| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | // |
| 5 | // File: methodtable.h |
| 6 | // |
| 7 | |
| 8 | #ifndef _METHODTABLE_H_ |
| 9 | #define _METHODTABLE_H_ |
| 10 | |
| 11 | /* |
| 12 | * Include Files |
| 13 | */ |
| 14 | #include "vars.hpp" |
| 15 | #include "cor.h" |
| 16 | #include "hash.h" |
| 17 | #include "crst.h" |
| 18 | #include "cgensys.h" |
| 19 | #include "declsec.h" |
| 20 | #ifdef FEATURE_COMINTEROP |
| 21 | #include "stdinterfaces.h" |
| 22 | #endif |
| 23 | #include "slist.h" |
| 24 | #include "spinlock.h" |
| 25 | #include "typehandle.h" |
| 26 | #include "eehash.h" |
| 27 | #include "contractimpl.h" |
| 28 | #include "generics.h" |
| 29 | #include "fixuppointer.h" |
| 30 | #include "gcinfotypes.h" |
| 31 | |
| 32 | /* |
| 33 | * Forward Declarations |
| 34 | */ |
| 35 | class AppDomain; |
| 36 | class ArrayClass; |
| 37 | class ArrayMethodDesc; |
| 38 | struct ClassCtorInfoEntry; |
| 39 | class ClassLoader; |
| 40 | class DomainLocalBlock; |
| 41 | class FCallMethodDesc; |
| 42 | class EEClass; |
| 43 | class EnCFieldDesc; |
| 44 | class FieldDesc; |
| 45 | class JIT_TrialAlloc; |
| 46 | struct LayoutRawFieldInfo; |
| 47 | class MetaSig; |
| 48 | class MethodDesc; |
| 49 | class MethodDescChunk; |
| 50 | class MethodTable; |
| 51 | class Module; |
| 52 | class Object; |
| 53 | class Stub; |
| 54 | class Substitution; |
| 55 | class TypeHandle; |
| 56 | class Dictionary; |
| 57 | class AllocMemTracker; |
| 58 | class SimpleRWLock; |
| 59 | class MethodDataCache; |
| 60 | class EEClassLayoutInfo; |
| 61 | #ifdef FEATURE_COMINTEROP |
| 62 | class ComCallWrapperTemplate; |
| 63 | #endif |
| 64 | #ifdef FEATURE_COMINTEROP_UNMANAGED_ACTIVATION |
| 65 | class ClassFactoryBase; |
| 66 | #endif // FEATURE_COMINTEROP_UNMANAGED_ACTIVATION |
| 67 | class ArgDestination; |
| 68 | |
| 69 | //============================================================================ |
| 70 | // This is the in-memory structure of a class and it will evolve. |
| 71 | //============================================================================ |
| 72 | |
| 73 | // <TODO> |
| 74 | // Add a sync block |
| 75 | // Also this class currently has everything public - this may changes |
| 76 | // Might also need to hold onto the meta data loader fot this class</TODO> |
| 77 | |
| 78 | // |
| 79 | // A MethodTable contains an array of these structures, which describes each interface implemented |
| 80 | // by this class (directly declared or indirectly declared). |
| 81 | // |
| 82 | // Generic type instantiations (in C# syntax: C<ty_1,...,ty_n>) are represented by |
| 83 | // MethodTables, i.e. a new MethodTable gets allocated for each such instantiation. |
| 84 | // The entries in these tables (i.e. the code) are, however, often shared. |
| 85 | // |
| 86 | // In particular, a MethodTable's vtable contents (and hence method descriptors) may be |
| 87 | // shared between compatible instantiations (e.g. List<string> and List<object> have |
| 88 | // the same vtable *contents*). Likewise the EEClass will be shared between |
| 89 | // compatible instantiations whenever the vtable contents are. |
| 90 | // |
| 91 | // !!! Thus that it is _not_ generally the case that GetClass.GetMethodTable() == t. !!! |
| 92 | // |
| 93 | // Instantiated interfaces have their own method tables unique to the instantiation e.g. I<string> is |
| 94 | // distinct from I<int> and I<object> |
| 95 | // |
| 96 | // For generic types the interface map lists generic interfaces |
| 97 | // For instantiated types the interface map lists instantiated interfaces |
| 98 | // e.g. for C<T> : I<T>, J<string> |
| 99 | // the interface map for C would list I and J |
| 100 | // the interface map for C<int> would list I<int> and J<string> |
| 101 | // |
| 102 | struct InterfaceInfo_t |
| 103 | { |
| 104 | #ifdef DACCESS_COMPILE |
| 105 | friend class NativeImageDumper; |
| 106 | #endif |
| 107 | |
| 108 | // Method table of the interface |
| 109 | #if defined(FEATURE_NGEN_RELOCS_OPTIMIZATIONS) |
| 110 | RelativeFixupPointer<PTR_MethodTable> m_pMethodTable; |
| 111 | #else |
| 112 | FixupPointer<PTR_MethodTable> m_pMethodTable; |
| 113 | #endif |
| 114 | |
| 115 | public: |
| 116 | FORCEINLINE PTR_MethodTable GetMethodTable() |
| 117 | { |
| 118 | LIMITED_METHOD_CONTRACT; |
| 119 | return ReadPointerMaybeNull(this, &InterfaceInfo_t::m_pMethodTable); |
| 120 | } |
| 121 | |
| 122 | #ifndef DACCESS_COMPILE |
| 123 | void SetMethodTable(MethodTable * pMT) |
| 124 | { |
| 125 | LIMITED_METHOD_CONTRACT; |
| 126 | m_pMethodTable.SetValueMaybeNull(pMT); |
| 127 | } |
| 128 | |
| 129 | // Get approximate method table. This is used by the type loader before the type is fully loaded. |
| 130 | PTR_MethodTable GetApproxMethodTable(Module * pContainingModule); |
| 131 | #endif // !DACCESS_COMPILE |
| 132 | |
| 133 | #ifndef DACCESS_COMPILE |
| 134 | InterfaceInfo_t(InterfaceInfo_t &right) |
| 135 | { |
| 136 | m_pMethodTable.SetValueMaybeNull(right.m_pMethodTable.GetValueMaybeNull()); |
| 137 | } |
| 138 | #else // !DACCESS_COMPILE |
| 139 | private: |
| 140 | InterfaceInfo_t(InterfaceInfo_t &right); |
| 141 | #endif // !DACCESS_COMPILE |
| 142 | }; // struct InterfaceInfo_t |
| 143 | |
| 144 | typedef DPTR(InterfaceInfo_t) PTR_InterfaceInfo; |
| 145 | |
| 146 | namespace ClassCompat |
| 147 | { |
| 148 | struct InterfaceInfo_t; |
| 149 | }; |
| 150 | |
| 151 | // Data needed when simulating old VTable layout for COM Interop |
| 152 | // This is necessary as the data is saved in MethodDescs and we need |
| 153 | // to simulate different values without copying or changing the existing |
| 154 | // MethodDescs |
| 155 | // |
| 156 | // This will be created in a parallel array to ppMethodDescList and |
| 157 | // ppUnboxMethodDescList in the bmtMethAndFieldDescs structure below |
| 158 | struct InteropMethodTableSlotData |
| 159 | { |
| 160 | enum |
| 161 | { |
| 162 | e_DUPLICATE = 0x0001 // The entry is duplicate |
| 163 | }; |
| 164 | |
| 165 | MethodDesc *pMD; // The MethodDesc for this slot |
| 166 | WORD wSlot; // The simulated slot value for the MethodDesc |
| 167 | WORD wFlags; // The simulated duplicate value |
| 168 | MethodDesc *pDeclMD; // To keep track of MethodImpl's |
| 169 | |
| 170 | void SetDuplicate() |
| 171 | { |
| 172 | wFlags |= e_DUPLICATE; |
| 173 | } |
| 174 | |
| 175 | BOOL IsDuplicate() { |
| 176 | return ((BOOL)(wFlags & e_DUPLICATE)); |
| 177 | } |
| 178 | |
| 179 | WORD GetSlot() { |
| 180 | return wSlot; |
| 181 | } |
| 182 | |
| 183 | void SetSlot(WORD wSlot) { |
| 184 | this->wSlot = wSlot; |
| 185 | } |
| 186 | }; // struct InteropMethodTableSlotData |
| 187 | |
| 188 | #ifdef FEATURE_COMINTEROP |
| 189 | struct InteropMethodTableData |
| 190 | { |
| 191 | WORD cVTable; // Count of vtable slots |
| 192 | InteropMethodTableSlotData *pVTable; // Data for each slot |
| 193 | |
| 194 | WORD cNonVTable; // Count of non-vtable slots |
| 195 | InteropMethodTableSlotData *pNonVTable; // Data for each slot |
| 196 | |
| 197 | WORD cInterfaceMap; // Count of interfaces |
| 198 | ClassCompat::InterfaceInfo_t * |
| 199 | pInterfaceMap; // The interface map |
| 200 | |
| 201 | // Utility methods |
| 202 | static WORD GetRealMethodDesc(MethodTable *pMT, MethodDesc *pMD); |
| 203 | static WORD GetSlotForMethodDesc(MethodTable *pMT, MethodDesc *pMD); |
| 204 | ClassCompat::InterfaceInfo_t* FindInterface(MethodTable *pInterface); |
| 205 | WORD GetStartSlotForInterface(MethodTable* pInterface); |
| 206 | }; |
| 207 | |
| 208 | class InteropMethodTableSlotDataMap |
| 209 | { |
| 210 | protected: |
| 211 | InteropMethodTableSlotData *m_pSlotData; |
| 212 | DWORD m_cSlotData; |
| 213 | DWORD m_iCurSlot; |
| 214 | |
| 215 | public: |
| 216 | InteropMethodTableSlotDataMap(InteropMethodTableSlotData *pSlotData, DWORD cSlotData); |
| 217 | InteropMethodTableSlotData *GetData(MethodDesc *pMD); |
| 218 | BOOL Exists(MethodDesc *pMD); |
| 219 | |
| 220 | protected: |
| 221 | InteropMethodTableSlotData *Exists_Helper(MethodDesc *pMD); |
| 222 | InteropMethodTableSlotData *GetNewEntry(); |
| 223 | }; // class InteropMethodTableSlotDataMap |
| 224 | #endif // FEATURE_COMINTEROP |
| 225 | |
| 226 | // |
| 227 | // This struct contains cached information on the GUID associated with a type. |
| 228 | // |
| 229 | |
| 230 | struct GuidInfo |
| 231 | { |
| 232 | GUID m_Guid; // The actual guid of the type. |
| 233 | BOOL m_bGeneratedFromName; // A boolean indicating if it was generated from the |
| 234 | // name of the type. |
| 235 | }; |
| 236 | |
| 237 | typedef DPTR(GuidInfo) PTR_GuidInfo; |
| 238 | |
| 239 | |
| 240 | // GenericsDictInfo is stored at negative offset of the dictionary |
| 241 | struct GenericsDictInfo |
| 242 | { |
| 243 | #ifdef _WIN64 |
| 244 | DWORD m_dwPadding; // Just to keep the size a multiple of 8 |
| 245 | #endif |
| 246 | |
| 247 | // Total number of instantiation dictionaries including inherited ones |
| 248 | // i.e. how many instantiated classes (including this one) are there in the hierarchy? |
| 249 | // See comments about PerInstInfo |
| 250 | WORD m_wNumDicts; |
| 251 | |
| 252 | // Number of type parameters (NOT including those of superclasses). |
| 253 | WORD m_wNumTyPars; |
| 254 | }; // struct GenericsDictInfo |
| 255 | typedef DPTR(GenericsDictInfo) PTR_GenericsDictInfo; |
| 256 | |
| 257 | struct GenericsStaticsInfo |
| 258 | { |
| 259 | // Pointer to field descs for statics |
| 260 | RelativePointer<PTR_FieldDesc> m_pFieldDescs; |
| 261 | |
| 262 | // Method table ID for statics |
| 263 | SIZE_T m_DynamicTypeID; |
| 264 | |
| 265 | }; // struct GenericsStaticsInfo |
| 266 | typedef DPTR(GenericsStaticsInfo) PTR_GenericsStaticsInfo; |
| 267 | |
| 268 | |
| 269 | // CrossModuleGenericsStaticsInfo is used in NGen images for statics of cross-module |
| 270 | // generic instantiations. CrossModuleGenericsStaticsInfo is optional member of |
| 271 | // MethodTableWriteableData. |
| 272 | struct CrossModuleGenericsStaticsInfo |
| 273 | { |
| 274 | // Module this method table statics are attached to. |
| 275 | // |
| 276 | // The statics has to be attached to module referenced from the generic instantiation |
| 277 | // in domain-neutral code. We need to guarantee that the module for the statics |
| 278 | // has a valid local represenation in an appdomain. |
| 279 | // |
| 280 | PTR_Module m_pModuleForStatics; |
| 281 | |
| 282 | // Method table ID for statics |
| 283 | SIZE_T m_DynamicTypeID; |
| 284 | }; // struct CrossModuleGenericsStaticsInfo |
| 285 | typedef DPTR(CrossModuleGenericsStaticsInfo) PTR_CrossModuleGenericsStaticsInfo; |
| 286 | |
| 287 | #ifdef FEATURE_COMINTEROP |
| 288 | struct RCWPerTypeData; |
| 289 | #endif // FEATURE_COMINTEROP |
| 290 | |
| 291 | // |
| 292 | // This struct consolidates the writeable parts of the MethodTable |
| 293 | // so that we can layout a read-only MethodTable with a pointer |
| 294 | // to the writeable parts of the MethodTable in an ngen image |
| 295 | // |
| 296 | struct MethodTableWriteableData |
| 297 | { |
| 298 | friend class MethodTable; |
| 299 | #if defined(DACCESS_COMPILE) |
| 300 | friend class NativeImageDumper; |
| 301 | #endif |
| 302 | |
| 303 | enum |
| 304 | { |
| 305 | // AS YOU ADD NEW FLAGS PLEASE CONSIDER WHETHER Generics::NewInstantiation NEEDS |
| 306 | // TO BE UPDATED IN ORDER TO ENSURE THAT METHODTABLES DUPLICATED FOR GENERIC INSTANTIATIONS |
| 307 | // CARRY THE CORRECT INITIAL FLAGS. |
| 308 | |
| 309 | enum_flag_Unrestored = 0x00000004, |
| 310 | enum_flag_HasApproxParent = 0x00000010, |
| 311 | enum_flag_UnrestoredTypeKey = 0x00000020, |
| 312 | enum_flag_IsNotFullyLoaded = 0x00000040, |
| 313 | enum_flag_DependenciesLoaded = 0x00000080, // class and all depedencies loaded up to CLASS_LOADED_BUT_NOT_VERIFIED |
| 314 | |
| 315 | enum_flag_SkipWinRTOverride = 0x00000100, // No WinRT override is needed |
| 316 | |
| 317 | enum_flag_CanCompareBitsOrUseFastGetHashCode = 0x00000200, // Is any field type or sub field type overrode Equals or GetHashCode |
| 318 | enum_flag_HasCheckedCanCompareBitsOrUseFastGetHashCode = 0x00000400, // Whether we have checked the overridden Equals or GetHashCode |
| 319 | |
| 320 | #ifdef FEATURE_PREJIT |
| 321 | // These flags are used only at ngen time. We store them here since |
| 322 | // we are running out of available flags in MethodTable. They may eventually |
| 323 | // go into ngen speficic state. |
| 324 | enum_flag_NGEN_IsFixedUp = 0x00010000, // This MT has been fixed up during NGEN |
| 325 | enum_flag_NGEN_IsNeedsRestoreCached = 0x00020000, // Set if we have cached the results of needs restore computation |
| 326 | enum_flag_NGEN_CachedNeedsRestore = 0x00040000, // The result of the needs restore computation |
| 327 | enum_flag_NGEN_OverridingInterface = 0x00080000, // Overriding interface that we should generate WinRT CCW stubs for. |
| 328 | |
| 329 | #ifdef FEATURE_READYTORUN_COMPILER |
| 330 | enum_flag_NGEN_IsLayoutFixedComputed = 0x0010000, // Set if we have cached the result of IsLayoutFixed computation |
| 331 | enum_flag_NGEN_IsLayoutFixed = 0x0020000, // The result of the IsLayoutFixed computation |
| 332 | #endif |
| 333 | |
| 334 | #endif // FEATURE_PREJIT |
| 335 | |
| 336 | #ifdef _DEBUG |
| 337 | enum_flag_ParentMethodTablePointerValid = 0x40000000, |
| 338 | enum_flag_HasInjectedInterfaceDuplicates = 0x80000000, |
| 339 | #endif |
| 340 | }; |
| 341 | DWORD m_dwFlags; // Lot of empty bits here. |
| 342 | |
| 343 | /* |
| 344 | * m_hExposedClassObject is LoaderAllocator slot index to |
| 345 | * a RuntimeType instance for this class. |
| 346 | */ |
| 347 | LOADERHANDLE m_hExposedClassObject; |
| 348 | |
| 349 | #ifdef _DEBUG |
| 350 | // to avoid verify same method table too many times when it's not changing, we cache the GC count |
| 351 | // on which the method table is verified. When fast GC STRESS is turned on, we only verify the MT if |
| 352 | // current GC count is bigger than the number. Note most thing which will invalidate a MT will require a |
| 353 | // GC (like AD unload) |
| 354 | Volatile<DWORD> m_dwLastVerifedGCCnt; |
| 355 | |
| 356 | #ifdef _WIN64 |
| 357 | DWORD m_dwPadding; // Just to keep the size a multiple of 8 |
| 358 | #endif |
| 359 | |
| 360 | #endif |
| 361 | |
| 362 | // Optional CrossModuleGenericsStaticsInfo may be here. |
| 363 | |
| 364 | public: |
| 365 | #ifdef _DEBUG |
| 366 | inline BOOL IsParentMethodTablePointerValid() const |
| 367 | { |
| 368 | LIMITED_METHOD_DAC_CONTRACT; |
| 369 | |
| 370 | return (m_dwFlags & enum_flag_ParentMethodTablePointerValid); |
| 371 | } |
| 372 | inline void SetParentMethodTablePointerValid() |
| 373 | { |
| 374 | LIMITED_METHOD_CONTRACT; |
| 375 | |
| 376 | m_dwFlags |= enum_flag_ParentMethodTablePointerValid; |
| 377 | } |
| 378 | #endif |
| 379 | |
| 380 | #ifdef FEATURE_PREJIT |
| 381 | |
| 382 | void Save(DataImage *image, MethodTable *pMT, DWORD profilingFlags) const; |
| 383 | void Fixup(DataImage *image, MethodTable *pMT, BOOL needsRestore); |
| 384 | |
| 385 | inline BOOL IsFixedUp() const |
| 386 | { |
| 387 | LIMITED_METHOD_CONTRACT; |
| 388 | |
| 389 | return (m_dwFlags & enum_flag_NGEN_IsFixedUp); |
| 390 | } |
| 391 | inline void SetFixedUp() |
| 392 | { |
| 393 | LIMITED_METHOD_CONTRACT; |
| 394 | |
| 395 | m_dwFlags |= enum_flag_NGEN_IsFixedUp; |
| 396 | } |
| 397 | |
| 398 | inline BOOL IsNeedsRestoreCached() const |
| 399 | { |
| 400 | LIMITED_METHOD_CONTRACT; |
| 401 | |
| 402 | return (m_dwFlags & enum_flag_NGEN_IsNeedsRestoreCached); |
| 403 | } |
| 404 | |
| 405 | inline BOOL GetCachedNeedsRestore() const |
| 406 | { |
| 407 | LIMITED_METHOD_CONTRACT; |
| 408 | |
| 409 | _ASSERTE(IsNeedsRestoreCached()); |
| 410 | return (m_dwFlags & enum_flag_NGEN_CachedNeedsRestore); |
| 411 | } |
| 412 | |
| 413 | inline void SetCachedNeedsRestore(BOOL fNeedsRestore) |
| 414 | { |
| 415 | LIMITED_METHOD_CONTRACT; |
| 416 | |
| 417 | _ASSERTE(!IsNeedsRestoreCached()); |
| 418 | m_dwFlags |= enum_flag_NGEN_IsNeedsRestoreCached; |
| 419 | if (fNeedsRestore) m_dwFlags |= enum_flag_NGEN_CachedNeedsRestore; |
| 420 | } |
| 421 | |
| 422 | inline void SetIsOverridingInterface() |
| 423 | { |
| 424 | CONTRACTL |
| 425 | { |
| 426 | THROWS; |
| 427 | GC_NOTRIGGER; |
| 428 | MODE_ANY; |
| 429 | } |
| 430 | CONTRACTL_END; |
| 431 | |
| 432 | if ((m_dwFlags & enum_flag_NGEN_OverridingInterface) != 0) return; |
| 433 | FastInterlockOr(EnsureWritablePages((ULONG *) &m_dwFlags), enum_flag_NGEN_OverridingInterface); |
| 434 | } |
| 435 | |
| 436 | inline BOOL IsOverridingInterface() const |
| 437 | { |
| 438 | LIMITED_METHOD_CONTRACT; |
| 439 | return (m_dwFlags & enum_flag_NGEN_OverridingInterface); |
| 440 | } |
| 441 | #endif // FEATURE_PREJIT |
| 442 | |
| 443 | |
| 444 | inline LOADERHANDLE GetExposedClassObjectHandle() const |
| 445 | { |
| 446 | LIMITED_METHOD_CONTRACT; |
| 447 | return m_hExposedClassObject; |
| 448 | } |
| 449 | |
| 450 | void SetIsNotFullyLoadedForBuildMethodTable() |
| 451 | { |
| 452 | LIMITED_METHOD_CONTRACT; |
| 453 | |
| 454 | // Used only during method table initialization - no need for logging or Interlocked Exchange. |
| 455 | m_dwFlags |= (MethodTableWriteableData::enum_flag_UnrestoredTypeKey | |
| 456 | MethodTableWriteableData::enum_flag_Unrestored | |
| 457 | MethodTableWriteableData::enum_flag_IsNotFullyLoaded | |
| 458 | MethodTableWriteableData::enum_flag_HasApproxParent); |
| 459 | } |
| 460 | |
| 461 | void SetIsRestoredForBuildMethodTable() |
| 462 | { |
| 463 | LIMITED_METHOD_CONTRACT; |
| 464 | |
| 465 | // Used only during method table initialization - no need for logging or Interlocked Exchange. |
| 466 | m_dwFlags &= ~(MethodTableWriteableData::enum_flag_UnrestoredTypeKey | |
| 467 | MethodTableWriteableData::enum_flag_Unrestored); |
| 468 | } |
| 469 | |
| 470 | void SetIsFullyLoadedForBuildMethodTable() |
| 471 | { |
| 472 | LIMITED_METHOD_CONTRACT; |
| 473 | |
| 474 | // Used only during method table initialization - no need for logging or Interlocked Exchange. |
| 475 | m_dwFlags &= ~(MethodTableWriteableData::enum_flag_UnrestoredTypeKey | |
| 476 | MethodTableWriteableData::enum_flag_Unrestored | |
| 477 | MethodTableWriteableData::enum_flag_IsNotFullyLoaded | |
| 478 | MethodTableWriteableData::enum_flag_HasApproxParent); |
| 479 | } |
| 480 | |
| 481 | inline CrossModuleGenericsStaticsInfo * GetCrossModuleGenericsStaticsInfo() |
| 482 | { |
| 483 | LIMITED_METHOD_DAC_CONTRACT; |
| 484 | |
| 485 | SIZE_T size = sizeof(MethodTableWriteableData); |
| 486 | return PTR_CrossModuleGenericsStaticsInfo(dac_cast<TADDR>(this) + size); |
| 487 | } |
| 488 | |
| 489 | }; // struct MethodTableWriteableData |
| 490 | |
| 491 | typedef DPTR(MethodTableWriteableData) PTR_MethodTableWriteableData; |
| 492 | typedef DPTR(MethodTableWriteableData const) PTR_Const_MethodTableWriteableData; |
| 493 | |
| 494 | #ifdef UNIX_AMD64_ABI_ITF |
| 495 | inline |
| 496 | SystemVClassificationType CorInfoType2UnixAmd64Classification(CorElementType eeType) |
| 497 | { |
| 498 | static const SystemVClassificationType toSystemVAmd64ClassificationTypeMap[] = { |
| 499 | SystemVClassificationTypeUnknown, // ELEMENT_TYPE_END |
| 500 | SystemVClassificationTypeUnknown, // ELEMENT_TYPE_VOID |
| 501 | SystemVClassificationTypeInteger, // ELEMENT_TYPE_BOOLEAN |
| 502 | SystemVClassificationTypeInteger, // ELEMENT_TYPE_CHAR |
| 503 | SystemVClassificationTypeInteger, // ELEMENT_TYPE_I1 |
| 504 | SystemVClassificationTypeInteger, // ELEMENT_TYPE_U1 |
| 505 | SystemVClassificationTypeInteger, // ELEMENT_TYPE_I2 |
| 506 | SystemVClassificationTypeInteger, // ELEMENT_TYPE_U2 |
| 507 | SystemVClassificationTypeInteger, // ELEMENT_TYPE_I4 |
| 508 | SystemVClassificationTypeInteger, // ELEMENT_TYPE_U4 |
| 509 | SystemVClassificationTypeInteger, // ELEMENT_TYPE_I8 |
| 510 | SystemVClassificationTypeInteger, // ELEMENT_TYPE_U8 |
| 511 | SystemVClassificationTypeSSE, // ELEMENT_TYPE_R4 |
| 512 | SystemVClassificationTypeSSE, // ELEMENT_TYPE_R8 |
| 513 | SystemVClassificationTypeIntegerReference, // ELEMENT_TYPE_STRING |
| 514 | SystemVClassificationTypeInteger, // ELEMENT_TYPE_PTR |
| 515 | SystemVClassificationTypeIntegerByRef, // ELEMENT_TYPE_BYREF |
| 516 | SystemVClassificationTypeStruct, // ELEMENT_TYPE_VALUETYPE |
| 517 | SystemVClassificationTypeIntegerReference, // ELEMENT_TYPE_CLASS |
| 518 | SystemVClassificationTypeIntegerReference, // ELEMENT_TYPE_VAR (type variable) |
| 519 | SystemVClassificationTypeIntegerReference, // ELEMENT_TYPE_ARRAY |
| 520 | SystemVClassificationTypeIntegerReference, // ELEMENT_TYPE_GENERICINST |
| 521 | SystemVClassificationTypeTypedReference, // ELEMENT_TYPE_TYPEDBYREF |
| 522 | SystemVClassificationTypeUnknown, // ELEMENT_TYPE_VALUEARRAY_UNSUPPORTED |
| 523 | SystemVClassificationTypeInteger, // ELEMENT_TYPE_I |
| 524 | SystemVClassificationTypeInteger, // ELEMENT_TYPE_U |
| 525 | SystemVClassificationTypeUnknown, // ELEMENT_TYPE_R_UNSUPPORTED |
| 526 | |
| 527 | // put the correct type when we know our implementation |
| 528 | SystemVClassificationTypeInteger, // ELEMENT_TYPE_FNPTR |
| 529 | SystemVClassificationTypeIntegerReference, // ELEMENT_TYPE_OBJECT |
| 530 | SystemVClassificationTypeIntegerReference, // ELEMENT_TYPE_SZARRAY |
| 531 | SystemVClassificationTypeIntegerReference, // ELEMENT_TYPE_MVAR |
| 532 | |
| 533 | SystemVClassificationTypeUnknown, // ELEMENT_TYPE_CMOD_REQD |
| 534 | SystemVClassificationTypeUnknown, // ELEMENT_TYPE_CMOD_OPT |
| 535 | SystemVClassificationTypeUnknown, // ELEMENT_TYPE_INTERNAL |
| 536 | }; |
| 537 | |
| 538 | _ASSERTE(sizeof(toSystemVAmd64ClassificationTypeMap) == ELEMENT_TYPE_MAX); |
| 539 | _ASSERTE(eeType < (CorElementType) sizeof(toSystemVAmd64ClassificationTypeMap)); |
| 540 | // spot check of the map |
| 541 | _ASSERTE((SystemVClassificationType)toSystemVAmd64ClassificationTypeMap[ELEMENT_TYPE_I4] == SystemVClassificationTypeInteger); |
| 542 | _ASSERTE((SystemVClassificationType)toSystemVAmd64ClassificationTypeMap[ELEMENT_TYPE_PTR] == SystemVClassificationTypeInteger); |
| 543 | _ASSERTE((SystemVClassificationType)toSystemVAmd64ClassificationTypeMap[ELEMENT_TYPE_VALUETYPE] == SystemVClassificationTypeStruct); |
| 544 | _ASSERTE((SystemVClassificationType)toSystemVAmd64ClassificationTypeMap[ELEMENT_TYPE_TYPEDBYREF] == SystemVClassificationTypeTypedReference); |
| 545 | _ASSERTE((SystemVClassificationType)toSystemVAmd64ClassificationTypeMap[ELEMENT_TYPE_BYREF] == SystemVClassificationTypeIntegerByRef); |
| 546 | |
| 547 | return (((unsigned)eeType) < ELEMENT_TYPE_MAX) ? (toSystemVAmd64ClassificationTypeMap[(unsigned)eeType]) : SystemVClassificationTypeUnknown; |
| 548 | }; |
| 549 | |
| 550 | #define SYSTEMV_EIGHT_BYTE_SIZE_IN_BYTES 8 // Size of an eightbyte in bytes. |
| 551 | #define SYSTEMV_MAX_NUM_FIELDS_IN_REGISTER_PASSED_STRUCT 16 // Maximum number of fields in struct passed in registers |
| 552 | |
| 553 | struct SystemVStructRegisterPassingHelper |
| 554 | { |
| 555 | SystemVStructRegisterPassingHelper(unsigned int totalStructSize) : |
| 556 | structSize(totalStructSize), |
| 557 | eightByteCount(0), |
| 558 | inEmbeddedStruct(false), |
| 559 | currentUniqueOffsetField(0), |
| 560 | largestFieldOffset(-1) |
| 561 | { |
| 562 | for (int i = 0; i < CLR_SYSTEMV_MAX_EIGHTBYTES_COUNT_TO_PASS_IN_REGISTERS; i++) |
| 563 | { |
| 564 | eightByteClassifications[i] = SystemVClassificationTypeNoClass; |
| 565 | eightByteSizes[i] = 0; |
| 566 | eightByteOffsets[i] = 0; |
| 567 | } |
| 568 | |
| 569 | // Initialize the work arrays |
| 570 | for (int i = 0; i < SYSTEMV_MAX_NUM_FIELDS_IN_REGISTER_PASSED_STRUCT; i++) |
| 571 | { |
| 572 | fieldClassifications[i] = SystemVClassificationTypeNoClass; |
| 573 | fieldSizes[i] = 0; |
| 574 | fieldOffsets[i] = 0; |
| 575 | } |
| 576 | } |
| 577 | |
| 578 | // Input state. |
| 579 | unsigned int structSize; |
| 580 | |
| 581 | // These fields are the output; these are what is computed by the classification algorithm. |
| 582 | unsigned int eightByteCount; |
| 583 | SystemVClassificationType eightByteClassifications[CLR_SYSTEMV_MAX_EIGHTBYTES_COUNT_TO_PASS_IN_REGISTERS]; |
| 584 | unsigned int eightByteSizes[CLR_SYSTEMV_MAX_EIGHTBYTES_COUNT_TO_PASS_IN_REGISTERS]; |
| 585 | unsigned int eightByteOffsets[CLR_SYSTEMV_MAX_EIGHTBYTES_COUNT_TO_PASS_IN_REGISTERS]; |
| 586 | |
| 587 | // Helper members to track state. |
| 588 | bool inEmbeddedStruct; |
| 589 | unsigned int currentUniqueOffsetField; // A virtual field that could encompass many overlapping fields. |
| 590 | int largestFieldOffset; |
| 591 | SystemVClassificationType fieldClassifications[SYSTEMV_MAX_NUM_FIELDS_IN_REGISTER_PASSED_STRUCT]; |
| 592 | unsigned int fieldSizes[SYSTEMV_MAX_NUM_FIELDS_IN_REGISTER_PASSED_STRUCT]; |
| 593 | unsigned int fieldOffsets[SYSTEMV_MAX_NUM_FIELDS_IN_REGISTER_PASSED_STRUCT]; |
| 594 | }; |
| 595 | |
| 596 | typedef DPTR(SystemVStructRegisterPassingHelper) SystemVStructRegisterPassingHelperPtr; |
| 597 | |
| 598 | #endif // UNIX_AMD64_ABI_ITF |
| 599 | |
| 600 | //=============================================================================================== |
| 601 | // |
| 602 | // GC data appears before the beginning of the MethodTable |
| 603 | // |
| 604 | //@GENERICS: |
| 605 | // Each generic type has a corresponding "generic" method table that serves the following |
| 606 | // purposes: |
| 607 | // * The method table pointer is used as a representative for the generic type e.g. in reflection |
| 608 | // * MethodDescs for methods in the vtable are used for reflection; they should never be invoked. |
| 609 | // Some other information (e.g. BaseSize) makes no sense "generically" but unfortunately gets put in anyway. |
| 610 | // |
| 611 | // Each distinct instantiation of a generic type has its own MethodTable structure. |
| 612 | // However, the EEClass structure can be shared between compatible instantiations e.g. List<string> and List<object>. |
| 613 | // In that case, MethodDescs are also shared between compatible instantiations (but see below about generic methods). |
| 614 | // Hence the vtable entries for MethodTables belonging to such an EEClass are the same. |
| 615 | // |
| 616 | // The non-vtable section of such MethodTables are only present for one of the instantiations (the first one |
| 617 | // requested) as non-vtable entries are never accessed through the vtable pointer of an object so it's always possible |
| 618 | // to ensure that they are accessed through the representative MethodTable that contains them. |
| 619 | |
| 620 | // A MethodTable is the fundamental representation of type in the runtime. It is this structure that |
| 621 | // objects point at (see code:Object). It holds the size and GC layout of the type, as well as the dispatch table |
| 622 | // for virtual dispach (but not interface dispatch). There is a distinct method table for every instance of |
| 623 | // a generic type. From here you can get to |
| 624 | // |
| 625 | // * code:EEClass |
| 626 | // |
| 627 | // Important fields |
| 628 | // * code:MethodTable.m_pEEClass - pointer to the cold part of the type. |
| 629 | // * code:MethodTable.m_pParentMethodTable - the method table of the parent type. |
| 630 | // |
| 631 | class MethodTableBuilder; |
| 632 | class MethodTable |
| 633 | { |
| 634 | /************************************ |
| 635 | * FRIEND FUNCTIONS |
| 636 | ************************************/ |
| 637 | // DO NOT ADD FRIENDS UNLESS ABSOLUTELY NECESSARY |
| 638 | // USE ACCESSORS TO READ/WRITE private field members |
| 639 | |
| 640 | // Special access for setting up String object method table correctly |
| 641 | friend class ClassLoader; |
| 642 | friend class JIT_TrialAlloc; |
| 643 | friend class Module; |
| 644 | friend class EEClass; |
| 645 | friend class MethodTableBuilder; |
| 646 | friend class CheckAsmOffsets; |
| 647 | #if defined(DACCESS_COMPILE) |
| 648 | friend class NativeImageDumper; |
| 649 | #endif |
| 650 | |
| 651 | public: |
| 652 | // Do some sanity checking to make sure it's a method table |
| 653 | // and not pointing to some random memory. In particular |
| 654 | // check that (apart from the special case of instantiated generic types) we have |
| 655 | // GetCanonicalMethodTable() == this; |
| 656 | BOOL SanityCheck(); |
| 657 | |
| 658 | static void CallFinalizer(Object *obj); |
| 659 | |
| 660 | public: |
| 661 | PTR_Module GetModule(); |
| 662 | PTR_Module GetModule_NoLogging(); |
| 663 | Assembly *GetAssembly(); |
| 664 | |
| 665 | PTR_Module GetModuleIfLoaded(); |
| 666 | |
| 667 | // GetDomain on an instantiated type, e.g. C<ty1,ty2> returns the SharedDomain if all the |
| 668 | // constituent parts of the type are SharedDomain (i.e. domain-neutral), |
| 669 | // and returns an AppDomain if any of the parts are from an AppDomain, |
| 670 | // i.e. are domain-bound. Note that if any of the parts are domain-bound |
| 671 | // then they will all belong to the same domain. |
| 672 | PTR_BaseDomain GetDomain(); |
| 673 | |
| 674 | // Does this immediate item live in an NGEN module? |
| 675 | BOOL IsZapped(); |
| 676 | |
| 677 | // For types that are part of an ngen-ed assembly this gets the |
| 678 | // Module* that contains this methodtable. |
| 679 | PTR_Module GetZapModule(); |
| 680 | |
| 681 | // For regular, non-constructed types, GetLoaderModule() == GetModule() |
| 682 | // For constructed types (e.g. int[], Dict<int[], C>) the hash table through which a type |
| 683 | // is accessed lives in a "loader module". The rule for determining the loader module must ensure |
| 684 | // that a type never outlives its loader module with respect to app-domain unloading |
| 685 | // |
| 686 | // GetModuleForStatics() is the third kind of module. GetModuleForStatics() is module that |
| 687 | // statics are attached to. |
| 688 | PTR_Module GetLoaderModule(); |
| 689 | PTR_LoaderAllocator GetLoaderAllocator(); |
| 690 | |
| 691 | void SetLoaderModule(Module* pModule); |
| 692 | void SetLoaderAllocator(LoaderAllocator* pAllocator); |
| 693 | |
| 694 | // Get the domain local module - useful for static init checks |
| 695 | PTR_DomainLocalModule GetDomainLocalModule(AppDomain * pAppDomain); |
| 696 | |
| 697 | #ifndef DACCESS_COMPILE |
| 698 | // Version of GetDomainLocalModule which relies on the current AppDomain |
| 699 | PTR_DomainLocalModule GetDomainLocalModule(); |
| 700 | #endif |
| 701 | |
| 702 | MethodTable *LoadEnclosingMethodTable(ClassLoadLevel targetLevel = CLASS_DEPENDENCIES_LOADED); |
| 703 | |
| 704 | LPCWSTR GetPathForErrorMessages(); |
| 705 | |
| 706 | //------------------------------------------------------------------- |
| 707 | // COM INTEROP |
| 708 | // |
| 709 | BOOL IsProjectedFromWinRT(); |
| 710 | BOOL IsExportedToWinRT(); |
| 711 | BOOL IsWinRTDelegate(); |
| 712 | BOOL IsWinRTRedirectedInterface(TypeHandle::InteropKind interopKind); |
| 713 | BOOL IsWinRTRedirectedDelegate(); |
| 714 | |
| 715 | #ifdef FEATURE_COMINTEROP |
| 716 | TypeHandle GetCoClassForInterface(); |
| 717 | |
| 718 | private: |
| 719 | TypeHandle SetupCoClassForInterface(); |
| 720 | |
| 721 | public: |
| 722 | DWORD IsComClassInterface(); |
| 723 | |
| 724 | // Retrieves the COM interface type. |
| 725 | CorIfaceAttr GetComInterfaceType(); |
| 726 | void SetComInterfaceType(CorIfaceAttr ItfType); |
| 727 | |
| 728 | // Determines whether this is a WinRT-legal type |
| 729 | BOOL IsLegalWinRTType(OBJECTREF *poref); |
| 730 | |
| 731 | // Determines whether this is a WinRT-legal type - don't use it with array |
| 732 | BOOL IsLegalNonArrayWinRTType(); |
| 733 | |
| 734 | MethodTable *GetDefaultWinRTInterface(); |
| 735 | |
| 736 | OBJECTHANDLE GetOHDelegate(); |
| 737 | void SetOHDelegate (OBJECTHANDLE _ohDelegate); |
| 738 | |
| 739 | CorClassIfaceAttr GetComClassInterfaceType(); |
| 740 | TypeHandle GetDefItfForComClassItf(); |
| 741 | |
| 742 | void GetEventInterfaceInfo(MethodTable **ppSrcItfType, MethodTable **ppEvProvType); |
| 743 | |
| 744 | BOOL IsExtensibleRCW(); |
| 745 | |
| 746 | // Helper to get parent class skipping over COM class in |
| 747 | // the hierarchy |
| 748 | MethodTable* GetComPlusParentMethodTable(); |
| 749 | |
| 750 | // class is a WinRT object class (is itself or derives from a ProjectedFromWinRT class) |
| 751 | BOOL IsWinRTObjectType(); |
| 752 | |
| 753 | DWORD IsComImport(); |
| 754 | |
| 755 | // class is a special COM event interface |
| 756 | int IsComEventItfType(); |
| 757 | |
| 758 | //------------------------------------------------------------------- |
| 759 | // Sparse VTables. These require a SparseVTableMap in the EEClass in |
| 760 | // order to record how the CLR's vtable slots map across to COM |
| 761 | // Interop slots. |
| 762 | // |
| 763 | int IsSparseForCOMInterop(); |
| 764 | |
| 765 | // COM interop helpers |
| 766 | // accessors for m_pComData |
| 767 | ComCallWrapperTemplate *GetComCallWrapperTemplate(); |
| 768 | BOOL SetComCallWrapperTemplate(ComCallWrapperTemplate *pTemplate); |
| 769 | #ifdef FEATURE_COMINTEROP_UNMANAGED_ACTIVATION |
| 770 | ClassFactoryBase *GetComClassFactory(); |
| 771 | BOOL SetComClassFactory(ClassFactoryBase *pFactory); |
| 772 | #endif // FEATURE_COMINTEROP_UNMANAGED_ACTIVATION |
| 773 | |
| 774 | OBJECTREF GetObjCreateDelegate(); |
| 775 | void SetObjCreateDelegate(OBJECTREF orDelegate); |
| 776 | |
| 777 | private: |
| 778 | // This is for COM Interop backwards compatibility |
| 779 | BOOL InsertComInteropData(InteropMethodTableData *pData); |
| 780 | InteropMethodTableData *CreateComInteropData(AllocMemTracker *pamTracker); |
| 781 | |
| 782 | public: |
| 783 | InteropMethodTableData *LookupComInteropData(); |
| 784 | // This is the preferable entrypoint, as it will make sure that all |
| 785 | // parent MT's have their interop data created, and will create and |
| 786 | // add this MT's data if not available. The caller should make sure that |
| 787 | // an appropriate lock is taken to prevent duplicates. |
| 788 | // NOTE: The current caller of this is ComInterop, and it makes calls |
| 789 | // under its own lock to ensure not duplicates. |
| 790 | InteropMethodTableData *GetComInteropData(); |
| 791 | |
| 792 | #else // !FEATURE_COMINTEROP |
| 793 | BOOL IsWinRTObjectType() |
| 794 | { |
| 795 | LIMITED_METHOD_CONTRACT; |
| 796 | return FALSE; |
| 797 | } |
| 798 | #endif // !FEATURE_COMINTEROP |
| 799 | |
| 800 | // class is a com object class |
| 801 | BOOL IsComObjectType() |
| 802 | { |
| 803 | LIMITED_METHOD_DAC_CONTRACT; |
| 804 | return GetFlag(enum_flag_ComObject); |
| 805 | } |
| 806 | |
| 807 | // mark the class type as COM object class |
| 808 | void SetComObjectType(); |
| 809 | |
| 810 | #ifdef FEATURE_ICASTABLE |
| 811 | void SetICastable(); |
| 812 | #endif |
| 813 | |
| 814 | BOOL IsICastable(); // This type implements ICastable interface |
| 815 | |
| 816 | #ifdef FEATURE_TYPEEQUIVALENCE |
| 817 | // mark the type as opted into type equivalence |
| 818 | void SetHasTypeEquivalence() |
| 819 | { |
| 820 | LIMITED_METHOD_CONTRACT; |
| 821 | SetFlag(enum_flag_HasTypeEquivalence); |
| 822 | } |
| 823 | #endif // FEATURE_TYPEEQUIVALENCE |
| 824 | |
| 825 | // type has opted into type equivalence or is instantiated by/derived from a type that is |
| 826 | BOOL HasTypeEquivalence() |
| 827 | { |
| 828 | LIMITED_METHOD_CONTRACT; |
| 829 | #ifdef FEATURE_TYPEEQUIVALENCE |
| 830 | return GetFlag(enum_flag_HasTypeEquivalence); |
| 831 | #else |
| 832 | return FALSE; |
| 833 | #endif // FEATURE_TYPEEQUIVALENCE |
| 834 | } |
| 835 | |
| 836 | //------------------------------------------------------------------- |
| 837 | // DYNAMIC ADDITION OF INTERFACES FOR COM INTEROP |
| 838 | // |
| 839 | // Support for dynamically added interfaces on extensible RCW's. |
| 840 | |
| 841 | #ifdef FEATURE_COMINTEROP |
| 842 | PTR_InterfaceInfo GetDynamicallyAddedInterfaceMap(); |
| 843 | unsigned GetNumDynamicallyAddedInterfaces(); |
| 844 | BOOL FindDynamicallyAddedInterface(MethodTable *pInterface); |
| 845 | void AddDynamicInterface(MethodTable *pItfMT); |
| 846 | |
| 847 | BOOL HasDynamicInterfaceMap() |
| 848 | { |
| 849 | LIMITED_METHOD_DAC_CONTRACT; |
| 850 | |
| 851 | // currently all ComObjects except |
| 852 | // for __ComObject have dynamic Interface maps |
| 853 | return GetNumInterfaces() > 0 && IsComObjectType() && !ParentEquals(g_pObjectClass); |
| 854 | } |
| 855 | #endif // FEATURE_COMINTEROP |
| 856 | |
| 857 | #ifndef DACCESS_COMPILE |
| 858 | VOID EnsureActive(); |
| 859 | VOID EnsureInstanceActive(); |
| 860 | #endif |
| 861 | |
| 862 | CHECK CheckActivated(); |
| 863 | CHECK CheckInstanceActivated(); |
| 864 | |
| 865 | //------------------------------------------------------------------- |
| 866 | // THE DEFAULT CONSTRUCTOR |
| 867 | // |
| 868 | |
| 869 | public: |
| 870 | BOOL HasDefaultConstructor(); |
| 871 | void SetHasDefaultConstructor(); |
| 872 | WORD GetDefaultConstructorSlot(); |
| 873 | MethodDesc *GetDefaultConstructor(); |
| 874 | |
| 875 | BOOL HasExplicitOrImplicitPublicDefaultConstructor(); |
| 876 | |
| 877 | //------------------------------------------------------------------- |
| 878 | // THE CLASS INITIALIZATION CONDITION |
| 879 | // (and related DomainLocalBlock/DomainLocalModule storage) |
| 880 | // |
| 881 | // - populate the DomainLocalModule if needed |
| 882 | // - run the cctor |
| 883 | // |
| 884 | |
| 885 | public: |
| 886 | |
| 887 | // checks whether the class initialiser should be run on this class, and runs it if necessary |
| 888 | void CheckRunClassInitThrowing(); |
| 889 | |
| 890 | // checks whether or not the non-beforefieldinit class initializers have been run for all types in this type's |
| 891 | // inheritance hierarchy, and runs them if necessary. This simulates the behavior of running class constructors |
| 892 | // during object construction. |
| 893 | void CheckRunClassInitAsIfConstructingThrowing(); |
| 894 | |
| 895 | #if defined(UNIX_AMD64_ABI_ITF) |
| 896 | // Builds the internal data structures and classifies struct eightbytes for Amd System V calling convention. |
| 897 | bool ClassifyEightBytes(SystemVStructRegisterPassingHelperPtr helperPtr, unsigned int nestingLevel, unsigned int startOffsetOfStruct, bool isNativeStruct); |
| 898 | #endif // defined(UNIX_AMD64_ABI_ITF) |
| 899 | |
| 900 | // Copy m_dwFlags from another method table |
| 901 | void CopyFlags(MethodTable * pOldMT) |
| 902 | { |
| 903 | LIMITED_METHOD_CONTRACT; |
| 904 | m_dwFlags = pOldMT->m_dwFlags; |
| 905 | m_wFlags2 = pOldMT->m_wFlags2; |
| 906 | } |
| 907 | |
| 908 | // Init the m_dwFlags field for an array |
| 909 | void SetIsArray(CorElementType arrayType, CorElementType elementType); |
| 910 | |
| 911 | BOOL IsClassPreInited(); |
| 912 | |
| 913 | // mark the class as having its cctor run. |
| 914 | #ifndef DACCESS_COMPILE |
| 915 | void SetClassInited(); |
| 916 | BOOL IsClassInited(AppDomain* pAppDomain = NULL); |
| 917 | |
| 918 | BOOL IsInitError(); |
| 919 | void SetClassInitError(); |
| 920 | #endif |
| 921 | |
| 922 | inline BOOL IsGlobalClass() |
| 923 | { |
| 924 | WRAPPER_NO_CONTRACT; |
| 925 | return (GetTypeDefRid() == RidFromToken(COR_GLOBAL_PARENT_TOKEN)); |
| 926 | } |
| 927 | |
| 928 | // uniquely identifes this type in the Domain table |
| 929 | DWORD GetClassIndex(); |
| 930 | |
| 931 | private: |
| 932 | |
| 933 | #if defined(UNIX_AMD64_ABI_ITF) |
| 934 | void AssignClassifiedEightByteTypes(SystemVStructRegisterPassingHelperPtr helperPtr, unsigned int nestingLevel) const; |
| 935 | // Builds the internal data structures and classifies struct eightbytes for Amd System V calling convention. |
| 936 | bool ClassifyEightBytesWithManagedLayout(SystemVStructRegisterPassingHelperPtr helperPtr, unsigned int nestingLevel, unsigned int startOffsetOfStruct, bool isNativeStruct); |
| 937 | bool ClassifyEightBytesWithNativeLayout(SystemVStructRegisterPassingHelperPtr helperPtr, unsigned int nestingLevel, unsigned int startOffsetOfStruct, bool isNativeStruct); |
| 938 | #endif // defined(UNIX_AMD64_ABI_ITF) |
| 939 | |
| 940 | DWORD GetClassIndexFromToken(mdTypeDef typeToken) |
| 941 | { |
| 942 | LIMITED_METHOD_CONTRACT; |
| 943 | return RidFromToken(typeToken) - 1; |
| 944 | } |
| 945 | |
| 946 | // called from CheckRunClassInitThrowing(). The type wasn't marked as |
| 947 | // inited while we were there, so let's attempt to do the work. |
| 948 | void DoRunClassInitThrowing(); |
| 949 | |
| 950 | BOOL RunClassInitEx(OBJECTREF *pThrowable); |
| 951 | |
| 952 | public: |
| 953 | //------------------------------------------------------------------- |
| 954 | // THE CLASS CONSTRUCTOR |
| 955 | // |
| 956 | |
| 957 | MethodDesc * GetClassConstructor(); |
| 958 | |
| 959 | BOOL HasClassConstructor(); |
| 960 | void SetHasClassConstructor(); |
| 961 | WORD GetClassConstructorSlot(); |
| 962 | void SetClassConstructorSlot (WORD wCCtorSlot); |
| 963 | |
| 964 | ClassCtorInfoEntry* GetClassCtorInfoIfExists(); |
| 965 | |
| 966 | |
| 967 | void GetSavedExtent(TADDR *ppStart, TADDR *ppEnd); |
| 968 | |
| 969 | //------------------------------------------------------------------- |
| 970 | // Save/Fixup/Restore/NeedsRestore |
| 971 | // |
| 972 | // Restore this method table if it's not already restored |
| 973 | // This is done by forcing a class load which in turn calls the Restore method |
| 974 | // The pending list is required for restoring types that reference themselves through |
| 975 | // instantiations of the superclass or interfaces e.g. System.Int32 : IComparable<System.Int32> |
| 976 | |
| 977 | |
| 978 | #ifdef FEATURE_PREJIT |
| 979 | |
| 980 | void Save(DataImage *image, DWORD profilingFlags); |
| 981 | void Fixup(DataImage *image); |
| 982 | |
| 983 | // This is different from !IsRestored() in that it checks if restoring |
| 984 | // will ever be needed for this ngened data-structure. |
| 985 | // This is to be used at ngen time of a dependent module to determine |
| 986 | // if it can be accessed directly, or if the restoring mechanism needs |
| 987 | // to be hooked in. |
| 988 | BOOL ComputeNeedsRestore(DataImage *image, TypeHandleList *pVisited); |
| 989 | |
| 990 | BOOL NeedsRestore(DataImage *image) |
| 991 | { |
| 992 | WRAPPER_NO_CONTRACT; |
| 993 | return ComputeNeedsRestore(image, NULL); |
| 994 | } |
| 995 | |
| 996 | private: |
| 997 | BOOL ComputeNeedsRestoreWorker(DataImage *image, TypeHandleList *pVisited); |
| 998 | |
| 999 | public: |
| 1000 | // This returns true at NGen time if we can eager bind to all dictionaries along the inheritance chain |
| 1001 | BOOL CanEagerBindToParentDictionaries(DataImage *image, TypeHandleList *pVisited); |
| 1002 | |
| 1003 | // This returns true at NGen time if we may need to attach statics to |
| 1004 | // other module than current loader module at runtime |
| 1005 | BOOL NeedsCrossModuleGenericsStaticsInfo(); |
| 1006 | |
| 1007 | // Returns true at NGen time if we may need to write into the MethodTable at runtime |
| 1008 | BOOL IsWriteable(); |
| 1009 | |
| 1010 | #endif // FEATURE_PREJIT |
| 1011 | |
| 1012 | void AllocateRegularStaticBoxes(); |
| 1013 | static OBJECTREF AllocateStaticBox(MethodTable* pFieldMT, BOOL fPinned, OBJECTHANDLE* pHandle = 0); |
| 1014 | |
| 1015 | void CheckRestore(); |
| 1016 | |
| 1017 | // Perform restore actions on type key components of method table (EEClass pointer + Module, generic args) |
| 1018 | void DoRestoreTypeKey(); |
| 1019 | |
| 1020 | inline BOOL HasUnrestoredTypeKey() const |
| 1021 | { |
| 1022 | LIMITED_METHOD_DAC_CONTRACT; |
| 1023 | |
| 1024 | return !IsPreRestored() && |
| 1025 | (GetWriteableData()->m_dwFlags & MethodTableWriteableData::enum_flag_UnrestoredTypeKey) != 0; |
| 1026 | } |
| 1027 | |
| 1028 | // Actually do the restore actions on the method table |
| 1029 | void Restore(); |
| 1030 | |
| 1031 | void SetIsRestored(); |
| 1032 | |
| 1033 | inline BOOL IsRestored_NoLogging() |
| 1034 | { |
| 1035 | LIMITED_METHOD_DAC_CONTRACT; |
| 1036 | |
| 1037 | // If we are prerestored then we are considered a restored methodtable. |
| 1038 | // Note that IsPreRestored is always false for jitted code. |
| 1039 | if (IsPreRestored()) |
| 1040 | return TRUE; |
| 1041 | |
| 1042 | return !(GetWriteableData_NoLogging()->m_dwFlags & MethodTableWriteableData::enum_flag_Unrestored); |
| 1043 | } |
| 1044 | inline BOOL IsRestored() |
| 1045 | { |
| 1046 | LIMITED_METHOD_DAC_CONTRACT; |
| 1047 | |
| 1048 | g_IBCLogger.LogMethodTableAccess(this); |
| 1049 | |
| 1050 | // If we are prerestored then we are considered a restored methodtable. |
| 1051 | // Note that IsPreRestored is always false for jitted code. |
| 1052 | if (IsPreRestored()) |
| 1053 | return TRUE; |
| 1054 | |
| 1055 | return !(GetWriteableData()->m_dwFlags & MethodTableWriteableData::enum_flag_Unrestored); |
| 1056 | } |
| 1057 | |
| 1058 | //------------------------------------------------------------------- |
| 1059 | // LOAD LEVEL |
| 1060 | // |
| 1061 | // The load level of a method table is derived from various flag bits |
| 1062 | // See classloadlevel.h for details of each level |
| 1063 | // |
| 1064 | // Level CLASS_LOADED (fully loaded) is special: a type only |
| 1065 | // reaches this level once all of its dependent types are also at |
| 1066 | // this level (generic arguments, parent, interfaces, etc). |
| 1067 | // Fully loading a type to this level is done outside locks, hence the need for |
| 1068 | // a single atomic action that sets the level. |
| 1069 | // |
| 1070 | inline void SetIsFullyLoaded() |
| 1071 | { |
| 1072 | CONTRACTL |
| 1073 | { |
| 1074 | THROWS; |
| 1075 | GC_NOTRIGGER; |
| 1076 | MODE_ANY; |
| 1077 | } |
| 1078 | CONTRACTL_END; |
| 1079 | |
| 1080 | PRECONDITION(!HasApproxParent()); |
| 1081 | PRECONDITION(IsRestored_NoLogging()); |
| 1082 | |
| 1083 | FastInterlockAnd(EnsureWritablePages(&GetWriteableDataForWrite()->m_dwFlags), ~MethodTableWriteableData::enum_flag_IsNotFullyLoaded); |
| 1084 | } |
| 1085 | |
| 1086 | // Equivalent to GetLoadLevel() == CLASS_LOADED |
| 1087 | inline BOOL IsFullyLoaded() |
| 1088 | { |
| 1089 | WRAPPER_NO_CONTRACT; |
| 1090 | |
| 1091 | return (IsPreRestored()) |
| 1092 | || (GetWriteableData()->m_dwFlags & MethodTableWriteableData::enum_flag_IsNotFullyLoaded) == 0; |
| 1093 | } |
| 1094 | |
| 1095 | inline BOOL IsSkipWinRTOverride() |
| 1096 | { |
| 1097 | LIMITED_METHOD_CONTRACT; |
| 1098 | return (GetWriteableData_NoLogging()->m_dwFlags & MethodTableWriteableData::enum_flag_SkipWinRTOverride); |
| 1099 | } |
| 1100 | |
| 1101 | inline void SetSkipWinRTOverride() |
| 1102 | { |
| 1103 | WRAPPER_NO_CONTRACT; |
| 1104 | FastInterlockOr(EnsureWritablePages(&GetWriteableDataForWrite_NoLogging()->m_dwFlags), MethodTableWriteableData::enum_flag_SkipWinRTOverride); |
| 1105 | } |
| 1106 | |
| 1107 | inline BOOL CanCompareBitsOrUseFastGetHashCode() |
| 1108 | { |
| 1109 | LIMITED_METHOD_CONTRACT; |
| 1110 | return (GetWriteableData_NoLogging()->m_dwFlags & MethodTableWriteableData::enum_flag_CanCompareBitsOrUseFastGetHashCode); |
| 1111 | } |
| 1112 | |
| 1113 | // If canCompare is true, this method ensure an atomic operation for setting |
| 1114 | // enum_flag_HasCheckedCanCompareBitsOrUseFastGetHashCode and enum_flag_CanCompareBitsOrUseFastGetHashCode flags. |
| 1115 | inline void SetCanCompareBitsOrUseFastGetHashCode(BOOL canCompare) |
| 1116 | { |
| 1117 | WRAPPER_NO_CONTRACT |
| 1118 | if (canCompare) |
| 1119 | { |
| 1120 | // Set checked and canCompare flags in one interlocked operation. |
| 1121 | FastInterlockOr(EnsureWritablePages(&GetWriteableDataForWrite_NoLogging()->m_dwFlags), |
| 1122 | MethodTableWriteableData::enum_flag_HasCheckedCanCompareBitsOrUseFastGetHashCode | MethodTableWriteableData::enum_flag_CanCompareBitsOrUseFastGetHashCode); |
| 1123 | } |
| 1124 | else |
| 1125 | { |
| 1126 | SetHasCheckedCanCompareBitsOrUseFastGetHashCode(); |
| 1127 | } |
| 1128 | } |
| 1129 | |
| 1130 | inline BOOL HasCheckedCanCompareBitsOrUseFastGetHashCode() |
| 1131 | { |
| 1132 | LIMITED_METHOD_CONTRACT; |
| 1133 | return (GetWriteableData_NoLogging()->m_dwFlags & MethodTableWriteableData::enum_flag_HasCheckedCanCompareBitsOrUseFastGetHashCode); |
| 1134 | } |
| 1135 | |
| 1136 | inline void SetHasCheckedCanCompareBitsOrUseFastGetHashCode() |
| 1137 | { |
| 1138 | WRAPPER_NO_CONTRACT; |
| 1139 | FastInterlockOr(EnsureWritablePages(&GetWriteableDataForWrite_NoLogging()->m_dwFlags), MethodTableWriteableData::enum_flag_HasCheckedCanCompareBitsOrUseFastGetHashCode); |
| 1140 | } |
| 1141 | |
| 1142 | inline void SetIsDependenciesLoaded() |
| 1143 | { |
| 1144 | CONTRACTL |
| 1145 | { |
| 1146 | THROWS; |
| 1147 | GC_NOTRIGGER; |
| 1148 | MODE_ANY; |
| 1149 | } |
| 1150 | CONTRACTL_END; |
| 1151 | |
| 1152 | PRECONDITION(!HasApproxParent()); |
| 1153 | PRECONDITION(IsRestored_NoLogging()); |
| 1154 | |
| 1155 | FastInterlockOr(EnsureWritablePages(&GetWriteableDataForWrite()->m_dwFlags), MethodTableWriteableData::enum_flag_DependenciesLoaded); |
| 1156 | } |
| 1157 | |
| 1158 | inline ClassLoadLevel GetLoadLevel() |
| 1159 | { |
| 1160 | LIMITED_METHOD_DAC_CONTRACT; |
| 1161 | |
| 1162 | g_IBCLogger.LogMethodTableAccess(this); |
| 1163 | |
| 1164 | // Fast path for zapped images |
| 1165 | if (IsPreRestored()) |
| 1166 | return CLASS_LOADED; |
| 1167 | |
| 1168 | DWORD dwFlags = GetWriteableData()->m_dwFlags; |
| 1169 | |
| 1170 | if (dwFlags & MethodTableWriteableData::enum_flag_IsNotFullyLoaded) |
| 1171 | { |
| 1172 | if (dwFlags & MethodTableWriteableData::enum_flag_UnrestoredTypeKey) |
| 1173 | return CLASS_LOAD_UNRESTOREDTYPEKEY; |
| 1174 | |
| 1175 | if (dwFlags & MethodTableWriteableData::enum_flag_Unrestored) |
| 1176 | return CLASS_LOAD_UNRESTORED; |
| 1177 | |
| 1178 | if (dwFlags & MethodTableWriteableData::enum_flag_HasApproxParent) |
| 1179 | return CLASS_LOAD_APPROXPARENTS; |
| 1180 | |
| 1181 | if (!(dwFlags & MethodTableWriteableData::enum_flag_DependenciesLoaded)) |
| 1182 | return CLASS_LOAD_EXACTPARENTS; |
| 1183 | |
| 1184 | return CLASS_DEPENDENCIES_LOADED; |
| 1185 | } |
| 1186 | |
| 1187 | return CLASS_LOADED; |
| 1188 | } |
| 1189 | |
| 1190 | #ifdef _DEBUG |
| 1191 | CHECK CheckLoadLevel(ClassLoadLevel level) |
| 1192 | { |
| 1193 | LIMITED_METHOD_CONTRACT; |
| 1194 | return TypeHandle(this).CheckLoadLevel(level); |
| 1195 | } |
| 1196 | #endif |
| 1197 | |
| 1198 | |
| 1199 | void DoFullyLoad(Generics::RecursionGraph * const pVisited, const ClassLoadLevel level, DFLPendingList * const pPending, BOOL * const pfBailed, |
| 1200 | const InstantiationContext * const pInstContext); |
| 1201 | |
| 1202 | //------------------------------------------------------------------- |
| 1203 | // METHOD TABLES AS TYPE DESCRIPTORS |
| 1204 | // |
| 1205 | // A MethodTable can represeent a type such as "String" or an |
| 1206 | // instantiated type such as "List<String>". |
| 1207 | // |
| 1208 | |
| 1209 | inline BOOL IsInterface() |
| 1210 | { |
| 1211 | LIMITED_METHOD_DAC_CONTRACT; |
| 1212 | return GetFlag(enum_flag_Category_Mask) == enum_flag_Category_Interface; |
| 1213 | } |
| 1214 | |
| 1215 | void SetIsInterface() |
| 1216 | { |
| 1217 | LIMITED_METHOD_CONTRACT; |
| 1218 | |
| 1219 | _ASSERTE(GetFlag(enum_flag_Category_Mask) == 0); |
| 1220 | SetFlag(enum_flag_Category_Interface); |
| 1221 | } |
| 1222 | |
| 1223 | inline BOOL IsSealed(); |
| 1224 | |
| 1225 | inline BOOL IsAbstract(); |
| 1226 | |
| 1227 | BOOL IsExternallyVisible(); |
| 1228 | |
| 1229 | // Get the instantiation for this instantiated type e.g. for Dict<string,int> |
| 1230 | // this would be an array {string,int} |
| 1231 | // If not instantiated, return NULL |
| 1232 | Instantiation GetInstantiation(); |
| 1233 | |
| 1234 | // Get the instantiation for an instantiated type or a pointer to the |
| 1235 | // element type for an array |
| 1236 | Instantiation GetClassOrArrayInstantiation(); |
| 1237 | Instantiation GetArrayInstantiation(); |
| 1238 | |
| 1239 | // Does this method table require that additional modules be loaded? |
| 1240 | inline BOOL HasModuleDependencies() |
| 1241 | { |
| 1242 | LIMITED_METHOD_CONTRACT; |
| 1243 | return GetFlag(enum_flag_HasModuleDependencies); |
| 1244 | } |
| 1245 | |
| 1246 | inline void SetHasModuleDependencies() |
| 1247 | { |
| 1248 | SetFlag(enum_flag_HasModuleDependencies); |
| 1249 | } |
| 1250 | |
| 1251 | inline BOOL IsIntrinsicType() |
| 1252 | { |
| 1253 | LIMITED_METHOD_DAC_CONTRACT;; |
| 1254 | return GetFlag(enum_flag_IsIntrinsicType); |
| 1255 | } |
| 1256 | |
| 1257 | inline void SetIsIntrinsicType() |
| 1258 | { |
| 1259 | LIMITED_METHOD_DAC_CONTRACT;; |
| 1260 | SetFlag(enum_flag_IsIntrinsicType); |
| 1261 | } |
| 1262 | |
| 1263 | // See the comment in code:MethodTable.DoFullyLoad for detailed description. |
| 1264 | inline BOOL DependsOnEquivalentOrForwardedStructs() |
| 1265 | { |
| 1266 | LIMITED_METHOD_CONTRACT; |
| 1267 | return GetFlag(enum_flag_DependsOnEquivalentOrForwardedStructs); |
| 1268 | } |
| 1269 | |
| 1270 | inline void SetDependsOnEquivalentOrForwardedStructs() |
| 1271 | { |
| 1272 | SetFlag(enum_flag_DependsOnEquivalentOrForwardedStructs); |
| 1273 | } |
| 1274 | |
| 1275 | // Is this a method table for a generic type instantiation, e.g. List<string>? |
| 1276 | inline BOOL HasInstantiation(); |
| 1277 | |
| 1278 | // Returns true for any class which is either itself a generic |
| 1279 | // instantiation or is derived from a generic |
| 1280 | // instantiation anywhere in it's class hierarchy, |
| 1281 | // |
| 1282 | // e.g. class D : C<int> |
| 1283 | // or class E : D, class D : C<int> |
| 1284 | // |
| 1285 | // Does not return true just because the class supports |
| 1286 | // an instantiated interface type. |
| 1287 | BOOL HasGenericClassInstantiationInHierarchy() |
| 1288 | { |
| 1289 | WRAPPER_NO_CONTRACT; |
| 1290 | return GetNumDicts() != 0; |
| 1291 | } |
| 1292 | |
| 1293 | // Is this an instantiation of a generic class at its formal |
| 1294 | // type parameters ie. List<T> ? |
| 1295 | inline BOOL IsGenericTypeDefinition(); |
| 1296 | |
| 1297 | BOOL ContainsGenericMethodVariables(); |
| 1298 | |
| 1299 | static BOOL ComputeContainsGenericVariables(Instantiation inst); |
| 1300 | |
| 1301 | inline void SetContainsGenericVariables() |
| 1302 | { |
| 1303 | LIMITED_METHOD_CONTRACT; |
| 1304 | SetFlag(enum_flag_ContainsGenericVariables); |
| 1305 | } |
| 1306 | |
| 1307 | inline void SetHasVariance() |
| 1308 | { |
| 1309 | LIMITED_METHOD_CONTRACT; |
| 1310 | SetFlag(enum_flag_HasVariance); |
| 1311 | } |
| 1312 | |
| 1313 | inline BOOL HasVariance() |
| 1314 | { |
| 1315 | LIMITED_METHOD_CONTRACT; |
| 1316 | return GetFlag(enum_flag_HasVariance); |
| 1317 | } |
| 1318 | |
| 1319 | // Is this something like List<T> or List<Stack<T>>? |
| 1320 | // List<Blah<T>> only exists for reflection and verification. |
| 1321 | inline DWORD ContainsGenericVariables(BOOL methodVarsOnly = FALSE) |
| 1322 | { |
| 1323 | WRAPPER_NO_CONTRACT; |
| 1324 | SUPPORTS_DAC; |
| 1325 | if (methodVarsOnly) |
| 1326 | return ContainsGenericMethodVariables(); |
| 1327 | else |
| 1328 | return GetFlag(enum_flag_ContainsGenericVariables); |
| 1329 | } |
| 1330 | |
| 1331 | BOOL IsByRefLike() |
| 1332 | { |
| 1333 | LIMITED_METHOD_DAC_CONTRACT;; |
| 1334 | return GetFlag(enum_flag_IsByRefLike); |
| 1335 | } |
| 1336 | |
| 1337 | void SetIsByRefLike() |
| 1338 | { |
| 1339 | LIMITED_METHOD_CONTRACT; |
| 1340 | SetFlag(enum_flag_IsByRefLike); |
| 1341 | } |
| 1342 | |
| 1343 | // class is a com object class |
| 1344 | Module* GetDefiningModuleForOpenType(); |
| 1345 | |
| 1346 | inline BOOL IsTypicalTypeDefinition() |
| 1347 | { |
| 1348 | LIMITED_METHOD_CONTRACT; |
| 1349 | return !HasInstantiation() || IsGenericTypeDefinition(); |
| 1350 | } |
| 1351 | |
| 1352 | typedef enum |
| 1353 | { |
| 1354 | modeProjected = 0x1, |
| 1355 | modeRedirected = 0x2, |
| 1356 | modeAll = modeProjected|modeRedirected |
| 1357 | } Mode; |
| 1358 | |
| 1359 | // Is this a generic interface/delegate that can be used for COM interop? |
| 1360 | inline BOOL SupportsGenericInterop(TypeHandle::InteropKind interopKind, Mode = modeAll); |
| 1361 | |
| 1362 | BOOL HasSameTypeDefAs(MethodTable *pMT); |
| 1363 | BOOL HasSameTypeDefAs_NoLogging(MethodTable *pMT); |
| 1364 | |
| 1365 | //------------------------------------------------------------------- |
| 1366 | // GENERICS & CODE SHARING |
| 1367 | // |
| 1368 | |
| 1369 | BOOL IsSharedByGenericInstantiations(); |
| 1370 | |
| 1371 | // If this is a "representative" generic MT or a non-generic (regular) MT return true |
| 1372 | inline BOOL IsCanonicalMethodTable(); |
| 1373 | |
| 1374 | // Return the canonical representative MT amongst the set of MT's that share |
| 1375 | // code with the given MT because of generics. |
| 1376 | PTR_MethodTable GetCanonicalMethodTable(); |
| 1377 | |
| 1378 | // Returns fixup if canonical method table needs fixing up, NULL otherwise |
| 1379 | TADDR GetCanonicalMethodTableFixup(); |
| 1380 | |
| 1381 | //------------------------------------------------------------------- |
| 1382 | // Accessing methods by slot number |
| 1383 | // |
| 1384 | // Some of these functions are also currently used to get non-virtual |
| 1385 | // methods, relying on the assumption that they are contiguous. This |
| 1386 | // is not true for non-virtual methods in generic instantiations, which |
| 1387 | // only live on the canonical method table. |
| 1388 | |
| 1389 | enum |
| 1390 | { |
| 1391 | NO_SLOT = 0xffff // a unique slot number used to indicate "empty" for fields that record slot numbers |
| 1392 | }; |
| 1393 | |
| 1394 | PCODE GetSlot(UINT32 slotNumber) |
| 1395 | { |
| 1396 | WRAPPER_NO_CONTRACT; |
| 1397 | STATIC_CONTRACT_SO_TOLERANT; |
| 1398 | CONSISTENCY_CHECK(slotNumber < GetNumVtableSlots()); |
| 1399 | |
| 1400 | TADDR pSlot = GetSlotPtrRaw(slotNumber); |
| 1401 | if (slotNumber < GetNumVirtuals()) |
| 1402 | { |
| 1403 | return VTableIndir2_t::GetValueMaybeNullAtPtr(pSlot); |
| 1404 | } |
| 1405 | else if (IsZapped() && slotNumber >= GetNumVirtuals()) |
| 1406 | { |
| 1407 | // Non-virtual slots in NGened images are relative pointers |
| 1408 | return RelativePointer<PCODE>::GetValueAtPtr(pSlot); |
| 1409 | } |
| 1410 | return *dac_cast<PTR_PCODE>(pSlot); |
| 1411 | } |
| 1412 | |
| 1413 | // Special-case for when we know that the slot number corresponds |
| 1414 | // to a virtual method. |
| 1415 | inline PCODE GetSlotForVirtual(UINT32 slotNum) |
| 1416 | { |
| 1417 | LIMITED_METHOD_CONTRACT; |
| 1418 | |
| 1419 | CONSISTENCY_CHECK(slotNum < GetNumVirtuals()); |
| 1420 | // Virtual slots live in chunks pointed to by vtable indirections |
| 1421 | |
| 1422 | DWORD index = GetIndexOfVtableIndirection(slotNum); |
| 1423 | TADDR base = dac_cast<TADDR>(&(GetVtableIndirections()[index])); |
| 1424 | DPTR(VTableIndir2_t) baseAfterInd = VTableIndir_t::GetValueMaybeNullAtPtr(base) + GetIndexAfterVtableIndirection(slotNum); |
| 1425 | return VTableIndir2_t::GetValueMaybeNullAtPtr(dac_cast<TADDR>(baseAfterInd)); |
| 1426 | } |
| 1427 | |
| 1428 | TADDR GetSlotPtrRaw(UINT32 slotNum) |
| 1429 | { |
| 1430 | WRAPPER_NO_CONTRACT; |
| 1431 | STATIC_CONTRACT_SO_TOLERANT; |
| 1432 | CONSISTENCY_CHECK(slotNum < GetNumVtableSlots()); |
| 1433 | |
| 1434 | if (slotNum < GetNumVirtuals()) |
| 1435 | { |
| 1436 | // Virtual slots live in chunks pointed to by vtable indirections |
| 1437 | DWORD index = GetIndexOfVtableIndirection(slotNum); |
| 1438 | TADDR base = dac_cast<TADDR>(&(GetVtableIndirections()[index])); |
| 1439 | DPTR(VTableIndir2_t) baseAfterInd = VTableIndir_t::GetValueMaybeNullAtPtr(base) + GetIndexAfterVtableIndirection(slotNum); |
| 1440 | return dac_cast<TADDR>(baseAfterInd); |
| 1441 | } |
| 1442 | else if (HasSingleNonVirtualSlot()) |
| 1443 | { |
| 1444 | // Non-virtual slots < GetNumVtableSlots live in a single chunk pointed to by an optional member, |
| 1445 | // except when there is only one in which case it lives in the optional member itself |
| 1446 | _ASSERTE(slotNum == GetNumVirtuals()); |
| 1447 | return GetNonVirtualSlotsPtr(); |
| 1448 | } |
| 1449 | else |
| 1450 | { |
| 1451 | // Non-virtual slots < GetNumVtableSlots live in a single chunk pointed to by an optional member |
| 1452 | _ASSERTE(HasNonVirtualSlotsArray()); |
| 1453 | g_IBCLogger.LogMethodTableNonVirtualSlotsAccess(this); |
| 1454 | return dac_cast<TADDR>(GetNonVirtualSlotsArray() + (slotNum - GetNumVirtuals())); |
| 1455 | } |
| 1456 | } |
| 1457 | |
| 1458 | TADDR GetSlotPtr(UINT32 slotNum) |
| 1459 | { |
| 1460 | WRAPPER_NO_CONTRACT; |
| 1461 | STATIC_CONTRACT_SO_TOLERANT; |
| 1462 | |
| 1463 | // Slots in NGened images are relative pointers |
| 1464 | CONSISTENCY_CHECK(!IsZapped()); |
| 1465 | |
| 1466 | return GetSlotPtrRaw(slotNum); |
| 1467 | } |
| 1468 | |
| 1469 | void SetSlot(UINT32 slotNum, PCODE slotVal); |
| 1470 | |
| 1471 | //------------------------------------------------------------------- |
| 1472 | // The VTABLE |
| 1473 | // |
| 1474 | // Rather than the traditional array of code pointers (or "slots") we use a two-level vtable in |
| 1475 | // which slots for virtual methods live in chunks. Doing so allows the chunks to be shared among |
| 1476 | // method tables (the most common example being between parent and child classes where the child |
| 1477 | // does not override any method in the chunk). This yields substantial space savings at the fixed |
| 1478 | // cost of one additional indirection for a virtual call. |
| 1479 | // |
| 1480 | // Note that none of this should be visible outside the implementation of MethodTable; all other |
| 1481 | // code continues to refer to a virtual method via the traditional slot number. This is similar to |
| 1482 | // how we refer to non-virtual methods as having a slot number despite having long ago moved their |
| 1483 | // code pointers out of the vtable. |
| 1484 | // |
| 1485 | // Consider a class where GetNumVirtuals is 5 and (for the sake of the example) assume we break |
| 1486 | // the vtable into chunks of size 3. The layout would be as follows: |
| 1487 | // |
| 1488 | // pMT chunk 1 chunk 2 |
| 1489 | // ------------------ ------------------ ------------------ |
| 1490 | // | | | M1() | | M4() | |
| 1491 | // | fixed-size | ------------------ ------------------ |
| 1492 | // | portion of | | M2() | | M5() | |
| 1493 | // | MethodTable | ------------------ ------------------ |
| 1494 | // | | | M3() | |
| 1495 | // ------------------ ------------------ |
| 1496 | // | ptr to chunk 1 | |
| 1497 | // ------------------ |
| 1498 | // | ptr to chunk 2 | |
| 1499 | // ------------------ |
| 1500 | // |
| 1501 | // We refer to "ptr to chunk 1" and "ptr to chunk 2" as "indirection slots." |
| 1502 | // |
| 1503 | // The current chunking strategy is independent of class properties; all are of size 8. Several |
| 1504 | // other strategies were tried, and the only one that has performed better empirically is to begin |
| 1505 | // with a single chunk of size 4 (matching the number of virtuals in System.Object) and then |
| 1506 | // continue with chunks of size 8. However it was a small improvement and required the run-time |
| 1507 | // helpers listed below to be measurably slower. |
| 1508 | // |
| 1509 | // If you want to change this, you should only need to modify the first four functions below |
| 1510 | // along with any assembly helper that has taken a dependency on the layout. Currently, |
| 1511 | // those consist of: |
| 1512 | // JIT_IsInstanceOfInterface |
| 1513 | // JIT_ChkCastInterface |
| 1514 | // Transparent proxy stub |
| 1515 | // |
| 1516 | // This layout only applies to the virtual methods in a class (those with slot number below GetNumVirtuals). |
| 1517 | // Non-virtual methods that are in the vtable (those with slot numbers between GetNumVirtuals and |
| 1518 | // GetNumVtableSlots) are laid out in a single chunk pointed to by an optional member. |
| 1519 | // See GetSlotPtrRaw for more details. |
| 1520 | |
| 1521 | #define VTABLE_SLOTS_PER_CHUNK 8 |
| 1522 | #define VTABLE_SLOTS_PER_CHUNK_LOG2 3 |
| 1523 | |
| 1524 | #if defined(FEATURE_NGEN_RELOCS_OPTIMIZATIONS) |
| 1525 | typedef RelativePointer<PCODE> VTableIndir2_t; |
| 1526 | typedef RelativePointer<DPTR(VTableIndir2_t)> VTableIndir_t; |
| 1527 | #else |
| 1528 | typedef PlainPointer<PCODE> VTableIndir2_t; |
| 1529 | typedef PlainPointer<DPTR(VTableIndir2_t)> VTableIndir_t; |
| 1530 | #endif |
| 1531 | |
| 1532 | static DWORD GetIndexOfVtableIndirection(DWORD slotNum); |
| 1533 | static DWORD GetStartSlotForVtableIndirection(UINT32 indirectionIndex, DWORD wNumVirtuals); |
| 1534 | static DWORD GetEndSlotForVtableIndirection(UINT32 indirectionIndex, DWORD wNumVirtuals); |
| 1535 | static UINT32 GetIndexAfterVtableIndirection(UINT32 slotNum); |
| 1536 | static DWORD GetNumVtableIndirections(DWORD wNumVirtuals); |
| 1537 | DPTR(VTableIndir_t) GetVtableIndirections(); |
| 1538 | DWORD GetNumVtableIndirections(); |
| 1539 | |
| 1540 | class VtableIndirectionSlotIterator |
| 1541 | { |
| 1542 | friend class MethodTable; |
| 1543 | |
| 1544 | private: |
| 1545 | DPTR(VTableIndir_t) m_pSlot; |
| 1546 | DWORD m_i; |
| 1547 | DWORD m_count; |
| 1548 | PTR_MethodTable m_pMT; |
| 1549 | |
| 1550 | VtableIndirectionSlotIterator(MethodTable *pMT); |
| 1551 | VtableIndirectionSlotIterator(MethodTable *pMT, DWORD index); |
| 1552 | |
| 1553 | public: |
| 1554 | BOOL Next(); |
| 1555 | BOOL Finished(); |
| 1556 | DWORD GetIndex(); |
| 1557 | DWORD GetOffsetFromMethodTable(); |
| 1558 | DPTR(VTableIndir2_t) GetIndirectionSlot(); |
| 1559 | |
| 1560 | #ifndef DACCESS_COMPILE |
| 1561 | void SetIndirectionSlot(DPTR(VTableIndir2_t) pChunk); |
| 1562 | #endif |
| 1563 | |
| 1564 | DWORD GetStartSlot(); |
| 1565 | DWORD GetEndSlot(); |
| 1566 | DWORD GetNumSlots(); |
| 1567 | DWORD GetSize(); |
| 1568 | }; // class VtableIndirectionSlotIterator |
| 1569 | |
| 1570 | VtableIndirectionSlotIterator IterateVtableIndirectionSlots(); |
| 1571 | VtableIndirectionSlotIterator IterateVtableIndirectionSlotsFrom(DWORD index); |
| 1572 | |
| 1573 | #ifdef FEATURE_PREJIT |
| 1574 | static BOOL CanShareVtableChunksFrom(MethodTable *pTargetMT, Module *pCurrentLoaderModule, Module *pCurrentPreferredZapModule); |
| 1575 | BOOL CanInternVtableChunk(DataImage *image, VtableIndirectionSlotIterator it); |
| 1576 | #else |
| 1577 | static BOOL CanShareVtableChunksFrom(MethodTable *pTargetMT, Module *pCurrentLoaderModule); |
| 1578 | #endif |
| 1579 | |
| 1580 | inline BOOL HasNonVirtualSlots() |
| 1581 | { |
| 1582 | LIMITED_METHOD_DAC_CONTRACT; |
| 1583 | return GetFlag(enum_flag_HasNonVirtualSlots); |
| 1584 | } |
| 1585 | |
| 1586 | inline BOOL HasSingleNonVirtualSlot() |
| 1587 | { |
| 1588 | LIMITED_METHOD_DAC_CONTRACT; |
| 1589 | return GetFlag(enum_flag_HasSingleNonVirtualSlot); |
| 1590 | } |
| 1591 | |
| 1592 | inline BOOL HasNonVirtualSlotsArray() |
| 1593 | { |
| 1594 | LIMITED_METHOD_DAC_CONTRACT; |
| 1595 | return HasNonVirtualSlots() && !HasSingleNonVirtualSlot(); |
| 1596 | } |
| 1597 | |
| 1598 | TADDR GetNonVirtualSlotsPtr(); |
| 1599 | |
| 1600 | inline PTR_PCODE GetNonVirtualSlotsArray() |
| 1601 | { |
| 1602 | LIMITED_METHOD_DAC_CONTRACT; |
| 1603 | _ASSERTE(HasNonVirtualSlotsArray()); |
| 1604 | return RelativePointer<PTR_PCODE>::GetValueAtPtr(GetNonVirtualSlotsPtr()); |
| 1605 | } |
| 1606 | |
| 1607 | #ifndef DACCESS_COMPILE |
| 1608 | inline void SetNonVirtualSlotsArray(PCODE *slots) |
| 1609 | { |
| 1610 | LIMITED_METHOD_CONTRACT; |
| 1611 | _ASSERTE(HasNonVirtualSlotsArray()); |
| 1612 | |
| 1613 | RelativePointer<PCODE *> *pRelPtr = (RelativePointer<PCODE *> *)GetNonVirtualSlotsPtr(); |
| 1614 | pRelPtr->SetValue(slots); |
| 1615 | } |
| 1616 | |
| 1617 | inline void SetHasSingleNonVirtualSlot() |
| 1618 | { |
| 1619 | LIMITED_METHOD_CONTRACT; |
| 1620 | SetFlag(enum_flag_HasSingleNonVirtualSlot); |
| 1621 | } |
| 1622 | #endif |
| 1623 | |
| 1624 | inline unsigned GetNonVirtualSlotsArraySize() |
| 1625 | { |
| 1626 | LIMITED_METHOD_DAC_CONTRACT; |
| 1627 | return GetNumNonVirtualSlots() * sizeof(PCODE); |
| 1628 | } |
| 1629 | |
| 1630 | inline WORD GetNumNonVirtualSlots(); |
| 1631 | |
| 1632 | inline WORD GetNumVirtuals() |
| 1633 | { |
| 1634 | LIMITED_METHOD_DAC_CONTRACT; |
| 1635 | |
| 1636 | g_IBCLogger.LogMethodTableAccess(this); |
| 1637 | return GetNumVirtuals_NoLogging(); |
| 1638 | } |
| 1639 | |
| 1640 | inline WORD GetNumVirtuals_NoLogging() |
| 1641 | { |
| 1642 | LIMITED_METHOD_DAC_CONTRACT; |
| 1643 | |
| 1644 | return m_wNumVirtuals; |
| 1645 | } |
| 1646 | |
| 1647 | inline void SetNumVirtuals (WORD wNumVtableSlots) |
| 1648 | { |
| 1649 | LIMITED_METHOD_CONTRACT; |
| 1650 | m_wNumVirtuals = wNumVtableSlots; |
| 1651 | } |
| 1652 | |
| 1653 | unsigned GetNumParentVirtuals() |
| 1654 | { |
| 1655 | LIMITED_METHOD_CONTRACT; |
| 1656 | if (IsInterface()) { |
| 1657 | return 0; |
| 1658 | } |
| 1659 | MethodTable *pMTParent = GetParentMethodTable(); |
| 1660 | g_IBCLogger.LogMethodTableAccess(this); |
| 1661 | return pMTParent == NULL ? 0 : pMTParent->GetNumVirtuals(); |
| 1662 | } |
| 1663 | |
| 1664 | #define SIZEOF__MethodTable_ (0x10 + (6 INDEBUG(+1)) * TARGET_POINTER_SIZE) |
| 1665 | |
| 1666 | static inline DWORD GetVtableOffset() |
| 1667 | { |
| 1668 | LIMITED_METHOD_DAC_CONTRACT; |
| 1669 | |
| 1670 | return SIZEOF__MethodTable_; |
| 1671 | } |
| 1672 | |
| 1673 | // Return total methods: virtual, static, and instance method slots. |
| 1674 | WORD GetNumMethods(); |
| 1675 | |
| 1676 | // Return number of slots in this methodtable. This is just an information about the layout of the methodtable, it should not be used |
| 1677 | // for functionality checks. Do not confuse with GetNumVirtuals()! |
| 1678 | WORD GetNumVtableSlots() |
| 1679 | { |
| 1680 | LIMITED_METHOD_DAC_CONTRACT; |
| 1681 | return GetNumVirtuals() + GetNumNonVirtualSlots(); |
| 1682 | } |
| 1683 | |
| 1684 | //------------------------------------------------------------------- |
| 1685 | // Slots <-> the MethodDesc associated with the slot. |
| 1686 | // |
| 1687 | |
| 1688 | MethodDesc* GetMethodDescForSlot(DWORD slot); |
| 1689 | |
| 1690 | static MethodDesc* GetMethodDescForSlotAddress(PCODE addr, BOOL fSpeculative = FALSE); |
| 1691 | |
| 1692 | PCODE GetRestoredSlot(DWORD slot); |
| 1693 | |
| 1694 | // Returns MethodTable that GetRestoredSlot get its values from |
| 1695 | MethodTable * GetRestoredSlotMT(DWORD slot); |
| 1696 | |
| 1697 | // Used to map methods on the same slot between instantiations. |
| 1698 | MethodDesc * GetParallelMethodDesc(MethodDesc * pDefMD); |
| 1699 | |
| 1700 | //------------------------------------------------------------------- |
| 1701 | // BoxedEntryPoint MethodDescs. |
| 1702 | // |
| 1703 | // Virtual methods on structs have BoxedEntryPoint method descs in their vtable. |
| 1704 | // See also notes for MethodDesc::FindOrCreateAssociatedMethodDesc. You should |
| 1705 | // probably be using that function if you need to map between unboxing |
| 1706 | // stubs and non-unboxing stubs. |
| 1707 | |
| 1708 | MethodDesc* GetBoxedEntryPointMD(MethodDesc *pMD); |
| 1709 | |
| 1710 | MethodDesc* GetUnboxedEntryPointMD(MethodDesc *pMD); |
| 1711 | MethodDesc* GetExistingUnboxedEntryPointMD(MethodDesc *pMD); |
| 1712 | |
| 1713 | //------------------------------------------------------------------- |
| 1714 | // FIELD LAYOUT, OBJECT SIZE ETC. |
| 1715 | // |
| 1716 | |
| 1717 | inline BOOL HasLayout(); |
| 1718 | |
| 1719 | inline EEClassLayoutInfo *GetLayoutInfo(); |
| 1720 | |
| 1721 | inline BOOL IsBlittable(); |
| 1722 | |
| 1723 | inline BOOL IsManagedSequential(); |
| 1724 | |
| 1725 | inline BOOL HasExplicitSize(); |
| 1726 | |
| 1727 | UINT32 GetNativeSize(); |
| 1728 | |
| 1729 | DWORD GetBaseSize() |
| 1730 | { |
| 1731 | LIMITED_METHOD_DAC_CONTRACT; |
| 1732 | return(m_BaseSize); |
| 1733 | } |
| 1734 | |
| 1735 | void SetBaseSize(DWORD baseSize) |
| 1736 | { |
| 1737 | LIMITED_METHOD_CONTRACT; |
| 1738 | m_BaseSize = baseSize; |
| 1739 | } |
| 1740 | |
| 1741 | BOOL IsStringOrArray() const |
| 1742 | { |
| 1743 | LIMITED_METHOD_DAC_CONTRACT; |
| 1744 | return HasComponentSize(); |
| 1745 | } |
| 1746 | |
| 1747 | BOOL IsString() |
| 1748 | { |
| 1749 | LIMITED_METHOD_DAC_CONTRACT; |
| 1750 | return HasComponentSize() && !IsArray(); |
| 1751 | } |
| 1752 | |
| 1753 | BOOL HasComponentSize() const |
| 1754 | { |
| 1755 | LIMITED_METHOD_DAC_CONTRACT; |
| 1756 | return GetFlag(enum_flag_HasComponentSize); |
| 1757 | } |
| 1758 | |
| 1759 | // returns random combination of flags if this doesn't have a component size |
| 1760 | WORD RawGetComponentSize() |
| 1761 | { |
| 1762 | LIMITED_METHOD_DAC_CONTRACT; |
| 1763 | #if BIGENDIAN |
| 1764 | return *((WORD*)&m_dwFlags + 1); |
| 1765 | #else // !BIGENDIAN |
| 1766 | return *(WORD*)&m_dwFlags; |
| 1767 | #endif // !BIGENDIAN |
| 1768 | } |
| 1769 | |
| 1770 | // returns 0 if this doesn't have a component size |
| 1771 | |
| 1772 | // The component size is actually 16-bit WORD, but this method is returning SIZE_T to ensure |
| 1773 | // that SIZE_T is used everywhere for object size computation. It is necessary to support |
| 1774 | // objects bigger than 2GB. |
| 1775 | SIZE_T GetComponentSize() |
| 1776 | { |
| 1777 | LIMITED_METHOD_DAC_CONTRACT; |
| 1778 | return HasComponentSize() ? RawGetComponentSize() : 0; |
| 1779 | } |
| 1780 | |
| 1781 | void SetComponentSize(WORD wComponentSize) |
| 1782 | { |
| 1783 | LIMITED_METHOD_CONTRACT; |
| 1784 | // it would be nice to assert here that this is either a string |
| 1785 | // or an array, but how do we know. |
| 1786 | // |
| 1787 | // it would also be nice to assert that the component size is > 0, |
| 1788 | // but it turns out that for array's of System.Void we cannot do |
| 1789 | // that b/c the component size is 0 (?) |
| 1790 | SetFlag(enum_flag_HasComponentSize); |
| 1791 | m_dwFlags = (m_dwFlags & ~0xFFFF) | wComponentSize; |
| 1792 | } |
| 1793 | |
| 1794 | inline WORD GetNumInstanceFields(); |
| 1795 | |
| 1796 | inline WORD GetNumStaticFields(); |
| 1797 | |
| 1798 | inline WORD GetNumThreadStaticFields(); |
| 1799 | |
| 1800 | // Note that for value types GetBaseSize returns the size of instance fields for |
| 1801 | // a boxed value, and GetNumInstanceFieldsBytes for an unboxed value. |
| 1802 | // We place methods like these on MethodTable primarily so we can choose to cache |
| 1803 | // the information within MethodTable, and so less code manipulates EEClass |
| 1804 | // objects directly, because doing so can lead to bugs related to generics. |
| 1805 | // |
| 1806 | // <TODO> Use m_wBaseSize whenever this is identical to GetNumInstanceFieldBytes. |
| 1807 | // We would need to reserve a flag for this. </TODO> |
| 1808 | // |
| 1809 | inline DWORD GetNumInstanceFieldBytes(); |
| 1810 | |
| 1811 | inline WORD GetNumIntroducedInstanceFields(); |
| 1812 | |
| 1813 | // <TODO> Does this always return the same (or related) size as GetBaseSize()? </TODO> |
| 1814 | inline DWORD GetAlignedNumInstanceFieldBytes(); |
| 1815 | |
| 1816 | |
| 1817 | // Note: This flag MUST be available even from an unrestored MethodTable - see GcScanRoots in siginfo.cpp. |
| 1818 | DWORD ContainsPointers() |
| 1819 | { |
| 1820 | LIMITED_METHOD_CONTRACT; |
| 1821 | return GetFlag(enum_flag_ContainsPointers); |
| 1822 | } |
| 1823 | BOOL Collectible() |
| 1824 | { |
| 1825 | LIMITED_METHOD_CONTRACT; |
| 1826 | #ifdef FEATURE_COLLECTIBLE_TYPES |
| 1827 | return GetFlag(enum_flag_Collectible); |
| 1828 | #else |
| 1829 | return FALSE; |
| 1830 | #endif |
| 1831 | } |
| 1832 | BOOL ContainsPointersOrCollectible() |
| 1833 | { |
| 1834 | LIMITED_METHOD_CONTRACT; |
| 1835 | return GetFlag(enum_flag_ContainsPointers) || GetFlag(enum_flag_Collectible); |
| 1836 | } |
| 1837 | |
| 1838 | OBJECTHANDLE GetLoaderAllocatorObjectHandle(); |
| 1839 | NOINLINE BYTE *GetLoaderAllocatorObjectForGC(); |
| 1840 | |
| 1841 | BOOL IsNotTightlyPacked(); |
| 1842 | |
| 1843 | void SetContainsPointers() |
| 1844 | { |
| 1845 | LIMITED_METHOD_CONTRACT; |
| 1846 | SetFlag(enum_flag_ContainsPointers); |
| 1847 | } |
| 1848 | |
| 1849 | #ifdef FEATURE_64BIT_ALIGNMENT |
| 1850 | inline bool RequiresAlign8() |
| 1851 | { |
| 1852 | LIMITED_METHOD_DAC_CONTRACT; |
| 1853 | return !!GetFlag(enum_flag_RequiresAlign8); |
| 1854 | } |
| 1855 | |
| 1856 | inline void SetRequiresAlign8() |
| 1857 | { |
| 1858 | LIMITED_METHOD_CONTRACT; |
| 1859 | SetFlag(enum_flag_RequiresAlign8); |
| 1860 | } |
| 1861 | #endif // FEATURE_64BIT_ALIGNMENT |
| 1862 | |
| 1863 | //------------------------------------------------------------------- |
| 1864 | // FIELD DESCRIPTORS |
| 1865 | // |
| 1866 | // Most of this API still lives on EEClass. |
| 1867 | // |
| 1868 | // ************************************ WARNING ************* |
| 1869 | // ** !!!!INSTANCE FIELDDESCS ARE REPRESENTATIVES!!!!! ** |
| 1870 | // ** THEY ARE SHARED BY COMPATIBLE GENERIC INSTANTIATIONS ** |
| 1871 | // ************************************ WARNING ************* |
| 1872 | |
| 1873 | // This goes straight to the EEClass |
| 1874 | // Careful about using this method. If it's possible that fields may have been added via EnC, then |
| 1875 | // must use the FieldDescIterator as any fields added via EnC won't be in the raw list |
| 1876 | PTR_FieldDesc GetApproxFieldDescListRaw(); |
| 1877 | |
| 1878 | // This returns a type-exact FieldDesc for a static field, but may still return a representative |
| 1879 | // for a non-static field. |
| 1880 | PTR_FieldDesc GetFieldDescByIndex(DWORD fieldIndex); |
| 1881 | |
| 1882 | DWORD GetIndexForFieldDesc(FieldDesc *pField); |
| 1883 | |
| 1884 | BOOL IsMarshaledByRef() |
| 1885 | { |
| 1886 | return FALSE; |
| 1887 | } |
| 1888 | |
| 1889 | BOOL IsContextful() |
| 1890 | { |
| 1891 | return FALSE; |
| 1892 | } |
| 1893 | |
| 1894 | inline bool RequiresFatDispatchTokens() |
| 1895 | { |
| 1896 | LIMITED_METHOD_CONTRACT; |
| 1897 | return !!GetFlag(enum_flag_RequiresDispatchTokenFat); |
| 1898 | } |
| 1899 | |
| 1900 | inline void SetRequiresFatDispatchTokens() |
| 1901 | { |
| 1902 | LIMITED_METHOD_CONTRACT; |
| 1903 | SetFlag(enum_flag_RequiresDispatchTokenFat); |
| 1904 | } |
| 1905 | |
| 1906 | inline bool HasPreciseInitCctors() |
| 1907 | { |
| 1908 | LIMITED_METHOD_CONTRACT; |
| 1909 | return !!GetFlag(enum_flag_HasPreciseInitCctors); |
| 1910 | } |
| 1911 | |
| 1912 | inline void SetHasPreciseInitCctors() |
| 1913 | { |
| 1914 | LIMITED_METHOD_CONTRACT; |
| 1915 | SetFlag(enum_flag_HasPreciseInitCctors); |
| 1916 | } |
| 1917 | |
| 1918 | #if defined(FEATURE_HFA) |
| 1919 | inline bool IsHFA() |
| 1920 | { |
| 1921 | LIMITED_METHOD_CONTRACT; |
| 1922 | return !!GetFlag(enum_flag_IsHFA); |
| 1923 | } |
| 1924 | |
| 1925 | inline void SetIsHFA() |
| 1926 | { |
| 1927 | LIMITED_METHOD_CONTRACT; |
| 1928 | SetFlag(enum_flag_IsHFA); |
| 1929 | } |
| 1930 | #else // !FEATURE_HFA |
| 1931 | bool IsHFA(); |
| 1932 | #endif // FEATURE_HFA |
| 1933 | |
| 1934 | // Get the HFA type. This is supported both with FEATURE_HFA, in which case it |
| 1935 | // depends on the cached bit on the class, or without, in which case it is recomputed |
| 1936 | // for each invocation. |
| 1937 | CorElementType GetHFAType(); |
| 1938 | // The managed and unmanaged HFA type can differ for types with layout. The following two methods return the unmanaged HFA type. |
| 1939 | bool IsNativeHFA(); |
| 1940 | CorElementType GetNativeHFAType(); |
| 1941 | |
| 1942 | #ifdef UNIX_AMD64_ABI |
| 1943 | inline bool IsRegPassedStruct() |
| 1944 | { |
| 1945 | LIMITED_METHOD_CONTRACT; |
| 1946 | return !!GetFlag(enum_flag_IsRegStructPassed); |
| 1947 | } |
| 1948 | |
| 1949 | inline void SetRegPassedStruct() |
| 1950 | { |
| 1951 | LIMITED_METHOD_CONTRACT; |
| 1952 | SetFlag(enum_flag_IsRegStructPassed); |
| 1953 | } |
| 1954 | #else |
| 1955 | inline bool IsRegPassedStruct() |
| 1956 | { |
| 1957 | return false; |
| 1958 | } |
| 1959 | #endif |
| 1960 | |
| 1961 | #ifdef FEATURE_64BIT_ALIGNMENT |
| 1962 | // Returns true iff the native view of this type requires 64-bit aligment. |
| 1963 | bool NativeRequiresAlign8(); |
| 1964 | #endif // FEATURE_64BIT_ALIGNMENT |
| 1965 | |
| 1966 | // True if interface casts for an object having this type require more |
| 1967 | // than a simple scan of the interface map |
| 1968 | // See JIT_IsInstanceOfInterface |
| 1969 | inline BOOL InstanceRequiresNonTrivialInterfaceCast() |
| 1970 | { |
| 1971 | STATIC_CONTRACT_SO_TOLERANT; |
| 1972 | LIMITED_METHOD_CONTRACT; |
| 1973 | |
| 1974 | return GetFlag(enum_flag_NonTrivialInterfaceCast); |
| 1975 | } |
| 1976 | |
| 1977 | |
| 1978 | //------------------------------------------------------------------- |
| 1979 | // PARENT INTERFACES |
| 1980 | // |
| 1981 | unsigned GetNumInterfaces() |
| 1982 | { |
| 1983 | LIMITED_METHOD_DAC_CONTRACT; |
| 1984 | return m_wNumInterfaces; |
| 1985 | } |
| 1986 | |
| 1987 | //------------------------------------------------------------------- |
| 1988 | // CASTING |
| 1989 | // |
| 1990 | // There are two variants of each of these methods: |
| 1991 | // |
| 1992 | // CanCastToX |
| 1993 | // - restore encoded pointers on demand |
| 1994 | // - might throw, might trigger GC |
| 1995 | // - return type is boolean (FALSE = cannot cast, TRUE = can cast) |
| 1996 | // |
| 1997 | // CanCastToXNoGC |
| 1998 | // - do not restore encoded pointers on demand |
| 1999 | // - does not throw, does not trigger GC |
| 2000 | // - return type is three-valued (CanCast, CannotCast, MaybeCast) |
| 2001 | // - MaybeCast indicates that the test tripped on an encoded pointer |
| 2002 | // so the caller should now call CanCastToXRestoring if it cares |
| 2003 | // |
| 2004 | BOOL CanCastToInterface(MethodTable *pTargetMT, TypeHandlePairList *pVisited = NULL); |
| 2005 | BOOL CanCastToClass(MethodTable *pTargetMT, TypeHandlePairList *pVisited = NULL); |
| 2006 | BOOL CanCastToClassOrInterface(MethodTable *pTargetMT, TypeHandlePairList *pVisited); |
| 2007 | BOOL CanCastByVarianceToInterfaceOrDelegate(MethodTable *pTargetMT, TypeHandlePairList *pVisited); |
| 2008 | |
| 2009 | BOOL CanCastToNonVariantInterface(MethodTable *pTargetMT); |
| 2010 | |
| 2011 | TypeHandle::CastResult CanCastToInterfaceNoGC(MethodTable *pTargetMT); |
| 2012 | TypeHandle::CastResult CanCastToClassNoGC(MethodTable *pTargetMT); |
| 2013 | TypeHandle::CastResult CanCastToClassOrInterfaceNoGC(MethodTable *pTargetMT); |
| 2014 | |
| 2015 | // The inline part of equivalence check. |
| 2016 | #ifndef DACCESS_COMPILE |
| 2017 | FORCEINLINE BOOL IsEquivalentTo(MethodTable *pOtherMT COMMA_INDEBUG(TypeHandlePairList *pVisited = NULL)); |
| 2018 | |
| 2019 | #ifdef FEATURE_TYPEEQUIVALENCE |
| 2020 | // This method is public so that TypeHandle has direct access to it |
| 2021 | BOOL IsEquivalentTo_Worker(MethodTable *pOtherMT COMMA_INDEBUG(TypeHandlePairList *pVisited)); // out-of-line part, SO tolerant |
| 2022 | private: |
| 2023 | BOOL IsEquivalentTo_WorkerInner(MethodTable *pOtherMT COMMA_INDEBUG(TypeHandlePairList *pVisited)); // out-of-line part, SO intolerant |
| 2024 | #endif // FEATURE_TYPEEQUIVALENCE |
| 2025 | #endif |
| 2026 | |
| 2027 | public: |
| 2028 | //------------------------------------------------------------------- |
| 2029 | // THE METHOD TABLE PARENT (SUPERCLASS/BASE CLASS) |
| 2030 | // |
| 2031 | |
| 2032 | #if defined(FEATURE_NGEN_RELOCS_OPTIMIZATIONS) |
| 2033 | #define PARENT_MT_FIXUP_OFFSET (-FIXUP_POINTER_INDIRECTION) |
| 2034 | typedef RelativeFixupPointer<PTR_MethodTable> ParentMT_t; |
| 2035 | #else |
| 2036 | #define PARENT_MT_FIXUP_OFFSET ((SSIZE_T)offsetof(MethodTable, m_pParentMethodTable)) |
| 2037 | typedef IndirectPointer<PTR_MethodTable> ParentMT_t; |
| 2038 | #endif |
| 2039 | |
| 2040 | BOOL HasApproxParent() |
| 2041 | { |
| 2042 | LIMITED_METHOD_DAC_CONTRACT; |
| 2043 | return (GetWriteableData()->m_dwFlags & MethodTableWriteableData::enum_flag_HasApproxParent) != 0; |
| 2044 | } |
| 2045 | inline void SetHasExactParent() |
| 2046 | { |
| 2047 | WRAPPER_NO_CONTRACT; |
| 2048 | FastInterlockAnd(&(GetWriteableDataForWrite()->m_dwFlags), ~MethodTableWriteableData::enum_flag_HasApproxParent); |
| 2049 | } |
| 2050 | |
| 2051 | |
| 2052 | // Caller must know that the parent method table is not an encoded fixup |
| 2053 | inline PTR_MethodTable GetParentMethodTable() |
| 2054 | { |
| 2055 | LIMITED_METHOD_DAC_CONTRACT; |
| 2056 | |
| 2057 | PRECONDITION(IsParentMethodTablePointerValid()); |
| 2058 | return ReadPointerMaybeNull(this, &MethodTable::m_pParentMethodTable, GetFlagHasIndirectParent()); |
| 2059 | } |
| 2060 | |
| 2061 | inline static PTR_VOID GetParentMethodTableOrIndirection(PTR_VOID pMT) |
| 2062 | { |
| 2063 | WRAPPER_NO_CONTRACT; |
| 2064 | #if defined(FEATURE_NGEN_RELOCS_OPTIMIZATIONS) |
| 2065 | PTR_MethodTable pMethodTable = dac_cast<PTR_MethodTable>(pMT); |
| 2066 | PTR_MethodTable pParentMT = ReadPointerMaybeNull((MethodTable*) pMethodTable, &MethodTable::m_pParentMethodTable); |
| 2067 | return dac_cast<PTR_VOID>(pParentMT); |
| 2068 | #else |
| 2069 | return PTR_VOID(*PTR_TADDR(dac_cast<TADDR>(pMT) + offsetof(MethodTable, m_pParentMethodTable))); |
| 2070 | #endif |
| 2071 | } |
| 2072 | |
| 2073 | inline static BOOL IsParentMethodTableTagged(PTR_MethodTable pMT) |
| 2074 | { |
| 2075 | LIMITED_METHOD_CONTRACT; |
| 2076 | TADDR base = dac_cast<TADDR>(pMT) + offsetof(MethodTable, m_pParentMethodTable); |
| 2077 | return pMT->m_pParentMethodTable.IsTaggedIndirect(base, pMT->GetFlagHasIndirectParent(), PARENT_MT_FIXUP_OFFSET); |
| 2078 | } |
| 2079 | |
| 2080 | bool GetFlagHasIndirectParent() |
| 2081 | { |
| 2082 | #ifdef FEATURE_PREJIT |
| 2083 | return !!GetFlag(enum_flag_HasIndirectParent); |
| 2084 | #else |
| 2085 | return false; |
| 2086 | #endif |
| 2087 | } |
| 2088 | |
| 2089 | #ifndef DACCESS_COMPILE |
| 2090 | inline ParentMT_t * GetParentMethodTablePointerPtr() |
| 2091 | { |
| 2092 | LIMITED_METHOD_CONTRACT; |
| 2093 | return &m_pParentMethodTable; |
| 2094 | } |
| 2095 | |
| 2096 | inline bool IsParentMethodTableIndirectPointerMaybeNull() |
| 2097 | { |
| 2098 | LIMITED_METHOD_CONTRACT; |
| 2099 | return m_pParentMethodTable.IsIndirectPtrMaybeNullIndirect(GetFlagHasIndirectParent(), PARENT_MT_FIXUP_OFFSET); |
| 2100 | } |
| 2101 | |
| 2102 | inline bool IsParentMethodTableIndirectPointer() |
| 2103 | { |
| 2104 | LIMITED_METHOD_CONTRACT; |
| 2105 | return m_pParentMethodTable.IsIndirectPtrIndirect(GetFlagHasIndirectParent(), PARENT_MT_FIXUP_OFFSET); |
| 2106 | } |
| 2107 | |
| 2108 | inline MethodTable ** GetParentMethodTableValuePtr() |
| 2109 | { |
| 2110 | LIMITED_METHOD_CONTRACT; |
| 2111 | return m_pParentMethodTable.GetValuePtrIndirect(GetFlagHasIndirectParent(), PARENT_MT_FIXUP_OFFSET); |
| 2112 | } |
| 2113 | #endif // !DACCESS_COMPILE |
| 2114 | |
| 2115 | // Is the parent method table pointer equal to the given argument? |
| 2116 | BOOL ParentEquals(PTR_MethodTable pMT) |
| 2117 | { |
| 2118 | LIMITED_METHOD_DAC_CONTRACT; |
| 2119 | PRECONDITION(IsParentMethodTablePointerValid()); |
| 2120 | g_IBCLogger.LogMethodTableAccess(this); |
| 2121 | return GetParentMethodTable() == pMT; |
| 2122 | } |
| 2123 | |
| 2124 | #ifdef _DEBUG |
| 2125 | BOOL IsParentMethodTablePointerValid(); |
| 2126 | #endif |
| 2127 | |
| 2128 | #ifndef DACCESS_COMPILE |
| 2129 | void SetParentMethodTable (MethodTable *pParentMethodTable) |
| 2130 | { |
| 2131 | LIMITED_METHOD_CONTRACT; |
| 2132 | PRECONDITION(!IsParentMethodTableIndirectPointerMaybeNull()); |
| 2133 | m_pParentMethodTable.SetValueMaybeNull(pParentMethodTable); |
| 2134 | #ifdef _DEBUG |
| 2135 | GetWriteableDataForWrite_NoLogging()->SetParentMethodTablePointerValid(); |
| 2136 | #endif |
| 2137 | } |
| 2138 | #endif // !DACCESS_COMPILE |
| 2139 | MethodTable * GetMethodTableMatchingParentClass(MethodTable * pWhichParent); |
| 2140 | Instantiation GetInstantiationOfParentClass(MethodTable *pWhichParent); |
| 2141 | |
| 2142 | //------------------------------------------------------------------- |
| 2143 | // THE EEClass (Possibly shared between instantiations!). |
| 2144 | // |
| 2145 | // Note that it is not generally the case that GetClass.GetMethodTable() == t. |
| 2146 | |
| 2147 | PTR_EEClass GetClass(); |
| 2148 | |
| 2149 | inline PTR_EEClass GetClass_NoLogging(); |
| 2150 | |
| 2151 | PTR_EEClass GetClassWithPossibleAV(); |
| 2152 | |
| 2153 | BOOL ValidateWithPossibleAV(); |
| 2154 | |
| 2155 | BOOL IsClassPointerValid(); |
| 2156 | |
| 2157 | static UINT32 GetOffsetOfFlags() |
| 2158 | { |
| 2159 | LIMITED_METHOD_CONTRACT; |
| 2160 | return offsetof(MethodTable, m_dwFlags); |
| 2161 | } |
| 2162 | |
| 2163 | static UINT32 GetIfArrayThenSzArrayFlag() |
| 2164 | { |
| 2165 | LIMITED_METHOD_CONTRACT; |
| 2166 | return enum_flag_Category_IfArrayThenSzArray; |
| 2167 | } |
| 2168 | |
| 2169 | //------------------------------------------------------------------- |
| 2170 | // CONSTRUCTION |
| 2171 | // |
| 2172 | // Do not call the following at any time except when creating a method table. |
| 2173 | // One day we will have proper constructors for method tables and all these |
| 2174 | // will disappear. |
| 2175 | #ifndef DACCESS_COMPILE |
| 2176 | inline void SetClass(EEClass *pClass) |
| 2177 | { |
| 2178 | LIMITED_METHOD_CONTRACT; |
| 2179 | m_pEEClass.SetValue(pClass); |
| 2180 | } |
| 2181 | |
| 2182 | inline void SetCanonicalMethodTable(MethodTable * pMT) |
| 2183 | { |
| 2184 | m_pCanonMT.SetValue((TADDR)pMT | MethodTable::UNION_METHODTABLE); |
| 2185 | } |
| 2186 | #endif |
| 2187 | |
| 2188 | inline void SetHasInstantiation(BOOL fTypicalInstantiation, BOOL fSharedByGenericInstantiations); |
| 2189 | |
| 2190 | //------------------------------------------------------------------- |
| 2191 | // INTERFACE IMPLEMENTATION |
| 2192 | // |
| 2193 | public: |
| 2194 | // Faster force-inlined version of ImplementsInterface |
| 2195 | BOOL ImplementsInterfaceInline(MethodTable *pInterface); |
| 2196 | |
| 2197 | BOOL ImplementsInterface(MethodTable *pInterface); |
| 2198 | BOOL ImplementsEquivalentInterface(MethodTable *pInterface); |
| 2199 | |
| 2200 | MethodDesc *GetMethodDescForInterfaceMethod(TypeHandle ownerType, MethodDesc *pInterfaceMD, BOOL throwOnConflict); |
| 2201 | MethodDesc *GetMethodDescForInterfaceMethod(MethodDesc *pInterfaceMD, BOOL throwOnConflict); // You can only use this one for non-generic interfaces |
| 2202 | |
| 2203 | //------------------------------------------------------------------- |
| 2204 | // INTERFACE MAP. |
| 2205 | // |
| 2206 | |
| 2207 | inline PTR_InterfaceInfo GetInterfaceMap(); |
| 2208 | |
| 2209 | #ifndef DACCESS_COMPILE |
| 2210 | void SetInterfaceMap(WORD wNumInterfaces, InterfaceInfo_t* iMap); |
| 2211 | #endif |
| 2212 | |
| 2213 | inline int HasInterfaceMap() |
| 2214 | { |
| 2215 | LIMITED_METHOD_DAC_CONTRACT; |
| 2216 | return (m_wNumInterfaces != 0); |
| 2217 | } |
| 2218 | |
| 2219 | // Where possible, use this iterator over the interface map instead of accessing the map directly |
| 2220 | // That way we can easily change the implementation of the map |
| 2221 | class InterfaceMapIterator |
| 2222 | { |
| 2223 | friend class MethodTable; |
| 2224 | |
| 2225 | private: |
| 2226 | PTR_InterfaceInfo m_pMap; |
| 2227 | DWORD m_i; |
| 2228 | DWORD m_count; |
| 2229 | |
| 2230 | InterfaceMapIterator(MethodTable *pMT) |
| 2231 | : m_pMap(pMT->GetInterfaceMap()), |
| 2232 | m_i((DWORD) -1), |
| 2233 | m_count(pMT->GetNumInterfaces()) |
| 2234 | { |
| 2235 | WRAPPER_NO_CONTRACT; |
| 2236 | } |
| 2237 | |
| 2238 | InterfaceMapIterator(MethodTable *pMT, DWORD index) |
| 2239 | : m_pMap(pMT->GetInterfaceMap() + index), |
| 2240 | m_i(index), |
| 2241 | m_count(pMT->GetNumInterfaces()) |
| 2242 | { |
| 2243 | WRAPPER_NO_CONTRACT; |
| 2244 | CONSISTENCY_CHECK(index >= 0 && index < m_count); |
| 2245 | } |
| 2246 | |
| 2247 | public: |
| 2248 | InterfaceInfo_t* GetInterfaceInfo() |
| 2249 | { |
| 2250 | LIMITED_METHOD_CONTRACT; |
| 2251 | return m_pMap; |
| 2252 | } |
| 2253 | |
| 2254 | // Move to the next item in the map, returning TRUE if an item |
| 2255 | // exists or FALSE if we've run off the end |
| 2256 | inline BOOL Next() |
| 2257 | { |
| 2258 | LIMITED_METHOD_CONTRACT; |
| 2259 | PRECONDITION(!Finished()); |
| 2260 | if (m_i != (DWORD) -1) |
| 2261 | m_pMap++; |
| 2262 | return (++m_i < m_count); |
| 2263 | } |
| 2264 | |
| 2265 | // Have we iterated over all of the items? |
| 2266 | BOOL Finished() |
| 2267 | { |
| 2268 | return (m_i == m_count); |
| 2269 | } |
| 2270 | |
| 2271 | // Get the interface at the current position |
| 2272 | inline PTR_MethodTable GetInterface() |
| 2273 | { |
| 2274 | CONTRACT(PTR_MethodTable) |
| 2275 | { |
| 2276 | GC_NOTRIGGER; |
| 2277 | NOTHROW; |
| 2278 | SUPPORTS_DAC; |
| 2279 | PRECONDITION(m_i != (DWORD) -1 && m_i < m_count); |
| 2280 | POSTCONDITION(CheckPointer(RETVAL)); |
| 2281 | } |
| 2282 | CONTRACT_END; |
| 2283 | |
| 2284 | RETURN (m_pMap->GetMethodTable()); |
| 2285 | } |
| 2286 | |
| 2287 | #ifndef DACCESS_COMPILE |
| 2288 | void SetInterface(MethodTable *pMT) |
| 2289 | { |
| 2290 | WRAPPER_NO_CONTRACT; |
| 2291 | m_pMap->SetMethodTable(pMT); |
| 2292 | } |
| 2293 | #endif |
| 2294 | |
| 2295 | DWORD GetIndex() |
| 2296 | { |
| 2297 | LIMITED_METHOD_CONTRACT; |
| 2298 | return m_i; |
| 2299 | } |
| 2300 | }; // class InterfaceMapIterator |
| 2301 | |
| 2302 | // Create a new iterator over the interface map |
| 2303 | // The iterator starts just before the first item in the map |
| 2304 | InterfaceMapIterator IterateInterfaceMap() |
| 2305 | { |
| 2306 | WRAPPER_NO_CONTRACT; |
| 2307 | return InterfaceMapIterator(this); |
| 2308 | } |
| 2309 | |
| 2310 | // Create a new iterator over the interface map, starting at the index specified |
| 2311 | InterfaceMapIterator IterateInterfaceMapFrom(DWORD index) |
| 2312 | { |
| 2313 | WRAPPER_NO_CONTRACT; |
| 2314 | return InterfaceMapIterator(this, index); |
| 2315 | } |
| 2316 | |
| 2317 | //------------------------------------------------------------------- |
| 2318 | // ADDITIONAL INTERFACE MAP DATA |
| 2319 | // |
| 2320 | |
| 2321 | // We store extra info (flag bits) for interfaces implemented on this MethodTable in a separate optional |
| 2322 | // location for better data density (if we put them in the interface map directly data alignment could |
| 2323 | // have us using 32 or even 64 bits to represent a single boolean value). Currently the only flag we |
| 2324 | // persist is IsDeclaredOnClass (was the interface explicitly declared by this class). |
| 2325 | |
| 2326 | // Currently we always store extra info whenever we have an interface map (in the future you could imagine |
| 2327 | // this being limited to those scenarios in which at least one of the interfaces has a non-default value |
| 2328 | // for a flag). |
| 2329 | inline BOOL () |
| 2330 | { |
| 2331 | SUPPORTS_DAC; |
| 2332 | return HasInterfaceMap(); |
| 2333 | } |
| 2334 | |
| 2335 | // Count of interfaces that can have their extra info stored inline in the optional data structure itself |
| 2336 | // (once the interface count exceeds this limit the optional data slot will instead point to a buffer with |
| 2337 | // the information). |
| 2338 | enum { kInlinedInterfaceInfoThreshhold = sizeof(TADDR) * 8 }; |
| 2339 | |
| 2340 | // Calculate how many bytes of storage will be required to track additional information for interfaces. |
| 2341 | // This will be zero if there are no interfaces, but can also be zero for small numbers of interfaces as |
| 2342 | // well, and callers should be ready to handle this. |
| 2343 | static SIZE_T (DWORD cInterfaces); |
| 2344 | |
| 2345 | // Called after GetExtraInterfaceInfoSize above to setup a new MethodTable with the additional memory to |
| 2346 | // track extra interface info. If there are a non-zero number of interfaces implemented on this class but |
| 2347 | // GetExtraInterfaceInfoSize() returned zero, this call must still be made (with a NULL argument). |
| 2348 | void (PVOID pInfo); |
| 2349 | |
| 2350 | #ifdef FEATURE_PREJIT |
| 2351 | // Ngen support. |
| 2352 | void (DataImage *pImage); |
| 2353 | void (DataImage *pImage); |
| 2354 | #endif // FEATURE_PREJIT |
| 2355 | |
| 2356 | #ifdef DACCESS_COMPILE |
| 2357 | void EnumMemoryRegionsForExtraInterfaceInfo(); |
| 2358 | #endif // DACCESS_COMPILE |
| 2359 | |
| 2360 | // For the given interface in the map (specified via map index) mark the interface as declared explicitly |
| 2361 | // on this class. This is not legal for dynamically added interfaces (as used by RCWs). |
| 2362 | void SetInterfaceDeclaredOnClass(DWORD index); |
| 2363 | |
| 2364 | // For the given interface in the map (specified via map index) return true if the interface was declared |
| 2365 | // explicitly on this class. |
| 2366 | bool IsInterfaceDeclaredOnClass(DWORD index); |
| 2367 | |
| 2368 | //------------------------------------------------------------------- |
| 2369 | // VIRTUAL/INTERFACE CALL RESOLUTION |
| 2370 | // |
| 2371 | // These should probably go in method.hpp since they don't have |
| 2372 | // much to do with method tables per se. |
| 2373 | // |
| 2374 | |
| 2375 | // get the method desc given the interface method desc |
| 2376 | static MethodDesc *GetMethodDescForInterfaceMethodAndServer(TypeHandle ownerType, MethodDesc *pItfMD, OBJECTREF *pServer); |
| 2377 | |
| 2378 | #ifdef FEATURE_COMINTEROP |
| 2379 | // get the method desc given the interface method desc on a COM implemented server (if fNullOk is set then NULL is an allowable return value) |
| 2380 | MethodDesc *GetMethodDescForComInterfaceMethod(MethodDesc *pItfMD, bool fNullOk); |
| 2381 | #endif // FEATURE_COMINTEROP |
| 2382 | |
| 2383 | |
| 2384 | // Try a partial resolve of the constraint call, up to generic code sharing. |
| 2385 | // |
| 2386 | // Note that this will not necessarily resolve the call exactly, since we might be compiling |
| 2387 | // shared generic code - it may just resolve it to a candidate suitable for |
| 2388 | // JIT compilation, and require a runtime lookup for the actual code pointer |
| 2389 | // to call. |
| 2390 | // |
| 2391 | // Return NULL if the call could not be resolved, e.g. because it is invoked |
| 2392 | // on a type that inherits the implementation of the method from System.Object |
| 2393 | // or System.ValueType. |
| 2394 | // |
| 2395 | // Always returns an unboxed entry point with a uniform calling convention. |
| 2396 | MethodDesc * TryResolveConstraintMethodApprox( |
| 2397 | TypeHandle ownerType, |
| 2398 | MethodDesc * pMD, |
| 2399 | BOOL * pfForceUseRuntimeLookup = NULL); |
| 2400 | |
| 2401 | //------------------------------------------------------------------- |
| 2402 | // CONTRACT IMPLEMENTATIONS |
| 2403 | // |
| 2404 | |
| 2405 | inline BOOL HasDispatchMap() |
| 2406 | { |
| 2407 | WRAPPER_NO_CONTRACT; |
| 2408 | return GetDispatchMap() != NULL; |
| 2409 | } |
| 2410 | |
| 2411 | PTR_DispatchMap GetDispatchMap(); |
| 2412 | |
| 2413 | inline BOOL HasDispatchMapSlot() |
| 2414 | { |
| 2415 | LIMITED_METHOD_DAC_CONTRACT; |
| 2416 | return GetFlag(enum_flag_HasDispatchMapSlot); |
| 2417 | } |
| 2418 | |
| 2419 | #ifndef DACCESS_COMPILE |
| 2420 | void SetDispatchMap(DispatchMap *pDispatchMap) |
| 2421 | { |
| 2422 | LIMITED_METHOD_CONTRACT; |
| 2423 | _ASSERTE(HasDispatchMapSlot()); |
| 2424 | |
| 2425 | TADDR pSlot = GetMultipurposeSlotPtr(enum_flag_HasDispatchMapSlot, c_DispatchMapSlotOffsets); |
| 2426 | |
| 2427 | RelativePointer<DispatchMap *> *pRelPtr = (RelativePointer<DispatchMap *> *)pSlot; |
| 2428 | pRelPtr->SetValue(pDispatchMap); |
| 2429 | } |
| 2430 | #endif // !DACCESS_COMPILE |
| 2431 | |
| 2432 | protected: |
| 2433 | BOOL FindEncodedMapDispatchEntry(UINT32 typeID, |
| 2434 | UINT32 slotNumber, |
| 2435 | DispatchMapEntry *pEntry); |
| 2436 | |
| 2437 | BOOL FindIntroducedImplementationTableDispatchEntry(UINT32 slotNumber, |
| 2438 | DispatchMapEntry *pEntry, |
| 2439 | BOOL fVirtualMethodsOnly); |
| 2440 | |
| 2441 | BOOL FindDispatchEntryForCurrentType(UINT32 typeID, |
| 2442 | UINT32 slotNumber, |
| 2443 | DispatchMapEntry *pEntry); |
| 2444 | |
| 2445 | BOOL FindDispatchEntry(UINT32 typeID, |
| 2446 | UINT32 slotNumber, |
| 2447 | DispatchMapEntry *pEntry); |
| 2448 | |
| 2449 | public: |
| 2450 | BOOL FindDispatchImpl( |
| 2451 | UINT32 typeID, |
| 2452 | UINT32 slotNumber, |
| 2453 | DispatchSlot * pImplSlot, |
| 2454 | BOOL throwOnConflict); |
| 2455 | |
| 2456 | |
| 2457 | #ifndef DACCESS_COMPILE |
| 2458 | BOOL FindDefaultInterfaceImplementation( |
| 2459 | MethodDesc *pInterfaceMD, |
| 2460 | MethodTable *pObjectMT, |
| 2461 | MethodDesc **ppDefaultMethod, |
| 2462 | BOOL allowVariance, |
| 2463 | BOOL throwOnConflict); |
| 2464 | #endif // DACCESS_COMPILE |
| 2465 | |
| 2466 | DispatchSlot FindDispatchSlot(UINT32 typeID, UINT32 slotNumber, BOOL throwOnConflict); |
| 2467 | |
| 2468 | DispatchSlot FindDispatchSlot(DispatchToken tok, BOOL throwOnConflict); |
| 2469 | |
| 2470 | // You must use the second of these two if there is any chance the pMD is a method |
| 2471 | // on a generic interface such as IComparable<T> (which it normally can be). The |
| 2472 | // ownerType is used to provide an exact qualification in the case the pMD is |
| 2473 | // a shared method descriptor. |
| 2474 | DispatchSlot FindDispatchSlotForInterfaceMD(MethodDesc *pMD, BOOL throwOnConflict); |
| 2475 | DispatchSlot FindDispatchSlotForInterfaceMD(TypeHandle ownerType, MethodDesc *pMD, BOOL throwOnConflict); |
| 2476 | |
| 2477 | MethodDesc *ReverseInterfaceMDLookup(UINT32 slotNumber); |
| 2478 | |
| 2479 | // Lookup, does not assign if not already done. |
| 2480 | UINT32 LookupTypeID(); |
| 2481 | // Lookup, will assign ID if not already done. |
| 2482 | UINT32 GetTypeID(); |
| 2483 | |
| 2484 | |
| 2485 | MethodTable *LookupDispatchMapType(DispatchMapTypeID typeID); |
| 2486 | |
| 2487 | MethodDesc *GetIntroducingMethodDesc(DWORD slotNumber); |
| 2488 | |
| 2489 | // Determines whether all methods in the given interface have their final implementing |
| 2490 | // slot in a parent class. I.e. if this returns TRUE, it is trivial (no VSD lookup) to |
| 2491 | // dispatch pItfMT methods on this class if one knows how to dispatch them on pParentMT. |
| 2492 | BOOL ImplementsInterfaceWithSameSlotsAsParent(MethodTable *pItfMT, MethodTable *pParentMT); |
| 2493 | |
| 2494 | // Determines whether all methods in the given interface have their final implementation |
| 2495 | // in a parent class. I.e. if this returns TRUE, this class behaves the same as pParentMT |
| 2496 | // when it comes to dispatching pItfMT methods. |
| 2497 | BOOL HasSameInterfaceImplementationAsParent(MethodTable *pItfMT, MethodTable *pParentMT); |
| 2498 | |
| 2499 | public: |
| 2500 | static MethodDesc *MapMethodDeclToMethodImpl(MethodDesc *pMDDecl); |
| 2501 | |
| 2502 | //------------------------------------------------------------------- |
| 2503 | // FINALIZATION SEMANTICS |
| 2504 | // |
| 2505 | |
| 2506 | DWORD CannotUseSuperFastHelper() |
| 2507 | { |
| 2508 | WRAPPER_NO_CONTRACT; |
| 2509 | return HasFinalizer(); |
| 2510 | } |
| 2511 | |
| 2512 | void SetHasFinalizer() |
| 2513 | { |
| 2514 | LIMITED_METHOD_CONTRACT; |
| 2515 | SetFlag(enum_flag_HasFinalizer); |
| 2516 | } |
| 2517 | |
| 2518 | void SetHasCriticalFinalizer() |
| 2519 | { |
| 2520 | LIMITED_METHOD_CONTRACT; |
| 2521 | SetFlag(enum_flag_HasCriticalFinalizer); |
| 2522 | } |
| 2523 | // Does this class have non-trivial finalization requirements? |
| 2524 | DWORD HasFinalizer() |
| 2525 | { |
| 2526 | LIMITED_METHOD_DAC_CONTRACT; |
| 2527 | return GetFlag(enum_flag_HasFinalizer); |
| 2528 | } |
| 2529 | // Must this class be finalized during a rude appdomain unload, and |
| 2530 | // must it's finalizer run in a different order from normal finalizers? |
| 2531 | DWORD HasCriticalFinalizer() const |
| 2532 | { |
| 2533 | LIMITED_METHOD_CONTRACT; |
| 2534 | return GetFlag(enum_flag_HasCriticalFinalizer); |
| 2535 | } |
| 2536 | |
| 2537 | //------------------------------------------------------------------- |
| 2538 | // STATIC FIELDS |
| 2539 | // |
| 2540 | |
| 2541 | DWORD GetOffsetOfFirstStaticHandle(); |
| 2542 | DWORD GetOffsetOfFirstStaticMT(); |
| 2543 | |
| 2544 | #ifndef DACCESS_COMPILE |
| 2545 | inline PTR_BYTE GetNonGCStaticsBasePointer(); |
| 2546 | inline PTR_BYTE GetGCStaticsBasePointer(); |
| 2547 | inline PTR_BYTE GetNonGCThreadStaticsBasePointer(); |
| 2548 | inline PTR_BYTE GetGCThreadStaticsBasePointer(); |
| 2549 | #endif //!DACCESS_COMPILE |
| 2550 | |
| 2551 | inline PTR_BYTE GetNonGCThreadStaticsBasePointer(PTR_Thread pThread); |
| 2552 | inline PTR_BYTE GetGCThreadStaticsBasePointer(PTR_Thread pThread); |
| 2553 | |
| 2554 | inline DWORD IsDynamicStatics() |
| 2555 | { |
| 2556 | LIMITED_METHOD_DAC_CONTRACT; |
| 2557 | return !TestFlagWithMask(enum_flag_StaticsMask, enum_flag_StaticsMask_NonDynamic); |
| 2558 | } |
| 2559 | |
| 2560 | inline void SetDynamicStatics(BOOL fGeneric) |
| 2561 | { |
| 2562 | LIMITED_METHOD_CONTRACT; |
| 2563 | SetFlag(fGeneric ? enum_flag_StaticsMask_Generics : enum_flag_StaticsMask_Dynamic); |
| 2564 | } |
| 2565 | |
| 2566 | inline void SetHasBoxedRegularStatics() |
| 2567 | { |
| 2568 | LIMITED_METHOD_CONTRACT; |
| 2569 | SetFlag(enum_flag_HasBoxedRegularStatics); |
| 2570 | } |
| 2571 | |
| 2572 | inline DWORD HasBoxedRegularStatics() |
| 2573 | { |
| 2574 | LIMITED_METHOD_CONTRACT; |
| 2575 | return GetFlag(enum_flag_HasBoxedRegularStatics); |
| 2576 | } |
| 2577 | |
| 2578 | DWORD HasFixedAddressVTStatics(); |
| 2579 | |
| 2580 | //------------------------------------------------------------------- |
| 2581 | // PER-INSTANTIATION STATICS INFO |
| 2582 | // |
| 2583 | |
| 2584 | |
| 2585 | void SetupGenericsStaticsInfo(FieldDesc* pStaticFieldDescs); |
| 2586 | |
| 2587 | BOOL HasGenericsStaticsInfo() |
| 2588 | { |
| 2589 | LIMITED_METHOD_DAC_CONTRACT; |
| 2590 | return GetFlag(enum_flag_StaticsMask_Generics); |
| 2591 | } |
| 2592 | |
| 2593 | PTR_FieldDesc GetGenericsStaticFieldDescs() |
| 2594 | { |
| 2595 | WRAPPER_NO_CONTRACT; |
| 2596 | _ASSERTE(HasGenericsStaticsInfo()); |
| 2597 | return ReadPointerMaybeNull((GenericsStaticsInfo *)GetGenericsStaticsInfo(), &GenericsStaticsInfo::m_pFieldDescs); |
| 2598 | } |
| 2599 | |
| 2600 | BOOL HasCrossModuleGenericStaticsInfo() |
| 2601 | { |
| 2602 | LIMITED_METHOD_DAC_CONTRACT; |
| 2603 | return TestFlagWithMask(enum_flag_StaticsMask, enum_flag_StaticsMask_CrossModuleGenerics); |
| 2604 | } |
| 2605 | |
| 2606 | PTR_Module GetGenericsStaticsModuleAndID(DWORD * pID); |
| 2607 | |
| 2608 | WORD GetNumHandleRegularStatics(); |
| 2609 | |
| 2610 | WORD GetNumBoxedRegularStatics (); |
| 2611 | WORD GetNumBoxedThreadStatics (); |
| 2612 | |
| 2613 | //------------------------------------------------------------------- |
| 2614 | // DYNAMIC ID |
| 2615 | // |
| 2616 | |
| 2617 | // Used for generics and reflection emit in memory |
| 2618 | DWORD GetModuleDynamicEntryID(); |
| 2619 | Module* GetModuleForStatics(); |
| 2620 | |
| 2621 | //------------------------------------------------------------------- |
| 2622 | // GENERICS DICT INFO |
| 2623 | // |
| 2624 | |
| 2625 | // Number of generic arguments, whether this is a method table for |
| 2626 | // a generic type instantiation, e.g. List<string> or the "generic" MethodTable |
| 2627 | // e.g. for List. |
| 2628 | inline DWORD GetNumGenericArgs() |
| 2629 | { |
| 2630 | LIMITED_METHOD_DAC_CONTRACT; |
| 2631 | if (HasInstantiation()) |
| 2632 | return (DWORD) (GetGenericsDictInfo()->m_wNumTyPars); |
| 2633 | else |
| 2634 | return 0; |
| 2635 | } |
| 2636 | |
| 2637 | inline DWORD GetNumDicts() |
| 2638 | { |
| 2639 | LIMITED_METHOD_DAC_CONTRACT; |
| 2640 | if (HasPerInstInfo()) |
| 2641 | { |
| 2642 | PTR_GenericsDictInfo pDictInfo = GetGenericsDictInfo(); |
| 2643 | return (DWORD) (pDictInfo->m_wNumDicts); |
| 2644 | } |
| 2645 | else |
| 2646 | return 0; |
| 2647 | } |
| 2648 | |
| 2649 | //------------------------------------------------------------------- |
| 2650 | // OBJECTS |
| 2651 | // |
| 2652 | |
| 2653 | OBJECTREF Allocate(); |
| 2654 | |
| 2655 | // This flavor of Allocate is more efficient, but can only be used |
| 2656 | // if IsRestored(), CheckInstanceActivated(), IsClassInited() are known to be true. |
| 2657 | // A sufficient condition is that another instance of the exact same type already |
| 2658 | // exists in the same appdomain. It's currently called only from Delegate.Combine |
| 2659 | // via COMDelegate::InternalAllocLike. |
| 2660 | OBJECTREF AllocateNoChecks(); |
| 2661 | |
| 2662 | OBJECTREF Box(void* data); |
| 2663 | OBJECTREF FastBox(void** data); |
| 2664 | #ifndef DACCESS_COMPILE |
| 2665 | BOOL UnBoxInto(void *dest, OBJECTREF src); |
| 2666 | BOOL UnBoxIntoArg(ArgDestination *argDest, OBJECTREF src); |
| 2667 | void UnBoxIntoUnchecked(void *dest, OBJECTREF src); |
| 2668 | #endif |
| 2669 | |
| 2670 | #ifdef _DEBUG |
| 2671 | // Used for debugging class layout. Dumps to the debug console |
| 2672 | // when debug is true. |
| 2673 | void DebugDumpVtable(LPCUTF8 szClassName, BOOL fDebug); |
| 2674 | void Debug_DumpInterfaceMap(LPCSTR szInterfaceMapPrefix); |
| 2675 | void Debug_DumpDispatchMap(); |
| 2676 | void DebugDumpFieldLayout(LPCUTF8 pszClassName, BOOL debug); |
| 2677 | void DebugRecursivelyDumpInstanceFields(LPCUTF8 pszClassName, BOOL debug); |
| 2678 | void DebugDumpGCDesc(LPCUTF8 pszClassName, BOOL debug); |
| 2679 | #endif //_DEBUG |
| 2680 | |
| 2681 | inline BOOL IsAgileAndFinalizable() |
| 2682 | { |
| 2683 | LIMITED_METHOD_CONTRACT; |
| 2684 | // Right now, System.Thread is the only cases of this. |
| 2685 | // Things should stay this way - please don't change without talking to EE team. |
| 2686 | return this == g_pThreadClass; |
| 2687 | } |
| 2688 | |
| 2689 | |
| 2690 | //------------------------------------------------------------------- |
| 2691 | // ENUMS, DELEGATES, VALUE TYPES, ARRAYS |
| 2692 | // |
| 2693 | // #KindsOfElementTypes |
| 2694 | // GetInternalCorElementType() retrieves the internal representation of the type. It's not always |
| 2695 | // appropiate to use this. For example, we treat enums as their underlying type or some structs are |
| 2696 | // optimized to be ints. To get the signature type or the verifier type (same as signature except for |
| 2697 | // enums are normalized to the primtive type that underlies them), use the APIs in Typehandle.h |
| 2698 | // |
| 2699 | // * code:TypeHandle.GetSignatureCorElementType() |
| 2700 | // * code:TypeHandle.GetVerifierCorElementType() |
| 2701 | // * code:TypeHandle.GetInternalCorElementType() |
| 2702 | CorElementType GetInternalCorElementType(); |
| 2703 | void SetInternalCorElementType(CorElementType _NormType); |
| 2704 | |
| 2705 | // See code:TypeHandle::GetVerifierCorElementType for description |
| 2706 | CorElementType GetVerifierCorElementType(); |
| 2707 | |
| 2708 | // See code:TypeHandle::GetSignatureCorElementType for description |
| 2709 | CorElementType GetSignatureCorElementType(); |
| 2710 | |
| 2711 | // A true primitive is one who's GetVerifierCorElementType() == |
| 2712 | // ELEMENT_TYPE_I, |
| 2713 | // ELEMENT_TYPE_I4, |
| 2714 | // ELEMENT_TYPE_TYPEDBYREF etc. |
| 2715 | // Note that GetIntenalCorElementType might return these same values for some additional |
| 2716 | // types such as Enums and some structs. |
| 2717 | BOOL IsTruePrimitive(); |
| 2718 | void SetIsTruePrimitive(); |
| 2719 | |
| 2720 | // Is this delegate? Returns false for System.Delegate and System.MulticastDelegate. |
| 2721 | inline BOOL IsDelegate() |
| 2722 | { |
| 2723 | LIMITED_METHOD_DAC_CONTRACT; |
| 2724 | // We do not allow single cast delegates anymore, just check for multicast delegate |
| 2725 | _ASSERTE(g_pMulticastDelegateClass); |
| 2726 | return ParentEquals(g_pMulticastDelegateClass); |
| 2727 | } |
| 2728 | |
| 2729 | // Is this System.Object? |
| 2730 | inline BOOL IsObjectClass() |
| 2731 | { |
| 2732 | LIMITED_METHOD_CONTRACT; |
| 2733 | _ASSERTE(g_pObjectClass); |
| 2734 | return (this == g_pObjectClass); |
| 2735 | } |
| 2736 | |
| 2737 | // Is this System.ValueType? |
| 2738 | inline DWORD IsValueTypeClass() |
| 2739 | { |
| 2740 | LIMITED_METHOD_CONTRACT; |
| 2741 | _ASSERTE(g_pValueTypeClass); |
| 2742 | return (this == g_pValueTypeClass); |
| 2743 | } |
| 2744 | |
| 2745 | // Is this value type? Returns false for System.ValueType and System.Enum. |
| 2746 | inline BOOL IsValueType(); |
| 2747 | |
| 2748 | // Returns "TRUE" iff "this" is a struct type such that return buffers used for returning a value |
| 2749 | // of this type must be stack-allocated. This will generally be true only if the struct |
| 2750 | // contains GC pointers, and does not exceed some size limit. Maintaining this as an invariant allows |
| 2751 | // an optimization: the JIT may assume that return buffer pointers for return types for which this predicate |
| 2752 | // returns TRUE are always stack allocated, and thus, that stores to the GC-pointer fields of such return |
| 2753 | // buffers do not require GC write barriers. |
| 2754 | BOOL IsStructRequiringStackAllocRetBuf(); |
| 2755 | |
| 2756 | // Is this enum? Returns false for System.Enum. |
| 2757 | inline BOOL IsEnum(); |
| 2758 | |
| 2759 | // Is this array? Returns false for System.Array. |
| 2760 | inline BOOL IsArray() |
| 2761 | { |
| 2762 | LIMITED_METHOD_DAC_CONTRACT; |
| 2763 | return GetFlag(enum_flag_Category_Array_Mask) == enum_flag_Category_Array; |
| 2764 | } |
| 2765 | inline BOOL IsMultiDimArray() |
| 2766 | { |
| 2767 | LIMITED_METHOD_DAC_CONTRACT; |
| 2768 | PRECONDITION(IsArray()); |
| 2769 | return !GetFlag(enum_flag_Category_IfArrayThenSzArray); |
| 2770 | } |
| 2771 | |
| 2772 | // Returns true if this type is Nullable<T> for some T. |
| 2773 | inline BOOL IsNullable() |
| 2774 | { |
| 2775 | LIMITED_METHOD_DAC_CONTRACT; |
| 2776 | return GetFlag(enum_flag_Category_Mask) == enum_flag_Category_Nullable; |
| 2777 | } |
| 2778 | |
| 2779 | inline void SetIsNullable() |
| 2780 | { |
| 2781 | LIMITED_METHOD_CONTRACT; |
| 2782 | _ASSERTE(GetFlag(enum_flag_Category_Mask) == enum_flag_Category_ValueType); |
| 2783 | SetFlag(enum_flag_Category_Nullable); |
| 2784 | } |
| 2785 | |
| 2786 | inline BOOL IsStructMarshalable() |
| 2787 | { |
| 2788 | LIMITED_METHOD_CONTRACT; |
| 2789 | PRECONDITION(!IsInterface()); |
| 2790 | return GetFlag(enum_flag_IfNotInterfaceThenMarshalable); |
| 2791 | } |
| 2792 | |
| 2793 | inline void SetStructMarshalable() |
| 2794 | { |
| 2795 | LIMITED_METHOD_CONTRACT; |
| 2796 | PRECONDITION(!IsInterface()); |
| 2797 | SetFlag(enum_flag_IfNotInterfaceThenMarshalable); |
| 2798 | } |
| 2799 | |
| 2800 | // The following methods are only valid for the |
| 2801 | // method tables for array types. These MTs may |
| 2802 | // be shared between array types and thus GetArrayElementTypeHandle |
| 2803 | // may only be approximate. If you need the exact element type handle then |
| 2804 | // you should probably be calling GetArrayElementTypeHandle on a TypeHandle, |
| 2805 | // or an ArrayTypeDesc, or on an object reference that is known to be an array, |
| 2806 | // e.g. a BASEARRAYREF. |
| 2807 | // |
| 2808 | // At the moment only the object[] MethodTable is shared between array types. |
| 2809 | // In the future the amount of sharing of method tables is likely to be increased. |
| 2810 | CorElementType GetArrayElementType(); |
| 2811 | DWORD GetRank(); |
| 2812 | |
| 2813 | TypeHandle GetApproxArrayElementTypeHandle() |
| 2814 | { |
| 2815 | LIMITED_METHOD_DAC_CONTRACT; |
| 2816 | _ASSERTE (IsArray()); |
| 2817 | return TypeHandle::FromTAddr(m_ElementTypeHnd); |
| 2818 | } |
| 2819 | |
| 2820 | void SetApproxArrayElementTypeHandle(TypeHandle th) |
| 2821 | { |
| 2822 | LIMITED_METHOD_DAC_CONTRACT; |
| 2823 | m_ElementTypeHnd = th.AsTAddr(); |
| 2824 | } |
| 2825 | |
| 2826 | TypeHandle * GetApproxArrayElementTypeHandlePtr() |
| 2827 | { |
| 2828 | LIMITED_METHOD_CONTRACT; |
| 2829 | return (TypeHandle *)&m_ElementTypeHnd; |
| 2830 | } |
| 2831 | |
| 2832 | static inline DWORD GetOffsetOfArrayElementTypeHandle() |
| 2833 | { |
| 2834 | LIMITED_METHOD_CONTRACT; |
| 2835 | return offsetof(MethodTable, m_ElementTypeHnd); |
| 2836 | } |
| 2837 | |
| 2838 | //------------------------------------------------------------------- |
| 2839 | // UNDERLYING METADATA |
| 2840 | // |
| 2841 | |
| 2842 | |
| 2843 | // Get the RID/token for the metadata for the corresponding type declaration |
| 2844 | unsigned GetTypeDefRid(); |
| 2845 | unsigned GetTypeDefRid_NoLogging(); |
| 2846 | |
| 2847 | inline mdTypeDef GetCl() |
| 2848 | { |
| 2849 | LIMITED_METHOD_CONTRACT; |
| 2850 | return TokenFromRid(GetTypeDefRid(), mdtTypeDef); |
| 2851 | } |
| 2852 | |
| 2853 | inline mdTypeDef GetCl_NoLogging() |
| 2854 | { |
| 2855 | LIMITED_METHOD_CONTRACT; |
| 2856 | return TokenFromRid(GetTypeDefRid_NoLogging(), mdtTypeDef); |
| 2857 | } |
| 2858 | |
| 2859 | void SetCl(mdTypeDef token); |
| 2860 | |
| 2861 | #ifdef _DEBUG |
| 2862 | // Make this smaller in debug builds to exercise the overflow codepath |
| 2863 | #define METHODTABLE_TOKEN_OVERFLOW 0xFFF |
| 2864 | #else |
| 2865 | #define METHODTABLE_TOKEN_OVERFLOW 0xFFFF |
| 2866 | #endif |
| 2867 | |
| 2868 | BOOL HasTokenOverflow() |
| 2869 | { |
| 2870 | LIMITED_METHOD_CONTRACT; |
| 2871 | return m_wToken == METHODTABLE_TOKEN_OVERFLOW; |
| 2872 | } |
| 2873 | |
| 2874 | // Get the MD Import for the metadata for the corresponding type declaration |
| 2875 | IMDInternalImport* GetMDImport(); |
| 2876 | |
| 2877 | mdTypeDef GetEnclosingCl(); |
| 2878 | |
| 2879 | #ifdef DACCESS_COMPILE |
| 2880 | void EnumMemoryRegions(CLRDataEnumMemoryFlags flags); |
| 2881 | #endif |
| 2882 | |
| 2883 | //------------------------------------------------------------------- |
| 2884 | // REMOTEABLE METHOD INFO |
| 2885 | // |
| 2886 | |
| 2887 | #ifdef FEATURE_COMINTEROP |
| 2888 | void SetHasGuidInfo(); |
| 2889 | BOOL HasGuidInfo(); |
| 2890 | void SetHasCCWTemplate(); |
| 2891 | BOOL HasCCWTemplate(); |
| 2892 | void SetHasRCWPerTypeData(); |
| 2893 | BOOL HasRCWPerTypeData(); |
| 2894 | #endif // FEATURE_COMINTEROP |
| 2895 | |
| 2896 | //------------------------------------------------------------------- |
| 2897 | // DICTIONARIES FOR GENERIC INSTANTIATIONS |
| 2898 | // |
| 2899 | // The PerInstInfo pointer is a pointer to per-instantiation pointer table, |
| 2900 | // each entry of which points to an instantiation "dictionary" |
| 2901 | // for an instantiated type; the last pointer points to a |
| 2902 | // dictionary which is specific to this method table, previous |
| 2903 | // entries point to dictionaries in superclasses. Instantiated interfaces and structs |
| 2904 | // have just single dictionary (no inheritance). |
| 2905 | // |
| 2906 | // GetNumDicts() gives the number of dictionaries. |
| 2907 | // |
| 2908 | //@nice GENERICS: instead of a separate table of pointers, put the pointers |
| 2909 | // in the vtable itself. Advantages: |
| 2910 | // * Time: we save an indirection as we don't need to go through PerInstInfo first. |
| 2911 | // * Space: no need for PerInstInfo (1 word) |
| 2912 | // Problem is that lots of code assumes that the vtable is filled |
| 2913 | // uniformly with pointers to MethodDesc stubs. |
| 2914 | // |
| 2915 | // The dictionary for the method table is just an array of handles for |
| 2916 | // type parameters in the following cases: |
| 2917 | // * instantiated interfaces (no code) |
| 2918 | // * instantiated types whose code is not shared |
| 2919 | // Otherwise, it starts with the type parameters and then has a fixed |
| 2920 | // number of slots for handles (types & methods) |
| 2921 | // that are filled in lazily at run-time. Finally there is a "spill-bucket" |
| 2922 | // pointer used when the dictionary gets filled. |
| 2923 | // In summary: |
| 2924 | // typar_1 type handle for first type parameter |
| 2925 | // ... |
| 2926 | // typar_n type handle for last type parameter |
| 2927 | // slot_1 slot for first run-time handle (initially null) |
| 2928 | // ... |
| 2929 | // slot_m slot for last run-time handle (initially null) |
| 2930 | // next_bucket pointer to spill bucket (possibly null) |
| 2931 | // The spill bucket contains just run-time handle slots. |
| 2932 | // (Alternative: continue chaining buckets. |
| 2933 | // Advantage: no need to deallocate when growing dictionaries. |
| 2934 | // Disadvantage: more indirections required at run-time.) |
| 2935 | // |
| 2936 | // The layout of dictionaries is determined by GetClass()->GetDictionaryLayout() |
| 2937 | // Thus the layout can vary between incompatible instantiations. This is sometimes useful because individual type |
| 2938 | // parameters may or may not be shared. For example, consider a two parameter class Dict<K,D>. In instantiations shared with |
| 2939 | // Dict<double,string> any reference to K is known at JIT-compile-time (it's double) but any token containing D |
| 2940 | // must have a dictionary entry. On the other hand, for instantiations shared with Dict<string,double> the opposite holds. |
| 2941 | // |
| 2942 | |
| 2943 | #if defined(FEATURE_NGEN_RELOCS_OPTIMIZATIONS) |
| 2944 | typedef RelativePointer<PTR_Dictionary> PerInstInfoElem_t; |
| 2945 | typedef RelativePointer<DPTR(PerInstInfoElem_t)> PerInstInfo_t; |
| 2946 | #else |
| 2947 | typedef PlainPointer<PTR_Dictionary> PerInstInfoElem_t; |
| 2948 | typedef PlainPointer<DPTR(PerInstInfoElem_t)> PerInstInfo_t; |
| 2949 | #endif |
| 2950 | |
| 2951 | // Return a pointer to the per-instantiation information. See field itself for comments. |
| 2952 | DPTR(PerInstInfoElem_t) GetPerInstInfo() |
| 2953 | { |
| 2954 | LIMITED_METHOD_DAC_CONTRACT; |
| 2955 | _ASSERTE(HasPerInstInfo()); |
| 2956 | return ReadPointer(this, &MethodTable::m_pPerInstInfo); |
| 2957 | } |
| 2958 | BOOL HasPerInstInfo() |
| 2959 | { |
| 2960 | LIMITED_METHOD_DAC_CONTRACT; |
| 2961 | return GetFlag(enum_flag_HasPerInstInfo) && !IsArray(); |
| 2962 | } |
| 2963 | #ifndef DACCESS_COMPILE |
| 2964 | static inline bool IsPerInstInfoRelative() |
| 2965 | { |
| 2966 | LIMITED_METHOD_CONTRACT; |
| 2967 | return decltype(m_pPerInstInfo)::isRelative; |
| 2968 | } |
| 2969 | static inline DWORD GetOffsetOfPerInstInfo() |
| 2970 | { |
| 2971 | LIMITED_METHOD_CONTRACT; |
| 2972 | return offsetof(MethodTable, m_pPerInstInfo); |
| 2973 | } |
| 2974 | void SetPerInstInfo(PerInstInfoElem_t *pPerInstInfo) |
| 2975 | { |
| 2976 | LIMITED_METHOD_CONTRACT; |
| 2977 | m_pPerInstInfo.SetValue(pPerInstInfo); |
| 2978 | } |
| 2979 | void SetDictInfo(WORD numDicts, WORD numTyPars) |
| 2980 | { |
| 2981 | WRAPPER_NO_CONTRACT; |
| 2982 | GenericsDictInfo* pInfo = GetGenericsDictInfo(); |
| 2983 | pInfo->m_wNumDicts = numDicts; |
| 2984 | pInfo->m_wNumTyPars = numTyPars; |
| 2985 | } |
| 2986 | #endif // !DACCESS_COMPILE |
| 2987 | PTR_GenericsDictInfo GetGenericsDictInfo() |
| 2988 | { |
| 2989 | LIMITED_METHOD_DAC_CONTRACT; |
| 2990 | // GenericsDictInfo is stored at negative offset of the dictionary |
| 2991 | return dac_cast<PTR_GenericsDictInfo>(GetPerInstInfo()) - 1; |
| 2992 | } |
| 2993 | |
| 2994 | // Get a pointer to the dictionary for this instantiated type |
| 2995 | // (The instantiation is stored in the initial slots of the dictionary) |
| 2996 | // If not instantiated, return NULL |
| 2997 | PTR_Dictionary GetDictionary(); |
| 2998 | |
| 2999 | #ifdef FEATURE_PREJIT |
| 3000 | // |
| 3001 | // After the zapper compiles all code in a module it may attempt |
| 3002 | // to populate entries in all dictionaries |
| 3003 | // associated with generic types. This is an optional step - nothing will |
| 3004 | // go wrong at runtime except we may get more one-off calls to JIT_GenericHandle. |
| 3005 | // Although these are one-off we prefer to avoid them since they touch metadata |
| 3006 | // pages. |
| 3007 | // |
| 3008 | // Fully populating a dictionary may in theory load more types. However |
| 3009 | // for the moment only those entries that refer to types that |
| 3010 | // are already loaded will be filled in. |
| 3011 | void PrepopulateDictionary(DataImage * image, BOOL nonExpansive); |
| 3012 | #endif // FEATURE_PREJIT |
| 3013 | |
| 3014 | // Return a substitution suitbale for interpreting |
| 3015 | // the metadata in parent class, assuming we already have a subst. |
| 3016 | // suitable for interpreting the current class. |
| 3017 | // |
| 3018 | // If, for example, the definition for the current class is |
| 3019 | // D<T> : C<List<T>, T[] > |
| 3020 | // then this (for C<!0,!1>) will be |
| 3021 | // 0 --> List<T> |
| 3022 | // 1 --> T[] |
| 3023 | // added to the chain of substitutions. |
| 3024 | // |
| 3025 | // Subsequently, if the definition for C is |
| 3026 | // C<T, U> : B< Dictionary<T, U> > |
| 3027 | // then the next subst (for B<!0>) will be |
| 3028 | // 0 --> Dictionary< List<T>, T[] > |
| 3029 | |
| 3030 | Substitution GetSubstitutionForParent(const Substitution *pSubst); |
| 3031 | |
| 3032 | inline DWORD GetAttrClass(); |
| 3033 | |
| 3034 | inline BOOL HasFieldsWhichMustBeInited(); |
| 3035 | |
| 3036 | inline BOOL IsPreRestored() const |
| 3037 | { |
| 3038 | LIMITED_METHOD_DAC_CONTRACT; |
| 3039 | |
| 3040 | return GetFlag(enum_flag_IsPreRestored); |
| 3041 | } |
| 3042 | |
| 3043 | //------------------------------------------------------------------- |
| 3044 | // THE EXPOSED CLASS OBJECT |
| 3045 | // |
| 3046 | /* |
| 3047 | * m_ExposedClassObject is a RuntimeType instance for this class. But |
| 3048 | * do NOT use it for Arrays or remoted objects! All arrays of objects |
| 3049 | * share the same MethodTable/EEClass. |
| 3050 | * @GENERICS: this is per-instantiation data |
| 3051 | */ |
| 3052 | // There are two version of GetManagedClassObject. The GetManagedClassObject() |
| 3053 | // method will get the class object. If it doesn't exist it will be created. |
| 3054 | // GetManagedClassObjectIfExists() will return null if the Type object doesn't exist. |
| 3055 | OBJECTREF GetManagedClassObject(); |
| 3056 | OBJECTREF GetManagedClassObjectIfExists(); |
| 3057 | |
| 3058 | |
| 3059 | // ------------------------------------------------------------------ |
| 3060 | // Private part of MethodTable |
| 3061 | // ------------------------------------------------------------------ |
| 3062 | |
| 3063 | #ifndef DACCESS_COMPILE |
| 3064 | inline void SetWriteableData(PTR_MethodTableWriteableData pMTWriteableData) |
| 3065 | { |
| 3066 | LIMITED_METHOD_CONTRACT; |
| 3067 | _ASSERTE(pMTWriteableData); |
| 3068 | m_pWriteableData.SetValue(pMTWriteableData); |
| 3069 | } |
| 3070 | #endif |
| 3071 | |
| 3072 | inline PTR_Const_MethodTableWriteableData GetWriteableData() const |
| 3073 | { |
| 3074 | LIMITED_METHOD_DAC_CONTRACT; |
| 3075 | g_IBCLogger.LogMethodTableWriteableDataAccess(this); |
| 3076 | return GetWriteableData_NoLogging(); |
| 3077 | } |
| 3078 | |
| 3079 | inline PTR_Const_MethodTableWriteableData GetWriteableData_NoLogging() const |
| 3080 | { |
| 3081 | LIMITED_METHOD_DAC_CONTRACT; |
| 3082 | return ReadPointer(this, &MethodTable::m_pWriteableData); |
| 3083 | } |
| 3084 | |
| 3085 | inline PTR_MethodTableWriteableData GetWriteableDataForWrite() |
| 3086 | { |
| 3087 | LIMITED_METHOD_DAC_CONTRACT; |
| 3088 | g_IBCLogger.LogMethodTableWriteableDataWriteAccess(this); |
| 3089 | return GetWriteableDataForWrite_NoLogging(); |
| 3090 | } |
| 3091 | |
| 3092 | inline PTR_MethodTableWriteableData GetWriteableDataForWrite_NoLogging() |
| 3093 | { |
| 3094 | LIMITED_METHOD_DAC_CONTRACT; |
| 3095 | return ReadPointer(this, &MethodTable::m_pWriteableData); |
| 3096 | } |
| 3097 | |
| 3098 | //------------------------------------------------------------------- |
| 3099 | // The GUID Info |
| 3100 | // Used by COM interop to get GUIDs (IIDs and CLSIDs) |
| 3101 | |
| 3102 | // Get/store cached GUID information |
| 3103 | PTR_GuidInfo GetGuidInfo(); |
| 3104 | void SetGuidInfo(GuidInfo* pGuidInfo); |
| 3105 | |
| 3106 | // Get and cache the GUID for this interface/class |
| 3107 | HRESULT GetGuidNoThrow(GUID *pGuid, BOOL bGenerateIfNotFound, BOOL bClassic = TRUE); |
| 3108 | |
| 3109 | // Get and cache the GUID for this interface/class |
| 3110 | void GetGuid(GUID *pGuid, BOOL bGenerateIfNotFound, BOOL bClassic = TRUE); |
| 3111 | |
| 3112 | #ifdef FEATURE_COMINTEROP |
| 3113 | // Get the GUID used for WinRT interop |
| 3114 | // * for projection generic interfaces returns the equivalent WinRT type's GUID |
| 3115 | // * for everything else returns the GetGuid(, TRUE) |
| 3116 | BOOL GetGuidForWinRT(GUID *pGuid); |
| 3117 | |
| 3118 | private: |
| 3119 | // Create RCW data associated with this type. |
| 3120 | RCWPerTypeData *CreateRCWPerTypeData(bool bThrowOnOOM); |
| 3121 | |
| 3122 | public: |
| 3123 | // Get the RCW data associated with this type or NULL if the type does not need such data or allocation |
| 3124 | // failed (only if bThrowOnOOM is false). |
| 3125 | RCWPerTypeData *GetRCWPerTypeData(bool bThrowOnOOM = true); |
| 3126 | #endif // FEATURE_COMINTEROP |
| 3127 | |
| 3128 | // Convenience method - determine if the interface/class has a guid specified (even if not yet cached) |
| 3129 | BOOL HasExplicitGuid(); |
| 3130 | |
| 3131 | public : |
| 3132 | // Helper routines for the GetFullyQualifiedNameForClass macros defined at the top of class.h. |
| 3133 | // You probably should not use these functions directly. |
| 3134 | SString &_GetFullyQualifiedNameForClassNestedAware(SString &ssBuf); |
| 3135 | SString &_GetFullyQualifiedNameForClass(SString &ssBuf); |
| 3136 | LPCUTF8 GetFullyQualifiedNameInfo(LPCUTF8 *ppszNamespace); |
| 3137 | |
| 3138 | private: |
| 3139 | template<typename RedirectFunctor> SString &_GetFullyQualifiedNameForClassNestedAwareInternal(SString &ssBuf); |
| 3140 | |
| 3141 | public : |
| 3142 | //------------------------------------------------------------------- |
| 3143 | // Debug Info |
| 3144 | // |
| 3145 | |
| 3146 | |
| 3147 | #ifdef _DEBUG |
| 3148 | inline LPCUTF8 GetDebugClassName() |
| 3149 | { |
| 3150 | LIMITED_METHOD_CONTRACT; |
| 3151 | return debug_m_szClassName; |
| 3152 | } |
| 3153 | inline void SetDebugClassName(LPCUTF8 name) |
| 3154 | { |
| 3155 | LIMITED_METHOD_CONTRACT; |
| 3156 | debug_m_szClassName = name; |
| 3157 | } |
| 3158 | |
| 3159 | // Was the type created with injected duplicates? |
| 3160 | // TRUE means that we tried to inject duplicates (not that we found one to inject). |
| 3161 | inline BOOL Debug_HasInjectedInterfaceDuplicates() const |
| 3162 | { |
| 3163 | LIMITED_METHOD_CONTRACT; |
| 3164 | return (GetWriteableData()->m_dwFlags & MethodTableWriteableData::enum_flag_HasInjectedInterfaceDuplicates) != 0; |
| 3165 | } |
| 3166 | inline void Debug_SetHasInjectedInterfaceDuplicates() |
| 3167 | { |
| 3168 | LIMITED_METHOD_CONTRACT; |
| 3169 | GetWriteableDataForWrite()->m_dwFlags |= MethodTableWriteableData::enum_flag_HasInjectedInterfaceDuplicates; |
| 3170 | } |
| 3171 | #endif // _DEBUG |
| 3172 | |
| 3173 | |
| 3174 | #ifndef DACCESS_COMPILE |
| 3175 | public: |
| 3176 | //-------------------------------------------------------------------------------------- |
| 3177 | class MethodData |
| 3178 | { |
| 3179 | public: |
| 3180 | inline ULONG AddRef() |
| 3181 | { LIMITED_METHOD_CONTRACT; return (ULONG) InterlockedIncrement((LONG*)&m_cRef); } |
| 3182 | |
| 3183 | ULONG Release(); |
| 3184 | |
| 3185 | // Since all methods that return a MethodData already AddRef'd, we do NOT |
| 3186 | // want to AddRef when putting a holder around it. We only want to release it. |
| 3187 | static void HolderAcquire(MethodData *pEntry) |
| 3188 | { LIMITED_METHOD_CONTRACT; return; } |
| 3189 | static void HolderRelease(MethodData *pEntry) |
| 3190 | { WRAPPER_NO_CONTRACT; if (pEntry != NULL) pEntry->Release(); } |
| 3191 | |
| 3192 | protected: |
| 3193 | ULONG m_cRef; |
| 3194 | |
| 3195 | public: |
| 3196 | MethodData() : m_cRef(1) { LIMITED_METHOD_CONTRACT; } |
| 3197 | virtual ~MethodData() { LIMITED_METHOD_CONTRACT; } |
| 3198 | |
| 3199 | virtual MethodData *GetDeclMethodData() = 0; |
| 3200 | virtual MethodTable *GetDeclMethodTable() = 0; |
| 3201 | virtual MethodDesc *GetDeclMethodDesc(UINT32 slotNumber) = 0; |
| 3202 | |
| 3203 | virtual MethodData *GetImplMethodData() = 0; |
| 3204 | virtual MethodTable *GetImplMethodTable() = 0; |
| 3205 | virtual DispatchSlot GetImplSlot(UINT32 slotNumber) = 0; |
| 3206 | // Returns INVALID_SLOT_NUMBER if no implementation exists. |
| 3207 | virtual UINT32 GetImplSlotNumber(UINT32 slotNumber) = 0; |
| 3208 | virtual MethodDesc *GetImplMethodDesc(UINT32 slotNumber) = 0; |
| 3209 | virtual void InvalidateCachedVirtualSlot(UINT32 slotNumber) = 0; |
| 3210 | |
| 3211 | virtual UINT32 GetNumVirtuals() = 0; |
| 3212 | virtual UINT32 GetNumMethods() = 0; |
| 3213 | |
| 3214 | protected: |
| 3215 | static const UINT32 INVALID_SLOT_NUMBER = UINT32_MAX; |
| 3216 | |
| 3217 | // This is used when building the data |
| 3218 | struct MethodDataEntry |
| 3219 | { |
| 3220 | private: |
| 3221 | static const UINT32 INVALID_CHAIN_AND_INDEX = (UINT32)(-1); |
| 3222 | static const UINT16 INVALID_IMPL_SLOT_NUM = (UINT16)(-1); |
| 3223 | |
| 3224 | // This contains both the chain delta and the table index. The |
| 3225 | // reason that they are combined is that we need atomic update |
| 3226 | // of both, and it is convenient that both are on UINT16 in size. |
| 3227 | UINT32 m_chainDeltaAndTableIndex; |
| 3228 | UINT16 m_implSlotNum; // For virtually remapped slots |
| 3229 | DispatchSlot m_slot; // The entry in the DispatchImplTable |
| 3230 | MethodDesc *m_pMD; // The MethodDesc for this slot |
| 3231 | |
| 3232 | public: |
| 3233 | inline MethodDataEntry() : m_slot(NULL) |
| 3234 | { WRAPPER_NO_CONTRACT; Init(); } |
| 3235 | |
| 3236 | inline void Init() |
| 3237 | { |
| 3238 | LIMITED_METHOD_CONTRACT; |
| 3239 | m_chainDeltaAndTableIndex = INVALID_CHAIN_AND_INDEX; |
| 3240 | m_implSlotNum = INVALID_IMPL_SLOT_NUM; |
| 3241 | m_slot = NULL; |
| 3242 | m_pMD = NULL; |
| 3243 | } |
| 3244 | |
| 3245 | inline BOOL IsDeclInit() |
| 3246 | { LIMITED_METHOD_CONTRACT; return m_chainDeltaAndTableIndex != INVALID_CHAIN_AND_INDEX; } |
| 3247 | inline BOOL IsImplInit() |
| 3248 | { LIMITED_METHOD_CONTRACT; return m_implSlotNum != INVALID_IMPL_SLOT_NUM; } |
| 3249 | |
| 3250 | inline void SetDeclData(UINT32 chainDelta, UINT32 tableIndex) |
| 3251 | { LIMITED_METHOD_CONTRACT; m_chainDeltaAndTableIndex = ((((UINT16) chainDelta) << 16) | ((UINT16) tableIndex)); } |
| 3252 | inline UINT32 GetChainDelta() |
| 3253 | { LIMITED_METHOD_CONTRACT; CONSISTENCY_CHECK(IsDeclInit()); return m_chainDeltaAndTableIndex >> 16; } |
| 3254 | inline UINT32 GetTableIndex() |
| 3255 | { LIMITED_METHOD_CONTRACT; CONSISTENCY_CHECK(IsDeclInit()); return (m_chainDeltaAndTableIndex & (UINT32)UINT16_MAX); } |
| 3256 | |
| 3257 | inline void SetImplData(UINT32 implSlotNum) |
| 3258 | { LIMITED_METHOD_CONTRACT; m_implSlotNum = (UINT16) implSlotNum; } |
| 3259 | inline UINT32 GetImplSlotNum() |
| 3260 | { LIMITED_METHOD_CONTRACT; CONSISTENCY_CHECK(IsImplInit()); return m_implSlotNum; } |
| 3261 | |
| 3262 | inline void SetSlot(DispatchSlot slot) |
| 3263 | { LIMITED_METHOD_CONTRACT; m_slot = slot; } |
| 3264 | inline DispatchSlot GetSlot() |
| 3265 | { LIMITED_METHOD_CONTRACT; return m_slot; } |
| 3266 | |
| 3267 | inline void SetMethodDesc(MethodDesc *pMD) |
| 3268 | { LIMITED_METHOD_CONTRACT; m_pMD = pMD; } |
| 3269 | inline MethodDesc *GetMethodDesc() |
| 3270 | { LIMITED_METHOD_CONTRACT; return m_pMD; } |
| 3271 | |
| 3272 | }; |
| 3273 | |
| 3274 | static void ProcessMap( |
| 3275 | const DispatchMapTypeID * rgTypeIDs, |
| 3276 | UINT32 cTypeIDs, |
| 3277 | MethodTable * pMT, |
| 3278 | UINT32 cCurrentChainDepth, |
| 3279 | MethodDataEntry * rgWorkingData); |
| 3280 | }; // class MethodData |
| 3281 | |
| 3282 | typedef ::Holder < MethodData *, MethodData::HolderAcquire, MethodData::HolderRelease > MethodDataHolder; |
| 3283 | typedef ::Wrapper < MethodData *, MethodData::HolderAcquire, MethodData::HolderRelease > MethodDataWrapper; |
| 3284 | |
| 3285 | protected: |
| 3286 | //-------------------------------------------------------------------------------------- |
| 3287 | class MethodDataObject : public MethodData |
| 3288 | { |
| 3289 | public: |
| 3290 | // Static method that returns the amount of memory to allocate for a particular type. |
| 3291 | static UINT32 GetObjectSize(MethodTable *pMT); |
| 3292 | |
| 3293 | // Constructor. Make sure you have allocated enough memory using GetObjectSize. |
| 3294 | inline MethodDataObject(MethodTable *pMT) |
| 3295 | { WRAPPER_NO_CONTRACT; Init(pMT, NULL); } |
| 3296 | |
| 3297 | inline MethodDataObject(MethodTable *pMT, MethodData *pParentData) |
| 3298 | { WRAPPER_NO_CONTRACT; Init(pMT, pParentData); } |
| 3299 | |
| 3300 | virtual ~MethodDataObject() { LIMITED_METHOD_CONTRACT; } |
| 3301 | |
| 3302 | virtual MethodData *GetDeclMethodData() |
| 3303 | { LIMITED_METHOD_CONTRACT; return this; } |
| 3304 | virtual MethodTable *GetDeclMethodTable() |
| 3305 | { LIMITED_METHOD_CONTRACT; return m_pMT; } |
| 3306 | virtual MethodDesc *GetDeclMethodDesc(UINT32 slotNumber); |
| 3307 | |
| 3308 | virtual MethodData *GetImplMethodData() |
| 3309 | { LIMITED_METHOD_CONTRACT; return this; } |
| 3310 | virtual MethodTable *GetImplMethodTable() |
| 3311 | { LIMITED_METHOD_CONTRACT; return m_pMT; } |
| 3312 | virtual DispatchSlot GetImplSlot(UINT32 slotNumber); |
| 3313 | virtual UINT32 GetImplSlotNumber(UINT32 slotNumber); |
| 3314 | virtual MethodDesc *GetImplMethodDesc(UINT32 slotNumber); |
| 3315 | virtual void InvalidateCachedVirtualSlot(UINT32 slotNumber); |
| 3316 | |
| 3317 | virtual UINT32 GetNumVirtuals() |
| 3318 | { LIMITED_METHOD_CONTRACT; return m_pMT->GetNumVirtuals(); } |
| 3319 | virtual UINT32 GetNumMethods() |
| 3320 | { LIMITED_METHOD_CONTRACT; return m_pMT->GetCanonicalMethodTable()->GetNumMethods(); } |
| 3321 | |
| 3322 | protected: |
| 3323 | void Init(MethodTable *pMT, MethodData *pParentData); |
| 3324 | |
| 3325 | BOOL PopulateNextLevel(); |
| 3326 | |
| 3327 | // This is the method table for the actual type we're gathering the data for |
| 3328 | MethodTable *m_pMT; |
| 3329 | |
| 3330 | // This is used in staged map decoding - it indicates which type we will next decode. |
| 3331 | UINT32 m_iNextChainDepth; |
| 3332 | static const UINT32 MAX_CHAIN_DEPTH = UINT32_MAX; |
| 3333 | |
| 3334 | BOOL m_containsMethodImpl; |
| 3335 | |
| 3336 | // NOTE: Use of these APIs are unlocked and may appear to be erroneous. However, since calls |
| 3337 | // to ProcessMap will result in identical values being placed in the MethodDataObjectEntry |
| 3338 | // array, it it is not a problem if there is a race, since one thread may just end up |
| 3339 | // doing some duplicate work. |
| 3340 | |
| 3341 | inline UINT32 GetNextChainDepth() |
| 3342 | { LIMITED_METHOD_CONTRACT; return VolatileLoad(&m_iNextChainDepth); } |
| 3343 | |
| 3344 | inline void SetNextChainDepth(UINT32 iDepth) |
| 3345 | { |
| 3346 | LIMITED_METHOD_CONTRACT; |
| 3347 | if (GetNextChainDepth() < iDepth) { |
| 3348 | VolatileStore(&m_iNextChainDepth, iDepth); |
| 3349 | } |
| 3350 | } |
| 3351 | |
| 3352 | // This is used when building the data |
| 3353 | struct MethodDataObjectEntry |
| 3354 | { |
| 3355 | private: |
| 3356 | MethodDesc *m_pMDDecl; |
| 3357 | MethodDesc *m_pMDImpl; |
| 3358 | |
| 3359 | public: |
| 3360 | inline MethodDataObjectEntry() : m_pMDDecl(NULL), m_pMDImpl(NULL) {} |
| 3361 | |
| 3362 | inline void SetDeclMethodDesc(MethodDesc *pMD) |
| 3363 | { LIMITED_METHOD_CONTRACT; m_pMDDecl = pMD; } |
| 3364 | inline MethodDesc *GetDeclMethodDesc() |
| 3365 | { LIMITED_METHOD_CONTRACT; return m_pMDDecl; } |
| 3366 | inline void SetImplMethodDesc(MethodDesc *pMD) |
| 3367 | { LIMITED_METHOD_CONTRACT; m_pMDImpl = pMD; } |
| 3368 | inline MethodDesc *GetImplMethodDesc() |
| 3369 | { LIMITED_METHOD_CONTRACT; return m_pMDImpl; } |
| 3370 | }; |
| 3371 | |
| 3372 | // |
| 3373 | // At the end of this object is an array, so you cannot derive from this class. |
| 3374 | // |
| 3375 | |
| 3376 | inline MethodDataObjectEntry *GetEntryData() |
| 3377 | { LIMITED_METHOD_CONTRACT; return (MethodDataObjectEntry *)(this + 1); } |
| 3378 | |
| 3379 | inline MethodDataObjectEntry *GetEntry(UINT32 i) |
| 3380 | { LIMITED_METHOD_CONTRACT; CONSISTENCY_CHECK(i < GetNumMethods()); return GetEntryData() + i; } |
| 3381 | |
| 3382 | void FillEntryDataForAncestor(MethodTable *pMT); |
| 3383 | |
| 3384 | // MethodDataObjectEntry m_rgEntries[...]; |
| 3385 | }; // class MethodDataObject |
| 3386 | |
| 3387 | //-------------------------------------------------------------------------------------- |
| 3388 | class MethodDataInterface : public MethodData |
| 3389 | { |
| 3390 | public: |
| 3391 | // Static method that returns the amount of memory to allocate for a particular type. |
| 3392 | static UINT32 GetObjectSize(MethodTable *pMT) |
| 3393 | { LIMITED_METHOD_CONTRACT; return sizeof(MethodDataInterface); } |
| 3394 | |
| 3395 | // Constructor. Make sure you have allocated enough memory using GetObjectSize. |
| 3396 | MethodDataInterface(MethodTable *pMT) |
| 3397 | { |
| 3398 | LIMITED_METHOD_CONTRACT; |
| 3399 | CONSISTENCY_CHECK(CheckPointer(pMT)); |
| 3400 | CONSISTENCY_CHECK(pMT->IsInterface()); |
| 3401 | m_pMT = pMT; |
| 3402 | } |
| 3403 | virtual ~MethodDataInterface() |
| 3404 | { LIMITED_METHOD_CONTRACT; } |
| 3405 | |
| 3406 | // |
| 3407 | // Decl data |
| 3408 | // |
| 3409 | virtual MethodData *GetDeclMethodData() |
| 3410 | { LIMITED_METHOD_CONTRACT; return this; } |
| 3411 | virtual MethodTable *GetDeclMethodTable() |
| 3412 | { LIMITED_METHOD_CONTRACT; return m_pMT; } |
| 3413 | virtual MethodDesc *GetDeclMethodDesc(UINT32 slotNumber); |
| 3414 | |
| 3415 | // |
| 3416 | // Impl data |
| 3417 | // |
| 3418 | virtual MethodData *GetImplMethodData() |
| 3419 | { LIMITED_METHOD_CONTRACT; return this; } |
| 3420 | virtual MethodTable *GetImplMethodTable() |
| 3421 | { LIMITED_METHOD_CONTRACT; return m_pMT; } |
| 3422 | virtual DispatchSlot GetImplSlot(UINT32 slotNumber) |
| 3423 | { WRAPPER_NO_CONTRACT; return DispatchSlot(m_pMT->GetRestoredSlot(slotNumber)); } |
| 3424 | virtual UINT32 GetImplSlotNumber(UINT32 slotNumber) |
| 3425 | { LIMITED_METHOD_CONTRACT; return slotNumber; } |
| 3426 | virtual MethodDesc *GetImplMethodDesc(UINT32 slotNumber); |
| 3427 | virtual void InvalidateCachedVirtualSlot(UINT32 slotNumber); |
| 3428 | |
| 3429 | // |
| 3430 | // Slot count data |
| 3431 | // |
| 3432 | virtual UINT32 GetNumVirtuals() |
| 3433 | { LIMITED_METHOD_CONTRACT; return m_pMT->GetNumVirtuals(); } |
| 3434 | virtual UINT32 GetNumMethods() |
| 3435 | { LIMITED_METHOD_CONTRACT; return m_pMT->GetNumMethods(); } |
| 3436 | |
| 3437 | protected: |
| 3438 | // This is the method table for the actual type we're gathering the data for |
| 3439 | MethodTable *m_pMT; |
| 3440 | }; // class MethodDataInterface |
| 3441 | |
| 3442 | //-------------------------------------------------------------------------------------- |
| 3443 | class MethodDataInterfaceImpl : public MethodData |
| 3444 | { |
| 3445 | public: |
| 3446 | // Object construction-related methods |
| 3447 | static UINT32 GetObjectSize(MethodTable *pMTDecl); |
| 3448 | |
| 3449 | MethodDataInterfaceImpl( |
| 3450 | const DispatchMapTypeID * rgDeclTypeIDs, |
| 3451 | UINT32 cDeclTypeIDs, |
| 3452 | MethodData * pDecl, |
| 3453 | MethodData * pImpl); |
| 3454 | virtual ~MethodDataInterfaceImpl(); |
| 3455 | |
| 3456 | // Decl-related methods |
| 3457 | virtual MethodData *GetDeclMethodData() |
| 3458 | { LIMITED_METHOD_CONTRACT; return m_pDecl; } |
| 3459 | virtual MethodTable *GetDeclMethodTable() |
| 3460 | { WRAPPER_NO_CONTRACT; return m_pDecl->GetDeclMethodTable(); } |
| 3461 | virtual MethodDesc *GetDeclMethodDesc(UINT32 slotNumber) |
| 3462 | { WRAPPER_NO_CONTRACT; return m_pDecl->GetDeclMethodDesc(slotNumber); } |
| 3463 | |
| 3464 | // Impl-related methods |
| 3465 | virtual MethodData *GetImplMethodData() |
| 3466 | { LIMITED_METHOD_CONTRACT; return m_pImpl; } |
| 3467 | virtual MethodTable *GetImplMethodTable() |
| 3468 | { WRAPPER_NO_CONTRACT; return m_pImpl->GetImplMethodTable(); } |
| 3469 | virtual DispatchSlot GetImplSlot(UINT32 slotNumber); |
| 3470 | virtual UINT32 GetImplSlotNumber(UINT32 slotNumber); |
| 3471 | virtual MethodDesc *GetImplMethodDesc(UINT32 slotNumber); |
| 3472 | virtual void InvalidateCachedVirtualSlot(UINT32 slotNumber); |
| 3473 | |
| 3474 | virtual UINT32 GetNumVirtuals() |
| 3475 | { WRAPPER_NO_CONTRACT; return m_pDecl->GetNumVirtuals(); } |
| 3476 | virtual UINT32 GetNumMethods() |
| 3477 | { WRAPPER_NO_CONTRACT; return m_pDecl->GetNumVirtuals(); } |
| 3478 | |
| 3479 | protected: |
| 3480 | UINT32 MapToImplSlotNumber(UINT32 slotNumber); |
| 3481 | |
| 3482 | BOOL PopulateNextLevel(); |
| 3483 | void Init( |
| 3484 | const DispatchMapTypeID * rgDeclTypeIDs, |
| 3485 | UINT32 cDeclTypeIDs, |
| 3486 | MethodData * pDecl, |
| 3487 | MethodData * pImpl); |
| 3488 | |
| 3489 | MethodData *m_pDecl; |
| 3490 | MethodData *m_pImpl; |
| 3491 | |
| 3492 | // This is used in staged map decoding - it indicates which type(s) we will find. |
| 3493 | const DispatchMapTypeID * m_rgDeclTypeIDs; |
| 3494 | UINT32 m_cDeclTypeIDs; |
| 3495 | UINT32 m_iNextChainDepth; |
| 3496 | static const UINT32 MAX_CHAIN_DEPTH = UINT32_MAX; |
| 3497 | |
| 3498 | inline UINT32 GetNextChainDepth() |
| 3499 | { LIMITED_METHOD_CONTRACT; return VolatileLoad(&m_iNextChainDepth); } |
| 3500 | |
| 3501 | inline void SetNextChainDepth(UINT32 iDepth) |
| 3502 | { |
| 3503 | LIMITED_METHOD_CONTRACT; |
| 3504 | if (GetNextChainDepth() < iDepth) { |
| 3505 | VolatileStore(&m_iNextChainDepth, iDepth); |
| 3506 | } |
| 3507 | } |
| 3508 | |
| 3509 | // |
| 3510 | // At the end of this object is an array, so you cannot derive from this class. |
| 3511 | // |
| 3512 | |
| 3513 | inline MethodDataEntry *GetEntryData() |
| 3514 | { LIMITED_METHOD_CONTRACT; return (MethodDataEntry *)(this + 1); } |
| 3515 | |
| 3516 | inline MethodDataEntry *GetEntry(UINT32 i) |
| 3517 | { LIMITED_METHOD_CONTRACT; CONSISTENCY_CHECK(i < GetNumMethods()); return GetEntryData() + i; } |
| 3518 | |
| 3519 | // MethodDataEntry m_rgEntries[...]; |
| 3520 | }; // class MethodDataInterfaceImpl |
| 3521 | |
| 3522 | //-------------------------------------------------------------------------------------- |
| 3523 | static MethodDataCache *s_pMethodDataCache; |
| 3524 | static BOOL s_fUseParentMethodData; |
| 3525 | static BOOL s_fUseMethodDataCache; |
| 3526 | |
| 3527 | public: |
| 3528 | static void AllowMethodDataCaching() |
| 3529 | { WRAPPER_NO_CONTRACT; CheckInitMethodDataCache(); s_fUseMethodDataCache = TRUE; } |
| 3530 | static void ClearMethodDataCache(); |
| 3531 | static void AllowParentMethodDataCopy() |
| 3532 | { LIMITED_METHOD_CONTRACT; s_fUseParentMethodData = TRUE; } |
| 3533 | // NOTE: The fCanCache argument determines if the resulting MethodData object can |
| 3534 | // be added to the global MethodDataCache. This is used when requesting a |
| 3535 | // MethodData object for a type currently being built. |
| 3536 | static MethodData *GetMethodData(MethodTable *pMT, BOOL fCanCache = TRUE); |
| 3537 | static MethodData *GetMethodData(MethodTable *pMTDecl, MethodTable *pMTImpl, BOOL fCanCache = TRUE); |
| 3538 | // This method is used by BuildMethodTable because the exact interface has not yet been loaded. |
| 3539 | // NOTE: This method does not cache the resulting MethodData object in the global MethodDataCache. |
| 3540 | static MethodData * GetMethodData( |
| 3541 | const DispatchMapTypeID * rgDeclTypeIDs, |
| 3542 | UINT32 cDeclTypeIDs, |
| 3543 | MethodTable * pMTDecl, |
| 3544 | MethodTable * pMTImpl); |
| 3545 | |
| 3546 | protected: |
| 3547 | static void CheckInitMethodDataCache(); |
| 3548 | static MethodData *FindParentMethodDataHelper(MethodTable *pMT); |
| 3549 | static MethodData *FindMethodDataHelper(MethodTable *pMTDecl, MethodTable *pMTImpl); |
| 3550 | static MethodData *GetMethodDataHelper(MethodTable *pMTDecl, MethodTable *pMTImpl, BOOL fCanCache); |
| 3551 | // NOTE: This method does not cache the resulting MethodData object in the global MethodDataCache. |
| 3552 | static MethodData * GetMethodDataHelper( |
| 3553 | const DispatchMapTypeID * rgDeclTypeIDs, |
| 3554 | UINT32 cDeclTypeIDs, |
| 3555 | MethodTable * pMTDecl, |
| 3556 | MethodTable * pMTImpl); |
| 3557 | |
| 3558 | public: |
| 3559 | //-------------------------------------------------------------------------------------- |
| 3560 | class MethodIterator |
| 3561 | { |
| 3562 | public: |
| 3563 | MethodIterator(MethodTable *pMT); |
| 3564 | MethodIterator(MethodTable *pMTDecl, MethodTable *pMTImpl); |
| 3565 | MethodIterator(MethodData *pMethodData); |
| 3566 | MethodIterator(const MethodIterator &it); |
| 3567 | inline ~MethodIterator() { WRAPPER_NO_CONTRACT; m_pMethodData->Release(); } |
| 3568 | INT32 GetNumMethods() const; |
| 3569 | inline BOOL IsValid() const; |
| 3570 | inline BOOL MoveTo(UINT32 idx); |
| 3571 | inline BOOL Prev(); |
| 3572 | inline BOOL Next(); |
| 3573 | inline void MoveToBegin(); |
| 3574 | inline void MoveToEnd(); |
| 3575 | inline UINT32 GetSlotNumber() const; |
| 3576 | inline UINT32 GetImplSlotNumber() const; |
| 3577 | inline BOOL IsVirtual() const; |
| 3578 | inline UINT32 GetNumVirtuals() const; |
| 3579 | inline DispatchSlot GetTarget() const; |
| 3580 | |
| 3581 | // Can be called only if IsValid()=TRUE |
| 3582 | inline MethodDesc *GetMethodDesc() const; |
| 3583 | inline MethodDesc *GetDeclMethodDesc() const; |
| 3584 | |
| 3585 | protected: |
| 3586 | void Init(MethodTable *pMTDecl, MethodTable *pMTImpl); |
| 3587 | |
| 3588 | MethodData *m_pMethodData; |
| 3589 | INT32 m_iCur; // Current logical slot index |
| 3590 | INT32 m_iMethods; |
| 3591 | }; // class MethodIterator |
| 3592 | #endif // !DACCESS_COMPILE |
| 3593 | |
| 3594 | //-------------------------------------------------------------------------------------- |
| 3595 | // This iterator lets you walk over all the method bodies introduced by this type. |
| 3596 | // This includes new static methods, new non-virtual methods, and any overrides |
| 3597 | // of the parent's virtual methods. It does not include virtual method implementations |
| 3598 | // provided by the parent |
| 3599 | |
| 3600 | class IntroducedMethodIterator |
| 3601 | { |
| 3602 | public: |
| 3603 | IntroducedMethodIterator(MethodTable *pMT, BOOL restrictToCanonicalTypes = TRUE); |
| 3604 | inline BOOL IsValid() const; |
| 3605 | BOOL Next(); |
| 3606 | |
| 3607 | // Can be called only if IsValid()=TRUE |
| 3608 | inline MethodDesc *GetMethodDesc() const; |
| 3609 | |
| 3610 | // Static worker methods of the iterator. These are meant to be used |
| 3611 | // by RuntimeTypeHandle::GetFirstIntroducedMethod and RuntimeTypeHandle::GetNextIntroducedMethod |
| 3612 | // only to expose this iterator to managed code. |
| 3613 | static MethodDesc * GetFirst(MethodTable * pMT); |
| 3614 | static MethodDesc * GetNext(MethodDesc * pMD); |
| 3615 | |
| 3616 | protected: |
| 3617 | MethodDesc *m_pMethodDesc; // Current method desc |
| 3618 | |
| 3619 | // Cached info about current method desc |
| 3620 | MethodDescChunk *m_pChunk; |
| 3621 | TADDR m_pChunkEnd; |
| 3622 | |
| 3623 | void SetChunk(MethodDescChunk * pChunk); |
| 3624 | }; // class IntroducedMethodIterator |
| 3625 | |
| 3626 | //------------------------------------------------------------------- |
| 3627 | // INSTANCE MEMBER VARIABLES |
| 3628 | // |
| 3629 | |
| 3630 | #ifdef DACCESS_COMPILE |
| 3631 | public: |
| 3632 | #else |
| 3633 | private: |
| 3634 | #endif |
| 3635 | enum WFLAGS_LOW_ENUM |
| 3636 | { |
| 3637 | // AS YOU ADD NEW FLAGS PLEASE CONSIDER WHETHER Generics::NewInstantiation NEEDS |
| 3638 | // TO BE UPDATED IN ORDER TO ENSURE THAT METHODTABLES DUPLICATED FOR GENERIC INSTANTIATIONS |
| 3639 | // CARRY THE CORECT FLAGS. |
| 3640 | // |
| 3641 | |
| 3642 | // We are overloading the low 2 bytes of m_dwFlags to be a component size for Strings |
| 3643 | // and Arrays and some set of flags which we can be assured are of a specified state |
| 3644 | // for Strings / Arrays, currently these will be a bunch of generics flags which don't |
| 3645 | // apply to Strings / Arrays. |
| 3646 | |
| 3647 | enum_flag_UNUSED_ComponentSize_1 = 0x00000001, |
| 3648 | |
| 3649 | enum_flag_StaticsMask = 0x00000006, |
| 3650 | enum_flag_StaticsMask_NonDynamic = 0x00000000, |
| 3651 | enum_flag_StaticsMask_Dynamic = 0x00000002, // dynamic statics (EnC, reflection.emit) |
| 3652 | enum_flag_StaticsMask_Generics = 0x00000004, // generics statics |
| 3653 | enum_flag_StaticsMask_CrossModuleGenerics = 0x00000006, // cross module generics statics (NGen) |
| 3654 | enum_flag_StaticsMask_IfGenericsThenCrossModule = 0x00000002, // helper constant to get rid of unnecessary check |
| 3655 | |
| 3656 | enum_flag_NotInPZM = 0x00000008, // True if this type is not in its PreferredZapModule |
| 3657 | |
| 3658 | enum_flag_GenericsMask = 0x00000030, |
| 3659 | enum_flag_GenericsMask_NonGeneric = 0x00000000, // no instantiation |
| 3660 | enum_flag_GenericsMask_GenericInst = 0x00000010, // regular instantiation, e.g. List<String> |
| 3661 | enum_flag_GenericsMask_SharedInst = 0x00000020, // shared instantiation, e.g. List<__Canon> or List<MyValueType<__Canon>> |
| 3662 | enum_flag_GenericsMask_TypicalInst = 0x00000030, // the type instantiated at its formal parameters, e.g. List<T> |
| 3663 | |
| 3664 | enum_flag_HasVariance = 0x00000100, // This is an instantiated type some of whose type parameters are co- or contra-variant |
| 3665 | |
| 3666 | enum_flag_HasDefaultCtor = 0x00000200, |
| 3667 | enum_flag_HasPreciseInitCctors = 0x00000400, // Do we need to run class constructors at allocation time? (Not perf important, could be moved to EEClass |
| 3668 | |
| 3669 | #if defined(FEATURE_HFA) |
| 3670 | #if defined(UNIX_AMD64_ABI) |
| 3671 | #error Can't define both FEATURE_HFA and UNIX_AMD64_ABI |
| 3672 | #endif |
| 3673 | enum_flag_IsHFA = 0x00000800, // This type is an HFA (Homogenous Floating-point Aggregate) |
| 3674 | #endif // FEATURE_HFA |
| 3675 | |
| 3676 | #if defined(UNIX_AMD64_ABI) |
| 3677 | #if defined(FEATURE_HFA) |
| 3678 | #error Can't define both FEATURE_HFA and UNIX_AMD64_ABI |
| 3679 | #endif |
| 3680 | enum_flag_IsRegStructPassed = 0x00000800, // This type is a System V register passed struct. |
| 3681 | #endif // UNIX_AMD64_ABI |
| 3682 | |
| 3683 | enum_flag_IsByRefLike = 0x00001000, |
| 3684 | |
| 3685 | // In a perfect world we would fill these flags using other flags that we already have |
| 3686 | // which have a constant value for something which has a component size. |
| 3687 | enum_flag_UNUSED_ComponentSize_5 = 0x00002000, |
| 3688 | enum_flag_UNUSED_ComponentSize_6 = 0x00004000, |
| 3689 | enum_flag_UNUSED_ComponentSize_7 = 0x00008000, |
| 3690 | |
| 3691 | #define SET_FALSE(flag) (flag & 0) |
| 3692 | #define SET_TRUE(flag) (flag & 0xffff) |
| 3693 | |
| 3694 | // IMPORTANT! IMPORTANT! IMPORTANT! |
| 3695 | // |
| 3696 | // As you change the flags in WFLAGS_LOW_ENUM you also need to change this |
| 3697 | // to be up to date to reflect the default values of those flags for the |
| 3698 | // case where this MethodTable is for a String or Array |
| 3699 | enum_flag_StringArrayValues = SET_TRUE(enum_flag_StaticsMask_NonDynamic) | |
| 3700 | SET_FALSE(enum_flag_NotInPZM) | |
| 3701 | SET_TRUE(enum_flag_GenericsMask_NonGeneric) | |
| 3702 | SET_FALSE(enum_flag_HasVariance) | |
| 3703 | SET_FALSE(enum_flag_HasDefaultCtor) | |
| 3704 | SET_FALSE(enum_flag_HasPreciseInitCctors), |
| 3705 | |
| 3706 | }; // enum WFLAGS_LOW_ENUM |
| 3707 | |
| 3708 | enum WFLAGS_HIGH_ENUM |
| 3709 | { |
| 3710 | // DO NOT use flags that have bits set in the low 2 bytes. |
| 3711 | // These flags are DWORD sized so that our atomic masking |
| 3712 | // operations can operate on the entire 4-byte aligned DWORD |
| 3713 | // instead of the logical non-aligned WORD of flags. The |
| 3714 | // low WORD of flags is reserved for the component size. |
| 3715 | |
| 3716 | // The following bits describe mutually exclusive locations of the type |
| 3717 | // in the type hiearchy. |
| 3718 | enum_flag_Category_Mask = 0x000F0000, |
| 3719 | |
| 3720 | enum_flag_Category_Class = 0x00000000, |
| 3721 | enum_flag_Category_Unused_1 = 0x00010000, |
| 3722 | enum_flag_Category_Unused_2 = 0x00020000, |
| 3723 | enum_flag_Category_Unused_3 = 0x00030000, |
| 3724 | |
| 3725 | enum_flag_Category_ValueType = 0x00040000, |
| 3726 | enum_flag_Category_ValueType_Mask = 0x000C0000, |
| 3727 | enum_flag_Category_Nullable = 0x00050000, // sub-category of ValueType |
| 3728 | enum_flag_Category_PrimitiveValueType=0x00060000, // sub-category of ValueType, Enum or primitive value type |
| 3729 | enum_flag_Category_TruePrimitive = 0x00070000, // sub-category of ValueType, Primitive (ELEMENT_TYPE_I, etc.) |
| 3730 | |
| 3731 | enum_flag_Category_Array = 0x00080000, |
| 3732 | enum_flag_Category_Array_Mask = 0x000C0000, |
| 3733 | // enum_flag_Category_IfArrayThenUnused = 0x00010000, // sub-category of Array |
| 3734 | enum_flag_Category_IfArrayThenSzArray = 0x00020000, // sub-category of Array |
| 3735 | |
| 3736 | enum_flag_Category_Interface = 0x000C0000, |
| 3737 | enum_flag_Category_Unused_4 = 0x000D0000, |
| 3738 | enum_flag_Category_Unused_5 = 0x000E0000, |
| 3739 | enum_flag_Category_Unused_6 = 0x000F0000, |
| 3740 | |
| 3741 | enum_flag_Category_ElementTypeMask = 0x000E0000, // bits that matter for element type mask |
| 3742 | |
| 3743 | |
| 3744 | enum_flag_HasFinalizer = 0x00100000, // instances require finalization |
| 3745 | |
| 3746 | enum_flag_IfNotInterfaceThenMarshalable = 0x00200000, // Is this type marshalable by the pinvoke marshalling layer |
| 3747 | #ifdef FEATURE_COMINTEROP |
| 3748 | enum_flag_IfInterfaceThenHasGuidInfo = 0x00200000, // Does the type has optional GuidInfo |
| 3749 | #endif // FEATURE_COMINTEROP |
| 3750 | |
| 3751 | enum_flag_ICastable = 0x00400000, // class implements ICastable interface |
| 3752 | |
| 3753 | enum_flag_HasIndirectParent = 0x00800000, // m_pParentMethodTable has double indirection |
| 3754 | |
| 3755 | enum_flag_ContainsPointers = 0x01000000, |
| 3756 | |
| 3757 | enum_flag_HasTypeEquivalence = 0x02000000, // can be equivalent to another type |
| 3758 | |
| 3759 | #ifdef FEATURE_COMINTEROP |
| 3760 | enum_flag_HasRCWPerTypeData = 0x04000000, // has optional pointer to RCWPerTypeData |
| 3761 | #endif // FEATURE_COMINTEROP |
| 3762 | |
| 3763 | enum_flag_HasCriticalFinalizer = 0x08000000, // finalizer must be run on Appdomain Unload |
| 3764 | enum_flag_Collectible = 0x10000000, |
| 3765 | enum_flag_ContainsGenericVariables = 0x20000000, // we cache this flag to help detect these efficiently and |
| 3766 | // to detect this condition when restoring |
| 3767 | |
| 3768 | enum_flag_ComObject = 0x40000000, // class is a com object |
| 3769 | |
| 3770 | enum_flag_HasComponentSize = 0x80000000, // This is set if component size is used for flags. |
| 3771 | |
| 3772 | // Types that require non-trivial interface cast have this bit set in the category |
| 3773 | enum_flag_NonTrivialInterfaceCast = enum_flag_Category_Array |
| 3774 | | enum_flag_ComObject |
| 3775 | | enum_flag_ICastable |
| 3776 | |
| 3777 | }; // enum WFLAGS_HIGH_ENUM |
| 3778 | |
| 3779 | // NIDump needs to be able to see these flags |
| 3780 | // TODO: figure out how to make these private |
| 3781 | #if defined(DACCESS_COMPILE) |
| 3782 | public: |
| 3783 | #else |
| 3784 | private: |
| 3785 | #endif |
| 3786 | enum WFLAGS2_ENUM |
| 3787 | { |
| 3788 | // AS YOU ADD NEW FLAGS PLEASE CONSIDER WHETHER Generics::NewInstantiation NEEDS |
| 3789 | // TO BE UPDATED IN ORDER TO ENSURE THAT METHODTABLES DUPLICATED FOR GENERIC INSTANTIATIONS |
| 3790 | // CARRY THE CORECT FLAGS. |
| 3791 | |
| 3792 | // The following bits describe usage of optional slots. They have to stay |
| 3793 | // together because of we index using them into offset arrays. |
| 3794 | enum_flag_MultipurposeSlotsMask = 0x001F, |
| 3795 | enum_flag_HasPerInstInfo = 0x0001, |
| 3796 | enum_flag_HasInterfaceMap = 0x0002, |
| 3797 | enum_flag_HasDispatchMapSlot = 0x0004, |
| 3798 | enum_flag_HasNonVirtualSlots = 0x0008, |
| 3799 | enum_flag_HasModuleOverride = 0x0010, |
| 3800 | |
| 3801 | enum_flag_IsZapped = 0x0020, // This could be fetched from m_pLoaderModule if we run out of flags |
| 3802 | |
| 3803 | enum_flag_IsPreRestored = 0x0040, // Class does not need restore |
| 3804 | // This flag is set only for NGENed classes (IsZapped is true) |
| 3805 | |
| 3806 | enum_flag_HasModuleDependencies = 0x0080, |
| 3807 | |
| 3808 | enum_flag_IsIntrinsicType = 0x0100, |
| 3809 | |
| 3810 | enum_flag_RequiresDispatchTokenFat = 0x0200, |
| 3811 | |
| 3812 | enum_flag_HasCctor = 0x0400, |
| 3813 | enum_flag_HasCCWTemplate = 0x0800, // Has an extra field pointing to a CCW template |
| 3814 | |
| 3815 | #ifdef FEATURE_64BIT_ALIGNMENT |
| 3816 | enum_flag_RequiresAlign8 = 0x1000, // Type requires 8-byte alignment (only set on platforms that require this and don't get it implicitly) |
| 3817 | #endif |
| 3818 | |
| 3819 | enum_flag_HasBoxedRegularStatics = 0x2000, // GetNumBoxedRegularStatics() != 0 |
| 3820 | |
| 3821 | enum_flag_HasSingleNonVirtualSlot = 0x4000, |
| 3822 | |
| 3823 | enum_flag_DependsOnEquivalentOrForwardedStructs= 0x8000, // Declares methods that have type equivalent or type forwarded structures in their signature |
| 3824 | |
| 3825 | }; // enum WFLAGS2_ENUM |
| 3826 | |
| 3827 | __forceinline void ClearFlag(WFLAGS_LOW_ENUM flag) |
| 3828 | { |
| 3829 | _ASSERTE(!IsStringOrArray()); |
| 3830 | m_dwFlags &= ~flag; |
| 3831 | } |
| 3832 | __forceinline void SetFlag(WFLAGS_LOW_ENUM flag) |
| 3833 | { |
| 3834 | _ASSERTE(!IsStringOrArray()); |
| 3835 | m_dwFlags |= flag; |
| 3836 | } |
| 3837 | __forceinline DWORD GetFlag(WFLAGS_LOW_ENUM flag) const |
| 3838 | { |
| 3839 | SUPPORTS_DAC; |
| 3840 | return (IsStringOrArray() ? (enum_flag_StringArrayValues & flag) : (m_dwFlags & flag)); |
| 3841 | } |
| 3842 | __forceinline BOOL TestFlagWithMask(WFLAGS_LOW_ENUM mask, WFLAGS_LOW_ENUM flag) const |
| 3843 | { |
| 3844 | LIMITED_METHOD_DAC_CONTRACT; |
| 3845 | return (IsStringOrArray() ? (((DWORD)enum_flag_StringArrayValues & (DWORD)mask) == (DWORD)flag) : |
| 3846 | ((m_dwFlags & (DWORD)mask) == (DWORD)flag)); |
| 3847 | } |
| 3848 | |
| 3849 | __forceinline void ClearFlag(WFLAGS_HIGH_ENUM flag) |
| 3850 | { |
| 3851 | m_dwFlags &= ~flag; |
| 3852 | } |
| 3853 | __forceinline void SetFlag(WFLAGS_HIGH_ENUM flag) |
| 3854 | { |
| 3855 | m_dwFlags |= flag; |
| 3856 | } |
| 3857 | __forceinline DWORD GetFlag(WFLAGS_HIGH_ENUM flag) const |
| 3858 | { |
| 3859 | LIMITED_METHOD_DAC_CONTRACT; |
| 3860 | return m_dwFlags & flag; |
| 3861 | } |
| 3862 | __forceinline BOOL TestFlagWithMask(WFLAGS_HIGH_ENUM mask, WFLAGS_HIGH_ENUM flag) const |
| 3863 | { |
| 3864 | LIMITED_METHOD_DAC_CONTRACT; |
| 3865 | return ((m_dwFlags & (DWORD)mask) == (DWORD)flag); |
| 3866 | } |
| 3867 | |
| 3868 | __forceinline void ClearFlag(WFLAGS2_ENUM flag) |
| 3869 | { |
| 3870 | m_wFlags2 &= ~flag; |
| 3871 | } |
| 3872 | __forceinline void SetFlag(WFLAGS2_ENUM flag) |
| 3873 | { |
| 3874 | m_wFlags2 |= flag; |
| 3875 | } |
| 3876 | __forceinline DWORD GetFlag(WFLAGS2_ENUM flag) const |
| 3877 | { |
| 3878 | LIMITED_METHOD_DAC_CONTRACT; |
| 3879 | return m_wFlags2 & flag; |
| 3880 | } |
| 3881 | __forceinline BOOL TestFlagWithMask(WFLAGS2_ENUM mask, WFLAGS2_ENUM flag) const |
| 3882 | { |
| 3883 | return (m_wFlags2 & (DWORD)mask) == (DWORD)flag; |
| 3884 | } |
| 3885 | |
| 3886 | // Just exposing a couple of these for x86 asm versions of JIT_IsInstanceOfClass and JIT_IsInstanceOfInterface |
| 3887 | public: |
| 3888 | enum |
| 3889 | { |
| 3890 | public_enum_flag_HasTypeEquivalence = enum_flag_HasTypeEquivalence, |
| 3891 | public_enum_flag_NonTrivialInterfaceCast = enum_flag_NonTrivialInterfaceCast, |
| 3892 | }; |
| 3893 | |
| 3894 | private: |
| 3895 | /* |
| 3896 | * This stuff must be first in the struct and should fit on a cache line - don't move it. Used by the GC. |
| 3897 | */ |
| 3898 | // struct |
| 3899 | // { |
| 3900 | |
| 3901 | // Low WORD is component size for array and string types (HasComponentSize() returns true). |
| 3902 | // Used for flags otherwise. |
| 3903 | DWORD m_dwFlags; |
| 3904 | |
| 3905 | // Base size of instance of this class when allocated on the heap |
| 3906 | DWORD m_BaseSize; |
| 3907 | // } |
| 3908 | |
| 3909 | WORD m_wFlags2; |
| 3910 | |
| 3911 | // Class token if it fits into 16-bits. If this is (WORD)-1, the class token is stored in the TokenOverflow optional member. |
| 3912 | WORD m_wToken; |
| 3913 | |
| 3914 | // <NICE> In the normal cases we shouldn't need a full word for each of these </NICE> |
| 3915 | WORD m_wNumVirtuals; |
| 3916 | WORD m_wNumInterfaces; |
| 3917 | |
| 3918 | #ifdef _DEBUG |
| 3919 | LPCUTF8 debug_m_szClassName; |
| 3920 | #endif //_DEBUG |
| 3921 | |
| 3922 | // On Linux ARM is a RelativeFixupPointer. Otherwise, |
| 3923 | // Parent PTR_MethodTable if enum_flag_HasIndirectParent is not set. Pointer to indirection cell |
| 3924 | // if enum_flag_enum_flag_HasIndirectParent is set. The indirection is offset by offsetof(MethodTable, m_pParentMethodTable). |
| 3925 | // It allows casting helpers to go through parent chain natually. Casting helper do not need need the explicit check |
| 3926 | // for enum_flag_HasIndirectParentMethodTable. |
| 3927 | ParentMT_t m_pParentMethodTable; |
| 3928 | |
| 3929 | RelativePointer<PTR_Module> m_pLoaderModule; // LoaderModule. It is equal to the ZapModule in ngened images |
| 3930 | |
| 3931 | #if defined(FEATURE_NGEN_RELOCS_OPTIMIZATIONS) |
| 3932 | RelativePointer<PTR_MethodTableWriteableData> m_pWriteableData; |
| 3933 | #else |
| 3934 | PlainPointer<PTR_MethodTableWriteableData> m_pWriteableData; |
| 3935 | #endif |
| 3936 | |
| 3937 | // The value of lowest two bits describe what the union contains |
| 3938 | enum LowBits { |
| 3939 | UNION_EECLASS = 0, // 0 - pointer to EEClass. This MethodTable is the canonical method table. |
| 3940 | UNION_INVALID = 1, // 1 - not used |
| 3941 | UNION_METHODTABLE = 2, // 2 - pointer to canonical MethodTable. |
| 3942 | UNION_INDIRECTION = 3 // 3 - pointer to indirection cell that points to canonical MethodTable. |
| 3943 | }; // (used only if FEATURE_PREJIT is defined) |
| 3944 | static const TADDR UNION_MASK = 3; |
| 3945 | |
| 3946 | union { |
| 3947 | #if defined(FEATURE_NGEN_RELOCS_OPTIMIZATIONS) |
| 3948 | RelativePointer<DPTR(EEClass)> m_pEEClass; |
| 3949 | RelativePointer<TADDR> m_pCanonMT; |
| 3950 | #else |
| 3951 | PlainPointer<DPTR(EEClass)> m_pEEClass; |
| 3952 | PlainPointer<TADDR> m_pCanonMT; |
| 3953 | #endif |
| 3954 | }; |
| 3955 | |
| 3956 | __forceinline static LowBits union_getLowBits(TADDR pCanonMT) |
| 3957 | { |
| 3958 | LIMITED_METHOD_DAC_CONTRACT; |
| 3959 | return LowBits(pCanonMT & UNION_MASK); |
| 3960 | } |
| 3961 | __forceinline static TADDR union_getPointer(TADDR pCanonMT) |
| 3962 | { |
| 3963 | LIMITED_METHOD_DAC_CONTRACT; |
| 3964 | return (pCanonMT & ~UNION_MASK); |
| 3965 | } |
| 3966 | |
| 3967 | // m_pPerInstInfo and m_pInterfaceMap have to be at fixed offsets because of performance sensitive |
| 3968 | // JITed code and JIT helpers. However, they are frequently not present. The space is used by other |
| 3969 | // multipurpose slots on first come first served basis if the fixed ones are not present. The other |
| 3970 | // multipurpose are DispatchMapSlot, NonVirtualSlots, ModuleOverride (see enum_flag_MultipurposeSlotsMask). |
| 3971 | // The multipurpose slots that do not fit are stored after vtable slots. |
| 3972 | |
| 3973 | union |
| 3974 | { |
| 3975 | PerInstInfo_t m_pPerInstInfo; |
| 3976 | TADDR m_ElementTypeHnd; |
| 3977 | TADDR m_pMultipurposeSlot1; |
| 3978 | }; |
| 3979 | public: |
| 3980 | union |
| 3981 | { |
| 3982 | #if defined(FEATURE_NGEN_RELOCS_OPTIMIZATIONS) |
| 3983 | RelativePointer<PTR_InterfaceInfo> m_pInterfaceMap; |
| 3984 | #else |
| 3985 | PlainPointer<PTR_InterfaceInfo> m_pInterfaceMap; |
| 3986 | #endif |
| 3987 | TADDR m_pMultipurposeSlot2; |
| 3988 | }; |
| 3989 | |
| 3990 | // VTable and Non-Virtual slots go here |
| 3991 | |
| 3992 | // Overflow multipurpose slots go here |
| 3993 | |
| 3994 | // Optional Members go here |
| 3995 | // See above for the list of optional members |
| 3996 | |
| 3997 | // Generic dictionary pointers go here |
| 3998 | |
| 3999 | // Interface map goes here |
| 4000 | |
| 4001 | // Generic instantiation+dictionary goes here |
| 4002 | |
| 4003 | private: |
| 4004 | |
| 4005 | // disallow direct creation |
| 4006 | void *operator new(size_t dummy); |
| 4007 | void operator delete(void *pData); |
| 4008 | MethodTable(); |
| 4009 | |
| 4010 | // Optional members. These are used for fields in the data structure where |
| 4011 | // the fields are (a) known when MT is created and (b) there is a default |
| 4012 | // value for the field in the common case. That is, they are normally used |
| 4013 | // for data that is only relevant to a small number of method tables. |
| 4014 | |
| 4015 | // Optional members and multipurpose slots have similar purpose, but they differ in details: |
| 4016 | // - Multipurpose slots can only accomodate pointer sized structures right now. It is non-trivial |
| 4017 | // to add new ones, the access is faster. |
| 4018 | // - Optional members can accomodate structures of any size. It is trivial to add new ones, |
| 4019 | // the access is slower. |
| 4020 | |
| 4021 | // The following macro will automatically create GetXXX accessors for the optional members. |
| 4022 | #define METHODTABLE_OPTIONAL_MEMBERS() \ |
| 4023 | /* NAME TYPE GETTER */ \ |
| 4024 | /* Accessing this member efficiently is currently performance critical for static field accesses */ \ |
| 4025 | /* in generic classes, so place it early in the list. */ \ |
| 4026 | METHODTABLE_OPTIONAL_MEMBER(GenericsStaticsInfo, GenericsStaticsInfo, GetGenericsStaticsInfo ) \ |
| 4027 | /* Accessed by interop, fairly frequently. */ \ |
| 4028 | METHODTABLE_COMINTEROP_OPTIONAL_MEMBERS() \ |
| 4029 | /* Accessed during x-domain transition only, so place it late in the list. */ \ |
| 4030 | METHODTABLE_REMOTING_OPTIONAL_MEMBERS() \ |
| 4031 | /* Accessed during certain generic type load operations only, so low priority */ \ |
| 4032 | METHODTABLE_OPTIONAL_MEMBER(ExtraInterfaceInfo, TADDR, ) \ |
| 4033 | /* TypeDef token for assemblies with more than 64k types. Never happens in real world. */ \ |
| 4034 | METHODTABLE_OPTIONAL_MEMBER(TokenOverflow, TADDR, GetTokenOverflowPtr ) \ |
| 4035 | |
| 4036 | #ifdef FEATURE_COMINTEROP |
| 4037 | #define METHODTABLE_COMINTEROP_OPTIONAL_MEMBERS() \ |
| 4038 | METHODTABLE_OPTIONAL_MEMBER(GuidInfo, PTR_GuidInfo, GetGuidInfoPtr ) \ |
| 4039 | METHODTABLE_OPTIONAL_MEMBER(RCWPerTypeData, RCWPerTypeData *, GetRCWPerTypeDataPtr ) \ |
| 4040 | METHODTABLE_OPTIONAL_MEMBER(CCWTemplate, ComCallWrapperTemplate *, GetCCWTemplatePtr ) |
| 4041 | #else |
| 4042 | #define METHODTABLE_COMINTEROP_OPTIONAL_MEMBERS() |
| 4043 | #endif |
| 4044 | |
| 4045 | #define METHODTABLE_REMOTING_OPTIONAL_MEMBERS() |
| 4046 | |
| 4047 | enum OptionalMemberId |
| 4048 | { |
| 4049 | #undef METHODTABLE_OPTIONAL_MEMBER |
| 4050 | #define METHODTABLE_OPTIONAL_MEMBER(NAME, TYPE, GETTER) OptionalMember_##NAME, |
| 4051 | METHODTABLE_OPTIONAL_MEMBERS() |
| 4052 | OptionalMember_Count, |
| 4053 | |
| 4054 | OptionalMember_First = OptionalMember_GenericsStaticsInfo, |
| 4055 | }; |
| 4056 | |
| 4057 | FORCEINLINE DWORD GetOffsetOfOptionalMember(OptionalMemberId id); |
| 4058 | |
| 4059 | public: |
| 4060 | |
| 4061 | // |
| 4062 | // Public accessor helpers for the optional members of MethodTable |
| 4063 | // |
| 4064 | |
| 4065 | #undef METHODTABLE_OPTIONAL_MEMBER |
| 4066 | #define METHODTABLE_OPTIONAL_MEMBER(NAME, TYPE, GETTER) \ |
| 4067 | inline DPTR(TYPE) GETTER() \ |
| 4068 | { \ |
| 4069 | LIMITED_METHOD_CONTRACT; \ |
| 4070 | STATIC_CONTRACT_SO_TOLERANT; \ |
| 4071 | _ASSERTE(Has##NAME()); \ |
| 4072 | return dac_cast<DPTR(TYPE)>(dac_cast<TADDR>(this) + GetOffsetOfOptionalMember(OptionalMember_##NAME)); \ |
| 4073 | } |
| 4074 | |
| 4075 | METHODTABLE_OPTIONAL_MEMBERS() |
| 4076 | |
| 4077 | private: |
| 4078 | inline DWORD GetStartOffsetOfOptionalMembers() |
| 4079 | { |
| 4080 | WRAPPER_NO_CONTRACT; |
| 4081 | return GetOffsetOfOptionalMember(OptionalMember_First); |
| 4082 | } |
| 4083 | |
| 4084 | inline DWORD GetEndOffsetOfOptionalMembers() |
| 4085 | { |
| 4086 | WRAPPER_NO_CONTRACT; |
| 4087 | return GetOffsetOfOptionalMember(OptionalMember_Count); |
| 4088 | } |
| 4089 | |
| 4090 | inline static DWORD GetOptionalMembersAllocationSize( |
| 4091 | DWORD dwMultipurposeSlotsMask, |
| 4092 | BOOL needsGenericsStaticsInfo, |
| 4093 | BOOL needsGuidInfo, |
| 4094 | BOOL needsCCWTemplate, |
| 4095 | BOOL needsRCWPerTypeData, |
| 4096 | BOOL needsTokenOverflow); |
| 4097 | inline DWORD (); |
| 4098 | |
| 4099 | // The PerInstInfo is a (possibly empty) array of pointers to |
| 4100 | // Instantiations/Dictionaries. This array comes after the optional members. |
| 4101 | inline DWORD GetPerInstInfoSize(); |
| 4102 | |
| 4103 | // This is the size of the interface map chunk in the method table. |
| 4104 | // If the MethodTable has a dynamic interface map then the size includes the pointer |
| 4105 | // that stores the extra info for that map. |
| 4106 | // The interface map itself comes after the PerInstInfo (if any) |
| 4107 | inline DWORD GetInterfaceMapSize(); |
| 4108 | |
| 4109 | // The instantiation/dictionary comes at the end of the MethodTable after |
| 4110 | // the interface map. |
| 4111 | inline DWORD GetInstAndDictSize(); |
| 4112 | |
| 4113 | private: |
| 4114 | // Helper template to compute the offsets at compile time |
| 4115 | template<int mask> |
| 4116 | struct MultipurposeSlotOffset; |
| 4117 | |
| 4118 | static const BYTE c_DispatchMapSlotOffsets[]; |
| 4119 | static const BYTE c_NonVirtualSlotsOffsets[]; |
| 4120 | static const BYTE c_ModuleOverrideOffsets[]; |
| 4121 | |
| 4122 | static const BYTE []; // total sizes of optional slots |
| 4123 | |
| 4124 | TADDR GetMultipurposeSlotPtr(WFLAGS2_ENUM flag, const BYTE * offsets); |
| 4125 | |
| 4126 | void SetMultipurposeSlotsMask(DWORD dwMask) |
| 4127 | { |
| 4128 | LIMITED_METHOD_CONTRACT; |
| 4129 | _ASSERTE((m_wFlags2 & enum_flag_MultipurposeSlotsMask) == 0); |
| 4130 | m_wFlags2 |= (WORD)dwMask; |
| 4131 | } |
| 4132 | |
| 4133 | BOOL HasModuleOverride() |
| 4134 | { |
| 4135 | LIMITED_METHOD_DAC_CONTRACT; |
| 4136 | return GetFlag(enum_flag_HasModuleOverride); |
| 4137 | } |
| 4138 | |
| 4139 | DPTR(RelativeFixupPointer<PTR_Module>) GetModuleOverridePtr() |
| 4140 | { |
| 4141 | LIMITED_METHOD_DAC_CONTRACT; |
| 4142 | return dac_cast<DPTR(RelativeFixupPointer<PTR_Module>)>(GetMultipurposeSlotPtr(enum_flag_HasModuleOverride, c_ModuleOverrideOffsets)); |
| 4143 | } |
| 4144 | |
| 4145 | void SetModule(Module * pModule); |
| 4146 | |
| 4147 | public: |
| 4148 | |
| 4149 | BOOL Validate (); |
| 4150 | |
| 4151 | #ifdef FEATURE_READYTORUN_COMPILER |
| 4152 | // |
| 4153 | // Is field layout in this type fixed within the current version bubble? |
| 4154 | // This check does not take the inheritance chain into account. |
| 4155 | // |
| 4156 | BOOL IsLayoutFixedInCurrentVersionBubble(); |
| 4157 | |
| 4158 | // |
| 4159 | // Is field layout of the inheritance chain fixed within the current version bubble? |
| 4160 | // |
| 4161 | BOOL IsInheritanceChainLayoutFixedInCurrentVersionBubble(); |
| 4162 | |
| 4163 | // |
| 4164 | // Is the inheritance chain fixed within the current version bubble? |
| 4165 | // |
| 4166 | BOOL IsInheritanceChainFixedInCurrentVersionBubble(); |
| 4167 | #endif |
| 4168 | |
| 4169 | }; // class MethodTable |
| 4170 | |
| 4171 | #ifndef CROSSBITNESS_COMPILE |
| 4172 | static_assert_no_msg(sizeof(MethodTable) == SIZEOF__MethodTable_); |
| 4173 | #endif |
| 4174 | #if defined(FEATURE_TYPEEQUIVALENCE) && !defined(DACCESS_COMPILE) |
| 4175 | WORD GetEquivalentMethodSlot(MethodTable * pOldMT, MethodTable * pNewMT, WORD wMTslot, BOOL *pfFound); |
| 4176 | #endif // defined(FEATURE_TYPEEQUIVALENCE) && !defined(DACCESS_COMPILE) |
| 4177 | |
| 4178 | MethodTable* CreateMinimalMethodTable(Module* pContainingModule, |
| 4179 | LoaderHeap* pCreationHeap, |
| 4180 | AllocMemTracker* pamTracker); |
| 4181 | |
| 4182 | #endif // !_METHODTABLE_H_ |
| 4183 | |