| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7 | XX XX |
| 8 | XX Utils.h XX |
| 9 | XX XX |
| 10 | XX Has miscellaneous utility functions XX |
| 11 | XX XX |
| 12 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 13 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 14 | */ |
| 15 | |
| 16 | #ifndef _UTILS_H_ |
| 17 | #define _UTILS_H_ |
| 18 | |
| 19 | #include "iallocator.h" |
| 20 | #include "hostallocator.h" |
| 21 | #include "cycletimer.h" |
| 22 | |
| 23 | // Needed for unreached() |
| 24 | #include "error.h" |
| 25 | |
| 26 | #ifdef _TARGET_64BIT_ |
| 27 | #define BitScanForwardPtr BitScanForward64 |
| 28 | #else |
| 29 | #define BitScanForwardPtr BitScanForward |
| 30 | #endif |
| 31 | |
| 32 | template <typename T, int size> |
| 33 | unsigned ArrLen(T (&)[size]) |
| 34 | { |
| 35 | return size; |
| 36 | } |
| 37 | |
| 38 | // return true if arg is a power of 2 |
| 39 | template <typename T> |
| 40 | inline bool isPow2(T i) |
| 41 | { |
| 42 | return (i > 0 && ((i - 1) & i) == 0); |
| 43 | } |
| 44 | |
| 45 | // Adapter for iterators to a type that is compatible with C++11 |
| 46 | // range-based for loops. |
| 47 | template <typename TIterator> |
| 48 | class IteratorPair |
| 49 | { |
| 50 | TIterator m_begin; |
| 51 | TIterator m_end; |
| 52 | |
| 53 | public: |
| 54 | IteratorPair(TIterator begin, TIterator end) : m_begin(begin), m_end(end) |
| 55 | { |
| 56 | } |
| 57 | |
| 58 | inline TIterator begin() |
| 59 | { |
| 60 | return m_begin; |
| 61 | } |
| 62 | |
| 63 | inline TIterator end() |
| 64 | { |
| 65 | return m_end; |
| 66 | } |
| 67 | }; |
| 68 | |
| 69 | template <typename TIterator> |
| 70 | inline IteratorPair<TIterator> MakeIteratorPair(TIterator begin, TIterator end) |
| 71 | { |
| 72 | return IteratorPair<TIterator>(begin, end); |
| 73 | } |
| 74 | |
| 75 | // Recursive template definition to calculate the base-2 logarithm |
| 76 | // of a constant value. |
| 77 | template <unsigned val, unsigned acc = 0> |
| 78 | struct ConstLog2 |
| 79 | { |
| 80 | enum |
| 81 | { |
| 82 | value = ConstLog2<val / 2, acc + 1>::value |
| 83 | }; |
| 84 | }; |
| 85 | |
| 86 | template <unsigned acc> |
| 87 | struct ConstLog2<0, acc> |
| 88 | { |
| 89 | enum |
| 90 | { |
| 91 | value = acc |
| 92 | }; |
| 93 | }; |
| 94 | |
| 95 | template <unsigned acc> |
| 96 | struct ConstLog2<1, acc> |
| 97 | { |
| 98 | enum |
| 99 | { |
| 100 | value = acc |
| 101 | }; |
| 102 | }; |
| 103 | |
| 104 | inline const char* dspBool(bool b) |
| 105 | { |
| 106 | return (b) ? "true" : "false" ; |
| 107 | } |
| 108 | |
| 109 | #ifdef FEATURE_CORECLR |
| 110 | #ifdef _CRT_ABS_DEFINED |
| 111 | // we don't have the full standard library |
| 112 | inline int64_t abs(int64_t t) |
| 113 | { |
| 114 | return t > 0 ? t : -t; |
| 115 | } |
| 116 | #endif |
| 117 | #endif // FEATURE_CORECLR |
| 118 | |
| 119 | template <typename T> |
| 120 | int signum(T val) |
| 121 | { |
| 122 | if (val < T(0)) |
| 123 | { |
| 124 | return -1; |
| 125 | } |
| 126 | else if (val > T(0)) |
| 127 | { |
| 128 | return 1; |
| 129 | } |
| 130 | else |
| 131 | { |
| 132 | return 0; |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | #if defined(DEBUG) || defined(INLINE_DATA) |
| 137 | |
| 138 | // ConfigMethodRange describes a set of methods, specified via their |
| 139 | // hash codes. This can be used for binary search and/or specifying an |
| 140 | // explicit method set. |
| 141 | // |
| 142 | // Note method hash codes are not necessarily unique. For instance |
| 143 | // many IL stubs may have the same hash. |
| 144 | // |
| 145 | // If range string is null or just whitespace, range includes all |
| 146 | // methods. |
| 147 | // |
| 148 | // Parses values as decimal numbers. |
| 149 | // |
| 150 | // Examples: |
| 151 | // |
| 152 | // [string with just spaces] : all methods |
| 153 | // 12345678 : a single method |
| 154 | // 12345678-23456789 : a range of methods |
| 155 | // 99998888 12345678-23456789 : a range of methods plus a single method |
| 156 | |
| 157 | class ConfigMethodRange |
| 158 | { |
| 159 | |
| 160 | public: |
| 161 | // Default capacity |
| 162 | enum |
| 163 | { |
| 164 | DEFAULT_CAPACITY = 50 |
| 165 | }; |
| 166 | |
| 167 | // Does the range include this method's hash? |
| 168 | bool Contains(class ICorJitInfo* info, CORINFO_METHOD_HANDLE method); |
| 169 | |
| 170 | // Ensure the range string has been parsed. |
| 171 | void EnsureInit(const wchar_t* rangeStr, unsigned capacity = DEFAULT_CAPACITY) |
| 172 | { |
| 173 | // Make sure that the memory was zero initialized |
| 174 | assert(m_inited == 0 || m_inited == 1); |
| 175 | |
| 176 | if (!m_inited) |
| 177 | { |
| 178 | InitRanges(rangeStr, capacity); |
| 179 | assert(m_inited == 1); |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | // Error checks |
| 184 | bool Error() const |
| 185 | { |
| 186 | return m_badChar != 0; |
| 187 | } |
| 188 | size_t BadCharIndex() const |
| 189 | { |
| 190 | return m_badChar - 1; |
| 191 | } |
| 192 | |
| 193 | private: |
| 194 | struct Range |
| 195 | { |
| 196 | unsigned m_low; |
| 197 | unsigned m_high; |
| 198 | }; |
| 199 | |
| 200 | void InitRanges(const wchar_t* rangeStr, unsigned capacity); |
| 201 | |
| 202 | unsigned m_entries; // number of entries in the range array |
| 203 | unsigned m_lastRange; // count of low-high pairs |
| 204 | unsigned m_inited; // 1 if range string has been parsed |
| 205 | size_t m_badChar; // index + 1 of any bad character in range string |
| 206 | Range* m_ranges; // ranges of functions to include |
| 207 | }; |
| 208 | |
| 209 | #endif // defined(DEBUG) || defined(INLINE_DATA) |
| 210 | |
| 211 | class Compiler; |
| 212 | |
| 213 | /***************************************************************************** |
| 214 | * Fixed bit vector class |
| 215 | */ |
| 216 | class FixedBitVect |
| 217 | { |
| 218 | private: |
| 219 | UINT bitVectSize; |
| 220 | UINT bitVect[]; |
| 221 | |
| 222 | // bitChunkSize() - Returns number of bits in a bitVect chunk |
| 223 | static UINT bitChunkSize(); |
| 224 | |
| 225 | // bitNumToBit() - Returns a bit mask of the given bit number |
| 226 | static UINT bitNumToBit(UINT bitNum); |
| 227 | |
| 228 | public: |
| 229 | // bitVectInit() - Initializes a bit vector of a given size |
| 230 | static FixedBitVect* bitVectInit(UINT size, Compiler* comp); |
| 231 | |
| 232 | // bitVectSet() - Sets the given bit |
| 233 | void bitVectSet(UINT bitNum); |
| 234 | |
| 235 | // bitVectTest() - Tests the given bit |
| 236 | bool bitVectTest(UINT bitNum); |
| 237 | |
| 238 | // bitVectOr() - Or in the given bit vector |
| 239 | void bitVectOr(FixedBitVect* bv); |
| 240 | |
| 241 | // bitVectAnd() - And with passed in bit vector |
| 242 | void bitVectAnd(FixedBitVect& bv); |
| 243 | |
| 244 | // bitVectGetFirst() - Find the first bit on and return the bit num. |
| 245 | // Return -1 if no bits found. |
| 246 | UINT bitVectGetFirst(); |
| 247 | |
| 248 | // bitVectGetNext() - Find the next bit on given previous bit and return bit num. |
| 249 | // Return -1 if no bits found. |
| 250 | UINT bitVectGetNext(UINT bitNumPrev); |
| 251 | |
| 252 | // bitVectGetNextAndClear() - Find the first bit on, clear it and return it. |
| 253 | // Return -1 if no bits found. |
| 254 | UINT bitVectGetNextAndClear(); |
| 255 | }; |
| 256 | |
| 257 | /****************************************************************************** |
| 258 | * A specialized version of sprintf_s to simplify conversion to SecureCRT |
| 259 | * |
| 260 | * pWriteStart -> A pointer to the first byte to which data is written. |
| 261 | * pBufStart -> the start of the buffer into which the data is written. If |
| 262 | * composing a complex string with multiple calls to sprintf, this |
| 263 | * should not change. |
| 264 | * cbBufSize -> The size of the overall buffer (i.e. the size of the buffer |
| 265 | * pointed to by pBufStart). For subsequent calls, this does not |
| 266 | * change. |
| 267 | * fmt -> The format string |
| 268 | * ... -> Arguments. |
| 269 | * |
| 270 | * returns -> number of bytes successfully written, not including the null |
| 271 | * terminator. Calls NO_WAY on error. |
| 272 | */ |
| 273 | int SimpleSprintf_s(__in_ecount(cbBufSize - (pWriteStart - pBufStart)) char* pWriteStart, |
| 274 | __in_ecount(cbBufSize) char* pBufStart, |
| 275 | size_t cbBufSize, |
| 276 | __in_z const char* fmt, |
| 277 | ...); |
| 278 | |
| 279 | #ifdef DEBUG |
| 280 | void hexDump(FILE* dmpf, const char* name, BYTE* addr, size_t size); |
| 281 | #endif // DEBUG |
| 282 | |
| 283 | /****************************************************************************** |
| 284 | * ScopedSetVariable: A simple class to set and restore a variable within a scope. |
| 285 | * For example, it can be used to set a 'bool' flag to 'true' at the beginning of a |
| 286 | * function and automatically back to 'false' either at the end the function, or at |
| 287 | * any other return location. The variable should not be changed during the scope: |
| 288 | * the destructor asserts that the value at destruction time is the same one we set. |
| 289 | * Usage: ScopedSetVariable<bool> _unused_name(&variable, true); |
| 290 | */ |
| 291 | template <typename T> |
| 292 | class ScopedSetVariable |
| 293 | { |
| 294 | public: |
| 295 | ScopedSetVariable(T* pVariable, T value) : m_pVariable(pVariable) |
| 296 | { |
| 297 | m_oldValue = *m_pVariable; |
| 298 | *m_pVariable = value; |
| 299 | INDEBUG(m_value = value;) |
| 300 | } |
| 301 | |
| 302 | ~ScopedSetVariable() |
| 303 | { |
| 304 | assert(*m_pVariable == m_value); // Assert that the value didn't change between ctor and dtor |
| 305 | *m_pVariable = m_oldValue; |
| 306 | } |
| 307 | |
| 308 | private: |
| 309 | #ifdef DEBUG |
| 310 | T m_value; // The value we set the variable to (used for assert). |
| 311 | #endif // DEBUG |
| 312 | T m_oldValue; // The old value, to restore the variable to. |
| 313 | T* m_pVariable; // Address of the variable to change |
| 314 | }; |
| 315 | |
| 316 | /****************************************************************************** |
| 317 | * PhasedVar: A class to represent a variable that has phases, in particular, |
| 318 | * a write phase where the variable is computed, and a read phase where the |
| 319 | * variable is used. Once the variable has been read, it can no longer be changed. |
| 320 | * Reading the variable essentially commits everyone to using that value forever, |
| 321 | * and it is assumed that subsequent changes to the variable would invalidate |
| 322 | * whatever assumptions were made by the previous readers, leading to bad generated code. |
| 323 | * These assumptions are asserted in DEBUG builds. |
| 324 | * The phase ordering is clean for AMD64, but not for x86/ARM. So don't do the phase |
| 325 | * ordering asserts for those platforms. |
| 326 | */ |
| 327 | template <typename T> |
| 328 | class PhasedVar |
| 329 | { |
| 330 | public: |
| 331 | PhasedVar() |
| 332 | #ifdef DEBUG |
| 333 | : m_initialized(false), m_writePhase(true) |
| 334 | #endif // DEBUG |
| 335 | { |
| 336 | } |
| 337 | |
| 338 | PhasedVar(T value) |
| 339 | : m_value(value) |
| 340 | #ifdef DEBUG |
| 341 | , m_initialized(true) |
| 342 | , m_writePhase(true) |
| 343 | #endif // DEBUG |
| 344 | { |
| 345 | } |
| 346 | |
| 347 | ~PhasedVar() |
| 348 | { |
| 349 | #ifdef DEBUG |
| 350 | m_initialized = false; |
| 351 | m_writePhase = true; |
| 352 | #endif // DEBUG |
| 353 | } |
| 354 | |
| 355 | // Read the value. Change to the read phase. |
| 356 | // Marked 'const' because we don't change the encapsulated value, even though |
| 357 | // we do change the write phase, which is only for debugging asserts. |
| 358 | |
| 359 | operator T() const |
| 360 | { |
| 361 | #ifdef DEBUG |
| 362 | assert(m_initialized); |
| 363 | (const_cast<PhasedVar*>(this))->m_writePhase = false; |
| 364 | #endif // DEBUG |
| 365 | return m_value; |
| 366 | } |
| 367 | |
| 368 | // Mark the value as read only; explicitly change the variable to the "read" phase. |
| 369 | void MarkAsReadOnly() const |
| 370 | { |
| 371 | #ifdef DEBUG |
| 372 | assert(m_initialized); |
| 373 | (const_cast<PhasedVar*>(this))->m_writePhase = false; |
| 374 | #endif // DEBUG |
| 375 | } |
| 376 | |
| 377 | // When dumping stuff we could try to read a PhasedVariable |
| 378 | // This method tells us whether we should read the PhasedVariable |
| 379 | bool HasFinalValue() const |
| 380 | { |
| 381 | #ifdef DEBUG |
| 382 | return (const_cast<PhasedVar*>(this))->m_writePhase == false; |
| 383 | #else |
| 384 | return true; |
| 385 | #endif // DEBUG |
| 386 | } |
| 387 | |
| 388 | // Functions/operators to write the value. Must be in the write phase. |
| 389 | |
| 390 | PhasedVar& operator=(const T& value) |
| 391 | { |
| 392 | #ifdef DEBUG |
| 393 | assert(m_writePhase); |
| 394 | m_initialized = true; |
| 395 | #endif // DEBUG |
| 396 | m_value = value; |
| 397 | return *this; |
| 398 | } |
| 399 | |
| 400 | PhasedVar& operator&=(const T& value) |
| 401 | { |
| 402 | #ifdef DEBUG |
| 403 | assert(m_writePhase); |
| 404 | m_initialized = true; |
| 405 | #endif // DEBUG |
| 406 | m_value &= value; |
| 407 | return *this; |
| 408 | } |
| 409 | |
| 410 | // Note: if you need more <op>= functions, you can define them here, like operator&= |
| 411 | |
| 412 | // Assign a value, but don't assert if we're not in the write phase, and |
| 413 | // don't change the phase (if we're actually in the read phase, we'll stay |
| 414 | // in the read phase). This is a dangerous function, and overrides the main |
| 415 | // benefit of this class. Use it wisely! |
| 416 | void OverrideAssign(const T& value) |
| 417 | { |
| 418 | #ifdef DEBUG |
| 419 | m_initialized = true; |
| 420 | #endif // DEBUG |
| 421 | m_value = value; |
| 422 | } |
| 423 | |
| 424 | // We've decided that this variable can go back to write phase, even if it has been |
| 425 | // written. This can be used, for example, for variables set and read during frame |
| 426 | // layout calculation, as long as it is before final layout, such that anything |
| 427 | // being calculated is just an estimate anyway. Obviously, it must be used carefully, |
| 428 | // since it overrides the main benefit of this class. |
| 429 | void ResetWritePhase() |
| 430 | { |
| 431 | #ifdef DEBUG |
| 432 | m_writePhase = true; |
| 433 | #endif // DEBUG |
| 434 | } |
| 435 | |
| 436 | private: |
| 437 | // Don't allow a copy constructor. (This could be allowed, but only add it once it is actually needed.) |
| 438 | |
| 439 | PhasedVar(const PhasedVar& o) |
| 440 | { |
| 441 | unreached(); |
| 442 | } |
| 443 | |
| 444 | T m_value; |
| 445 | #ifdef DEBUG |
| 446 | bool m_initialized; // true once the variable has been initialized, that is, written once. |
| 447 | bool m_writePhase; // true if we are in the (initial) "write" phase. Once the value is read, this changes to false, |
| 448 | // and can't be changed back. |
| 449 | #endif // DEBUG |
| 450 | }; |
| 451 | |
| 452 | class HelperCallProperties |
| 453 | { |
| 454 | private: |
| 455 | bool m_isPure[CORINFO_HELP_COUNT]; |
| 456 | bool m_noThrow[CORINFO_HELP_COUNT]; |
| 457 | bool m_nonNullReturn[CORINFO_HELP_COUNT]; |
| 458 | bool m_isAllocator[CORINFO_HELP_COUNT]; |
| 459 | bool m_mutatesHeap[CORINFO_HELP_COUNT]; |
| 460 | bool m_mayRunCctor[CORINFO_HELP_COUNT]; |
| 461 | |
| 462 | void init(); |
| 463 | |
| 464 | public: |
| 465 | HelperCallProperties() |
| 466 | { |
| 467 | init(); |
| 468 | } |
| 469 | |
| 470 | bool IsPure(CorInfoHelpFunc helperId) |
| 471 | { |
| 472 | assert(helperId > CORINFO_HELP_UNDEF); |
| 473 | assert(helperId < CORINFO_HELP_COUNT); |
| 474 | return m_isPure[helperId]; |
| 475 | } |
| 476 | |
| 477 | bool NoThrow(CorInfoHelpFunc helperId) |
| 478 | { |
| 479 | assert(helperId > CORINFO_HELP_UNDEF); |
| 480 | assert(helperId < CORINFO_HELP_COUNT); |
| 481 | return m_noThrow[helperId]; |
| 482 | } |
| 483 | |
| 484 | bool NonNullReturn(CorInfoHelpFunc helperId) |
| 485 | { |
| 486 | assert(helperId > CORINFO_HELP_UNDEF); |
| 487 | assert(helperId < CORINFO_HELP_COUNT); |
| 488 | return m_nonNullReturn[helperId]; |
| 489 | } |
| 490 | |
| 491 | bool IsAllocator(CorInfoHelpFunc helperId) |
| 492 | { |
| 493 | assert(helperId > CORINFO_HELP_UNDEF); |
| 494 | assert(helperId < CORINFO_HELP_COUNT); |
| 495 | return m_isAllocator[helperId]; |
| 496 | } |
| 497 | |
| 498 | bool MutatesHeap(CorInfoHelpFunc helperId) |
| 499 | { |
| 500 | assert(helperId > CORINFO_HELP_UNDEF); |
| 501 | assert(helperId < CORINFO_HELP_COUNT); |
| 502 | return m_mutatesHeap[helperId]; |
| 503 | } |
| 504 | |
| 505 | bool MayRunCctor(CorInfoHelpFunc helperId) |
| 506 | { |
| 507 | assert(helperId > CORINFO_HELP_UNDEF); |
| 508 | assert(helperId < CORINFO_HELP_COUNT); |
| 509 | return m_mayRunCctor[helperId]; |
| 510 | } |
| 511 | }; |
| 512 | |
| 513 | //***************************************************************************** |
| 514 | // AssemblyNamesList2: Parses and stores a list of Assembly names, and provides |
| 515 | // a function for determining whether a given assembly name is part of the list. |
| 516 | // |
| 517 | // This is a clone of the AssemblyNamesList class that exists in the VM's utilcode, |
| 518 | // modified to use the JIT's memory allocator and throw on out of memory behavior. |
| 519 | // It is named AssemblyNamesList2 to avoid a name conflict with the VM version. |
| 520 | // It might be preferable to adapt the VM's code to be more flexible (for example, |
| 521 | // by using an IAllocator), but the string handling code there is heavily macroized, |
| 522 | // and for the small usage we have of this class, investing in genericizing the VM |
| 523 | // implementation didn't seem worth it. |
| 524 | //***************************************************************************** |
| 525 | |
| 526 | class AssemblyNamesList2 |
| 527 | { |
| 528 | struct AssemblyName |
| 529 | { |
| 530 | char* m_assemblyName; |
| 531 | AssemblyName* m_next; |
| 532 | }; |
| 533 | |
| 534 | AssemblyName* m_pNames; // List of names |
| 535 | HostAllocator m_alloc; // HostAllocator to use in this class |
| 536 | |
| 537 | public: |
| 538 | // Take a Unicode string list of assembly names, parse it, and store it. |
| 539 | AssemblyNamesList2(const wchar_t* list, HostAllocator alloc); |
| 540 | |
| 541 | ~AssemblyNamesList2(); |
| 542 | |
| 543 | // Return 'true' if 'assemblyName' (in UTF-8 format) is in the stored list of assembly names. |
| 544 | bool IsInList(const char* assemblyName); |
| 545 | |
| 546 | // Return 'true' if the assembly name list is empty. |
| 547 | bool IsEmpty() |
| 548 | { |
| 549 | return m_pNames == nullptr; |
| 550 | } |
| 551 | }; |
| 552 | |
| 553 | #ifdef FEATURE_JIT_METHOD_PERF |
| 554 | // When Start() is called time is noted and when ElapsedTime |
| 555 | // is called we know how much time was spent in msecs. |
| 556 | // |
| 557 | class CycleCount |
| 558 | { |
| 559 | private: |
| 560 | double cps; // cycles per second |
| 561 | unsigned __int64 beginCycles; // cycles at stop watch construction |
| 562 | public: |
| 563 | CycleCount(); |
| 564 | |
| 565 | // Kick off the counter, and if re-entrant will use the latest cycles as starting point. |
| 566 | // If the method returns false, any other query yield unpredictable results. |
| 567 | bool Start(); |
| 568 | |
| 569 | // Return time elapsed in msecs, if Start returned true. |
| 570 | double ElapsedTime(); |
| 571 | |
| 572 | private: |
| 573 | // Return true if successful. |
| 574 | bool GetCycles(unsigned __int64* time); |
| 575 | }; |
| 576 | |
| 577 | // Uses win API QueryPerformanceCounter/QueryPerformanceFrequency. |
| 578 | class PerfCounter |
| 579 | { |
| 580 | LARGE_INTEGER beg; |
| 581 | double freq; |
| 582 | |
| 583 | public: |
| 584 | // If the method returns false, any other query yield unpredictable results. |
| 585 | bool Start(); |
| 586 | |
| 587 | // Return time elapsed from start in millis, if Start returned true. |
| 588 | double ElapsedTime(); |
| 589 | }; |
| 590 | |
| 591 | #endif // FEATURE_JIT_METHOD_PERF |
| 592 | |
| 593 | #ifdef DEBUG |
| 594 | |
| 595 | /***************************************************************************** |
| 596 | * Return the number of digits in a number of the given base (default base 10). |
| 597 | * Used when outputting strings. |
| 598 | */ |
| 599 | unsigned CountDigits(unsigned num, unsigned base = 10); |
| 600 | |
| 601 | #endif // DEBUG |
| 602 | |
| 603 | /***************************************************************************** |
| 604 | * Floating point utility class |
| 605 | */ |
| 606 | class FloatingPointUtils |
| 607 | { |
| 608 | public: |
| 609 | static double convertUInt64ToDouble(unsigned __int64 u64); |
| 610 | |
| 611 | static float convertUInt64ToFloat(unsigned __int64 u64); |
| 612 | |
| 613 | static unsigned __int64 convertDoubleToUInt64(double d); |
| 614 | |
| 615 | static double round(double x); |
| 616 | |
| 617 | static float round(float x); |
| 618 | }; |
| 619 | |
| 620 | // The CLR requires that critical section locks be initialized via its ClrCreateCriticalSection API...but |
| 621 | // that can't be called until the CLR is initialized. If we have static data that we'd like to protect by a |
| 622 | // lock, and we have a statically allocated lock to protect that data, there's an issue in how to initialize |
| 623 | // that lock. We could insert an initialize call in the startup path, but one might prefer to keep the code |
| 624 | // more local. For such situations, CritSecObject solves the initialization problem, via a level of |
| 625 | // indirection. A pointer to the lock is initially null, and when we query for the lock pointer via "Val()". |
| 626 | // If the lock has not yet been allocated, this allocates one (here a leaf lock), and uses a |
| 627 | // CompareAndExchange-based lazy-initialization to update the field. If this fails, the allocated lock is |
| 628 | // destroyed. This will work as long as the first locking attempt occurs after enough CLR initialization has |
| 629 | // happened to make ClrCreateCriticalSection calls legal. |
| 630 | |
| 631 | class CritSecObject |
| 632 | { |
| 633 | public: |
| 634 | CritSecObject() |
| 635 | { |
| 636 | m_pCs = nullptr; |
| 637 | } |
| 638 | |
| 639 | CRITSEC_COOKIE Val() |
| 640 | { |
| 641 | if (m_pCs == nullptr) |
| 642 | { |
| 643 | // CompareExchange-based lazy init. |
| 644 | CRITSEC_COOKIE newCs = ClrCreateCriticalSection(CrstLeafLock, CRST_DEFAULT); |
| 645 | CRITSEC_COOKIE observed = InterlockedCompareExchangeT(&m_pCs, newCs, NULL); |
| 646 | if (observed != nullptr) |
| 647 | { |
| 648 | ClrDeleteCriticalSection(newCs); |
| 649 | } |
| 650 | } |
| 651 | return m_pCs; |
| 652 | } |
| 653 | |
| 654 | private: |
| 655 | // CRITSEC_COOKIE is an opaque pointer type. |
| 656 | CRITSEC_COOKIE m_pCs; |
| 657 | |
| 658 | // No copying or assignment allowed. |
| 659 | CritSecObject(const CritSecObject&) = delete; |
| 660 | CritSecObject& operator=(const CritSecObject&) = delete; |
| 661 | }; |
| 662 | |
| 663 | // Stack-based holder for a critial section lock. |
| 664 | // Ensures lock is released. |
| 665 | |
| 666 | class CritSecHolder |
| 667 | { |
| 668 | public: |
| 669 | CritSecHolder(CritSecObject& critSec) : m_CritSec(critSec) |
| 670 | { |
| 671 | ClrEnterCriticalSection(m_CritSec.Val()); |
| 672 | } |
| 673 | |
| 674 | ~CritSecHolder() |
| 675 | { |
| 676 | ClrLeaveCriticalSection(m_CritSec.Val()); |
| 677 | } |
| 678 | |
| 679 | private: |
| 680 | CritSecObject& m_CritSec; |
| 681 | |
| 682 | // No copying or assignment allowed. |
| 683 | CritSecHolder(const CritSecHolder&) = delete; |
| 684 | CritSecHolder& operator=(const CritSecHolder&) = delete; |
| 685 | }; |
| 686 | |
| 687 | namespace MagicDivide |
| 688 | { |
| 689 | uint32_t GetUnsigned32Magic(uint32_t d, bool* add /*out*/, int* shift /*out*/); |
| 690 | #ifdef _TARGET_64BIT_ |
| 691 | uint64_t GetUnsigned64Magic(uint64_t d, bool* add /*out*/, int* shift /*out*/); |
| 692 | #endif |
| 693 | int32_t GetSigned32Magic(int32_t d, int* shift /*out*/); |
| 694 | #ifdef _TARGET_64BIT_ |
| 695 | int64_t GetSigned64Magic(int64_t d, int* shift /*out*/); |
| 696 | #endif |
| 697 | } |
| 698 | |
| 699 | #endif // _UTILS_H_ |
| 700 | |