1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | // |
5 | // File: COMDelegate.cpp |
6 | // |
7 | |
8 | // This module contains the implementation of the native methods for the |
9 | // Delegate class. |
10 | // |
11 | |
12 | |
13 | #include "common.h" |
14 | #include "comdelegate.h" |
15 | #include "invokeutil.h" |
16 | #include "excep.h" |
17 | #include "class.h" |
18 | #include "field.h" |
19 | #include "dllimportcallback.h" |
20 | #include "dllimport.h" |
21 | #include "eeconfig.h" |
22 | #include "mdaassistants.h" |
23 | #include "cgensys.h" |
24 | #include "asmconstants.h" |
25 | #include "virtualcallstub.h" |
26 | #include "callingconvention.h" |
27 | #include "customattribute.h" |
28 | #include "typestring.h" |
29 | #include "../md/compiler/custattr.h" |
30 | #ifdef FEATURE_COMINTEROP |
31 | #include "comcallablewrapper.h" |
32 | #endif // FEATURE_COMINTEROP |
33 | |
34 | #define DELEGATE_MARKER_UNMANAGEDFPTR -1 |
35 | |
36 | |
37 | #ifndef DACCESS_COMPILE |
38 | |
39 | #if defined(_TARGET_AMD64_) && !defined(UNIX_AMD64_ABI) |
40 | |
41 | // ShuffleOfs not needed |
42 | |
43 | #elif defined(_TARGET_X86_) |
44 | |
45 | // Return an encoded shuffle entry describing a general register or stack offset that needs to be shuffled. |
46 | static UINT16 ShuffleOfs(INT ofs, UINT stackSizeDelta = 0) |
47 | { |
48 | STANDARD_VM_CONTRACT; |
49 | |
50 | if (TransitionBlock::IsStackArgumentOffset(ofs)) |
51 | { |
52 | ofs = (ofs - TransitionBlock::GetOffsetOfReturnAddress()) + stackSizeDelta; |
53 | |
54 | if (ofs >= ShuffleEntry::REGMASK) |
55 | { |
56 | // method takes too many stack args |
57 | COMPlusThrow(kNotSupportedException); |
58 | } |
59 | } |
60 | else |
61 | { |
62 | ofs -= TransitionBlock::GetOffsetOfArgumentRegisters(); |
63 | ofs |= ShuffleEntry::REGMASK; |
64 | } |
65 | |
66 | return static_cast<UINT16>(ofs); |
67 | } |
68 | |
69 | #else // Portable default implementation |
70 | |
71 | // Iterator for extracting shuffle entries for argument desribed by an ArgLocDesc. |
72 | // Used when calculating shuffle array entries in GenerateShuffleArray below. |
73 | class ShuffleIterator |
74 | { |
75 | // Argument location description |
76 | ArgLocDesc* m_argLocDesc; |
77 | |
78 | #if defined(UNIX_AMD64_ABI) |
79 | // Current eightByte used for struct arguments in registers |
80 | int m_currentEightByte; |
81 | #endif |
82 | // Current general purpose register index (relative to the ArgLocDesc::m_idxGenReg) |
83 | int m_currentGenRegIndex; |
84 | // Current floating point register index (relative to the ArgLocDesc::m_idxFloatReg) |
85 | int m_currentFloatRegIndex; |
86 | // Current stack slot index (relative to the ArgLocDesc::m_idxStack) |
87 | int m_currentStackSlotIndex; |
88 | |
89 | #if defined(UNIX_AMD64_ABI) |
90 | // Get next shuffle offset for struct passed in registers. There has to be at least one offset left. |
91 | UINT16 GetNextOfsInStruct() |
92 | { |
93 | EEClass* eeClass = m_argLocDesc->m_eeClass; |
94 | _ASSERTE(eeClass != NULL); |
95 | |
96 | if (m_currentEightByte < eeClass->GetNumberEightBytes()) |
97 | { |
98 | SystemVClassificationType eightByte = eeClass->GetEightByteClassification(m_currentEightByte); |
99 | unsigned int eightByteSize = eeClass->GetEightByteSize(m_currentEightByte); |
100 | |
101 | m_currentEightByte++; |
102 | |
103 | int index; |
104 | UINT16 mask = ShuffleEntry::REGMASK; |
105 | |
106 | if (eightByte == SystemVClassificationTypeSSE) |
107 | { |
108 | _ASSERTE(m_currentFloatRegIndex < m_argLocDesc->m_cFloatReg); |
109 | index = m_argLocDesc->m_idxFloatReg + m_currentFloatRegIndex; |
110 | m_currentFloatRegIndex++; |
111 | |
112 | mask |= ShuffleEntry::FPREGMASK; |
113 | if (eightByteSize == 4) |
114 | { |
115 | mask |= ShuffleEntry::FPSINGLEMASK; |
116 | } |
117 | } |
118 | else |
119 | { |
120 | _ASSERTE(m_currentGenRegIndex < m_argLocDesc->m_cGenReg); |
121 | index = m_argLocDesc->m_idxGenReg + m_currentGenRegIndex; |
122 | m_currentGenRegIndex++; |
123 | } |
124 | |
125 | return (UINT16)index | mask; |
126 | } |
127 | |
128 | // There are no more offsets to get, the caller should not have called us |
129 | _ASSERTE(false); |
130 | return 0; |
131 | } |
132 | #endif // UNIX_AMD64_ABI |
133 | |
134 | public: |
135 | |
136 | // Construct the iterator for the ArgLocDesc |
137 | ShuffleIterator(ArgLocDesc* argLocDesc) |
138 | : |
139 | m_argLocDesc(argLocDesc), |
140 | #if defined(UNIX_AMD64_ABI) |
141 | m_currentEightByte(0), |
142 | #endif |
143 | m_currentGenRegIndex(0), |
144 | m_currentFloatRegIndex(0), |
145 | m_currentStackSlotIndex(0) |
146 | { |
147 | } |
148 | |
149 | // Check if there are more offsets to shuffle |
150 | bool HasNextOfs() |
151 | { |
152 | return (m_currentGenRegIndex < m_argLocDesc->m_cGenReg) || |
153 | #if defined(UNIX_AMD64_ABI) |
154 | (m_currentFloatRegIndex < m_argLocDesc->m_cFloatReg) || |
155 | #endif |
156 | (m_currentStackSlotIndex < m_argLocDesc->m_cStack); |
157 | } |
158 | |
159 | // Get next offset to shuffle. There has to be at least one offset left. |
160 | UINT16 GetNextOfs() |
161 | { |
162 | int index; |
163 | |
164 | #if defined(UNIX_AMD64_ABI) |
165 | |
166 | // Check if the argLocDesc is for a struct in registers |
167 | EEClass* eeClass = m_argLocDesc->m_eeClass; |
168 | if (m_argLocDesc->m_eeClass != 0) |
169 | { |
170 | return GetNextOfsInStruct(); |
171 | } |
172 | |
173 | // Shuffle float registers first |
174 | if (m_currentFloatRegIndex < m_argLocDesc->m_cFloatReg) |
175 | { |
176 | index = m_argLocDesc->m_idxFloatReg + m_currentFloatRegIndex; |
177 | m_currentFloatRegIndex++; |
178 | |
179 | return (UINT16)index | ShuffleEntry::REGMASK | ShuffleEntry::FPREGMASK; |
180 | } |
181 | #endif // UNIX_AMD64_ABI |
182 | |
183 | // Shuffle any registers first (the order matters since otherwise we could end up shuffling a stack slot |
184 | // over a register we later need to shuffle down as well). |
185 | if (m_currentGenRegIndex < m_argLocDesc->m_cGenReg) |
186 | { |
187 | index = m_argLocDesc->m_idxGenReg + m_currentGenRegIndex; |
188 | m_currentGenRegIndex++; |
189 | |
190 | return (UINT16)index | ShuffleEntry::REGMASK; |
191 | } |
192 | |
193 | // If we get here we must have at least one stack slot left to shuffle (this method should only be called |
194 | // when AnythingToShuffle(pArg) == true). |
195 | if (m_currentStackSlotIndex < m_argLocDesc->m_cStack) |
196 | { |
197 | index = m_argLocDesc->m_idxStack + m_currentStackSlotIndex; |
198 | m_currentStackSlotIndex++; |
199 | |
200 | // Delegates cannot handle overly large argument stacks due to shuffle entry encoding limitations. |
201 | if (index >= ShuffleEntry::REGMASK) |
202 | { |
203 | COMPlusThrow(kNotSupportedException); |
204 | } |
205 | |
206 | return (UINT16)index; |
207 | } |
208 | |
209 | // There are no more offsets to get, the caller should not have called us |
210 | _ASSERTE(false); |
211 | return 0; |
212 | } |
213 | }; |
214 | |
215 | #endif |
216 | |
217 | #if defined(UNIX_AMD64_ABI) |
218 | // Return an index of argument slot. First indices are reserved for general purpose registers, |
219 | // the following ones for float registers and then the rest for stack slots. |
220 | // This index is independent of how many registers are actually used to pass arguments. |
221 | int GetNormalizedArgumentSlotIndex(UINT16 offset) |
222 | { |
223 | int index; |
224 | |
225 | if (offset & ShuffleEntry::FPREGMASK) |
226 | { |
227 | index = NUM_ARGUMENT_REGISTERS + (offset & ShuffleEntry::OFSREGMASK); |
228 | } |
229 | else if (offset & ShuffleEntry::REGMASK) |
230 | { |
231 | index = offset & ShuffleEntry::OFSREGMASK; |
232 | } |
233 | else |
234 | { |
235 | // stack slot |
236 | index = NUM_ARGUMENT_REGISTERS + NUM_FLOAT_ARGUMENT_REGISTERS + (offset & ShuffleEntry::OFSMASK); |
237 | } |
238 | |
239 | return index; |
240 | } |
241 | #endif // UNIX_AMD64_ABI |
242 | |
243 | VOID GenerateShuffleArray(MethodDesc* pInvoke, MethodDesc *pTargetMeth, SArray<ShuffleEntry> * pShuffleEntryArray) |
244 | { |
245 | STANDARD_VM_CONTRACT; |
246 | |
247 | ShuffleEntry entry; |
248 | ZeroMemory(&entry, sizeof(entry)); |
249 | |
250 | #if defined(_TARGET_AMD64_) && !defined(UNIX_AMD64_ABI) |
251 | MetaSig msig(pInvoke); |
252 | ArgIterator argit(&msig); |
253 | |
254 | if (argit.HasRetBuffArg()) |
255 | { |
256 | if (!pTargetMeth->IsStatic()) |
257 | { |
258 | // Use ELEMENT_TYPE_END to signal the special handling required by |
259 | // instance method with return buffer. "this" needs to come from |
260 | // the first argument. |
261 | entry.argtype = ELEMENT_TYPE_END; |
262 | pShuffleEntryArray->Append(entry); |
263 | |
264 | msig.NextArgNormalized(); |
265 | } |
266 | else |
267 | { |
268 | entry.argtype = ELEMENT_TYPE_PTR; |
269 | pShuffleEntryArray->Append(entry); |
270 | } |
271 | } |
272 | |
273 | CorElementType sigType; |
274 | |
275 | while ((sigType = msig.NextArgNormalized()) != ELEMENT_TYPE_END) |
276 | { |
277 | ZeroMemory(&entry, sizeof(entry)); |
278 | entry.argtype = sigType; |
279 | pShuffleEntryArray->Append(entry); |
280 | } |
281 | |
282 | ZeroMemory(&entry, sizeof(entry)); |
283 | entry.srcofs = ShuffleEntry::SENTINEL; |
284 | pShuffleEntryArray->Append(entry); |
285 | |
286 | #elif defined(_TARGET_X86_) |
287 | // Must create independent msigs to prevent the argiterators from |
288 | // interfering with other. |
289 | MetaSig sSigSrc(pInvoke); |
290 | MetaSig sSigDst(pTargetMeth); |
291 | |
292 | _ASSERTE(sSigSrc.HasThis()); |
293 | |
294 | ArgIterator sArgPlacerSrc(&sSigSrc); |
295 | ArgIterator sArgPlacerDst(&sSigDst); |
296 | |
297 | UINT stackSizeSrc = sArgPlacerSrc.SizeOfArgStack(); |
298 | UINT stackSizeDst = sArgPlacerDst.SizeOfArgStack(); |
299 | |
300 | if (stackSizeDst > stackSizeSrc) |
301 | { |
302 | // we can drop arguments but we can never make them up - this is definitely not allowed |
303 | COMPlusThrow(kVerificationException); |
304 | } |
305 | |
306 | UINT stackSizeDelta; |
307 | |
308 | #ifdef UNIX_X86_ABI |
309 | // Stack does not shrink as UNIX_X86_ABI uses CDECL (instead of STDCALL). |
310 | stackSizeDelta = 0; |
311 | #else |
312 | stackSizeDelta = stackSizeSrc - stackSizeDst; |
313 | #endif |
314 | |
315 | INT ofsSrc, ofsDst; |
316 | |
317 | // if the function is non static we need to place the 'this' first |
318 | if (!pTargetMeth->IsStatic()) |
319 | { |
320 | entry.srcofs = ShuffleOfs(sArgPlacerSrc.GetNextOffset()); |
321 | entry.dstofs = ShuffleEntry::REGMASK | 4; |
322 | pShuffleEntryArray->Append(entry); |
323 | } |
324 | else if (sArgPlacerSrc.HasRetBuffArg()) |
325 | { |
326 | // the first register is used for 'this' |
327 | entry.srcofs = ShuffleOfs(sArgPlacerSrc.GetRetBuffArgOffset()); |
328 | entry.dstofs = ShuffleOfs(sArgPlacerDst.GetRetBuffArgOffset(), stackSizeDelta); |
329 | if (entry.srcofs != entry.dstofs) |
330 | pShuffleEntryArray->Append(entry); |
331 | } |
332 | |
333 | while (TransitionBlock::InvalidOffset != (ofsSrc = sArgPlacerSrc.GetNextOffset())) |
334 | { |
335 | ofsDst = sArgPlacerDst.GetNextOffset(); |
336 | |
337 | int cbSize = sArgPlacerDst.GetArgSize(); |
338 | |
339 | do |
340 | { |
341 | entry.srcofs = ShuffleOfs(ofsSrc); |
342 | entry.dstofs = ShuffleOfs(ofsDst, stackSizeDelta); |
343 | |
344 | ofsSrc += STACK_ELEM_SIZE; |
345 | ofsDst += STACK_ELEM_SIZE; |
346 | |
347 | if (entry.srcofs != entry.dstofs) |
348 | pShuffleEntryArray->Append(entry); |
349 | |
350 | cbSize -= STACK_ELEM_SIZE; |
351 | } |
352 | while (cbSize > 0); |
353 | } |
354 | |
355 | if (stackSizeDelta != 0) |
356 | { |
357 | // Emit code to move the return address |
358 | entry.srcofs = 0; // retaddress is assumed to be at esp |
359 | entry.dstofs = static_cast<UINT16>(stackSizeDelta); |
360 | pShuffleEntryArray->Append(entry); |
361 | } |
362 | |
363 | entry.srcofs = ShuffleEntry::SENTINEL; |
364 | entry.dstofs = static_cast<UINT16>(stackSizeDelta); |
365 | pShuffleEntryArray->Append(entry); |
366 | |
367 | #else // Portable default implementation |
368 | MetaSig sSigSrc(pInvoke); |
369 | MetaSig sSigDst(pTargetMeth); |
370 | |
371 | // Initialize helpers that determine how each argument for the source and destination signatures is placed |
372 | // in registers or on the stack. |
373 | ArgIterator sArgPlacerSrc(&sSigSrc); |
374 | ArgIterator sArgPlacerDst(&sSigDst); |
375 | |
376 | INT ofsSrc; |
377 | INT ofsDst; |
378 | ArgLocDesc sArgSrc; |
379 | ArgLocDesc sArgDst; |
380 | |
381 | #if defined(UNIX_AMD64_ABI) |
382 | int argSlots = NUM_FLOAT_ARGUMENT_REGISTERS + NUM_ARGUMENT_REGISTERS + sArgPlacerSrc.SizeOfArgStack() / sizeof(size_t); |
383 | #endif // UNIX_AMD64_ABI |
384 | |
385 | // If the target method in non-static (this happens for open instance delegates), we need to account for |
386 | // the implicit this parameter. |
387 | if (sSigDst.HasThis()) |
388 | { |
389 | // The this pointer is an implicit argument for the destination signature. But on the source side it's |
390 | // just another regular argument and needs to be iterated over by sArgPlacerSrc and the MetaSig. |
391 | sArgPlacerSrc.GetArgLoc(sArgPlacerSrc.GetNextOffset(), &sArgSrc); |
392 | |
393 | sArgPlacerSrc.GetThisLoc(&sArgDst); |
394 | |
395 | ShuffleIterator iteratorSrc(&sArgSrc); |
396 | ShuffleIterator iteratorDst(&sArgDst); |
397 | |
398 | entry.srcofs = iteratorSrc.GetNextOfs(); |
399 | entry.dstofs = iteratorDst.GetNextOfs(); |
400 | pShuffleEntryArray->Append(entry); |
401 | } |
402 | |
403 | // Handle any return buffer argument. |
404 | if (sArgPlacerDst.HasRetBuffArg()) |
405 | { |
406 | // The return buffer argument is implicit in both signatures. |
407 | |
408 | #if !defined(_TARGET_ARM64_) || !defined(CALLDESCR_RETBUFFARGREG) |
409 | // The ifdef above disables this code if the ret buff arg is always in the same register, which |
410 | // means that we don't need to do any shuffling for it. |
411 | |
412 | sArgPlacerSrc.GetRetBuffArgLoc(&sArgSrc); |
413 | sArgPlacerDst.GetRetBuffArgLoc(&sArgDst); |
414 | |
415 | ShuffleIterator iteratorSrc(&sArgSrc); |
416 | ShuffleIterator iteratorDst(&sArgDst); |
417 | |
418 | entry.srcofs = iteratorSrc.GetNextOfs(); |
419 | entry.dstofs = iteratorDst.GetNextOfs(); |
420 | |
421 | // Depending on the type of target method (static vs instance) the return buffer argument may end up |
422 | // in the same register in both signatures. So we only commit the entry (by moving the entry pointer |
423 | // along) in the case where it's not a no-op (i.e. the source and destination ops are different). |
424 | if (entry.srcofs != entry.dstofs) |
425 | pShuffleEntryArray->Append(entry); |
426 | #endif // !defined(_TARGET_ARM64_) || !defined(CALLDESCR_RETBUFFARGREG) |
427 | } |
428 | |
429 | // Iterate all the regular arguments. mapping source registers and stack locations to the corresponding |
430 | // destination locations. |
431 | while ((ofsSrc = sArgPlacerSrc.GetNextOffset()) != TransitionBlock::InvalidOffset) |
432 | { |
433 | ofsDst = sArgPlacerDst.GetNextOffset(); |
434 | |
435 | // Find the argument location mapping for both source and destination signature. A single argument can |
436 | // occupy a floating point register, a general purpose register, a pair of registers of any kind or |
437 | // a stack slot. |
438 | sArgPlacerSrc.GetArgLoc(ofsSrc, &sArgSrc); |
439 | sArgPlacerDst.GetArgLoc(ofsDst, &sArgDst); |
440 | |
441 | ShuffleIterator iteratorSrc(&sArgSrc); |
442 | ShuffleIterator iteratorDst(&sArgDst); |
443 | |
444 | // Shuffle each slot in the argument (register or stack slot) from source to destination. |
445 | while (iteratorSrc.HasNextOfs()) |
446 | { |
447 | // Locate the next slot to shuffle in the source and destination and encode the transfer into a |
448 | // shuffle entry. |
449 | entry.srcofs = iteratorSrc.GetNextOfs(); |
450 | entry.dstofs = iteratorDst.GetNextOfs(); |
451 | |
452 | // Only emit this entry if it's not a no-op (i.e. the source and destination locations are |
453 | // different). |
454 | if (entry.srcofs != entry.dstofs) |
455 | pShuffleEntryArray->Append(entry); |
456 | } |
457 | |
458 | // We should have run out of slots to shuffle in the destination at the same time as the source. |
459 | _ASSERTE(!iteratorDst.HasNextOfs()); |
460 | } |
461 | |
462 | #if defined(UNIX_AMD64_ABI) |
463 | // The Unix AMD64 ABI can cause a struct to be passed on stack for the source and in registers for the destination. |
464 | // That can cause some arguments that are passed on stack for the destination to be passed in registers in the source. |
465 | // An extreme example of that is e.g.: |
466 | // void fn(int, int, int, int, int, struct {int, double}, double, double, double, double, double, double, double, double, double, double) |
467 | // For this signature, the shuffle needs to move slots as follows (please note the "forward" movement of xmm registers): |
468 | // RDI->RSI, RDX->RCX, R8->RDX, R9->R8, stack[0]->R9, xmm0->xmm1, xmm1->xmm2, ... xmm6->xmm7, xmm7->stack[0], stack[1]->xmm0, stack[2]->stack[1], stack[3]->stack[2] |
469 | // To prevent overwriting of slots before they are moved, we need to sort the move operations. |
470 | |
471 | NewArrayHolder<bool> filledSlots = new bool[argSlots]; |
472 | |
473 | bool reordered; |
474 | do |
475 | { |
476 | reordered = false; |
477 | |
478 | for (int i = 0; i < argSlots; i++) |
479 | { |
480 | filledSlots[i] = false; |
481 | } |
482 | for (int i = 0; i < pShuffleEntryArray->GetCount(); i++) |
483 | { |
484 | entry = (*pShuffleEntryArray)[i]; |
485 | |
486 | // If the slot that we are moving the argument to was filled in already, we need to move this entry in front |
487 | // of the entry that filled it in. |
488 | if (filledSlots[GetNormalizedArgumentSlotIndex(entry.srcofs)]) |
489 | { |
490 | int j; |
491 | for (j = i; (*pShuffleEntryArray)[j].dstofs != entry.srcofs; j--) |
492 | (*pShuffleEntryArray)[j] = (*pShuffleEntryArray)[j - 1]; |
493 | |
494 | (*pShuffleEntryArray)[j] = entry; |
495 | reordered = true; |
496 | } |
497 | |
498 | filledSlots[GetNormalizedArgumentSlotIndex(entry.dstofs)] = true; |
499 | } |
500 | } |
501 | while (reordered); |
502 | #endif // UNIX_AMD64_ABI |
503 | |
504 | entry.srcofs = ShuffleEntry::SENTINEL; |
505 | entry.dstofs = 0; |
506 | pShuffleEntryArray->Append(entry); |
507 | #endif |
508 | } |
509 | |
510 | |
511 | ShuffleThunkCache *COMDelegate::m_pShuffleThunkCache = NULL; |
512 | MulticastStubCache *COMDelegate::m_pSecureDelegateStubCache = NULL; |
513 | MulticastStubCache *COMDelegate::m_pMulticastStubCache = NULL; |
514 | |
515 | CrstStatic COMDelegate::s_DelegateToFPtrHashCrst; |
516 | PtrHashMap* COMDelegate::s_pDelegateToFPtrHash = NULL; |
517 | |
518 | |
519 | // One time init. |
520 | void COMDelegate::Init() |
521 | { |
522 | CONTRACTL |
523 | { |
524 | THROWS; |
525 | GC_NOTRIGGER; |
526 | MODE_ANY; |
527 | } |
528 | CONTRACTL_END; |
529 | |
530 | s_DelegateToFPtrHashCrst.Init(CrstDelegateToFPtrHash, CRST_UNSAFE_ANYMODE); |
531 | |
532 | s_pDelegateToFPtrHash = ::new PtrHashMap(); |
533 | |
534 | LockOwner lock = {&COMDelegate::s_DelegateToFPtrHashCrst, IsOwnerOfCrst}; |
535 | s_pDelegateToFPtrHash->Init(TRUE, &lock); |
536 | |
537 | m_pShuffleThunkCache = new ShuffleThunkCache(SystemDomain::GetGlobalLoaderAllocator()->GetStubHeap()); |
538 | m_pMulticastStubCache = new MulticastStubCache(); |
539 | m_pSecureDelegateStubCache = new MulticastStubCache(); |
540 | } |
541 | |
542 | #ifdef FEATURE_COMINTEROP |
543 | ComPlusCallInfo * COMDelegate::PopulateComPlusCallInfo(MethodTable * pDelMT) |
544 | { |
545 | CONTRACTL |
546 | { |
547 | THROWS; |
548 | GC_TRIGGERS; |
549 | MODE_ANY; |
550 | } |
551 | CONTRACTL_END; |
552 | |
553 | DelegateEEClass * pClass = (DelegateEEClass *)pDelMT->GetClass(); |
554 | |
555 | // set up the ComPlusCallInfo if it does not exist already |
556 | if (pClass->m_pComPlusCallInfo == NULL) |
557 | { |
558 | LoaderHeap *pHeap = pDelMT->GetLoaderAllocator()->GetHighFrequencyHeap(); |
559 | ComPlusCallInfo *pTemp = (ComPlusCallInfo *)(void *)pHeap->AllocMem(S_SIZE_T(sizeof(ComPlusCallInfo))); |
560 | |
561 | pTemp->m_cachedComSlot = ComMethodTable::GetNumExtraSlots(ifVtable); |
562 | pTemp->InitStackArgumentSize(); |
563 | |
564 | InterlockedCompareExchangeT(EnsureWritablePages(&pClass->m_pComPlusCallInfo), pTemp, NULL); |
565 | } |
566 | |
567 | *EnsureWritablePages(&pClass->m_pComPlusCallInfo->m_pInterfaceMT) = pDelMT; |
568 | |
569 | return pClass->m_pComPlusCallInfo; |
570 | } |
571 | #endif // FEATURE_COMINTEROP |
572 | |
573 | // We need a LoaderHeap that lives at least as long as the DelegateEEClass, but ideally no longer |
574 | LoaderHeap *DelegateEEClass::GetStubHeap() |
575 | { |
576 | return GetInvokeMethod()->GetLoaderAllocator()->GetStubHeap(); |
577 | } |
578 | |
579 | |
580 | Stub* COMDelegate::SetupShuffleThunk(MethodTable * pDelMT, MethodDesc *pTargetMeth) |
581 | { |
582 | CONTRACTL |
583 | { |
584 | THROWS; |
585 | GC_TRIGGERS; |
586 | MODE_ANY; |
587 | INJECT_FAULT(COMPlusThrowOM()); |
588 | } |
589 | CONTRACTL_END; |
590 | |
591 | GCX_PREEMP(); |
592 | |
593 | DelegateEEClass * pClass = (DelegateEEClass *)pDelMT->GetClass(); |
594 | |
595 | MethodDesc *pMD = pClass->GetInvokeMethod(); |
596 | |
597 | StackSArray<ShuffleEntry> rShuffleEntryArray; |
598 | GenerateShuffleArray(pMD, pTargetMeth, &rShuffleEntryArray); |
599 | |
600 | ShuffleThunkCache* pShuffleThunkCache = m_pShuffleThunkCache; |
601 | |
602 | LoaderAllocator* pLoaderAllocator = pDelMT->GetLoaderAllocator(); |
603 | if (pLoaderAllocator->IsCollectible()) |
604 | { |
605 | pShuffleThunkCache = ((AssemblyLoaderAllocator*)pLoaderAllocator)->GetShuffleThunkCache(); |
606 | } |
607 | |
608 | Stub* pShuffleThunk = pShuffleThunkCache->Canonicalize((const BYTE *)&rShuffleEntryArray[0]); |
609 | if (!pShuffleThunk) |
610 | { |
611 | COMPlusThrowOM(); |
612 | } |
613 | |
614 | g_IBCLogger.LogEEClassCOWTableAccess(pDelMT); |
615 | |
616 | EnsureWritablePages(pClass); |
617 | |
618 | if (!pTargetMeth->IsStatic() && pTargetMeth->HasRetBuffArg() && IsRetBuffPassedAsFirstArg()) |
619 | { |
620 | if (FastInterlockCompareExchangePointer(&pClass->m_pInstRetBuffCallStub, pShuffleThunk, NULL ) != NULL) |
621 | { |
622 | pShuffleThunk->DecRef(); |
623 | pShuffleThunk = pClass->m_pInstRetBuffCallStub; |
624 | } |
625 | } |
626 | else |
627 | { |
628 | if (FastInterlockCompareExchangePointer(&pClass->m_pStaticCallStub, pShuffleThunk, NULL ) != NULL) |
629 | { |
630 | pShuffleThunk->DecRef(); |
631 | pShuffleThunk = pClass->m_pStaticCallStub; |
632 | } |
633 | } |
634 | |
635 | return pShuffleThunk; |
636 | } |
637 | |
638 | |
639 | #ifndef CROSSGEN_COMPILE |
640 | |
641 | static PCODE GetVirtualCallStub(MethodDesc *method, TypeHandle scopeType) |
642 | { |
643 | CONTRACTL |
644 | { |
645 | THROWS; |
646 | GC_TRIGGERS; |
647 | MODE_ANY; |
648 | INJECT_FAULT(COMPlusThrowOM()); // from MetaSig::SizeOfArgStack |
649 | } |
650 | CONTRACTL_END; |
651 | |
652 | //TODO: depending on what we decide for generics method we may want to move this check to better places |
653 | if (method->IsGenericMethodDefinition() || method->HasMethodInstantiation()) |
654 | { |
655 | COMPlusThrow(kNotSupportedException); |
656 | } |
657 | |
658 | // need to grab a virtual dispatch stub |
659 | // method can be on a canonical MethodTable, we need to allocate the stub on the loader allocator associated with the exact type instantiation. |
660 | VirtualCallStubManager *pVirtualStubManager = scopeType.GetMethodTable()->GetLoaderAllocator()->GetVirtualCallStubManager(); |
661 | PCODE pTargetCall = pVirtualStubManager->GetCallStub(scopeType, method); |
662 | _ASSERTE(pTargetCall); |
663 | return pTargetCall; |
664 | } |
665 | |
666 | FCIMPL5(FC_BOOL_RET, COMDelegate::BindToMethodName, |
667 | Object *refThisUNSAFE, |
668 | Object *targetUNSAFE, |
669 | ReflectClassBaseObject *pMethodTypeUNSAFE, |
670 | StringObject* methodNameUNSAFE, |
671 | int flags) |
672 | { |
673 | FCALL_CONTRACT; |
674 | |
675 | struct _gc |
676 | { |
677 | DELEGATEREF refThis; |
678 | OBJECTREF target; |
679 | STRINGREF methodName; |
680 | REFLECTCLASSBASEREF refMethodType; |
681 | } gc; |
682 | |
683 | gc.refThis = (DELEGATEREF) ObjectToOBJECTREF(refThisUNSAFE); |
684 | gc.target = (OBJECTREF) targetUNSAFE; |
685 | gc.methodName = (STRINGREF) methodNameUNSAFE; |
686 | gc.refMethodType = (REFLECTCLASSBASEREF) ObjectToOBJECTREF(pMethodTypeUNSAFE); |
687 | |
688 | TypeHandle methodType = gc.refMethodType->GetType(); |
689 | |
690 | MethodDesc *pMatchingMethod = NULL; |
691 | |
692 | HELPER_METHOD_FRAME_BEGIN_RET_PROTECT(gc); |
693 | |
694 | // Caching of MethodDescs (impl and decl) for MethodTable slots provided significant |
695 | // performance gain in some reflection emit scenarios. |
696 | MethodTable::AllowMethodDataCaching(); |
697 | |
698 | TypeHandle targetType((gc.target != NULL) ? gc.target->GetMethodTable() : NULL); |
699 | // get the invoke of the delegate |
700 | MethodTable * pDelegateType = gc.refThis->GetMethodTable(); |
701 | MethodDesc* pInvokeMeth = COMDelegate::FindDelegateInvokeMethod(pDelegateType); |
702 | _ASSERTE(pInvokeMeth); |
703 | |
704 | // |
705 | // now loop through the methods looking for a match |
706 | // |
707 | |
708 | // get the name in UTF8 format |
709 | SString wszName(SString::Literal, gc.methodName->GetBuffer()); |
710 | StackScratchBuffer utf8Name; |
711 | LPCUTF8 szNameStr = wszName.GetUTF8(utf8Name); |
712 | |
713 | // pick a proper compare function |
714 | typedef int (__cdecl *UTF8StringCompareFuncPtr)(const char *, const char *); |
715 | UTF8StringCompareFuncPtr StrCompFunc = (flags & DBF_CaselessMatching) ? stricmpUTF8 : strcmp; |
716 | |
717 | // search the type hierarchy |
718 | MethodTable *pMTOrig = methodType.GetMethodTable()->GetCanonicalMethodTable(); |
719 | for (MethodTable *pMT = pMTOrig; pMT != NULL; pMT = pMT->GetParentMethodTable()) |
720 | { |
721 | MethodTable::MethodIterator it(pMT); |
722 | it.MoveToEnd(); |
723 | for (; it.IsValid() && (pMT == pMTOrig || !it.IsVirtual()); it.Prev()) |
724 | { |
725 | MethodDesc *pCurMethod = it.GetDeclMethodDesc(); |
726 | |
727 | // We can't match generic methods (since no instantiation information has been provided). |
728 | if (pCurMethod->IsGenericMethodDefinition()) |
729 | continue; |
730 | |
731 | if ((pCurMethod != NULL) && (StrCompFunc(szNameStr, pCurMethod->GetName()) == 0)) |
732 | { |
733 | // found a matching string, get an associated method desc if needed |
734 | // Use unboxing stubs for instance and virtual methods on value types. |
735 | // If this is a open delegate to an instance method BindToMethod will rebind it to the non-unboxing method. |
736 | // Open delegate |
737 | // Static: never use unboxing stub |
738 | // BindToMethodInfo/Name will bind to the non-unboxing stub. BindToMethod will reinforce that. |
739 | // Instance: We only support binding to an unboxed value type reference here, so we must never use an unboxing stub |
740 | // BindToMethodInfo/Name will bind to the unboxing stub. BindToMethod will rebind to the non-unboxing stub. |
741 | // Virtual: trivial (not allowed) |
742 | // Closed delegate |
743 | // Static: never use unboxing stub |
744 | // BindToMethodInfo/Name will bind to the non-unboxing stub. |
745 | // Instance: always use unboxing stub |
746 | // BindToMethodInfo/Name will bind to the unboxing stub. |
747 | // Virtual: always use unboxing stub |
748 | // BindToMethodInfo/Name will bind to the unboxing stub. |
749 | |
750 | pCurMethod = |
751 | MethodDesc::FindOrCreateAssociatedMethodDesc(pCurMethod, |
752 | methodType.GetMethodTable(), |
753 | (!pCurMethod->IsStatic() && pCurMethod->GetMethodTable()->IsValueType()), |
754 | pCurMethod->GetMethodInstantiation(), |
755 | false /* do not allow code with a shared-code calling convention to be returned */, |
756 | true /* Ensure that methods on generic interfaces are returned as instantiated method descs */); |
757 | BOOL fIsOpenDelegate; |
758 | if (!COMDelegate::IsMethodDescCompatible((gc.target == NULL) ? TypeHandle() : gc.target->GetTrueTypeHandle(), |
759 | methodType, |
760 | pCurMethod, |
761 | gc.refThis->GetTypeHandle(), |
762 | pInvokeMeth, |
763 | flags, |
764 | &fIsOpenDelegate)) |
765 | { |
766 | // Signature doesn't match, skip. |
767 | continue; |
768 | } |
769 | |
770 | // Found the target that matches the signature and satisfies security transparency rules |
771 | // Initialize the delegate to point to the target method. |
772 | BindToMethod(&gc.refThis, |
773 | &gc.target, |
774 | pCurMethod, |
775 | methodType.GetMethodTable(), |
776 | fIsOpenDelegate, |
777 | TRUE); |
778 | |
779 | pMatchingMethod = pCurMethod; |
780 | goto done; |
781 | } |
782 | } |
783 | } |
784 | done: |
785 | ; |
786 | HELPER_METHOD_FRAME_END(); |
787 | |
788 | FC_RETURN_BOOL(pMatchingMethod != NULL); |
789 | } |
790 | FCIMPLEND |
791 | |
792 | |
793 | FCIMPL5(FC_BOOL_RET, COMDelegate::BindToMethodInfo, Object* refThisUNSAFE, Object* targetUNSAFE, ReflectMethodObject *pMethodUNSAFE, ReflectClassBaseObject *pMethodTypeUNSAFE, int flags) |
794 | { |
795 | FCALL_CONTRACT; |
796 | |
797 | BOOL result = TRUE; |
798 | |
799 | struct _gc |
800 | { |
801 | DELEGATEREF refThis; |
802 | OBJECTREF refFirstArg; |
803 | REFLECTCLASSBASEREF refMethodType; |
804 | REFLECTMETHODREF refMethod; |
805 | } gc; |
806 | |
807 | gc.refThis = (DELEGATEREF) ObjectToOBJECTREF(refThisUNSAFE); |
808 | gc.refFirstArg = ObjectToOBJECTREF(targetUNSAFE); |
809 | gc.refMethodType = (REFLECTCLASSBASEREF) ObjectToOBJECTREF(pMethodTypeUNSAFE); |
810 | gc.refMethod = (REFLECTMETHODREF) ObjectToOBJECTREF(pMethodUNSAFE); |
811 | |
812 | MethodTable *pMethMT = gc.refMethodType->GetType().GetMethodTable(); |
813 | MethodDesc *method = gc.refMethod->GetMethod(); |
814 | |
815 | HELPER_METHOD_FRAME_BEGIN_RET_PROTECT(gc); |
816 | |
817 | // Assert to track down VS#458689. |
818 | _ASSERTE(gc.refThis != gc.refFirstArg); |
819 | |
820 | // A generic method had better be instantiated (we can't dispatch to an uninstantiated one). |
821 | if (method->IsGenericMethodDefinition()) |
822 | COMPlusThrow(kArgumentException, W("Arg_DlgtTargMeth" )); |
823 | |
824 | // get the invoke of the delegate |
825 | MethodTable * pDelegateType = gc.refThis->GetMethodTable(); |
826 | MethodDesc* pInvokeMeth = COMDelegate::FindDelegateInvokeMethod(pDelegateType); |
827 | _ASSERTE(pInvokeMeth); |
828 | |
829 | // See the comment in BindToMethodName |
830 | method = |
831 | MethodDesc::FindOrCreateAssociatedMethodDesc(method, |
832 | pMethMT, |
833 | (!method->IsStatic() && pMethMT->IsValueType()), |
834 | method->GetMethodInstantiation(), |
835 | false /* do not allow code with a shared-code calling convention to be returned */, |
836 | true /* Ensure that methods on generic interfaces are returned as instantiated method descs */); |
837 | |
838 | BOOL fIsOpenDelegate; |
839 | if (COMDelegate::IsMethodDescCompatible((gc.refFirstArg == NULL) ? TypeHandle() : gc.refFirstArg->GetTrueTypeHandle(), |
840 | TypeHandle(pMethMT), |
841 | method, |
842 | gc.refThis->GetTypeHandle(), |
843 | pInvokeMeth, |
844 | flags, |
845 | &fIsOpenDelegate)) |
846 | { |
847 | // Initialize the delegate to point to the target method. |
848 | BindToMethod(&gc.refThis, |
849 | &gc.refFirstArg, |
850 | method, |
851 | pMethMT, |
852 | fIsOpenDelegate, |
853 | !(flags & DBF_SkipSecurityChecks)); |
854 | } |
855 | else |
856 | result = FALSE; |
857 | |
858 | HELPER_METHOD_FRAME_END(); |
859 | |
860 | FC_RETURN_BOOL(result); |
861 | } |
862 | FCIMPLEND |
863 | |
864 | // This method is called (in the late bound case only) once a target method has been decided on. All the consistency checks |
865 | // (signature matching etc.) have been done at this point and the only major reason we could fail now is on security grounds |
866 | // (someone trying to create a delegate over a method that's not visible to them for instance). This method will initialize the |
867 | // delegate (wrapping it in a secure delegate if necessary). Upon return the delegate should be ready for invocation. |
868 | void COMDelegate::BindToMethod(DELEGATEREF *pRefThis, |
869 | OBJECTREF *pRefFirstArg, |
870 | MethodDesc *pTargetMethod, |
871 | MethodTable *pExactMethodType, |
872 | BOOL fIsOpenDelegate, |
873 | BOOL fCheckSecurity) |
874 | { |
875 | CONTRACTL |
876 | { |
877 | THROWS; |
878 | GC_TRIGGERS; |
879 | MODE_COOPERATIVE; |
880 | PRECONDITION(CheckPointer(pRefThis)); |
881 | PRECONDITION(CheckPointer(pRefFirstArg, NULL_OK)); |
882 | PRECONDITION(CheckPointer(pTargetMethod)); |
883 | PRECONDITION(CheckPointer(pExactMethodType)); |
884 | } |
885 | CONTRACTL_END; |
886 | |
887 | // We might have to wrap the delegate in a secure delegate depending on the location of the target method. The following local |
888 | // keeps track of the real (i.e. non-secure) delegate whether or not this is required. |
889 | DELEGATEREF refRealDelegate = NULL; |
890 | GCPROTECT_BEGIN(refRealDelegate); |
891 | |
892 | // Security checks (i.e. whether the creator of the delegate is allowed to access the target method) are the norm. They are only |
893 | // disabled when: |
894 | // 1. this is called by deserialization to recreate an existing delegate instance, where such checks are unwarranted. |
895 | // 2. this is called from DynamicMethod.CreateDelegate which doesn't need access check. |
896 | if (fCheckSecurity) |
897 | { |
898 | MethodTable *pInstanceMT = pExactMethodType; |
899 | bool targetPossiblyRemoted = false; |
900 | |
901 | if (fIsOpenDelegate) |
902 | { |
903 | _ASSERTE(pRefFirstArg == NULL || *pRefFirstArg == NULL); |
904 | |
905 | } |
906 | else |
907 | { |
908 | // closed-static is OK and we can check the target in the closed-instance case |
909 | pInstanceMT = (*pRefFirstArg == NULL ? NULL : (*pRefFirstArg)->GetMethodTable()); |
910 | } |
911 | |
912 | RefSecContext sCtx(InvokeUtil::GetInvocationAccessCheckType(targetPossiblyRemoted)); |
913 | |
914 | // Check visibility of the target method. If it's an instance method, we have to pass the type |
915 | // of the instance being accessed which we get from the first argument or from the method itself. |
916 | // The type of the instance is necessary for visibility checks of protected methods. |
917 | InvokeUtil::CheckAccessMethod(&sCtx, |
918 | pExactMethodType, |
919 | pTargetMethod->IsStatic() ? NULL : pInstanceMT, |
920 | pTargetMethod); |
921 | } |
922 | |
923 | // If we didn't wrap the real delegate in a secure delegate then the real delegate is the one passed in. |
924 | if (refRealDelegate == NULL) |
925 | { |
926 | if (NeedsWrapperDelegate(pTargetMethod)) |
927 | refRealDelegate = CreateSecureDelegate(*pRefThis, NULL, pTargetMethod); |
928 | else |
929 | refRealDelegate = *pRefThis; |
930 | } |
931 | |
932 | pTargetMethod->EnsureActive(); |
933 | |
934 | if (fIsOpenDelegate) |
935 | { |
936 | _ASSERTE(pRefFirstArg == NULL || *pRefFirstArg == NULL); |
937 | |
938 | // Open delegates use themselves as the target (which handily allows their shuffle thunks to locate additional data at |
939 | // invocation time). |
940 | refRealDelegate->SetTarget(refRealDelegate); |
941 | |
942 | // We need to shuffle arguments for open delegates since the first argument on the calling side is not meaningful to the |
943 | // callee. |
944 | MethodTable * pDelegateMT = (*pRefThis)->GetMethodTable(); |
945 | DelegateEEClass *pDelegateClass = (DelegateEEClass*)pDelegateMT->GetClass(); |
946 | Stub *pShuffleThunk = NULL; |
947 | |
948 | // Look for a thunk cached on the delegate class first. Note we need a different thunk for instance methods with a |
949 | // hidden return buffer argument because the extra argument switches place with the target when coming from the caller. |
950 | if (!pTargetMethod->IsStatic() && pTargetMethod->HasRetBuffArg() && IsRetBuffPassedAsFirstArg()) |
951 | pShuffleThunk = pDelegateClass->m_pInstRetBuffCallStub; |
952 | else |
953 | pShuffleThunk = pDelegateClass->m_pStaticCallStub; |
954 | |
955 | // If we haven't already setup a shuffle thunk go do it now (which will cache the result automatically). |
956 | if (!pShuffleThunk) |
957 | pShuffleThunk = SetupShuffleThunk(pDelegateMT, pTargetMethod); |
958 | |
959 | // Indicate that the delegate will jump to the shuffle thunk rather than directly to the target method. |
960 | refRealDelegate->SetMethodPtr(pShuffleThunk->GetEntryPoint()); |
961 | |
962 | // Use stub dispatch for all virtuals. |
963 | // <TODO> Investigate not using this for non-interface virtuals. </TODO> |
964 | // The virtual dispatch stub doesn't work on unboxed value type objects which don't have MT pointers. |
965 | // Since open instance delegates on value type methods require unboxed objects we cannot use the |
966 | // virtual dispatch stub for them. On the other hand, virtual methods on value types don't need |
967 | // to be dispatched because value types cannot be derived. So we treat them like non-virtual methods. |
968 | if (pTargetMethod->IsVirtual() && !pTargetMethod->GetMethodTable()->IsValueType()) |
969 | { |
970 | // Since this is an open delegate over a virtual method we cannot virtualize the call target now. So the shuffle thunk |
971 | // needs to jump to another stub (this time provided by the VirtualStubManager) that will virtualize the call at |
972 | // runtime. |
973 | PCODE pTargetCall = GetVirtualCallStub(pTargetMethod, TypeHandle(pExactMethodType)); |
974 | refRealDelegate->SetMethodPtrAux(pTargetCall); |
975 | refRealDelegate->SetInvocationCount((INT_PTR)(void *)pTargetMethod); |
976 | } |
977 | else |
978 | { |
979 | // <TODO> If VSD isn't compiled in this gives the wrong result for virtuals (we need run time virtualization). </TODO> |
980 | // Reflection or the code in BindToMethodName will pass us the unboxing stub for non-static methods on value types. But |
981 | // for open invocation on value type methods the actual reference will be passed so we need the unboxed method desc |
982 | // instead. |
983 | if (pTargetMethod->IsUnboxingStub()) |
984 | { |
985 | // We want a MethodDesc which is not an unboxing stub, but is an instantiating stub if needed. |
986 | pTargetMethod = MethodDesc::FindOrCreateAssociatedMethodDesc( |
987 | pTargetMethod, |
988 | pExactMethodType, |
989 | FALSE /* don't want unboxing entry point */, |
990 | pTargetMethod->GetMethodInstantiation(), |
991 | FALSE /* don't want MD that requires inst. arguments */, |
992 | true /* Ensure that methods on generic interfaces are returned as instantiated method descs */); |
993 | } |
994 | |
995 | // The method must not require any extra hidden instantiation arguments. |
996 | _ASSERTE(!pTargetMethod->RequiresInstArg()); |
997 | |
998 | // Note that it is important to cache pTargetCode in local variable to avoid GC hole. |
999 | // GetMultiCallableAddrOfCode() can trigger GC. |
1000 | PCODE pTargetCode = pTargetMethod->GetMultiCallableAddrOfCode(); |
1001 | refRealDelegate->SetMethodPtrAux(pTargetCode); |
1002 | } |
1003 | } |
1004 | else |
1005 | { |
1006 | PCODE pTargetCode = NULL; |
1007 | |
1008 | // For virtual methods we can (and should) virtualize the call now (so we don't have to insert a thunk to do so at runtime). |
1009 | // <TODO> |
1010 | // Remove the following if we decide we won't cope with this case on late bound. |
1011 | // We can get virtual delegates closed over null through this code path, so be careful to handle that case (no need to |
1012 | // virtualize since we're just going to throw NullRefException at invocation time). |
1013 | // </TODO> |
1014 | if (pTargetMethod->IsVirtual() && |
1015 | *pRefFirstArg != NULL && |
1016 | pTargetMethod->GetMethodTable() != (*pRefFirstArg)->GetMethodTable()) |
1017 | pTargetCode = pTargetMethod->GetMultiCallableAddrOfVirtualizedCode(pRefFirstArg, pTargetMethod->GetMethodTable()); |
1018 | else |
1019 | #ifdef HAS_THISPTR_RETBUF_PRECODE |
1020 | if (pTargetMethod->IsStatic() && pTargetMethod->HasRetBuffArg() && IsRetBuffPassedAsFirstArg()) |
1021 | pTargetCode = pTargetMethod->GetLoaderAllocatorForCode()->GetFuncPtrStubs()->GetFuncPtrStub(pTargetMethod, PRECODE_THISPTR_RETBUF); |
1022 | else |
1023 | #endif // HAS_THISPTR_RETBUF_PRECODE |
1024 | pTargetCode = pTargetMethod->GetMultiCallableAddrOfCode(); |
1025 | _ASSERTE(pTargetCode); |
1026 | |
1027 | refRealDelegate->SetTarget(*pRefFirstArg); |
1028 | refRealDelegate->SetMethodPtr(pTargetCode); |
1029 | } |
1030 | |
1031 | LoaderAllocator *pLoaderAllocator = pTargetMethod->GetLoaderAllocator(); |
1032 | |
1033 | if (pLoaderAllocator->IsCollectible()) |
1034 | refRealDelegate->SetMethodBase(pLoaderAllocator->GetExposedObject()); |
1035 | |
1036 | GCPROTECT_END(); |
1037 | } |
1038 | |
1039 | // Marshals a managed method to an unmanaged callback provided the |
1040 | // managed method is static and it's parameters require no marshalling. |
1041 | PCODE COMDelegate::ConvertToCallback(MethodDesc* pMD) |
1042 | { |
1043 | CONTRACTL |
1044 | { |
1045 | THROWS; |
1046 | GC_TRIGGERS; |
1047 | INJECT_FAULT(COMPlusThrowOM()); |
1048 | } |
1049 | CONTRACTL_END; |
1050 | |
1051 | PCODE pCode = NULL; |
1052 | |
1053 | // only static methods are allowed |
1054 | if (!pMD->IsStatic()) |
1055 | COMPlusThrow(kNotSupportedException, W("NotSupported_NonStaticMethod" )); |
1056 | |
1057 | // no generic methods |
1058 | if (pMD->IsGenericMethodDefinition()) |
1059 | COMPlusThrow(kNotSupportedException, W("NotSupported_GenericMethod" )); |
1060 | |
1061 | // Arguments |
1062 | if (NDirect::MarshalingRequired(pMD, pMD->GetSig(), pMD->GetModule())) |
1063 | COMPlusThrow(kNotSupportedException, W("NotSupported_NonBlittableTypes" )); |
1064 | |
1065 | // Get UMEntryThunk from the thunk cache. |
1066 | UMEntryThunk *pUMEntryThunk = pMD->GetLoaderAllocator()->GetUMEntryThunkCache()->GetUMEntryThunk(pMD); |
1067 | |
1068 | #if defined(_TARGET_X86_) && !defined(FEATURE_STUBS_AS_IL) |
1069 | |
1070 | // System.Runtime.InteropServices.NativeCallableAttribute |
1071 | BYTE* pData = NULL; |
1072 | LONG cData = 0; |
1073 | CorPinvokeMap callConv = (CorPinvokeMap)0; |
1074 | |
1075 | HRESULT hr = pMD->GetMDImport()->GetCustomAttributeByName(pMD->GetMemberDef(), g_NativeCallableAttribute, (const VOID **)(&pData), (ULONG *)&cData); |
1076 | IfFailThrow(hr); |
1077 | |
1078 | if (cData > 0) |
1079 | { |
1080 | CustomAttributeParser ca(pData, cData); |
1081 | // NativeCallable has two optional named arguments CallingConvention and EntryPoint. |
1082 | CaNamedArg namedArgs[2]; |
1083 | CaTypeCtor caType(SERIALIZATION_TYPE_STRING); |
1084 | // First, the void constructor. |
1085 | IfFailThrow(ParseKnownCaArgs(ca, NULL, 0)); |
1086 | |
1087 | // Now the optional named properties |
1088 | namedArgs[0].InitI4FieldEnum("CallingConvention" , "System.Runtime.InteropServices.CallingConvention" , (ULONG)callConv); |
1089 | namedArgs[1].Init("EntryPoint" , SERIALIZATION_TYPE_STRING, caType); |
1090 | IfFailThrow(ParseKnownCaNamedArgs(ca, namedArgs, lengthof(namedArgs))); |
1091 | |
1092 | callConv = (CorPinvokeMap)(namedArgs[0].val.u4 << 8); |
1093 | // Let UMThunkMarshalInfo choose the default if calling convension not definied. |
1094 | if (namedArgs[0].val.type.tag != SERIALIZATION_TYPE_UNDEFINED) |
1095 | { |
1096 | UMThunkMarshInfo* pUMThunkMarshalInfo = pUMEntryThunk->GetUMThunkMarshInfo(); |
1097 | pUMThunkMarshalInfo->SetCallingConvention(callConv); |
1098 | } |
1099 | } |
1100 | #endif //_TARGET_X86_ && !FEATURE_STUBS_AS_IL |
1101 | |
1102 | pCode = (PCODE)pUMEntryThunk->GetCode(); |
1103 | _ASSERTE(pCode != NULL); |
1104 | return pCode; |
1105 | } |
1106 | |
1107 | // Marshals a delegate to a unmanaged callback. |
1108 | LPVOID COMDelegate::ConvertToCallback(OBJECTREF pDelegateObj) |
1109 | { |
1110 | CONTRACTL |
1111 | { |
1112 | THROWS; |
1113 | GC_TRIGGERS; |
1114 | MODE_COOPERATIVE; |
1115 | |
1116 | INJECT_FAULT(COMPlusThrowOM()); |
1117 | } |
1118 | CONTRACTL_END; |
1119 | |
1120 | if (!pDelegateObj) |
1121 | return NULL; |
1122 | |
1123 | DELEGATEREF pDelegate = (DELEGATEREF) pDelegateObj; |
1124 | |
1125 | PCODE pCode; |
1126 | GCPROTECT_BEGIN(pDelegate); |
1127 | |
1128 | MethodTable* pMT = pDelegate->GetMethodTable(); |
1129 | DelegateEEClass* pClass = (DelegateEEClass*)(pMT->GetClass()); |
1130 | |
1131 | if (pMT->HasInstantiation()) |
1132 | COMPlusThrowArgumentException(W("delegate" ), W("Argument_NeedNonGenericType" )); |
1133 | |
1134 | // If we are a delegate originally created from an unmanaged function pointer, we will simply return |
1135 | // that function pointer. |
1136 | if (DELEGATE_MARKER_UNMANAGEDFPTR == pDelegate->GetInvocationCount()) |
1137 | { |
1138 | pCode = pDelegate->GetMethodPtrAux(); |
1139 | } |
1140 | else |
1141 | { |
1142 | UMEntryThunk* pUMEntryThunk = NULL; |
1143 | SyncBlock* pSyncBlock = pDelegate->GetSyncBlock(); |
1144 | |
1145 | InteropSyncBlockInfo* pInteropInfo = pSyncBlock->GetInteropInfo(); |
1146 | |
1147 | pUMEntryThunk = (UMEntryThunk*)pInteropInfo->GetUMEntryThunk(); |
1148 | |
1149 | if (!pUMEntryThunk) |
1150 | { |
1151 | |
1152 | UMThunkMarshInfo *pUMThunkMarshInfo = pClass->m_pUMThunkMarshInfo; |
1153 | MethodDesc *pInvokeMeth = FindDelegateInvokeMethod(pMT); |
1154 | |
1155 | if (!pUMThunkMarshInfo) |
1156 | { |
1157 | GCX_PREEMP(); |
1158 | |
1159 | pUMThunkMarshInfo = new UMThunkMarshInfo(); |
1160 | pUMThunkMarshInfo->LoadTimeInit(pInvokeMeth); |
1161 | |
1162 | g_IBCLogger.LogEEClassCOWTableAccess(pMT); |
1163 | EnsureWritablePages(pClass); |
1164 | if (FastInterlockCompareExchangePointer(&(pClass->m_pUMThunkMarshInfo), |
1165 | pUMThunkMarshInfo, |
1166 | NULL ) != NULL) |
1167 | { |
1168 | delete pUMThunkMarshInfo; |
1169 | pUMThunkMarshInfo = pClass->m_pUMThunkMarshInfo; |
1170 | } |
1171 | } |
1172 | |
1173 | _ASSERTE(pUMThunkMarshInfo != NULL); |
1174 | _ASSERTE(pUMThunkMarshInfo == pClass->m_pUMThunkMarshInfo); |
1175 | |
1176 | pUMEntryThunk = UMEntryThunk::CreateUMEntryThunk(); |
1177 | Holder<UMEntryThunk *, DoNothing, UMEntryThunk::FreeUMEntryThunk> umHolder; |
1178 | umHolder.Assign(pUMEntryThunk); |
1179 | |
1180 | // multicast. go thru Invoke |
1181 | OBJECTHANDLE objhnd = GetAppDomain()->CreateLongWeakHandle(pDelegate); |
1182 | _ASSERTE(objhnd != NULL); |
1183 | |
1184 | // This target should not ever be used. We are storing it in the thunk for better diagnostics of "call on collected delegate" crashes. |
1185 | PCODE pManagedTargetForDiagnostics = (pDelegate->GetMethodPtrAux() != NULL) ? pDelegate->GetMethodPtrAux() : pDelegate->GetMethodPtr(); |
1186 | |
1187 | // MethodDesc is passed in for profiling to know the method desc of target |
1188 | pUMEntryThunk->LoadTimeInit( |
1189 | pManagedTargetForDiagnostics, |
1190 | objhnd, |
1191 | pUMThunkMarshInfo, pInvokeMeth, |
1192 | GetAppDomain()->GetId()); |
1193 | |
1194 | #ifdef FEATURE_WINDOWSPHONE |
1195 | // Perform the runtime initialization lazily for better startup time. Lazy initialization |
1196 | // has worse diagnostic experience (the invalid marshaling directive exception is thrown |
1197 | // lazily on the first call instead of during delegate creation), but it should be ok |
1198 | // for CoreCLR on phone because of reverse p-invoke is for internal use only. |
1199 | #else |
1200 | { |
1201 | GCX_PREEMP(); |
1202 | |
1203 | pUMEntryThunk->RunTimeInit(); |
1204 | } |
1205 | #endif |
1206 | |
1207 | if (!pInteropInfo->SetUMEntryThunk(pUMEntryThunk)) |
1208 | { |
1209 | pUMEntryThunk = (UMEntryThunk*)pInteropInfo->GetUMEntryThunk(); |
1210 | } |
1211 | else |
1212 | { |
1213 | umHolder.SuppressRelease(); |
1214 | // Insert the delegate handle / UMEntryThunk* into the hash |
1215 | LPVOID key = (LPVOID)pUMEntryThunk; |
1216 | |
1217 | // Assert that the entry isn't already in the hash. |
1218 | _ASSERTE((LPVOID)INVALIDENTRY == COMDelegate::s_pDelegateToFPtrHash->LookupValue((UPTR)key, 0)); |
1219 | |
1220 | { |
1221 | CrstHolder ch(&COMDelegate::s_DelegateToFPtrHashCrst); |
1222 | COMDelegate::s_pDelegateToFPtrHash->InsertValue((UPTR)key, pUMEntryThunk->GetObjectHandle()); |
1223 | } |
1224 | } |
1225 | |
1226 | _ASSERTE(pUMEntryThunk != NULL); |
1227 | _ASSERTE(pUMEntryThunk == (UMEntryThunk*)pInteropInfo->GetUMEntryThunk()); |
1228 | |
1229 | } |
1230 | pCode = (PCODE)pUMEntryThunk->GetCode(); |
1231 | } |
1232 | |
1233 | GCPROTECT_END(); |
1234 | return (LPVOID)pCode; |
1235 | } |
1236 | |
1237 | // Marshals an unmanaged callback to Delegate |
1238 | //static |
1239 | OBJECTREF COMDelegate::ConvertToDelegate(LPVOID pCallback, MethodTable* pMT) |
1240 | { |
1241 | CONTRACTL |
1242 | { |
1243 | THROWS; |
1244 | GC_TRIGGERS; |
1245 | MODE_COOPERATIVE; |
1246 | } |
1247 | CONTRACTL_END; |
1248 | |
1249 | if (!pCallback) |
1250 | { |
1251 | return NULL; |
1252 | } |
1253 | |
1254 | ////////////////////////////////////////////////////////////////////////////////////////////////////////// |
1255 | // Check if this callback was originally a managed method passed out to unmanaged code. |
1256 | // |
1257 | |
1258 | UMEntryThunk* pUMEntryThunk = NULL; |
1259 | |
1260 | #ifdef MDA_SUPPORTED |
1261 | if (MDA_GET_ASSISTANT(InvalidFunctionPointerInDelegate)) |
1262 | { |
1263 | EX_TRY |
1264 | { |
1265 | AVInRuntimeImplOkayHolder AVOkay; |
1266 | pUMEntryThunk = UMEntryThunk::Decode(pCallback); |
1267 | } |
1268 | EX_CATCH |
1269 | { |
1270 | MDA_TRIGGER_ASSISTANT(InvalidFunctionPointerInDelegate, ReportViolation(pCallback)); |
1271 | } |
1272 | EX_END_CATCH(SwallowAllExceptions) |
1273 | } |
1274 | else |
1275 | #endif // MDA_SUPPORTED |
1276 | { |
1277 | pUMEntryThunk = UMEntryThunk::Decode(pCallback); |
1278 | } |
1279 | |
1280 | // Lookup the callsite in the hash, if found, we can map this call back to its managed function. |
1281 | // Otherwise, we'll treat this as an unmanaged callsite. |
1282 | // Make sure that the pointer doesn't have the value of 1 which is our hash table deleted item marker. |
1283 | LPVOID DelegateHnd = (pUMEntryThunk != NULL) && ((UPTR)pUMEntryThunk != (UPTR)1) |
1284 | ? COMDelegate::s_pDelegateToFPtrHash->LookupValue((UPTR)pUMEntryThunk, 0) |
1285 | : (LPVOID)INVALIDENTRY; |
1286 | |
1287 | if (DelegateHnd != (LPVOID)INVALIDENTRY) |
1288 | { |
1289 | // Found a managed callsite |
1290 | OBJECTREF pDelegate = NULL; |
1291 | GCPROTECT_BEGIN(pDelegate); |
1292 | |
1293 | pDelegate = ObjectFromHandle((OBJECTHANDLE)DelegateHnd); |
1294 | |
1295 | // Make sure we're not trying to sneak into another domain. |
1296 | SyncBlock* pSyncBlock = pDelegate->GetSyncBlock(); |
1297 | _ASSERTE(pSyncBlock); |
1298 | |
1299 | InteropSyncBlockInfo* pInteropInfo = pSyncBlock->GetInteropInfo(); |
1300 | _ASSERTE(pInteropInfo); |
1301 | |
1302 | pUMEntryThunk = (UMEntryThunk*)pInteropInfo->GetUMEntryThunk(); |
1303 | _ASSERTE(pUMEntryThunk); |
1304 | |
1305 | if (pUMEntryThunk->GetDomainId() != GetAppDomain()->GetId()) |
1306 | COMPlusThrow(kNotSupportedException, W("NotSupported_DelegateMarshalToWrongDomain" )); |
1307 | |
1308 | GCPROTECT_END(); |
1309 | return pDelegate; |
1310 | } |
1311 | |
1312 | |
1313 | ////////////////////////////////////////////////////////////////////////////////////////////////////////// |
1314 | // This is an unmanaged callsite. We need to create a new delegate. |
1315 | // |
1316 | // The delegate's invoke method will point to a call thunk. |
1317 | // The call thunk will internally shuffle the args, set up a DelegateTransitionFrame, marshal the args, |
1318 | // call the UM Function located at m_pAuxField, unmarshal the args, and return. |
1319 | // Invoke -> CallThunk -> ShuffleThunk -> Frame -> Marshal -> Call AuxField -> UnMarshal |
1320 | |
1321 | DelegateEEClass* pClass = (DelegateEEClass*)pMT->GetClass(); |
1322 | MethodDesc* pMD = FindDelegateInvokeMethod(pMT); |
1323 | |
1324 | PREFIX_ASSUME(pClass != NULL); |
1325 | |
1326 | ////////////////////////////////////////////////////////////////////////////////////////////////////////// |
1327 | // Get or create the marshaling stub information |
1328 | // |
1329 | |
1330 | PCODE pMarshalStub = pClass->m_pMarshalStub; |
1331 | if (pMarshalStub == NULL) |
1332 | { |
1333 | GCX_PREEMP(); |
1334 | |
1335 | pMarshalStub = GetStubForInteropMethod(pMD, 0, &(pClass->m_pForwardStubMD)); |
1336 | |
1337 | // Save this new stub on the DelegateEEClass. |
1338 | EnsureWritablePages(dac_cast<PVOID>(&pClass->m_pMarshalStub), sizeof(PCODE)); |
1339 | InterlockedCompareExchangeT<PCODE>(&pClass->m_pMarshalStub, pMarshalStub, NULL); |
1340 | |
1341 | pMarshalStub = pClass->m_pMarshalStub; |
1342 | } |
1343 | |
1344 | // The IL marshaling stub performs the function of the shuffle thunk - it simply omits 'this' in |
1345 | // the call to unmanaged code. The stub recovers the unmanaged target from the delegate instance. |
1346 | |
1347 | _ASSERTE(pMarshalStub != NULL); |
1348 | |
1349 | ////////////////////////////////////////////////////////////////////////////////////////////////////////// |
1350 | // Wire up the stubs to the new delegate instance. |
1351 | // |
1352 | |
1353 | LOG((LF_INTEROP, LL_INFO10000, "Created delegate for function pointer: entrypoint: %p\n" , pMarshalStub)); |
1354 | |
1355 | // Create the new delegate |
1356 | DELEGATEREF delObj = (DELEGATEREF) pMT->Allocate(); |
1357 | |
1358 | { |
1359 | // delObj is not protected |
1360 | GCX_NOTRIGGER(); |
1361 | |
1362 | // Wire up the unmanaged call stub to the delegate. |
1363 | delObj->SetTarget(delObj); // We are the "this" object |
1364 | |
1365 | // For X86, we save the entry point in the delegate's method pointer and the UM Callsite in the aux pointer. |
1366 | delObj->SetMethodPtr(pMarshalStub); |
1367 | delObj->SetMethodPtrAux((PCODE)pCallback); |
1368 | |
1369 | // Also, mark this delegate as an unmanaged function pointer wrapper. |
1370 | delObj->SetInvocationCount(DELEGATE_MARKER_UNMANAGEDFPTR); |
1371 | } |
1372 | |
1373 | #if defined(_TARGET_X86_) |
1374 | GCPROTECT_BEGIN(delObj); |
1375 | |
1376 | Stub *pInterceptStub = NULL; |
1377 | |
1378 | { |
1379 | GCX_PREEMP(); |
1380 | |
1381 | MethodDesc *pStubMD = pClass->m_pForwardStubMD; |
1382 | _ASSERTE(pStubMD != NULL && pStubMD->IsILStub()); |
1383 | |
1384 | #if defined(MDA_SUPPORTED) |
1385 | if (MDA_GET_ASSISTANT(PInvokeStackImbalance)) |
1386 | { |
1387 | pInterceptStub = GenerateStubForMDA(pMD, pStubMD, pCallback, pInterceptStub); |
1388 | } |
1389 | #endif // MDA_SUPPORTED |
1390 | } |
1391 | |
1392 | if (pInterceptStub != NULL) |
1393 | { |
1394 | // install the outer-most stub to sync block |
1395 | SyncBlock *pSyncBlock = delObj->GetSyncBlock(); |
1396 | |
1397 | InteropSyncBlockInfo *pInteropInfo = pSyncBlock->GetInteropInfo(); |
1398 | VERIFY(pInteropInfo->SetInterceptStub(pInterceptStub)); |
1399 | } |
1400 | |
1401 | GCPROTECT_END(); |
1402 | #endif // _TARGET_X86_ |
1403 | |
1404 | return delObj; |
1405 | } |
1406 | |
1407 | #ifdef FEATURE_COMINTEROP |
1408 | // Marshals a WinRT delegate interface pointer to a managed Delegate |
1409 | //static |
1410 | OBJECTREF COMDelegate::ConvertWinRTInterfaceToDelegate(IUnknown *pIdentity, MethodTable* pMT) |
1411 | { |
1412 | CONTRACTL |
1413 | { |
1414 | THROWS; |
1415 | GC_TRIGGERS; |
1416 | MODE_COOPERATIVE; |
1417 | PRECONDITION(CheckPointer(pIdentity)); |
1418 | PRECONDITION(CheckPointer(pMT)); |
1419 | } |
1420 | CONTRACTL_END; |
1421 | |
1422 | MethodDesc* pMD = FindDelegateInvokeMethod(pMT); |
1423 | |
1424 | if (pMD->IsSharedByGenericInstantiations()) |
1425 | { |
1426 | // we need an exact MD to represent the call |
1427 | pMD = InstantiatedMethodDesc::FindOrCreateExactClassMethod(pMT, pMD); |
1428 | } |
1429 | else |
1430 | { |
1431 | // set up ComPlusCallInfo |
1432 | PopulateComPlusCallInfo(pMT); |
1433 | } |
1434 | |
1435 | ComPlusCallInfo *pComInfo = ComPlusCallInfo::FromMethodDesc(pMD); |
1436 | PCODE pMarshalStub = (pComInfo == NULL ? NULL : pComInfo->m_pILStub); |
1437 | |
1438 | if (pMarshalStub == NULL) |
1439 | { |
1440 | GCX_PREEMP(); |
1441 | |
1442 | DWORD dwStubFlags = NDIRECTSTUB_FL_COM | NDIRECTSTUB_FL_WINRT | NDIRECTSTUB_FL_WINRTDELEGATE; |
1443 | |
1444 | pMarshalStub = GetStubForInteropMethod(pMD, dwStubFlags); |
1445 | |
1446 | // At this point we must have a non-NULL ComPlusCallInfo |
1447 | pComInfo = ComPlusCallInfo::FromMethodDesc(pMD); |
1448 | _ASSERTE(pComInfo != NULL); |
1449 | |
1450 | // Save this new stub on the ComPlusCallInfo |
1451 | InterlockedCompareExchangeT<PCODE>(EnsureWritablePages(&pComInfo->m_pILStub), pMarshalStub, NULL); |
1452 | |
1453 | pMarshalStub = pComInfo->m_pILStub; |
1454 | } |
1455 | |
1456 | _ASSERTE(pMarshalStub != NULL); |
1457 | |
1458 | ////////////////////////////////////////////////////////////////////////////////////////////////////////// |
1459 | // Wire up the stub to the new delegate instance. |
1460 | // |
1461 | |
1462 | LOG((LF_INTEROP, LL_INFO10000, "Created delegate for WinRT interface: pUnk: %p\n" , pIdentity)); |
1463 | |
1464 | // Create the new delegate |
1465 | DELEGATEREF delObj = (DELEGATEREF) pMT->Allocate(); |
1466 | |
1467 | { |
1468 | // delObj is not protected |
1469 | GCX_NOTRIGGER(); |
1470 | |
1471 | // Wire up the unmanaged call stub to the delegate. |
1472 | delObj->SetTarget(delObj); // We are the "this" object |
1473 | |
1474 | // We save the entry point in the delegate's method pointer and the identity pUnk in the aux pointer. |
1475 | delObj->SetMethodPtr(pMarshalStub); |
1476 | delObj->SetMethodPtrAux((PCODE)pIdentity); |
1477 | |
1478 | // Also, mark this delegate as an unmanaged function pointer wrapper. |
1479 | delObj->SetInvocationCount(DELEGATE_MARKER_UNMANAGEDFPTR); |
1480 | } |
1481 | |
1482 | return delObj; |
1483 | } |
1484 | #endif // FEATURE_COMINTEROP |
1485 | |
1486 | void COMDelegate::ValidateDelegatePInvoke(MethodDesc* pMD) |
1487 | { |
1488 | CONTRACTL |
1489 | { |
1490 | THROWS; |
1491 | GC_TRIGGERS; |
1492 | MODE_ANY; |
1493 | |
1494 | PRECONDITION(CheckPointer(pMD)); |
1495 | } |
1496 | CONTRACTL_END; |
1497 | |
1498 | if (pMD->IsSynchronized()) |
1499 | COMPlusThrow(kTypeLoadException, IDS_EE_NOSYNCHRONIZED); |
1500 | |
1501 | if (pMD->MethodDesc::IsVarArg()) |
1502 | COMPlusThrow(kNotSupportedException, IDS_EE_VARARG_NOT_SUPPORTED); |
1503 | } |
1504 | |
1505 | // static |
1506 | PCODE COMDelegate::GetStubForILStub(EEImplMethodDesc* pDelegateMD, MethodDesc** ppStubMD, DWORD dwStubFlags) |
1507 | { |
1508 | CONTRACT(PCODE) |
1509 | { |
1510 | STANDARD_VM_CHECK; |
1511 | |
1512 | PRECONDITION(CheckPointer(pDelegateMD)); |
1513 | POSTCONDITION(RETVAL != NULL); |
1514 | } |
1515 | CONTRACT_END; |
1516 | |
1517 | ValidateDelegatePInvoke(pDelegateMD); |
1518 | |
1519 | dwStubFlags |= NDIRECTSTUB_FL_DELEGATE; |
1520 | |
1521 | RETURN NDirect::GetStubForILStub(pDelegateMD, ppStubMD, dwStubFlags); |
1522 | } |
1523 | |
1524 | #endif // CROSSGEN_COMPILE |
1525 | |
1526 | |
1527 | // static |
1528 | MethodDesc* COMDelegate::GetILStubMethodDesc(EEImplMethodDesc* pDelegateMD, DWORD dwStubFlags) |
1529 | { |
1530 | STANDARD_VM_CONTRACT; |
1531 | |
1532 | MethodTable *pMT = pDelegateMD->GetMethodTable(); |
1533 | |
1534 | #ifdef FEATURE_COMINTEROP |
1535 | if (pMT->IsWinRTDelegate()) |
1536 | { |
1537 | dwStubFlags |= NDIRECTSTUB_FL_COM | NDIRECTSTUB_FL_WINRT | NDIRECTSTUB_FL_WINRTDELEGATE; |
1538 | } |
1539 | else |
1540 | #endif // FEATURE_COMINTEROP |
1541 | { |
1542 | dwStubFlags |= NDIRECTSTUB_FL_DELEGATE; |
1543 | } |
1544 | |
1545 | PInvokeStaticSigInfo sigInfo(pDelegateMD); |
1546 | return NDirect::CreateCLRToNativeILStub(&sigInfo, dwStubFlags, pDelegateMD); |
1547 | } |
1548 | |
1549 | |
1550 | #ifndef CROSSGEN_COMPILE |
1551 | |
1552 | FCIMPL2(FC_BOOL_RET, COMDelegate::CompareUnmanagedFunctionPtrs, Object *refDelegate1UNSAFE, Object *refDelegate2UNSAFE) |
1553 | { |
1554 | CONTRACTL |
1555 | { |
1556 | FCALL_CHECK; |
1557 | PRECONDITION(refDelegate1UNSAFE != NULL); |
1558 | PRECONDITION(refDelegate2UNSAFE != NULL); |
1559 | } |
1560 | CONTRACTL_END; |
1561 | |
1562 | DELEGATEREF refD1 = (DELEGATEREF) ObjectToOBJECTREF(refDelegate1UNSAFE); |
1563 | DELEGATEREF refD2 = (DELEGATEREF) ObjectToOBJECTREF(refDelegate2UNSAFE); |
1564 | BOOL ret = FALSE; |
1565 | |
1566 | // Make sure this is an unmanaged function pointer wrapped in a delegate. |
1567 | CONSISTENCY_CHECK(DELEGATE_MARKER_UNMANAGEDFPTR == refD1->GetInvocationCount()); |
1568 | CONSISTENCY_CHECK(DELEGATE_MARKER_UNMANAGEDFPTR == refD2->GetInvocationCount()); |
1569 | |
1570 | ret = (refD1->GetMethodPtr() == refD2->GetMethodPtr() && |
1571 | refD1->GetMethodPtrAux() == refD2->GetMethodPtrAux()); |
1572 | |
1573 | FC_RETURN_BOOL(ret); |
1574 | } |
1575 | FCIMPLEND |
1576 | |
1577 | |
1578 | void COMDelegate::RemoveEntryFromFPtrHash(UPTR key) |
1579 | { |
1580 | WRAPPER_NO_CONTRACT; |
1581 | |
1582 | // Remove this entry from the lookup hash. |
1583 | CrstHolder ch(&COMDelegate::s_DelegateToFPtrHashCrst); |
1584 | COMDelegate::s_pDelegateToFPtrHash->DeleteValue(key, NULL); |
1585 | } |
1586 | |
1587 | FCIMPL2(PCODE, COMDelegate::GetCallStub, Object* refThisUNSAFE, PCODE method) |
1588 | { |
1589 | FCALL_CONTRACT; |
1590 | |
1591 | PCODE target = NULL; |
1592 | |
1593 | DELEGATEREF refThis = (DELEGATEREF)ObjectToOBJECTREF(refThisUNSAFE); |
1594 | HELPER_METHOD_FRAME_BEGIN_RET_1(refThis); |
1595 | MethodDesc *pMeth = MethodTable::GetMethodDescForSlotAddress((PCODE)method); |
1596 | _ASSERTE(pMeth); |
1597 | _ASSERTE(!pMeth->IsStatic() && pMeth->IsVirtual()); |
1598 | target = GetVirtualCallStub(pMeth, TypeHandle(pMeth->GetMethodTable())); |
1599 | refThis->SetInvocationCount((INT_PTR)(void*)pMeth); |
1600 | HELPER_METHOD_FRAME_END(); |
1601 | return target; |
1602 | } |
1603 | FCIMPLEND |
1604 | |
1605 | FCIMPL3(PCODE, COMDelegate::AdjustTarget, Object* refThisUNSAFE, Object* targetUNSAFE, PCODE method) |
1606 | { |
1607 | FCALL_CONTRACT; |
1608 | |
1609 | if (targetUNSAFE == NULL) |
1610 | FCThrow(kArgumentNullException); |
1611 | |
1612 | OBJECTREF refThis = ObjectToOBJECTREF(refThisUNSAFE); |
1613 | OBJECTREF target = ObjectToOBJECTREF(targetUNSAFE); |
1614 | |
1615 | HELPER_METHOD_FRAME_BEGIN_RET_2(refThis, target); |
1616 | |
1617 | _ASSERTE(refThis); |
1618 | _ASSERTE(method); |
1619 | |
1620 | MethodTable *pMT = target->GetMethodTable(); |
1621 | |
1622 | MethodDesc *pMeth = Entry2MethodDesc(method, pMT); |
1623 | _ASSERTE(pMeth); |
1624 | _ASSERTE(!pMeth->IsStatic()); |
1625 | |
1626 | // close delegates |
1627 | MethodTable* pMTTarg = target->GetMethodTable(); |
1628 | MethodTable* pMTMeth = pMeth->GetMethodTable(); |
1629 | |
1630 | BOOL isComObject = false; |
1631 | |
1632 | #ifdef FEATURE_COMINTEROP |
1633 | isComObject = pMTTarg->IsComObjectType(); |
1634 | #endif // FEATURE_COMINTEROP |
1635 | |
1636 | MethodDesc *pCorrectedMethod = pMeth; |
1637 | |
1638 | if (pMTMeth != pMTTarg) |
1639 | { |
1640 | //They cast to an interface before creating the delegate, so we now need |
1641 | //to figure out where this actually lives before we continue. |
1642 | //<TODO>@perf: Grovelling with a signature is really slow. Speed this up.</TODO> |
1643 | if (pCorrectedMethod->IsInterface()) |
1644 | { |
1645 | // No need to resolve the interface based method desc to a class based |
1646 | // one for COM objects because we invoke directly thru the interface MT. |
1647 | if (!isComObject) |
1648 | { |
1649 | // <TODO>it looks like we need to pass an ownerType in here. |
1650 | // Why can we take a delegate to an interface method anyway? </TODO> |
1651 | // |
1652 | pCorrectedMethod = pMTTarg->FindDispatchSlotForInterfaceMD(pCorrectedMethod, TRUE /* throwOnConflict */).GetMethodDesc(); |
1653 | _ASSERTE(pCorrectedMethod != NULL); |
1654 | } |
1655 | } |
1656 | } |
1657 | |
1658 | // Use the Unboxing stub for value class methods, since the value |
1659 | // class is constructed using the boxed instance. |
1660 | if (pMTTarg->IsValueType() && !pCorrectedMethod->IsUnboxingStub()) |
1661 | { |
1662 | // those should have been ruled out at jit time (code:COMDelegate::GetDelegateCtor) |
1663 | _ASSERTE((pMTMeth != g_pValueTypeClass) && (pMTMeth != g_pObjectClass)); |
1664 | pCorrectedMethod->CheckRestore(); |
1665 | pCorrectedMethod = pMTTarg->GetBoxedEntryPointMD(pCorrectedMethod); |
1666 | _ASSERTE(pCorrectedMethod != NULL); |
1667 | } |
1668 | |
1669 | if (pMeth != pCorrectedMethod) |
1670 | { |
1671 | method = pCorrectedMethod->GetMultiCallableAddrOfCode(); |
1672 | } |
1673 | HELPER_METHOD_FRAME_END(); |
1674 | |
1675 | return method; |
1676 | } |
1677 | FCIMPLEND |
1678 | |
1679 | #if defined(_MSC_VER) && !defined(FEATURE_PAL) |
1680 | // VC++ Compiler intrinsic. |
1681 | extern "C" void * _ReturnAddress(void); |
1682 | #endif // _MSC_VER && !FEATURE_PAL |
1683 | |
1684 | // This is the single constructor for all Delegates. The compiler |
1685 | // doesn't provide an implementation of the Delegate constructor. We |
1686 | // provide that implementation through an ECall call to this method. |
1687 | FCIMPL3(void, COMDelegate::DelegateConstruct, Object* refThisUNSAFE, Object* targetUNSAFE, PCODE method) |
1688 | { |
1689 | FCALL_CONTRACT; |
1690 | |
1691 | struct _gc |
1692 | { |
1693 | DELEGATEREF refThis; |
1694 | OBJECTREF target; |
1695 | } gc; |
1696 | |
1697 | gc.refThis = (DELEGATEREF) ObjectToOBJECTREF(refThisUNSAFE); |
1698 | gc.target = (OBJECTREF) targetUNSAFE; |
1699 | |
1700 | HELPER_METHOD_FRAME_BEGIN_PROTECT(gc); |
1701 | |
1702 | // via reflection you can pass in just about any value for the method. |
1703 | // we can do some basic verification up front to prevent EE exceptions. |
1704 | if (method == NULL) |
1705 | COMPlusThrowArgumentNull(W("method" )); |
1706 | |
1707 | _ASSERTE(gc.refThis); |
1708 | _ASSERTE(method); |
1709 | |
1710 | // programmers could feed garbage data to DelegateConstruct(). |
1711 | // It's difficult to validate a method code pointer, but at least we'll |
1712 | // try to catch the easy garbage. |
1713 | _ASSERTE(isMemoryReadable(method, 1)); |
1714 | |
1715 | MethodTable *pMTTarg = NULL; |
1716 | |
1717 | if (gc.target != NULL) |
1718 | { |
1719 | pMTTarg = gc.target->GetMethodTable(); |
1720 | } |
1721 | |
1722 | MethodDesc *pMethOrig = Entry2MethodDesc(method, pMTTarg); |
1723 | MethodDesc *pMeth = pMethOrig; |
1724 | |
1725 | MethodTable* pDelMT = gc.refThis->GetMethodTable(); |
1726 | |
1727 | LOG((LF_STUBS, LL_INFO1000, "In DelegateConstruct: for delegate type %s binding to method %s::%s%s, static = %d\n" , |
1728 | pDelMT->GetDebugClassName(), |
1729 | pMeth->m_pszDebugClassName, pMeth->m_pszDebugMethodName, pMeth->m_pszDebugMethodSignature, pMeth->IsStatic())); |
1730 | |
1731 | _ASSERTE(pMeth); |
1732 | |
1733 | #ifdef _DEBUG |
1734 | // Assert that everything is OK...This is not some bogus |
1735 | // address...Very unlikely that the code below would work |
1736 | // for a random address in memory.... |
1737 | MethodTable* p = pMeth->GetMethodTable(); |
1738 | _ASSERTE(p); |
1739 | _ASSERTE(p->ValidateWithPossibleAV()); |
1740 | #endif // _DEBUG |
1741 | |
1742 | if (Nullable::IsNullableType(pMeth->GetMethodTable())) |
1743 | COMPlusThrow(kNotSupportedException); |
1744 | |
1745 | DelegateEEClass *pDelCls = (DelegateEEClass*)pDelMT->GetClass(); |
1746 | MethodDesc *pDelegateInvoke = COMDelegate::FindDelegateInvokeMethod(pDelMT); |
1747 | |
1748 | MetaSig invokeSig(pDelegateInvoke); |
1749 | MetaSig methodSig(pMeth); |
1750 | UINT invokeArgCount = invokeSig.NumFixedArgs(); |
1751 | UINT methodArgCount = methodSig.NumFixedArgs(); |
1752 | BOOL isStatic = pMeth->IsStatic(); |
1753 | if (!isStatic) |
1754 | { |
1755 | methodArgCount++; // count 'this' |
1756 | } |
1757 | |
1758 | if (NeedsWrapperDelegate(pMeth)) |
1759 | gc.refThis = CreateSecureDelegate(gc.refThis, NULL, pMeth); |
1760 | |
1761 | if (pMeth->GetLoaderAllocator()->IsCollectible()) |
1762 | gc.refThis->SetMethodBase(pMeth->GetLoaderAllocator()->GetExposedObject()); |
1763 | |
1764 | // Open delegates. |
1765 | if (invokeArgCount == methodArgCount) |
1766 | { |
1767 | // set the target |
1768 | gc.refThis->SetTarget(gc.refThis); |
1769 | |
1770 | // set the shuffle thunk |
1771 | Stub *pShuffleThunk = NULL; |
1772 | if (!pMeth->IsStatic() && pMeth->HasRetBuffArg() && IsRetBuffPassedAsFirstArg()) |
1773 | pShuffleThunk = pDelCls->m_pInstRetBuffCallStub; |
1774 | else |
1775 | pShuffleThunk = pDelCls->m_pStaticCallStub; |
1776 | if (!pShuffleThunk) |
1777 | pShuffleThunk = SetupShuffleThunk(pDelMT, pMeth); |
1778 | |
1779 | gc.refThis->SetMethodPtr(pShuffleThunk->GetEntryPoint()); |
1780 | |
1781 | // set the ptr aux according to what is needed, if virtual need to call make virtual stub dispatch |
1782 | if (!pMeth->IsStatic() && pMeth->IsVirtual() && !pMeth->GetMethodTable()->IsValueType()) |
1783 | { |
1784 | PCODE pTargetCall = GetVirtualCallStub(pMeth, TypeHandle(pMeth->GetMethodTable())); |
1785 | gc.refThis->SetMethodPtrAux(pTargetCall); |
1786 | gc.refThis->SetInvocationCount((INT_PTR)(void *)pMeth); |
1787 | } |
1788 | else |
1789 | { |
1790 | gc.refThis->SetMethodPtrAux(method); |
1791 | } |
1792 | } |
1793 | else |
1794 | { |
1795 | MethodTable* pMTMeth = pMeth->GetMethodTable(); |
1796 | |
1797 | if (!pMeth->IsStatic()) |
1798 | { |
1799 | if (pMTTarg) |
1800 | { |
1801 | // We can skip the demand if SuppressUnmanagedCodePermission is present on the class, |
1802 | // or in the case where we are setting up a delegate for a COM event sink |
1803 | // we can skip the check if the source interface is defined in fully trusted code |
1804 | // we can skip the check if the source interface is a disp-only interface |
1805 | BOOL isComObject = false; |
1806 | #ifdef FEATURE_COMINTEROP |
1807 | isComObject = pMTTarg->IsComObjectType(); |
1808 | #endif // FEATURE_COMINTEROP |
1809 | |
1810 | if (pMTMeth != pMTTarg) |
1811 | { |
1812 | // They cast to an interface before creating the delegate, so we now need |
1813 | // to figure out where this actually lives before we continue. |
1814 | // <TODO>@perf: We whould never be using this path to invoke on an interface - |
1815 | // that should always be resolved when we are creating the delegate </TODO> |
1816 | if (pMeth->IsInterface()) |
1817 | { |
1818 | // No need to resolve the interface based method desc to a class based |
1819 | // one for COM objects because we invoke directly thru the interface MT. |
1820 | if (!isComObject) |
1821 | { |
1822 | // <TODO>it looks like we need to pass an ownerType in here. |
1823 | // Why can we take a delegate to an interface method anyway? </TODO> |
1824 | // |
1825 | MethodDesc * pDispatchSlotMD = pMTTarg->FindDispatchSlotForInterfaceMD(pMeth, TRUE /* throwOnConflict */).GetMethodDesc(); |
1826 | if (pDispatchSlotMD == NULL) |
1827 | { |
1828 | COMPlusThrow(kArgumentException, W("Arg_DlgtTargMeth" )); |
1829 | } |
1830 | |
1831 | if (pMeth->HasMethodInstantiation()) |
1832 | { |
1833 | pMeth = MethodDesc::FindOrCreateAssociatedMethodDesc( |
1834 | pDispatchSlotMD, |
1835 | pMTTarg, |
1836 | (!pDispatchSlotMD->IsStatic() && pMTTarg->IsValueType()), |
1837 | pMeth->GetMethodInstantiation(), |
1838 | FALSE /* allowInstParam */); |
1839 | } |
1840 | else |
1841 | { |
1842 | pMeth = pDispatchSlotMD; |
1843 | } |
1844 | } |
1845 | } |
1846 | } |
1847 | |
1848 | g_IBCLogger.LogMethodTableAccess(pMTTarg); |
1849 | |
1850 | // Use the Unboxing stub for value class methods, since the value |
1851 | // class is constructed using the boxed instance. |
1852 | // |
1853 | // <NICE> We could get the JIT to recognise all delegate creation sequences and |
1854 | // ensure the thing is always an BoxedEntryPointStub anyway </NICE> |
1855 | |
1856 | if (pMTMeth->IsValueType() && !pMeth->IsUnboxingStub()) |
1857 | { |
1858 | // If these are Object/ValueType.ToString().. etc, |
1859 | // don't need an unboxing Stub. |
1860 | |
1861 | if ((pMTMeth != g_pValueTypeClass) |
1862 | && (pMTMeth != g_pObjectClass)) |
1863 | { |
1864 | pMeth->CheckRestore(); |
1865 | pMeth = pMTTarg->GetBoxedEntryPointMD(pMeth); |
1866 | _ASSERTE(pMeth != NULL); |
1867 | } |
1868 | } |
1869 | // Only update the code address if we've decided to go to a different target... |
1870 | // <NICE> We should make sure the code address that the JIT provided to us is always the right one anyway, |
1871 | // so we don't have to do all this mucking about. </NICE> |
1872 | if (pMeth != pMethOrig) |
1873 | { |
1874 | method = pMeth->GetMultiCallableAddrOfCode(); |
1875 | } |
1876 | } |
1877 | |
1878 | if (gc.target == NULL) |
1879 | { |
1880 | COMPlusThrow(kArgumentException, W("Arg_DlgtNullInst" )); |
1881 | } |
1882 | } |
1883 | #ifdef HAS_THISPTR_RETBUF_PRECODE |
1884 | else if (pMeth->HasRetBuffArg() && IsRetBuffPassedAsFirstArg()) |
1885 | method = pMeth->GetLoaderAllocatorForCode()->GetFuncPtrStubs()->GetFuncPtrStub(pMeth, PRECODE_THISPTR_RETBUF); |
1886 | #endif // HAS_THISPTR_RETBUF_PRECODE |
1887 | |
1888 | gc.refThis->SetTarget(gc.target); |
1889 | gc.refThis->SetMethodPtr((PCODE)(void *)method); |
1890 | } |
1891 | HELPER_METHOD_FRAME_END(); |
1892 | } |
1893 | FCIMPLEND |
1894 | |
1895 | MethodDesc *COMDelegate::GetMethodDesc(OBJECTREF orDelegate) |
1896 | { |
1897 | CONTRACTL |
1898 | { |
1899 | THROWS; |
1900 | GC_TRIGGERS; |
1901 | MODE_COOPERATIVE; |
1902 | } |
1903 | CONTRACTL_END; |
1904 | |
1905 | MethodDesc *pMethodHandle = NULL; |
1906 | |
1907 | DELEGATEREF thisDel = (DELEGATEREF) orDelegate; |
1908 | DELEGATEREF innerDel = NULL; |
1909 | |
1910 | INT_PTR count = thisDel->GetInvocationCount(); |
1911 | if (count != 0) |
1912 | { |
1913 | // this is one of the following: |
1914 | // - multicast - _invocationList is Array && _invocationCount != 0 |
1915 | // - unamanaged ftn ptr - _invocationList == NULL && _invocationCount == -1 |
1916 | // - secure delegate - _invocationList is Delegate && _invocationCount != NULL |
1917 | // - virtual delegate - _invocationList == null && _invocationCount == (target MethodDesc) |
1918 | // or _invocationList points to a LoaderAllocator/DynamicResolver (inner open virtual delegate of a Secure Delegate) |
1919 | // in the secure delegate case we want to unwrap and return the method desc of the inner delegate |
1920 | // in the other cases we return the method desc for the invoke |
1921 | innerDel = (DELEGATEREF) thisDel->GetInvocationList(); |
1922 | bool fOpenVirtualDelegate = false; |
1923 | |
1924 | if (innerDel != NULL) |
1925 | { |
1926 | MethodTable *pMT = innerDel->GetMethodTable(); |
1927 | if (pMT->IsDelegate()) |
1928 | return GetMethodDesc(innerDel); |
1929 | if (!pMT->IsArray()) |
1930 | { |
1931 | // must be a virtual one |
1932 | fOpenVirtualDelegate = true; |
1933 | } |
1934 | } |
1935 | else |
1936 | { |
1937 | if (count != DELEGATE_MARKER_UNMANAGEDFPTR) |
1938 | { |
1939 | // must be a virtual one |
1940 | fOpenVirtualDelegate = true; |
1941 | } |
1942 | } |
1943 | |
1944 | if (fOpenVirtualDelegate) |
1945 | pMethodHandle = (MethodDesc*)thisDel->GetInvocationCount(); |
1946 | else |
1947 | pMethodHandle = FindDelegateInvokeMethod(thisDel->GetMethodTable()); |
1948 | } |
1949 | else |
1950 | { |
1951 | // Next, check for an open delegate |
1952 | PCODE code = thisDel->GetMethodPtrAux(); |
1953 | |
1954 | if (code != NULL) |
1955 | { |
1956 | // Note that MethodTable::GetMethodDescForSlotAddress is significantly faster than Entry2MethodDesc |
1957 | pMethodHandle = MethodTable::GetMethodDescForSlotAddress(code); |
1958 | } |
1959 | else |
1960 | { |
1961 | MethodTable * pMT = NULL; |
1962 | |
1963 | // Must be a normal delegate |
1964 | code = thisDel->GetMethodPtr(); |
1965 | |
1966 | OBJECTREF orThis = thisDel->GetTarget(); |
1967 | if (orThis!=NULL) |
1968 | { |
1969 | pMT = orThis->GetMethodTable(); |
1970 | } |
1971 | |
1972 | pMethodHandle = Entry2MethodDesc(code, pMT); |
1973 | } |
1974 | } |
1975 | |
1976 | _ASSERTE(pMethodHandle); |
1977 | return pMethodHandle; |
1978 | } |
1979 | |
1980 | OBJECTREF COMDelegate::GetTargetObject(OBJECTREF obj) |
1981 | { |
1982 | CONTRACTL |
1983 | { |
1984 | THROWS; |
1985 | GC_NOTRIGGER; |
1986 | MODE_COOPERATIVE; |
1987 | } |
1988 | CONTRACTL_END; |
1989 | |
1990 | OBJECTREF targetObject = NULL; |
1991 | |
1992 | DELEGATEREF thisDel = (DELEGATEREF) obj; |
1993 | OBJECTREF innerDel = NULL; |
1994 | |
1995 | if (thisDel->GetInvocationCount() != 0) |
1996 | { |
1997 | // this is one of the following: |
1998 | // - multicast |
1999 | // - unmanaged ftn ptr |
2000 | // - secure delegate |
2001 | // - virtual delegate - _invocationList == null && _invocationCount == (target MethodDesc) |
2002 | // or _invocationList points to a LoaderAllocator/DynamicResolver (inner open virtual delegate of a Secure Delegate) |
2003 | // in the secure delegate case we want to unwrap and return the object of the inner delegate |
2004 | innerDel = (DELEGATEREF) thisDel->GetInvocationList(); |
2005 | if (innerDel != NULL) |
2006 | { |
2007 | MethodTable *pMT = innerDel->GetMethodTable(); |
2008 | if (pMT->IsDelegate()) |
2009 | { |
2010 | targetObject = GetTargetObject(innerDel); |
2011 | } |
2012 | } |
2013 | } |
2014 | |
2015 | if (targetObject == NULL) |
2016 | targetObject = thisDel->GetTarget(); |
2017 | |
2018 | return targetObject; |
2019 | } |
2020 | |
2021 | BOOL COMDelegate::IsTrueMulticastDelegate(OBJECTREF delegate) |
2022 | { |
2023 | CONTRACTL |
2024 | { |
2025 | THROWS; |
2026 | GC_NOTRIGGER; |
2027 | MODE_COOPERATIVE; |
2028 | } |
2029 | CONTRACTL_END; |
2030 | |
2031 | BOOL isMulticast = FALSE; |
2032 | |
2033 | size_t invocationCount = ((DELEGATEREF)delegate)->GetInvocationCount(); |
2034 | if (invocationCount) |
2035 | { |
2036 | OBJECTREF invocationList = ((DELEGATEREF)delegate)->GetInvocationList(); |
2037 | if (invocationList != NULL) |
2038 | { |
2039 | MethodTable *pMT = invocationList->GetMethodTable(); |
2040 | isMulticast = pMT->IsArray(); |
2041 | } |
2042 | } |
2043 | |
2044 | return isMulticast; |
2045 | } |
2046 | |
2047 | PCODE COMDelegate::TheDelegateInvokeStub() |
2048 | { |
2049 | CONTRACT(PCODE) |
2050 | { |
2051 | STANDARD_VM_CHECK; |
2052 | POSTCONDITION(RETVAL != NULL); |
2053 | } |
2054 | CONTRACT_END; |
2055 | |
2056 | #if defined(_TARGET_X86_) && !defined(FEATURE_STUBS_AS_IL) |
2057 | static PCODE s_pInvokeStub; |
2058 | |
2059 | if (s_pInvokeStub == NULL) |
2060 | { |
2061 | CPUSTUBLINKER sl; |
2062 | sl.EmitDelegateInvoke(); |
2063 | // Process-wide singleton stub that never unloads |
2064 | Stub *pCandidate = sl.Link(SystemDomain::GetGlobalLoaderAllocator()->GetStubHeap(), NEWSTUB_FL_MULTICAST); |
2065 | |
2066 | if (InterlockedCompareExchangeT<PCODE>(&s_pInvokeStub, pCandidate->GetEntryPoint(), NULL) != NULL) |
2067 | { |
2068 | // if we are here someone managed to set the stub before us so we release the current |
2069 | pCandidate->DecRef(); |
2070 | } |
2071 | } |
2072 | |
2073 | RETURN s_pInvokeStub; |
2074 | #else |
2075 | RETURN GetEEFuncEntryPoint(SinglecastDelegateInvokeStub); |
2076 | #endif // _TARGET_X86_ && !FEATURE_STUBS_AS_IL |
2077 | } |
2078 | |
2079 | // Get the cpu stub for a delegate invoke. |
2080 | PCODE COMDelegate::GetInvokeMethodStub(EEImplMethodDesc* pMD) |
2081 | { |
2082 | CONTRACT(PCODE) |
2083 | { |
2084 | STANDARD_VM_CHECK; |
2085 | POSTCONDITION(RETVAL != NULL); |
2086 | |
2087 | INJECT_FAULT(COMPlusThrowOM()); |
2088 | } |
2089 | CONTRACT_END; |
2090 | |
2091 | PCODE ret = NULL; |
2092 | MethodTable * pDelMT = pMD->GetMethodTable(); |
2093 | DelegateEEClass* pClass = (DelegateEEClass*) pDelMT->GetClass(); |
2094 | |
2095 | if (pMD == pClass->GetInvokeMethod()) |
2096 | { |
2097 | // Validate the invoke method, which at the moment just means checking the calling convention |
2098 | |
2099 | if (*pMD->GetSig() != (IMAGE_CEE_CS_CALLCONV_HASTHIS | IMAGE_CEE_CS_CALLCONV_DEFAULT)) |
2100 | COMPlusThrow(kInvalidProgramException); |
2101 | |
2102 | ret = COMDelegate::TheDelegateInvokeStub(); |
2103 | } |
2104 | else |
2105 | { |
2106 | |
2107 | // Since we do not support asynchronous delegates in CoreCLR, we much ensure that it was indeed a async delegate call |
2108 | // and not an invalid-delegate-layout condition. |
2109 | // |
2110 | // If the call was indeed for async delegate invocation, we will just throw an exception. |
2111 | if ((pMD == pClass->GetBeginInvokeMethod()) || (pMD == pClass->GetEndInvokeMethod())) |
2112 | { |
2113 | COMPlusThrow(kPlatformNotSupportedException); |
2114 | } |
2115 | |
2116 | |
2117 | _ASSERTE(!"Bad Delegate layout" ); |
2118 | COMPlusThrow(kInvalidProgramException); |
2119 | } |
2120 | |
2121 | RETURN ret; |
2122 | } |
2123 | |
2124 | FCIMPL1(Object*, COMDelegate::InternalAlloc, ReflectClassBaseObject * pTargetUNSAFE) |
2125 | { |
2126 | FCALL_CONTRACT; |
2127 | |
2128 | REFLECTCLASSBASEREF refTarget = (REFLECTCLASSBASEREF)ObjectToOBJECTREF(pTargetUNSAFE); |
2129 | OBJECTREF refRetVal = NULL; |
2130 | TypeHandle targetTH = refTarget->GetType(); |
2131 | HELPER_METHOD_FRAME_BEGIN_RET_1(refTarget); |
2132 | |
2133 | _ASSERTE(targetTH.GetMethodTable() != NULL && targetTH.GetMethodTable()->IsDelegate()); |
2134 | |
2135 | refRetVal = targetTH.GetMethodTable()->Allocate(); |
2136 | |
2137 | HELPER_METHOD_FRAME_END(); |
2138 | return OBJECTREFToObject(refRetVal); |
2139 | } |
2140 | FCIMPLEND |
2141 | |
2142 | FCIMPL1(Object*, COMDelegate::InternalAllocLike, Object* pThis) |
2143 | { |
2144 | FCALL_CONTRACT; |
2145 | |
2146 | OBJECTREF refRetVal = NULL; |
2147 | HELPER_METHOD_FRAME_BEGIN_RET_NOPOLL(); |
2148 | |
2149 | _ASSERTE(pThis->GetMethodTable() != NULL && pThis->GetMethodTable()->IsDelegate()); |
2150 | |
2151 | refRetVal = pThis->GetMethodTable()->AllocateNoChecks(); |
2152 | |
2153 | HELPER_METHOD_FRAME_END(); |
2154 | return OBJECTREFToObject(refRetVal); |
2155 | } |
2156 | FCIMPLEND |
2157 | |
2158 | FCIMPL2(FC_BOOL_RET, COMDelegate::InternalEqualTypes, Object* pThis, Object *pThat) |
2159 | { |
2160 | FCALL_CONTRACT; |
2161 | |
2162 | MethodTable *pThisMT = pThis->GetMethodTable(); |
2163 | MethodTable *pThatMT = pThat->GetMethodTable(); |
2164 | |
2165 | _ASSERTE(pThisMT != NULL && pThisMT->IsDelegate()); |
2166 | _ASSERTE(pThatMT != NULL); |
2167 | |
2168 | BOOL bResult = (pThisMT == pThatMT); |
2169 | |
2170 | if (!bResult) |
2171 | { |
2172 | HELPER_METHOD_FRAME_BEGIN_RET_0(); |
2173 | bResult = pThisMT->IsEquivalentTo(pThatMT); |
2174 | HELPER_METHOD_FRAME_END(); |
2175 | } |
2176 | |
2177 | FC_RETURN_BOOL(bResult); |
2178 | } |
2179 | FCIMPLEND |
2180 | |
2181 | #endif // CROSSGEN_COMPILE |
2182 | |
2183 | BOOL COMDelegate::NeedsWrapperDelegate(MethodDesc* pTargetMD) |
2184 | { |
2185 | LIMITED_METHOD_CONTRACT; |
2186 | |
2187 | #ifdef _TARGET_ARM_ |
2188 | // For arm VSD expects r4 to contain the indirection cell. However r4 is a non-volatile register |
2189 | // and its value must be preserved. So we need to erect a frame and store indirection cell in r4 before calling |
2190 | // virtual stub dispatch. Erecting frame is already done by secure delegates so the secureDelegate infrastructure |
2191 | // can easliy be used for our purpose. |
2192 | // set needsSecureDelegate flag in order to erect a frame. (Secure Delegate stub also loads the right value in r4) |
2193 | if (!pTargetMD->IsStatic() && pTargetMD->IsVirtual() && !pTargetMD->GetMethodTable()->IsValueType()) |
2194 | return TRUE; |
2195 | #endif |
2196 | |
2197 | return FALSE; |
2198 | } |
2199 | |
2200 | |
2201 | #ifndef CROSSGEN_COMPILE |
2202 | |
2203 | // to create a secure delegate wrapper we need: |
2204 | // - the delegate to forward to -> _invocationList |
2205 | // - the creator assembly -> _methodAuxPtr |
2206 | // - the delegate invoke MethodDesc -> _count |
2207 | // the 2 fields used for invocation will contain: |
2208 | // - the delegate itself -> _pORField |
2209 | // - the secure stub -> _pFPField |
2210 | DELEGATEREF COMDelegate::CreateSecureDelegate(DELEGATEREF delegate, MethodDesc* pCreatorMethod, MethodDesc* pTargetMD) |
2211 | { |
2212 | CONTRACTL |
2213 | { |
2214 | THROWS; |
2215 | GC_TRIGGERS; |
2216 | MODE_COOPERATIVE; |
2217 | } |
2218 | CONTRACTL_END; |
2219 | |
2220 | MethodTable *pDelegateType = delegate->GetMethodTable(); |
2221 | MethodDesc *pMD = ((DelegateEEClass*)(pDelegateType->GetClass()))->GetInvokeMethod(); |
2222 | // allocate the object |
2223 | struct _gc { |
2224 | DELEGATEREF refSecDel; |
2225 | DELEGATEREF innerDel; |
2226 | } gc; |
2227 | gc.refSecDel = delegate; |
2228 | gc.innerDel = NULL; |
2229 | |
2230 | GCPROTECT_BEGIN(gc); |
2231 | |
2232 | // set the proper fields |
2233 | // |
2234 | |
2235 | // Object reference field... |
2236 | gc.refSecDel->SetTarget(gc.refSecDel); |
2237 | |
2238 | // save the secure invoke stub. GetSecureInvoke() can trigger GC. |
2239 | PCODE tmp = GetSecureInvoke(pMD); |
2240 | gc.refSecDel->SetMethodPtr(tmp); |
2241 | // save the assembly |
2242 | gc.refSecDel->SetMethodPtrAux((PCODE)(void *)pCreatorMethod); |
2243 | // save the delegate MethodDesc for the frame |
2244 | gc.refSecDel->SetInvocationCount((INT_PTR)pMD); |
2245 | |
2246 | // save the delegate to forward to |
2247 | gc.innerDel = (DELEGATEREF) pDelegateType->Allocate(); |
2248 | gc.refSecDel->SetInvocationList(gc.innerDel); |
2249 | |
2250 | if (pCreatorMethod != NULL) |
2251 | { |
2252 | // If the pCreatorMethod is a collectible method, then stash a reference to the |
2253 | // LoaderAllocator/DynamicResolver of the collectible assembly/method in the invocationList |
2254 | // of the inner delegate |
2255 | // (The invocationList of the inner delegate is the only field garaunteed to be unused for |
2256 | // other purposes at this time.) |
2257 | if (pCreatorMethod->IsLCGMethod()) |
2258 | { |
2259 | OBJECTREF refCollectible = pCreatorMethod->AsDynamicMethodDesc()->GetLCGMethodResolver()->GetManagedResolver(); |
2260 | gc.innerDel->SetInvocationList(refCollectible); |
2261 | } |
2262 | else if (pCreatorMethod->GetLoaderAllocator()->IsCollectible()) |
2263 | { |
2264 | OBJECTREF refCollectible = pCreatorMethod->GetLoaderAllocator()->GetExposedObject(); |
2265 | gc.innerDel->SetInvocationList(refCollectible); |
2266 | } |
2267 | } |
2268 | |
2269 | GCPROTECT_END(); |
2270 | |
2271 | return gc.innerDel; |
2272 | } |
2273 | |
2274 | // InternalGetMethodInfo |
2275 | // This method will get the MethodInfo for a delegate |
2276 | FCIMPL1(ReflectMethodObject *, COMDelegate::FindMethodHandle, Object* refThisIn) |
2277 | { |
2278 | FCALL_CONTRACT; |
2279 | |
2280 | MethodDesc* pMD = NULL; |
2281 | REFLECTMETHODREF pRet = NULL; |
2282 | OBJECTREF refThis = ObjectToOBJECTREF(refThisIn); |
2283 | |
2284 | HELPER_METHOD_FRAME_BEGIN_RET_1(refThis); |
2285 | |
2286 | pMD = GetMethodDesc(refThis); |
2287 | pRet = pMD->GetStubMethodInfo(); |
2288 | HELPER_METHOD_FRAME_END(); |
2289 | |
2290 | return (ReflectMethodObject*)OBJECTREFToObject(pRet); |
2291 | } |
2292 | FCIMPLEND |
2293 | |
2294 | FCIMPL2(FC_BOOL_RET, COMDelegate::InternalEqualMethodHandles, Object *refLeftIn, Object *refRightIn) |
2295 | { |
2296 | FCALL_CONTRACT; |
2297 | |
2298 | OBJECTREF refLeft = ObjectToOBJECTREF(refLeftIn); |
2299 | OBJECTREF refRight = ObjectToOBJECTREF(refRightIn); |
2300 | BOOL fRet = FALSE; |
2301 | |
2302 | HELPER_METHOD_FRAME_BEGIN_RET_2(refLeft, refRight); |
2303 | |
2304 | MethodDesc* pMDLeft = GetMethodDesc(refLeft); |
2305 | MethodDesc* pMDRight = GetMethodDesc(refRight); |
2306 | fRet = pMDLeft == pMDRight; |
2307 | |
2308 | HELPER_METHOD_FRAME_END(); |
2309 | |
2310 | FC_RETURN_BOOL(fRet); |
2311 | } |
2312 | FCIMPLEND |
2313 | |
2314 | FCIMPL1(MethodDesc*, COMDelegate::GetInvokeMethod, Object* refThisIn) |
2315 | { |
2316 | FCALL_CONTRACT; |
2317 | |
2318 | OBJECTREF refThis = ObjectToOBJECTREF(refThisIn); |
2319 | MethodTable * pDelMT = refThis->GetMethodTable(); |
2320 | |
2321 | MethodDesc* pMD = ((DelegateEEClass*)(pDelMT->GetClass()))->GetInvokeMethod(); |
2322 | _ASSERTE(pMD); |
2323 | return pMD; |
2324 | } |
2325 | FCIMPLEND |
2326 | |
2327 | #ifdef FEATURE_MULTICASTSTUB_AS_IL |
2328 | FCIMPL1(PCODE, COMDelegate::GetMulticastInvoke, Object* refThisIn) |
2329 | { |
2330 | FCALL_CONTRACT; |
2331 | |
2332 | OBJECTREF refThis = ObjectToOBJECTREF(refThisIn); |
2333 | MethodTable *pDelegateMT = refThis->GetMethodTable(); |
2334 | |
2335 | DelegateEEClass *delegateEEClass = ((DelegateEEClass*)(pDelegateMT->GetClass())); |
2336 | Stub *pStub = delegateEEClass->m_pMultiCastInvokeStub; |
2337 | if (pStub == NULL) |
2338 | { |
2339 | MethodDesc* pMD = delegateEEClass->GetInvokeMethod(); |
2340 | |
2341 | HELPER_METHOD_FRAME_BEGIN_RET_0(); |
2342 | |
2343 | GCX_PREEMP(); |
2344 | |
2345 | MetaSig sig(pMD); |
2346 | |
2347 | BOOL fReturnVal = !sig.IsReturnTypeVoid(); |
2348 | |
2349 | SigTypeContext emptyContext; |
2350 | ILStubLinker sl(pMD->GetModule(), pMD->GetSignature(), &emptyContext, pMD, TRUE, TRUE, FALSE); |
2351 | |
2352 | ILCodeStream *pCode = sl.NewCodeStream(ILStubLinker::kDispatch); |
2353 | |
2354 | DWORD dwInvocationCountNum = pCode->NewLocal(ELEMENT_TYPE_I4); |
2355 | DWORD dwLoopCounterNum = pCode->NewLocal(ELEMENT_TYPE_I4); |
2356 | |
2357 | DWORD dwReturnValNum = -1; |
2358 | if(fReturnVal) |
2359 | dwReturnValNum = pCode->NewLocal(sig.GetRetTypeHandleNT()); |
2360 | |
2361 | ILCodeLabel *nextDelegate = pCode->NewCodeLabel(); |
2362 | ILCodeLabel *endOfMethod = pCode->NewCodeLabel(); |
2363 | |
2364 | // Get count of delegates |
2365 | pCode->EmitLoadThis(); |
2366 | pCode->EmitLDFLD(pCode->GetToken(MscorlibBinder::GetField(FIELD__MULTICAST_DELEGATE__INVOCATION_COUNT))); |
2367 | pCode->EmitSTLOC(dwInvocationCountNum); |
2368 | |
2369 | // initialize counter |
2370 | pCode->EmitLDC(0); |
2371 | pCode->EmitSTLOC(dwLoopCounterNum); |
2372 | |
2373 | //Label_nextDelegate: |
2374 | pCode->EmitLabel(nextDelegate); |
2375 | |
2376 | #ifdef DEBUGGING_SUPPORTED |
2377 | pCode->EmitLoadThis(); |
2378 | pCode->EmitLDLOC(dwLoopCounterNum); |
2379 | pCode->EmitCALL(METHOD__STUBHELPERS__MULTICAST_DEBUGGER_TRACE_HELPER, 2, 0); |
2380 | #endif // DEBUGGING_SUPPORTED |
2381 | |
2382 | // compare LoopCounter with InvocationCount. If equal then branch to Label_endOfMethod |
2383 | pCode->EmitLDLOC(dwLoopCounterNum); |
2384 | pCode->EmitLDLOC(dwInvocationCountNum); |
2385 | pCode->EmitBEQ(endOfMethod); |
2386 | |
2387 | // Load next delegate from array using LoopCounter as index |
2388 | pCode->EmitLoadThis(); |
2389 | pCode->EmitLDFLD(pCode->GetToken(MscorlibBinder::GetField(FIELD__MULTICAST_DELEGATE__INVOCATION_LIST))); |
2390 | pCode->EmitLDLOC(dwLoopCounterNum); |
2391 | pCode->EmitLDELEM_REF(); |
2392 | |
2393 | // Load the arguments |
2394 | UINT paramCount = 0; |
2395 | while(paramCount < sig.NumFixedArgs()) |
2396 | pCode->EmitLDARG(paramCount++); |
2397 | |
2398 | // call the delegate |
2399 | pCode->EmitCALL(pCode->GetToken(pMD), sig.NumFixedArgs(), fReturnVal); |
2400 | |
2401 | // Save return value. |
2402 | if(fReturnVal) |
2403 | pCode->EmitSTLOC(dwReturnValNum); |
2404 | |
2405 | // increment counter |
2406 | pCode->EmitLDLOC(dwLoopCounterNum); |
2407 | pCode->EmitLDC(1); |
2408 | pCode->EmitADD(); |
2409 | pCode->EmitSTLOC(dwLoopCounterNum); |
2410 | |
2411 | // branch to next delegate |
2412 | pCode->EmitBR(nextDelegate); |
2413 | |
2414 | //Label_endOfMethod |
2415 | pCode->EmitLabel(endOfMethod); |
2416 | |
2417 | // load the return value. return value from the last delegate call is returned |
2418 | if(fReturnVal) |
2419 | pCode->EmitLDLOC(dwReturnValNum); |
2420 | |
2421 | // return |
2422 | pCode->EmitRET(); |
2423 | |
2424 | PCCOR_SIGNATURE pSig; |
2425 | DWORD cbSig; |
2426 | |
2427 | pMD->GetSig(&pSig,&cbSig); |
2428 | |
2429 | MethodDesc* pStubMD = ILStubCache::CreateAndLinkNewILStubMethodDesc(pMD->GetLoaderAllocator(), |
2430 | pMD->GetMethodTable(), |
2431 | ILSTUB_MULTICASTDELEGATE_INVOKE, |
2432 | pMD->GetModule(), |
2433 | pSig, cbSig, |
2434 | NULL, |
2435 | &sl); |
2436 | |
2437 | pStub = Stub::NewStub(JitILStub(pStubMD)); |
2438 | |
2439 | g_IBCLogger.LogEEClassCOWTableAccess(pDelegateMT); |
2440 | |
2441 | InterlockedCompareExchangeT<PTR_Stub>(EnsureWritablePages(&delegateEEClass->m_pMultiCastInvokeStub), pStub, NULL); |
2442 | |
2443 | HELPER_METHOD_FRAME_END(); |
2444 | } |
2445 | |
2446 | return pStub->GetEntryPoint(); |
2447 | } |
2448 | FCIMPLEND |
2449 | |
2450 | #else // FEATURE_MULTICASTSTUB_AS_IL |
2451 | |
2452 | FCIMPL1(PCODE, COMDelegate::GetMulticastInvoke, Object* refThisIn) |
2453 | { |
2454 | FCALL_CONTRACT; |
2455 | |
2456 | OBJECTREF refThis = ObjectToOBJECTREF(refThisIn); |
2457 | MethodTable *pDelegateMT = refThis->GetMethodTable(); |
2458 | |
2459 | DelegateEEClass *delegateEEClass = ((DelegateEEClass*)(pDelegateMT->GetClass())); |
2460 | Stub *pStub = delegateEEClass->m_pMultiCastInvokeStub; |
2461 | if (pStub == NULL) |
2462 | { |
2463 | MethodDesc* pMD = delegateEEClass->GetInvokeMethod(); |
2464 | |
2465 | HELPER_METHOD_FRAME_BEGIN_RET_0(); |
2466 | |
2467 | GCX_PREEMP(); |
2468 | |
2469 | MetaSig sig(pMD); |
2470 | |
2471 | UINT_PTR hash = CPUSTUBLINKER::HashMulticastInvoke(&sig); |
2472 | |
2473 | pStub = m_pMulticastStubCache->GetStub(hash); |
2474 | if (!pStub) |
2475 | { |
2476 | CPUSTUBLINKER sl; |
2477 | |
2478 | LOG((LF_CORDB,LL_INFO10000, "COMD::GIMS making a multicast delegate\n" )); |
2479 | |
2480 | sl.EmitMulticastInvoke(hash); |
2481 | |
2482 | // The cache is process-wide, based on signature. It never unloads |
2483 | Stub *pCandidate = sl.Link(SystemDomain::GetGlobalLoaderAllocator()->GetStubHeap(), NEWSTUB_FL_MULTICAST); |
2484 | |
2485 | Stub *pWinner = m_pMulticastStubCache->AttemptToSetStub(hash,pCandidate); |
2486 | pCandidate->DecRef(); |
2487 | if (!pWinner) |
2488 | COMPlusThrowOM(); |
2489 | |
2490 | LOG((LF_CORDB,LL_INFO10000, "Putting a MC stub at 0x%x (code:0x%x)\n" , |
2491 | pWinner, (BYTE*)pWinner+sizeof(Stub))); |
2492 | |
2493 | pStub = pWinner; |
2494 | } |
2495 | |
2496 | g_IBCLogger.LogEEClassCOWTableAccess(pDelegateMT); |
2497 | |
2498 | // we don't need to do an InterlockedCompareExchange here - the m_pMulticastStubCache->AttemptToSetStub |
2499 | // will make sure all threads racing here will get the same stub, so they'll all store the same value |
2500 | EnsureWritablePages(&delegateEEClass->m_pMultiCastInvokeStub); |
2501 | delegateEEClass->m_pMultiCastInvokeStub = pStub; |
2502 | |
2503 | HELPER_METHOD_FRAME_END(); |
2504 | } |
2505 | |
2506 | return pStub->GetEntryPoint(); |
2507 | } |
2508 | FCIMPLEND |
2509 | #endif // FEATURE_MULTICASTSTUB_AS_IL |
2510 | |
2511 | #ifdef FEATURE_STUBS_AS_IL |
2512 | PCODE COMDelegate::GetSecureInvoke(MethodDesc* pMD) |
2513 | { |
2514 | CONTRACTL |
2515 | { |
2516 | THROWS; |
2517 | GC_TRIGGERS; |
2518 | MODE_ANY; |
2519 | } |
2520 | CONTRACTL_END; |
2521 | |
2522 | MethodTable * pDelegateMT = pMD->GetMethodTable(); |
2523 | DelegateEEClass* delegateEEClass = (DelegateEEClass*) pDelegateMT->GetClass(); |
2524 | Stub *pStub = delegateEEClass->m_pSecureDelegateInvokeStub; |
2525 | |
2526 | if (pStub == NULL) |
2527 | { |
2528 | |
2529 | GCX_PREEMP(); |
2530 | |
2531 | MetaSig sig(pMD); |
2532 | |
2533 | BOOL fReturnVal = !sig.IsReturnTypeVoid(); |
2534 | |
2535 | SigTypeContext emptyContext; |
2536 | ILStubLinker sl(pMD->GetModule(), pMD->GetSignature(), &emptyContext, pMD, TRUE, TRUE, FALSE); |
2537 | |
2538 | ILCodeStream *pCode = sl.NewCodeStream(ILStubLinker::kDispatch); |
2539 | |
2540 | // Load the "real" delegate |
2541 | pCode->EmitLoadThis(); |
2542 | pCode->EmitLDFLD(pCode->GetToken(MscorlibBinder::GetField(FIELD__MULTICAST_DELEGATE__INVOCATION_LIST))); |
2543 | |
2544 | // Load the arguments |
2545 | UINT paramCount = 0; |
2546 | while(paramCount < sig.NumFixedArgs()) |
2547 | pCode->EmitLDARG(paramCount++); |
2548 | |
2549 | // Call the delegate |
2550 | pCode->EmitCALL(pCode->GetToken(pMD), sig.NumFixedArgs(), fReturnVal); |
2551 | |
2552 | // Return |
2553 | pCode->EmitRET(); |
2554 | |
2555 | PCCOR_SIGNATURE pSig; |
2556 | DWORD cbSig; |
2557 | |
2558 | pMD->GetSig(&pSig,&cbSig); |
2559 | |
2560 | MethodDesc* pStubMD = |
2561 | ILStubCache::CreateAndLinkNewILStubMethodDesc(pMD->GetLoaderAllocator(), |
2562 | pMD->GetMethodTable(), |
2563 | ILSTUB_SECUREDELEGATE_INVOKE, |
2564 | pMD->GetModule(), |
2565 | pSig, cbSig, |
2566 | NULL, |
2567 | &sl); |
2568 | |
2569 | pStub = Stub::NewStub(JitILStub(pStubMD)); |
2570 | |
2571 | g_IBCLogger.LogEEClassCOWTableAccess(pDelegateMT); |
2572 | |
2573 | InterlockedCompareExchangeT<PTR_Stub>(EnsureWritablePages(&delegateEEClass->m_pSecureDelegateInvokeStub), pStub, NULL); |
2574 | |
2575 | } |
2576 | return pStub->GetEntryPoint(); |
2577 | } |
2578 | #else // FEATURE_STUBS_AS_IL |
2579 | PCODE COMDelegate::GetSecureInvoke(MethodDesc* pMD) |
2580 | { |
2581 | CONTRACT (PCODE) |
2582 | { |
2583 | THROWS; |
2584 | GC_TRIGGERS; |
2585 | MODE_ANY; |
2586 | POSTCONDITION(RETVAL != NULL); |
2587 | } |
2588 | CONTRACT_END; |
2589 | |
2590 | MethodTable * pDelegateMT = pMD->GetMethodTable(); |
2591 | DelegateEEClass* delegateEEClass = (DelegateEEClass*) pDelegateMT->GetClass(); |
2592 | |
2593 | Stub *pStub = delegateEEClass->m_pSecureDelegateInvokeStub; |
2594 | |
2595 | if (pStub == NULL) |
2596 | { |
2597 | GCX_PREEMP(); |
2598 | |
2599 | MetaSig sig(pMD); |
2600 | |
2601 | UINT_PTR hash = CPUSTUBLINKER::HashMulticastInvoke(&sig); |
2602 | |
2603 | pStub = m_pSecureDelegateStubCache->GetStub(hash); |
2604 | if (!pStub) |
2605 | { |
2606 | CPUSTUBLINKER sl; |
2607 | |
2608 | LOG((LF_CORDB,LL_INFO10000, "COMD::GIMS making a multicast delegate\n" )); |
2609 | sl.EmitSecureDelegateInvoke(hash); |
2610 | |
2611 | // The cache is process-wide, based on signature. It never unloads |
2612 | Stub *pCandidate = sl.Link(SystemDomain::GetGlobalLoaderAllocator()->GetStubHeap(), NEWSTUB_FL_MULTICAST); |
2613 | |
2614 | Stub *pWinner = m_pSecureDelegateStubCache->AttemptToSetStub(hash, pCandidate); |
2615 | pCandidate->DecRef(); |
2616 | if (!pWinner) |
2617 | COMPlusThrowOM(); |
2618 | |
2619 | LOG((LF_CORDB,LL_INFO10000, "Putting a MC stub at 0x%x (code:0x%x)\n" , |
2620 | pWinner, (BYTE*)pWinner+sizeof(Stub))); |
2621 | |
2622 | pStub = pWinner; |
2623 | } |
2624 | |
2625 | g_IBCLogger.LogEEClassCOWTableAccess(pDelegateMT); |
2626 | EnsureWritablePages(&delegateEEClass->m_pSecureDelegateInvokeStub); |
2627 | delegateEEClass->m_pSecureDelegateInvokeStub = pStub; |
2628 | } |
2629 | RETURN (pStub->GetEntryPoint()); |
2630 | } |
2631 | #endif // FEATURE_STUBS_AS_IL |
2632 | |
2633 | #endif // CROSSGEN_COMPILE |
2634 | |
2635 | |
2636 | static BOOL IsLocationAssignable(TypeHandle fromHandle, TypeHandle toHandle, BOOL relaxedMatch, BOOL fromHandleIsBoxed) |
2637 | { |
2638 | CONTRACTL |
2639 | { |
2640 | THROWS; |
2641 | GC_TRIGGERS; |
2642 | MODE_ANY; |
2643 | } |
2644 | CONTRACTL_END; |
2645 | // Identical types are obviously compatible. |
2646 | if (fromHandle == toHandle) |
2647 | return TRUE; |
2648 | |
2649 | // Byref parameters can never be allowed relaxed matching since type safety will always be violated in one |
2650 | // of the two directions (in or out). Checking one of the types is enough since a byref type is never |
2651 | // compatible with a non-byref type. |
2652 | if (fromHandle.IsByRef()) |
2653 | relaxedMatch = FALSE; |
2654 | |
2655 | // If we allow relaxed matching then any subtype of toHandle is probably |
2656 | // compatible (definitely so if we know fromHandle is coming from a boxed |
2657 | // value such as we get from the bound argument in a closed delegate). |
2658 | if (relaxedMatch && fromHandle.CanCastTo(toHandle)) |
2659 | { |
2660 | // If the fromHandle isn't boxed then we need to be careful since |
2661 | // non-object reference arguments aren't going to be compatible with |
2662 | // object reference locations (there's no implicit boxing going to happen |
2663 | // for us). |
2664 | if (!fromHandleIsBoxed) |
2665 | { |
2666 | // Check that the "objrefness" of source and destination matches. In |
2667 | // reality there are only three objref classes that would have |
2668 | // passed the CanCastTo above given a value type source (Object, |
2669 | // ValueType and Enum), but why hard code these in when we can be |
2670 | // more robust? |
2671 | if (fromHandle.IsGenericVariable()) |
2672 | { |
2673 | TypeVarTypeDesc *fromHandleVar = fromHandle.AsGenericVariable(); |
2674 | |
2675 | // We need to check whether constraints of fromHandle have been loaded, because the |
2676 | // CanCastTo operation might have made its decision without enumerating constraints |
2677 | // (e.g. when toHandle is System.Object). |
2678 | if (!fromHandleVar->ConstraintsLoaded()) |
2679 | fromHandleVar->LoadConstraints(CLASS_DEPENDENCIES_LOADED); |
2680 | |
2681 | if (toHandle.IsGenericVariable()) |
2682 | { |
2683 | TypeVarTypeDesc *toHandleVar = toHandle.AsGenericVariable(); |
2684 | |
2685 | // Constraints of toHandleVar were not touched by CanCastTo. |
2686 | if (!toHandleVar->ConstraintsLoaded()) |
2687 | toHandleVar->LoadConstraints(CLASS_DEPENDENCIES_LOADED); |
2688 | |
2689 | // Both handles are type variables. The following table lists all possible combinations. |
2690 | // |
2691 | // In brackets are results of IsConstrainedAsObjRef/IsConstrainedAsValueType |
2692 | // |
2693 | // To:| [FALSE/FALSE] | [FALSE/TRUE] | [TRUE/FALSE] |
2694 | // From: | | | |
2695 | // -------------------------------------------------------------------------------------- |
2696 | // [FALSE/FALSE] | ERROR | NEVER HAPPENS | ERROR |
2697 | // | we know nothing | | From may be a VT |
2698 | // -------------------------------------------------------------------------------------- |
2699 | // [FALSE/TRUE] | ERROR | OK | ERROR |
2700 | // | To may be an ObjRef | both are VT | mismatch |
2701 | // -------------------------------------------------------------------------------------- |
2702 | // [TRUE/FALSE] | OK (C# compat) | ERROR - mismatch and | OK |
2703 | // | (*) | no such instantiation | both are ObjRef |
2704 | // -------------------------------------------------------------------------------------- |
2705 | |
2706 | if (fromHandleVar->ConstrainedAsObjRef()) |
2707 | { |
2708 | // (*) Normally we would need to check whether toHandleVar is also constrained |
2709 | // as ObjRef here and fail if it's not. However, the C# compiler currently |
2710 | // allows the toHandleVar constraint to be omitted and infers it. We have to |
2711 | // follow the same rule to avoid introducing a breaking change. |
2712 | // |
2713 | // Example: |
2714 | // class Gen<T, U> where T : class, U |
2715 | // |
2716 | // For the sake of delegate co(ntra)variance, U is also regarded as being |
2717 | // constrained as ObjRef even though it has no constraints. |
2718 | |
2719 | if (toHandleVar->ConstrainedAsValueType()) |
2720 | { |
2721 | // reference type / value type mismatch |
2722 | return FALSE; |
2723 | } |
2724 | } |
2725 | else |
2726 | { |
2727 | if (toHandleVar->ConstrainedAsValueType()) |
2728 | { |
2729 | // If toHandleVar is constrained as value type, fromHandle must be as well. |
2730 | _ASSERTE(fromHandleVar->ConstrainedAsValueType()); |
2731 | } |
2732 | else |
2733 | { |
2734 | // It was not possible to prove that the variables are both reference types |
2735 | // or both value types. |
2736 | return FALSE; |
2737 | } |
2738 | } |
2739 | } |
2740 | else |
2741 | { |
2742 | // We need toHandle to be an ObjRef and fromHandle to be constrained as ObjRef, |
2743 | // or toHandle to be a value type and fromHandle to be constrained as a value |
2744 | // type (which must be this specific value type actually as value types are sealed). |
2745 | |
2746 | // Constraints of fromHandle must ensure that it will be ObjRef if toHandle is an |
2747 | // ObjRef, and a value type if toHandle is not an ObjRef. |
2748 | if (CorTypeInfo::IsObjRef_NoThrow(toHandle.GetInternalCorElementType())) |
2749 | { |
2750 | if (!fromHandleVar->ConstrainedAsObjRef()) |
2751 | return FALSE; |
2752 | } |
2753 | else |
2754 | { |
2755 | if (!fromHandleVar->ConstrainedAsValueType()) |
2756 | return FALSE; |
2757 | } |
2758 | } |
2759 | } |
2760 | else |
2761 | { |
2762 | _ASSERTE(!toHandle.IsGenericVariable()); |
2763 | |
2764 | // The COR element types have all the information we need. |
2765 | if (CorTypeInfo::IsObjRef_NoThrow(fromHandle.GetInternalCorElementType()) != |
2766 | CorTypeInfo::IsObjRef_NoThrow(toHandle.GetInternalCorElementType())) |
2767 | return FALSE; |
2768 | } |
2769 | } |
2770 | |
2771 | return TRUE; |
2772 | } |
2773 | else |
2774 | { |
2775 | // they are not compatible yet enums can go into each other if their underlying element type is the same |
2776 | if (toHandle.GetVerifierCorElementType() == fromHandle.GetVerifierCorElementType() |
2777 | && (toHandle.IsEnum() || fromHandle.IsEnum())) |
2778 | return TRUE; |
2779 | |
2780 | } |
2781 | |
2782 | return FALSE; |
2783 | } |
2784 | |
2785 | MethodDesc* COMDelegate::FindDelegateInvokeMethod(MethodTable *pMT) |
2786 | { |
2787 | CONTRACTL |
2788 | { |
2789 | THROWS; |
2790 | GC_NOTRIGGER; |
2791 | MODE_ANY; |
2792 | } |
2793 | CONTRACTL_END; |
2794 | |
2795 | _ASSERTE(pMT->IsDelegate()); |
2796 | |
2797 | MethodDesc * pMD = ((DelegateEEClass*)pMT->GetClass())->GetInvokeMethod(); |
2798 | if (pMD == NULL) |
2799 | COMPlusThrowNonLocalized(kMissingMethodException, W("Invoke" )); |
2800 | return pMD; |
2801 | } |
2802 | |
2803 | BOOL COMDelegate::IsDelegateInvokeMethod(MethodDesc *pMD) |
2804 | { |
2805 | LIMITED_METHOD_CONTRACT; |
2806 | |
2807 | MethodTable *pMT = pMD->GetMethodTable(); |
2808 | _ASSERTE(pMT->IsDelegate()); |
2809 | |
2810 | return (pMD == ((DelegateEEClass *)pMT->GetClass())->GetInvokeMethod()); |
2811 | } |
2812 | |
2813 | BOOL COMDelegate::IsMethodDescCompatible(TypeHandle thFirstArg, |
2814 | TypeHandle thExactMethodType, |
2815 | MethodDesc *pTargetMethod, |
2816 | TypeHandle thDelegate, |
2817 | MethodDesc *pInvokeMethod, |
2818 | int flags, |
2819 | BOOL *pfIsOpenDelegate) |
2820 | { |
2821 | CONTRACTL |
2822 | { |
2823 | THROWS; |
2824 | GC_TRIGGERS; |
2825 | MODE_ANY; |
2826 | } |
2827 | CONTRACTL_END; |
2828 | |
2829 | // Handle easy cases first -- if there's a constraint on whether the target method is static or instance we can check that very |
2830 | // quickly. |
2831 | if (flags & DBF_StaticMethodOnly && !pTargetMethod->IsStatic()) |
2832 | return FALSE; |
2833 | if (flags & DBF_InstanceMethodOnly && pTargetMethod->IsStatic()) |
2834 | return FALSE; |
2835 | |
2836 | // we don't allow you to bind to methods on Nullable<T> because the unboxing stubs don't know how to |
2837 | // handle this case. |
2838 | if (!pTargetMethod->IsStatic() && Nullable::IsNullableType(pTargetMethod->GetMethodTable())) |
2839 | return FALSE; |
2840 | |
2841 | // Have to be careful with automatically generated array methods (Get, Set, etc.). The TypeHandle here may actually be one |
2842 | // of the "special case" MethodTables (such as Object[]) instead of an ArrayTypeDesc and our TypeHandle CanCastTo code can't |
2843 | // cope with all the different possible combinations. In general we want to normalize the TypeHandle into an ArrayTypeDesc |
2844 | // for these cases. |
2845 | if (thExactMethodType.IsArrayType() && !thExactMethodType.IsArray()) |
2846 | { |
2847 | TypeHandle thElement = thExactMethodType.AsMethodTable()->GetApproxArrayElementTypeHandle(); |
2848 | CorElementType etElement = thExactMethodType.AsMethodTable()->GetInternalCorElementType(); |
2849 | unsigned uRank = thExactMethodType.AsMethodTable()->GetRank(); |
2850 | |
2851 | thExactMethodType = ClassLoader::LoadArrayTypeThrowing(thElement, |
2852 | etElement, |
2853 | uRank, |
2854 | ClassLoader::DontLoadTypes); |
2855 | } |
2856 | |
2857 | // Get signatures for the delegate invoke and target methods. |
2858 | MetaSig sigInvoke(pInvokeMethod, thDelegate); |
2859 | MetaSig sigTarget(pTargetMethod, thExactMethodType); |
2860 | |
2861 | // Check that there is no vararg mismatch. |
2862 | if (sigInvoke.IsVarArg() != sigTarget.IsVarArg()) |
2863 | return FALSE; |
2864 | |
2865 | // The relationship between the number of arguments on the delegate invoke and target methods tells us a lot about the type of |
2866 | // delegate we'll create (open or closed over the first argument). We're getting the fixed argument counts here, which are all |
2867 | // the arguments apart from any implicit 'this' pointers. |
2868 | // On the delegate invoke side (the caller) the total number of arguments is the number of fixed args to Invoke plus one if the |
2869 | // delegate is closed over an argument (i.e. that argument is provided at delegate creation time). |
2870 | // On the target method side (the callee) the total number of arguments is the number of fixed args plus one if the target is an |
2871 | // instance method. |
2872 | // These two totals should match for any compatible delegate and target method. |
2873 | UINT numFixedInvokeArgs = sigInvoke.NumFixedArgs(); |
2874 | UINT numFixedTargetArgs = sigTarget.NumFixedArgs(); |
2875 | UINT numTotalTargetArgs = numFixedTargetArgs + (pTargetMethod->IsStatic() ? 0 : 1); |
2876 | |
2877 | // Determine whether the match (if it is otherwise compatible) would result in an open or closed delegate or is just completely |
2878 | // out of whack. |
2879 | BOOL fIsOpenDelegate; |
2880 | if (numTotalTargetArgs == numFixedInvokeArgs) |
2881 | // All arguments provided by invoke, delegate must be open. |
2882 | fIsOpenDelegate = TRUE; |
2883 | else if (numTotalTargetArgs == numFixedInvokeArgs + 1) |
2884 | // One too few arguments provided by invoke, delegate must be closed. |
2885 | fIsOpenDelegate = FALSE; |
2886 | else |
2887 | // Target method cannot possibly match the invoke method. |
2888 | return FALSE; |
2889 | |
2890 | // Deal with cases where the caller wants a specific type of delegate. |
2891 | if (flags & DBF_OpenDelegateOnly && !fIsOpenDelegate) |
2892 | return FALSE; |
2893 | if (flags & DBF_ClosedDelegateOnly && fIsOpenDelegate) |
2894 | return FALSE; |
2895 | |
2896 | // If the target (or first argument) is null, the delegate type would be closed and the caller explicitly doesn't want to allow |
2897 | // closing over null then filter that case now. |
2898 | if (flags & DBF_NeverCloseOverNull && thFirstArg.IsNull() && !fIsOpenDelegate) |
2899 | return FALSE; |
2900 | |
2901 | // If, on the other hand, we're looking at an open delegate but the caller has provided a target it's also not a match. |
2902 | if (fIsOpenDelegate && !thFirstArg.IsNull()) |
2903 | return FALSE; |
2904 | |
2905 | // **********OLD COMMENT********** |
2906 | // We don't allow open delegates over virtual value type methods. That's because we currently have no way to allow the first |
2907 | // argument of the invoke method to be specified in such a way that the passed value would be both compatible with the target |
2908 | // method and type safe. Virtual methods always have an objref instance (they depend on this for the vtable lookup algorithm) so |
2909 | // we can't take a Foo& first argument like other value type methods. We also can't accept System.Object or System.ValueType in |
2910 | // the invoke signature since that's not specific enough and would allow type safety violations. |
2911 | // Someday we may invent a boxing stub which would take a Foo& passed in box it before dispatch. This is unlikely given that |
2912 | // it's a lot of work for an edge case (especially considering that open delegates over value types are always going to be |
2913 | // tightly bound to the specific value type). It would also be an odd case where merely calling a delegate would involve an |
2914 | // allocation and thus potential failure before you even entered the method. |
2915 | // So for now we simply disallow this case. |
2916 | // **********OLD COMMENT END********** |
2917 | // Actually we allow them now. We will treat them like non-virtual methods. |
2918 | |
2919 | |
2920 | // If we get here the basic shape of the signatures match up for either an open or closed delegate. Now we need to verify that |
2921 | // those signatures are type compatible. This is complicated somewhat by the matrix of delegate type to target method types |
2922 | // (open static vs closed instance etc.). Where we get the first argument type on the invoke side is controlled by open vs |
2923 | // closed: closed delegates get the type from the target, open from the first invoke method argument (which is always a fixed |
2924 | // arg). Similarly the location of the first argument type on the target method side is based on static vs instance (static from |
2925 | // the first fixed arg, instance from the type of the method). |
2926 | |
2927 | TypeHandle thFirstInvokeArg; |
2928 | TypeHandle thFirstTargetArg; |
2929 | |
2930 | // There is one edge case for an open static delegate which takes no arguments. In that case we're nearly done, just compare the |
2931 | // return types. |
2932 | if (numTotalTargetArgs == 0) |
2933 | { |
2934 | _ASSERTE(pTargetMethod->IsStatic()); |
2935 | _ASSERTE(fIsOpenDelegate); |
2936 | |
2937 | goto CheckReturnType; |
2938 | } |
2939 | |
2940 | // Invoke side first... |
2941 | if (fIsOpenDelegate) |
2942 | { |
2943 | // No bound arguments, take first type from invoke signature. |
2944 | if (sigInvoke.NextArgNormalized() == ELEMENT_TYPE_END) |
2945 | return FALSE; |
2946 | thFirstInvokeArg = sigInvoke.GetLastTypeHandleThrowing(); |
2947 | } |
2948 | else |
2949 | // We have one bound argument and the type of that is what we must compare first. |
2950 | thFirstInvokeArg = thFirstArg; |
2951 | |
2952 | // And now the first target method argument for comparison... |
2953 | if (pTargetMethod->IsStatic()) |
2954 | { |
2955 | // The first argument for a static method is the first fixed arg. |
2956 | if (sigTarget.NextArgNormalized() == ELEMENT_TYPE_END) |
2957 | return FALSE; |
2958 | thFirstTargetArg = sigTarget.GetLastTypeHandleThrowing(); |
2959 | |
2960 | // Delegates closed over static methods have a further constraint: the first argument of the target must be an object |
2961 | // reference type (otherwise the argument shuffling logic could get complicated). |
2962 | if (!fIsOpenDelegate) |
2963 | { |
2964 | if (thFirstTargetArg.IsGenericVariable()) |
2965 | { |
2966 | // If the first argument of the target is a generic variable, it must be constrained to be an object reference. |
2967 | TypeVarTypeDesc *varFirstTargetArg = thFirstTargetArg.AsGenericVariable(); |
2968 | if (!varFirstTargetArg->ConstrainedAsObjRef()) |
2969 | return FALSE; |
2970 | } |
2971 | else |
2972 | { |
2973 | // Otherwise the code:CorElementType of the argument must be classified as an object reference. |
2974 | CorElementType etFirstTargetArg = thFirstTargetArg.GetInternalCorElementType(); |
2975 | if (!CorTypeInfo::IsObjRef(etFirstTargetArg)) |
2976 | return FALSE; |
2977 | } |
2978 | } |
2979 | } |
2980 | else |
2981 | { |
2982 | // The type of the first argument to an instance method is from the method type. |
2983 | thFirstTargetArg = thExactMethodType; |
2984 | |
2985 | // If the delegate is open and the target method is on a value type or primitive then the first argument of the invoke |
2986 | // method must be a reference to that type. So make promote the type we got from the reference to a ref. (We don't need to |
2987 | // do this for the closed instance case because there we got the invocation side type from the first arg passed in, i.e. |
2988 | // it's had the ref stripped from it implicitly). |
2989 | if (fIsOpenDelegate) |
2990 | { |
2991 | CorElementType etFirstTargetArg = thFirstTargetArg.GetInternalCorElementType(); |
2992 | if (etFirstTargetArg <= ELEMENT_TYPE_R8 || |
2993 | etFirstTargetArg == ELEMENT_TYPE_VALUETYPE || |
2994 | etFirstTargetArg == ELEMENT_TYPE_I || |
2995 | etFirstTargetArg == ELEMENT_TYPE_U) |
2996 | thFirstTargetArg = thFirstTargetArg.MakeByRef(); |
2997 | } |
2998 | } |
2999 | |
3000 | // Now we have enough data to compare the first arguments on the invoke and target side. Skip this if we are closed over null |
3001 | // (we don't have enough type information for the match but it doesn't matter because the null matches all object reference |
3002 | // types, which our first arg must be in this case). We always relax signature matching for the first argument of an instance |
3003 | // method, since it's always allowable to call the method on a more derived type. In cases where we're closed over the first |
3004 | // argument we know that argument is boxed (because it was passed to us as an object). We provide this information to |
3005 | // IsLocationAssignable because it relaxes signature matching for some important cases (e.g. passing a value type to an argument |
3006 | // typed as Object). |
3007 | if (!thFirstInvokeArg.IsNull()) |
3008 | if (!IsLocationAssignable(thFirstInvokeArg, |
3009 | thFirstTargetArg, |
3010 | !pTargetMethod->IsStatic() || flags & DBF_RelaxedSignature, |
3011 | !fIsOpenDelegate)) |
3012 | return FALSE; |
3013 | |
3014 | // Loop over the remaining fixed args, the list should be one to one at this point. |
3015 | while (TRUE) |
3016 | { |
3017 | CorElementType etInvokeArg = sigInvoke.NextArgNormalized(); |
3018 | CorElementType etTargetArg = sigTarget.NextArgNormalized(); |
3019 | if (etInvokeArg == ELEMENT_TYPE_END || etTargetArg == ELEMENT_TYPE_END) |
3020 | { |
3021 | // We've reached the end of one signature. We better be at the end of the other or it's not a match. |
3022 | if (etInvokeArg != etTargetArg) |
3023 | return FALSE; |
3024 | break; |
3025 | } |
3026 | else |
3027 | { |
3028 | TypeHandle thInvokeArg = sigInvoke.GetLastTypeHandleThrowing(); |
3029 | TypeHandle thTargetArg = sigTarget.GetLastTypeHandleThrowing(); |
3030 | |
3031 | if (!IsLocationAssignable(thInvokeArg, thTargetArg, flags & DBF_RelaxedSignature, FALSE)) |
3032 | return FALSE; |
3033 | } |
3034 | } |
3035 | |
3036 | CheckReturnType: |
3037 | |
3038 | // Almost there, just compare the return types (remember that the assignment is in the other direction here, from callee to |
3039 | // caller, so switch the order of the arguments to IsLocationAssignable). |
3040 | // If we ever relax this we have to think about how to unbox this arg in the Nullable<T> case also. |
3041 | if (!IsLocationAssignable(sigTarget.GetRetTypeHandleThrowing(), |
3042 | sigInvoke.GetRetTypeHandleThrowing(), |
3043 | flags & DBF_RelaxedSignature, |
3044 | FALSE)) |
3045 | return FALSE; |
3046 | |
3047 | // We must have a match. |
3048 | if (pfIsOpenDelegate) |
3049 | *pfIsOpenDelegate = fIsOpenDelegate; |
3050 | return TRUE; |
3051 | } |
3052 | |
3053 | MethodDesc* COMDelegate::GetDelegateCtor(TypeHandle delegateType, MethodDesc *pTargetMethod, DelegateCtorArgs *pCtorData) |
3054 | { |
3055 | CONTRACTL |
3056 | { |
3057 | THROWS; |
3058 | GC_TRIGGERS; |
3059 | MODE_ANY; |
3060 | } |
3061 | CONTRACTL_END; |
3062 | |
3063 | MethodDesc *pRealCtor = NULL; |
3064 | |
3065 | MethodTable *pDelMT = delegateType.AsMethodTable(); |
3066 | DelegateEEClass *pDelCls = (DelegateEEClass*)(pDelMT->GetClass()); |
3067 | |
3068 | MethodDesc *pDelegateInvoke = COMDelegate::FindDelegateInvokeMethod(pDelMT); |
3069 | |
3070 | MetaSig invokeSig(pDelegateInvoke); |
3071 | MetaSig methodSig(pTargetMethod); |
3072 | UINT invokeArgCount = invokeSig.NumFixedArgs(); |
3073 | UINT methodArgCount = methodSig.NumFixedArgs(); |
3074 | BOOL isStatic = pTargetMethod->IsStatic(); |
3075 | LoaderAllocator *pTargetMethodLoaderAllocator = pTargetMethod->GetLoaderAllocator(); |
3076 | BOOL isCollectible = pTargetMethodLoaderAllocator->IsCollectible(); |
3077 | // A method that may be instantiated over a collectible type, and is static will require a delegate |
3078 | // that has the _methodBase field filled in with the LoaderAllocator of the collectible assembly |
3079 | // associated with the instantiation. |
3080 | BOOL fMaybeCollectibleAndStatic = FALSE; |
3081 | |
3082 | // Do not allow static methods with [NativeCallableAttribute] to be a delegate target. |
3083 | // A native callable method is special and allowing it to be delegate target will destabilize the runtime. |
3084 | if (pTargetMethod->HasNativeCallableAttribute()) |
3085 | { |
3086 | COMPlusThrow(kNotSupportedException, W("NotSupported_NativeCallableTarget" )); |
3087 | } |
3088 | |
3089 | if (isStatic) |
3090 | { |
3091 | // When this method is called and the method being considered is shared, we typically |
3092 | // are passed a Wrapper method for the explicit canonical instantiation. It would be illegal |
3093 | // to actually call that method, but the jit uses it as a proxy for the real instantiated |
3094 | // method, so we can't make the methoddesc apis that report that it is the shared methoddesc |
3095 | // report that it is. Hence, this collection of checks that will detect if the methoddesc |
3096 | // being used is a normal method desc to shared code, or if it is a wrapped methoddesc |
3097 | // corresponding to the actually uncallable instantiation over __Canon. |
3098 | if (pTargetMethod->GetMethodTable()->IsSharedByGenericInstantiations()) |
3099 | { |
3100 | fMaybeCollectibleAndStatic = TRUE; |
3101 | } |
3102 | else if (pTargetMethod->IsSharedByGenericMethodInstantiations()) |
3103 | { |
3104 | fMaybeCollectibleAndStatic = TRUE; |
3105 | } |
3106 | else if (pTargetMethod->HasMethodInstantiation()) |
3107 | { |
3108 | Instantiation instantiation = pTargetMethod->GetMethodInstantiation(); |
3109 | for (DWORD iParam = 0; iParam < instantiation.GetNumArgs(); iParam++) |
3110 | { |
3111 | if (instantiation[iParam] == g_pCanonMethodTableClass) |
3112 | { |
3113 | fMaybeCollectibleAndStatic = TRUE; |
3114 | break; |
3115 | } |
3116 | } |
3117 | } |
3118 | } |
3119 | |
3120 | // If this might be collectible and is static, then we will go down the slow path. Implementing |
3121 | // yet another fast path would require a methoddesc parameter, but hopefully isn't necessary. |
3122 | if (fMaybeCollectibleAndStatic) |
3123 | return NULL; |
3124 | |
3125 | if (!isStatic) |
3126 | methodArgCount++; // count 'this' |
3127 | MethodDesc *pCallerMethod = (MethodDesc*)pCtorData->pMethod; |
3128 | |
3129 | if (NeedsWrapperDelegate(pTargetMethod)) |
3130 | { |
3131 | // If we need a wrapper even it is not a secure delegate, go through slow path |
3132 | return NULL; |
3133 | } |
3134 | |
3135 | // Force the slow path for nullable so that we can give the user an error in case were the verifier is not run. |
3136 | MethodTable* pMT = pTargetMethod->GetMethodTable(); |
3137 | if (!pTargetMethod->IsStatic() && Nullable::IsNullableType(pMT)) |
3138 | return NULL; |
3139 | |
3140 | #ifdef FEATURE_COMINTEROP |
3141 | // We'll always force classic COM types to go down the slow path for security checks. |
3142 | if ((pMT->IsComObjectType() && !pMT->IsWinRTObjectType()) || |
3143 | (pMT->IsComImport() && !pMT->IsProjectedFromWinRT())) |
3144 | { |
3145 | return NULL; |
3146 | } |
3147 | #endif |
3148 | |
3149 | // DELEGATE KINDS TABLE |
3150 | // |
3151 | // _target _methodPtr _methodPtrAux _invocationList _invocationCount |
3152 | // |
3153 | // 1- Instance closed 'this' ptr target method null null 0 |
3154 | // 2- Instance open non-virt delegate shuffle thunk target method null 0 |
3155 | // 3- Instance open virtual delegate Virtual-stub dispatch method id null 0 |
3156 | // 4- Static closed first arg target method null null 0 |
3157 | // 5- Static closed (special sig) delegate specialSig thunk target method first arg 0 |
3158 | // 6- Static opened delegate shuffle thunk target method null 0 |
3159 | // 7- Secure delegate call thunk MethodDesc (frame) target delegate creator assembly |
3160 | // |
3161 | // Delegate invoke arg count == target method arg count - 2, 3, 6 |
3162 | // Delegate invoke arg count == 1 + target method arg count - 1, 4, 5 |
3163 | // |
3164 | // 1, 4 - MulticastDelegate.ctor1 (simply assign _target and _methodPtr) |
3165 | // 5 - MulticastDelegate.ctor2 (see table, takes 3 args) |
3166 | // 2, 6 - MulticastDelegate.ctor3 (take shuffle thunk) |
3167 | // 3 - MulticastDelegate.ctor4 (take shuffle thunk, retrieve MethodDesc) ??? |
3168 | // |
3169 | // 7 - Needs special handling |
3170 | // |
3171 | // With collectible types, we need to fill the _methodBase field in with a value that represents the LoaderAllocator of the target method |
3172 | // if the delegate is not a closed instance delegate. |
3173 | // |
3174 | // There are two techniques that will work for this. |
3175 | // One is to simply use the slow path. We use this for unusual constructs. It is rather slow. |
3176 | // We will use this for the secure variants |
3177 | // |
3178 | // Another is to pass a gchandle to the delegate ctor. This is fastest, but only works if we can predict the gc handle at this time. |
3179 | // We will use this for the non secure variants |
3180 | |
3181 | if (invokeArgCount == methodArgCount) |
3182 | { |
3183 | // case 2, 3, 6 |
3184 | //@TODO:NEWVTWORK: Might need changing. |
3185 | // The virtual dispatch stub doesn't work on unboxed value type objects which don't have MT pointers. |
3186 | // Since open virtual (delegate kind 3) delegates on value type methods require unboxed objects we cannot use the |
3187 | // virtual dispatch stub for them. On the other hand, virtual methods on value types don't need |
3188 | // to be dispatched because value types cannot be derived. So we treat them like non-virtual methods (delegate kind 2). |
3189 | if (!isStatic && pTargetMethod->IsVirtual() && !pTargetMethod->GetMethodTable()->IsValueType()) |
3190 | { |
3191 | // case 3 |
3192 | if (isCollectible) |
3193 | pRealCtor = MscorlibBinder::GetMethod(METHOD__MULTICAST_DELEGATE__CTOR_COLLECTIBLE_VIRTUAL_DISPATCH); |
3194 | else |
3195 | pRealCtor = MscorlibBinder::GetMethod(METHOD__MULTICAST_DELEGATE__CTOR_VIRTUAL_DISPATCH); |
3196 | } |
3197 | else |
3198 | { |
3199 | // case 2, 6 |
3200 | if (isCollectible) |
3201 | pRealCtor = MscorlibBinder::GetMethod(METHOD__MULTICAST_DELEGATE__CTOR_COLLECTIBLE_OPENED); |
3202 | else |
3203 | pRealCtor = MscorlibBinder::GetMethod(METHOD__MULTICAST_DELEGATE__CTOR_OPENED); |
3204 | } |
3205 | Stub *pShuffleThunk = NULL; |
3206 | if (!pTargetMethod->IsStatic() && pTargetMethod->HasRetBuffArg() && IsRetBuffPassedAsFirstArg()) |
3207 | pShuffleThunk = pDelCls->m_pInstRetBuffCallStub; |
3208 | else |
3209 | pShuffleThunk = pDelCls->m_pStaticCallStub; |
3210 | |
3211 | if (!pShuffleThunk) |
3212 | pShuffleThunk = SetupShuffleThunk(pDelMT, pTargetMethod); |
3213 | pCtorData->pArg3 = (void*)pShuffleThunk->GetEntryPoint(); |
3214 | if (isCollectible) |
3215 | { |
3216 | pCtorData->pArg4 = pTargetMethodLoaderAllocator->GetLoaderAllocatorObjectHandle(); |
3217 | } |
3218 | } |
3219 | else |
3220 | { |
3221 | // case 1, 4, 5 |
3222 | //TODO: need to differentiate on 5 |
3223 | _ASSERTE(invokeArgCount + 1 == methodArgCount); |
3224 | |
3225 | #ifdef HAS_THISPTR_RETBUF_PRECODE |
3226 | // Force closed delegates over static methods with return buffer to go via |
3227 | // the slow path to create ThisPtrRetBufPrecode |
3228 | if (isStatic && pTargetMethod->HasRetBuffArg() && IsRetBuffPassedAsFirstArg()) |
3229 | return NULL; |
3230 | #endif |
3231 | |
3232 | // under the conditions below the delegate ctor needs to perform some heavy operation |
3233 | // to either resolve the interface call to the real target or to get the unboxing stub (or both) |
3234 | BOOL needsRuntimeInfo = !pTargetMethod->IsStatic() && |
3235 | (pTargetMethod->IsInterface() || |
3236 | (pTargetMethod->GetMethodTable()->IsValueType() && !pTargetMethod->IsUnboxingStub())); |
3237 | |
3238 | if (needsRuntimeInfo) |
3239 | pRealCtor = MscorlibBinder::GetMethod(METHOD__MULTICAST_DELEGATE__CTOR_RT_CLOSED); |
3240 | else |
3241 | { |
3242 | if (!isStatic) |
3243 | pRealCtor = MscorlibBinder::GetMethod(METHOD__MULTICAST_DELEGATE__CTOR_CLOSED); |
3244 | else |
3245 | { |
3246 | if (isCollectible) |
3247 | { |
3248 | pRealCtor = MscorlibBinder::GetMethod(METHOD__MULTICAST_DELEGATE__CTOR_COLLECTIBLE_CLOSED_STATIC); |
3249 | pCtorData->pArg3 = pTargetMethodLoaderAllocator->GetLoaderAllocatorObjectHandle(); |
3250 | } |
3251 | else |
3252 | { |
3253 | pRealCtor = MscorlibBinder::GetMethod(METHOD__MULTICAST_DELEGATE__CTOR_CLOSED_STATIC); |
3254 | } |
3255 | } |
3256 | } |
3257 | } |
3258 | |
3259 | return pRealCtor; |
3260 | } |
3261 | |
3262 | |
3263 | /*@GENERICSVER: new (works for generics too) |
3264 | Does a static validation of parameters passed into a delegate constructor. |
3265 | |
3266 | |
3267 | For "new Delegate(obj.method)" where method is statically typed as "C::m" and |
3268 | the static type of obj is D (some subclass of C)... |
3269 | |
3270 | Params: |
3271 | instHnd : Static type of the instance, from which pFtn is obtained. Ignored if pFtn |
3272 | is static (i.e. D) |
3273 | ftnParentHnd: Parent of the MethodDesc, pFtn, used to create the delegate (i.e. type C) |
3274 | pFtn : (possibly shared) MethodDesc of the function pointer used to create the delegate (i.e. C::m) |
3275 | pDlgt : The delegate type (i.e. Delegate) |
3276 | module: The module scoping methodMemberRef and delegateConstructorMemberRef |
3277 | methodMemberRef: the MemberRef, MemberDef or MemberSpec of the target method (i.e. a mdToken for C::m) |
3278 | delegateConstructorMemberRef: the MemberRef, MemberDef or MemberSpec of the delegate constructor (i.e. a mdToken for Delegate::.ctor) |
3279 | |
3280 | Validates the following conditions: |
3281 | 1. If the function (pFtn) is not static, pInst should be equal to the type where |
3282 | pFtn is defined or pInst should be a parent of pFtn's type. |
3283 | 2. The signature of the function should be compatible with the signature |
3284 | of the Invoke method of the delegate type. |
3285 | The signature is retrieved from module, methodMemberRef and delegateConstructorMemberRef |
3286 | |
3287 | NB: Although some of these arguments are redundant, we pass them in to avoid looking up |
3288 | information that should already be available. |
3289 | Instead of comparing type handles modulo some context, the method directly compares metadata to avoid |
3290 | loading classes referenced in the method signatures (hence the need for the module and member refs). |
3291 | Also, because this method works directly on metadata, without allowing any additional instantiation of the |
3292 | free type variables in the signature of the method or delegate constructor, this code |
3293 | will *only* verify a constructor application at the typical (ie. formal) instantiation. |
3294 | */ |
3295 | /* static */ |
3296 | BOOL COMDelegate::ValidateCtor(TypeHandle instHnd, |
3297 | TypeHandle ftnParentHnd, |
3298 | MethodDesc *pFtn, |
3299 | TypeHandle dlgtHnd, |
3300 | BOOL *pfIsOpenDelegate) |
3301 | |
3302 | { |
3303 | CONTRACTL |
3304 | { |
3305 | THROWS; |
3306 | GC_TRIGGERS; |
3307 | MODE_ANY; |
3308 | |
3309 | PRECONDITION(CheckPointer(pFtn)); |
3310 | PRECONDITION(!dlgtHnd.IsNull()); |
3311 | PRECONDITION(!ftnParentHnd.IsNull()); |
3312 | |
3313 | INJECT_FAULT(COMPlusThrowOM()); // from MetaSig::CompareElementType |
3314 | } |
3315 | CONTRACTL_END; |
3316 | |
3317 | DelegateEEClass *pdlgEEClass = (DelegateEEClass*)dlgtHnd.AsMethodTable()->GetClass(); |
3318 | PREFIX_ASSUME(pdlgEEClass != NULL); |
3319 | MethodDesc *pDlgtInvoke = pdlgEEClass->GetInvokeMethod(); |
3320 | if (pDlgtInvoke == NULL) |
3321 | return FALSE; |
3322 | return IsMethodDescCompatible(instHnd, ftnParentHnd, pFtn, dlgtHnd, pDlgtInvoke, DBF_RelaxedSignature, pfIsOpenDelegate); |
3323 | } |
3324 | |
3325 | BOOL COMDelegate::ValidateBeginInvoke(DelegateEEClass* pClass) |
3326 | { |
3327 | CONTRACTL |
3328 | { |
3329 | THROWS; |
3330 | GC_TRIGGERS; |
3331 | MODE_ANY; |
3332 | |
3333 | PRECONDITION(CheckPointer(pClass)); |
3334 | PRECONDITION(CheckPointer(pClass->GetBeginInvokeMethod())); |
3335 | |
3336 | // insert fault. Can the binder throw an OOM? |
3337 | } |
3338 | CONTRACTL_END; |
3339 | |
3340 | if (pClass->GetInvokeMethod() == NULL) |
3341 | return FALSE; |
3342 | |
3343 | // We check the signatures under the typical instantiation of the possibly generic class |
3344 | MetaSig beginInvokeSig(pClass->GetBeginInvokeMethod()->LoadTypicalMethodDefinition()); |
3345 | MetaSig invokeSig(pClass->GetInvokeMethod()->LoadTypicalMethodDefinition()); |
3346 | |
3347 | if (beginInvokeSig.GetCallingConventionInfo() != (IMAGE_CEE_CS_CALLCONV_HASTHIS | IMAGE_CEE_CS_CALLCONV_DEFAULT)) |
3348 | return FALSE; |
3349 | |
3350 | if (beginInvokeSig.NumFixedArgs() != invokeSig.NumFixedArgs() + 2) |
3351 | return FALSE; |
3352 | |
3353 | if (beginInvokeSig.GetRetTypeHandleThrowing() != TypeHandle(MscorlibBinder::GetClass(CLASS__IASYNCRESULT))) |
3354 | return FALSE; |
3355 | |
3356 | while(invokeSig.NextArg() != ELEMENT_TYPE_END) |
3357 | { |
3358 | beginInvokeSig.NextArg(); |
3359 | if (beginInvokeSig.GetLastTypeHandleThrowing() != invokeSig.GetLastTypeHandleThrowing()) |
3360 | return FALSE; |
3361 | } |
3362 | |
3363 | beginInvokeSig.NextArg(); |
3364 | if (beginInvokeSig.GetLastTypeHandleThrowing()!= TypeHandle(MscorlibBinder::GetClass(CLASS__ASYNCCALLBACK))) |
3365 | return FALSE; |
3366 | |
3367 | beginInvokeSig.NextArg(); |
3368 | if (beginInvokeSig.GetLastTypeHandleThrowing()!= TypeHandle(g_pObjectClass)) |
3369 | return FALSE; |
3370 | |
3371 | if (beginInvokeSig.NextArg() != ELEMENT_TYPE_END) |
3372 | return FALSE; |
3373 | |
3374 | return TRUE; |
3375 | } |
3376 | |
3377 | BOOL COMDelegate::ValidateEndInvoke(DelegateEEClass* pClass) |
3378 | { |
3379 | CONTRACTL |
3380 | { |
3381 | THROWS; |
3382 | GC_TRIGGERS; |
3383 | MODE_ANY; |
3384 | |
3385 | PRECONDITION(CheckPointer(pClass)); |
3386 | PRECONDITION(CheckPointer(pClass->GetEndInvokeMethod())); |
3387 | |
3388 | // insert fault. Can the binder throw an OOM? |
3389 | } |
3390 | CONTRACTL_END; |
3391 | |
3392 | if (pClass->GetInvokeMethod() == NULL) |
3393 | return FALSE; |
3394 | |
3395 | // We check the signatures under the typical instantiation of the possibly generic class |
3396 | MetaSig endInvokeSig(pClass->GetEndInvokeMethod()->LoadTypicalMethodDefinition()); |
3397 | MetaSig invokeSig(pClass->GetInvokeMethod()->LoadTypicalMethodDefinition()); |
3398 | |
3399 | if (endInvokeSig.GetCallingConventionInfo() != (IMAGE_CEE_CS_CALLCONV_HASTHIS | IMAGE_CEE_CS_CALLCONV_DEFAULT)) |
3400 | return FALSE; |
3401 | |
3402 | if (endInvokeSig.GetRetTypeHandleThrowing() != invokeSig.GetRetTypeHandleThrowing()) |
3403 | return FALSE; |
3404 | |
3405 | CorElementType type; |
3406 | while((type = invokeSig.NextArg()) != ELEMENT_TYPE_END) |
3407 | { |
3408 | if (type == ELEMENT_TYPE_BYREF) |
3409 | { |
3410 | endInvokeSig.NextArg(); |
3411 | if (endInvokeSig.GetLastTypeHandleThrowing() != invokeSig.GetLastTypeHandleThrowing()) |
3412 | return FALSE; |
3413 | } |
3414 | } |
3415 | |
3416 | if (endInvokeSig.NextArg() == ELEMENT_TYPE_END) |
3417 | return FALSE; |
3418 | |
3419 | if (endInvokeSig.GetLastTypeHandleThrowing() != TypeHandle(MscorlibBinder::GetClass(CLASS__IASYNCRESULT))) |
3420 | return FALSE; |
3421 | |
3422 | if (endInvokeSig.NextArg() != ELEMENT_TYPE_END) |
3423 | return FALSE; |
3424 | |
3425 | return TRUE; |
3426 | } |
3427 | |
3428 | BOOL COMDelegate::IsSecureDelegate(DELEGATEREF dRef) |
3429 | { |
3430 | CONTRACTL |
3431 | { |
3432 | MODE_ANY; |
3433 | NOTHROW; |
3434 | GC_NOTRIGGER; |
3435 | SO_TOLERANT; |
3436 | } |
3437 | CONTRACTL_END; |
3438 | DELEGATEREF innerDel = NULL; |
3439 | if (dRef->GetInvocationCount() != 0) |
3440 | { |
3441 | innerDel = (DELEGATEREF) dRef->GetInvocationList(); |
3442 | if (innerDel != NULL && innerDel->GetMethodTable()->IsDelegate()) |
3443 | { |
3444 | // We have a secure delegate |
3445 | return TRUE; |
3446 | } |
3447 | } |
3448 | return FALSE; |
3449 | } |
3450 | |
3451 | #endif // !DACCESS_COMPILE |
3452 | |
3453 | |
3454 | // Decides if pcls derives from Delegate. |
3455 | BOOL COMDelegate::IsDelegate(MethodTable *pMT) |
3456 | { |
3457 | WRAPPER_NO_CONTRACT; |
3458 | return (pMT == g_pDelegateClass) || (pMT == g_pMulticastDelegateClass) || pMT->IsDelegate(); |
3459 | } |
3460 | |
3461 | |
3462 | #if !defined(DACCESS_COMPILE) && !defined(CROSSGEN_COMPILE) |
3463 | |
3464 | |
3465 | // Helper to construct an UnhandledExceptionEventArgs. This may fail for out-of-memory or |
3466 | // other reasons. Currently, we fall back on passing a NULL eventargs to the event sink. |
3467 | // Another possibility is to have two shared immutable instances (one for isTerminating and |
3468 | // another for !isTerminating). These must be immutable because we perform no synchronization |
3469 | // around delivery of unhandled exceptions. They occur in a free-threaded manner on various |
3470 | // threads. |
3471 | // |
3472 | // It doesn't add much value to communicate the isTerminating flag under these unusual |
3473 | // conditions. |
3474 | static void TryConstructUnhandledExceptionArgs(OBJECTREF *pThrowable, |
3475 | BOOL isTerminating, |
3476 | OBJECTREF *pOutEventArgs) |
3477 | { |
3478 | CONTRACTL |
3479 | { |
3480 | NOTHROW; |
3481 | GC_TRIGGERS; |
3482 | MODE_COOPERATIVE; |
3483 | } |
3484 | CONTRACTL_END; |
3485 | |
3486 | _ASSERTE(pThrowable != NULL && IsProtectedByGCFrame(pThrowable)); |
3487 | _ASSERTE(pOutEventArgs != NULL && IsProtectedByGCFrame(pOutEventArgs)); |
3488 | _ASSERTE(*pOutEventArgs == NULL); |
3489 | |
3490 | EX_TRY |
3491 | { |
3492 | MethodTable *pMT = MscorlibBinder::GetClass(CLASS__UNHANDLED_EVENTARGS); |
3493 | *pOutEventArgs = AllocateObject(pMT); |
3494 | |
3495 | MethodDescCallSite ctor(METHOD__UNHANDLED_EVENTARGS__CTOR, pOutEventArgs); |
3496 | |
3497 | ARG_SLOT args[] = |
3498 | { |
3499 | ObjToArgSlot(*pOutEventArgs), |
3500 | ObjToArgSlot(*pThrowable), |
3501 | BoolToArgSlot(isTerminating) |
3502 | }; |
3503 | |
3504 | ctor.Call(args); |
3505 | } |
3506 | EX_CATCH |
3507 | { |
3508 | *pOutEventArgs = NULL; // arguably better than half-constructed object |
3509 | |
3510 | // It's not even worth asserting, because these aren't our bugs. At |
3511 | // some point, a MDA may be warranted. |
3512 | } |
3513 | EX_END_CATCH(SwallowAllExceptions) |
3514 | } |
3515 | |
3516 | |
3517 | // Helper to dispatch a single unhandled exception notification, swallowing anything |
3518 | // that goes wrong. |
3519 | static void InvokeUnhandledSwallowing(OBJECTREF *pDelegate, |
3520 | OBJECTREF *pDomain, |
3521 | OBJECTREF *pEventArgs) |
3522 | { |
3523 | CONTRACTL |
3524 | { |
3525 | NOTHROW; |
3526 | GC_TRIGGERS; |
3527 | MODE_COOPERATIVE; |
3528 | } |
3529 | CONTRACTL_END; |
3530 | |
3531 | _ASSERTE(pDelegate != NULL && IsProtectedByGCFrame(pDelegate)); |
3532 | _ASSERTE(pDomain != NULL && IsProtectedByGCFrame(pDomain)); |
3533 | _ASSERTE(pEventArgs == NULL || IsProtectedByGCFrame(pEventArgs)); |
3534 | |
3535 | EX_TRY |
3536 | { |
3537 | #if defined(FEATURE_CORRUPTING_EXCEPTIONS) |
3538 | BOOL fCanMethodHandleException = g_pConfig->LegacyCorruptedStateExceptionsPolicy(); |
3539 | if (!fCanMethodHandleException) |
3540 | { |
3541 | // CSE policy has not been overridden - proceed with our checks. |
3542 | // |
3543 | // Notifications for CSE are only delivered if the delegate target follows CSE rules. |
3544 | // So, get the corruption severity of the active exception that has gone unhandled. |
3545 | // |
3546 | // By Default, assume that the active exception is not corrupting. |
3547 | CorruptionSeverity severity = NotCorrupting; |
3548 | Thread *pCurThread = GetThread(); |
3549 | _ASSERTE(pCurThread != NULL); |
3550 | ThreadExceptionState *pExState = pCurThread->GetExceptionState(); |
3551 | if (pExState->IsExceptionInProgress()) |
3552 | { |
3553 | // If an exception is active, it implies we have a tracker for it. |
3554 | // Hence, get the corruption severity from the active exception tracker. |
3555 | severity = pExState->GetCurrentExceptionTracker()->GetCorruptionSeverity(); |
3556 | _ASSERTE(severity > NotSet); |
3557 | } |
3558 | |
3559 | // Notifications are delivered based upon corruption severity of the exception |
3560 | fCanMethodHandleException = ExceptionNotifications::CanDelegateBeInvokedForException(pDelegate, severity); |
3561 | if (!fCanMethodHandleException) |
3562 | { |
3563 | LOG((LF_EH, LL_INFO100, "InvokeUnhandledSwallowing: ADUEN Delegate cannot be invoked for corruption severity %d\n" , |
3564 | severity)); |
3565 | } |
3566 | } |
3567 | |
3568 | if (fCanMethodHandleException) |
3569 | #endif // defined(FEATURE_CORRUPTING_EXCEPTIONS) |
3570 | { |
3571 | // We've already exercised the prestub on this delegate's COMDelegate::GetMethodDesc, |
3572 | // as part of wiring up a reliable event sink. Deliver the notification. |
3573 | ExceptionNotifications::DeliverExceptionNotification(UnhandledExceptionHandler, pDelegate, pDomain, pEventArgs); |
3574 | } |
3575 | } |
3576 | EX_CATCH |
3577 | { |
3578 | // It's not even worth asserting, because these aren't our bugs. At |
3579 | // some point, a MDA may be warranted. |
3580 | } |
3581 | EX_END_CATCH(SwallowAllExceptions) |
3582 | } |
3583 | |
3584 | // The unhandled exception event is a little easier to distribute, because |
3585 | // we simply swallow any failures and proceed to the next event sink. |
3586 | void DistributeUnhandledExceptionReliably(OBJECTREF *pDelegate, |
3587 | OBJECTREF *pDomain, |
3588 | OBJECTREF *pThrowable, |
3589 | BOOL isTerminating) |
3590 | { |
3591 | CONTRACTL |
3592 | { |
3593 | NOTHROW; |
3594 | GC_TRIGGERS; |
3595 | MODE_COOPERATIVE; |
3596 | } |
3597 | CONTRACTL_END; |
3598 | |
3599 | _ASSERTE(pDelegate != NULL && IsProtectedByGCFrame(pDelegate)); |
3600 | _ASSERTE(pDomain != NULL && IsProtectedByGCFrame(pDomain)); |
3601 | _ASSERTE(pThrowable != NULL && IsProtectedByGCFrame(pThrowable)); |
3602 | |
3603 | EX_TRY |
3604 | { |
3605 | struct _gc |
3606 | { |
3607 | PTRARRAYREF Array; |
3608 | OBJECTREF InnerDelegate; |
3609 | OBJECTREF EventArgs; |
3610 | } gc; |
3611 | ZeroMemory(&gc, sizeof(gc)); |
3612 | |
3613 | GCPROTECT_BEGIN(gc); |
3614 | |
3615 | // Try to construct an UnhandledExceptionEventArgs out of pThrowable & isTerminating. |
3616 | // If unsuccessful, the best we can do is pass NULL. |
3617 | TryConstructUnhandledExceptionArgs(pThrowable, isTerminating, &gc.EventArgs); |
3618 | |
3619 | gc.Array = (PTRARRAYREF) ((DELEGATEREF)(*pDelegate))->GetInvocationList(); |
3620 | if (gc.Array == NULL || !gc.Array->GetMethodTable()->IsArray()) |
3621 | { |
3622 | InvokeUnhandledSwallowing(pDelegate, pDomain, &gc.EventArgs); |
3623 | } |
3624 | else |
3625 | { |
3626 | // The _invocationCount could be less than the array size, if we are sharing |
3627 | // immutable arrays cleverly. |
3628 | INT_PTR invocationCount = ((DELEGATEREF)(*pDelegate))->GetInvocationCount(); |
3629 | |
3630 | _ASSERTE(FitsInU4(invocationCount)); |
3631 | DWORD cnt = static_cast<DWORD>(invocationCount); |
3632 | |
3633 | _ASSERTE(cnt <= gc.Array->GetNumComponents()); |
3634 | |
3635 | for (DWORD i=0; i<cnt; i++) |
3636 | { |
3637 | gc.InnerDelegate = gc.Array->m_Array[i]; |
3638 | InvokeUnhandledSwallowing(&gc.InnerDelegate, pDomain, &gc.EventArgs); |
3639 | } |
3640 | } |
3641 | GCPROTECT_END(); |
3642 | } |
3643 | EX_CATCH |
3644 | { |
3645 | // It's not even worth asserting, because these aren't our bugs. At |
3646 | // some point, a MDA may be warranted. |
3647 | } |
3648 | EX_END_CATCH(SwallowAllExceptions) |
3649 | } |
3650 | |
3651 | #endif // !DACCESS_COMPILE && !CROSSGEN_COMPILE |
3652 | |