| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | |
| 6 | |
| 7 | #include "common.h" |
| 8 | |
| 9 | #ifdef FEATURE_PREJIT |
| 10 | |
| 11 | #include "dataimage.h" |
| 12 | #include "compile.h" |
| 13 | |
| 14 | #include "field.h" |
| 15 | |
| 16 | // |
| 17 | // Include Zapper infrastructure here |
| 18 | // |
| 19 | // dataimage.cpp is the only place where Zapper infrasture should be used directly in the VM. |
| 20 | // The rest of the VM should never use Zapper infrastructure directly for good layering. |
| 21 | // The long term goal is to move all NGen specific parts like Save and Fixup methods out of the VM, |
| 22 | // and remove the dataimage.cpp completely. |
| 23 | // |
| 24 | #include "zapper.h" |
| 25 | #include "../zap/zapwriter.h" |
| 26 | #include "../zap/zapimage.h" |
| 27 | #include "../zap/zapimport.h" |
| 28 | #include "inlinetracking.h" |
| 29 | |
| 30 | #define NodeTypeForItemKind(kind) ((ZapNodeType)(ZapNodeType_StoredStructure + kind)) |
| 31 | |
| 32 | class ZapStoredStructure : public ZapNode |
| 33 | { |
| 34 | DWORD m_dwSize; |
| 35 | BYTE m_kind; |
| 36 | BYTE m_align; |
| 37 | |
| 38 | public: |
| 39 | ZapStoredStructure(DWORD dwSize, BYTE kind, BYTE align) |
| 40 | : m_dwSize(dwSize), m_kind(kind), m_align(align) |
| 41 | { |
| 42 | } |
| 43 | |
| 44 | void * GetData() |
| 45 | { |
| 46 | return this + 1; |
| 47 | } |
| 48 | |
| 49 | DataImage::ItemKind GetKind() |
| 50 | { |
| 51 | return (DataImage::ItemKind)m_kind; |
| 52 | } |
| 53 | |
| 54 | virtual DWORD GetSize() |
| 55 | { |
| 56 | return m_dwSize; |
| 57 | } |
| 58 | |
| 59 | virtual UINT GetAlignment() |
| 60 | { |
| 61 | return m_align; |
| 62 | } |
| 63 | |
| 64 | virtual ZapNodeType GetType() |
| 65 | { |
| 66 | return NodeTypeForItemKind(m_kind); |
| 67 | } |
| 68 | |
| 69 | virtual void Save(ZapWriter * pZapWriter); |
| 70 | }; |
| 71 | |
| 72 | inline ZapStoredStructure * AsStoredStructure(ZapNode * pNode) |
| 73 | { |
| 74 | // Verify that it is one of the StoredStructure subtypes |
| 75 | _ASSERTE(pNode->GetType() >= ZapNodeType_StoredStructure); |
| 76 | return (ZapStoredStructure *)pNode; |
| 77 | } |
| 78 | |
| 79 | struct InternedStructureKey |
| 80 | { |
| 81 | InternedStructureKey(const void * data, DWORD dwSize, DataImage::ItemKind kind) |
| 82 | : m_data(data), m_dwSize(dwSize), m_kind(kind) |
| 83 | { |
| 84 | } |
| 85 | |
| 86 | const void *m_data; |
| 87 | DWORD m_dwSize; |
| 88 | DataImage::ItemKind m_kind; |
| 89 | }; |
| 90 | |
| 91 | class InternedStructureTraits : public NoRemoveSHashTraits< DefaultSHashTraits<ZapStoredStructure *> > |
| 92 | { |
| 93 | public: |
| 94 | typedef InternedStructureKey key_t; |
| 95 | |
| 96 | static key_t GetKey(element_t e) |
| 97 | { |
| 98 | LIMITED_METHOD_CONTRACT; |
| 99 | return InternedStructureKey(e->GetData(), e->GetSize(), e->GetKind()); |
| 100 | } |
| 101 | static BOOL Equals(key_t k1, key_t k2) |
| 102 | { |
| 103 | LIMITED_METHOD_CONTRACT; |
| 104 | return (k1.m_dwSize == k2.m_dwSize) && |
| 105 | (k1.m_kind == k2.m_kind) && |
| 106 | memcmp(k1.m_data, k2.m_data, k1.m_dwSize) == 0; |
| 107 | } |
| 108 | static count_t Hash(key_t k) |
| 109 | { |
| 110 | LIMITED_METHOD_CONTRACT; |
| 111 | return (count_t)k.m_dwSize ^ (count_t)k.m_kind ^ HashBytes((BYTE *)k.m_data, k.m_dwSize); |
| 112 | } |
| 113 | |
| 114 | static element_t Null() { LIMITED_METHOD_CONTRACT; return NULL; } |
| 115 | static bool IsNull(const element_t &e) { LIMITED_METHOD_CONTRACT; return e == NULL; } |
| 116 | }; |
| 117 | |
| 118 | DataImage::DataImage(Module *module, CEEPreloader *preloader) |
| 119 | : m_module(module), |
| 120 | m_preloader(preloader), |
| 121 | m_iCurrentFixup(0), // Dev11 bug 181494 instrumentation |
| 122 | m_pInternedStructures(NULL), |
| 123 | m_pCurrentAssociatedMethodTable(NULL) |
| 124 | { |
| 125 | m_pZapImage = m_preloader->GetDataStore()->GetZapImage(); |
| 126 | m_pZapImage->m_pDataImage = this; |
| 127 | |
| 128 | m_pInternedStructures = new InternedStructureHashTable(); |
| 129 | m_inlineTrackingMap = new InlineTrackingMap(); |
| 130 | } |
| 131 | |
| 132 | DataImage::~DataImage() |
| 133 | { |
| 134 | delete m_pInternedStructures; |
| 135 | delete m_inlineTrackingMap; |
| 136 | } |
| 137 | |
| 138 | void DataImage::PreSave() |
| 139 | { |
| 140 | #ifndef ZAP_HASHTABLE_TUNING |
| 141 | Preallocate(); |
| 142 | #endif |
| 143 | } |
| 144 | |
| 145 | void DataImage::PostSave() |
| 146 | { |
| 147 | #ifdef ZAP_HASHTABLE_TUNING |
| 148 | // If ZAP_HASHTABLE_TUNING is defined, preallocate is overloaded to print the tunning constants |
| 149 | Preallocate(); |
| 150 | #endif |
| 151 | } |
| 152 | |
| 153 | DWORD DataImage::GetMethodProfilingFlags(MethodDesc * pMD) |
| 154 | { |
| 155 | STANDARD_VM_CONTRACT; |
| 156 | |
| 157 | // We are not differentiating unboxing stubs vs. normal method descs in IBC data yet |
| 158 | if (pMD->IsUnboxingStub()) |
| 159 | pMD = pMD->GetWrappedMethodDesc(); |
| 160 | |
| 161 | const MethodProfilingData * pData = m_methodProfilingData.LookupPtr(pMD); |
| 162 | return (pData != NULL) ? pData->flags : 0; |
| 163 | } |
| 164 | |
| 165 | void DataImage::SetMethodProfilingFlags(MethodDesc * pMD, DWORD flags) |
| 166 | { |
| 167 | STANDARD_VM_CONTRACT; |
| 168 | |
| 169 | const MethodProfilingData * pData = m_methodProfilingData.LookupPtr(pMD); |
| 170 | if (pData != NULL) |
| 171 | { |
| 172 | const_cast<MethodProfilingData *>(pData)->flags |= flags; |
| 173 | return; |
| 174 | } |
| 175 | |
| 176 | MethodProfilingData data; |
| 177 | data.pMD = pMD; |
| 178 | data.flags = flags; |
| 179 | m_methodProfilingData.Add(data); |
| 180 | } |
| 181 | |
| 182 | void DataImage::Preallocate() |
| 183 | { |
| 184 | STANDARD_VM_CONTRACT; |
| 185 | |
| 186 | // TODO: Move to ZapImage |
| 187 | |
| 188 | PEDecoder pe((void *)m_module->GetFile()->GetManagedFileContents()); |
| 189 | |
| 190 | COUNT_T cbILImage = pe.GetSize(); |
| 191 | |
| 192 | // Curb the estimate to handle corner cases gracefuly |
| 193 | cbILImage = min(cbILImage, 50000000); |
| 194 | |
| 195 | PREALLOCATE_HASHTABLE(DataImage::m_structures, 0.019, cbILImage); |
| 196 | PREALLOCATE_ARRAY(DataImage::m_structuresInOrder, 0.0088, cbILImage); |
| 197 | PREALLOCATE_ARRAY(DataImage::m_Fixups, 0.046, cbILImage); |
| 198 | PREALLOCATE_HASHTABLE(DataImage::m_surrogates, 0.0025, cbILImage); |
| 199 | PREALLOCATE_HASHTABLE((*DataImage::m_pInternedStructures), 0.0007, cbILImage); |
| 200 | } |
| 201 | |
| 202 | ZapHeap * DataImage::GetHeap() |
| 203 | { |
| 204 | LIMITED_METHOD_CONTRACT; |
| 205 | return m_pZapImage->GetHeap(); |
| 206 | } |
| 207 | |
| 208 | void DataImage::AddStructureInOrder(ZapNode *pNode, BOOL fMaintainSaveOrder /*=FALSE*/) |
| 209 | { |
| 210 | WRAPPER_NO_CONTRACT; |
| 211 | |
| 212 | SavedNodeEntry entry; |
| 213 | entry.pNode = pNode; |
| 214 | entry.dwAssociatedOrder = 0; |
| 215 | |
| 216 | if (fMaintainSaveOrder) |
| 217 | { |
| 218 | entry.dwAssociatedOrder = MAINTAIN_SAVE_ORDER; |
| 219 | } |
| 220 | else if (m_pCurrentAssociatedMethodTable) |
| 221 | { |
| 222 | TypeHandle th = TypeHandle(m_pCurrentAssociatedMethodTable); |
| 223 | entry.dwAssociatedOrder = m_pZapImage->LookupClassLayoutOrder(CORINFO_CLASS_HANDLE(th.AsPtr())); |
| 224 | } |
| 225 | |
| 226 | m_structuresInOrder.Append(entry); |
| 227 | } |
| 228 | |
| 229 | ZapStoredStructure * DataImage::StoreStructureHelper(const void *data, SIZE_T size, |
| 230 | DataImage::ItemKind kind, |
| 231 | int align, |
| 232 | BOOL fMaintainSaveOrder) |
| 233 | { |
| 234 | STANDARD_VM_CONTRACT; |
| 235 | |
| 236 | S_SIZE_T cbAllocSize = S_SIZE_T(sizeof(ZapStoredStructure)) + S_SIZE_T(size); |
| 237 | if(cbAllocSize.IsOverflow()) |
| 238 | ThrowHR(COR_E_OVERFLOW); |
| 239 | |
| 240 | void * pMemory = new (GetHeap()) BYTE[cbAllocSize.Value()]; |
| 241 | |
| 242 | // PE files cannot be larger than 4 GB |
| 243 | if (DWORD(size) != size) |
| 244 | ThrowHR(E_UNEXPECTED); |
| 245 | |
| 246 | ZapStoredStructure * pStructure = new (pMemory) ZapStoredStructure((DWORD)size, static_cast<BYTE>(kind), static_cast<BYTE>(align)); |
| 247 | |
| 248 | if (data != NULL) |
| 249 | { |
| 250 | CopyMemory(pStructure->GetData(), data, size); |
| 251 | BindPointer(data, pStructure, 0); |
| 252 | } |
| 253 | |
| 254 | m_pLastLookup = NULL; |
| 255 | |
| 256 | AddStructureInOrder(pStructure, fMaintainSaveOrder); |
| 257 | |
| 258 | return pStructure; |
| 259 | } |
| 260 | |
| 261 | // Bind pointer to the relative offset in ZapNode |
| 262 | void DataImage::BindPointer(const void *p, ZapNode * pNode, SSIZE_T offset) |
| 263 | { |
| 264 | STANDARD_VM_CONTRACT; |
| 265 | |
| 266 | _ASSERTE(m_structures.LookupPtr(p) == NULL); |
| 267 | |
| 268 | StructureEntry e; |
| 269 | e.ptr = p; |
| 270 | e.pNode = pNode; |
| 271 | e.offset = offset; |
| 272 | m_structures.Add(e); |
| 273 | |
| 274 | m_pLastLookup = NULL; |
| 275 | } |
| 276 | |
| 277 | void DataImage::CopyData(ZapStoredStructure * pNode, const void * p, ULONG size) |
| 278 | { |
| 279 | memcpy(pNode->GetData(), p, size); |
| 280 | } |
| 281 | |
| 282 | void DataImage::CopyDataToOffset(ZapStoredStructure * pNode, ULONG offset, const void * p, ULONG size) |
| 283 | { |
| 284 | SIZE_T target = (SIZE_T) (pNode->GetData()); |
| 285 | target += offset; |
| 286 | |
| 287 | memcpy((void *) target, p, size); |
| 288 | } |
| 289 | |
| 290 | void DataImage::PlaceStructureForAddress(const void * data, CorCompileSection section) |
| 291 | { |
| 292 | STANDARD_VM_CONTRACT; |
| 293 | |
| 294 | if (data == NULL) |
| 295 | return; |
| 296 | |
| 297 | const StructureEntry * pEntry = m_structures.LookupPtr(data); |
| 298 | if (pEntry == NULL) |
| 299 | return; |
| 300 | |
| 301 | ZapNode * pNode = pEntry->pNode; |
| 302 | if (!pNode->IsPlaced()) |
| 303 | { |
| 304 | ZapVirtualSection * pSection = m_pZapImage->GetSection(section); |
| 305 | pSection->Place(pNode); |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | void DataImage::PlaceInternedStructureForAddress(const void * data, CorCompileSection sectionIfReused, CorCompileSection sectionIfSingleton) |
| 310 | { |
| 311 | STANDARD_VM_CONTRACT; |
| 312 | |
| 313 | if (data == NULL) |
| 314 | return; |
| 315 | |
| 316 | const StructureEntry * pEntry = m_structures.LookupPtr(data); |
| 317 | if (pEntry == NULL) |
| 318 | return; |
| 319 | |
| 320 | ZapNode * pNode = pEntry->pNode; |
| 321 | if (!pNode->IsPlaced()) |
| 322 | { |
| 323 | CorCompileSection section = m_reusedStructures.Contains(pNode) ? sectionIfReused : sectionIfSingleton; |
| 324 | ZapVirtualSection * pSection = m_pZapImage->GetSection(section); |
| 325 | pSection->Place(pNode); |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | void DataImage::FixupPointerField(PVOID p, SSIZE_T offset) |
| 330 | { |
| 331 | STANDARD_VM_CONTRACT; |
| 332 | |
| 333 | PVOID pTarget = *(PVOID UNALIGNED *)((BYTE *)p + offset); |
| 334 | |
| 335 | if (pTarget == NULL) |
| 336 | { |
| 337 | ZeroPointerField(p, offset); |
| 338 | return; |
| 339 | } |
| 340 | |
| 341 | FixupField(p, offset, pTarget); |
| 342 | } |
| 343 | |
| 344 | void DataImage::FixupRelativePointerField(PVOID p, SSIZE_T offset) |
| 345 | { |
| 346 | STANDARD_VM_CONTRACT; |
| 347 | |
| 348 | PVOID pTarget = RelativePointer<PTR_VOID>::GetValueMaybeNullAtPtr((TADDR)p + offset); |
| 349 | |
| 350 | if (pTarget == NULL) |
| 351 | { |
| 352 | ZeroPointerField(p, offset); |
| 353 | return; |
| 354 | } |
| 355 | |
| 356 | FixupField(p, offset, pTarget, 0, IMAGE_REL_BASED_RELPTR); |
| 357 | } |
| 358 | |
| 359 | static void EncodeTargetOffset(PVOID pLocation, SSIZE_T targetOffset, ZapRelocationType type) |
| 360 | { |
| 361 | // Store the targetOffset into the location of the reloc temporarily |
| 362 | switch (type) |
| 363 | { |
| 364 | case IMAGE_REL_BASED_PTR: |
| 365 | case IMAGE_REL_BASED_RELPTR: |
| 366 | *(UNALIGNED TADDR *)pLocation = (TADDR)targetOffset; |
| 367 | break; |
| 368 | |
| 369 | case IMAGE_REL_BASED_ABSOLUTE: |
| 370 | *(UNALIGNED DWORD *)pLocation = (DWORD)targetOffset; |
| 371 | break; |
| 372 | |
| 373 | case IMAGE_REL_BASED_ABSOLUTE_TAGGED: |
| 374 | _ASSERTE(targetOffset == 0); |
| 375 | *(UNALIGNED TADDR *)pLocation = 0; |
| 376 | break; |
| 377 | |
| 378 | #if defined(_TARGET_X86_) || defined(_TARGET_AMD64_) |
| 379 | case IMAGE_REL_BASED_REL32: |
| 380 | *(UNALIGNED INT32 *)pLocation = (INT32)targetOffset; |
| 381 | break; |
| 382 | #endif // _TARGET_X86_ || _TARGET_AMD64_ |
| 383 | |
| 384 | default: |
| 385 | _ASSERTE(0); |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | static SSIZE_T DecodeTargetOffset(PVOID pLocation, ZapRelocationType type) |
| 390 | { |
| 391 | // Store the targetOffset into the location of the reloc temporarily |
| 392 | switch (type) |
| 393 | { |
| 394 | case IMAGE_REL_BASED_PTR: |
| 395 | case IMAGE_REL_BASED_RELPTR: |
| 396 | return (SSIZE_T)*(UNALIGNED TADDR *)pLocation; |
| 397 | |
| 398 | case IMAGE_REL_BASED_ABSOLUTE: |
| 399 | return *(UNALIGNED DWORD *)pLocation; |
| 400 | |
| 401 | case IMAGE_REL_BASED_ABSOLUTE_TAGGED: |
| 402 | _ASSERTE(*(UNALIGNED TADDR *)pLocation == 0); |
| 403 | return 0; |
| 404 | |
| 405 | #if defined(_TARGET_X86_) || defined(_TARGET_AMD64_) |
| 406 | case IMAGE_REL_BASED_REL32: |
| 407 | return *(UNALIGNED INT32 *)pLocation; |
| 408 | #endif // _TARGET_X86_ || _TARGET_AMD64_ |
| 409 | |
| 410 | default: |
| 411 | _ASSERTE(0); |
| 412 | return 0; |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | void DataImage::FixupField(PVOID p, SSIZE_T offset, PVOID pTarget, SSIZE_T targetOffset, ZapRelocationType type) |
| 417 | { |
| 418 | STANDARD_VM_CONTRACT; |
| 419 | |
| 420 | m_iCurrentFixup++; // Dev11 bug 181494 instrumentation |
| 421 | |
| 422 | const StructureEntry * pEntry = m_pLastLookup; |
| 423 | if (pEntry == NULL || pEntry->ptr != p) |
| 424 | { |
| 425 | pEntry = m_structures.LookupPtr(p); |
| 426 | _ASSERTE(pEntry != NULL && |
| 427 | "StoreStructure or BindPointer have to be called on all save data." ); |
| 428 | m_pLastLookup = pEntry; |
| 429 | } |
| 430 | offset += pEntry->offset; |
| 431 | _ASSERTE(0 <= offset && (DWORD)offset < pEntry->pNode->GetSize()); |
| 432 | |
| 433 | const StructureEntry * pTargetEntry = m_pLastLookup; |
| 434 | if (pTargetEntry == NULL || pTargetEntry->ptr != pTarget) |
| 435 | { |
| 436 | pTargetEntry = m_structures.LookupPtr(pTarget); |
| 437 | |
| 438 | _ASSERTE(pTargetEntry != NULL && |
| 439 | "The target of the fixup is not saved into the image" ); |
| 440 | } |
| 441 | targetOffset += pTargetEntry->offset; |
| 442 | _ASSERTE(0 <= targetOffset && (DWORD)targetOffset <= pTargetEntry->pNode->GetSize()); |
| 443 | |
| 444 | FixupEntry entry; |
| 445 | entry.m_type = type; |
| 446 | entry.m_offset = (DWORD)offset; |
| 447 | entry.m_pLocation = AsStoredStructure(pEntry->pNode); |
| 448 | entry.m_pTargetNode = pTargetEntry->pNode; |
| 449 | AppendFixup(entry); |
| 450 | |
| 451 | EncodeTargetOffset((BYTE *)AsStoredStructure(pEntry->pNode)->GetData() + offset, targetOffset, type); |
| 452 | } |
| 453 | |
| 454 | void DataImage::FixupFieldToNode(PVOID p, SSIZE_T offset, ZapNode * pTarget, SSIZE_T targetOffset, ZapRelocationType type) |
| 455 | { |
| 456 | STANDARD_VM_CONTRACT; |
| 457 | |
| 458 | m_iCurrentFixup++; // Dev11 bug 181494 instrumentation |
| 459 | |
| 460 | const StructureEntry * pEntry = m_pLastLookup; |
| 461 | if (pEntry == NULL || pEntry->ptr != p) |
| 462 | { |
| 463 | pEntry = m_structures.LookupPtr(p); |
| 464 | _ASSERTE(pEntry != NULL && |
| 465 | "StoreStructure or BindPointer have to be called on all save data." ); |
| 466 | m_pLastLookup = pEntry; |
| 467 | } |
| 468 | offset += pEntry->offset; |
| 469 | _ASSERTE(0 <= offset && (DWORD)offset < pEntry->pNode->GetSize()); |
| 470 | |
| 471 | _ASSERTE(pTarget != NULL); |
| 472 | |
| 473 | FixupEntry entry; |
| 474 | entry.m_type = type; |
| 475 | entry.m_offset = (DWORD)offset; |
| 476 | entry.m_pLocation = AsStoredStructure(pEntry->pNode); |
| 477 | entry.m_pTargetNode = pTarget; |
| 478 | AppendFixup(entry); |
| 479 | |
| 480 | EncodeTargetOffset((BYTE *)AsStoredStructure(pEntry->pNode)->GetData() + offset, targetOffset, type); |
| 481 | } |
| 482 | |
| 483 | DWORD DataImage::GetRVA(const void *data) |
| 484 | { |
| 485 | STANDARD_VM_CONTRACT; |
| 486 | |
| 487 | const StructureEntry * pEntry = m_structures.LookupPtr(data); |
| 488 | _ASSERTE(pEntry != NULL); |
| 489 | |
| 490 | return pEntry->pNode->GetRVA() + (DWORD)pEntry->offset; |
| 491 | } |
| 492 | |
| 493 | void DataImage::ZeroField(PVOID p, SSIZE_T offset, SIZE_T size) |
| 494 | { |
| 495 | STANDARD_VM_CONTRACT; |
| 496 | |
| 497 | ZeroMemory(GetImagePointer(p, offset), size); |
| 498 | } |
| 499 | |
| 500 | void * DataImage::GetImagePointer(ZapStoredStructure * pNode) |
| 501 | { |
| 502 | return pNode->GetData(); |
| 503 | } |
| 504 | |
| 505 | void * DataImage::GetImagePointer(PVOID p, SSIZE_T offset) |
| 506 | { |
| 507 | STANDARD_VM_CONTRACT; |
| 508 | |
| 509 | const StructureEntry * pEntry = m_pLastLookup; |
| 510 | if (pEntry == NULL || pEntry->ptr != p) |
| 511 | { |
| 512 | pEntry = m_structures.LookupPtr(p); |
| 513 | _ASSERTE(pEntry != NULL && |
| 514 | "StoreStructure or BindPointer have to be called on all save data." ); |
| 515 | m_pLastLookup = pEntry; |
| 516 | } |
| 517 | offset += pEntry->offset; |
| 518 | _ASSERTE(0 <= offset && (DWORD)offset < pEntry->pNode->GetSize()); |
| 519 | |
| 520 | return (BYTE *)AsStoredStructure(pEntry->pNode)->GetData() + offset; |
| 521 | } |
| 522 | |
| 523 | ZapNode * DataImage::GetNodeForStructure(PVOID p, SSIZE_T * pOffset) |
| 524 | { |
| 525 | const StructureEntry * pEntry = m_pLastLookup; |
| 526 | if (pEntry == NULL || pEntry->ptr != p) |
| 527 | { |
| 528 | pEntry = m_structures.LookupPtr(p); |
| 529 | _ASSERTE(pEntry != NULL && |
| 530 | "StoreStructure or BindPointer have to be called on all save data." ); |
| 531 | } |
| 532 | *pOffset = pEntry->offset; |
| 533 | return pEntry->pNode; |
| 534 | } |
| 535 | |
| 536 | ZapStoredStructure * DataImage::StoreInternedStructure(const void *data, ULONG size, |
| 537 | DataImage::ItemKind kind, |
| 538 | int align) |
| 539 | { |
| 540 | STANDARD_VM_CONTRACT; |
| 541 | |
| 542 | ZapStoredStructure * pStructure = m_pInternedStructures->Lookup(InternedStructureKey(data, size, kind)); |
| 543 | |
| 544 | if (pStructure != NULL) |
| 545 | { |
| 546 | // Just add a new mapping for to the interned structure |
| 547 | BindPointer(data, pStructure, 0); |
| 548 | |
| 549 | // Track that this structure has been successfully reused by interning |
| 550 | NoteReusedStructure(data); |
| 551 | } |
| 552 | else |
| 553 | { |
| 554 | // We have not seen this structure yet. Create a new one. |
| 555 | pStructure = StoreStructure(data, size, kind); |
| 556 | m_pInternedStructures->Add(pStructure); |
| 557 | } |
| 558 | |
| 559 | return pStructure; |
| 560 | } |
| 561 | |
| 562 | void DataImage::NoteReusedStructure(const void *data) |
| 563 | { |
| 564 | STANDARD_VM_CONTRACT; |
| 565 | |
| 566 | _ASSERTE(IsStored(data)); |
| 567 | |
| 568 | const StructureEntry * pEntry = m_structures.LookupPtr(data); |
| 569 | |
| 570 | if (!m_reusedStructures.Contains(pEntry->pNode)) |
| 571 | { |
| 572 | m_reusedStructures.Add(pEntry->pNode); |
| 573 | } |
| 574 | } |
| 575 | |
| 576 | // Save the info of an RVA into m_rvaInfoVector. |
| 577 | void DataImage::StoreRvaInfo(FieldDesc * pFD, |
| 578 | DWORD rva, |
| 579 | UINT size, |
| 580 | UINT align) |
| 581 | { |
| 582 | RvaInfoStructure rvaInfo; |
| 583 | |
| 584 | _ASSERTE(m_module == pFD->GetModule()); |
| 585 | _ASSERTE(m_module == pFD->GetLoaderModule()); |
| 586 | |
| 587 | rvaInfo.pFD = pFD; |
| 588 | rvaInfo.rva = rva; |
| 589 | rvaInfo.size = size; |
| 590 | rvaInfo.align = align; |
| 591 | |
| 592 | m_rvaInfoVector.Append(rvaInfo); |
| 593 | } |
| 594 | |
| 595 | // qsort compare function. |
| 596 | // Primary key: rva (ascending order). Secondary key: size (descending order). |
| 597 | int __cdecl DataImage::rvaInfoVectorEntryCmp(const void* a_, const void* b_) |
| 598 | { |
| 599 | LIMITED_METHOD_CONTRACT; |
| 600 | STATIC_CONTRACT_SO_TOLERANT; |
| 601 | DataImage::RvaInfoStructure *a = (DataImage::RvaInfoStructure *)a_; |
| 602 | DataImage::RvaInfoStructure *b = (DataImage::RvaInfoStructure *)b_; |
| 603 | int rvaComparisonResult = (int)(a->rva - b->rva); |
| 604 | if (rvaComparisonResult!=0) |
| 605 | return rvaComparisonResult; // Ascending order on rva |
| 606 | return (int)(b->size - a->size); // Descending order on size |
| 607 | } |
| 608 | |
| 609 | // Sort the list of RVA statics in an ascending order wrt the RVA and save them. |
| 610 | // For RVA structures with the same RVA, we will only store the one with the largest size. |
| 611 | void DataImage::SaveRvaStructure() |
| 612 | { |
| 613 | if (m_rvaInfoVector.IsEmpty()) |
| 614 | return; // No RVA static to save |
| 615 | |
| 616 | // Use qsort to sort the m_rvaInfoVector |
| 617 | qsort (&m_rvaInfoVector[0], // start of array |
| 618 | m_rvaInfoVector.GetCount(), // array size in elements |
| 619 | sizeof(RvaInfoStructure), // element size in bytes |
| 620 | rvaInfoVectorEntryCmp); // comparere function |
| 621 | |
| 622 | RvaInfoStructure * previousRvaInfo = NULL; |
| 623 | |
| 624 | for (COUNT_T i=0; i<m_rvaInfoVector.GetCount(); i++) { |
| 625 | |
| 626 | RvaInfoStructure * rvaInfo = &(m_rvaInfoVector[i]); |
| 627 | |
| 628 | // Verify that rvaInfo->rva are actually monotonically increasing and |
| 629 | // rvaInfo->size are monotonically decreasing if rva are the same. |
| 630 | _ASSERTE(previousRvaInfo==NULL || |
| 631 | previousRvaInfo->rva < rvaInfo->rva || |
| 632 | previousRvaInfo->rva == rvaInfo->rva && previousRvaInfo->size >= rvaInfo->size |
| 633 | ); |
| 634 | |
| 635 | if (previousRvaInfo==NULL || previousRvaInfo->rva != rvaInfo->rva) { |
| 636 | void * pRVAData = rvaInfo->pFD->GetStaticAddressHandle(NULL); |
| 637 | |
| 638 | // Note that we force the structures to be laid out in the order we save them |
| 639 | StoreStructureInOrder(pRVAData, rvaInfo->size, |
| 640 | DataImage::ITEM_RVA_STATICS, |
| 641 | rvaInfo->align); |
| 642 | } |
| 643 | |
| 644 | previousRvaInfo = rvaInfo; |
| 645 | } |
| 646 | } |
| 647 | |
| 648 | void DataImage::RegisterSurrogate(PVOID ptr, PVOID surrogate) |
| 649 | { |
| 650 | STANDARD_VM_CONTRACT; |
| 651 | |
| 652 | m_surrogates.Add(ptr, surrogate); |
| 653 | } |
| 654 | |
| 655 | PVOID DataImage::LookupSurrogate(PVOID ptr) |
| 656 | { |
| 657 | STANDARD_VM_CONTRACT; |
| 658 | |
| 659 | const KeyValuePair<PVOID, PVOID> * pEntry = m_surrogates.LookupPtr(ptr); |
| 660 | if (pEntry == NULL) |
| 661 | return NULL; |
| 662 | return pEntry->Value(); |
| 663 | } |
| 664 | |
| 665 | // Please read comments in corcompile.h for ZapVirtualSectionType before |
| 666 | // putting data items into sections. |
| 667 | FORCEINLINE static CorCompileSection GetSectionForNodeType(ZapNodeType type) |
| 668 | { |
| 669 | LIMITED_METHOD_CONTRACT; |
| 670 | |
| 671 | switch ((int)type) |
| 672 | { |
| 673 | // SECTION_MODULE |
| 674 | case NodeTypeForItemKind(DataImage::ITEM_MODULE): |
| 675 | return CORCOMPILE_SECTION_MODULE; |
| 676 | |
| 677 | // CORCOMPILE_SECTION_WRITE (Hot Writeable) |
| 678 | // things only go in here if they are: |
| 679 | // (a) explicitly identified by profiling data |
| 680 | // or (b) if we have no profiling for these items but they are frequently written to |
| 681 | case NodeTypeForItemKind(DataImage::ITEM_FILEREF_MAP): |
| 682 | case NodeTypeForItemKind(DataImage::ITEM_ASSEMREF_MAP): |
| 683 | case NodeTypeForItemKind(DataImage::ITEM_DYNAMIC_STATICS_INFO_TABLE): |
| 684 | case NodeTypeForItemKind(DataImage::ITEM_DYNAMIC_STATICS_INFO_ENTRY): |
| 685 | case NodeTypeForItemKind(DataImage::ITEM_CER_RESTORE_FLAGS): |
| 686 | return CORCOMPILE_SECTION_WRITE; |
| 687 | |
| 688 | // CORCOMPILE_SECTION_WRITEABLE (Cold Writeable) |
| 689 | case NodeTypeForItemKind(DataImage::ITEM_METHOD_TABLE_SPECIAL_WRITEABLE): |
| 690 | case NodeTypeForItemKind(DataImage::ITEM_METHOD_TABLE_DATA_COLD_WRITEABLE): |
| 691 | case NodeTypeForItemKind(DataImage::ITEM_DICTIONARY_WRITEABLE): |
| 692 | case NodeTypeForItemKind(DataImage::ITEM_FROZEN_OBJECTS): // sometimes the objhdr is modified |
| 693 | return CORCOMPILE_SECTION_WRITEABLE; |
| 694 | |
| 695 | // SECTION_HOT |
| 696 | // Other things go in here if |
| 697 | // (a) identified as reads by the profiling runs |
| 698 | // (b) if we have no profiling for these items but are identified as typically being read |
| 699 | case NodeTypeForItemKind(DataImage::ITEM_CER_ROOT_TABLE): |
| 700 | case NodeTypeForItemKind(DataImage::ITEM_RID_MAP_HOT): |
| 701 | case NodeTypeForItemKind(DataImage::ITEM_BINDER): |
| 702 | case NodeTypeForItemKind(DataImage::ITEM_MODULE_SECDESC): |
| 703 | case NodeTypeForItemKind(DataImage::ITEM_METHOD_DESC_HOT): |
| 704 | return CORCOMPILE_SECTION_HOT; |
| 705 | |
| 706 | case NodeTypeForItemKind(DataImage::ITEM_BINDER_ITEMS): // these are the guaranteed to be hot items |
| 707 | return CORCOMPILE_SECTION_READONLY_SHARED_HOT; |
| 708 | |
| 709 | // SECTION_READONLY_HOT |
| 710 | case NodeTypeForItemKind(DataImage::ITEM_GC_STATIC_HANDLES_HOT): // this is assumed to be hot. it is not written to. |
| 711 | case NodeTypeForItemKind(DataImage::ITEM_MODULE_CCTOR_INFO_HOT): |
| 712 | case NodeTypeForItemKind(DataImage::ITEM_NGEN_HASH_BUCKETLIST_HOT): |
| 713 | case NodeTypeForItemKind(DataImage::ITEM_NGEN_HASH_ENTRIES_RO_HOT): |
| 714 | return CORCOMPILE_SECTION_READONLY_HOT; |
| 715 | |
| 716 | // SECTION_HOT_WRITEABLE |
| 717 | case NodeTypeForItemKind(DataImage::ITEM_METHOD_DESC_HOT_WRITEABLE): |
| 718 | case NodeTypeForItemKind(DataImage::ITEM_METHOD_TABLE_DATA_HOT_WRITEABLE): |
| 719 | case NodeTypeForItemKind(DataImage::ITEM_NGEN_HASH_HOT): |
| 720 | case NodeTypeForItemKind(DataImage::ITEM_NGEN_HASH_ENTRIES_HOT): |
| 721 | return CORCOMPILE_SECTION_HOT_WRITEABLE; |
| 722 | |
| 723 | case NodeTypeForItemKind(DataImage::ITEM_METHOD_PRECODE_HOT_WRITEABLE): |
| 724 | return CORCOMPILE_SECTION_METHOD_PRECODE_WRITE; |
| 725 | |
| 726 | case NodeTypeForItemKind(DataImage::ITEM_METHOD_PRECODE_HOT): |
| 727 | return CORCOMPILE_SECTION_METHOD_PRECODE_HOT; |
| 728 | |
| 729 | // SECTION_RVA_STATICS |
| 730 | case NodeTypeForItemKind(DataImage::ITEM_RVA_STATICS): |
| 731 | return CORCOMPILE_SECTION_RVA_STATICS_COLD; // This MUST go in this section |
| 732 | |
| 733 | // SECTION_WARM |
| 734 | case NodeTypeForItemKind(DataImage::ITEM_GUID_INFO): |
| 735 | case NodeTypeForItemKind(DataImage::ITEM_DICTIONARY_LAYOUT): |
| 736 | case NodeTypeForItemKind(DataImage::ITEM_EECLASS_WARM): |
| 737 | return CORCOMPILE_SECTION_WARM; |
| 738 | |
| 739 | // SECTION_READONLY_WARM |
| 740 | case NodeTypeForItemKind(DataImage::ITEM_METHOD_TABLE): |
| 741 | case NodeTypeForItemKind(DataImage::ITEM_INTERFACE_MAP): |
| 742 | case NodeTypeForItemKind(DataImage::ITEM_DISPATCH_MAP): |
| 743 | case NodeTypeForItemKind(DataImage::ITEM_GENERICS_STATIC_FIELDDESCS): |
| 744 | case NodeTypeForItemKind(DataImage::ITEM_GC_STATIC_HANDLES_COLD): |
| 745 | case NodeTypeForItemKind(DataImage::ITEM_MODULE_CCTOR_INFO_COLD): |
| 746 | case NodeTypeForItemKind(DataImage::ITEM_STORED_METHOD_NAME): |
| 747 | case NodeTypeForItemKind(DataImage::ITEM_PROPERTY_NAME_SET): |
| 748 | case NodeTypeForItemKind(DataImage::ITEM_STORED_METHOD_SIG_READONLY_WARM): |
| 749 | return CORCOMPILE_SECTION_READONLY_WARM; |
| 750 | |
| 751 | case NodeTypeForItemKind(DataImage::ITEM_DICTIONARY): |
| 752 | return CORCOMPILE_SECTION_READONLY_DICTIONARY; |
| 753 | |
| 754 | case NodeTypeForItemKind(DataImage::ITEM_VTABLE_CHUNK): |
| 755 | return CORCOMPILE_SECTION_READONLY_VCHUNKS; |
| 756 | |
| 757 | // SECTION_CLASS_COLD |
| 758 | case NodeTypeForItemKind(DataImage::ITEM_PARAM_TYPEDESC): |
| 759 | case NodeTypeForItemKind(DataImage::ITEM_ARRAY_TYPEDESC): |
| 760 | case NodeTypeForItemKind(DataImage::ITEM_EECLASS): |
| 761 | case NodeTypeForItemKind(DataImage::ITEM_FIELD_MARSHALERS): |
| 762 | case NodeTypeForItemKind(DataImage::ITEM_FPTR_TYPEDESC): |
| 763 | #ifdef FEATURE_COMINTEROP |
| 764 | case NodeTypeForItemKind(DataImage::ITEM_SPARSE_VTABLE_MAP_TABLE): |
| 765 | #endif // FEATURE_COMINTEROP |
| 766 | return CORCOMPILE_SECTION_CLASS_COLD; |
| 767 | |
| 768 | //SECTION_READONLY_COLD |
| 769 | case NodeTypeForItemKind(DataImage::ITEM_FIELD_DESC_LIST): |
| 770 | case NodeTypeForItemKind(DataImage::ITEM_ENUM_VALUES): |
| 771 | case NodeTypeForItemKind(DataImage::ITEM_ENUM_NAME_POINTERS): |
| 772 | case NodeTypeForItemKind(DataImage::ITEM_ENUM_NAME): |
| 773 | case NodeTypeForItemKind(DataImage::ITEM_NGEN_HASH_BUCKETLIST_COLD): |
| 774 | case NodeTypeForItemKind(DataImage::ITEM_NGEN_HASH_ENTRIES_RO_COLD): |
| 775 | case NodeTypeForItemKind(DataImage::ITEM_STORED_METHOD_SIG_READONLY): |
| 776 | #ifdef FEATURE_COMINTEROP |
| 777 | case NodeTypeForItemKind(DataImage::ITEM_SPARSE_VTABLE_MAP_ENTRIES): |
| 778 | #endif // FEATURE_COMINTEROP |
| 779 | case NodeTypeForItemKind(DataImage::ITEM_CLASS_VARIANCE_INFO): |
| 780 | return CORCOMPILE_SECTION_READONLY_COLD; |
| 781 | |
| 782 | // SECTION_CROSS_DOMAIN_INFO |
| 783 | case NodeTypeForItemKind(DataImage::ITEM_CROSS_DOMAIN_INFO): |
| 784 | case NodeTypeForItemKind(DataImage::ITEM_VTS_INFO): |
| 785 | return CORCOMPILE_SECTION_CROSS_DOMAIN_INFO; |
| 786 | |
| 787 | // SECTION_METHOD_DESC_COLD |
| 788 | case NodeTypeForItemKind(DataImage::ITEM_METHOD_DESC_COLD): |
| 789 | return CORCOMPILE_SECTION_METHOD_DESC_COLD; |
| 790 | |
| 791 | case NodeTypeForItemKind(DataImage::ITEM_METHOD_DESC_COLD_WRITEABLE): |
| 792 | case NodeTypeForItemKind(DataImage::ITEM_STORED_METHOD_SIG): |
| 793 | return CORCOMPILE_SECTION_METHOD_DESC_COLD_WRITEABLE; |
| 794 | |
| 795 | case NodeTypeForItemKind(DataImage::ITEM_METHOD_PRECODE_COLD): |
| 796 | return CORCOMPILE_SECTION_METHOD_PRECODE_COLD; |
| 797 | |
| 798 | case NodeTypeForItemKind(DataImage::ITEM_METHOD_PRECODE_COLD_WRITEABLE): |
| 799 | return CORCOMPILE_SECTION_METHOD_PRECODE_COLD_WRITEABLE; |
| 800 | |
| 801 | // SECTION_MODULE_COLD |
| 802 | case NodeTypeForItemKind(DataImage::ITEM_TYPEDEF_MAP): |
| 803 | case NodeTypeForItemKind(DataImage::ITEM_TYPEREF_MAP): |
| 804 | case NodeTypeForItemKind(DataImage::ITEM_METHODDEF_MAP): |
| 805 | case NodeTypeForItemKind(DataImage::ITEM_FIELDDEF_MAP): |
| 806 | case NodeTypeForItemKind(DataImage::ITEM_MEMBERREF_MAP): |
| 807 | case NodeTypeForItemKind(DataImage::ITEM_GENERICPARAM_MAP): |
| 808 | case NodeTypeForItemKind(DataImage::ITEM_GENERICTYPEDEF_MAP): |
| 809 | case NodeTypeForItemKind(DataImage::ITEM_PROPERTYINFO_MAP): |
| 810 | case NodeTypeForItemKind(DataImage::ITEM_TYVAR_TYPEDESC): |
| 811 | case NodeTypeForItemKind(DataImage::ITEM_EECLASS_COLD): |
| 812 | case NodeTypeForItemKind(DataImage::ITEM_CER_METHOD_LIST): |
| 813 | case NodeTypeForItemKind(DataImage::ITEM_NGEN_HASH_COLD): |
| 814 | case NodeTypeForItemKind(DataImage::ITEM_NGEN_HASH_ENTRIES_COLD): |
| 815 | return CORCOMPILE_SECTION_MODULE_COLD; |
| 816 | |
| 817 | // SECTION_DEBUG_COLD |
| 818 | case NodeTypeForItemKind(DataImage::ITEM_DEBUG): |
| 819 | case NodeTypeForItemKind(DataImage::ITEM_INLINING_DATA): |
| 820 | return CORCOMPILE_SECTION_DEBUG_COLD; |
| 821 | |
| 822 | // SECTION_COMPRESSED_MAPS |
| 823 | case NodeTypeForItemKind(DataImage::ITEM_COMPRESSED_MAP): |
| 824 | return CORCOMPILE_SECTION_COMPRESSED_MAPS; |
| 825 | |
| 826 | default: |
| 827 | _ASSERTE(!"Missing mapping between type and section" ); |
| 828 | return CORCOMPILE_SECTION_MODULE_COLD; |
| 829 | } |
| 830 | } |
| 831 | |
| 832 | static int __cdecl LayoutOrderCmp(const void* a_, const void* b_) |
| 833 | { |
| 834 | DWORD a = ((DataImage::SavedNodeEntry*)a_)->dwAssociatedOrder; |
| 835 | DWORD b = ((DataImage::SavedNodeEntry*)b_)->dwAssociatedOrder; |
| 836 | |
| 837 | if (a > b) |
| 838 | { |
| 839 | return 1; |
| 840 | } |
| 841 | else |
| 842 | { |
| 843 | return (a < b) ? -1 : 0; |
| 844 | } |
| 845 | } |
| 846 | |
| 847 | void DataImage::PlaceRemainingStructures() |
| 848 | { |
| 849 | if (m_pZapImage->HasClassLayoutOrder()) |
| 850 | { |
| 851 | // The structures are currently in save order; since we are going to change |
| 852 | // that to class layout order, first place any that require us to maintain save order. |
| 853 | // Note that this is necessary because qsort is not stable. |
| 854 | for (COUNT_T iStructure = 0; iStructure < m_structuresInOrder.GetCount(); iStructure++) |
| 855 | { |
| 856 | if (m_structuresInOrder[iStructure].dwAssociatedOrder == MAINTAIN_SAVE_ORDER) |
| 857 | { |
| 858 | ZapNode * pStructure = m_structuresInOrder[iStructure].pNode; |
| 859 | if (!pStructure->IsPlaced()) |
| 860 | { |
| 861 | ZapVirtualSection * pSection = m_pZapImage->GetSection(GetSectionForNodeType(pStructure->GetType())); |
| 862 | pSection->Place(pStructure); |
| 863 | } |
| 864 | } |
| 865 | } |
| 866 | |
| 867 | qsort(&m_structuresInOrder[0], m_structuresInOrder.GetCount(), sizeof(SavedNodeEntry), LayoutOrderCmp); |
| 868 | } |
| 869 | |
| 870 | // Place the unplaced structures, which may have been re-sorted according to class-layout order |
| 871 | for (COUNT_T iStructure = 0; iStructure < m_structuresInOrder.GetCount(); iStructure++) |
| 872 | { |
| 873 | ZapNode * pStructure = m_structuresInOrder[iStructure].pNode; |
| 874 | if (!pStructure->IsPlaced()) |
| 875 | { |
| 876 | ZapVirtualSection * pSection = m_pZapImage->GetSection(GetSectionForNodeType(pStructure->GetType())); |
| 877 | pSection->Place(pStructure); |
| 878 | } |
| 879 | } |
| 880 | } |
| 881 | |
| 882 | int __cdecl DataImage::fixupEntryCmp(const void* a_, const void* b_) |
| 883 | { |
| 884 | LIMITED_METHOD_CONTRACT; |
| 885 | FixupEntry *a = (FixupEntry *)a_; |
| 886 | FixupEntry *b = (FixupEntry *)b_; |
| 887 | return (a->m_pLocation->GetRVA() + a->m_offset) - (b->m_pLocation->GetRVA() + b->m_offset); |
| 888 | } |
| 889 | |
| 890 | void DataImage::FixupRVAs() |
| 891 | { |
| 892 | STANDARD_VM_CONTRACT; |
| 893 | |
| 894 | FixupModuleRVAs(); |
| 895 | FixupRvaStructure(); |
| 896 | |
| 897 | |
| 898 | // Dev11 bug 181494 instrumentation |
| 899 | if (m_Fixups.GetCount() != m_iCurrentFixup) EEPOLICY_HANDLE_FATAL_ERROR(COR_E_EXECUTIONENGINE); |
| 900 | |
| 901 | qsort(&m_Fixups[0], m_Fixups.GetCount(), sizeof(FixupEntry), fixupEntryCmp); |
| 902 | |
| 903 | // Sentinel |
| 904 | FixupEntry entry; |
| 905 | |
| 906 | entry.m_type = 0; |
| 907 | entry.m_offset = 0; |
| 908 | entry.m_pLocation = NULL; |
| 909 | entry.m_pTargetNode = NULL; |
| 910 | |
| 911 | m_Fixups.Append(entry); |
| 912 | |
| 913 | // Dev11 bug 181494 instrumentation |
| 914 | if (m_Fixups.GetCount() -1 != m_iCurrentFixup) EEPOLICY_HANDLE_FATAL_ERROR(COR_E_EXECUTIONENGINE); |
| 915 | |
| 916 | m_iCurrentFixup = 0; |
| 917 | } |
| 918 | |
| 919 | void DataImage::SetRVAsForFields(IMetaDataEmit * pEmit) |
| 920 | { |
| 921 | for (COUNT_T i=0; i<m_rvaInfoVector.GetCount(); i++) { |
| 922 | |
| 923 | RvaInfoStructure * rvaInfo = &(m_rvaInfoVector[i]); |
| 924 | |
| 925 | void * pRVAData = rvaInfo->pFD->GetStaticAddressHandle(NULL); |
| 926 | |
| 927 | DWORD dwOffset = GetRVA(pRVAData); |
| 928 | |
| 929 | pEmit->SetRVA(rvaInfo->pFD->GetMemberDef(), dwOffset); |
| 930 | } |
| 931 | } |
| 932 | |
| 933 | void ZapStoredStructure::Save(ZapWriter * pWriter) |
| 934 | { |
| 935 | DataImage * image = ZapImage::GetImage(pWriter)->m_pDataImage; |
| 936 | |
| 937 | DataImage::FixupEntry * pPrevFixupEntry = NULL; |
| 938 | |
| 939 | for (;;) |
| 940 | { |
| 941 | DataImage::FixupEntry * pFixupEntry = &(image->m_Fixups[image->m_iCurrentFixup]); |
| 942 | |
| 943 | if (pFixupEntry->m_pLocation != this) |
| 944 | { |
| 945 | _ASSERTE(pFixupEntry->m_pLocation == NULL || |
| 946 | GetRVA() + GetSize() <= pFixupEntry->m_pLocation->GetRVA()); |
| 947 | break; |
| 948 | } |
| 949 | |
| 950 | PVOID pLocation = (BYTE *)GetData() + pFixupEntry->m_offset; |
| 951 | |
| 952 | if (pPrevFixupEntry == NULL || pPrevFixupEntry->m_offset != pFixupEntry->m_offset) |
| 953 | { |
| 954 | SSIZE_T targetOffset = DecodeTargetOffset(pLocation, pFixupEntry->m_type); |
| 955 | |
| 956 | #ifdef _DEBUG |
| 957 | // All pointers in EE datastructures should be aligned. This is important to |
| 958 | // avoid stradling relocations that cause issues with ASLR. |
| 959 | if (pFixupEntry->m_type == IMAGE_REL_BASED_PTR) |
| 960 | { |
| 961 | _ASSERTE(IS_ALIGNED(pWriter->GetCurrentRVA() + pFixupEntry->m_offset, sizeof(TADDR))); |
| 962 | } |
| 963 | #endif |
| 964 | |
| 965 | ZapImage::GetImage(pWriter)->WriteReloc( |
| 966 | GetData(), |
| 967 | pFixupEntry->m_offset, |
| 968 | pFixupEntry->m_pTargetNode, |
| 969 | (int)targetOffset, |
| 970 | pFixupEntry->m_type); |
| 971 | } |
| 972 | else |
| 973 | { |
| 974 | // It's fine to have duplicate fixup entries, but they must target the same data. |
| 975 | // If this assert fires, Fixup* was called twice on the same field in an NGen'd |
| 976 | // structure with different targets, which likely indicates the current structure |
| 977 | // was illegally interned or shared. |
| 978 | _ASSERTE(pPrevFixupEntry->m_type == pFixupEntry->m_type); |
| 979 | _ASSERTE(pPrevFixupEntry->m_pTargetNode== pFixupEntry->m_pTargetNode); |
| 980 | } |
| 981 | |
| 982 | pPrevFixupEntry = pFixupEntry; |
| 983 | image->m_iCurrentFixup++; |
| 984 | } |
| 985 | |
| 986 | pWriter->Write(GetData(), m_dwSize); |
| 987 | } |
| 988 | |
| 989 | void DataImage::FixupSectionRange(SIZE_T offset, ZapNode * pNode) |
| 990 | { |
| 991 | STANDARD_VM_CONTRACT; |
| 992 | |
| 993 | if (pNode->GetSize() != 0) |
| 994 | { |
| 995 | FixupFieldToNode(m_module->m_pNGenLayoutInfo, offset, pNode); |
| 996 | |
| 997 | SIZE_T * pSize = (SIZE_T *)((BYTE *)GetImagePointer(m_module->m_pNGenLayoutInfo) + offset + sizeof(TADDR)); |
| 998 | *pSize = pNode->GetSize(); |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | void DataImage::FixupSectionPtr(SIZE_T offset, ZapNode * pNode) |
| 1003 | { |
| 1004 | if (pNode->GetSize() != 0) |
| 1005 | FixupFieldToNode(m_module->m_pNGenLayoutInfo, offset, pNode); |
| 1006 | } |
| 1007 | |
| 1008 | void DataImage::FixupJumpStubPtr(SIZE_T offset, CorInfoHelpFunc ftnNum) |
| 1009 | { |
| 1010 | ZapNode * pNode = m_pZapImage->GetHelperThunkIfExists(ftnNum); |
| 1011 | if (pNode != NULL) |
| 1012 | FixupFieldToNode(m_module->m_pNGenLayoutInfo, offset, pNode); |
| 1013 | } |
| 1014 | |
| 1015 | void DataImage::FixupModuleRVAs() |
| 1016 | { |
| 1017 | STANDARD_VM_CONTRACT; |
| 1018 | |
| 1019 | FixupSectionRange(offsetof(NGenLayoutInfo, m_CodeSections[0]), m_pZapImage->m_pHotCodeSection); |
| 1020 | FixupSectionRange(offsetof(NGenLayoutInfo, m_CodeSections[1]), m_pZapImage->m_pCodeSection); |
| 1021 | FixupSectionRange(offsetof(NGenLayoutInfo, m_CodeSections[2]), m_pZapImage->m_pColdCodeSection); |
| 1022 | |
| 1023 | NGenLayoutInfo * pSavedNGenLayoutInfo = (NGenLayoutInfo *)GetImagePointer(m_module->m_pNGenLayoutInfo); |
| 1024 | |
| 1025 | COUNT_T nHotRuntimeFunctions = m_pZapImage->m_pHotRuntimeFunctionSection->GetNodeCount(); |
| 1026 | if (nHotRuntimeFunctions != 0) |
| 1027 | { |
| 1028 | pSavedNGenLayoutInfo->m_nRuntimeFunctions[0] = nHotRuntimeFunctions; |
| 1029 | |
| 1030 | FixupFieldToNode(m_module->m_pNGenLayoutInfo, offsetof(NGenLayoutInfo, m_UnwindInfoLookupTable[0]), m_pZapImage->m_pHotRuntimeFunctionLookupSection); |
| 1031 | pSavedNGenLayoutInfo->m_UnwindInfoLookupTableEntryCount[0] = m_pZapImage->m_pHotRuntimeFunctionLookupSection->GetSize() / sizeof(DWORD) - 1; |
| 1032 | |
| 1033 | FixupFieldToNode(m_module->m_pNGenLayoutInfo, offsetof(NGenLayoutInfo, m_MethodDescs[0]), m_pZapImage->m_pHotCodeMethodDescsSection); |
| 1034 | |
| 1035 | FixupFieldToNode(m_module->m_pNGenLayoutInfo, offsetof(NGenLayoutInfo, m_pRuntimeFunctions[0]), m_pZapImage->m_pHotRuntimeFunctionSection); |
| 1036 | } |
| 1037 | |
| 1038 | COUNT_T nRuntimeFunctions = m_pZapImage->m_pRuntimeFunctionSection->GetNodeCount(); |
| 1039 | if (nRuntimeFunctions != 0) |
| 1040 | { |
| 1041 | pSavedNGenLayoutInfo->m_nRuntimeFunctions[1] = nRuntimeFunctions; |
| 1042 | |
| 1043 | FixupFieldToNode(m_module->m_pNGenLayoutInfo, offsetof(NGenLayoutInfo, m_UnwindInfoLookupTable[1]), m_pZapImage->m_pRuntimeFunctionLookupSection); |
| 1044 | pSavedNGenLayoutInfo->m_UnwindInfoLookupTableEntryCount[1] = m_pZapImage->m_pRuntimeFunctionLookupSection->GetSize() / sizeof(DWORD) - 1; |
| 1045 | |
| 1046 | FixupFieldToNode(m_module->m_pNGenLayoutInfo, offsetof(NGenLayoutInfo, m_MethodDescs[1]), m_pZapImage->m_pCodeMethodDescsSection); |
| 1047 | |
| 1048 | FixupFieldToNode(m_module->m_pNGenLayoutInfo, offsetof(NGenLayoutInfo, m_pRuntimeFunctions[1]), m_pZapImage->m_pRuntimeFunctionSection); |
| 1049 | } |
| 1050 | |
| 1051 | COUNT_T nColdRuntimeFunctions = m_pZapImage->m_pColdRuntimeFunctionSection->GetNodeCount(); |
| 1052 | if (nColdRuntimeFunctions != 0) |
| 1053 | { |
| 1054 | pSavedNGenLayoutInfo->m_nRuntimeFunctions[2] = nColdRuntimeFunctions; |
| 1055 | |
| 1056 | FixupFieldToNode(m_module->m_pNGenLayoutInfo, offsetof(NGenLayoutInfo, m_pRuntimeFunctions[2]), m_pZapImage->m_pColdRuntimeFunctionSection); |
| 1057 | } |
| 1058 | |
| 1059 | if (m_pZapImage->m_pColdCodeMapSection->GetNodeCount() != 0) |
| 1060 | { |
| 1061 | FixupFieldToNode(m_module->m_pNGenLayoutInfo, offsetof(NGenLayoutInfo, m_ColdCodeMap), m_pZapImage->m_pColdCodeMapSection); |
| 1062 | } |
| 1063 | |
| 1064 | FixupSectionRange(offsetof(NGenLayoutInfo, m_Precodes[0]), m_pZapImage->GetSection(CORCOMPILE_SECTION_METHOD_PRECODE_HOT)); |
| 1065 | FixupSectionRange(offsetof(NGenLayoutInfo, m_Precodes[1]), m_pZapImage->GetSection(CORCOMPILE_SECTION_METHOD_PRECODE_COLD)); |
| 1066 | FixupSectionRange(offsetof(NGenLayoutInfo, m_Precodes[2]), m_pZapImage->GetSection(CORCOMPILE_SECTION_METHOD_PRECODE_WRITE)); |
| 1067 | FixupSectionRange(offsetof(NGenLayoutInfo, m_Precodes[3]), m_pZapImage->GetSection(CORCOMPILE_SECTION_METHOD_PRECODE_COLD_WRITEABLE)); |
| 1068 | |
| 1069 | FixupSectionRange(offsetof(NGenLayoutInfo, m_JumpStubs), m_pZapImage->m_pHelperTableSection); |
| 1070 | FixupSectionRange(offsetof(NGenLayoutInfo, m_StubLinkStubs), m_pZapImage->m_pStubsSection); |
| 1071 | FixupSectionRange(offsetof(NGenLayoutInfo, m_VirtualMethodThunks), m_pZapImage->m_pVirtualImportThunkSection); |
| 1072 | FixupSectionRange(offsetof(NGenLayoutInfo, m_ExternalMethodThunks), m_pZapImage->m_pExternalMethodThunkSection); |
| 1073 | |
| 1074 | if (m_pZapImage->m_pExceptionInfoLookupTable->GetSize() != 0) |
| 1075 | FixupSectionRange(offsetof(NGenLayoutInfo, m_ExceptionInfoLookupTable), m_pZapImage->m_pExceptionInfoLookupTable); |
| 1076 | |
| 1077 | FixupJumpStubPtr(offsetof(NGenLayoutInfo, m_pPrestubJumpStub), CORINFO_HELP_EE_PRESTUB); |
| 1078 | #ifdef HAS_FIXUP_PRECODE |
| 1079 | FixupJumpStubPtr(offsetof(NGenLayoutInfo, m_pPrecodeFixupJumpStub), CORINFO_HELP_EE_PRECODE_FIXUP); |
| 1080 | #endif |
| 1081 | FixupJumpStubPtr(offsetof(NGenLayoutInfo, m_pVirtualImportFixupJumpStub), CORINFO_HELP_EE_VTABLE_FIXUP); |
| 1082 | FixupJumpStubPtr(offsetof(NGenLayoutInfo, m_pExternalMethodFixupJumpStub), CORINFO_HELP_EE_EXTERNAL_FIXUP); |
| 1083 | |
| 1084 | ZapNode * pFilterPersonalityRoutine = m_pZapImage->GetHelperThunkIfExists(CORINFO_HELP_EE_PERSONALITY_ROUTINE_FILTER_FUNCLET); |
| 1085 | if (pFilterPersonalityRoutine != NULL) |
| 1086 | FixupFieldToNode(m_module->m_pNGenLayoutInfo, offsetof(NGenLayoutInfo, m_rvaFilterPersonalityRoutine), pFilterPersonalityRoutine, 0, IMAGE_REL_BASED_ABSOLUTE); |
| 1087 | } |
| 1088 | |
| 1089 | void DataImage::FixupRvaStructure() |
| 1090 | { |
| 1091 | STANDARD_VM_CONTRACT; |
| 1092 | |
| 1093 | for (COUNT_T i=0; i<m_rvaInfoVector.GetCount(); i++) { |
| 1094 | |
| 1095 | RvaInfoStructure * rvaInfo = &(m_rvaInfoVector[i]); |
| 1096 | |
| 1097 | void * pRVAData = rvaInfo->pFD->GetStaticAddressHandle(NULL); |
| 1098 | |
| 1099 | DWORD dwOffset = GetRVA(pRVAData); |
| 1100 | |
| 1101 | FieldDesc * pNewFD = (FieldDesc *)GetImagePointer(rvaInfo->pFD); |
| 1102 | pNewFD->SetOffset(dwOffset); |
| 1103 | } |
| 1104 | } |
| 1105 | |
| 1106 | ZapNode * DataImage::GetCodeAddress(MethodDesc * method) |
| 1107 | { |
| 1108 | ZapMethodHeader * pMethod = m_pZapImage->GetCompiledMethod((CORINFO_METHOD_HANDLE)method); |
| 1109 | return (pMethod != NULL) ? pMethod->GetCode() : NULL; |
| 1110 | } |
| 1111 | |
| 1112 | BOOL DataImage::CanDirectCall(MethodDesc * method, CORINFO_ACCESS_FLAGS accessFlags) |
| 1113 | { |
| 1114 | return m_pZapImage->canIntraModuleDirectCall(NULL, (CORINFO_METHOD_HANDLE)method, NULL, accessFlags); |
| 1115 | } |
| 1116 | |
| 1117 | ZapNode * DataImage::GetFixupList(MethodDesc * method) |
| 1118 | { |
| 1119 | ZapMethodHeader * pMethod = m_pZapImage->GetCompiledMethod((CORINFO_METHOD_HANDLE)method); |
| 1120 | return (pMethod != NULL) ? pMethod->GetFixupList() : NULL; |
| 1121 | } |
| 1122 | |
| 1123 | ZapNode * DataImage::GetHelperThunk(CorInfoHelpFunc ftnNum) |
| 1124 | { |
| 1125 | return m_pZapImage->GetHelperThunk(ftnNum); |
| 1126 | } |
| 1127 | |
| 1128 | ZapNode * DataImage::GetTypeHandleImport(TypeHandle th, PVOID pUniqueId) |
| 1129 | { |
| 1130 | ZapImport * pImport = m_pZapImage->GetImportTable()->GetClassHandleImport(CORINFO_CLASS_HANDLE(th.AsPtr()), pUniqueId); |
| 1131 | if (!pImport->IsPlaced()) |
| 1132 | m_pZapImage->GetImportTable()->PlaceImport(pImport); |
| 1133 | return pImport; |
| 1134 | } |
| 1135 | |
| 1136 | ZapNode * DataImage::GetMethodHandleImport(MethodDesc * pMD) |
| 1137 | { |
| 1138 | ZapImport * pImport = m_pZapImage->GetImportTable()->GetMethodHandleImport(CORINFO_METHOD_HANDLE(pMD)); |
| 1139 | if (!pImport->IsPlaced()) |
| 1140 | m_pZapImage->GetImportTable()->PlaceImport(pImport); |
| 1141 | return pImport; |
| 1142 | } |
| 1143 | |
| 1144 | ZapNode * DataImage::GetFieldHandleImport(FieldDesc * pMD) |
| 1145 | { |
| 1146 | ZapImport * pImport = m_pZapImage->GetImportTable()->GetFieldHandleImport(CORINFO_FIELD_HANDLE(pMD)); |
| 1147 | if (!pImport->IsPlaced()) |
| 1148 | m_pZapImage->GetImportTable()->PlaceImport(pImport); |
| 1149 | return pImport; |
| 1150 | } |
| 1151 | |
| 1152 | ZapNode * DataImage::GetModuleHandleImport(Module * pModule) |
| 1153 | { |
| 1154 | ZapImport * pImport = m_pZapImage->GetImportTable()->GetModuleHandleImport(CORINFO_MODULE_HANDLE(pModule)); |
| 1155 | if (!pImport->IsPlaced()) |
| 1156 | m_pZapImage->GetImportTable()->PlaceImport(pImport); |
| 1157 | return pImport; |
| 1158 | } |
| 1159 | |
| 1160 | DWORD DataImage::GetModuleImportIndex(Module * pModule) |
| 1161 | { |
| 1162 | return m_pZapImage->GetImportTable()->GetIndexOfModule((CORINFO_MODULE_HANDLE)pModule); |
| 1163 | } |
| 1164 | |
| 1165 | ZapNode * DataImage::GetExistingTypeHandleImport(TypeHandle th) |
| 1166 | { |
| 1167 | ZapImport * pImport = m_pZapImage->GetImportTable()->GetExistingClassHandleImport(CORINFO_CLASS_HANDLE(th.AsPtr())); |
| 1168 | return (pImport != NULL && pImport->IsPlaced()) ? pImport : NULL; |
| 1169 | } |
| 1170 | |
| 1171 | ZapNode * DataImage::GetExistingMethodHandleImport(MethodDesc * pMD) |
| 1172 | { |
| 1173 | ZapImport * pImport = m_pZapImage->GetImportTable()->GetExistingMethodHandleImport(CORINFO_METHOD_HANDLE(pMD)); |
| 1174 | return (pImport != NULL && pImport->IsPlaced()) ? pImport : NULL; |
| 1175 | } |
| 1176 | |
| 1177 | ZapNode * DataImage::GetExistingFieldHandleImport(FieldDesc * pFD) |
| 1178 | { |
| 1179 | ZapImport * pImport = m_pZapImage->GetImportTable()->GetExistingFieldHandleImport(CORINFO_FIELD_HANDLE(pFD)); |
| 1180 | return (pImport != NULL && pImport->IsPlaced()) ? pImport : NULL; |
| 1181 | } |
| 1182 | |
| 1183 | ZapNode * DataImage::GetVirtualImportThunk(MethodTable * pMT, MethodDesc * pMD, int slotNumber) |
| 1184 | { |
| 1185 | _ASSERTE(pMD == pMT->GetMethodDescForSlot(slotNumber)); |
| 1186 | _ASSERTE(!pMD->IsGenericMethodDefinition()); |
| 1187 | |
| 1188 | ZapImport * pImport = m_pZapImage->GetImportTable()->GetVirtualImportThunk(CORINFO_METHOD_HANDLE(pMD), slotNumber); |
| 1189 | if (!pImport->IsPlaced()) |
| 1190 | m_pZapImage->GetImportTable()->PlaceVirtualImportThunk(pImport); |
| 1191 | return pImport; |
| 1192 | } |
| 1193 | |
| 1194 | ZapNode * DataImage::GetGenericSignature(PVOID signature, BOOL fMethod) |
| 1195 | { |
| 1196 | ZapGenericSignature * pGenericSignature = m_pZapImage->GetImportTable()->GetGenericSignature(signature, fMethod); |
| 1197 | if (!pGenericSignature->IsPlaced()) |
| 1198 | m_pZapImage->GetImportTable()->PlaceBlob(pGenericSignature); |
| 1199 | return pGenericSignature; |
| 1200 | } |
| 1201 | |
| 1202 | #if defined(_TARGET_X86_) || defined(_TARGET_AMD64_) |
| 1203 | |
| 1204 | class ZapStubPrecode : public ZapNode |
| 1205 | { |
| 1206 | protected: |
| 1207 | MethodDesc * m_pMD; |
| 1208 | DataImage::ItemKind m_kind; |
| 1209 | |
| 1210 | public: |
| 1211 | ZapStubPrecode(MethodDesc * pMethod, DataImage::ItemKind kind) |
| 1212 | : m_pMD(pMethod), m_kind(kind) |
| 1213 | { |
| 1214 | } |
| 1215 | |
| 1216 | virtual DWORD GetSize() |
| 1217 | { |
| 1218 | return sizeof(StubPrecode); |
| 1219 | } |
| 1220 | |
| 1221 | virtual UINT GetAlignment() |
| 1222 | { |
| 1223 | return PRECODE_ALIGNMENT; |
| 1224 | } |
| 1225 | |
| 1226 | virtual ZapNodeType GetType() |
| 1227 | { |
| 1228 | return NodeTypeForItemKind(m_kind); |
| 1229 | } |
| 1230 | |
| 1231 | virtual DWORD ComputeRVA(ZapWriter * pZapWriter, DWORD dwPos) |
| 1232 | { |
| 1233 | dwPos = AlignUp(dwPos, GetAlignment()); |
| 1234 | |
| 1235 | // Alignment for straddlers. Need a cast to help gcc choose between AlignmentTrim(UINT,UINT) and (UINT64,UINT). |
| 1236 | if (AlignmentTrim(static_cast<UINT>(dwPos + offsetof(StubPrecode, m_pMethodDesc)), RELOCATION_PAGE_SIZE) > RELOCATION_PAGE_SIZE - sizeof(TADDR)) |
| 1237 | dwPos += GetAlignment(); |
| 1238 | |
| 1239 | SetRVA(dwPos); |
| 1240 | |
| 1241 | dwPos += GetSize(); |
| 1242 | |
| 1243 | return dwPos; |
| 1244 | } |
| 1245 | |
| 1246 | virtual void Save(ZapWriter * pZapWriter) |
| 1247 | { |
| 1248 | ZapImage * pImage = ZapImage::GetImage(pZapWriter); |
| 1249 | |
| 1250 | StubPrecode precode; |
| 1251 | |
| 1252 | precode.Init(m_pMD); |
| 1253 | |
| 1254 | SSIZE_T offset; |
| 1255 | ZapNode * pNode = pImage->m_pDataImage->GetNodeForStructure(m_pMD, &offset); |
| 1256 | pImage->WriteReloc(&precode, offsetof(StubPrecode, m_pMethodDesc), |
| 1257 | pNode, (int)offset, IMAGE_REL_BASED_PTR); |
| 1258 | |
| 1259 | pImage->WriteReloc(&precode, offsetof(StubPrecode, m_rel32), |
| 1260 | pImage->GetHelperThunk(CORINFO_HELP_EE_PRESTUB), 0, IMAGE_REL_BASED_REL32); |
| 1261 | |
| 1262 | pZapWriter->Write(&precode, sizeof(precode)); |
| 1263 | } |
| 1264 | }; |
| 1265 | |
| 1266 | #ifdef HAS_NDIRECT_IMPORT_PRECODE |
| 1267 | class ZapNDirectImportPrecode : public ZapStubPrecode |
| 1268 | { |
| 1269 | public: |
| 1270 | ZapNDirectImportPrecode(MethodDesc * pMD, DataImage::ItemKind kind) |
| 1271 | : ZapStubPrecode(pMD, kind) |
| 1272 | { |
| 1273 | } |
| 1274 | |
| 1275 | virtual void Save(ZapWriter * pZapWriter) |
| 1276 | { |
| 1277 | ZapImage * pImage = ZapImage::GetImage(pZapWriter); |
| 1278 | |
| 1279 | StubPrecode precode; |
| 1280 | |
| 1281 | precode.Init(m_pMD); |
| 1282 | |
| 1283 | SSIZE_T offset; |
| 1284 | ZapNode * pNode = pImage->m_pDataImage->GetNodeForStructure(m_pMD, &offset); |
| 1285 | pImage->WriteReloc(&precode, offsetof(StubPrecode, m_pMethodDesc), |
| 1286 | pNode, (int)offset, IMAGE_REL_BASED_PTR); |
| 1287 | |
| 1288 | pImage->WriteReloc(&precode, offsetof(StubPrecode, m_rel32), |
| 1289 | pImage->GetHelperThunk(CORINFO_HELP_EE_PINVOKE_FIXUP), 0, IMAGE_REL_BASED_REL32); |
| 1290 | |
| 1291 | pZapWriter->Write(&precode, sizeof(precode)); |
| 1292 | } |
| 1293 | }; |
| 1294 | #endif // HAS_NDIRECT_IMPORT_PRECODE |
| 1295 | |
| 1296 | void DataImage::SavePrecode(PVOID ptr, MethodDesc * pMD, PrecodeType t, ItemKind kind, BOOL fIsPrebound) |
| 1297 | { |
| 1298 | ZapNode * pNode = NULL; |
| 1299 | |
| 1300 | switch (t) { |
| 1301 | case PRECODE_STUB: |
| 1302 | pNode = new (GetHeap()) ZapStubPrecode(pMD, kind); |
| 1303 | GetHelperThunk(CORINFO_HELP_EE_PRESTUB); |
| 1304 | break; |
| 1305 | |
| 1306 | #ifdef HAS_NDIRECT_IMPORT_PRECODE |
| 1307 | case PRECODE_NDIRECT_IMPORT: |
| 1308 | pNode = new (GetHeap()) ZapNDirectImportPrecode(pMD, kind); |
| 1309 | GetHelperThunk(CORINFO_HELP_EE_PINVOKE_FIXUP); |
| 1310 | break; |
| 1311 | #endif // HAS_NDIRECT_IMPORT_PRECODE |
| 1312 | |
| 1313 | default: |
| 1314 | _ASSERTE(!"Unexpected precode type" ); |
| 1315 | break; |
| 1316 | } |
| 1317 | |
| 1318 | BindPointer(ptr, pNode, 0); |
| 1319 | |
| 1320 | AddStructureInOrder(pNode); |
| 1321 | } |
| 1322 | |
| 1323 | #endif // _TARGET_X86_ || _TARGET_AMD64_ |
| 1324 | |
| 1325 | void DataImage::FixupModulePointer(Module * pModule, PVOID p, SSIZE_T offset, ZapRelocationType type) |
| 1326 | { |
| 1327 | STANDARD_VM_CONTRACT; |
| 1328 | |
| 1329 | if (pModule != NULL) |
| 1330 | { |
| 1331 | if (CanEagerBindToModule(pModule) && CanHardBindToZapModule(pModule)) |
| 1332 | { |
| 1333 | FixupField(p, offset, pModule, 0, type); |
| 1334 | } |
| 1335 | else |
| 1336 | { |
| 1337 | ZapNode * pImport = GetModuleHandleImport(pModule); |
| 1338 | FixupFieldToNode(p, offset, pImport, FIXUP_POINTER_INDIRECTION, type); |
| 1339 | } |
| 1340 | } |
| 1341 | } |
| 1342 | |
| 1343 | void DataImage::FixupMethodTablePointer(MethodTable * pMT, PVOID p, SSIZE_T offset, ZapRelocationType type) |
| 1344 | { |
| 1345 | STANDARD_VM_CONTRACT; |
| 1346 | |
| 1347 | if (pMT != NULL) |
| 1348 | { |
| 1349 | if (CanEagerBindToMethodTable(pMT) && CanHardBindToZapModule(pMT->GetLoaderModule())) |
| 1350 | { |
| 1351 | FixupField(p, offset, pMT, 0, type); |
| 1352 | } |
| 1353 | else |
| 1354 | { |
| 1355 | ZapNode * pImport = GetTypeHandleImport(pMT); |
| 1356 | FixupFieldToNode(p, offset, pImport, FIXUP_POINTER_INDIRECTION, type); |
| 1357 | } |
| 1358 | } |
| 1359 | } |
| 1360 | |
| 1361 | void DataImage::FixupTypeHandlePointer(TypeHandle th, PVOID p, SSIZE_T offset, ZapRelocationType type) |
| 1362 | { |
| 1363 | STANDARD_VM_CONTRACT; |
| 1364 | |
| 1365 | if (!th.IsNull()) |
| 1366 | { |
| 1367 | if (th.IsTypeDesc()) |
| 1368 | { |
| 1369 | if (CanEagerBindToTypeHandle(th) && CanHardBindToZapModule(th.GetLoaderModule())) |
| 1370 | { |
| 1371 | FixupField(p, offset, th.AsTypeDesc(), 2, type); |
| 1372 | } |
| 1373 | else |
| 1374 | { |
| 1375 | ZapNode * pImport = GetTypeHandleImport(th); |
| 1376 | FixupFieldToNode(p, offset, pImport, FIXUP_POINTER_INDIRECTION, type); |
| 1377 | } |
| 1378 | } |
| 1379 | else |
| 1380 | { |
| 1381 | MethodTable * pMT = th.AsMethodTable(); |
| 1382 | FixupMethodTablePointer(pMT, p, offset, type); |
| 1383 | } |
| 1384 | } |
| 1385 | } |
| 1386 | |
| 1387 | void DataImage::FixupMethodDescPointer(MethodDesc * pMD, PVOID p, SSIZE_T offset, ZapRelocationType type /*=IMAGE_REL_BASED_PTR*/) |
| 1388 | { |
| 1389 | STANDARD_VM_CONTRACT; |
| 1390 | |
| 1391 | if (pMD != NULL) |
| 1392 | { |
| 1393 | if (CanEagerBindToMethodDesc(pMD) && CanHardBindToZapModule(pMD->GetLoaderModule())) |
| 1394 | { |
| 1395 | FixupField(p, offset, pMD, 0, type); |
| 1396 | } |
| 1397 | else |
| 1398 | { |
| 1399 | ZapNode * pImport = GetMethodHandleImport(pMD); |
| 1400 | FixupFieldToNode(p, offset, pImport, FIXUP_POINTER_INDIRECTION, type); |
| 1401 | } |
| 1402 | } |
| 1403 | } |
| 1404 | |
| 1405 | void DataImage::FixupFieldDescPointer(FieldDesc * pFD, PVOID p, SSIZE_T offset, ZapRelocationType type /*=IMAGE_REL_BASED_PTR*/) |
| 1406 | { |
| 1407 | STANDARD_VM_CONTRACT; |
| 1408 | |
| 1409 | if (pFD != NULL) |
| 1410 | { |
| 1411 | if (CanEagerBindToFieldDesc(pFD) && CanHardBindToZapModule(pFD->GetLoaderModule())) |
| 1412 | { |
| 1413 | FixupField(p, offset, pFD, 0, type); |
| 1414 | } |
| 1415 | else |
| 1416 | { |
| 1417 | ZapNode * pImport = GetFieldHandleImport(pFD); |
| 1418 | FixupFieldToNode(p, offset, pImport, FIXUP_POINTER_INDIRECTION, type); |
| 1419 | } |
| 1420 | } |
| 1421 | } |
| 1422 | |
| 1423 | void DataImage::FixupMethodTablePointer(PVOID p, FixupPointer<PTR_MethodTable> * ppMT) |
| 1424 | { |
| 1425 | FixupMethodTablePointer(ppMT->GetValue(), p, (BYTE *)ppMT - (BYTE *)p, IMAGE_REL_BASED_PTR); |
| 1426 | } |
| 1427 | void DataImage::FixupTypeHandlePointer(PVOID p, FixupPointer<TypeHandle> * pth) |
| 1428 | { |
| 1429 | FixupTypeHandlePointer(pth->GetValue(), p, (BYTE *)pth - (BYTE *)p, IMAGE_REL_BASED_PTR); |
| 1430 | } |
| 1431 | void DataImage::FixupMethodDescPointer(PVOID p, FixupPointer<PTR_MethodDesc> * ppMD) |
| 1432 | { |
| 1433 | FixupMethodDescPointer(ppMD->GetValue(), p, (BYTE *)ppMD - (BYTE *)p, IMAGE_REL_BASED_PTR); |
| 1434 | } |
| 1435 | void DataImage::FixupFieldDescPointer(PVOID p, FixupPointer<PTR_FieldDesc> * ppFD) |
| 1436 | { |
| 1437 | FixupFieldDescPointer(ppFD->GetValue(), p, (BYTE *)ppFD - (BYTE *)p, IMAGE_REL_BASED_PTR); |
| 1438 | } |
| 1439 | |
| 1440 | void DataImage::FixupModulePointer(PVOID p, RelativeFixupPointer<PTR_Module> * ppModule) |
| 1441 | { |
| 1442 | FixupModulePointer(ppModule->GetValueMaybeNull(), p, (BYTE *)ppModule - (BYTE *)p, IMAGE_REL_BASED_RELPTR); |
| 1443 | } |
| 1444 | void DataImage::FixupMethodTablePointer(PVOID p, RelativeFixupPointer<PTR_MethodTable> * ppMT) |
| 1445 | { |
| 1446 | FixupMethodTablePointer(ppMT->GetValueMaybeNull(), p, (BYTE *)ppMT - (BYTE *)p, IMAGE_REL_BASED_RELPTR); |
| 1447 | } |
| 1448 | void DataImage::FixupTypeHandlePointer(PVOID p, RelativeFixupPointer<TypeHandle> * pth) |
| 1449 | { |
| 1450 | FixupTypeHandlePointer(pth->GetValueMaybeNull(), p, (BYTE *)pth - (BYTE *)p, IMAGE_REL_BASED_RELPTR); |
| 1451 | } |
| 1452 | void DataImage::FixupMethodDescPointer(PVOID p, RelativeFixupPointer<PTR_MethodDesc> * ppMD) |
| 1453 | { |
| 1454 | FixupMethodDescPointer(ppMD->GetValueMaybeNull(), p, (BYTE *)ppMD - (BYTE *)p, IMAGE_REL_BASED_RELPTR); |
| 1455 | } |
| 1456 | void DataImage::FixupFieldDescPointer(PVOID p, RelativeFixupPointer<PTR_FieldDesc> * ppFD) |
| 1457 | { |
| 1458 | FixupFieldDescPointer(ppFD->GetValueMaybeNull(), p, (BYTE *)ppFD - (BYTE *)p, IMAGE_REL_BASED_RELPTR); |
| 1459 | } |
| 1460 | |
| 1461 | BOOL DataImage::CanHardBindToZapModule(Module *targetModule) |
| 1462 | { |
| 1463 | STANDARD_VM_CONTRACT; |
| 1464 | |
| 1465 | _ASSERTE(targetModule == m_module || targetModule->HasNativeImage()); |
| 1466 | return targetModule == m_module; |
| 1467 | } |
| 1468 | |
| 1469 | BOOL DataImage::CanEagerBindToTypeHandle(TypeHandle th, BOOL fRequirePrerestore, TypeHandleList *pVisited) |
| 1470 | { |
| 1471 | STANDARD_VM_CONTRACT; |
| 1472 | |
| 1473 | Module * pLoaderModule = th.GetLoaderModule(); |
| 1474 | |
| 1475 | BOOL fCanEagerBind; |
| 1476 | |
| 1477 | if (th.IsTypeDesc()) |
| 1478 | { |
| 1479 | fCanEagerBind = CanEagerBindTo(pLoaderModule, Module::GetPreferredZapModuleForTypeDesc(th.AsTypeDesc()), th.AsTypeDesc()); |
| 1480 | } |
| 1481 | else |
| 1482 | { |
| 1483 | fCanEagerBind = CanEagerBindTo(pLoaderModule, Module::GetPreferredZapModuleForMethodTable(th.AsMethodTable()), th.AsMethodTable()); |
| 1484 | } |
| 1485 | |
| 1486 | if (GetModule() != th.GetLoaderModule()) |
| 1487 | { |
| 1488 | if (th.IsTypeDesc()) |
| 1489 | { |
| 1490 | return FALSE; |
| 1491 | } |
| 1492 | |
| 1493 | // As a performance optimization, don't eager bind to arrays. They are currently very expensive to |
| 1494 | // fixup so we want to do it lazily. |
| 1495 | |
| 1496 | if (th.AsMethodTable()->IsArray()) |
| 1497 | { |
| 1498 | return FALSE; |
| 1499 | } |
| 1500 | |
| 1501 | // For correctness in the face of targeted patching, do not eager bind to any instantiation |
| 1502 | // in the target module that might go away. |
| 1503 | if (!th.IsTypicalTypeDefinition() && |
| 1504 | !Module::IsAlwaysSavedInPreferredZapModule(th.GetInstantiation(), |
| 1505 | Instantiation())) |
| 1506 | { |
| 1507 | return FALSE; |
| 1508 | } |
| 1509 | |
| 1510 | // #DoNotEagerBindToTypesThatNeedRestore |
| 1511 | // |
| 1512 | // It is important to avoid eager binding to structures that require restore. The code here stops |
| 1513 | // this from happening for cross-module fixups. For intra-module cases, eager fixups are allowed to |
| 1514 | // (and often do) target types that require restore, even though this is generally prone to all of |
| 1515 | // the same problems described below. Correctness is preserved only because intra-module eager |
| 1516 | // fixups are ignored in Module::RunEagerFixups (so their semantics are very close to normal |
| 1517 | // non-eager fixups). |
| 1518 | // |
| 1519 | // For performance, this is the most costly type of eager fixup (and may require otherwise-unneeded |
| 1520 | // assemblies to be loaded) and has the lowest benefit, since it does not avoid the need for the |
| 1521 | // referencing type to require restore. |
| 1522 | // |
| 1523 | // More importantly, this kind of fixup can compromise correctness by causing type loads to occur |
| 1524 | // during eager fixup resolution. The system is not designed to cope with this and a variety of |
| 1525 | // subtle failures can occur when it happens. As an example, consider a scenario involving the |
| 1526 | // following assemblies and types: |
| 1527 | // o A1: softbinds to A2, contains "class A1!Level2 extends A2!Level1" |
| 1528 | // o A2: hardbinds to A3, contains "class A2!Level1 extends Object", contains methods that use A3!Level3. |
| 1529 | // o A3: softbinds to A1, contains "class A3!Level3 extends A1!Level2" |
| 1530 | // |
| 1531 | // If eager fixups are allowed to target types that need restore, then it's possible for A2 to end |
| 1532 | // up with an eager fixup targeting A3!Level3, setting up this sequence: |
| 1533 | // 1 Type load starts for A1!Level2. |
| 1534 | // 2 Loading base class A2!Level1 triggers assembly load for A2. |
| 1535 | // 3 Loading A2 involves synchronously resolving its eager fixups, including the fixup to A3!Level3. |
| 1536 | // 4 A3!Level3 needs restore, so type load starts for A3!Level3. |
| 1537 | // 5 Loading A3!Level3 requires loading base class A1!Level2. |
| 1538 | // 6 A1!Level2 is already being loaded on this thread (in #1 above), so type load fails. |
| 1539 | // 7 Since eager fixup resolution failed, FileLoadException is thrown for A2. |
| 1540 | fRequirePrerestore = TRUE; |
| 1541 | } |
| 1542 | |
| 1543 | if (fCanEagerBind && fRequirePrerestore) |
| 1544 | { |
| 1545 | fCanEagerBind = !th.ComputeNeedsRestore(this, pVisited); |
| 1546 | } |
| 1547 | |
| 1548 | return fCanEagerBind; |
| 1549 | } |
| 1550 | |
| 1551 | BOOL DataImage::CanEagerBindToMethodTable(MethodTable *pMT, BOOL fRequirePrerestore, TypeHandleList *pVisited) |
| 1552 | { |
| 1553 | WRAPPER_NO_CONTRACT; |
| 1554 | |
| 1555 | TypeHandle th = TypeHandle(pMT); |
| 1556 | return DataImage::CanEagerBindToTypeHandle(th, fRequirePrerestore, pVisited); |
| 1557 | } |
| 1558 | |
| 1559 | BOOL DataImage::CanEagerBindToMethodDesc(MethodDesc *pMD, BOOL fRequirePrerestore, TypeHandleList *pVisited) |
| 1560 | { |
| 1561 | STANDARD_VM_CONTRACT; |
| 1562 | |
| 1563 | BOOL fCanEagerBind = CanEagerBindTo(pMD->GetLoaderModule(), Module::GetPreferredZapModuleForMethodDesc(pMD), pMD); |
| 1564 | |
| 1565 | // Performance optimization -- see comment in CanEagerBindToTypeHandle |
| 1566 | if (GetModule() != pMD->GetLoaderModule()) |
| 1567 | { |
| 1568 | // For correctness in the face of targeted patching, do not eager bind to any instantiation |
| 1569 | // in the target module that might go away. |
| 1570 | if (!pMD->IsTypicalMethodDefinition() && |
| 1571 | !Module::IsAlwaysSavedInPreferredZapModule(pMD->GetClassInstantiation(), |
| 1572 | pMD->GetMethodInstantiation())) |
| 1573 | { |
| 1574 | return FALSE; |
| 1575 | } |
| 1576 | |
| 1577 | fRequirePrerestore = TRUE; |
| 1578 | } |
| 1579 | |
| 1580 | if (fCanEagerBind && fRequirePrerestore) |
| 1581 | { |
| 1582 | fCanEagerBind = !pMD->ComputeNeedsRestore(this, pVisited); |
| 1583 | } |
| 1584 | |
| 1585 | return fCanEagerBind; |
| 1586 | } |
| 1587 | |
| 1588 | BOOL DataImage::CanEagerBindToFieldDesc(FieldDesc *pFD, BOOL fRequirePrerestore, TypeHandleList *pVisited) |
| 1589 | { |
| 1590 | STANDARD_VM_CONTRACT; |
| 1591 | |
| 1592 | if (!CanEagerBindTo(pFD->GetLoaderModule(), Module::GetPreferredZapModuleForFieldDesc(pFD), pFD)) |
| 1593 | return FALSE; |
| 1594 | |
| 1595 | MethodTable * pMT = pFD->GetApproxEnclosingMethodTable(); |
| 1596 | |
| 1597 | return CanEagerBindToMethodTable(pMT, fRequirePrerestore, pVisited); |
| 1598 | } |
| 1599 | |
| 1600 | BOOL DataImage::CanEagerBindToModule(Module *pModule) |
| 1601 | { |
| 1602 | STANDARD_VM_CONTRACT; |
| 1603 | |
| 1604 | return GetAppDomain()->ToCompilationDomain()->CanEagerBindToZapFile(pModule); |
| 1605 | } |
| 1606 | |
| 1607 | // "address" is a data-structure belonging to pTargetModule. |
| 1608 | // This function returns whether the Module currently being ngenned can |
| 1609 | // hardbind "address" |
| 1610 | /* static */ |
| 1611 | BOOL DataImage::CanEagerBindTo(Module *pTargetModule, Module *pPreferredZapModule, void *address) |
| 1612 | { |
| 1613 | STANDARD_VM_CONTRACT; |
| 1614 | |
| 1615 | if (pTargetModule != pPreferredZapModule) |
| 1616 | return FALSE; |
| 1617 | |
| 1618 | if (GetModule() == pTargetModule) |
| 1619 | return TRUE; |
| 1620 | |
| 1621 | BOOL eagerBindToZap = GetAppDomain()->ToCompilationDomain()->CanEagerBindToZapFile(pTargetModule); |
| 1622 | BOOL isPersisted = pTargetModule->IsPersistedObject(address); |
| 1623 | |
| 1624 | return eagerBindToZap && isPersisted; |
| 1625 | } |
| 1626 | |
| 1627 | BOOL DataImage::CanPrerestoreEagerBindToTypeHandle(TypeHandle th, TypeHandleList *pVisited) |
| 1628 | { |
| 1629 | WRAPPER_NO_CONTRACT; |
| 1630 | return CanEagerBindToTypeHandle(th, TRUE, pVisited); |
| 1631 | } |
| 1632 | |
| 1633 | BOOL DataImage::CanPrerestoreEagerBindToMethodTable(MethodTable *pMT, TypeHandleList *pVisited) |
| 1634 | { |
| 1635 | WRAPPER_NO_CONTRACT; |
| 1636 | return CanEagerBindToMethodTable(pMT, TRUE, pVisited); |
| 1637 | } |
| 1638 | |
| 1639 | BOOL DataImage::CanPrerestoreEagerBindToMethodDesc(MethodDesc *pMD, TypeHandleList *pVisited) |
| 1640 | { |
| 1641 | WRAPPER_NO_CONTRACT; |
| 1642 | return CanEagerBindToMethodDesc(pMD, TRUE, pVisited); |
| 1643 | } |
| 1644 | |
| 1645 | |
| 1646 | void DataImage::HardBindTypeHandlePointer(PVOID p, SSIZE_T offset) |
| 1647 | { |
| 1648 | CONTRACTL |
| 1649 | { |
| 1650 | STANDARD_VM_CHECK; |
| 1651 | PRECONDITION(CanEagerBindToTypeHandle(*(TypeHandle UNALIGNED*)((BYTE *)p + offset))); |
| 1652 | } |
| 1653 | CONTRACTL_END; |
| 1654 | |
| 1655 | TypeHandle thCopy = *(TypeHandle UNALIGNED*)((BYTE *)p + offset); |
| 1656 | |
| 1657 | if (!thCopy.IsNull()) |
| 1658 | { |
| 1659 | if (thCopy.IsTypeDesc()) |
| 1660 | { |
| 1661 | FixupField(p, offset, thCopy.AsTypeDesc(), 2); |
| 1662 | } |
| 1663 | else |
| 1664 | { |
| 1665 | FixupField(p, offset, thCopy.AsMethodTable()); |
| 1666 | } |
| 1667 | } |
| 1668 | } |
| 1669 | |
| 1670 | |
| 1671 | // This is obsolete in-place fixup that we should get rid of. For now, it is used for: |
| 1672 | // - FnPtrTypeDescs. These should not be stored in NGen images at all. |
| 1673 | // - stubs-as-il signatures. These should use tokens when stored in NGen image. |
| 1674 | // |
| 1675 | void DataImage::FixupTypeHandlePointerInPlace(PVOID p, SSIZE_T offset, BOOL fForceFixup /*=FALSE*/) |
| 1676 | { |
| 1677 | STANDARD_VM_CONTRACT; |
| 1678 | |
| 1679 | TypeHandle thCopy = *(TypeHandle UNALIGNED*)((BYTE *)p + offset); |
| 1680 | |
| 1681 | if (!thCopy.IsNull()) |
| 1682 | { |
| 1683 | if (!fForceFixup && |
| 1684 | CanEagerBindToTypeHandle(thCopy) && |
| 1685 | CanHardBindToZapModule(thCopy.GetLoaderModule())) |
| 1686 | { |
| 1687 | HardBindTypeHandlePointer(p, offset); |
| 1688 | } |
| 1689 | else |
| 1690 | { |
| 1691 | ZapImport * pImport = m_pZapImage->GetImportTable()->GetClassHandleImport((CORINFO_CLASS_HANDLE)thCopy.AsPtr()); |
| 1692 | |
| 1693 | ZapNode * pBlob = m_pZapImage->GetImportTable()->PlaceImportBlob(pImport); |
| 1694 | FixupFieldToNode(p, offset, pBlob, 0, IMAGE_REL_BASED_ABSOLUTE_TAGGED); |
| 1695 | } |
| 1696 | } |
| 1697 | } |
| 1698 | |
| 1699 | void DataImage::BeginRegion(CorInfoRegionKind regionKind) |
| 1700 | { |
| 1701 | STANDARD_VM_CONTRACT; |
| 1702 | |
| 1703 | m_pZapImage->BeginRegion(regionKind); |
| 1704 | } |
| 1705 | |
| 1706 | void DataImage::EndRegion(CorInfoRegionKind regionKind) |
| 1707 | { |
| 1708 | STANDARD_VM_CONTRACT; |
| 1709 | |
| 1710 | m_pZapImage->EndRegion(regionKind); |
| 1711 | } |
| 1712 | |
| 1713 | void DataImage::ReportInlining(CORINFO_METHOD_HANDLE inliner, CORINFO_METHOD_HANDLE inlinee) |
| 1714 | { |
| 1715 | STANDARD_VM_CONTRACT; |
| 1716 | _ASSERTE(m_inlineTrackingMap); |
| 1717 | m_inlineTrackingMap->AddInlining(GetMethod(inliner), GetMethod(inlinee)); |
| 1718 | } |
| 1719 | |
| 1720 | InlineTrackingMap * DataImage::GetInlineTrackingMap() |
| 1721 | { |
| 1722 | LIMITED_METHOD_DAC_CONTRACT; |
| 1723 | return m_inlineTrackingMap; |
| 1724 | } |
| 1725 | |
| 1726 | // |
| 1727 | // Compressed LookupMap Support |
| 1728 | // |
| 1729 | // See the large comment near the top of ceeload.h for a much more detailed discussion of this. |
| 1730 | // |
| 1731 | // Basically we support a specialized node, ZapCompressedLookupMap, which knows how to compress the array of |
| 1732 | // intra-module pointers present in certain types of LookupMap. |
| 1733 | // |
| 1734 | |
| 1735 | // A simple class to write a sequential sequence of variable sized bit-fields into a pre-allocated buffer. I |
| 1736 | // was going to use the version defined by GcInfoEncoder (the reader side in ceeload.cpp uses GcInfoDecoder's |
| 1737 | // BitStreamReader) but unfortunately the code is not currently factored to make this easy and the resources |
| 1738 | // were not available to perform a non-trivial refactorization of the code. In any event the writer is fairly |
| 1739 | // trivial and doesn't represent a huge duplication of effort. |
| 1740 | // The class requires that the input buffer is DWORD-aligned and sized (it uses a DWORD cache and always |
| 1741 | // writes data to the buffer in DWORD-sized chunks). |
| 1742 | class BitStreamWriter |
| 1743 | { |
| 1744 | public: |
| 1745 | // Initialize a writer and point it at the start of a pre-allocated buffer (large enough to accomodate all |
| 1746 | // future writes). The buffer must be DWORD-aligned (we use this for some performance optimization). |
| 1747 | BitStreamWriter(DWORD *pStart) |
| 1748 | { |
| 1749 | LIMITED_METHOD_CONTRACT; |
| 1750 | |
| 1751 | // Buffer must be DWORD-aligned. |
| 1752 | _ASSERTE(((TADDR)pStart & 0x3) == 0); |
| 1753 | |
| 1754 | m_pNext = pStart; // Point at the start of the buffer |
| 1755 | m_dwCurrent = 0; // We don't have any cached data waiting to write |
| 1756 | m_cCurrentBits = 0; // Ditto |
| 1757 | m_cBitsWritten = 0; // We haven't written any bits |
| 1758 | } |
| 1759 | |
| 1760 | // Write the low-order cBits of dwData to the stream. |
| 1761 | void Write(DWORD dwData, DWORD cBits) |
| 1762 | { |
| 1763 | LIMITED_METHOD_CONTRACT; |
| 1764 | |
| 1765 | // We can only write between 1 and 32 bits of data at a time. |
| 1766 | _ASSERTE(cBits > 0 && cBits <= kBitsPerDWORD); |
| 1767 | |
| 1768 | // Check that none of the unused high-order bits of dwData have stale data in them (we can use this to |
| 1769 | // optimize paths below). Use two conditions here because << of 32-bits or more (on x86) doesn't |
| 1770 | // do what you might expect (the RHS is modulo 32 so "<< 32" is a no-op rather than zero-ing the |
| 1771 | // result). |
| 1772 | _ASSERTE((cBits == kBitsPerDWORD) || ((dwData & ((1U << cBits) - 1)) == dwData)); |
| 1773 | |
| 1774 | // Record the input bits as written (we can't fail and we have multiple exit paths below so it's |
| 1775 | // convenient to update our counter here). |
| 1776 | m_cBitsWritten += cBits; |
| 1777 | |
| 1778 | // We cache up to a DWORD of data to be written to the stream and only write back to the buffer when |
| 1779 | // we have a full DWORD. Calculate how many bits of the input we're going to write first (either the |
| 1780 | // rest of the input or the remaining bits of space in the current DWORD cache, whichever is smaller). |
| 1781 | DWORD cInitialBits = min(cBits, kBitsPerDWORD - m_cCurrentBits); |
| 1782 | if (cInitialBits == kBitsPerDWORD) |
| 1783 | { |
| 1784 | // Deal with this special case (we're writing all the input, an entire DWORD all at once) since it |
| 1785 | // ensures that none of the << operations below have to deal with a LHS that == 32 (see the << |
| 1786 | // comment in one of the asserts above for why this matters). |
| 1787 | |
| 1788 | // Because of the calculations above we should only come here if our DWORD cache was empty and the |
| 1789 | // caller is trying to write a full DWORD (which simplifies many things). |
| 1790 | _ASSERTE(m_dwCurrent == 0 && m_cCurrentBits == 0 && cBits == kBitsPerDWORD); |
| 1791 | |
| 1792 | *m_pNext++ = dwData; // Write a full DWORD directly from the input |
| 1793 | |
| 1794 | // That's it, there's no more data to write and the only state update to the write was advancing |
| 1795 | // the buffer pointer (cache DWORD is already in the correct state, see asserts above). |
| 1796 | return; |
| 1797 | } |
| 1798 | |
| 1799 | // Calculate a mask of the low-order bits we're going to extract from the input data. |
| 1800 | DWORD dwInitialMask = (1U << cInitialBits) - 1; |
| 1801 | |
| 1802 | // OR those bits into the cache (properly shifted to fit above the data already there). |
| 1803 | m_dwCurrent |= (dwData & dwInitialMask) << m_cCurrentBits; |
| 1804 | |
| 1805 | // Update the cache bit counter for the new data. |
| 1806 | m_cCurrentBits += cInitialBits; |
| 1807 | if (m_cCurrentBits == kBitsPerDWORD) |
| 1808 | { |
| 1809 | // The cache filled up. Write the DWORD to the buffer and reset the cache state to empty. |
| 1810 | *m_pNext++ = m_dwCurrent; |
| 1811 | m_dwCurrent = 0; |
| 1812 | m_cCurrentBits = 0; |
| 1813 | } |
| 1814 | |
| 1815 | // If the bits we just inserted comprised all the input bits we're done. |
| 1816 | if (cInitialBits == cBits) |
| 1817 | return; |
| 1818 | |
| 1819 | // There's more data to write. But we can only get here if we just flushed the cache. So there is a |
| 1820 | // whole DWORD free in the cache and we're guaranteed to have less than a DWORD of data left to write. |
| 1821 | // As a result we can simply populate the low-order bits of the cache with our remaining data (simply |
| 1822 | // shift down by the number of bits we've already written) and we're done. |
| 1823 | _ASSERTE(m_dwCurrent == 0 && m_cCurrentBits == 0); |
| 1824 | m_dwCurrent = dwData >>= cInitialBits; |
| 1825 | m_cCurrentBits = cBits - cInitialBits; |
| 1826 | } |
| 1827 | |
| 1828 | // Because we cache a DWORD of data before writing it it's possible that there are still unwritten bits |
| 1829 | // left in the cache once you've finished writing data. Call this operation after all Writes() are |
| 1830 | // completed to flush any such data to memory. It's not legal to call Write() again after a Flush(). |
| 1831 | void Flush() |
| 1832 | { |
| 1833 | LIMITED_METHOD_CONTRACT; |
| 1834 | |
| 1835 | // Nothing to do if the cache is empty. |
| 1836 | if (m_cCurrentBits == 0) |
| 1837 | return; |
| 1838 | |
| 1839 | // Write what we have to memory (unused high-order bits will be zero). |
| 1840 | *m_pNext = m_dwCurrent; |
| 1841 | |
| 1842 | // Catch any attempt to make a further Write() call. |
| 1843 | m_pNext = NULL; |
| 1844 | } |
| 1845 | |
| 1846 | // Get the count of bits written so far (logically, this number does not take caching into account). |
| 1847 | DWORD GetBitsWritten() |
| 1848 | { |
| 1849 | LIMITED_METHOD_CONTRACT; |
| 1850 | |
| 1851 | return m_cBitsWritten; |
| 1852 | } |
| 1853 | |
| 1854 | private: |
| 1855 | enum { kBitsPerDWORD = sizeof(DWORD) * 8 }; |
| 1856 | |
| 1857 | DWORD *m_pNext; // Pointer to the next DWORD that will be written in the buffer |
| 1858 | DWORD m_dwCurrent; // We cache up to a DWORD of data before writing it to the buffer |
| 1859 | DWORD m_cCurrentBits; // Count of valid (low-order) bits in the buffer above |
| 1860 | DWORD m_cBitsWritten; // Count of bits given to Write() (ignores caching) |
| 1861 | }; |
| 1862 | |
| 1863 | // A specialized node used to write the compressed portions of a LookupMap to an ngen image. This is |
| 1864 | // (optionally) allocated by a call to DataImage::StoreCompressedLayoutMap from LookupMapBase::Save() and |
| 1865 | // handles allocation and initialization of the compressed table and an index used to navigate the table |
| 1866 | // efficiently. The allocation of the map itself and any hot item list is still handled externally but this |
| 1867 | // node will perform any fixups in the base map required to refer to the new compressed data. |
| 1868 | // |
| 1869 | // Since the compression algorithm used depends on the precise values of the RVAs referenced by the LookupMap |
| 1870 | // the compression doesn't happen until ComputeRVA is called (don't call GetSize() until after ComputeRVA() |
| 1871 | // returns). Additionally we must ensure that this node's ComputeRVA() is not called until after that of every |
| 1872 | // node on those RVA it depends. Currently this is ensured by placing this node near the end of the .text |
| 1873 | // section (after pointers to any read-only data structures referenced by LookupMaps and after the .data |
| 1874 | // section containing writeable structures). |
| 1875 | class ZapCompressedLookupMap : public ZapNode |
| 1876 | { |
| 1877 | DataImage *m_pImage; // Back pointer to the allocating DataImage |
| 1878 | LookupMapBase *m_pMap; // Back pointer to the LookupMap we're compressing |
| 1879 | BYTE *m_pTable; // ComputeRVA allocates a compressed table here |
| 1880 | BYTE *m_pIndex; // ComputeRVA allocates a table index here |
| 1881 | DWORD m_cbTable; // Size (in bytes) of the table above (after ComputeRVA) |
| 1882 | DWORD m_cbIndex; // Size (in bytes) of the index above (after ComputeRVA) |
| 1883 | DWORD m_cBitsPerIndexEntry; // Number of bits in each index entry |
| 1884 | DWORD m_rgHistogram[kBitsPerRVA]; // Table of frequencies of different delta lengths |
| 1885 | BYTE m_rgEncodingLengths[kLookupMapLengthEntries]; // Table of different bit lengths value deltas can take |
| 1886 | BYTE m_eKind; // Item kind (DataImage::ITEM_COMPRESSED_MAP currently) |
| 1887 | |
| 1888 | public: |
| 1889 | ZapCompressedLookupMap(DataImage *pImage, LookupMapBase *pMap, BYTE eKind) |
| 1890 | : m_pImage(pImage), m_pMap(pMap), m_eKind(eKind) |
| 1891 | { |
| 1892 | LIMITED_METHOD_CONTRACT; |
| 1893 | } |
| 1894 | |
| 1895 | DataImage::ItemKind GetKind() |
| 1896 | { |
| 1897 | LIMITED_METHOD_CONTRACT; |
| 1898 | |
| 1899 | return (DataImage::ItemKind)m_eKind; |
| 1900 | } |
| 1901 | |
| 1902 | virtual DWORD GetSize() |
| 1903 | { |
| 1904 | LIMITED_METHOD_CONTRACT; |
| 1905 | |
| 1906 | if (!ShouldCompressedMapBeSaved()) |
| 1907 | return 0; |
| 1908 | |
| 1909 | // This isn't legal until ComputeRVA() is called. Check this by seeing if the compressed version of |
| 1910 | // the table is allocated yet. |
| 1911 | _ASSERTE(m_pTable != NULL); |
| 1912 | return m_cbIndex + m_cbTable; |
| 1913 | } |
| 1914 | |
| 1915 | virtual UINT GetAlignment() |
| 1916 | { |
| 1917 | LIMITED_METHOD_CONTRACT; |
| 1918 | |
| 1919 | if (!ShouldCompressedMapBeSaved()) |
| 1920 | return 1; |
| 1921 | |
| 1922 | // The table and index have no pointers but do require DWORD alignment. |
| 1923 | return sizeof(DWORD); |
| 1924 | } |
| 1925 | |
| 1926 | virtual ZapNodeType GetType() |
| 1927 | { |
| 1928 | STANDARD_VM_CONTRACT; |
| 1929 | |
| 1930 | return NodeTypeForItemKind(m_eKind); |
| 1931 | } |
| 1932 | |
| 1933 | virtual DWORD ComputeRVA(ZapWriter *pZapWriter, DWORD dwPos) |
| 1934 | { |
| 1935 | STANDARD_VM_CONTRACT; |
| 1936 | |
| 1937 | if (ShouldCompressedMapBeSaved()) |
| 1938 | { |
| 1939 | |
| 1940 | // This is the earliest opportunity at which all data is available in order to compress the table. In |
| 1941 | // particular all values in the table (currently MethodTable* or MethodDesc*) point to structures |
| 1942 | // which have been assigned final RVAs in the image. We can thus compute a compressed table value that |
| 1943 | // relies on the relationship between these RVAs. |
| 1944 | |
| 1945 | // Phase 1: Look through all the entries in the table. Look at the deltas between RVAs for adjacent |
| 1946 | // items and build a histogram of how many entries require a specific number to encode their delta |
| 1947 | // (using a scheme we we discard non-significant low and high-order zero bits). This call will |
| 1948 | // initialize m_rgHistogram so that entry 0 contains the number of entries that require 1 bit to |
| 1949 | // encode their delta, entry 1 the count of those that require 2 bits etc. up to the last entry (how |
| 1950 | // many entries require the full 32 bits). Note that even on 64-bit platforms we only currently |
| 1951 | // support 32-bit RVAs. |
| 1952 | DWORD cRids = AnalyzeTable(); |
| 1953 | |
| 1954 | // Phase 2: Given the histogram above, calculate the set of delta lengths for the encoding table |
| 1955 | // (m_rgEncodingLengths) that will result in optimal table size. We have a fixed size encoding length |
| 1956 | // so we don't have to embed a large fixed-size length field for every compressed entry but we can |
| 1957 | // still cope with the relatively rare but ever-present worst case entries which require many bits of |
| 1958 | // delta entry. |
| 1959 | OptimizeEncodingLengths(); |
| 1960 | |
| 1961 | // Phase 3: We now have enough data to allocate the final data structures (the compressed table itself |
| 1962 | // and an index that bookmarks every kLookupMapIndexStride'th entry). Both structures must start |
| 1963 | // DWORD-aligned and have a DWORD-aligned size (requirements of BitStreamWriter). |
| 1964 | |
| 1965 | // PredictCompressedSize() returns its result in bits so we must convert (rounding up) to bytes before |
| 1966 | // DWORD aligning. |
| 1967 | m_cbTable = AlignUp((PredictCompressedSize(m_rgEncodingLengths) + 7) / 8, sizeof(DWORD)); |
| 1968 | |
| 1969 | // Each index entry contains a bit offset into the compressed stream (so we must size for the worst |
| 1970 | // case of an offset at the end of the stream) plus an RVA. |
| 1971 | m_cBitsPerIndexEntry = BitsRequired(m_cbTable * 8) + kBitsPerRVA; |
| 1972 | _ASSERTE(m_cBitsPerIndexEntry > 0); |
| 1973 | |
| 1974 | // Our first index entry is for entry 0 (rather than entry kLookupMapIndexStride) so we must be |
| 1975 | // sure to round up the number of index entries we need in order to cover the table. |
| 1976 | DWORD cIndexEntries = (cRids + (kLookupMapIndexStride - 1)) / kLookupMapIndexStride; |
| 1977 | |
| 1978 | // Since we calculate the index size in bits we need to round up to bytes before DWORD aligning. |
| 1979 | m_cbIndex = AlignUp(((m_cBitsPerIndexEntry * cIndexEntries) + 7) / 8, sizeof(DWORD)); |
| 1980 | |
| 1981 | // Allocate both table and index from a single chunk of memory. |
| 1982 | BYTE *pMemory = new BYTE[m_cbIndex + m_cbTable]; |
| 1983 | m_pTable = pMemory; |
| 1984 | m_pIndex = pMemory + m_cbTable; |
| 1985 | |
| 1986 | // Phase 4: We've now calculated all the input data we need and allocated memory for the output so we |
| 1987 | // can go ahead and fill in the compressed table and index. |
| 1988 | InitializeTableAndIndex(); |
| 1989 | |
| 1990 | // Phase 5: Go back up update the saved version of the LookupMap (redirect the table pointer to the |
| 1991 | // compressed table and fill in the other fields which aren't valid until the table is compressed). |
| 1992 | LookupMapBase *pSaveMap = (LookupMapBase*)m_pImage->GetImagePointer(m_pMap); |
| 1993 | pSaveMap->pTable = (TADDR*)m_pTable; |
| 1994 | pSaveMap->pIndex = m_pIndex; |
| 1995 | pSaveMap->cIndexEntryBits = m_cBitsPerIndexEntry; |
| 1996 | pSaveMap->cbTable = m_cbTable; |
| 1997 | pSaveMap->cbIndex = m_cbIndex; |
| 1998 | memcpy(pSaveMap->rgEncodingLengths, m_rgEncodingLengths, sizeof(m_rgEncodingLengths)); |
| 1999 | |
| 2000 | // Schedule fixups for the map pointers to the compressed table and index. |
| 2001 | m_pImage->FixupFieldToNode(m_pMap, offsetof(LookupMapBase, pTable), this, 0); |
| 2002 | m_pImage->FixupFieldToNode(m_pMap, offsetof(LookupMapBase, pIndex), this, m_cbTable); |
| 2003 | } |
| 2004 | |
| 2005 | // We're done with generating the compressed table. Now we need to do the work ComputeRVA() is meant |
| 2006 | // to do: |
| 2007 | dwPos = AlignUp(dwPos, GetAlignment()); // Satisfy our alignment requirements |
| 2008 | SetRVA(dwPos); // Set the RVA of the node (both table and index) |
| 2009 | dwPos += GetSize(); // Advance the RVA past our node |
| 2010 | |
| 2011 | return dwPos; |
| 2012 | } |
| 2013 | |
| 2014 | virtual void Save(ZapWriter *pZapWriter) |
| 2015 | { |
| 2016 | STANDARD_VM_CONTRACT; |
| 2017 | |
| 2018 | if (!ShouldCompressedMapBeSaved()) |
| 2019 | return; |
| 2020 | |
| 2021 | // Save both the table and index. |
| 2022 | pZapWriter->Write(m_pTable, m_cbTable); |
| 2023 | pZapWriter->Write(m_pIndex, m_cbIndex); |
| 2024 | } |
| 2025 | |
| 2026 | private: |
| 2027 | |
| 2028 | // It's possible that our node has been created and only later the decision is made to store the full |
| 2029 | // uncompressed table. In this case, we want to early out of our work and make saving our node a no-op. |
| 2030 | BOOL ShouldCompressedMapBeSaved() |
| 2031 | { |
| 2032 | LIMITED_METHOD_CONTRACT; |
| 2033 | |
| 2034 | // To identify whether compression is desired, use the flag from LookupMapBase::Save |
| 2035 | return (m_pMap->cIndexEntryBits > 0); |
| 2036 | } |
| 2037 | |
| 2038 | // Phase 1: Look through all the entries in the table. Look at the deltas between RVAs for adjacent items |
| 2039 | // and build a histogram of how many entries require a specific number to encode their delta (using a |
| 2040 | // scheme we we discard non-significant low and high-order zero bits). This call will initialize |
| 2041 | // m_rgHistogram so that entry 0 contains the number of entries that require 1 bit to encode their delta, |
| 2042 | // entry 1 the count of those that require 2 bits etc. up to the last entry (how many entries require the |
| 2043 | // full 32 bits). Note that even on 64-bit platforms we only currently support 32-bit RVAs. |
| 2044 | DWORD AnalyzeTable() |
| 2045 | { |
| 2046 | STANDARD_VM_CONTRACT; |
| 2047 | |
| 2048 | LookupMapBase *pMap = m_pMap; |
| 2049 | DWORD dwLastValue = 0; |
| 2050 | DWORD cRids = 0; |
| 2051 | |
| 2052 | // Initialize the histogram to all zeroes. |
| 2053 | memset(m_rgHistogram, 0, sizeof(m_rgHistogram)); |
| 2054 | |
| 2055 | // Walk each node in the map. |
| 2056 | while (pMap) |
| 2057 | { |
| 2058 | // Walk each entry in this node. |
| 2059 | for (DWORD i = 0; i < pMap->dwCount; i++) |
| 2060 | { |
| 2061 | DWORD dwCurrentValue = ComputeElementRVA(pMap, i); |
| 2062 | |
| 2063 | // Calculate the delta from the last entry. We split the delta into two-components: a bool |
| 2064 | // indicating whether the RVA was higher or lower and an absolute (non-negative) size. Sort of |
| 2065 | // like a ones-complement signed number. |
| 2066 | bool fIncreasingDelta = dwCurrentValue > dwLastValue; |
| 2067 | DWORD dwDelta = fIncreasingDelta ? (dwCurrentValue - dwLastValue) : (dwLastValue - dwCurrentValue); |
| 2068 | |
| 2069 | // Determine the minimum number of bits required to represent the delta (by stripping |
| 2070 | // non-significant leading zeros) and update the count in the histogram of the number of |
| 2071 | // deltas that required this many bits. We never encode anything with zero bits (only the |
| 2072 | // value zero would be eligibil and it's not a common value) so the first histogram entry |
| 2073 | // records the number of deltas encodable with one bit and so on. |
| 2074 | m_rgHistogram[BitsRequired(dwDelta) - 1]++; |
| 2075 | |
| 2076 | dwLastValue = dwCurrentValue; |
| 2077 | cRids++; |
| 2078 | } |
| 2079 | |
| 2080 | pMap = pMap->pNext; |
| 2081 | } |
| 2082 | |
| 2083 | return cRids; |
| 2084 | } |
| 2085 | |
| 2086 | // Phase 2: Given the histogram above, calculate the set of delta lengths for the encoding table |
| 2087 | // (m_rgEncodingLengths) that will result in optimal table size. We have a fixed size encoding length so |
| 2088 | // we don't have to embed a large fixed-size length field for every compressed entry but we can still cope |
| 2089 | // with the relatively rare but ever-present worst case entries which require many bits of delta entry. |
| 2090 | void OptimizeEncodingLengths() |
| 2091 | { |
| 2092 | STANDARD_VM_CONTRACT; |
| 2093 | |
| 2094 | // Find the longest delta (search from the large end of the histogram down for the first non-zero |
| 2095 | // entry). |
| 2096 | BYTE bMaxBits = 0; |
| 2097 | #ifdef _MSC_VER |
| 2098 | #pragma warning(suppress:6293) // Prefast doesn't understand the unsigned modulo-8 arithmetic below. |
| 2099 | #endif |
| 2100 | for (BYTE i = kBitsPerRVA - 1; i < 0xff; i--) |
| 2101 | if (m_rgHistogram[i] > 0) |
| 2102 | { |
| 2103 | bMaxBits = i + 1; // +1 because we never encode anything with zero bits. |
| 2104 | break; |
| 2105 | } |
| 2106 | _ASSERTE(bMaxBits >= 1); |
| 2107 | |
| 2108 | // Now find the smallest delta in a similar fashion. |
| 2109 | BYTE bMinBits = bMaxBits; |
| 2110 | for (BYTE i = 0; i < kBitsPerRVA; i++) |
| 2111 | if (m_rgHistogram[i] > 0) |
| 2112 | { |
| 2113 | bMinBits = i + 1; // +1 because we never encode anything with zero bits. |
| 2114 | break; |
| 2115 | } |
| 2116 | _ASSERTE(bMinBits <= bMaxBits); |
| 2117 | |
| 2118 | // The encoding lengths table is a sorted list of bit field lengths we can use to encode any |
| 2119 | // entry-to-entry delta in the compressed table. We go through a table so we can use a small number of |
| 2120 | // bits in the compressed stream (the table index) to express a very flexible range of deltas. The one |
| 2121 | // entry we know in advance is the largest (the last). That's because we know we have to be able to |
| 2122 | // encode the largest delta we found in the table or else we couldn't be functionally correct. |
| 2123 | m_rgEncodingLengths[kLookupMapLengthEntries - 1] = bMaxBits; |
| 2124 | |
| 2125 | // Now find optimal values for the other entries one by one. It doesn't really matter which order we |
| 2126 | // do them in. For each entry we'll loop through all the possible encoding lengths, dwMinBits <= |
| 2127 | // length < dwMaxBits, setting all the uninitialized entries to the candidate value and calculating |
| 2128 | // the resulting compressed size of the table. We don't enforce that the candidate sizes get smaller |
| 2129 | // for each entry so in that if the best use of an extra table entry is to add a larger length rather |
| 2130 | // than a smaller one then we'll take that. The downside is that we have to sort the table before |
| 2131 | // calculating the table size (the sizing algorithm is only fast for a sorted table). Luckily our |
| 2132 | // table is very small (currently 4 entries) and we don't have to sort one of the entries (the last is |
| 2133 | // always largest) so this isn't such a huge deal. |
| 2134 | for (DWORD i = 0; i < kLookupMapLengthEntries - 1; i++) |
| 2135 | { |
| 2136 | DWORD dwBestSize = 0xffffffff; // Best overall table size so far |
| 2137 | BYTE bBestLength = bMaxBits; // The candidate value that lead to the above |
| 2138 | |
| 2139 | // Iterate over all the values that could generate a good result (no point trying values smaller |
| 2140 | // than the smallest delta we have or as large as the maximum table entry we've already fixed). |
| 2141 | for (BYTE j = bMinBits; j < bMaxBits; j++) |
| 2142 | { |
| 2143 | // Build a temporary (unsorted) encoding table. |
| 2144 | BYTE rgTempBuckets[kLookupMapLengthEntries]; |
| 2145 | |
| 2146 | // Entries before the current one are set to the values we've already determined in previous |
| 2147 | // iterations. |
| 2148 | for (DWORD k = 0; k < i; k++) |
| 2149 | rgTempBuckets[k] = m_rgEncodingLengths[k]; |
| 2150 | |
| 2151 | // The current entry and the remaining uninitialized entries are all set to the current |
| 2152 | // candidate value (this is logically the equivalent of removing the non-current uninitialized |
| 2153 | // entries from the table altogether). |
| 2154 | for (DWORD k = i; k < kLookupMapLengthEntries - 1; k++) |
| 2155 | rgTempBuckets[k] = j; |
| 2156 | |
| 2157 | // The last entry is always the maximum bit length. |
| 2158 | rgTempBuckets[kLookupMapLengthEntries - 1] = bMaxBits; |
| 2159 | |
| 2160 | // Sort the temporary table so that the call to PredictCompressedSize() below behaves |
| 2161 | // correctly (and fast). |
| 2162 | SortLengthBuckets(rgTempBuckets); |
| 2163 | |
| 2164 | // See what size of table this would generate. |
| 2165 | DWORD dwTestSize = PredictCompressedSize(rgTempBuckets); |
| 2166 | if (dwTestSize < dwBestSize) |
| 2167 | { |
| 2168 | // The result is better than our current best, remember it. |
| 2169 | dwBestSize = dwTestSize; |
| 2170 | bBestLength = j; |
| 2171 | } |
| 2172 | } |
| 2173 | |
| 2174 | // Set the current entry to the best length we found. |
| 2175 | m_rgEncodingLengths[i] = bBestLength; |
| 2176 | } |
| 2177 | |
| 2178 | // We've picked optimal values for all entries, but the result is unsorted. Fix that now. |
| 2179 | SortLengthBuckets(m_rgEncodingLengths); |
| 2180 | } |
| 2181 | |
| 2182 | // Phase 4: We've now calculated all the input data we need and allocated memory for the output so we can |
| 2183 | // go ahead and fill in the compressed table and index. |
| 2184 | void InitializeTableAndIndex() |
| 2185 | { |
| 2186 | STANDARD_VM_CONTRACT; |
| 2187 | |
| 2188 | // Initialize bit stream writers to the start of the compressed table and index. |
| 2189 | BitStreamWriter sTableStream((DWORD*)m_pTable); |
| 2190 | BitStreamWriter sIndexStream((DWORD*)m_pIndex); |
| 2191 | |
| 2192 | DWORD dwRid = 0; |
| 2193 | DWORD dwLastValue = 0; |
| 2194 | LookupMapBase *pMap = m_pMap; |
| 2195 | |
| 2196 | // Walk each node in the map. |
| 2197 | while (pMap) |
| 2198 | { |
| 2199 | // Walk each entry in this node. |
| 2200 | for (DWORD i = 0; i < pMap->dwCount; i++) |
| 2201 | { |
| 2202 | DWORD dwCurrentValue = ComputeElementRVA(pMap, i); |
| 2203 | |
| 2204 | // Calculate the delta from the last entry. We split the delta into two-components: a bool |
| 2205 | // indicating whether the RVA was higher or lower and an absolute (non-negative) size. Sort of |
| 2206 | // like a ones-complement signed number. |
| 2207 | bool fIncreasingDelta = dwCurrentValue > dwLastValue; |
| 2208 | DWORD dwDelta = fIncreasingDelta ? (dwCurrentValue - dwLastValue) : (dwLastValue - dwCurrentValue); |
| 2209 | |
| 2210 | // As a trade-off we can't store deltas with their most efficient length (because just |
| 2211 | // encoding the length can dominate the space requirement when we have to cope with worst-case |
| 2212 | // deltas). Instead we encode a relatively short index into the table of encoding lengths we |
| 2213 | // calculated back in phase 2. So some deltas will encode in more bits than necessary but |
| 2214 | // overall we'll win due to lowered prefix bit requirements. |
| 2215 | // Look through all the table entries and choose the first that's large enough to accomodate |
| 2216 | // our delta. |
| 2217 | DWORD dwDeltaBitLength = BitsRequired(dwDelta); |
| 2218 | DWORD j; |
| 2219 | for (j = 0; j < kLookupMapLengthEntries; j++) |
| 2220 | { |
| 2221 | if (m_rgEncodingLengths[j] >= dwDeltaBitLength) |
| 2222 | { |
| 2223 | dwDeltaBitLength = m_rgEncodingLengths[j]; |
| 2224 | break; |
| 2225 | } |
| 2226 | } |
| 2227 | _ASSERTE(j < kLookupMapLengthEntries); |
| 2228 | |
| 2229 | // Write the entry into the compressed table. |
| 2230 | sTableStream.Write(j, kLookupMapLengthBits); // The index for the delta length |
| 2231 | sTableStream.Write(fIncreasingDelta ? 1 : 0, 1); // The +/- delta indicator |
| 2232 | sTableStream.Write(dwDelta, dwDeltaBitLength); // The delta itself |
| 2233 | |
| 2234 | // Is this entry one that requires a corresponding index entry? |
| 2235 | if ((dwRid % kLookupMapIndexStride) == 0) |
| 2236 | { |
| 2237 | // Write an index entry: |
| 2238 | // * The current (map-relative) RVA. |
| 2239 | // * The position in the table bit stream of the next entry. |
| 2240 | sIndexStream.Write(dwCurrentValue, kBitsPerRVA); |
| 2241 | sIndexStream.Write(sTableStream.GetBitsWritten(), m_cBitsPerIndexEntry - kBitsPerRVA); |
| 2242 | } |
| 2243 | |
| 2244 | dwRid++; |
| 2245 | |
| 2246 | dwLastValue = dwCurrentValue; |
| 2247 | } |
| 2248 | |
| 2249 | pMap = pMap->pNext; |
| 2250 | } |
| 2251 | |
| 2252 | // Flush any remaining bits in the caches of the table and index stream writers. |
| 2253 | sTableStream.Flush(); |
| 2254 | sIndexStream.Flush(); |
| 2255 | |
| 2256 | // Make sure what we wrote fitted in what we allocated. |
| 2257 | _ASSERTE((sTableStream.GetBitsWritten() / 8) <= m_cbTable); |
| 2258 | _ASSERTE((sIndexStream.GetBitsWritten() / 8) <= m_cbIndex); |
| 2259 | |
| 2260 | // Also check that we didn't have more than 31 bits of excess space allocated either (we should have |
| 2261 | // allocated DWORD aligned lengths). |
| 2262 | _ASSERTE(((m_cbTable * 8) - sTableStream.GetBitsWritten()) < 32); |
| 2263 | _ASSERTE(((m_cbIndex * 8) - sIndexStream.GetBitsWritten()) < 32); |
| 2264 | } |
| 2265 | |
| 2266 | // Determine the final, map-relative RVA of the element at a specified index |
| 2267 | DWORD ComputeElementRVA(LookupMapBase *pMap, DWORD index) |
| 2268 | { |
| 2269 | STANDARD_VM_CONTRACT; |
| 2270 | |
| 2271 | // We base our RVAs on the RVA of the map (rather than the module). This is purely because individual |
| 2272 | // maps don't store back pointers to their owning module so it's easier to recover pointer values at |
| 2273 | // runtime using the map address instead. |
| 2274 | DWORD rvaBase = m_pImage->GetRVA(m_pMap); |
| 2275 | |
| 2276 | // Retrieve the pointer value in the specified entry. This is tricky since the pointer is |
| 2277 | // encoded as a RelativePointer. |
| 2278 | DWORD dwFinalRVA; |
| 2279 | TADDR entry = RelativePointer<TADDR>::GetValueMaybeNullAtPtr((TADDR)&pMap->pTable[index]); |
| 2280 | if (entry == 0) |
| 2281 | { |
| 2282 | // The pointer was null. We encode this as a zero RVA (RVA pointing to the map itself, |
| 2283 | // which should never happen otherwise). |
| 2284 | dwFinalRVA = 0; |
| 2285 | } |
| 2286 | else |
| 2287 | { |
| 2288 | // Non-null pointer, go get the RVA it's been mapped to. Transform this RVA into our |
| 2289 | // special map-relative variant by substracting the map base. |
| 2290 | |
| 2291 | // Some of the pointer alignment bits may have been used as flags; preserve them. |
| 2292 | DWORD flags = entry & ((1 << kFlagBits) - 1); |
| 2293 | entry -= flags; |
| 2294 | |
| 2295 | // We only support compressing maps of pointers to saved objects (e.g. no indirected FixupPointers) |
| 2296 | // so there is guaranteed to be a valid RVA at this point. If this does not hold, GetRVA will assert. |
| 2297 | DWORD rvaEntry = m_pImage->GetRVA((void*)entry); |
| 2298 | |
| 2299 | dwFinalRVA = rvaEntry - rvaBase + flags; |
| 2300 | } |
| 2301 | |
| 2302 | return dwFinalRVA; |
| 2303 | } |
| 2304 | |
| 2305 | // Determine the number of bits required to represent the significant portion of a value (i.e. the value |
| 2306 | // without any leading 0s). Always return 1 as a minimum (we do not encode 0 in 0 bits). |
| 2307 | DWORD BitsRequired(DWORD dwValue) |
| 2308 | { |
| 2309 | LIMITED_METHOD_CONTRACT; |
| 2310 | |
| 2311 | #if (defined(_TARGET_X86_) || defined(_TARGET_AMD64_)) && defined(_MSC_VER) |
| 2312 | |
| 2313 | // This this operation could impact the performance of ngen (we call this a *lot*) we'll try and |
| 2314 | // optimize this where we can. x86 and amd64 actually have instructions to find the least and most |
| 2315 | // significant bits in a DWORD and MSVC exposes this as a builtin. |
| 2316 | DWORD dwHighBit; |
| 2317 | if (_BitScanReverse(&dwHighBit, dwValue)) |
| 2318 | return dwHighBit + 1; |
| 2319 | else |
| 2320 | return 1; |
| 2321 | |
| 2322 | #else // (_TARGET_X86_ || _TARGET_AMD64_) && _MSC_VER |
| 2323 | |
| 2324 | // Otherwise we'll calculate this the slow way. Pick off the 32-bit case first due to avoid the |
| 2325 | // usual << problem (x << 32 == x, not 0). |
| 2326 | if (dwValue > 0x7fffffff) |
| 2327 | return 32; |
| 2328 | |
| 2329 | DWORD cBits = 1; |
| 2330 | while (dwValue > ((1U << cBits) - 1)) |
| 2331 | cBits++; |
| 2332 | |
| 2333 | return cBits; |
| 2334 | |
| 2335 | #endif // (_TARGET_X86_ || _TARGET_AMD64_) && _MSC_VER |
| 2336 | } |
| 2337 | |
| 2338 | // Sort the given input array (of kLookupMapLengthEntries entries, where the last entry is already sorted) |
| 2339 | // from lowest to highest value. |
| 2340 | void SortLengthBuckets(BYTE rgBuckets[]) |
| 2341 | { |
| 2342 | LIMITED_METHOD_CONTRACT; |
| 2343 | |
| 2344 | // This simplistic insertion sort algorithm is probably the fastest for small values of |
| 2345 | // kLookupMapLengthEntries. |
| 2346 | _ASSERTE(kLookupMapLengthEntries < 10); |
| 2347 | |
| 2348 | // Iterate over every entry apart from the last two, moving the correct sorted value into each in |
| 2349 | // turn. Don't do the last value because it's already sorted and the second last because it'll be |
| 2350 | // sorted by the time we've done all the rest. |
| 2351 | for (DWORD i = 0; i < (kLookupMapLengthEntries - 2); i++) |
| 2352 | { |
| 2353 | BYTE bLowValue = rgBuckets[i]; // The lowest value we've seen so far |
| 2354 | DWORD dwLowIndex = i; // The index which held that value |
| 2355 | |
| 2356 | // Look through the unsorted entries for the smallest. |
| 2357 | for (DWORD j = i + 1; j < (kLookupMapLengthEntries - 1); j++) |
| 2358 | { |
| 2359 | if (rgBuckets[j] < bLowValue) |
| 2360 | { |
| 2361 | // Got a bette candidate for smallest. |
| 2362 | bLowValue = rgBuckets[j]; |
| 2363 | dwLowIndex = j; |
| 2364 | } |
| 2365 | } |
| 2366 | |
| 2367 | // If the original value at the current index wasn't the smallest, swap it with the one that was. |
| 2368 | if (dwLowIndex != i) |
| 2369 | { |
| 2370 | rgBuckets[dwLowIndex] = rgBuckets[i]; |
| 2371 | rgBuckets[i] = bLowValue; |
| 2372 | } |
| 2373 | } |
| 2374 | |
| 2375 | #ifdef _DEBUG |
| 2376 | // Check the table really is sorted. |
| 2377 | for (DWORD i = 1; i < kLookupMapLengthEntries; i++) |
| 2378 | _ASSERTE(rgBuckets[i] >= rgBuckets[i - 1]); |
| 2379 | #endif // _DEBUG |
| 2380 | } |
| 2381 | |
| 2382 | // Given the histogram of the delta lengths and a prospective table of the subset of those lengths that |
| 2383 | // we'd utilize to encode the table, return the size (in bits) of the compressed table we'd get as a |
| 2384 | // result. The algorithm requires that the encoding length table is sorted (smallest to largest length). |
| 2385 | DWORD PredictCompressedSize(BYTE rgBuckets[]) |
| 2386 | { |
| 2387 | LIMITED_METHOD_CONTRACT; |
| 2388 | |
| 2389 | DWORD cTotalBits = 0; |
| 2390 | |
| 2391 | // Iterate over each entry in the histogram (first entry is the number of deltas that can be encoded |
| 2392 | // in 1 bit, the second is the number of entries encodable in 2 bits etc.). |
| 2393 | for (DWORD i = 0; i < kBitsPerRVA; i++) |
| 2394 | { |
| 2395 | // Start by assuming that we can encode entries in this bucket with their exact length. |
| 2396 | DWORD cBits = i + 1; |
| 2397 | |
| 2398 | // Look through the encoding table to find the first (lowest) encoding length that can encode the |
| 2399 | // values for this bucket. |
| 2400 | for (DWORD j = 0; j < kLookupMapLengthEntries; j++) |
| 2401 | { |
| 2402 | if (cBits <= rgBuckets[j]) |
| 2403 | { |
| 2404 | // This is the best encoding we can do. Remember the real cost of all entries in this |
| 2405 | // histogram bucket. |
| 2406 | cBits = rgBuckets[j]; |
| 2407 | break; |
| 2408 | } |
| 2409 | } |
| 2410 | |
| 2411 | // Each entry for this histogram bucket costs a fixed size index into the encoding length table |
| 2412 | // (kLookupMapLengthBits), a single bit of delta sign plus the number of bits of delta magnitude |
| 2413 | // that we calculated above. |
| 2414 | cTotalBits += (kLookupMapLengthBits + 1 + cBits) * m_rgHistogram[i]; |
| 2415 | } |
| 2416 | |
| 2417 | return cTotalBits; |
| 2418 | } |
| 2419 | }; |
| 2420 | |
| 2421 | // Allocate a special zap node that will compress the cold rid map associated with the given LookupMap. |
| 2422 | void DataImage::StoreCompressedLayoutMap(LookupMapBase *pMap, ItemKind kind) |
| 2423 | { |
| 2424 | STANDARD_VM_CONTRACT; |
| 2425 | |
| 2426 | ZapNode *pNode = new (GetHeap()) ZapCompressedLookupMap(this, pMap, static_cast<BYTE>(kind)); |
| 2427 | |
| 2428 | AddStructureInOrder(pNode); |
| 2429 | } |
| 2430 | |
| 2431 | #endif // FEATURE_PREJIT |
| 2432 | |