1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
7 | XX XX |
8 | XX Utils.h XX |
9 | XX XX |
10 | XX Has miscellaneous utility functions XX |
11 | XX XX |
12 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
13 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
14 | */ |
15 | |
16 | #ifndef _UTILS_H_ |
17 | #define _UTILS_H_ |
18 | |
19 | #include "iallocator.h" |
20 | #include "hostallocator.h" |
21 | #include "cycletimer.h" |
22 | |
23 | // Needed for unreached() |
24 | #include "error.h" |
25 | |
26 | #ifdef _TARGET_64BIT_ |
27 | #define BitScanForwardPtr BitScanForward64 |
28 | #else |
29 | #define BitScanForwardPtr BitScanForward |
30 | #endif |
31 | |
32 | template <typename T, int size> |
33 | unsigned ArrLen(T (&)[size]) |
34 | { |
35 | return size; |
36 | } |
37 | |
38 | // return true if arg is a power of 2 |
39 | template <typename T> |
40 | inline bool isPow2(T i) |
41 | { |
42 | return (i > 0 && ((i - 1) & i) == 0); |
43 | } |
44 | |
45 | // Adapter for iterators to a type that is compatible with C++11 |
46 | // range-based for loops. |
47 | template <typename TIterator> |
48 | class IteratorPair |
49 | { |
50 | TIterator m_begin; |
51 | TIterator m_end; |
52 | |
53 | public: |
54 | IteratorPair(TIterator begin, TIterator end) : m_begin(begin), m_end(end) |
55 | { |
56 | } |
57 | |
58 | inline TIterator begin() |
59 | { |
60 | return m_begin; |
61 | } |
62 | |
63 | inline TIterator end() |
64 | { |
65 | return m_end; |
66 | } |
67 | }; |
68 | |
69 | template <typename TIterator> |
70 | inline IteratorPair<TIterator> MakeIteratorPair(TIterator begin, TIterator end) |
71 | { |
72 | return IteratorPair<TIterator>(begin, end); |
73 | } |
74 | |
75 | // Recursive template definition to calculate the base-2 logarithm |
76 | // of a constant value. |
77 | template <unsigned val, unsigned acc = 0> |
78 | struct ConstLog2 |
79 | { |
80 | enum |
81 | { |
82 | value = ConstLog2<val / 2, acc + 1>::value |
83 | }; |
84 | }; |
85 | |
86 | template <unsigned acc> |
87 | struct ConstLog2<0, acc> |
88 | { |
89 | enum |
90 | { |
91 | value = acc |
92 | }; |
93 | }; |
94 | |
95 | template <unsigned acc> |
96 | struct ConstLog2<1, acc> |
97 | { |
98 | enum |
99 | { |
100 | value = acc |
101 | }; |
102 | }; |
103 | |
104 | inline const char* dspBool(bool b) |
105 | { |
106 | return (b) ? "true" : "false" ; |
107 | } |
108 | |
109 | #ifdef FEATURE_CORECLR |
110 | #ifdef _CRT_ABS_DEFINED |
111 | // we don't have the full standard library |
112 | inline int64_t abs(int64_t t) |
113 | { |
114 | return t > 0 ? t : -t; |
115 | } |
116 | #endif |
117 | #endif // FEATURE_CORECLR |
118 | |
119 | template <typename T> |
120 | int signum(T val) |
121 | { |
122 | if (val < T(0)) |
123 | { |
124 | return -1; |
125 | } |
126 | else if (val > T(0)) |
127 | { |
128 | return 1; |
129 | } |
130 | else |
131 | { |
132 | return 0; |
133 | } |
134 | } |
135 | |
136 | #if defined(DEBUG) || defined(INLINE_DATA) |
137 | |
138 | // ConfigMethodRange describes a set of methods, specified via their |
139 | // hash codes. This can be used for binary search and/or specifying an |
140 | // explicit method set. |
141 | // |
142 | // Note method hash codes are not necessarily unique. For instance |
143 | // many IL stubs may have the same hash. |
144 | // |
145 | // If range string is null or just whitespace, range includes all |
146 | // methods. |
147 | // |
148 | // Parses values as decimal numbers. |
149 | // |
150 | // Examples: |
151 | // |
152 | // [string with just spaces] : all methods |
153 | // 12345678 : a single method |
154 | // 12345678-23456789 : a range of methods |
155 | // 99998888 12345678-23456789 : a range of methods plus a single method |
156 | |
157 | class ConfigMethodRange |
158 | { |
159 | |
160 | public: |
161 | // Default capacity |
162 | enum |
163 | { |
164 | DEFAULT_CAPACITY = 50 |
165 | }; |
166 | |
167 | // Does the range include this method's hash? |
168 | bool Contains(class ICorJitInfo* info, CORINFO_METHOD_HANDLE method); |
169 | |
170 | // Ensure the range string has been parsed. |
171 | void EnsureInit(const wchar_t* rangeStr, unsigned capacity = DEFAULT_CAPACITY) |
172 | { |
173 | // Make sure that the memory was zero initialized |
174 | assert(m_inited == 0 || m_inited == 1); |
175 | |
176 | if (!m_inited) |
177 | { |
178 | InitRanges(rangeStr, capacity); |
179 | assert(m_inited == 1); |
180 | } |
181 | } |
182 | |
183 | // Error checks |
184 | bool Error() const |
185 | { |
186 | return m_badChar != 0; |
187 | } |
188 | size_t BadCharIndex() const |
189 | { |
190 | return m_badChar - 1; |
191 | } |
192 | |
193 | private: |
194 | struct Range |
195 | { |
196 | unsigned m_low; |
197 | unsigned m_high; |
198 | }; |
199 | |
200 | void InitRanges(const wchar_t* rangeStr, unsigned capacity); |
201 | |
202 | unsigned m_entries; // number of entries in the range array |
203 | unsigned m_lastRange; // count of low-high pairs |
204 | unsigned m_inited; // 1 if range string has been parsed |
205 | size_t m_badChar; // index + 1 of any bad character in range string |
206 | Range* m_ranges; // ranges of functions to include |
207 | }; |
208 | |
209 | #endif // defined(DEBUG) || defined(INLINE_DATA) |
210 | |
211 | class Compiler; |
212 | |
213 | /***************************************************************************** |
214 | * Fixed bit vector class |
215 | */ |
216 | class FixedBitVect |
217 | { |
218 | private: |
219 | UINT bitVectSize; |
220 | UINT bitVect[]; |
221 | |
222 | // bitChunkSize() - Returns number of bits in a bitVect chunk |
223 | static UINT bitChunkSize(); |
224 | |
225 | // bitNumToBit() - Returns a bit mask of the given bit number |
226 | static UINT bitNumToBit(UINT bitNum); |
227 | |
228 | public: |
229 | // bitVectInit() - Initializes a bit vector of a given size |
230 | static FixedBitVect* bitVectInit(UINT size, Compiler* comp); |
231 | |
232 | // bitVectSet() - Sets the given bit |
233 | void bitVectSet(UINT bitNum); |
234 | |
235 | // bitVectTest() - Tests the given bit |
236 | bool bitVectTest(UINT bitNum); |
237 | |
238 | // bitVectOr() - Or in the given bit vector |
239 | void bitVectOr(FixedBitVect* bv); |
240 | |
241 | // bitVectAnd() - And with passed in bit vector |
242 | void bitVectAnd(FixedBitVect& bv); |
243 | |
244 | // bitVectGetFirst() - Find the first bit on and return the bit num. |
245 | // Return -1 if no bits found. |
246 | UINT bitVectGetFirst(); |
247 | |
248 | // bitVectGetNext() - Find the next bit on given previous bit and return bit num. |
249 | // Return -1 if no bits found. |
250 | UINT bitVectGetNext(UINT bitNumPrev); |
251 | |
252 | // bitVectGetNextAndClear() - Find the first bit on, clear it and return it. |
253 | // Return -1 if no bits found. |
254 | UINT bitVectGetNextAndClear(); |
255 | }; |
256 | |
257 | /****************************************************************************** |
258 | * A specialized version of sprintf_s to simplify conversion to SecureCRT |
259 | * |
260 | * pWriteStart -> A pointer to the first byte to which data is written. |
261 | * pBufStart -> the start of the buffer into which the data is written. If |
262 | * composing a complex string with multiple calls to sprintf, this |
263 | * should not change. |
264 | * cbBufSize -> The size of the overall buffer (i.e. the size of the buffer |
265 | * pointed to by pBufStart). For subsequent calls, this does not |
266 | * change. |
267 | * fmt -> The format string |
268 | * ... -> Arguments. |
269 | * |
270 | * returns -> number of bytes successfully written, not including the null |
271 | * terminator. Calls NO_WAY on error. |
272 | */ |
273 | int SimpleSprintf_s(__in_ecount(cbBufSize - (pWriteStart - pBufStart)) char* pWriteStart, |
274 | __in_ecount(cbBufSize) char* pBufStart, |
275 | size_t cbBufSize, |
276 | __in_z const char* fmt, |
277 | ...); |
278 | |
279 | #ifdef DEBUG |
280 | void hexDump(FILE* dmpf, const char* name, BYTE* addr, size_t size); |
281 | #endif // DEBUG |
282 | |
283 | /****************************************************************************** |
284 | * ScopedSetVariable: A simple class to set and restore a variable within a scope. |
285 | * For example, it can be used to set a 'bool' flag to 'true' at the beginning of a |
286 | * function and automatically back to 'false' either at the end the function, or at |
287 | * any other return location. The variable should not be changed during the scope: |
288 | * the destructor asserts that the value at destruction time is the same one we set. |
289 | * Usage: ScopedSetVariable<bool> _unused_name(&variable, true); |
290 | */ |
291 | template <typename T> |
292 | class ScopedSetVariable |
293 | { |
294 | public: |
295 | ScopedSetVariable(T* pVariable, T value) : m_pVariable(pVariable) |
296 | { |
297 | m_oldValue = *m_pVariable; |
298 | *m_pVariable = value; |
299 | INDEBUG(m_value = value;) |
300 | } |
301 | |
302 | ~ScopedSetVariable() |
303 | { |
304 | assert(*m_pVariable == m_value); // Assert that the value didn't change between ctor and dtor |
305 | *m_pVariable = m_oldValue; |
306 | } |
307 | |
308 | private: |
309 | #ifdef DEBUG |
310 | T m_value; // The value we set the variable to (used for assert). |
311 | #endif // DEBUG |
312 | T m_oldValue; // The old value, to restore the variable to. |
313 | T* m_pVariable; // Address of the variable to change |
314 | }; |
315 | |
316 | /****************************************************************************** |
317 | * PhasedVar: A class to represent a variable that has phases, in particular, |
318 | * a write phase where the variable is computed, and a read phase where the |
319 | * variable is used. Once the variable has been read, it can no longer be changed. |
320 | * Reading the variable essentially commits everyone to using that value forever, |
321 | * and it is assumed that subsequent changes to the variable would invalidate |
322 | * whatever assumptions were made by the previous readers, leading to bad generated code. |
323 | * These assumptions are asserted in DEBUG builds. |
324 | * The phase ordering is clean for AMD64, but not for x86/ARM. So don't do the phase |
325 | * ordering asserts for those platforms. |
326 | */ |
327 | template <typename T> |
328 | class PhasedVar |
329 | { |
330 | public: |
331 | PhasedVar() |
332 | #ifdef DEBUG |
333 | : m_initialized(false), m_writePhase(true) |
334 | #endif // DEBUG |
335 | { |
336 | } |
337 | |
338 | PhasedVar(T value) |
339 | : m_value(value) |
340 | #ifdef DEBUG |
341 | , m_initialized(true) |
342 | , m_writePhase(true) |
343 | #endif // DEBUG |
344 | { |
345 | } |
346 | |
347 | ~PhasedVar() |
348 | { |
349 | #ifdef DEBUG |
350 | m_initialized = false; |
351 | m_writePhase = true; |
352 | #endif // DEBUG |
353 | } |
354 | |
355 | // Read the value. Change to the read phase. |
356 | // Marked 'const' because we don't change the encapsulated value, even though |
357 | // we do change the write phase, which is only for debugging asserts. |
358 | |
359 | operator T() const |
360 | { |
361 | #ifdef DEBUG |
362 | assert(m_initialized); |
363 | (const_cast<PhasedVar*>(this))->m_writePhase = false; |
364 | #endif // DEBUG |
365 | return m_value; |
366 | } |
367 | |
368 | // Mark the value as read only; explicitly change the variable to the "read" phase. |
369 | void MarkAsReadOnly() const |
370 | { |
371 | #ifdef DEBUG |
372 | assert(m_initialized); |
373 | (const_cast<PhasedVar*>(this))->m_writePhase = false; |
374 | #endif // DEBUG |
375 | } |
376 | |
377 | // When dumping stuff we could try to read a PhasedVariable |
378 | // This method tells us whether we should read the PhasedVariable |
379 | bool HasFinalValue() const |
380 | { |
381 | #ifdef DEBUG |
382 | return (const_cast<PhasedVar*>(this))->m_writePhase == false; |
383 | #else |
384 | return true; |
385 | #endif // DEBUG |
386 | } |
387 | |
388 | // Functions/operators to write the value. Must be in the write phase. |
389 | |
390 | PhasedVar& operator=(const T& value) |
391 | { |
392 | #ifdef DEBUG |
393 | assert(m_writePhase); |
394 | m_initialized = true; |
395 | #endif // DEBUG |
396 | m_value = value; |
397 | return *this; |
398 | } |
399 | |
400 | PhasedVar& operator&=(const T& value) |
401 | { |
402 | #ifdef DEBUG |
403 | assert(m_writePhase); |
404 | m_initialized = true; |
405 | #endif // DEBUG |
406 | m_value &= value; |
407 | return *this; |
408 | } |
409 | |
410 | // Note: if you need more <op>= functions, you can define them here, like operator&= |
411 | |
412 | // Assign a value, but don't assert if we're not in the write phase, and |
413 | // don't change the phase (if we're actually in the read phase, we'll stay |
414 | // in the read phase). This is a dangerous function, and overrides the main |
415 | // benefit of this class. Use it wisely! |
416 | void OverrideAssign(const T& value) |
417 | { |
418 | #ifdef DEBUG |
419 | m_initialized = true; |
420 | #endif // DEBUG |
421 | m_value = value; |
422 | } |
423 | |
424 | // We've decided that this variable can go back to write phase, even if it has been |
425 | // written. This can be used, for example, for variables set and read during frame |
426 | // layout calculation, as long as it is before final layout, such that anything |
427 | // being calculated is just an estimate anyway. Obviously, it must be used carefully, |
428 | // since it overrides the main benefit of this class. |
429 | void ResetWritePhase() |
430 | { |
431 | #ifdef DEBUG |
432 | m_writePhase = true; |
433 | #endif // DEBUG |
434 | } |
435 | |
436 | private: |
437 | // Don't allow a copy constructor. (This could be allowed, but only add it once it is actually needed.) |
438 | |
439 | PhasedVar(const PhasedVar& o) |
440 | { |
441 | unreached(); |
442 | } |
443 | |
444 | T m_value; |
445 | #ifdef DEBUG |
446 | bool m_initialized; // true once the variable has been initialized, that is, written once. |
447 | bool m_writePhase; // true if we are in the (initial) "write" phase. Once the value is read, this changes to false, |
448 | // and can't be changed back. |
449 | #endif // DEBUG |
450 | }; |
451 | |
452 | class HelperCallProperties |
453 | { |
454 | private: |
455 | bool m_isPure[CORINFO_HELP_COUNT]; |
456 | bool m_noThrow[CORINFO_HELP_COUNT]; |
457 | bool m_nonNullReturn[CORINFO_HELP_COUNT]; |
458 | bool m_isAllocator[CORINFO_HELP_COUNT]; |
459 | bool m_mutatesHeap[CORINFO_HELP_COUNT]; |
460 | bool m_mayRunCctor[CORINFO_HELP_COUNT]; |
461 | |
462 | void init(); |
463 | |
464 | public: |
465 | HelperCallProperties() |
466 | { |
467 | init(); |
468 | } |
469 | |
470 | bool IsPure(CorInfoHelpFunc helperId) |
471 | { |
472 | assert(helperId > CORINFO_HELP_UNDEF); |
473 | assert(helperId < CORINFO_HELP_COUNT); |
474 | return m_isPure[helperId]; |
475 | } |
476 | |
477 | bool NoThrow(CorInfoHelpFunc helperId) |
478 | { |
479 | assert(helperId > CORINFO_HELP_UNDEF); |
480 | assert(helperId < CORINFO_HELP_COUNT); |
481 | return m_noThrow[helperId]; |
482 | } |
483 | |
484 | bool NonNullReturn(CorInfoHelpFunc helperId) |
485 | { |
486 | assert(helperId > CORINFO_HELP_UNDEF); |
487 | assert(helperId < CORINFO_HELP_COUNT); |
488 | return m_nonNullReturn[helperId]; |
489 | } |
490 | |
491 | bool IsAllocator(CorInfoHelpFunc helperId) |
492 | { |
493 | assert(helperId > CORINFO_HELP_UNDEF); |
494 | assert(helperId < CORINFO_HELP_COUNT); |
495 | return m_isAllocator[helperId]; |
496 | } |
497 | |
498 | bool MutatesHeap(CorInfoHelpFunc helperId) |
499 | { |
500 | assert(helperId > CORINFO_HELP_UNDEF); |
501 | assert(helperId < CORINFO_HELP_COUNT); |
502 | return m_mutatesHeap[helperId]; |
503 | } |
504 | |
505 | bool MayRunCctor(CorInfoHelpFunc helperId) |
506 | { |
507 | assert(helperId > CORINFO_HELP_UNDEF); |
508 | assert(helperId < CORINFO_HELP_COUNT); |
509 | return m_mayRunCctor[helperId]; |
510 | } |
511 | }; |
512 | |
513 | //***************************************************************************** |
514 | // AssemblyNamesList2: Parses and stores a list of Assembly names, and provides |
515 | // a function for determining whether a given assembly name is part of the list. |
516 | // |
517 | // This is a clone of the AssemblyNamesList class that exists in the VM's utilcode, |
518 | // modified to use the JIT's memory allocator and throw on out of memory behavior. |
519 | // It is named AssemblyNamesList2 to avoid a name conflict with the VM version. |
520 | // It might be preferable to adapt the VM's code to be more flexible (for example, |
521 | // by using an IAllocator), but the string handling code there is heavily macroized, |
522 | // and for the small usage we have of this class, investing in genericizing the VM |
523 | // implementation didn't seem worth it. |
524 | //***************************************************************************** |
525 | |
526 | class AssemblyNamesList2 |
527 | { |
528 | struct AssemblyName |
529 | { |
530 | char* m_assemblyName; |
531 | AssemblyName* m_next; |
532 | }; |
533 | |
534 | AssemblyName* m_pNames; // List of names |
535 | HostAllocator m_alloc; // HostAllocator to use in this class |
536 | |
537 | public: |
538 | // Take a Unicode string list of assembly names, parse it, and store it. |
539 | AssemblyNamesList2(const wchar_t* list, HostAllocator alloc); |
540 | |
541 | ~AssemblyNamesList2(); |
542 | |
543 | // Return 'true' if 'assemblyName' (in UTF-8 format) is in the stored list of assembly names. |
544 | bool IsInList(const char* assemblyName); |
545 | |
546 | // Return 'true' if the assembly name list is empty. |
547 | bool IsEmpty() |
548 | { |
549 | return m_pNames == nullptr; |
550 | } |
551 | }; |
552 | |
553 | #ifdef FEATURE_JIT_METHOD_PERF |
554 | // When Start() is called time is noted and when ElapsedTime |
555 | // is called we know how much time was spent in msecs. |
556 | // |
557 | class CycleCount |
558 | { |
559 | private: |
560 | double cps; // cycles per second |
561 | unsigned __int64 beginCycles; // cycles at stop watch construction |
562 | public: |
563 | CycleCount(); |
564 | |
565 | // Kick off the counter, and if re-entrant will use the latest cycles as starting point. |
566 | // If the method returns false, any other query yield unpredictable results. |
567 | bool Start(); |
568 | |
569 | // Return time elapsed in msecs, if Start returned true. |
570 | double ElapsedTime(); |
571 | |
572 | private: |
573 | // Return true if successful. |
574 | bool GetCycles(unsigned __int64* time); |
575 | }; |
576 | |
577 | // Uses win API QueryPerformanceCounter/QueryPerformanceFrequency. |
578 | class PerfCounter |
579 | { |
580 | LARGE_INTEGER beg; |
581 | double freq; |
582 | |
583 | public: |
584 | // If the method returns false, any other query yield unpredictable results. |
585 | bool Start(); |
586 | |
587 | // Return time elapsed from start in millis, if Start returned true. |
588 | double ElapsedTime(); |
589 | }; |
590 | |
591 | #endif // FEATURE_JIT_METHOD_PERF |
592 | |
593 | #ifdef DEBUG |
594 | |
595 | /***************************************************************************** |
596 | * Return the number of digits in a number of the given base (default base 10). |
597 | * Used when outputting strings. |
598 | */ |
599 | unsigned CountDigits(unsigned num, unsigned base = 10); |
600 | |
601 | #endif // DEBUG |
602 | |
603 | /***************************************************************************** |
604 | * Floating point utility class |
605 | */ |
606 | class FloatingPointUtils |
607 | { |
608 | public: |
609 | static double convertUInt64ToDouble(unsigned __int64 u64); |
610 | |
611 | static float convertUInt64ToFloat(unsigned __int64 u64); |
612 | |
613 | static unsigned __int64 convertDoubleToUInt64(double d); |
614 | |
615 | static double round(double x); |
616 | |
617 | static float round(float x); |
618 | }; |
619 | |
620 | // The CLR requires that critical section locks be initialized via its ClrCreateCriticalSection API...but |
621 | // that can't be called until the CLR is initialized. If we have static data that we'd like to protect by a |
622 | // lock, and we have a statically allocated lock to protect that data, there's an issue in how to initialize |
623 | // that lock. We could insert an initialize call in the startup path, but one might prefer to keep the code |
624 | // more local. For such situations, CritSecObject solves the initialization problem, via a level of |
625 | // indirection. A pointer to the lock is initially null, and when we query for the lock pointer via "Val()". |
626 | // If the lock has not yet been allocated, this allocates one (here a leaf lock), and uses a |
627 | // CompareAndExchange-based lazy-initialization to update the field. If this fails, the allocated lock is |
628 | // destroyed. This will work as long as the first locking attempt occurs after enough CLR initialization has |
629 | // happened to make ClrCreateCriticalSection calls legal. |
630 | |
631 | class CritSecObject |
632 | { |
633 | public: |
634 | CritSecObject() |
635 | { |
636 | m_pCs = nullptr; |
637 | } |
638 | |
639 | CRITSEC_COOKIE Val() |
640 | { |
641 | if (m_pCs == nullptr) |
642 | { |
643 | // CompareExchange-based lazy init. |
644 | CRITSEC_COOKIE newCs = ClrCreateCriticalSection(CrstLeafLock, CRST_DEFAULT); |
645 | CRITSEC_COOKIE observed = InterlockedCompareExchangeT(&m_pCs, newCs, NULL); |
646 | if (observed != nullptr) |
647 | { |
648 | ClrDeleteCriticalSection(newCs); |
649 | } |
650 | } |
651 | return m_pCs; |
652 | } |
653 | |
654 | private: |
655 | // CRITSEC_COOKIE is an opaque pointer type. |
656 | CRITSEC_COOKIE m_pCs; |
657 | |
658 | // No copying or assignment allowed. |
659 | CritSecObject(const CritSecObject&) = delete; |
660 | CritSecObject& operator=(const CritSecObject&) = delete; |
661 | }; |
662 | |
663 | // Stack-based holder for a critial section lock. |
664 | // Ensures lock is released. |
665 | |
666 | class CritSecHolder |
667 | { |
668 | public: |
669 | CritSecHolder(CritSecObject& critSec) : m_CritSec(critSec) |
670 | { |
671 | ClrEnterCriticalSection(m_CritSec.Val()); |
672 | } |
673 | |
674 | ~CritSecHolder() |
675 | { |
676 | ClrLeaveCriticalSection(m_CritSec.Val()); |
677 | } |
678 | |
679 | private: |
680 | CritSecObject& m_CritSec; |
681 | |
682 | // No copying or assignment allowed. |
683 | CritSecHolder(const CritSecHolder&) = delete; |
684 | CritSecHolder& operator=(const CritSecHolder&) = delete; |
685 | }; |
686 | |
687 | namespace MagicDivide |
688 | { |
689 | uint32_t GetUnsigned32Magic(uint32_t d, bool* add /*out*/, int* shift /*out*/); |
690 | #ifdef _TARGET_64BIT_ |
691 | uint64_t GetUnsigned64Magic(uint64_t d, bool* add /*out*/, int* shift /*out*/); |
692 | #endif |
693 | int32_t GetSigned32Magic(int32_t d, int* shift /*out*/); |
694 | #ifdef _TARGET_64BIT_ |
695 | int64_t GetSigned64Magic(int64_t d, int* shift /*out*/); |
696 | #endif |
697 | } |
698 | |
699 | #endif // _UTILS_H_ |
700 | |