| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | #ifndef _SMALLHASHTABLE_H_ |
| 6 | #define _SMALLHASHTABLE_H_ |
| 7 | |
| 8 | // genLog2 is defined in compiler.hpp |
| 9 | unsigned genLog2(unsigned value); |
| 10 | |
| 11 | //------------------------------------------------------------------------ |
| 12 | // HashTableInfo: a concept that provides equality and hashing methods for |
| 13 | // a particular key type. Used by HashTableBase and its |
| 14 | // subclasses. |
| 15 | template <typename TKey> |
| 16 | struct HashTableInfo |
| 17 | { |
| 18 | // static bool Equals(const TKey& x, const TKey& y); |
| 19 | // static unsigned GetHashCode(const TKey& key); |
| 20 | }; |
| 21 | |
| 22 | //------------------------------------------------------------------------ |
| 23 | // HashTableInfo<TKey*>: specialized version of HashTableInfo for pointer- |
| 24 | // typed keys. |
| 25 | template <typename TKey> |
| 26 | struct HashTableInfo<TKey*> |
| 27 | { |
| 28 | static bool Equals(const TKey* x, const TKey* y) |
| 29 | { |
| 30 | return x == y; |
| 31 | } |
| 32 | |
| 33 | static unsigned GetHashCode(const TKey* key) |
| 34 | { |
| 35 | // Shift off bits that are not likely to be significant |
| 36 | size_t keyval = reinterpret_cast<size_t>(key) >> ConstLog2<__alignof(TKey)>::value; |
| 37 | |
| 38 | // Truncate and return the result |
| 39 | return static_cast<unsigned>(keyval); |
| 40 | } |
| 41 | }; |
| 42 | |
| 43 | //------------------------------------------------------------------------ |
| 44 | // HashTableInfo<int>: specialized version of HashTableInfo for int- |
| 45 | // typed keys. |
| 46 | template <> |
| 47 | struct HashTableInfo<int> |
| 48 | { |
| 49 | static bool Equals(int x, int y) |
| 50 | { |
| 51 | return x == y; |
| 52 | } |
| 53 | |
| 54 | static unsigned GetHashCode(int key) |
| 55 | { |
| 56 | // Cast and return the key |
| 57 | return static_cast<unsigned>(key); |
| 58 | } |
| 59 | }; |
| 60 | |
| 61 | //------------------------------------------------------------------------ |
| 62 | // HashTableInfo<unsigned>: specialized version of HashTableInfo for unsigned- |
| 63 | // typed keys. |
| 64 | template <> |
| 65 | struct HashTableInfo<unsigned> |
| 66 | { |
| 67 | static bool Equals(unsigned x, unsigned y) |
| 68 | { |
| 69 | return x == y; |
| 70 | } |
| 71 | |
| 72 | static unsigned GetHashCode(unsigned key) |
| 73 | { |
| 74 | // Return the key itself |
| 75 | return key; |
| 76 | } |
| 77 | }; |
| 78 | |
| 79 | //------------------------------------------------------------------------ |
| 80 | // HashTableBase: base type for HashTable and SmallHashTable. This class |
| 81 | // provides the vast majority of the implementation. The |
| 82 | // subclasses differ in the storage they use at the time of |
| 83 | // construction: HashTable allocates the initial bucket |
| 84 | // array on the heap; SmallHashTable contains a small inline |
| 85 | // array. |
| 86 | // |
| 87 | // This implementation is based on the ideas presented in Herlihy, Shavit, |
| 88 | // and Tzafrir '08 (http://mcg.cs.tau.ac.il/papers/disc2008-hopscotch.pdf), |
| 89 | // though it does not currently implement the hopscotch algorithm. |
| 90 | // |
| 91 | // The approach taken is intended to perform well in both space and speed. |
| 92 | // This approach is a hybrid of separate chaining and open addressing with |
| 93 | // linear probing: collisions are resolved using a bucket chain, but that |
| 94 | // chain is stored in the bucket array itself. |
| 95 | // |
| 96 | // Resolving collisions using a bucket chain avoids the primary clustering |
| 97 | // issue common in linearly-probed open addressed hash tables, while using |
| 98 | // buckets as chain nodes avoids the allocaiton traffic typical of chained |
| 99 | // tables. Applying the hopscotch algorithm in the aforementioned paper |
| 100 | // could further improve performance by optimizing access patterns for |
| 101 | // better cache usage. |
| 102 | // |
| 103 | // Template parameters: |
| 104 | // TKey - The type of the table's keys. |
| 105 | // TValue - The type of the table's values. |
| 106 | // TKeyInfo - A type that conforms to the HashTableInfo<TKey> concept. |
| 107 | template <typename TKey, typename TValue, typename TKeyInfo = HashTableInfo<TKey>, typename TAllocator = CompAllocator> |
| 108 | class HashTableBase |
| 109 | { |
| 110 | friend class KeyValuePair; |
| 111 | friend class Iterator; |
| 112 | |
| 113 | enum : unsigned |
| 114 | { |
| 115 | InitialNumBuckets = 8 |
| 116 | }; |
| 117 | |
| 118 | protected: |
| 119 | //------------------------------------------------------------------------ |
| 120 | // HashTableBase::Bucket: provides storage for the key-value pairs that |
| 121 | // make up the contents of the table. |
| 122 | // |
| 123 | // The "home" bucket for a particular key is the bucket indexed by the |
| 124 | // key's hash code modulo the size of the bucket array (the "home index"). |
| 125 | // |
| 126 | // The home bucket is always considered to be part of the chain that it |
| 127 | // roots, even if it is also part of the chain rooted at a different |
| 128 | // bucket. `m_firstOffset` indicates the offset of the first non-home |
| 129 | // bucket in the home bucket's chain. If the `m_firstOffset` of a bucket |
| 130 | // is 0, the chain rooted at that bucket is empty. |
| 131 | // |
| 132 | // The index of the next bucket in a chain is calculated by adding the |
| 133 | // value in `m_nextOffset` to the index of the current bucket. If |
| 134 | // `m_nextOffset` is 0, the current bucket is the end of its chain. Each |
| 135 | // bucket in a chain must be occupied (i.e. `m_isFull` will be true). |
| 136 | struct Bucket |
| 137 | { |
| 138 | bool m_isFull; // True if the bucket is occupied; false otherwise. |
| 139 | |
| 140 | unsigned m_firstOffset; // The offset to the first node in the chain for this bucket index. |
| 141 | unsigned m_nextOffset; // The offset to the next node in the chain for this bucket index. |
| 142 | |
| 143 | unsigned m_hash; // The hash code for the element stored in this bucket. |
| 144 | TKey m_key; // The key for the element stored in this bucket. |
| 145 | TValue m_value; // The value for the element stored in this bucket. |
| 146 | }; |
| 147 | |
| 148 | private: |
| 149 | TAllocator m_alloc; // The memory allocator. |
| 150 | Bucket* m_buckets; // The bucket array. |
| 151 | unsigned m_numBuckets; // The number of buckets in the bucket array. |
| 152 | unsigned m_numFullBuckets; // The number of occupied buckets. |
| 153 | |
| 154 | //------------------------------------------------------------------------ |
| 155 | // HashTableBase::Insert: inserts a key-value pair into a bucket array. |
| 156 | // |
| 157 | // Arguments: |
| 158 | // buckets - The bucket array in which to insert the key-value pair. |
| 159 | // numBuckets - The number of buckets in the bucket array. |
| 160 | // hash - The hash code of the key to insert. |
| 161 | // key - The key to insert. |
| 162 | // value - The value to insert. |
| 163 | // |
| 164 | // Returns: |
| 165 | // True if the key-value pair was successfully inserted; false |
| 166 | // otherwise. |
| 167 | static bool Insert(Bucket* buckets, unsigned numBuckets, unsigned hash, const TKey& key, const TValue& value) |
| 168 | { |
| 169 | const unsigned mask = numBuckets - 1; |
| 170 | unsigned homeIndex = hash & mask; |
| 171 | |
| 172 | Bucket* home = &buckets[homeIndex]; |
| 173 | if (!home->m_isFull) |
| 174 | { |
| 175 | // The home bucket is empty; use it. |
| 176 | // |
| 177 | // Note that `m_firstOffset` does not need to be updated: whether or not it is non-zero, |
| 178 | // it is already correct, since we're inserting at the head of the list. `m_nextOffset` |
| 179 | // must be 0, however, since this node should not be part of a list. |
| 180 | assert(home->m_nextOffset == 0); |
| 181 | |
| 182 | home->m_isFull = true; |
| 183 | home->m_hash = hash; |
| 184 | home->m_key = key; |
| 185 | home->m_value = value; |
| 186 | return true; |
| 187 | } |
| 188 | |
| 189 | // If the home bucket is full, probe to find the next empty bucket. |
| 190 | unsigned precedingIndexInChain = homeIndex; |
| 191 | unsigned nextIndexInChain = (homeIndex + home->m_firstOffset) & mask; |
| 192 | for (unsigned j = 1; j < numBuckets; j++) |
| 193 | { |
| 194 | unsigned bucketIndex = (homeIndex + j) & mask; |
| 195 | Bucket* bucket = &buckets[bucketIndex]; |
| 196 | if (bucketIndex == nextIndexInChain) |
| 197 | { |
| 198 | assert(bucket->m_isFull); |
| 199 | precedingIndexInChain = bucketIndex; |
| 200 | nextIndexInChain = (bucketIndex + bucket->m_nextOffset) & mask; |
| 201 | } |
| 202 | else if (!bucket->m_isFull) |
| 203 | { |
| 204 | bucket->m_isFull = true; |
| 205 | if (precedingIndexInChain == nextIndexInChain) |
| 206 | { |
| 207 | bucket->m_nextOffset = 0; |
| 208 | } |
| 209 | else |
| 210 | { |
| 211 | assert(((nextIndexInChain - bucketIndex) & mask) > 0); |
| 212 | bucket->m_nextOffset = (nextIndexInChain - bucketIndex) & mask; |
| 213 | } |
| 214 | |
| 215 | unsigned offset = (bucketIndex - precedingIndexInChain) & mask; |
| 216 | assert(offset != 0); |
| 217 | |
| 218 | if (precedingIndexInChain == homeIndex) |
| 219 | { |
| 220 | buckets[precedingIndexInChain].m_firstOffset = offset; |
| 221 | } |
| 222 | else |
| 223 | { |
| 224 | buckets[precedingIndexInChain].m_nextOffset = offset; |
| 225 | } |
| 226 | |
| 227 | bucket->m_hash = hash; |
| 228 | bucket->m_key = key; |
| 229 | bucket->m_value = value; |
| 230 | return true; |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | // No more free buckets. |
| 235 | return false; |
| 236 | } |
| 237 | |
| 238 | //------------------------------------------------------------------------ |
| 239 | // HashTableBase::TryGetBucket: attempts to get the bucket that holds a |
| 240 | // particular key. |
| 241 | // |
| 242 | // Arguments: |
| 243 | // hash - The hash code of the key to find. |
| 244 | // key - The key to find. |
| 245 | // precedingIndex - An output parameter that will hold the index of the |
| 246 | // preceding bucket in the chain for the key. May be |
| 247 | // equal to `bucketIndex` if the key is stored in its |
| 248 | // home bucket. |
| 249 | // bucketIndex - An output parameter that will hold the index of the |
| 250 | // bucket that stores the key. |
| 251 | // |
| 252 | // Returns: |
| 253 | // True if the key was successfully found; false otherwise. |
| 254 | bool TryGetBucket(unsigned hash, const TKey& key, unsigned* precedingIndex, unsigned* bucketIndex) const |
| 255 | { |
| 256 | if (m_numBuckets == 0) |
| 257 | { |
| 258 | return false; |
| 259 | } |
| 260 | |
| 261 | const unsigned mask = m_numBuckets - 1; |
| 262 | unsigned index = hash & mask; |
| 263 | |
| 264 | Bucket* bucket = &m_buckets[index]; |
| 265 | if (bucket->m_isFull && bucket->m_hash == hash && TKeyInfo::Equals(bucket->m_key, key)) |
| 266 | { |
| 267 | *precedingIndex = index; |
| 268 | *bucketIndex = index; |
| 269 | return true; |
| 270 | } |
| 271 | |
| 272 | for (unsigned offset = bucket->m_firstOffset; offset != 0; offset = bucket->m_nextOffset) |
| 273 | { |
| 274 | unsigned precedingIndexInChain = index; |
| 275 | |
| 276 | index = (index + offset) & mask; |
| 277 | bucket = &m_buckets[index]; |
| 278 | |
| 279 | assert(bucket->m_isFull); |
| 280 | if (bucket->m_hash == hash && TKeyInfo::Equals(bucket->m_key, key)) |
| 281 | { |
| 282 | *precedingIndex = precedingIndexInChain; |
| 283 | *bucketIndex = index; |
| 284 | return true; |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | return false; |
| 289 | } |
| 290 | |
| 291 | //------------------------------------------------------------------------ |
| 292 | // HashTableBase::Resize: allocates a new bucket array twice the size of |
| 293 | // the current array and copies the key-value pairs |
| 294 | // from the current bucket array into the new array. |
| 295 | void Resize() |
| 296 | { |
| 297 | Bucket* currentBuckets = m_buckets; |
| 298 | |
| 299 | unsigned newNumBuckets = m_numBuckets == 0 ? InitialNumBuckets : m_numBuckets * 2; |
| 300 | Bucket* newBuckets = m_alloc.template allocate<Bucket>(newNumBuckets); |
| 301 | memset(newBuckets, 0, sizeof(Bucket) * newNumBuckets); |
| 302 | |
| 303 | for (unsigned currentIndex = 0; currentIndex < m_numBuckets; currentIndex++) |
| 304 | { |
| 305 | Bucket* currentBucket = ¤tBuckets[currentIndex]; |
| 306 | if (!currentBucket->m_isFull) |
| 307 | { |
| 308 | continue; |
| 309 | } |
| 310 | |
| 311 | bool inserted = |
| 312 | Insert(newBuckets, newNumBuckets, currentBucket->m_hash, currentBucket->m_key, currentBucket->m_value); |
| 313 | (assert(inserted), (void)inserted); |
| 314 | } |
| 315 | |
| 316 | m_numBuckets = newNumBuckets; |
| 317 | m_buckets = newBuckets; |
| 318 | } |
| 319 | |
| 320 | protected: |
| 321 | HashTableBase(TAllocator alloc, Bucket* buckets, unsigned numBuckets) |
| 322 | : m_alloc(alloc), m_buckets(buckets), m_numBuckets(numBuckets), m_numFullBuckets(0) |
| 323 | { |
| 324 | if (numBuckets > 0) |
| 325 | { |
| 326 | assert((numBuckets & (numBuckets - 1)) == 0); // Size must be a power of 2 |
| 327 | assert(m_buckets != nullptr); |
| 328 | |
| 329 | memset(m_buckets, 0, sizeof(Bucket) * numBuckets); |
| 330 | } |
| 331 | } |
| 332 | |
| 333 | public: |
| 334 | #ifdef DEBUG |
| 335 | class Iterator; |
| 336 | |
| 337 | class KeyValuePair final |
| 338 | { |
| 339 | friend class HashTableBase<TKey, TValue, TKeyInfo>::Iterator; |
| 340 | |
| 341 | Bucket* m_bucket; |
| 342 | |
| 343 | KeyValuePair(Bucket* bucket) : m_bucket(bucket) |
| 344 | { |
| 345 | assert(m_bucket != nullptr); |
| 346 | } |
| 347 | |
| 348 | public: |
| 349 | KeyValuePair() : m_bucket(nullptr) |
| 350 | { |
| 351 | } |
| 352 | |
| 353 | inline TKey& Key() |
| 354 | { |
| 355 | return m_bucket->m_key; |
| 356 | } |
| 357 | |
| 358 | inline TValue& Value() |
| 359 | { |
| 360 | return m_bucket->m_value; |
| 361 | } |
| 362 | }; |
| 363 | |
| 364 | // NOTE: HashTableBase only provides iterators in debug builds because the order in which |
| 365 | // the iterator type produces values is undefined (e.g. it is not related to the order in |
| 366 | // which key-value pairs were inserted). |
| 367 | class Iterator final |
| 368 | { |
| 369 | friend class HashTableBase<TKey, TValue, TKeyInfo>; |
| 370 | |
| 371 | Bucket* m_buckets; |
| 372 | unsigned m_numBuckets; |
| 373 | unsigned m_index; |
| 374 | |
| 375 | Iterator(Bucket* buckets, unsigned numBuckets, unsigned index) |
| 376 | : m_buckets(buckets), m_numBuckets(numBuckets), m_index(index) |
| 377 | { |
| 378 | assert((buckets != nullptr) || (numBuckets == 0)); |
| 379 | assert(index <= numBuckets); |
| 380 | |
| 381 | // Advance to the first occupied bucket |
| 382 | while (m_index != m_numBuckets && !m_buckets[m_index].m_isFull) |
| 383 | { |
| 384 | m_index++; |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | public: |
| 389 | Iterator() : m_buckets(nullptr), m_numBuckets(0), m_index(0) |
| 390 | { |
| 391 | } |
| 392 | |
| 393 | KeyValuePair operator*() const |
| 394 | { |
| 395 | if (m_index >= m_numBuckets) |
| 396 | { |
| 397 | return KeyValuePair(); |
| 398 | } |
| 399 | |
| 400 | Bucket* bucket = &m_buckets[m_index]; |
| 401 | assert(bucket->m_isFull); |
| 402 | return KeyValuePair(bucket); |
| 403 | } |
| 404 | |
| 405 | KeyValuePair operator->() const |
| 406 | { |
| 407 | return this->operator*(); |
| 408 | } |
| 409 | |
| 410 | bool operator==(const Iterator& other) const |
| 411 | { |
| 412 | return (m_buckets == other.m_buckets) && (m_index == other.m_index); |
| 413 | } |
| 414 | |
| 415 | bool operator!=(const Iterator& other) const |
| 416 | { |
| 417 | return (m_buckets != other.m_buckets) || (m_index != other.m_index); |
| 418 | } |
| 419 | |
| 420 | Iterator& operator++() |
| 421 | { |
| 422 | do |
| 423 | { |
| 424 | m_index++; |
| 425 | } while (m_index != m_numBuckets && !m_buckets[m_index].m_isFull); |
| 426 | |
| 427 | return *this; |
| 428 | } |
| 429 | }; |
| 430 | |
| 431 | Iterator begin() const |
| 432 | { |
| 433 | return Iterator(m_buckets, m_numBuckets, 0); |
| 434 | } |
| 435 | |
| 436 | Iterator end() const |
| 437 | { |
| 438 | return Iterator(m_buckets, m_numBuckets, m_numBuckets); |
| 439 | } |
| 440 | #endif // DEBUG |
| 441 | |
| 442 | unsigned Count() const |
| 443 | { |
| 444 | return m_numFullBuckets; |
| 445 | } |
| 446 | |
| 447 | void Clear() |
| 448 | { |
| 449 | if (m_numBuckets > 0) |
| 450 | { |
| 451 | memset(m_buckets, 0, sizeof(Bucket) * m_numBuckets); |
| 452 | m_numFullBuckets = 0; |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | //------------------------------------------------------------------------ |
| 457 | // HashTableBase::AddOrUpdate: adds a key-value pair to the hash table if |
| 458 | // the key does not already exist in the |
| 459 | // table, or updates the value if the key |
| 460 | // already exists. |
| 461 | // |
| 462 | // Arguments: |
| 463 | // key - The key for which to add or update a value. |
| 464 | // value - The value. |
| 465 | // |
| 466 | // Returns: |
| 467 | // True if the value was added; false if it was updated. |
| 468 | bool AddOrUpdate(const TKey& key, const TValue& value) |
| 469 | { |
| 470 | unsigned hash = TKeyInfo::GetHashCode(key); |
| 471 | |
| 472 | unsigned unused, index; |
| 473 | if (TryGetBucket(hash, key, &unused, &index)) |
| 474 | { |
| 475 | m_buckets[index].m_value = value; |
| 476 | return false; |
| 477 | } |
| 478 | |
| 479 | // If the load is greater than 0.8, resize the table before inserting. |
| 480 | if ((m_numFullBuckets * 5) >= (m_numBuckets * 4)) |
| 481 | { |
| 482 | Resize(); |
| 483 | } |
| 484 | |
| 485 | bool inserted = Insert(m_buckets, m_numBuckets, hash, key, value); |
| 486 | (assert(inserted), (void)inserted); |
| 487 | |
| 488 | m_numFullBuckets++; |
| 489 | |
| 490 | return true; |
| 491 | } |
| 492 | |
| 493 | //------------------------------------------------------------------------ |
| 494 | // HashTableBase::TryRemove: removes a key from the hash table and returns |
| 495 | // its value if the key exists in the table. |
| 496 | // |
| 497 | // Arguments: |
| 498 | // key - The key to remove from the table. |
| 499 | // value - An output parameter that will hold the value for the removed |
| 500 | // key. |
| 501 | // |
| 502 | // Returns: |
| 503 | // True if the key was removed from the table; false otherwise. |
| 504 | bool TryRemove(const TKey& key, TValue* value) |
| 505 | { |
| 506 | unsigned hash = TKeyInfo::GetHashCode(key); |
| 507 | |
| 508 | unsigned precedingIndexInChain, bucketIndex; |
| 509 | if (!TryGetBucket(hash, key, &precedingIndexInChain, &bucketIndex)) |
| 510 | { |
| 511 | return false; |
| 512 | } |
| 513 | |
| 514 | Bucket* bucket = &m_buckets[bucketIndex]; |
| 515 | |
| 516 | if (precedingIndexInChain != bucketIndex) |
| 517 | { |
| 518 | const unsigned mask = m_numBuckets - 1; |
| 519 | unsigned homeIndex = hash & mask; |
| 520 | |
| 521 | unsigned nextOffset; |
| 522 | if (bucket->m_nextOffset == 0) |
| 523 | { |
| 524 | nextOffset = 0; |
| 525 | } |
| 526 | else |
| 527 | { |
| 528 | unsigned nextIndexInChain = (bucketIndex + bucket->m_nextOffset) & mask; |
| 529 | nextOffset = (nextIndexInChain - precedingIndexInChain) & mask; |
| 530 | } |
| 531 | |
| 532 | if (precedingIndexInChain == homeIndex) |
| 533 | { |
| 534 | m_buckets[precedingIndexInChain].m_firstOffset = nextOffset; |
| 535 | } |
| 536 | else |
| 537 | { |
| 538 | m_buckets[precedingIndexInChain].m_nextOffset = nextOffset; |
| 539 | } |
| 540 | } |
| 541 | |
| 542 | bucket->m_isFull = false; |
| 543 | bucket->m_nextOffset = 0; |
| 544 | |
| 545 | m_numFullBuckets--; |
| 546 | |
| 547 | *value = bucket->m_value; |
| 548 | return true; |
| 549 | } |
| 550 | |
| 551 | //------------------------------------------------------------------------ |
| 552 | // HashTableBase::TryGetValue: retrieves the value for a key if the key |
| 553 | // exists in the table. |
| 554 | // |
| 555 | // Arguments: |
| 556 | // key - The key to find from the table. |
| 557 | // value - An output parameter that will hold the value for the key. |
| 558 | // |
| 559 | // Returns: |
| 560 | // True if the key was found in the table; false otherwise. |
| 561 | bool TryGetValue(const TKey& key, TValue* value) const |
| 562 | { |
| 563 | unsigned unused, index; |
| 564 | if (!TryGetBucket(TKeyInfo::GetHashCode(key), key, &unused, &index)) |
| 565 | { |
| 566 | return false; |
| 567 | } |
| 568 | |
| 569 | *value = m_buckets[index].m_value; |
| 570 | return true; |
| 571 | } |
| 572 | |
| 573 | //------------------------------------------------------------------------ |
| 574 | // HashTableBase::Contains: returns true if a key exists in the table and |
| 575 | // false otherwise. |
| 576 | // |
| 577 | // Arguments: |
| 578 | // key - The key to find from the table. |
| 579 | // |
| 580 | // Returns: |
| 581 | // True if the key was found in the table; false otherwise. |
| 582 | bool Contains(const TKey& key) const |
| 583 | { |
| 584 | unsigned unused, index; |
| 585 | return TryGetBucket(TKeyInfo::GetHashCode(key), key, &unused, &index); |
| 586 | } |
| 587 | }; |
| 588 | |
| 589 | //------------------------------------------------------------------------ |
| 590 | // HashTable: a simple subclass of `HashTableBase` that always uses heap |
| 591 | // storage for its bucket array. |
| 592 | template <typename TKey, typename TValue, typename TKeyInfo = HashTableInfo<TKey>, typename TAllocator = CompAllocator> |
| 593 | class HashTable final : public HashTableBase<TKey, TValue, TKeyInfo, TAllocator> |
| 594 | { |
| 595 | typedef HashTableBase<TKey, TValue, TKeyInfo, TAllocator> TBase; |
| 596 | |
| 597 | static unsigned RoundUp(unsigned initialSize) |
| 598 | { |
| 599 | return 1 << genLog2(initialSize); |
| 600 | } |
| 601 | |
| 602 | public: |
| 603 | HashTable(TAllocator alloc) : TBase(alloc, nullptr, 0) |
| 604 | { |
| 605 | } |
| 606 | |
| 607 | HashTable(TAllocator alloc, unsigned initialSize) |
| 608 | : TBase(alloc, alloc.template allocate<TBase::Bucket>(RoundUp(initialSize)), RoundUp(initialSize)) |
| 609 | { |
| 610 | } |
| 611 | }; |
| 612 | |
| 613 | //------------------------------------------------------------------------ |
| 614 | // SmallHashTable: an alternative to `HashTable` that stores the initial |
| 615 | // bucket array inline. Most useful for situations where |
| 616 | // the number of key-value pairs that will be stored in |
| 617 | // the map at any given time falls below a certain |
| 618 | // threshold. Switches to heap storage once the initial |
| 619 | // inline storage is exhausted. |
| 620 | template <typename TKey, |
| 621 | typename TValue, |
| 622 | unsigned NumInlineBuckets = 8, |
| 623 | typename TKeyInfo = HashTableInfo<TKey>, |
| 624 | typename TAllocator = CompAllocator> |
| 625 | class SmallHashTable final : public HashTableBase<TKey, TValue, TKeyInfo, TAllocator> |
| 626 | { |
| 627 | typedef HashTableBase<TKey, TValue, TKeyInfo, TAllocator> TBase; |
| 628 | |
| 629 | enum : unsigned |
| 630 | { |
| 631 | RoundedNumInlineBuckets = 1 << ConstLog2<NumInlineBuckets>::value |
| 632 | }; |
| 633 | |
| 634 | typename TBase::Bucket m_inlineBuckets[RoundedNumInlineBuckets]; |
| 635 | |
| 636 | public: |
| 637 | SmallHashTable(TAllocator alloc) : TBase(alloc, m_inlineBuckets, RoundedNumInlineBuckets) |
| 638 | { |
| 639 | } |
| 640 | }; |
| 641 | |
| 642 | #endif // _SMALLHASHTABLE_H_ |
| 643 | |