| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | /* |
| 5 | * CallHelpers.CPP: helpers to call managed code |
| 6 | * |
| 7 | |
| 8 | */ |
| 9 | |
| 10 | #include "common.h" |
| 11 | #include "dbginterface.h" |
| 12 | |
| 13 | // To include declaration of "AppDomainTransitionExceptionFilter" |
| 14 | #include "excep.h" |
| 15 | |
| 16 | // To include declaration of "SignatureNative" |
| 17 | #include "runtimehandles.h" |
| 18 | |
| 19 | #include "invokeutil.h" |
| 20 | #include "argdestination.h" |
| 21 | |
| 22 | #if defined(FEATURE_MULTICOREJIT) && defined(_DEBUG) |
| 23 | |
| 24 | // Allow system module, and first party WinMD files for Appx |
| 25 | |
| 26 | void AssertMulticoreJitAllowedModule(PCODE pTarget) |
| 27 | { |
| 28 | CONTRACTL |
| 29 | { |
| 30 | SO_NOT_MAINLINE; |
| 31 | } |
| 32 | CONTRACTL_END; |
| 33 | |
| 34 | MethodDesc* pMethod = Entry2MethodDesc(pTarget, NULL); |
| 35 | |
| 36 | Module * pModule = pMethod->GetModule_NoLogging(); |
| 37 | |
| 38 | |
| 39 | _ASSERTE(pModule->IsSystem()); |
| 40 | } |
| 41 | |
| 42 | #endif |
| 43 | |
| 44 | // For X86, INSTALL_COMPLUS_EXCEPTION_HANDLER grants us sufficient protection to call into |
| 45 | // managed code. |
| 46 | // |
| 47 | // But on 64-bit, the personality routine will not pop frames or trackers as exceptions unwind |
| 48 | // out of managed code. Instead, we rely on explicit cleanup like CLRException::HandlerState::CleanupTry |
| 49 | // or UMThunkUnwindFrameChainHandler. |
| 50 | // |
| 51 | // So most callers should call through CallDescrWorkerWithHandler (or a wrapper like MethodDesc::Call) |
| 52 | // and get the platform-appropriate exception handling. A few places try to optimize by calling direct |
| 53 | // to managed methods (see ArrayInitializeWorker or FastCallFinalize). This sort of thing is |
| 54 | // dangerous. You have to worry about marking yourself as a legal managed caller and you have to |
| 55 | // worry about how exceptions will be handled on a WIN64EXCEPTIONS plan. It is generally only suitable |
| 56 | // for X86. |
| 57 | |
| 58 | //******************************************************************************* |
| 59 | void CallDescrWorkerWithHandler( |
| 60 | CallDescrData * pCallDescrData, |
| 61 | BOOL fCriticalCall) |
| 62 | { |
| 63 | STATIC_CONTRACT_SO_INTOLERANT; |
| 64 | |
| 65 | #if defined(FEATURE_MULTICOREJIT) && defined(_DEBUG) |
| 66 | |
| 67 | // For multicore JITting, background thread should not call managed code, except when calling system code (e.g. throwing managed exception) |
| 68 | if (GetThread()->HasThreadStateNC(Thread::TSNC_CallingManagedCodeDisabled)) |
| 69 | { |
| 70 | AssertMulticoreJitAllowedModule(pCallDescrData->pTarget); |
| 71 | } |
| 72 | |
| 73 | #endif |
| 74 | |
| 75 | |
| 76 | BEGIN_CALL_TO_MANAGEDEX(fCriticalCall ? EEToManagedCriticalCall : EEToManagedDefault); |
| 77 | |
| 78 | CallDescrWorker(pCallDescrData); |
| 79 | |
| 80 | END_CALL_TO_MANAGED(); |
| 81 | } |
| 82 | |
| 83 | |
| 84 | #if !defined(_WIN64) && defined(_DEBUG) |
| 85 | |
| 86 | //******************************************************************************* |
| 87 | // assembly code, in i386/asmhelpers.asm |
| 88 | void CallDescrWorker(CallDescrData * pCallDescrData) |
| 89 | { |
| 90 | // |
| 91 | // This function must not have a contract ... it's caller has pushed an FS:0 frame (COMPlusFrameHandler) that must |
| 92 | // be the first handler on the stack. The contract causes, at a minimum, a C++ exception handler to be pushed to |
| 93 | // handle the destruction of the contract object. If there is an exception in the managed code called from here, |
| 94 | // and that exception is handled in that same block of managed code, then the COMPlusFrameHandler will actually |
| 95 | // unwind the C++ handler before branching to the catch clause in managed code. That essentially causes an |
| 96 | // out-of-order destruction of the contract object, resulting in very odd crashes later. |
| 97 | // |
| 98 | #if 0 |
| 99 | CONTRACTL { |
| 100 | THROWS; |
| 101 | GC_TRIGGERS; |
| 102 | } CONTRACTL_END; |
| 103 | #endif // 0 |
| 104 | STATIC_CONTRACT_THROWS; |
| 105 | STATIC_CONTRACT_GC_TRIGGERS; |
| 106 | STATIC_CONTRACT_SO_TOLERANT; |
| 107 | |
| 108 | _ASSERTE(!NingenEnabled() && "You cannot invoke managed code inside the ngen compilation process." ); |
| 109 | |
| 110 | TRIGGERSGC_NOSTOMP(); // Can't stomp object refs because they are args to the function |
| 111 | |
| 112 | // Save a copy of dangerousObjRefs in table. |
| 113 | Thread* curThread; |
| 114 | DWORD_PTR ObjRefTable[OBJREF_TABSIZE]; |
| 115 | |
| 116 | curThread = GetThread(); |
| 117 | _ASSERTE(curThread != NULL); |
| 118 | |
| 119 | static_assert_no_msg(sizeof(curThread->dangerousObjRefs) == sizeof(ObjRefTable)); |
| 120 | memcpy(ObjRefTable, curThread->dangerousObjRefs, sizeof(ObjRefTable)); |
| 121 | |
| 122 | #ifndef FEATURE_INTERPRETER |
| 123 | // When the interpreter is used, this mayb be called from preemptive code. |
| 124 | _ASSERTE(curThread->PreemptiveGCDisabled()); // Jitted code expects to be in cooperative mode |
| 125 | #endif |
| 126 | |
| 127 | // If the current thread owns spinlock or unbreakable lock, it cannot call managed code. |
| 128 | _ASSERTE(!curThread->HasUnbreakableLock() && |
| 129 | (curThread->m_StateNC & Thread::TSNC_OwnsSpinLock) == 0); |
| 130 | |
| 131 | #ifdef _TARGET_ARM_ |
| 132 | _ASSERTE(IsThumbCode(pCallDescrData->pTarget)); |
| 133 | #endif |
| 134 | |
| 135 | CallDescrWorkerInternal(pCallDescrData); |
| 136 | |
| 137 | // Restore dangerousObjRefs when we return back to EE after call |
| 138 | memcpy(curThread->dangerousObjRefs, ObjRefTable, sizeof(ObjRefTable)); |
| 139 | |
| 140 | TRIGGERSGC(); |
| 141 | |
| 142 | ENABLESTRESSHEAP(); |
| 143 | } |
| 144 | #endif // !defined(_WIN64) && defined(_DEBUG) |
| 145 | |
| 146 | void DispatchCallDebuggerWrapper( |
| 147 | CallDescrData * pCallDescrData, |
| 148 | ContextTransitionFrame* pFrame, |
| 149 | BOOL fCriticalCall |
| 150 | ) |
| 151 | { |
| 152 | // Use static contracts b/c we have SEH. |
| 153 | STATIC_CONTRACT_THROWS; |
| 154 | STATIC_CONTRACT_GC_TRIGGERS; |
| 155 | STATIC_CONTRACT_MODE_COOPERATIVE; |
| 156 | |
| 157 | struct Param : NotifyOfCHFFilterWrapperParam |
| 158 | { |
| 159 | CallDescrData * pCallDescrData; |
| 160 | BOOL fCriticalCall; |
| 161 | } param; |
| 162 | |
| 163 | param.pFrame = pFrame; |
| 164 | param.pCallDescrData = pCallDescrData; |
| 165 | param.fCriticalCall = fCriticalCall; |
| 166 | |
| 167 | PAL_TRY(Param *, pParam, ¶m) |
| 168 | { |
| 169 | CallDescrWorkerWithHandler( |
| 170 | pParam->pCallDescrData, |
| 171 | pParam->fCriticalCall); |
| 172 | } |
| 173 | PAL_EXCEPT_FILTER(AppDomainTransitionExceptionFilter) |
| 174 | { |
| 175 | // Should never reach here b/c handler should always continue search. |
| 176 | _ASSERTE(!"Unreachable" ); |
| 177 | } |
| 178 | PAL_ENDTRY |
| 179 | } |
| 180 | |
| 181 | // Helper for VM->managed calls with simple signatures. |
| 182 | void * DispatchCallSimple( |
| 183 | SIZE_T *pSrc, |
| 184 | DWORD numStackSlotsToCopy, |
| 185 | PCODE pTargetAddress, |
| 186 | DWORD dwDispatchCallSimpleFlags) |
| 187 | { |
| 188 | CONTRACTL |
| 189 | { |
| 190 | GC_TRIGGERS; |
| 191 | THROWS; |
| 192 | MODE_COOPERATIVE; |
| 193 | } |
| 194 | CONTRACTL_END; |
| 195 | |
| 196 | #ifdef DEBUGGING_SUPPORTED |
| 197 | if (CORDebuggerTraceCall()) |
| 198 | g_pDebugInterface->TraceCall((const BYTE *)pTargetAddress); |
| 199 | #endif // DEBUGGING_SUPPORTED |
| 200 | |
| 201 | CallDescrData callDescrData; |
| 202 | |
| 203 | #ifdef CALLDESCR_ARGREGS |
| 204 | callDescrData.pSrc = pSrc + NUM_ARGUMENT_REGISTERS; |
| 205 | callDescrData.numStackSlots = numStackSlotsToCopy; |
| 206 | callDescrData.pArgumentRegisters = (ArgumentRegisters *)pSrc; |
| 207 | #else |
| 208 | callDescrData.pSrc = pSrc; |
| 209 | callDescrData.numStackSlots = numStackSlotsToCopy; |
| 210 | #endif |
| 211 | |
| 212 | #ifdef CALLDESCR_RETBUFFARGREG |
| 213 | UINT64 retBuffArgPlaceholder = 0; |
| 214 | callDescrData.pRetBuffArg = &retBuffArgPlaceholder; |
| 215 | #endif |
| 216 | |
| 217 | #ifdef CALLDESCR_FPARGREGS |
| 218 | callDescrData.pFloatArgumentRegisters = NULL; |
| 219 | #endif |
| 220 | #ifdef CALLDESCR_REGTYPEMAP |
| 221 | callDescrData.dwRegTypeMap = 0; |
| 222 | #endif |
| 223 | callDescrData.fpReturnSize = 0; |
| 224 | callDescrData.pTarget = pTargetAddress; |
| 225 | |
| 226 | if ((dwDispatchCallSimpleFlags & DispatchCallSimple_CatchHandlerFoundNotification) != 0) |
| 227 | { |
| 228 | DispatchCallDebuggerWrapper( |
| 229 | &callDescrData, |
| 230 | NULL, |
| 231 | dwDispatchCallSimpleFlags & DispatchCallSimple_CriticalCall); |
| 232 | } |
| 233 | else |
| 234 | { |
| 235 | CallDescrWorkerWithHandler(&callDescrData, dwDispatchCallSimpleFlags & DispatchCallSimple_CriticalCall); |
| 236 | } |
| 237 | |
| 238 | return *(void **)(&callDescrData.returnValue); |
| 239 | } |
| 240 | |
| 241 | // This method performs the proper profiler and debugger callbacks before dispatching the |
| 242 | // call. The caller has the responsibility of furnishing the target address, register and stack arguments. |
| 243 | // Stack arguments should be in reverse order, and pSrc should point to past the last argument |
| 244 | // Returns the return value or the exception object if one was thrown. |
| 245 | void DispatchCall( |
| 246 | CallDescrData * pCallDescrData, |
| 247 | OBJECTREF *pRefException, |
| 248 | ContextTransitionFrame* pFrame /* = NULL */ |
| 249 | #ifdef FEATURE_CORRUPTING_EXCEPTIONS |
| 250 | , CorruptionSeverity *pSeverity /*= NULL*/ |
| 251 | #endif // FEATURE_CORRUPTING_EXCEPTIONS |
| 252 | ) |
| 253 | { |
| 254 | CONTRACTL |
| 255 | { |
| 256 | GC_TRIGGERS; |
| 257 | THROWS; |
| 258 | MODE_COOPERATIVE; |
| 259 | } |
| 260 | CONTRACTL_END; |
| 261 | |
| 262 | #ifdef DEBUGGING_SUPPORTED |
| 263 | if (CORDebuggerTraceCall()) |
| 264 | g_pDebugInterface->TraceCall((const BYTE *)pCallDescrData->pTarget); |
| 265 | #endif // DEBUGGING_SUPPORTED |
| 266 | |
| 267 | #ifdef FEATURE_CORRUPTING_EXCEPTIONS |
| 268 | if (pSeverity != NULL) |
| 269 | { |
| 270 | // By default, assume any exception that comes out is NotCorrupting |
| 271 | *pSeverity = NotCorrupting; |
| 272 | } |
| 273 | #endif // FEATURE_CORRUPTING_EXCEPTIONS |
| 274 | |
| 275 | EX_TRY |
| 276 | { |
| 277 | DispatchCallDebuggerWrapper(pCallDescrData, |
| 278 | pFrame, |
| 279 | FALSE); |
| 280 | } |
| 281 | EX_CATCH |
| 282 | { |
| 283 | *pRefException = GET_THROWABLE(); |
| 284 | |
| 285 | #ifdef FEATURE_CORRUPTING_EXCEPTIONS |
| 286 | if (pSeverity != NULL) |
| 287 | { |
| 288 | // By default, assume any exception that comes out is NotCorrupting |
| 289 | *pSeverity = GetThread()->GetExceptionState()->GetLastActiveExceptionCorruptionSeverity(); |
| 290 | } |
| 291 | #endif // FEATURE_CORRUPTING_EXCEPTIONS |
| 292 | |
| 293 | } |
| 294 | EX_END_CATCH(RethrowTransientExceptions); |
| 295 | } |
| 296 | |
| 297 | #ifdef CALLDESCR_REGTYPEMAP |
| 298 | //******************************************************************************* |
| 299 | void FillInRegTypeMap(int argOffset, CorElementType typ, BYTE * pMap) |
| 300 | { |
| 301 | CONTRACTL |
| 302 | { |
| 303 | WRAPPER(THROWS); |
| 304 | WRAPPER(GC_TRIGGERS); |
| 305 | MODE_ANY; |
| 306 | PRECONDITION(CheckPointer(pMap, NULL_NOT_OK)); |
| 307 | } |
| 308 | CONTRACTL_END; |
| 309 | |
| 310 | int regArgNum = TransitionBlock::GetArgumentIndexFromOffset(argOffset); |
| 311 | |
| 312 | // Create a map of the first 8 argument types. This is used in |
| 313 | // CallDescrWorkerInternal to load args into general registers or |
| 314 | // floating point registers. |
| 315 | // |
| 316 | // we put these in order from the LSB to the MSB so that we can keep |
| 317 | // the map in a register and just examine the low byte and then shift |
| 318 | // right for each arg. |
| 319 | |
| 320 | if (regArgNum < NUM_ARGUMENT_REGISTERS) |
| 321 | { |
| 322 | pMap[regArgNum] = typ; |
| 323 | } |
| 324 | } |
| 325 | #endif // CALLDESCR_REGTYPEMAP |
| 326 | |
| 327 | //******************************************************************************* |
| 328 | #ifdef FEATURE_INTERPRETER |
| 329 | void MethodDescCallSite::CallTargetWorker(const ARG_SLOT *pArguments, ARG_SLOT *pReturnValue, int cbReturnValue, bool transitionToPreemptive) |
| 330 | #else |
| 331 | void MethodDescCallSite::CallTargetWorker(const ARG_SLOT *pArguments, ARG_SLOT *pReturnValue, int cbReturnValue) |
| 332 | #endif |
| 333 | { |
| 334 | // |
| 335 | // WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING |
| 336 | // |
| 337 | // This method needs to have a GC_TRIGGERS contract because it |
| 338 | // calls managed code. However, IT MAY NOT TRIGGER A GC ITSELF |
| 339 | // because the argument array is not protected and may contain gc |
| 340 | // refs. |
| 341 | // |
| 342 | // WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING |
| 343 | // |
| 344 | CONTRACTL |
| 345 | { |
| 346 | THROWS; |
| 347 | GC_TRIGGERS; |
| 348 | INJECT_FAULT(COMPlusThrowOM();); |
| 349 | MODE_COOPERATIVE; |
| 350 | PRECONDITION(GetAppDomain()->CheckCanExecuteManagedCode(m_pMD)); |
| 351 | PRECONDITION(m_pMD->CheckActivated()); // EnsureActive will trigger, so we must already be activated |
| 352 | } |
| 353 | CONTRACTL_END; |
| 354 | |
| 355 | _ASSERTE(!NingenEnabled() && "You cannot invoke managed code inside the ngen compilation process." ); |
| 356 | |
| 357 | // If we're invoking an mscorlib method, lift the restriction on type load limits. Calls into mscorlib are |
| 358 | // typically calls into specific and controlled helper methods for security checks and other linktime tasks. |
| 359 | // |
| 360 | // @todo: In an ideal world, we would require each of those sites to do the override rather than disabling |
| 361 | // the assert broadly here. However, by limiting the override to mscorlib methods, we should still be able |
| 362 | // to effectively enforce the more general rule about loader recursion. |
| 363 | MAYBE_OVERRIDE_TYPE_LOAD_LEVEL_LIMIT(CLASS_LOADED, m_pMD->GetModule()->IsSystem()); |
| 364 | |
| 365 | LPBYTE pTransitionBlock; |
| 366 | UINT nStackBytes; |
| 367 | UINT fpReturnSize; |
| 368 | #ifdef CALLDESCR_REGTYPEMAP |
| 369 | UINT64 dwRegTypeMap; |
| 370 | #endif |
| 371 | #ifdef CALLDESCR_FPARGREGS |
| 372 | FloatArgumentRegisters *pFloatArgumentRegisters = NULL; |
| 373 | #endif |
| 374 | void* pvRetBuff = NULL; |
| 375 | |
| 376 | { |
| 377 | // |
| 378 | // the incoming argument array is not gc-protected, so we |
| 379 | // may not trigger a GC before we actually call managed code |
| 380 | // |
| 381 | GCX_FORBID(); |
| 382 | |
| 383 | // Record this call if required |
| 384 | g_IBCLogger.LogMethodDescAccess(m_pMD); |
| 385 | |
| 386 | // |
| 387 | // All types must already be loaded. This macro also sets up a FAULT_FORBID region which is |
| 388 | // also required for critical calls since we cannot inject any failure points between the |
| 389 | // caller of MethodDesc::CallDescr and the actual transition to managed code. |
| 390 | // |
| 391 | ENABLE_FORBID_GC_LOADER_USE_IN_THIS_SCOPE(); |
| 392 | |
| 393 | #ifdef FEATURE_INTERPRETER |
| 394 | _ASSERTE(isCallConv(m_methodSig.GetCallingConvention(), IMAGE_CEE_CS_CALLCONV_DEFAULT) |
| 395 | || isCallConv(m_methodSig.GetCallingConvention(), CorCallingConvention(IMAGE_CEE_CS_CALLCONV_C)) |
| 396 | || isCallConv(m_methodSig.GetCallingConvention(), CorCallingConvention(IMAGE_CEE_CS_CALLCONV_VARARG)) |
| 397 | || isCallConv(m_methodSig.GetCallingConvention(), CorCallingConvention(IMAGE_CEE_CS_CALLCONV_NATIVEVARARG)) |
| 398 | || isCallConv(m_methodSig.GetCallingConvention(), CorCallingConvention(IMAGE_CEE_CS_CALLCONV_STDCALL))); |
| 399 | #else |
| 400 | _ASSERTE(isCallConv(m_methodSig.GetCallingConvention(), IMAGE_CEE_CS_CALLCONV_DEFAULT)); |
| 401 | _ASSERTE(!(m_methodSig.GetCallingConventionInfo() & CORINFO_CALLCONV_PARAMTYPE)); |
| 402 | #endif |
| 403 | |
| 404 | #ifdef DEBUGGING_SUPPORTED |
| 405 | if (CORDebuggerTraceCall()) |
| 406 | { |
| 407 | g_pDebugInterface->TraceCall((const BYTE *)m_pCallTarget); |
| 408 | } |
| 409 | #endif // DEBUGGING_SUPPORTED |
| 410 | |
| 411 | #ifdef _DEBUG |
| 412 | { |
| 413 | #ifdef UNIX_AMD64_ABI |
| 414 | // Validate that the return value is not too big for the buffer passed |
| 415 | if (m_pMD->GetMethodTable()->IsRegPassedStruct()) |
| 416 | { |
| 417 | TypeHandle thReturnValueType; |
| 418 | if (m_methodSig.GetReturnTypeNormalized(&thReturnValueType) == ELEMENT_TYPE_VALUETYPE) |
| 419 | { |
| 420 | _ASSERTE(cbReturnValue >= thReturnValueType.GetSize()); |
| 421 | } |
| 422 | } |
| 423 | #endif // UNIX_AMD64_ABI |
| 424 | |
| 425 | // The metasig should be reset |
| 426 | _ASSERTE(m_methodSig.GetArgNum() == 0); |
| 427 | |
| 428 | // Check to see that any value type args have been loaded and restored. |
| 429 | // This is because we may be calling a FramedMethodFrame which will use the sig |
| 430 | // to trace the args, but if any are unloaded we will be stuck if a GC occurs. |
| 431 | _ASSERTE(m_pMD->IsRestored_NoLogging()); |
| 432 | CorElementType argType; |
| 433 | while ((argType = m_methodSig.NextArg()) != ELEMENT_TYPE_END) |
| 434 | { |
| 435 | if (argType == ELEMENT_TYPE_VALUETYPE) |
| 436 | { |
| 437 | TypeHandle th = m_methodSig.GetLastTypeHandleThrowing(ClassLoader::DontLoadTypes); |
| 438 | CONSISTENCY_CHECK(th.CheckFullyLoaded()); |
| 439 | CONSISTENCY_CHECK(th.IsRestored_NoLogging()); |
| 440 | } |
| 441 | } |
| 442 | m_methodSig.Reset(); |
| 443 | } |
| 444 | #endif // _DEBUG |
| 445 | |
| 446 | DWORD arg = 0; |
| 447 | |
| 448 | nStackBytes = m_argIt.SizeOfFrameArgumentArray(); |
| 449 | |
| 450 | // Create a fake FramedMethodFrame on the stack. |
| 451 | |
| 452 | // Note that SizeOfFrameArgumentArray does overflow checks with sufficient margin to prevent overflows here |
| 453 | DWORD dwAllocaSize = TransitionBlock::GetNegSpaceSize() + sizeof(TransitionBlock) + nStackBytes; |
| 454 | |
| 455 | LPBYTE pAlloc = (LPBYTE)_alloca(dwAllocaSize); |
| 456 | |
| 457 | pTransitionBlock = pAlloc + TransitionBlock::GetNegSpaceSize(); |
| 458 | |
| 459 | #ifdef CALLDESCR_REGTYPEMAP |
| 460 | dwRegTypeMap = 0; |
| 461 | BYTE* pMap = (BYTE*)&dwRegTypeMap; |
| 462 | #endif // CALLDESCR_REGTYPEMAP |
| 463 | |
| 464 | if (m_argIt.HasThis()) |
| 465 | { |
| 466 | *((LPVOID*)(pTransitionBlock + m_argIt.GetThisOffset())) = ArgSlotToPtr(pArguments[arg++]); |
| 467 | } |
| 468 | |
| 469 | if (m_argIt.HasRetBuffArg()) |
| 470 | { |
| 471 | *((LPVOID*)(pTransitionBlock + m_argIt.GetRetBuffArgOffset())) = ArgSlotToPtr(pArguments[arg++]); |
| 472 | } |
| 473 | #ifdef FEATURE_HFA |
| 474 | #ifdef FEATURE_INTERPRETER |
| 475 | // Something is necessary for HFA's, but what's below (in the FEATURE_INTERPRETER ifdef) |
| 476 | // doesn't seem to do the proper test. It fires, |
| 477 | // incorrectly, for a one-word struct that *doesn't* have a ret buff. So we'll try this, instead: |
| 478 | // We're here because it doesn't have a ret buff. If it would, except that the struct being returned |
| 479 | // is an HFA, *then* assume the invoker made this slot a ret buff pointer. |
| 480 | // It's an HFA if the return type is a struct, but it has a non-zero FP return size. |
| 481 | // (If it were an HFA, but had a ret buff because it was varargs, then we wouldn't be here. |
| 482 | // Also this test won't work for float enums. |
| 483 | else if (m_methodSig.GetReturnType() == ELEMENT_TYPE_VALUETYPE |
| 484 | && m_argIt.GetFPReturnSize() > 0) |
| 485 | #else // FEATURE_INTERPRETER |
| 486 | else if (ELEMENT_TYPE_VALUETYPE == m_methodSig.GetReturnTypeNormalized()) |
| 487 | #endif // FEATURE_INTERPRETER |
| 488 | { |
| 489 | pvRetBuff = ArgSlotToPtr(pArguments[arg++]); |
| 490 | } |
| 491 | #endif // FEATURE_HFA |
| 492 | |
| 493 | |
| 494 | #ifdef FEATURE_INTERPRETER |
| 495 | if (m_argIt.IsVarArg()) |
| 496 | { |
| 497 | *((LPVOID*)(pTransitionBlock + m_argIt.GetVASigCookieOffset())) = ArgSlotToPtr(pArguments[arg++]); |
| 498 | } |
| 499 | |
| 500 | if (m_argIt.HasParamType()) |
| 501 | { |
| 502 | *((LPVOID*)(pTransitionBlock + m_argIt.GetParamTypeArgOffset())) = ArgSlotToPtr(pArguments[arg++]); |
| 503 | } |
| 504 | #endif |
| 505 | |
| 506 | int ofs; |
| 507 | for (; TransitionBlock::InvalidOffset != (ofs = m_argIt.GetNextOffset()); arg++) |
| 508 | { |
| 509 | #ifdef CALLDESCR_REGTYPEMAP |
| 510 | FillInRegTypeMap(ofs, m_argIt.GetArgType(), pMap); |
| 511 | #endif |
| 512 | |
| 513 | #ifdef CALLDESCR_FPARGREGS |
| 514 | // Under CALLDESCR_FPARGREGS -ve offsets indicate arguments in floating point registers. If we |
| 515 | // have at least one such argument we point the call worker at the floating point area of the |
| 516 | // frame (we leave it null otherwise since the worker can perform a useful optimization if it |
| 517 | // knows no floating point registers need to be set up). |
| 518 | if (TransitionBlock::HasFloatRegister(ofs, m_argIt.GetArgLocDescForStructInRegs()) && |
| 519 | (pFloatArgumentRegisters == NULL)) |
| 520 | { |
| 521 | pFloatArgumentRegisters = (FloatArgumentRegisters*)(pTransitionBlock + |
| 522 | TransitionBlock::GetOffsetOfFloatArgumentRegisters()); |
| 523 | } |
| 524 | #endif |
| 525 | |
| 526 | ArgDestination argDest(pTransitionBlock, ofs, m_argIt.GetArgLocDescForStructInRegs()); |
| 527 | |
| 528 | UINT32 stackSize = m_argIt.GetArgSize(); |
| 529 | // We need to pass in a pointer, but be careful of the ARG_SLOT calling convention. We might already have a pointer in the ARG_SLOT. |
| 530 | PVOID pSrc = stackSize > sizeof(ARG_SLOT) ? (LPVOID)ArgSlotToPtr(pArguments[arg]) : (LPVOID)ArgSlotEndianessFixup((ARG_SLOT*)&pArguments[arg], stackSize); |
| 531 | |
| 532 | #if defined(UNIX_AMD64_ABI) |
| 533 | if (argDest.IsStructPassedInRegs()) |
| 534 | { |
| 535 | TypeHandle th; |
| 536 | m_argIt.GetArgType(&th); |
| 537 | |
| 538 | argDest.CopyStructToRegisters(pSrc, th.AsMethodTable()->GetNumInstanceFieldBytes(), 0); |
| 539 | } |
| 540 | else |
| 541 | #endif // UNIX_AMD64_ABI |
| 542 | { |
| 543 | PVOID pDest = argDest.GetDestinationAddress(); |
| 544 | |
| 545 | switch (stackSize) |
| 546 | { |
| 547 | case 1: |
| 548 | case 2: |
| 549 | case 4: |
| 550 | *((INT32*)pDest) = (INT32)pArguments[arg]; |
| 551 | break; |
| 552 | |
| 553 | case 8: |
| 554 | *((INT64*)pDest) = pArguments[arg]; |
| 555 | break; |
| 556 | |
| 557 | default: |
| 558 | // The ARG_SLOT contains a pointer to the value-type |
| 559 | #ifdef ENREGISTERED_PARAMTYPE_MAXSIZE |
| 560 | if (m_argIt.IsArgPassedByRef()) |
| 561 | { |
| 562 | *(PVOID*)pDest = pSrc; |
| 563 | } |
| 564 | else |
| 565 | #endif // ENREGISTERED_PARAMTYPE_MAXSIZE |
| 566 | if (stackSize > sizeof(ARG_SLOT)) |
| 567 | { |
| 568 | CopyMemory(pDest, ArgSlotToPtr(pArguments[arg]), stackSize); |
| 569 | } |
| 570 | else |
| 571 | { |
| 572 | CopyMemory(pDest, (LPVOID) (&pArguments[arg]), stackSize); |
| 573 | } |
| 574 | break; |
| 575 | } |
| 576 | } |
| 577 | } |
| 578 | |
| 579 | fpReturnSize = m_argIt.GetFPReturnSize(); |
| 580 | |
| 581 | } // END GCX_FORBID & ENABLE_FORBID_GC_LOADER_USE_IN_THIS_SCOPE |
| 582 | |
| 583 | CallDescrData callDescrData; |
| 584 | |
| 585 | callDescrData.pSrc = pTransitionBlock + sizeof(TransitionBlock); |
| 586 | callDescrData.numStackSlots = nStackBytes / STACK_ELEM_SIZE; |
| 587 | #ifdef CALLDESCR_ARGREGS |
| 588 | callDescrData.pArgumentRegisters = (ArgumentRegisters*)(pTransitionBlock + TransitionBlock::GetOffsetOfArgumentRegisters()); |
| 589 | #endif |
| 590 | #ifdef CALLDESCR_RETBUFFARGREG |
| 591 | callDescrData.pRetBuffArg = (UINT64*)(pTransitionBlock + TransitionBlock::GetOffsetOfRetBuffArgReg()); |
| 592 | #endif |
| 593 | #ifdef CALLDESCR_FPARGREGS |
| 594 | callDescrData.pFloatArgumentRegisters = pFloatArgumentRegisters; |
| 595 | #endif |
| 596 | #ifdef CALLDESCR_REGTYPEMAP |
| 597 | callDescrData.dwRegTypeMap = dwRegTypeMap; |
| 598 | #endif |
| 599 | callDescrData.fpReturnSize = fpReturnSize; |
| 600 | callDescrData.pTarget = m_pCallTarget; |
| 601 | |
| 602 | #ifdef FEATURE_INTERPRETER |
| 603 | if (transitionToPreemptive) |
| 604 | { |
| 605 | GCPreemp transitionIfILStub(transitionToPreemptive); |
| 606 | DWORD* pLastError = &GetThread()->m_dwLastErrorInterp; |
| 607 | CallDescrWorkerInternal(&callDescrData); |
| 608 | *pLastError = GetLastError(); |
| 609 | } |
| 610 | else |
| 611 | #endif // FEATURE_INTERPRETER |
| 612 | { |
| 613 | CallDescrWorkerWithHandler(&callDescrData); |
| 614 | } |
| 615 | |
| 616 | if (pvRetBuff != NULL) |
| 617 | { |
| 618 | memcpyNoGCRefs(pvRetBuff, &callDescrData.returnValue, sizeof(callDescrData.returnValue)); |
| 619 | } |
| 620 | |
| 621 | if (pReturnValue != NULL) |
| 622 | { |
| 623 | _ASSERTE(cbReturnValue <= sizeof(callDescrData.returnValue)); |
| 624 | memcpyNoGCRefs(pReturnValue, &callDescrData.returnValue, cbReturnValue); |
| 625 | |
| 626 | #if !defined(_WIN64) && BIGENDIAN |
| 627 | { |
| 628 | GCX_FORBID(); |
| 629 | |
| 630 | if (!m_methodSig.Is64BitReturn()) |
| 631 | { |
| 632 | pReturnValue[0] >>= 32; |
| 633 | } |
| 634 | } |
| 635 | #endif // !defined(_WIN64) && BIGENDIAN |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | void CallDefaultConstructor(OBJECTREF ref) |
| 640 | { |
| 641 | CONTRACTL |
| 642 | { |
| 643 | THROWS; |
| 644 | GC_TRIGGERS; |
| 645 | MODE_COOPERATIVE; |
| 646 | } |
| 647 | CONTRACTL_END; |
| 648 | |
| 649 | MethodTable *pMT = ref->GetMethodTable(); |
| 650 | |
| 651 | PREFIX_ASSUME(pMT != NULL); |
| 652 | |
| 653 | if (!pMT->HasDefaultConstructor()) |
| 654 | { |
| 655 | SString ctorMethodName(SString::Utf8, COR_CTOR_METHOD_NAME); |
| 656 | COMPlusThrowNonLocalized(kMissingMethodException, ctorMethodName.GetUnicode()); |
| 657 | } |
| 658 | |
| 659 | GCPROTECT_BEGIN (ref); |
| 660 | |
| 661 | MethodDesc *pMD = pMT->GetDefaultConstructor(); |
| 662 | |
| 663 | PREPARE_NONVIRTUAL_CALLSITE_USING_METHODDESC(pMD); |
| 664 | DECLARE_ARGHOLDER_ARRAY(CtorArgs, 1); |
| 665 | CtorArgs[ARGNUM_0] = OBJECTREF_TO_ARGHOLDER(ref); |
| 666 | |
| 667 | // Call the ctor... |
| 668 | CATCH_HANDLER_FOUND_NOTIFICATION_CALLSITE; |
| 669 | CALL_MANAGED_METHOD_NORET(CtorArgs); |
| 670 | |
| 671 | GCPROTECT_END (); |
| 672 | } |
| 673 | |