBlock]; |
| 1621 | if (uData != BLOCK_INVALID) |
| 1622 | { |
| 1623 | // data blocks are 'empty' so we keep them locked |
| 1624 | // unlock the block so it can be reclaimed below |
| 1625 | BlockUnlock(pSegment, uData); |
| 1626 | |
| 1627 | // unlink the data block from the handle block |
| 1628 | pSegment->rgUserData[uBlock] = BLOCK_INVALID; |
| 1629 | |
| 1630 | // remember that we need to scavenge the data block chain |
| 1631 | fCleanupUserData = TRUE; |
| 1632 | } |
| 1633 | |
| 1634 | // mark the block as free |
| 1635 | pSegment->rgBlockType[uBlock] = TYPE_INVALID; |
| 1636 | |
| 1637 | // fix up the free count for the block's type |
| 1638 | pSegment->rgFreeCount[uType] -= HANDLE_HANDLES_PER_BLOCK; |
| 1639 | |
| 1640 | // N.B. we don't update the list linkages here since they are rebuilt below |
| 1641 | } |
| 1642 | } |
| 1643 | } |
| 1644 | } |
| 1645 | |
| 1646 | // if we have to clean up user data then do that now |
| 1647 | if (fCleanupUserData) |
| 1648 | SegmentRemoveFreeBlocks(pSegment, HNDTYPE_INTERNAL_DATABLOCK, NULL); |
| 1649 | } |
| 1650 | |
| 1651 | // keep some per-chain data |
| 1652 | uint8_t rgChainCurr[HANDLE_MAX_INTERNAL_TYPES]; |
| 1653 | uint8_t rgChainHigh[HANDLE_MAX_INTERNAL_TYPES]; |
| 1654 | uint8_t bChainFree = BLOCK_INVALID; |
| 1655 | uint32_t uEmptyLine = BLOCK_INVALID; |
| 1656 | BOOL fContiguousWithFreeList = TRUE; |
| 1657 | |
| 1658 | // preinit the chain data to no blocks |
| 1659 | uint32_t uType; |
| 1660 | for (uType = 0; uType < HANDLE_MAX_INTERNAL_TYPES; uType++) |
| 1661 | rgChainHigh[uType] = rgChainCurr[uType] = BLOCK_INVALID; |
| 1662 | |
| 1663 | // scan back through the block types |
| 1664 | uint8_t uBlock = HANDLE_BLOCKS_PER_SEGMENT; |
| 1665 | while (uBlock > 0) |
| 1666 | { |
| 1667 | // decrement the block index |
| 1668 | uBlock--; |
| 1669 | |
| 1670 | // fetch the type for this block |
| 1671 | uType = pSegment->rgBlockType[uBlock]; |
| 1672 | |
| 1673 | // is this block allocated? |
| 1674 | if (uType != TYPE_INVALID) |
| 1675 | { |
| 1676 | // looks allocated |
| 1677 | fContiguousWithFreeList = FALSE; |
| 1678 | |
| 1679 | // hope the segment's not corrupt :) |
| 1680 | _ASSERTE(uType < HANDLE_MAX_INTERNAL_TYPES); |
| 1681 | |
| 1682 | // remember the first block we see for each type |
| 1683 | if (rgChainHigh[uType] == BLOCK_INVALID) |
| 1684 | rgChainHigh[uType] = uBlock; |
| 1685 | |
| 1686 | // link this block to the last one we saw of this type |
| 1687 | pSegment->rgAllocation[uBlock] = rgChainCurr[uType]; |
| 1688 | |
| 1689 | // remember this block in type chain |
| 1690 | rgChainCurr[uType] = (uint8_t)uBlock; |
| 1691 | } |
| 1692 | else |
| 1693 | { |
| 1694 | // block is free - is it also contiguous with the free list? |
| 1695 | if (fContiguousWithFreeList) |
| 1696 | uEmptyLine = uBlock; |
| 1697 | |
| 1698 | // link this block to the last one in the free chain |
| 1699 | pSegment->rgAllocation[uBlock] = bChainFree; |
| 1700 | |
| 1701 | // add this block to the free list |
| 1702 | bChainFree = (uint8_t)uBlock; |
| 1703 | } |
| 1704 | } |
| 1705 | |
| 1706 | // now close the loops and store the tails |
| 1707 | for (uType = 0; uType < HANDLE_MAX_INTERNAL_TYPES; uType++) |
| 1708 | { |
| 1709 | // get the first block in the list |
| 1710 | uint8_t bBlock = rgChainCurr[uType]; |
| 1711 | |
| 1712 | // if there is a list then make it circular and save it |
| 1713 | if (bBlock != BLOCK_INVALID) |
| 1714 | { |
| 1715 | // highest block we saw becomes tail |
| 1716 | uint32_t uTail = rgChainHigh[uType]; |
| 1717 | |
| 1718 | // store tail in segment |
| 1719 | pSegment->rgTail[uType] = (uint8_t)uTail; |
| 1720 | |
| 1721 | // link tail to head |
| 1722 | pSegment->rgAllocation[uTail] = bBlock; |
| 1723 | |
| 1724 | // If we scavenged blocks above then we might have left the hint pointing at the free chain. Reset |
| 1725 | // it back into this chain if so (the choice of block is arbitrary, this case is very rare). |
| 1726 | if (pSegment->rgBlockType[pSegment->rgHint[uType]] != uType) |
| 1727 | pSegment->rgHint[uType] = bBlock; |
| 1728 | } |
| 1729 | else |
| 1730 | { |
| 1731 | // No blocks of this type were found in the rgBlockType array, meaning either there were no |
| 1732 | // such blocks on entry to this function (in which case the associated tail is guaranteed |
| 1733 | // to already be marked invalid) OR that there were blocks but all of them were reclaimed |
| 1734 | // by the scavenging logic above (in which case the associated tail is guaranteed to point |
| 1735 | // to one of the scavenged blocks). In the latter case, the tail is currently "stale" |
| 1736 | // and therefore needs to be manually updated. |
| 1737 | if (pSegment->rgTail[uType] != BLOCK_INVALID) |
| 1738 | { |
| 1739 | _ASSERTE(fScavengingOccurred); |
| 1740 | pSegment->rgTail[uType] = BLOCK_INVALID; |
| 1741 | pSegment->rgHint[uType] = BLOCK_INVALID; |
| 1742 | } |
| 1743 | } |
| 1744 | } |
| 1745 | |
| 1746 | // store the new free list head |
| 1747 | pSegment->bFreeList = bChainFree; |
| 1748 | |
| 1749 | // compute the new empty line |
| 1750 | if (uEmptyLine > HANDLE_BLOCKS_PER_SEGMENT) |
| 1751 | uEmptyLine = HANDLE_BLOCKS_PER_SEGMENT; |
| 1752 | |
| 1753 | // store the updated empty line |
| 1754 | pSegment->bEmptyLine = (uint8_t)uEmptyLine; |
| 1755 | } |
| 1756 | |
| 1757 | /* |
| 1758 | * DoesSegmentNeedsToTrimExcessPages |
| 1759 | * |
| 1760 | * Checks to see if any pages can be decommitted from the segment |
| 1761 | * |
| 1762 | */ |
| 1763 | BOOL DoesSegmentNeedsToTrimExcessPages(TableSegment *pSegment) |
| 1764 | { |
| 1765 | WRAPPER_NO_CONTRACT; |
| 1766 | |
| 1767 | // fetch the empty and decommit lines |
| 1768 | uint32_t uEmptyLine = pSegment->bEmptyLine; |
| 1769 | uint32_t uDecommitLine = pSegment->bDecommitLine; |
| 1770 | |
| 1771 | // check to see if we can decommit some handles |
| 1772 | // NOTE: we use '<' here to avoid playing ping-pong on page boundaries |
| 1773 | // this is OK since the zero case is handled elsewhere (segment gets freed) |
| 1774 | if (uEmptyLine < uDecommitLine) |
| 1775 | { |
| 1776 | // derive some useful info about the page size |
| 1777 | uintptr_t = (uintptr_t)OS_PAGE_SIZE - 1; |
| 1778 | uintptr_t dwPageMask = ~dwPageRound; |
| 1779 | |
| 1780 | // compute the address corresponding to the empty line |
| 1781 | uintptr_t dwLo = (uintptr_t)pSegment->rgValue + (uEmptyLine * HANDLE_BYTES_PER_BLOCK); |
| 1782 | |
| 1783 | // adjust the empty line address to the start of the nearest whole empty page |
| 1784 | dwLo = (dwLo + dwPageRound) & dwPageMask; |
| 1785 | |
| 1786 | // compute the address corresponding to the old commit line |
| 1787 | uintptr_t dwHi = (uintptr_t)pSegment->rgValue + ((uint32_t)pSegment->bCommitLine * HANDLE_BYTES_PER_BLOCK); |
| 1788 | |
| 1789 | // is there anything to decommit? |
| 1790 | if (dwHi > dwLo) |
| 1791 | { |
| 1792 | return TRUE; |
| 1793 | } |
| 1794 | } |
| 1795 | |
| 1796 | return FALSE; |
| 1797 | } |
| 1798 | |
| 1799 | |
| 1800 | /* |
| 1801 | * SegmentTrimExcessPages |
| 1802 | * |
| 1803 | * Checks to see if any pages can be decommitted from the segment. |
| 1804 | * In case there any unused pages it goes and decommits them. |
| 1805 | * |
| 1806 | */ |
| 1807 | void SegmentTrimExcessPages(TableSegment *pSegment) |
| 1808 | { |
| 1809 | WRAPPER_NO_CONTRACT; |
| 1810 | |
| 1811 | // fetch the empty and decommit lines |
| 1812 | uint32_t uEmptyLine = pSegment->bEmptyLine; |
| 1813 | uint32_t uDecommitLine = pSegment->bDecommitLine; |
| 1814 | |
| 1815 | // check to see if we can decommit some handles |
| 1816 | // NOTE: we use '<' here to avoid playing ping-pong on page boundaries |
| 1817 | // this is OK since the zero case is handled elsewhere (segment gets freed) |
| 1818 | if (uEmptyLine < uDecommitLine) |
| 1819 | { |
| 1820 | // derive some useful info about the page size |
| 1821 | uintptr_t = (uintptr_t)OS_PAGE_SIZE - 1; |
| 1822 | uintptr_t dwPageMask = ~dwPageRound; |
| 1823 | |
| 1824 | // compute the address corresponding to the empty line |
| 1825 | uintptr_t dwLo = (uintptr_t)pSegment->rgValue + (uEmptyLine * HANDLE_BYTES_PER_BLOCK); |
| 1826 | |
| 1827 | // adjust the empty line address to the start of the nearest whole empty page |
| 1828 | dwLo = (dwLo + dwPageRound) & dwPageMask; |
| 1829 | |
| 1830 | // compute the address corresponding to the old commit line |
| 1831 | uintptr_t dwHi = (uintptr_t)pSegment->rgValue + ((uint32_t)pSegment->bCommitLine * HANDLE_BYTES_PER_BLOCK); |
| 1832 | |
| 1833 | // is there anything to decommit? |
| 1834 | if (dwHi > dwLo) |
| 1835 | { |
| 1836 | // decommit the memory |
| 1837 | GCToOSInterface::VirtualDecommit((void *)dwLo, dwHi - dwLo); |
| 1838 | |
| 1839 | // update the commit line |
| 1840 | pSegment->bCommitLine = (uint8_t)((dwLo - (size_t)pSegment->rgValue) / HANDLE_BYTES_PER_BLOCK); |
| 1841 | |
| 1842 | // compute the address for the new decommit line |
| 1843 | size_t dwDecommitAddr = dwLo - OS_PAGE_SIZE; |
| 1844 | |
| 1845 | // assume a decommit line of zero until we know otherwise |
| 1846 | uDecommitLine = 0; |
| 1847 | |
| 1848 | // if the address is within the handle area then compute the line from the address |
| 1849 | if (dwDecommitAddr > (size_t)pSegment->rgValue) |
| 1850 | uDecommitLine = (uint32_t)((dwDecommitAddr - (size_t)pSegment->rgValue) / HANDLE_BYTES_PER_BLOCK); |
| 1851 | |
| 1852 | // update the decommit line |
| 1853 | pSegment->bDecommitLine = (uint8_t)uDecommitLine; |
| 1854 | } |
| 1855 | } |
| 1856 | } |
| 1857 | |
| 1858 | |
| 1859 | /* |
| 1860 | * BlockAllocHandlesInMask |
| 1861 | * |
| 1862 | * Attempts to allocate the requested number of handes of the specified type, |
| 1863 | * from the specified mask of the specified handle block. |
| 1864 | * |
| 1865 | * Returns the number of available handles actually allocated. |
| 1866 | * |
| 1867 | */ |
| 1868 | uint32_t BlockAllocHandlesInMask(TableSegment *pSegment, uint32_t uBlock, |
| 1869 | uint32_t *pdwMask, uint32_t uHandleMaskDisplacement, |
| 1870 | OBJECTHANDLE *pHandleBase, uint32_t uCount) |
| 1871 | { |
| 1872 | LIMITED_METHOD_CONTRACT; |
| 1873 | UNREFERENCED_PARAMETER(uBlock); |
| 1874 | |
| 1875 | // keep track of how many handles we have left to allocate |
| 1876 | uint32_t uRemain = uCount; |
| 1877 | |
| 1878 | // fetch the free mask into a local so we can play with it |
| 1879 | uint32_t dwFree = *pdwMask; |
| 1880 | |
| 1881 | // keep track of our displacement within the mask |
| 1882 | uint32_t uByteDisplacement = 0; |
| 1883 | |
| 1884 | // examine the mask byte by byte for free handles |
| 1885 | do |
| 1886 | { |
| 1887 | // grab the low byte of the mask |
| 1888 | uint32_t dwLowByte = (dwFree & MASK_LOBYTE); |
| 1889 | |
| 1890 | // are there any free handles here? |
| 1891 | if (dwLowByte) |
| 1892 | { |
| 1893 | // remember which handles we've taken |
| 1894 | uint32_t dwAlloc = 0; |
| 1895 | |
| 1896 | // loop until we've allocated all the handles we can from here |
| 1897 | do |
| 1898 | { |
| 1899 | // get the index of the next handle |
| 1900 | uint32_t uIndex = c_rgLowBitIndex[dwLowByte]; |
| 1901 | |
| 1902 | // compute the mask for the handle we chose |
| 1903 | dwAlloc |= (1 << uIndex); |
| 1904 | |
| 1905 | // remove this handle from the mask byte |
| 1906 | dwLowByte &= ~dwAlloc; |
| 1907 | |
| 1908 | // compute the index of this handle in the segment |
| 1909 | uIndex += uHandleMaskDisplacement + uByteDisplacement; |
| 1910 | |
| 1911 | // store the allocated handle in the handle array |
| 1912 | *pHandleBase = (OBJECTHANDLE)(pSegment->rgValue + uIndex); |
| 1913 | |
| 1914 | // adjust our count and array pointer |
| 1915 | uRemain--; |
| 1916 | pHandleBase++; |
| 1917 | |
| 1918 | } while (dwLowByte && uRemain); |
| 1919 | |
| 1920 | // shift the allocation mask into position |
| 1921 | dwAlloc <<= uByteDisplacement; |
| 1922 | |
| 1923 | // update the mask to account for the handles we allocated |
| 1924 | *pdwMask &= ~dwAlloc; |
| 1925 | } |
| 1926 | |
| 1927 | // on to the next byte in the mask |
| 1928 | dwFree >>= BITS_PER_BYTE; |
| 1929 | uByteDisplacement += BITS_PER_BYTE; |
| 1930 | |
| 1931 | } while (uRemain && dwFree); |
| 1932 | |
| 1933 | // return the number of handles we got |
| 1934 | return (uCount - uRemain); |
| 1935 | |
| 1936 | } |
| 1937 | |
| 1938 | |
| 1939 | /* |
| 1940 | * BlockAllocHandlesInitial |
| 1941 | * |
| 1942 | * Allocates a specified number of handles from a newly committed (empty) block. |
| 1943 | * |
| 1944 | */ |
| 1945 | uint32_t BlockAllocHandlesInitial(TableSegment *pSegment, uint32_t uType, uint32_t uBlock, |
| 1946 | OBJECTHANDLE *pHandleBase, uint32_t uCount) |
| 1947 | { |
| 1948 | LIMITED_METHOD_CONTRACT; |
| 1949 | UNREFERENCED_PARAMETER(uType); |
| 1950 | |
| 1951 | // sanity check |
| 1952 | _ASSERTE(uCount); |
| 1953 | |
| 1954 | // validate the number of handles we were asked to allocate |
| 1955 | if (uCount > HANDLE_HANDLES_PER_BLOCK) |
| 1956 | { |
| 1957 | _ASSERTE(FALSE); |
| 1958 | uCount = HANDLE_HANDLES_PER_BLOCK; |
| 1959 | } |
| 1960 | |
| 1961 | // keep track of how many handles we have left to mark in masks |
| 1962 | uint32_t uRemain = uCount; |
| 1963 | |
| 1964 | // get the first mask for this block |
| 1965 | uint32_t *pdwMask = pSegment->rgFreeMask + (uBlock * HANDLE_MASKS_PER_BLOCK); |
| 1966 | |
| 1967 | // loop through the masks, zeroing the appropriate free bits |
| 1968 | do |
| 1969 | { |
| 1970 | // this is a brand new block - all masks we encounter should be totally free |
| 1971 | _ASSERTE(*pdwMask == MASK_EMPTY); |
| 1972 | |
| 1973 | // pick an initial guess at the number to allocate |
| 1974 | uint32_t uAlloc = uRemain; |
| 1975 | |
| 1976 | // compute the default mask based on that count |
| 1977 | uint32_t dwNewMask; |
| 1978 | // are we allocating all of them? |
| 1979 | if (uAlloc >= HANDLE_HANDLES_PER_MASK) |
| 1980 | { |
| 1981 | dwNewMask = MASK_FULL; // avoid unpredictable shift |
| 1982 | uAlloc = HANDLE_HANDLES_PER_MASK; |
| 1983 | } |
| 1984 | else |
| 1985 | { |
| 1986 | dwNewMask = (MASK_EMPTY << uAlloc); |
| 1987 | } |
| 1988 | |
| 1989 | // set the free mask |
| 1990 | *pdwMask = dwNewMask; |
| 1991 | |
| 1992 | // update our count and mask pointer |
| 1993 | uRemain -= uAlloc; |
| 1994 | pdwMask++; |
| 1995 | |
| 1996 | } while (uRemain); |
| 1997 | |
| 1998 | // compute the bounds for allocation so we can copy the handles |
| 1999 | _UNCHECKED_OBJECTREF *pValue = pSegment->rgValue + (uBlock * HANDLE_HANDLES_PER_BLOCK); |
| 2000 | _UNCHECKED_OBJECTREF *pLast = pValue + uCount; |
| 2001 | |
| 2002 | // loop through filling in the output array with handles |
| 2003 | do |
| 2004 | { |
| 2005 | // store the next handle in the next array slot |
| 2006 | *pHandleBase = (OBJECTHANDLE)pValue; |
| 2007 | |
| 2008 | // increment our source and destination |
| 2009 | pValue++; |
| 2010 | pHandleBase++; |
| 2011 | |
| 2012 | } while (pValue < pLast); |
| 2013 | |
| 2014 | // return the number of handles we allocated |
| 2015 | return uCount; |
| 2016 | } |
| 2017 | |
| 2018 | |
| 2019 | /* |
| 2020 | * BlockAllocHandles |
| 2021 | * |
| 2022 | * Attempts to allocate the requested number of handes of the specified type, |
| 2023 | * from the specified handle block. |
| 2024 | * |
| 2025 | * Returns the number of available handles actually allocated. |
| 2026 | * |
| 2027 | */ |
| 2028 | uint32_t BlockAllocHandles(TableSegment *pSegment, uint32_t uBlock, OBJECTHANDLE *pHandleBase, uint32_t uCount) |
| 2029 | { |
| 2030 | WRAPPER_NO_CONTRACT; |
| 2031 | |
| 2032 | /* |
| 2033 | NOTHROW; |
| 2034 | GC_NOTRIGGER; |
| 2035 | MODE_ANY; |
| 2036 | */ |
| 2037 | |
| 2038 | // keep track of how many handles we have left to allocate |
| 2039 | uint32_t uRemain = uCount; |
| 2040 | |
| 2041 | // set up our loop and limit mask pointers |
| 2042 | uint32_t *pdwMask = pSegment->rgFreeMask + (uBlock * HANDLE_MASKS_PER_BLOCK); |
| 2043 | uint32_t *pdwMaskLast = pdwMask + HANDLE_MASKS_PER_BLOCK; |
| 2044 | |
| 2045 | // keep track of the handle displacement for the mask we're scanning |
| 2046 | uint32_t uDisplacement = uBlock * HANDLE_HANDLES_PER_BLOCK; |
| 2047 | |
| 2048 | // loop through all the masks, allocating handles as we go |
| 2049 | do |
| 2050 | { |
| 2051 | // if this mask indicates free handles then grab them |
| 2052 | if (*pdwMask) |
| 2053 | { |
| 2054 | // allocate as many handles as we need from this mask |
| 2055 | uint32_t uSatisfied = BlockAllocHandlesInMask(pSegment, uBlock, pdwMask, uDisplacement, pHandleBase, uRemain); |
| 2056 | |
| 2057 | // adjust our count and array pointer |
| 2058 | uRemain -= uSatisfied; |
| 2059 | pHandleBase += uSatisfied; |
| 2060 | |
| 2061 | // if there are no remaining slots to be filled then we are done |
| 2062 | if (!uRemain) |
| 2063 | break; |
| 2064 | } |
| 2065 | |
| 2066 | // on to the next mask |
| 2067 | pdwMask++; |
| 2068 | uDisplacement += HANDLE_HANDLES_PER_MASK; |
| 2069 | |
| 2070 | } while (pdwMask < pdwMaskLast); |
| 2071 | |
| 2072 | // return the number of handles we got |
| 2073 | return (uCount - uRemain); |
| 2074 | } |
| 2075 | |
| 2076 | |
| 2077 | /* |
| 2078 | * SegmentAllocHandlesFromTypeChain |
| 2079 | * |
| 2080 | * Attempts to allocate the requested number of handes of the specified type, |
| 2081 | * from the specified segment's block chain for the specified type. This routine |
| 2082 | * ONLY scavenges existing blocks in the type chain. No new blocks are committed. |
| 2083 | * |
| 2084 | * Returns the number of available handles actually allocated. |
| 2085 | * |
| 2086 | */ |
| 2087 | uint32_t SegmentAllocHandlesFromTypeChain(TableSegment *pSegment, uint32_t uType, OBJECTHANDLE *pHandleBase, uint32_t uCount) |
| 2088 | { |
| 2089 | WRAPPER_NO_CONTRACT; |
| 2090 | |
| 2091 | /* |
| 2092 | NOTHROW; |
| 2093 | GC_NOTRIGGER; |
| 2094 | MODE_ANY; |
| 2095 | */ |
| 2096 | |
| 2097 | // fetch the number of handles available in this chain |
| 2098 | uint32_t uAvail = pSegment->rgFreeCount[uType]; |
| 2099 | |
| 2100 | // is the available count greater than the requested count? |
| 2101 | if (uAvail > uCount) |
| 2102 | { |
| 2103 | // yes - all requested handles are available |
| 2104 | uAvail = uCount; |
| 2105 | } |
| 2106 | else |
| 2107 | { |
| 2108 | // no - we can only satisfy some of the request |
| 2109 | uCount = uAvail; |
| 2110 | } |
| 2111 | |
| 2112 | // did we find that any handles are available? |
| 2113 | if (uAvail) |
| 2114 | { |
| 2115 | // yes - fetch the head of the block chain and set up a loop limit |
| 2116 | uint32_t uBlock = pSegment->rgHint[uType]; |
| 2117 | uint32_t uLast = uBlock; |
| 2118 | |
| 2119 | // loop until we have found all handles known to be available |
| 2120 | for (;;) |
| 2121 | { |
| 2122 | // try to allocate handles from the current block |
| 2123 | uint32_t uSatisfied = BlockAllocHandles(pSegment, uBlock, pHandleBase, uAvail); |
| 2124 | |
| 2125 | // did we get everything we needed? |
| 2126 | if (uSatisfied == uAvail) |
| 2127 | { |
| 2128 | // yes - update the hint for this type chain and get out |
| 2129 | pSegment->rgHint[uType] = (uint8_t)uBlock; |
| 2130 | break; |
| 2131 | } |
| 2132 | |
| 2133 | // adjust our count and array pointer |
| 2134 | uAvail -= uSatisfied; |
| 2135 | pHandleBase += uSatisfied; |
| 2136 | |
| 2137 | // fetch the next block in the type chain |
| 2138 | uBlock = pSegment->rgAllocation[uBlock]; |
| 2139 | |
| 2140 | // are we out of blocks? |
| 2141 | if (uBlock == uLast) |
| 2142 | { |
| 2143 | // free count is corrupt |
| 2144 | _ASSERTE(FALSE); |
| 2145 | |
| 2146 | // avoid making the problem any worse |
| 2147 | uCount -= uAvail; |
| 2148 | break; |
| 2149 | } |
| 2150 | } |
| 2151 | |
| 2152 | // update the free count |
| 2153 | pSegment->rgFreeCount[uType] -= uCount; |
| 2154 | } |
| 2155 | |
| 2156 | // return the number of handles we got |
| 2157 | return uCount; |
| 2158 | } |
| 2159 | |
| 2160 | |
| 2161 | /* |
| 2162 | * SegmentAllocHandlesFromFreeList |
| 2163 | * |
| 2164 | * Attempts to allocate the requested number of handes of the specified type, |
| 2165 | * by committing blocks from the free list to that type's type chain. |
| 2166 | * |
| 2167 | * Returns the number of available handles actually allocated. |
| 2168 | * |
| 2169 | */ |
| 2170 | uint32_t SegmentAllocHandlesFromFreeList(TableSegment *pSegment, uint32_t uType, OBJECTHANDLE *pHandleBase, uint32_t uCount) |
| 2171 | { |
| 2172 | LIMITED_METHOD_CONTRACT; |
| 2173 | |
| 2174 | /* |
| 2175 | NOTHROW; |
| 2176 | GC_NOTRIGGER; |
| 2177 | MODE_ANY; |
| 2178 | */ |
| 2179 | |
| 2180 | // keep track of how many handles we have left to allocate |
| 2181 | uint32_t uRemain = uCount; |
| 2182 | |
| 2183 | // loop allocating handles until we are done or we run out of free blocks |
| 2184 | do |
| 2185 | { |
| 2186 | // start off assuming we can allocate all the handles |
| 2187 | uint32_t uAlloc = uRemain; |
| 2188 | |
| 2189 | // we can only get a block-full of handles at a time |
| 2190 | if (uAlloc > HANDLE_HANDLES_PER_BLOCK) |
| 2191 | uAlloc = HANDLE_HANDLES_PER_BLOCK; |
| 2192 | |
| 2193 | // try to get a block from the free list |
| 2194 | uint32_t uBlock = SegmentInsertBlockFromFreeList(pSegment, uType, (uRemain == uCount)); |
| 2195 | |
| 2196 | // if there are no free blocks left then we are done |
| 2197 | if (uBlock == BLOCK_INVALID) |
| 2198 | break; |
| 2199 | |
| 2200 | // initialize the block by allocating the required handles into the array |
| 2201 | uAlloc = BlockAllocHandlesInitial(pSegment, uType, uBlock, pHandleBase, uAlloc); |
| 2202 | |
| 2203 | // adjust our count and array pointer |
| 2204 | uRemain -= uAlloc; |
| 2205 | pHandleBase += uAlloc; |
| 2206 | |
| 2207 | } while (uRemain); |
| 2208 | |
| 2209 | // compute the number of handles we took |
| 2210 | uCount -= uRemain; |
| 2211 | |
| 2212 | // update the free count by the number of handles we took |
| 2213 | pSegment->rgFreeCount[uType] -= uCount; |
| 2214 | |
| 2215 | // return the number of handles we got |
| 2216 | return uCount; |
| 2217 | } |
| 2218 | |
| 2219 | |
| 2220 | /* |
| 2221 | * SegmentAllocHandles |
| 2222 | * |
| 2223 | * Attempts to allocate the requested number of handes of the specified type, |
| 2224 | * from the specified segment. |
| 2225 | * |
| 2226 | * Returns the number of available handles actually allocated. |
| 2227 | * |
| 2228 | */ |
| 2229 | uint32_t SegmentAllocHandles(TableSegment *pSegment, uint32_t uType, OBJECTHANDLE *pHandleBase, uint32_t uCount) |
| 2230 | { |
| 2231 | LIMITED_METHOD_CONTRACT; |
| 2232 | |
| 2233 | /* |
| 2234 | NOTHROW; |
| 2235 | GC_NOTRIGGER; |
| 2236 | MODE_ANY; |
| 2237 | */ |
| 2238 | |
| 2239 | // first try to get some handles from the existing type chain |
| 2240 | uint32_t uSatisfied = SegmentAllocHandlesFromTypeChain(pSegment, uType, pHandleBase, uCount); |
| 2241 | |
| 2242 | // if there are still slots to be filled then we need to commit more blocks to the type chain |
| 2243 | if (uSatisfied < uCount) |
| 2244 | { |
| 2245 | // adjust our count and array pointer |
| 2246 | uCount -= uSatisfied; |
| 2247 | pHandleBase += uSatisfied; |
| 2248 | |
| 2249 | // get remaining handles by committing blocks from the free list |
| 2250 | uSatisfied += SegmentAllocHandlesFromFreeList(pSegment, uType, pHandleBase, uCount); |
| 2251 | } |
| 2252 | |
| 2253 | // return the number of handles we got |
| 2254 | return uSatisfied; |
| 2255 | } |
| 2256 | |
| 2257 | |
| 2258 | /* |
| 2259 | * TableAllocBulkHandles |
| 2260 | * |
| 2261 | * Attempts to allocate the requested number of handes of the specified type. |
| 2262 | * |
| 2263 | * Returns the number of handles that were actually allocated. This is always |
| 2264 | * the same as the number of handles requested except in out-of-memory conditions, |
| 2265 | * in which case it is the number of handles that were successfully allocated. |
| 2266 | * |
| 2267 | */ |
| 2268 | uint32_t TableAllocBulkHandles(HandleTable *pTable, uint32_t uType, OBJECTHANDLE *pHandleBase, uint32_t uCount) |
| 2269 | { |
| 2270 | WRAPPER_NO_CONTRACT; |
| 2271 | |
| 2272 | /* |
| 2273 | NOTHROW; |
| 2274 | GC_NOTRIGGER; |
| 2275 | MODE_ANY; |
| 2276 | */ |
| 2277 | |
| 2278 | // keep track of how many handles we have left to allocate |
| 2279 | uint32_t uRemain = uCount; |
| 2280 | |
| 2281 | // start with the first segment and loop until we are done |
| 2282 | TableSegment *pSegment = pTable->pSegmentList; |
| 2283 | |
| 2284 | uint8_t bLastSequence = 0; |
| 2285 | BOOL fNewSegment = FALSE; |
| 2286 | |
| 2287 | for (;;) |
| 2288 | { |
| 2289 | // get some handles from the current segment |
| 2290 | uint32_t uSatisfied = SegmentAllocHandles(pSegment, uType, pHandleBase, uRemain); |
| 2291 | |
| 2292 | // adjust our count and array pointer |
| 2293 | uRemain -= uSatisfied; |
| 2294 | pHandleBase += uSatisfied; |
| 2295 | |
| 2296 | // if there are no remaining slots to be filled then we are done |
| 2297 | if (!uRemain) |
| 2298 | break; |
| 2299 | |
| 2300 | // fetch the next segment in the chain. |
| 2301 | TableSegment *pNextSegment = NULL; |
| 2302 | |
| 2303 | if (!fNewSegment) |
| 2304 | { |
| 2305 | pNextSegment = pSegment->pNextSegment; |
| 2306 | if (!pNextSegment) |
| 2307 | { |
| 2308 | bLastSequence = pSegment->bSequence; |
| 2309 | fNewSegment = TRUE; |
| 2310 | } |
| 2311 | } |
| 2312 | |
| 2313 | // if are no more segments then allocate another |
| 2314 | if (fNewSegment) |
| 2315 | { |
| 2316 | // ok if this fails then we're out of luck |
| 2317 | pNextSegment = SegmentAlloc(pTable); |
| 2318 | if (!pNextSegment) |
| 2319 | { |
| 2320 | // we ran out of memory allocating a new segment. |
| 2321 | // this may not be catastrophic - if there are still some |
| 2322 | // handles in the cache then some allocations may succeed. |
| 2323 | break; |
| 2324 | } |
| 2325 | |
| 2326 | // set up the correct sequence number for the new segment |
| 2327 | pNextSegment->bSequence = (uint8_t)(((uint32_t)bLastSequence + 1) % 0x100); |
| 2328 | bLastSequence = pNextSegment->bSequence; |
| 2329 | |
| 2330 | // link the new segment into the list by the order of segment address |
| 2331 | TableSegment* pWalk = pTable->pSegmentList; |
| 2332 | if ((uintptr_t)pNextSegment < (uintptr_t)pWalk) |
| 2333 | { |
| 2334 | pNextSegment->pNextSegment = pWalk; |
| 2335 | pTable->pSegmentList = pNextSegment; |
| 2336 | } |
| 2337 | else |
| 2338 | { |
| 2339 | while (pWalk) |
| 2340 | { |
| 2341 | if (pWalk->pNextSegment == NULL) |
| 2342 | { |
| 2343 | pWalk->pNextSegment = pNextSegment; |
| 2344 | break; |
| 2345 | } |
| 2346 | else if ((uintptr_t)pWalk->pNextSegment > (uintptr_t)pNextSegment) |
| 2347 | { |
| 2348 | pNextSegment->pNextSegment = pWalk->pNextSegment; |
| 2349 | pWalk->pNextSegment = pNextSegment; |
| 2350 | break; |
| 2351 | } |
| 2352 | pWalk = pWalk->pNextSegment; |
| 2353 | } |
| 2354 | } |
| 2355 | } |
| 2356 | |
| 2357 | // try again with new segment |
| 2358 | pSegment = pNextSegment; |
| 2359 | } |
| 2360 | |
| 2361 | // compute the number of handles we actually got |
| 2362 | uint32_t uAllocated = (uCount - uRemain); |
| 2363 | |
| 2364 | // update the count of handles marked as "used" |
| 2365 | pTable->dwCount += uAllocated; |
| 2366 | |
| 2367 | // return the number of handles we actually got |
| 2368 | return uAllocated; |
| 2369 | } |
| 2370 | |
| 2371 | |
| 2372 | /* |
| 2373 | * BlockFreeHandlesInMask |
| 2374 | * |
| 2375 | * Frees some portion of an array of handles of the specified type. |
| 2376 | * The array is scanned forward and handles are freed until a handle |
| 2377 | * from a different mask is encountered. |
| 2378 | * |
| 2379 | * Returns the number of handles that were freed from the front of the array. |
| 2380 | * |
| 2381 | */ |
| 2382 | uint32_t BlockFreeHandlesInMask(TableSegment *pSegment, uint32_t uBlock, uint32_t uMask, OBJECTHANDLE *pHandleBase, uint32_t uCount, |
| 2383 | uintptr_t *pUserData, uint32_t *puActualFreed, BOOL *pfAllMasksFree) |
| 2384 | { |
| 2385 | LIMITED_METHOD_CONTRACT; |
| 2386 | |
| 2387 | // keep track of how many handles we have left to free |
| 2388 | uint32_t uRemain = uCount; |
| 2389 | |
| 2390 | #ifdef _PREFAST_ |
| 2391 | #pragma warning(push) |
| 2392 | #pragma warning(disable:6305) // "This code deals with a bit vector mapped piece of code, so there is no mismatch between sizeof and countof" |
| 2393 | #endif |
| 2394 | |
| 2395 | // if this block has user data, convert the pointer to be mask-relative |
| 2396 | if (pUserData) |
| 2397 | pUserData += (uMask * HANDLE_HANDLES_PER_MASK); |
| 2398 | |
| 2399 | // convert our mask index to be segment-relative |
| 2400 | uMask += (uBlock * HANDLE_MASKS_PER_BLOCK); |
| 2401 | |
| 2402 | // compute the handle bounds for our mask |
| 2403 | OBJECTHANDLE firstHandle = (OBJECTHANDLE)(pSegment->rgValue + (uMask * HANDLE_HANDLES_PER_MASK)); |
| 2404 | OBJECTHANDLE lastHandle = (OBJECTHANDLE)((_UNCHECKED_OBJECTREF *)firstHandle + HANDLE_HANDLES_PER_MASK); |
| 2405 | |
| 2406 | #ifdef _PREFAST_ |
| 2407 | #pragma warning(pop) |
| 2408 | #endif |
| 2409 | |
| 2410 | // keep a local copy of the free mask to update as we free handles |
| 2411 | uint32_t dwFreeMask = pSegment->rgFreeMask[uMask]; |
| 2412 | |
| 2413 | // keep track of how many bogus frees we are asked to do |
| 2414 | uint32_t uBogus = 0; |
| 2415 | |
| 2416 | // loop freeing handles until we encounter one outside our block or there are none left |
| 2417 | do |
| 2418 | { |
| 2419 | // fetch the next handle in the array |
| 2420 | OBJECTHANDLE handle = *pHandleBase; |
| 2421 | |
| 2422 | // if the handle is outside our segment then we are done |
| 2423 | if ((handle < firstHandle) || (handle >= lastHandle)) |
| 2424 | break; |
| 2425 | |
| 2426 | // sanity check - the handle should no longer refer to an object here |
| 2427 | _ASSERTE(HndIsNullOrDestroyedHandle(*(_UNCHECKED_OBJECTREF *)handle)); |
| 2428 | |
| 2429 | // compute the handle index within the mask |
| 2430 | uint32_t uHandle = (uint32_t)(handle - firstHandle); |
| 2431 | |
| 2432 | // if there is user data then clear the user data for this handle |
| 2433 | if (pUserData) |
| 2434 | pUserData[uHandle] = 0L; |
| 2435 | |
| 2436 | // compute the mask bit for this handle |
| 2437 | uint32_t dwFreeBit = (1 << uHandle); |
| 2438 | |
| 2439 | // the handle should not already be free |
| 2440 | if ((dwFreeMask & dwFreeBit) != 0) |
| 2441 | { |
| 2442 | // SOMEONE'S FREEING A HANDLE THAT ISN'T ALLOCATED |
| 2443 | uBogus++; |
| 2444 | _ASSERTE(FALSE); |
| 2445 | } |
| 2446 | |
| 2447 | // add this handle to the tally of freed handles |
| 2448 | dwFreeMask |= dwFreeBit; |
| 2449 | |
| 2450 | // adjust our count and array pointer |
| 2451 | uRemain--; |
| 2452 | pHandleBase++; |
| 2453 | |
| 2454 | } while (uRemain); |
| 2455 | |
| 2456 | // update the mask to reflect the handles we changed |
| 2457 | pSegment->rgFreeMask[uMask] = dwFreeMask; |
| 2458 | |
| 2459 | // if not all handles in this mask are free then tell our caller not to check the block |
| 2460 | if (dwFreeMask != MASK_EMPTY) |
| 2461 | *pfAllMasksFree = FALSE; |
| 2462 | |
| 2463 | // compute the number of handles we processed from the array |
| 2464 | uint32_t uFreed = (uCount - uRemain); |
| 2465 | |
| 2466 | // tell the caller how many handles we actually freed |
| 2467 | *puActualFreed += (uFreed - uBogus); |
| 2468 | |
| 2469 | // return the number of handles we actually freed |
| 2470 | return uFreed; |
| 2471 | } |
| 2472 | |
| 2473 | |
| 2474 | /* |
| 2475 | * BlockFreeHandles |
| 2476 | * |
| 2477 | * Frees some portion of an array of handles of the specified type. |
| 2478 | * The array is scanned forward and handles are freed until a handle |
| 2479 | * from a different block is encountered. |
| 2480 | * |
| 2481 | * Returns the number of handles that were freed from the front of the array. |
| 2482 | * |
| 2483 | */ |
| 2484 | uint32_t BlockFreeHandles(TableSegment *pSegment, uint32_t uBlock, OBJECTHANDLE *pHandleBase, uint32_t uCount, |
| 2485 | uint32_t *puActualFreed, BOOL *pfScanForFreeBlocks) |
| 2486 | { |
| 2487 | WRAPPER_NO_CONTRACT; |
| 2488 | |
| 2489 | /* |
| 2490 | NOTHROW; |
| 2491 | GC_NOTRIGGER; |
| 2492 | MODE_ANY; |
| 2493 | */ |
| 2494 | |
| 2495 | // keep track of how many handles we have left to free |
| 2496 | uint32_t uRemain = uCount; |
| 2497 | |
| 2498 | // fetch the user data for this block, if any |
| 2499 | uintptr_t *pBlockUserData = BlockFetchUserDataPointer(pSegment, uBlock, FALSE); |
| 2500 | |
| 2501 | // compute the handle bounds for our block |
| 2502 | OBJECTHANDLE firstHandle = (OBJECTHANDLE)(pSegment->rgValue + (uBlock * HANDLE_HANDLES_PER_BLOCK)); |
| 2503 | OBJECTHANDLE lastHandle = (OBJECTHANDLE)((_UNCHECKED_OBJECTREF *)firstHandle + HANDLE_HANDLES_PER_BLOCK); |
| 2504 | |
| 2505 | // this variable will only stay TRUE if all masks we touch end up in the free state |
| 2506 | BOOL fAllMasksWeTouchedAreFree = TRUE; |
| 2507 | |
| 2508 | // loop freeing handles until we encounter one outside our block or there are none left |
| 2509 | do |
| 2510 | { |
| 2511 | // fetch the next handle in the array |
| 2512 | OBJECTHANDLE handle = *pHandleBase; |
| 2513 | |
| 2514 | // if the handle is outside our segment then we are done |
| 2515 | if ((handle < firstHandle) || (handle >= lastHandle)) |
| 2516 | break; |
| 2517 | |
| 2518 | // compute the mask that this handle resides in |
| 2519 | uint32_t uMask = (uint32_t)((handle - firstHandle) / HANDLE_HANDLES_PER_MASK); |
| 2520 | |
| 2521 | // free as many handles as this mask owns from the front of the array |
| 2522 | uint32_t uFreed = BlockFreeHandlesInMask(pSegment, uBlock, uMask, pHandleBase, uRemain, |
| 2523 | pBlockUserData, puActualFreed, &fAllMasksWeTouchedAreFree); |
| 2524 | |
| 2525 | // adjust our count and array pointer |
| 2526 | uRemain -= uFreed; |
| 2527 | pHandleBase += uFreed; |
| 2528 | |
| 2529 | } while (uRemain); |
| 2530 | |
| 2531 | // are all masks we touched free? |
| 2532 | if (fAllMasksWeTouchedAreFree) |
| 2533 | { |
| 2534 | // is the block unlocked? |
| 2535 | // NOTE: This check is incorrect and defeats the intended purpose of scavenging. If the |
| 2536 | // current block is locked and has just been emptied, then it cannot be removed right now |
| 2537 | // and therefore will nominally need to be scavenged. The only code that triggers |
| 2538 | // scavenging is in SegmentRemoveFreeBlocks, and setting the flag is the only way to |
| 2539 | // trigger a call into SegmentRemoveFreeBlocks call. As a result, by NOT setting the flag |
| 2540 | // this code is generally PREVENTING scavenging in exactly the cases where scavenging is |
| 2541 | // needed. The code is not being changed because it has always been this way and scavenging |
| 2542 | // itself generally has extremely low value. |
| 2543 | if (!BlockIsLocked(pSegment, uBlock)) |
| 2544 | { |
| 2545 | // tell the caller it might be a good idea to scan for free blocks |
| 2546 | *pfScanForFreeBlocks = TRUE; |
| 2547 | } |
| 2548 | } |
| 2549 | |
| 2550 | // return the number of handles we actually freed |
| 2551 | return (uCount - uRemain); |
| 2552 | } |
| 2553 | |
| 2554 | |
| 2555 | /* |
| 2556 | * SegmentFreeHandles |
| 2557 | * |
| 2558 | * Frees some portion of an array of handles of the specified type. |
| 2559 | * The array is scanned forward and handles are freed until a handle |
| 2560 | * from a different segment is encountered. |
| 2561 | * |
| 2562 | * Returns the number of handles that were freed from the front of the array. |
| 2563 | * |
| 2564 | */ |
| 2565 | uint32_t SegmentFreeHandles(TableSegment *pSegment, uint32_t uType, OBJECTHANDLE *pHandleBase, uint32_t uCount) |
| 2566 | { |
| 2567 | WRAPPER_NO_CONTRACT; |
| 2568 | |
| 2569 | /* |
| 2570 | NOTHROW; |
| 2571 | GC_NOTRIGGER; |
| 2572 | MODE_ANY; |
| 2573 | */ |
| 2574 | |
| 2575 | // keep track of how many handles we have left to free |
| 2576 | uint32_t uRemain = uCount; |
| 2577 | |
| 2578 | // compute the handle bounds for our segment |
| 2579 | OBJECTHANDLE firstHandle = (OBJECTHANDLE)pSegment->rgValue; |
| 2580 | OBJECTHANDLE lastHandle = (OBJECTHANDLE)((_UNCHECKED_OBJECTREF *)firstHandle + HANDLE_HANDLES_PER_SEGMENT); |
| 2581 | |
| 2582 | // the per-block free routines will set this if there is a chance some blocks went free |
| 2583 | BOOL fScanForFreeBlocks = FALSE; |
| 2584 | |
| 2585 | // track the number of handles we actually free |
| 2586 | uint32_t uActualFreed = 0; |
| 2587 | |
| 2588 | // loop freeing handles until we encounter one outside our segment or there are none left |
| 2589 | do |
| 2590 | { |
| 2591 | // fetch the next handle in the array |
| 2592 | OBJECTHANDLE handle = *pHandleBase; |
| 2593 | |
| 2594 | // if the handle is outside our segment then we are done |
| 2595 | if ((handle < firstHandle) || (handle >= lastHandle)) |
| 2596 | break; |
| 2597 | |
| 2598 | // compute the block that this handle resides in |
| 2599 | uint32_t uBlock = (uint32_t)(((uintptr_t)handle - (uintptr_t)firstHandle) / (HANDLE_SIZE * HANDLE_HANDLES_PER_BLOCK)); |
| 2600 | |
| 2601 | // sanity check that this block is the type we expect to be freeing |
| 2602 | _ASSERTE(pSegment->rgBlockType[uBlock] == uType); |
| 2603 | |
| 2604 | // free as many handles as this block owns from the front of the array |
| 2605 | uint32_t uFreed = BlockFreeHandles(pSegment, uBlock, pHandleBase, uRemain, &uActualFreed, &fScanForFreeBlocks); |
| 2606 | |
| 2607 | // adjust our count and array pointer |
| 2608 | uRemain -= uFreed; |
| 2609 | pHandleBase += uFreed; |
| 2610 | |
| 2611 | } while (uRemain); |
| 2612 | |
| 2613 | // compute the number of handles we actually freed |
| 2614 | uint32_t uFreed = (uCount - uRemain); |
| 2615 | |
| 2616 | // update the free count |
| 2617 | pSegment->rgFreeCount[uType] += uActualFreed; |
| 2618 | |
| 2619 | // if we saw blocks that may have gone totally free then do a free scan |
| 2620 | if (fScanForFreeBlocks) |
| 2621 | { |
| 2622 | // assume we no scavenging is required |
| 2623 | BOOL fNeedsScavenging = FALSE; |
| 2624 | |
| 2625 | // try to remove any free blocks we may have created |
| 2626 | SegmentRemoveFreeBlocks(pSegment, uType, &fNeedsScavenging); |
| 2627 | |
| 2628 | // did SegmentRemoveFreeBlocks have to skip over any free blocks? |
| 2629 | if (fNeedsScavenging) |
| 2630 | { |
| 2631 | // yup, arrange to scavenge them later |
| 2632 | pSegment->fResortChains = TRUE; |
| 2633 | pSegment->fNeedsScavenging = TRUE; |
| 2634 | } |
| 2635 | } |
| 2636 | |
| 2637 | // return the total number of handles we freed |
| 2638 | return uFreed; |
| 2639 | } |
| 2640 | |
| 2641 | |
| 2642 | /* |
| 2643 | * TableFreeBulkPreparedHandles |
| 2644 | * |
| 2645 | * Frees an array of handles of the specified type. |
| 2646 | * |
| 2647 | * This routine is optimized for a sorted array of handles but will accept any order. |
| 2648 | * |
| 2649 | */ |
| 2650 | void TableFreeBulkPreparedHandles(HandleTable *pTable, uint32_t uType, OBJECTHANDLE *pHandleBase, uint32_t uCount) |
| 2651 | { |
| 2652 | //Update the count of handles marked as "used" |
| 2653 | pTable->dwCount -= uCount; |
| 2654 | |
| 2655 | WRAPPER_NO_CONTRACT; |
| 2656 | |
| 2657 | /* |
| 2658 | NOTHROW; |
| 2659 | GC_NOTRIGGER; |
| 2660 | MODE_ANY; |
| 2661 | */ |
| 2662 | |
| 2663 | // loop until all handles are freed |
| 2664 | do |
| 2665 | { |
| 2666 | // get the segment for the first handle |
| 2667 | TableSegment * pSegment = (TableSegment *)HandleFetchSegmentPointer(*pHandleBase); |
| 2668 | |
| 2669 | // sanity |
| 2670 | _ASSERTE(pSegment->pHandleTable == pTable); |
| 2671 | |
| 2672 | // free as many handles as this segment owns from the front of the array |
| 2673 | uint32_t uFreed = SegmentFreeHandles(pSegment, uType, pHandleBase, uCount); |
| 2674 | |
| 2675 | // adjust our count and array pointer |
| 2676 | uCount -= uFreed; |
| 2677 | pHandleBase += uFreed; |
| 2678 | |
| 2679 | } while (uCount); |
| 2680 | } |
| 2681 | |
| 2682 | |
| 2683 | /* |
| 2684 | * TableFreeBulkUnpreparedHandlesWorker |
| 2685 | * |
| 2686 | * Frees an array of handles of the specified type by preparing them and calling TableFreeBulkPreparedHandles. |
| 2687 | * Uses the supplied scratch buffer to prepare the handles. |
| 2688 | * |
| 2689 | */ |
| 2690 | void TableFreeBulkUnpreparedHandlesWorker(HandleTable *pTable, uint32_t uType, const OBJECTHANDLE *pHandles, uint32_t uCount, |
| 2691 | OBJECTHANDLE *pScratchBuffer) |
| 2692 | { |
| 2693 | WRAPPER_NO_CONTRACT; |
| 2694 | |
| 2695 | // copy the handles into the destination buffer |
| 2696 | memcpy(pScratchBuffer, pHandles, uCount * sizeof(OBJECTHANDLE)); |
| 2697 | |
| 2698 | // sort them for optimal free order |
| 2699 | QuickSort((uintptr_t *)pScratchBuffer, 0, uCount - 1, CompareHandlesByFreeOrder); |
| 2700 | |
| 2701 | // make sure the handles are zeroed too |
| 2702 | ZeroHandles(pScratchBuffer, uCount); |
| 2703 | |
| 2704 | // prepare and free these handles |
| 2705 | TableFreeBulkPreparedHandles(pTable, uType, pScratchBuffer, uCount); |
| 2706 | } |
| 2707 | |
| 2708 | |
| 2709 | /* |
| 2710 | * TableFreeBulkUnpreparedHandles |
| 2711 | * |
| 2712 | * Frees an array of handles of the specified type by preparing them and calling |
| 2713 | * TableFreeBulkPreparedHandlesWorker one or more times. |
| 2714 | * |
| 2715 | */ |
| 2716 | void TableFreeBulkUnpreparedHandles(HandleTable *pTable, uint32_t uType, const OBJECTHANDLE *pHandles, uint32_t uCount) |
| 2717 | { |
| 2718 | CONTRACTL |
| 2719 | { |
| 2720 | NOTHROW; |
| 2721 | WRAPPER(GC_TRIGGERS); |
| 2722 | } |
| 2723 | CONTRACTL_END; |
| 2724 | |
| 2725 | // preparation / free buffer |
| 2726 | OBJECTHANDLE rgStackHandles[HANDLE_HANDLES_PER_BLOCK]; |
| 2727 | OBJECTHANDLE *pScratchBuffer = rgStackHandles; |
| 2728 | OBJECTHANDLE *pLargeScratchBuffer = NULL; |
| 2729 | uint32_t uFreeGranularity = _countof(rgStackHandles); |
| 2730 | |
| 2731 | // if there are more handles than we can put on the stack then try to allocate a sorting buffer |
| 2732 | if (uCount > uFreeGranularity) |
| 2733 | { |
| 2734 | // try to allocate a bigger buffer to work in |
| 2735 | pLargeScratchBuffer = new (nothrow) OBJECTHANDLE[uCount]; |
| 2736 | |
| 2737 | // did we get it? |
| 2738 | if (pLargeScratchBuffer) |
| 2739 | { |
| 2740 | // yes - use this buffer to prepare and free the handles |
| 2741 | pScratchBuffer = pLargeScratchBuffer; |
| 2742 | uFreeGranularity = uCount; |
| 2743 | } |
| 2744 | } |
| 2745 | |
| 2746 | // loop freeing handles until we have freed them all |
| 2747 | while (uCount) |
| 2748 | { |
| 2749 | // decide how many we can process in this iteration |
| 2750 | if (uFreeGranularity > uCount) |
| 2751 | uFreeGranularity = uCount; |
| 2752 | |
| 2753 | // prepare and free these handles |
| 2754 | TableFreeBulkUnpreparedHandlesWorker(pTable, uType, pHandles, uFreeGranularity, pScratchBuffer); |
| 2755 | |
| 2756 | // adjust our pointers and move on |
| 2757 | uCount -= uFreeGranularity; |
| 2758 | pHandles += uFreeGranularity; |
| 2759 | } |
| 2760 | |
| 2761 | // if we allocated a sorting buffer then free it now |
| 2762 | if (pLargeScratchBuffer) |
| 2763 | delete [] pLargeScratchBuffer; |
| 2764 | } |
| 2765 | |
| 2766 | #endif // !DACCESS_COMPILE |
| 2767 | |
| 2768 | /*--------------------------------------------------------------------------*/ |
| 2769 | |
| 2770 | |
| 2771 | |