1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | |
6 | #include "common.h" |
7 | |
8 | #include "eetwain.h" |
9 | #include "dbginterface.h" |
10 | #include "gcenv.h" |
11 | |
12 | #define RETURN_ADDR_OFFS 1 // in DWORDS |
13 | |
14 | #ifdef USE_GC_INFO_DECODER |
15 | #include "gcinfodecoder.h" |
16 | #endif |
17 | |
18 | #include "argdestination.h" |
19 | |
20 | #define X86_INSTR_W_TEST_ESP 0x4485 // test [esp+N], eax |
21 | #define X86_INSTR_TEST_ESP_SIB 0x24 |
22 | #define X86_INSTR_PUSH_0 0x6A // push 00, entire instruction is 0x6A00 |
23 | #define X86_INSTR_PUSH_IMM 0x68 // push NNNN, |
24 | #define X86_INSTR_W_PUSH_IND_IMM 0x35FF // push [NNNN] |
25 | #define X86_INSTR_CALL_REL32 0xE8 // call rel32 |
26 | #define X86_INSTR_W_CALL_IND_IMM 0x15FF // call [addr32] |
27 | #define X86_INSTR_NOP 0x90 // nop |
28 | #define X86_INSTR_NOP2 0x9090 // 2-byte nop |
29 | #define X86_INSTR_NOP3_1 0x9090 // 1st word of 3-byte nop |
30 | #define X86_INSTR_NOP3_3 0x90 // 3rd byte of 3-byte nop |
31 | #define X86_INSTR_NOP4 0x90909090 // 4-byte nop |
32 | #define X86_INSTR_NOP5_1 0x90909090 // 1st dword of 5-byte nop |
33 | #define X86_INSTR_NOP5_5 0x90 // 5th byte of 5-byte nop |
34 | #define X86_INSTR_INT3 0xCC // int3 |
35 | #define X86_INSTR_HLT 0xF4 // hlt |
36 | #define X86_INSTR_PUSH_EBP 0x55 // push ebp |
37 | #define X86_INSTR_W_MOV_EBP_ESP 0xEC8B // mov ebp, esp |
38 | #define X86_INSTR_POP_ECX 0x59 // pop ecx |
39 | #define X86_INSTR_RET 0xC2 // ret imm16 |
40 | #define X86_INSTR_RETN 0xC3 // ret |
41 | #define X86_INSTR_w_LEA_ESP_EBP_BYTE_OFFSET 0x658d // lea esp, [ebp-bOffset] |
42 | #define X86_INSTR_w_LEA_ESP_EBP_DWORD_OFFSET 0xa58d // lea esp, [ebp-dwOffset] |
43 | #define X86_INSTR_JMP_NEAR_REL32 0xE9 // near jmp rel32 |
44 | #define X86_INSTR_w_JMP_FAR_IND_IMM 0x25FF // far jmp [addr32] |
45 | |
46 | #ifndef USE_GC_INFO_DECODER |
47 | |
48 | |
49 | #ifdef _DEBUG |
50 | // For dumping of verbose info. |
51 | #ifndef DACCESS_COMPILE |
52 | static bool trFixContext = false; |
53 | #endif |
54 | static bool trEnumGCRefs = false; |
55 | static bool dspPtr = false; // prints the live ptrs as reported |
56 | #endif |
57 | |
58 | // NOTE: enabling compiler optimizations, even for debug builds. |
59 | // Comment this out in order to be able to fully debug methods here. |
60 | #if defined(_MSC_VER) |
61 | #pragma optimize("tg", on) |
62 | #endif |
63 | |
64 | __forceinline unsigned decodeUnsigned(PTR_CBYTE& src) |
65 | { |
66 | LIMITED_METHOD_CONTRACT; |
67 | SUPPORTS_DAC; |
68 | |
69 | #ifdef DACCESS_COMPILE |
70 | PTR_CBYTE begin = src; |
71 | #endif |
72 | |
73 | BYTE byte = *src++; |
74 | unsigned value = byte & 0x7f; |
75 | while (byte & 0x80) |
76 | { |
77 | #ifdef DACCESS_COMPILE |
78 | // In DAC builds, the target data may be corrupt. Rather than return incorrect data |
79 | // and risk wasting time in a potentially long loop, we want to fail early and gracefully. |
80 | // The data is encoded with 7 value-bits per byte, and so we may need to read a maximum |
81 | // of 5 bytes (7*5=35) to read a full 32-bit integer. |
82 | if ((src - begin) > 5) |
83 | { |
84 | DacError(CORDBG_E_TARGET_INCONSISTENT); |
85 | } |
86 | #endif |
87 | |
88 | byte = *src++; |
89 | value <<= 7; |
90 | value += byte & 0x7f; |
91 | } |
92 | return value; |
93 | } |
94 | |
95 | __forceinline int decodeSigned(PTR_CBYTE& src) |
96 | { |
97 | LIMITED_METHOD_CONTRACT; |
98 | SUPPORTS_DAC; |
99 | |
100 | #ifdef DACCESS_COMPILE |
101 | PTR_CBYTE begin = src; |
102 | #endif |
103 | |
104 | BYTE byte = *src++; |
105 | BYTE first = byte; |
106 | int value = byte & 0x3f; |
107 | while (byte & 0x80) |
108 | { |
109 | #ifdef DACCESS_COMPILE |
110 | // In DAC builds, the target data may be corrupt. Rather than return incorrect data |
111 | // and risk wasting time in a potentially long loop, we want to fail early and gracefully. |
112 | // The data is encoded with 7 value-bits per byte, and so we may need to read a maximum |
113 | // of 5 bytes (7*5=35) to read a full 32-bit integer. |
114 | if ((src - begin) > 5) |
115 | { |
116 | DacError(CORDBG_E_TARGET_INCONSISTENT); |
117 | } |
118 | #endif |
119 | |
120 | byte = *src++; |
121 | value <<= 7; |
122 | value += byte & 0x7f; |
123 | } |
124 | if (first & 0x40) |
125 | value = -value; |
126 | return value; |
127 | } |
128 | |
129 | // Fast versions of the above, with one iteration of the loop unrolled |
130 | #define fastDecodeUnsigned(src) (((*(src) & 0x80) == 0) ? (unsigned) (*(src)++) : decodeUnsigned((src))) |
131 | #define fastDecodeSigned(src) (((*(src) & 0xC0) == 0) ? (unsigned) (*(src)++) : decodeSigned((src))) |
132 | |
133 | // Fast skipping past encoded integers |
134 | #ifndef DACCESS_COMPILE |
135 | #define fastSkipUnsigned(src) { while ((*(src)++) & 0x80) { } } |
136 | #define fastSkipSigned(src) { while ((*(src)++) & 0x80) { } } |
137 | #else |
138 | // In DAC builds we want to trade-off a little perf in the common case for reliaiblity against corrupt data. |
139 | #define fastSkipUnsigned(src) (decodeUnsigned(src)) |
140 | #define fastSkipSigned(src) (decodeSigned(src)) |
141 | #endif |
142 | |
143 | |
144 | /***************************************************************************** |
145 | * |
146 | * Decodes the X86 GcInfo header and returns the decoded information |
147 | * in the hdrInfo struct. |
148 | * curOffset is the code offset within the active method used in the |
149 | * computation of PrologOffs/EpilogOffs. |
150 | * Returns the size of the header (number of bytes decoded). |
151 | */ |
152 | static size_t DecodeGCHdrInfo(GCInfoToken gcInfoToken, |
153 | unsigned curOffset, |
154 | hdrInfo * infoPtr) |
155 | { |
156 | CONTRACTL { |
157 | NOTHROW; |
158 | GC_NOTRIGGER; |
159 | HOST_NOCALLS; |
160 | SUPPORTS_DAC; |
161 | } CONTRACTL_END; |
162 | |
163 | PTR_CBYTE table = (PTR_CBYTE) gcInfoToken.Info; |
164 | #if VERIFY_GC_TABLES |
165 | _ASSERTE(*castto(table, unsigned short *)++ == 0xFEEF); |
166 | #endif |
167 | |
168 | infoPtr->methodSize = fastDecodeUnsigned(table); |
169 | |
170 | _ASSERTE(curOffset >= 0); |
171 | _ASSERTE(curOffset <= infoPtr->methodSize); |
172 | |
173 | /* Decode the InfoHdr */ |
174 | |
175 | InfoHdr header; |
176 | table = decodeHeader(table, gcInfoToken.Version, &header); |
177 | |
178 | BOOL hasArgTabOffset = FALSE; |
179 | if (header.untrackedCnt == HAS_UNTRACKED) |
180 | { |
181 | hasArgTabOffset = TRUE; |
182 | header.untrackedCnt = fastDecodeUnsigned(table); |
183 | } |
184 | |
185 | if (header.varPtrTableSize == HAS_VARPTR) |
186 | { |
187 | hasArgTabOffset = TRUE; |
188 | header.varPtrTableSize = fastDecodeUnsigned(table); |
189 | } |
190 | |
191 | if (header.gsCookieOffset == HAS_GS_COOKIE_OFFSET) |
192 | { |
193 | header.gsCookieOffset = fastDecodeUnsigned(table); |
194 | } |
195 | |
196 | if (header.syncStartOffset == HAS_SYNC_OFFSET) |
197 | { |
198 | header.syncStartOffset = decodeUnsigned(table); |
199 | header.syncEndOffset = decodeUnsigned(table); |
200 | |
201 | _ASSERTE(header.syncStartOffset != INVALID_SYNC_OFFSET && header.syncEndOffset != INVALID_SYNC_OFFSET); |
202 | _ASSERTE(header.syncStartOffset < header.syncEndOffset); |
203 | } |
204 | |
205 | if (header.revPInvokeOffset == HAS_REV_PINVOKE_FRAME_OFFSET) |
206 | { |
207 | header.revPInvokeOffset = fastDecodeUnsigned(table); |
208 | } |
209 | |
210 | /* Some sanity checks on header */ |
211 | |
212 | _ASSERTE( header.prologSize + |
213 | (size_t)(header.epilogCount*header.epilogSize) <= infoPtr->methodSize); |
214 | _ASSERTE( header.epilogCount == 1 || !header.epilogAtEnd); |
215 | |
216 | _ASSERTE( header.untrackedCnt <= header.argCount+header.frameSize); |
217 | |
218 | _ASSERTE( header.ebpSaved || !(header.ebpFrame || header.doubleAlign)); |
219 | _ASSERTE(!header.ebpFrame || !header.doubleAlign ); |
220 | _ASSERTE( header.ebpFrame || !header.security ); |
221 | _ASSERTE( header.ebpFrame || !header.handlers ); |
222 | _ASSERTE( header.ebpFrame || !header.localloc ); |
223 | _ASSERTE( header.ebpFrame || !header.editNcontinue); // <TODO> : Esp frames NYI for EnC</TODO> |
224 | |
225 | /* Initialize the infoPtr struct */ |
226 | |
227 | infoPtr->argSize = header.argCount * 4; |
228 | infoPtr->ebpFrame = header.ebpFrame; |
229 | infoPtr->interruptible = header.interruptible; |
230 | infoPtr->returnKind = (ReturnKind) header.returnKind; |
231 | |
232 | infoPtr->prologSize = header.prologSize; |
233 | infoPtr->epilogSize = header.epilogSize; |
234 | infoPtr->epilogCnt = header.epilogCount; |
235 | infoPtr->epilogEnd = header.epilogAtEnd; |
236 | |
237 | infoPtr->untrackedCnt = header.untrackedCnt; |
238 | infoPtr->varPtrTableSize = header.varPtrTableSize; |
239 | infoPtr->gsCookieOffset = header.gsCookieOffset; |
240 | |
241 | infoPtr->syncStartOffset = header.syncStartOffset; |
242 | infoPtr->syncEndOffset = header.syncEndOffset; |
243 | infoPtr->revPInvokeOffset = header.revPInvokeOffset; |
244 | |
245 | infoPtr->doubleAlign = header.doubleAlign; |
246 | infoPtr->securityCheck = header.security; |
247 | infoPtr->handlers = header.handlers; |
248 | infoPtr->localloc = header.localloc; |
249 | infoPtr->editNcontinue = header.editNcontinue; |
250 | infoPtr->varargs = header.varargs; |
251 | infoPtr->profCallbacks = header.profCallbacks; |
252 | infoPtr->genericsContext = header.genericsContext; |
253 | infoPtr->genericsContextIsMethodDesc = header.genericsContextIsMethodDesc; |
254 | infoPtr->isSpeculativeStackWalk = false; |
255 | |
256 | /* Are we within the prolog of the method? */ |
257 | |
258 | if (curOffset < infoPtr->prologSize) |
259 | { |
260 | infoPtr->prologOffs = curOffset; |
261 | } |
262 | else |
263 | { |
264 | infoPtr->prologOffs = hdrInfo::NOT_IN_PROLOG; |
265 | } |
266 | |
267 | /* Assume we're not in the epilog of the method */ |
268 | |
269 | infoPtr->epilogOffs = hdrInfo::NOT_IN_EPILOG; |
270 | |
271 | /* Are we within an epilog of the method? */ |
272 | |
273 | if (infoPtr->epilogCnt) |
274 | { |
275 | unsigned epilogStart; |
276 | |
277 | if (infoPtr->epilogCnt > 1 || !infoPtr->epilogEnd) |
278 | { |
279 | #if VERIFY_GC_TABLES |
280 | _ASSERTE(*castto(table, unsigned short *)++ == 0xFACE); |
281 | #endif |
282 | epilogStart = 0; |
283 | for (unsigned i = 0; i < infoPtr->epilogCnt; i++) |
284 | { |
285 | epilogStart += fastDecodeUnsigned(table); |
286 | if (curOffset > epilogStart && |
287 | curOffset < epilogStart + infoPtr->epilogSize) |
288 | { |
289 | infoPtr->epilogOffs = curOffset - epilogStart; |
290 | } |
291 | } |
292 | } |
293 | else |
294 | { |
295 | epilogStart = infoPtr->methodSize - infoPtr->epilogSize; |
296 | |
297 | if (curOffset > epilogStart && |
298 | curOffset < epilogStart + infoPtr->epilogSize) |
299 | { |
300 | infoPtr->epilogOffs = curOffset - epilogStart; |
301 | } |
302 | } |
303 | |
304 | infoPtr->syncEpilogStart = epilogStart; |
305 | } |
306 | |
307 | unsigned argTabOffset = INVALID_ARGTAB_OFFSET; |
308 | if (hasArgTabOffset) |
309 | { |
310 | argTabOffset = fastDecodeUnsigned(table); |
311 | } |
312 | infoPtr->argTabOffset = argTabOffset; |
313 | |
314 | size_t frameDwordCount = header.frameSize; |
315 | |
316 | /* Set the rawStackSize to the number of bytes that it bumps ESP */ |
317 | |
318 | infoPtr->rawStkSize = (UINT)(frameDwordCount * sizeof(size_t)); |
319 | |
320 | /* Calculate the callee saves regMask and adjust stackSize to */ |
321 | /* include the callee saves register spills */ |
322 | |
323 | unsigned savedRegs = RM_NONE; |
324 | unsigned savedRegsCount = 0; |
325 | |
326 | if (header.ediSaved) |
327 | { |
328 | savedRegsCount++; |
329 | savedRegs |= RM_EDI; |
330 | } |
331 | if (header.esiSaved) |
332 | { |
333 | savedRegsCount++; |
334 | savedRegs |= RM_ESI; |
335 | } |
336 | if (header.ebxSaved) |
337 | { |
338 | savedRegsCount++; |
339 | savedRegs |= RM_EBX; |
340 | } |
341 | if (header.ebpSaved) |
342 | { |
343 | savedRegsCount++; |
344 | savedRegs |= RM_EBP; |
345 | } |
346 | |
347 | infoPtr->savedRegMask = (RegMask)savedRegs; |
348 | |
349 | infoPtr->savedRegsCountExclFP = savedRegsCount; |
350 | if (header.ebpFrame || header.doubleAlign) |
351 | { |
352 | _ASSERTE(header.ebpSaved); |
353 | infoPtr->savedRegsCountExclFP = savedRegsCount - 1; |
354 | } |
355 | |
356 | frameDwordCount += savedRegsCount; |
357 | |
358 | infoPtr->stackSize = (UINT)(frameDwordCount * sizeof(size_t)); |
359 | |
360 | _ASSERTE(infoPtr->gsCookieOffset == INVALID_GS_COOKIE_OFFSET || |
361 | (infoPtr->gsCookieOffset < infoPtr->stackSize) && |
362 | ((header.gsCookieOffset % sizeof(void*)) == 0)); |
363 | |
364 | return table - PTR_CBYTE(gcInfoToken.Info); |
365 | } |
366 | |
367 | /*****************************************************************************/ |
368 | |
369 | // We do a "pop eax; jmp eax" to return from a fault or finally handler |
370 | const size_t END_FIN_POP_STACK = sizeof(TADDR); |
371 | |
372 | |
373 | // The offset (in bytes) from EBP for the secutiy object on the stack |
374 | inline size_t GetSecurityObjectOffset(hdrInfo * info) |
375 | { |
376 | LIMITED_METHOD_DAC_CONTRACT; |
377 | |
378 | _ASSERTE(info->securityCheck && info->ebpFrame); |
379 | |
380 | unsigned position = info->savedRegsCountExclFP + |
381 | 1; |
382 | return position * sizeof(TADDR); |
383 | } |
384 | |
385 | inline |
386 | size_t GetLocallocSPOffset(hdrInfo * info) |
387 | { |
388 | LIMITED_METHOD_DAC_CONTRACT; |
389 | |
390 | _ASSERTE(info->localloc && info->ebpFrame); |
391 | |
392 | unsigned position = info->savedRegsCountExclFP + |
393 | info->securityCheck + |
394 | 1; |
395 | return position * sizeof(TADDR); |
396 | } |
397 | |
398 | inline |
399 | size_t GetParamTypeArgOffset(hdrInfo * info) |
400 | { |
401 | LIMITED_METHOD_DAC_CONTRACT; |
402 | |
403 | _ASSERTE((info->genericsContext || info->handlers) && info->ebpFrame); |
404 | |
405 | unsigned position = info->savedRegsCountExclFP + |
406 | info->securityCheck + |
407 | info->localloc + |
408 | 1; // For CORINFO_GENERICS_CTXT_FROM_PARAMTYPEARG |
409 | return position * sizeof(TADDR); |
410 | } |
411 | |
412 | inline size_t GetStartShadowSPSlotsOffset(hdrInfo * info) |
413 | { |
414 | LIMITED_METHOD_DAC_CONTRACT; |
415 | |
416 | _ASSERTE(info->handlers && info->ebpFrame); |
417 | |
418 | return GetParamTypeArgOffset(info) + |
419 | sizeof(TADDR); // Slot for end-of-last-executed-filter |
420 | } |
421 | |
422 | /***************************************************************************** |
423 | * Returns the start of the hidden slots for the shadowSP for functions |
424 | * with exception handlers. There is one slot per nesting level starting |
425 | * near Ebp and is zero-terminated after the active slots. |
426 | */ |
427 | |
428 | inline |
429 | PTR_TADDR GetFirstBaseSPslotPtr(TADDR ebp, hdrInfo * info) |
430 | { |
431 | LIMITED_METHOD_DAC_CONTRACT; |
432 | |
433 | _ASSERTE(info->handlers && info->ebpFrame); |
434 | |
435 | size_t offsetFromEBP = GetStartShadowSPSlotsOffset(info) |
436 | + sizeof(TADDR); // to get to the *start* of the next slot |
437 | |
438 | return PTR_TADDR(ebp - offsetFromEBP); |
439 | } |
440 | |
441 | inline size_t GetEndShadowSPSlotsOffset(hdrInfo * info, unsigned maxHandlerNestingLevel) |
442 | { |
443 | LIMITED_METHOD_DAC_CONTRACT; |
444 | |
445 | _ASSERTE(info->handlers && info->ebpFrame); |
446 | |
447 | unsigned numberOfShadowSPSlots = maxHandlerNestingLevel + |
448 | 1 + // For zero-termination |
449 | 1; // For a filter (which can be active at the same time as a catch/finally handler |
450 | |
451 | return GetStartShadowSPSlotsOffset(info) + |
452 | (numberOfShadowSPSlots * sizeof(TADDR)); |
453 | } |
454 | |
455 | /***************************************************************************** |
456 | * returns the base frame pointer corresponding to the target nesting level. |
457 | */ |
458 | |
459 | inline |
460 | TADDR GetOutermostBaseFP(TADDR ebp, hdrInfo * info) |
461 | { |
462 | LIMITED_METHOD_DAC_CONTRACT; |
463 | |
464 | // we are not taking into account double alignment. We are |
465 | // safe because the jit currently bails on double alignment if there |
466 | // are handles or localalloc |
467 | _ASSERTE(!info->doubleAlign); |
468 | if (info->localloc) |
469 | { |
470 | // If the function uses localloc we will fetch the ESP from the localloc |
471 | // slot. |
472 | PTR_TADDR pLocalloc = PTR_TADDR(ebp - GetLocallocSPOffset(info)); |
473 | |
474 | return (*pLocalloc); |
475 | } |
476 | else |
477 | { |
478 | // Default, go back all the method's local stack size |
479 | return ebp - info->stackSize + sizeof(int); |
480 | } |
481 | } |
482 | |
483 | /***************************************************************************** |
484 | * |
485 | * For functions with handlers, checks if it is currently in a handler. |
486 | * Either of unwindESP or unwindLevel will specify the target nesting level. |
487 | * If unwindLevel is specified, info about the funclet at that nesting level |
488 | * will be returned. (Use if you are interested in a specific nesting level.) |
489 | * If unwindESP is specified, info for nesting level invoked before the stack |
490 | * reached unwindESP will be returned. (Use if you have a specific ESP value |
491 | * during stack walking.) |
492 | * |
493 | * *pBaseSP is set to the base SP (base of the stack on entry to |
494 | * the current funclet) corresponding to the target nesting level. |
495 | * *pNestLevel is set to the nesting level of the target nesting level (useful |
496 | * if unwindESP!=IGNORE_VAL |
497 | * *pHasInnerFilter will be set to true (only when unwindESP!=IGNORE_VAL) if a filter |
498 | * is currently active, but the target nesting level is an outer nesting level. |
499 | * *pHadInnerFilter - was the last use of the frame to execute a filter. |
500 | * This mainly affects GC lifetime reporting. |
501 | */ |
502 | |
503 | enum FrameType |
504 | { |
505 | FR_NORMAL, // Normal method frame - no exceptions currently active |
506 | FR_FILTER, // Frame-let of a filter |
507 | FR_HANDLER, // Frame-let of a callable catch/fault/finally |
508 | |
509 | FR_INVALID, // Invalid frame (for speculative stackwalks) |
510 | }; |
511 | |
512 | enum { IGNORE_VAL = -1 }; |
513 | |
514 | FrameType GetHandlerFrameInfo(hdrInfo * info, |
515 | TADDR frameEBP, |
516 | TADDR unwindESP, |
517 | DWORD unwindLevel, |
518 | TADDR * pBaseSP = NULL, /* OUT */ |
519 | DWORD * pNestLevel = NULL, /* OUT */ |
520 | bool * pHasInnerFilter = NULL, /* OUT */ |
521 | bool * pHadInnerFilter = NULL) /* OUT */ |
522 | { |
523 | CONTRACTL { |
524 | NOTHROW; |
525 | GC_NOTRIGGER; |
526 | HOST_NOCALLS; |
527 | SUPPORTS_DAC; |
528 | } CONTRACTL_END; |
529 | |
530 | _ASSERTE(info->ebpFrame && info->handlers); |
531 | // One and only one of them should be IGNORE_VAL |
532 | _ASSERTE((unwindESP == (TADDR) IGNORE_VAL) != |
533 | (unwindLevel == (DWORD) IGNORE_VAL)); |
534 | _ASSERTE(pHasInnerFilter == NULL || unwindESP != (TADDR) IGNORE_VAL); |
535 | |
536 | // Many of the conditions that we'd like to assert cannot be asserted in the case that we're |
537 | // in the middle of a stackwalk seeded by a profiler, since such seeds can't be trusted |
538 | // (profilers are external, untrusted sources). So during profiler walks, we test the condition |
539 | // and throw an exception if it's not met. Otherwise, we just assert the condition. |
540 | #define FAIL_IF_SPECULATIVE_WALK(condition) \ |
541 | if (info->isSpeculativeStackWalk) \ |
542 | { \ |
543 | if (!(condition)) \ |
544 | { \ |
545 | return FR_INVALID; \ |
546 | } \ |
547 | } \ |
548 | else \ |
549 | { \ |
550 | _ASSERTE(condition); \ |
551 | } |
552 | |
553 | PTR_TADDR pFirstBaseSPslot = GetFirstBaseSPslotPtr(frameEBP, info); |
554 | TADDR baseSP = GetOutermostBaseFP(frameEBP, info); |
555 | bool nonLocalHandlers = false; // Are the funclets invoked by EE (instead of managed code itself) |
556 | bool hasInnerFilter = false; |
557 | bool hadInnerFilter = false; |
558 | |
559 | /* Get the last non-zero slot >= unwindESP, or lvl<unwindLevel. |
560 | Also do some sanity checks */ |
561 | |
562 | // The shadow slots contain the SP of the nested EH clauses currently active on the stack. |
563 | // The slots grow towards lower address on the stack and is terminted by a NULL entry. |
564 | // Since each subsequent slot contains the SP of a more nested EH clause, the contents of the slots are |
565 | // expected to be in decreasing order. |
566 | size_t lvl = 0; |
567 | #ifndef WIN64EXCEPTIONS |
568 | PTR_TADDR pSlot; |
569 | for(lvl = 0, pSlot = pFirstBaseSPslot; |
570 | *pSlot && lvl < unwindLevel; |
571 | pSlot--, lvl++) |
572 | { |
573 | // Filters cant have inner funclets |
574 | FAIL_IF_SPECULATIVE_WALK(!(baseSP & ICodeManager::SHADOW_SP_IN_FILTER)); |
575 | |
576 | TADDR curSlotVal = *pSlot; |
577 | |
578 | // The shadowSPs have to be less unless the stack has been unwound. |
579 | FAIL_IF_SPECULATIVE_WALK(baseSP > curSlotVal || |
580 | (baseSP == curSlotVal && pSlot == pFirstBaseSPslot)); |
581 | |
582 | if (curSlotVal == LCL_FINALLY_MARK) |
583 | { |
584 | // Locally called finally |
585 | baseSP -= sizeof(TADDR); |
586 | } |
587 | else |
588 | { |
589 | // Is this a funclet we unwound before (can only happen with filters) ? |
590 | // If unwindESP is specified, normally we expect it to be the last entry in the shadow slot array. |
591 | // Or, if there is a filter, we expect unwindESP to be the second last entry. However, this may |
592 | // not be the case in DAC builds. For example, the user can use .cxr in an EH clause to set a |
593 | // CONTEXT captured in the try clause. In this case, unwindESP will be the ESP of the parent |
594 | // function, but the shadow slot array will contain the SP of the EH clause, which is closer to |
595 | // the leaf than the parent method. |
596 | |
597 | if (unwindESP != (TADDR) IGNORE_VAL && |
598 | unwindESP > END_FIN_POP_STACK + |
599 | (curSlotVal & ~ICodeManager::SHADOW_SP_BITS)) |
600 | { |
601 | // In non-DAC builds, the only time unwindESP is closer to the root than entries in the shadow |
602 | // slot array is when the last entry in the array is for a filter. Also, filters can't have |
603 | // nested handlers. |
604 | if ((pSlot[0] & ICodeManager::SHADOW_SP_IN_FILTER) && |
605 | (pSlot[-1] == 0) && |
606 | !(baseSP & ICodeManager::SHADOW_SP_IN_FILTER)) |
607 | { |
608 | if (pSlot[0] & ICodeManager::SHADOW_SP_FILTER_DONE) |
609 | hadInnerFilter = true; |
610 | else |
611 | hasInnerFilter = true; |
612 | break; |
613 | } |
614 | else |
615 | { |
616 | #if defined(DACCESS_COMPILE) |
617 | // In DAC builds, this could happen. We just need to bail out of this loop early. |
618 | break; |
619 | #else // !DACCESS_COMPILE |
620 | // In non-DAC builds, this is an error. |
621 | FAIL_IF_SPECULATIVE_WALK(FALSE); |
622 | #endif // DACCESS_COMPILE |
623 | } |
624 | } |
625 | |
626 | nonLocalHandlers = true; |
627 | baseSP = curSlotVal; |
628 | } |
629 | } |
630 | #endif // WIN64EXCEPTIONS |
631 | |
632 | if (unwindESP != (TADDR) IGNORE_VAL) |
633 | { |
634 | FAIL_IF_SPECULATIVE_WALK(baseSP >= unwindESP || |
635 | baseSP == unwindESP - sizeof(TADDR)); // About to locally call a finally |
636 | |
637 | if (baseSP < unwindESP) // About to locally call a finally |
638 | baseSP = unwindESP; |
639 | } |
640 | else |
641 | { |
642 | FAIL_IF_SPECULATIVE_WALK(lvl == unwindLevel); // unwindLevel must be currently active on stack |
643 | } |
644 | |
645 | if (pBaseSP) |
646 | *pBaseSP = baseSP & ~ICodeManager::SHADOW_SP_BITS; |
647 | |
648 | if (pNestLevel) |
649 | { |
650 | *pNestLevel = (DWORD)lvl; |
651 | } |
652 | |
653 | if (pHasInnerFilter) |
654 | *pHasInnerFilter = hasInnerFilter; |
655 | |
656 | if (pHadInnerFilter) |
657 | *pHadInnerFilter = hadInnerFilter; |
658 | |
659 | if (baseSP & ICodeManager::SHADOW_SP_IN_FILTER) |
660 | { |
661 | FAIL_IF_SPECULATIVE_WALK(!hasInnerFilter); // nested filters not allowed |
662 | return FR_FILTER; |
663 | } |
664 | else if (nonLocalHandlers) |
665 | { |
666 | return FR_HANDLER; |
667 | } |
668 | else |
669 | { |
670 | return FR_NORMAL; |
671 | } |
672 | |
673 | #undef FAIL_IF_SPECULATIVE_WALK |
674 | } |
675 | |
676 | // Returns the number of bytes at the beginning of the stack frame that shouldn't be |
677 | // modified by an EnC. This is everything except the space for locals and temporaries. |
678 | inline size_t GetSizeOfFrameHeaderForEnC(hdrInfo * info) |
679 | { |
680 | WRAPPER_NO_CONTRACT; |
681 | |
682 | // See comment above Compiler::lvaAssignFrameOffsets() in src\jit\il\lclVars.cpp |
683 | // for frame layout |
684 | |
685 | // EnC supports increasing the maximum handler nesting level by always |
686 | // assuming that the max is MAX_EnC_HANDLER_NESTING_LEVEL. Methods with |
687 | // a higher max cannot be updated by EnC |
688 | |
689 | // Take the offset (from EBP) of the last slot of the header, plus one for the EBP slot itself |
690 | // to get the total size of the header. |
691 | return sizeof(TADDR) + |
692 | GetEndShadowSPSlotsOffset(info, MAX_EnC_HANDLER_NESTING_LEVEL); |
693 | } |
694 | #endif // !USE_GC_INFO_DECODER |
695 | |
696 | #ifndef DACCESS_COMPILE |
697 | #ifndef WIN64EXCEPTIONS |
698 | |
699 | /***************************************************************************** |
700 | * |
701 | * Setup context to enter an exception handler (a 'catch' block). |
702 | * This is the last chance for the runtime support to do fixups in |
703 | * the context before execution continues inside a filter, catch handler, |
704 | * or finally. |
705 | */ |
706 | void EECodeManager::FixContext( ContextType ctxType, |
707 | EHContext *ctx, |
708 | EECodeInfo *pCodeInfo, |
709 | DWORD dwRelOffset, |
710 | DWORD nestingLevel, |
711 | OBJECTREF thrownObject, |
712 | CodeManState *pState, |
713 | size_t ** ppShadowSP, |
714 | size_t ** ppEndRegion) |
715 | { |
716 | CONTRACTL { |
717 | NOTHROW; |
718 | GC_NOTRIGGER; |
719 | } CONTRACTL_END; |
720 | |
721 | _ASSERTE((ctxType == FINALLY_CONTEXT) == (thrownObject == NULL)); |
722 | |
723 | _ASSERTE(sizeof(CodeManStateBuf) <= sizeof(pState->stateBuf)); |
724 | CodeManStateBuf * stateBuf = (CodeManStateBuf*)pState->stateBuf; |
725 | |
726 | /* Extract the necessary information from the info block header */ |
727 | |
728 | stateBuf->hdrInfoSize = (DWORD)DecodeGCHdrInfo(pCodeInfo->GetGCInfoToken(), |
729 | dwRelOffset, |
730 | &stateBuf->hdrInfoBody); |
731 | pState->dwIsSet = 1; |
732 | |
733 | #ifdef _DEBUG |
734 | if (trFixContext) { |
735 | printf("FixContext [%s][%s] for %s.%s: " , |
736 | stateBuf->hdrInfoBody.ebpFrame?"ebp" :" " , |
737 | stateBuf->hdrInfoBody.interruptible?"int" :" " , |
738 | "UnknownClass" ,"UnknownMethod" ); |
739 | fflush(stdout); |
740 | } |
741 | #endif |
742 | |
743 | /* make sure that we have an ebp stack frame */ |
744 | |
745 | _ASSERTE(stateBuf->hdrInfoBody.ebpFrame); |
746 | _ASSERTE(stateBuf->hdrInfoBody.handlers); // <TODO>@TODO : This will alway be set. Remove it</TODO> |
747 | |
748 | TADDR baseSP; |
749 | GetHandlerFrameInfo(&stateBuf->hdrInfoBody, ctx->Ebp, |
750 | ctxType == FILTER_CONTEXT ? ctx->Esp : IGNORE_VAL, |
751 | ctxType == FILTER_CONTEXT ? (DWORD) IGNORE_VAL : nestingLevel, |
752 | &baseSP, |
753 | &nestingLevel); |
754 | |
755 | _ASSERTE((size_t)ctx->Ebp >= baseSP); |
756 | _ASSERTE(baseSP >= (size_t)ctx->Esp); |
757 | |
758 | ctx->Esp = (DWORD)baseSP; |
759 | |
760 | // EE will write Esp to **pShadowSP before jumping to handler |
761 | |
762 | PTR_TADDR pBaseSPslots = |
763 | GetFirstBaseSPslotPtr(ctx->Ebp, &stateBuf->hdrInfoBody); |
764 | *ppShadowSP = (size_t *)&pBaseSPslots[-(int) nestingLevel ]; |
765 | pBaseSPslots[-(int)(nestingLevel+1)] = 0; // Zero out the next slot |
766 | |
767 | // EE will write the end offset of the filter |
768 | if (ctxType == FILTER_CONTEXT) |
769 | *ppEndRegion = (size_t *)pBaseSPslots + 1; |
770 | |
771 | /* This is just a simple assigment of throwObject to ctx->Eax, |
772 | just pretend the cast goo isn't there. |
773 | */ |
774 | |
775 | *((OBJECTREF*)&(ctx->Eax)) = thrownObject; |
776 | } |
777 | |
778 | #endif // !WIN64EXCEPTIONS |
779 | |
780 | |
781 | |
782 | |
783 | |
784 | /*****************************************************************************/ |
785 | |
786 | bool VarIsInReg(ICorDebugInfo::VarLoc varLoc) |
787 | { |
788 | LIMITED_METHOD_CONTRACT; |
789 | |
790 | switch(varLoc.vlType) |
791 | { |
792 | case ICorDebugInfo::VLT_REG: |
793 | case ICorDebugInfo::VLT_REG_REG: |
794 | case ICorDebugInfo::VLT_REG_STK: |
795 | return true; |
796 | |
797 | default: |
798 | return false; |
799 | } |
800 | } |
801 | |
802 | #ifdef EnC_SUPPORTED |
803 | /***************************************************************************** |
804 | * Last chance for the runtime support to do fixups in the context |
805 | * before execution continues inside an EnC updated function. |
806 | * It also adjusts ESP and munges on the stack. So the caller has to make |
807 | * sure that that stack region isnt needed (by doing a localloc) |
808 | * Also, if this returns EnC_FAIL, we should not have munged the |
809 | * context ie. transcated commit |
810 | * The plan of attack is: |
811 | * 1) Error checking up front. If we get through here, everything |
812 | * else should work |
813 | * 2) Get all the info about current variables, registers, etc |
814 | * 3) zero out the stack frame - this'll initialize _all_ variables |
815 | * 4) Put the variables from step 3 into their new locations. |
816 | * |
817 | * Note that while we use the ShuffleVariablesGet/Set methods, they don't |
818 | * have any info/logic that's internal to the runtime: another codemanger |
819 | * could easily duplicate what they do, which is why we're calling into them. |
820 | */ |
821 | |
822 | HRESULT EECodeManager::FixContextForEnC(PCONTEXT pCtx, |
823 | EECodeInfo * pOldCodeInfo, |
824 | const ICorDebugInfo::NativeVarInfo * oldMethodVars, |
825 | SIZE_T oldMethodVarsCount, |
826 | EECodeInfo * pNewCodeInfo, |
827 | const ICorDebugInfo::NativeVarInfo * newMethodVars, |
828 | SIZE_T newMethodVarsCount) |
829 | { |
830 | CONTRACTL { |
831 | DISABLED(NOTHROW); |
832 | DISABLED(GC_NOTRIGGER); |
833 | } CONTRACTL_END; |
834 | |
835 | HRESULT hr = S_OK; |
836 | |
837 | // Grab a copy of the context before the EnC update. |
838 | T_CONTEXT oldCtx = *pCtx; |
839 | |
840 | #if defined(_TARGET_X86_) |
841 | LOG((LF_CORDB, LL_INFO100, "EECM::FixContextForEnC\n" )); |
842 | |
843 | /* Extract the necessary information from the info block header */ |
844 | |
845 | hdrInfo oldInfo, newInfo; |
846 | |
847 | DecodeGCHdrInfo(pOldCodeInfo->GetGCInfoToken(), |
848 | pOldCodeInfo->GetRelOffset(), |
849 | &oldInfo); |
850 | |
851 | DecodeGCHdrInfo(pNewCodeInfo->GetGCInfoToken(), |
852 | pNewCodeInfo->GetRelOffset(), |
853 | &newInfo); |
854 | |
855 | //1) Error checking up front. If we get through here, everything |
856 | // else should work |
857 | |
858 | if (!oldInfo.editNcontinue || !newInfo.editNcontinue) { |
859 | LOG((LF_ENC, LL_INFO100, "**Error** EECM::FixContextForEnC EnC_INFOLESS_METHOD\n" )); |
860 | return CORDBG_E_ENC_INFOLESS_METHOD; |
861 | } |
862 | |
863 | if (!oldInfo.ebpFrame || !newInfo.ebpFrame) { |
864 | LOG((LF_ENC, LL_INFO100, "**Error** EECM::FixContextForEnC Esp frames NYI\n" )); |
865 | return E_FAIL; // Esp frames NYI |
866 | } |
867 | |
868 | if (pCtx->Esp != pCtx->Ebp - oldInfo.stackSize + sizeof(DWORD)) { |
869 | LOG((LF_ENC, LL_INFO100, "**Error** EECM::FixContextForEnC stack should be empty\n" )); |
870 | return E_FAIL; // stack should be empty - <TODO> @TODO : Barring localloc</TODO> |
871 | } |
872 | |
873 | if (oldInfo.handlers) |
874 | { |
875 | bool hasInnerFilter; |
876 | TADDR baseSP; |
877 | FrameType frameType = GetHandlerFrameInfo(&oldInfo, pCtx->Ebp, |
878 | pCtx->Esp, IGNORE_VAL, |
879 | &baseSP, NULL, &hasInnerFilter); |
880 | _ASSERTE(frameType != FR_INVALID); |
881 | _ASSERTE(!hasInnerFilter); // FixContextForEnC() is called for bottommost funclet |
882 | |
883 | // If the method is in a fuclet, and if the framesize grows, we are in trouble. |
884 | |
885 | if (frameType != FR_NORMAL) |
886 | { |
887 | /* <TODO> @TODO : What if the new method offset is in a fuclet, |
888 | and the old is not, or the nesting level changed, etc </TODO> */ |
889 | |
890 | if (oldInfo.stackSize != newInfo.stackSize) { |
891 | LOG((LF_ENC, LL_INFO100, "**Error** EECM::FixContextForEnC stack size mismatch\n" )); |
892 | return CORDBG_E_ENC_IN_FUNCLET; |
893 | } |
894 | } |
895 | } |
896 | |
897 | /* @TODO: Check if we have grown out of space for locals, in the face of localloc */ |
898 | _ASSERTE(!oldInfo.localloc && !newInfo.localloc); |
899 | |
900 | // Always reserve space for the securityCheck slot |
901 | _ASSERTE(oldInfo.securityCheck && newInfo.securityCheck); |
902 | |
903 | // @TODO: If nesting level grows above the MAX_EnC_HANDLER_NESTING_LEVEL, |
904 | // we should return EnC_NESTED_HANLDERS |
905 | _ASSERTE(oldInfo.handlers && newInfo.handlers); |
906 | |
907 | LOG((LF_ENC, LL_INFO100, "EECM::FixContextForEnC: Checks out\n" )); |
908 | |
909 | #elif defined(_TARGET_AMD64_) |
910 | |
911 | // Strategy for zeroing out the frame on x64: |
912 | // |
913 | // The stack frame looks like this (stack grows up) |
914 | // |
915 | // ======================================= |
916 | // <--- RSP == RBP (invariant: localalloc disallowed before remap) |
917 | // Arguments for next call (if there is one) |
918 | // PSPSym (optional) |
919 | // JIT temporaries (if any) |
920 | // Security object (if any) |
921 | // Local variables (if any) |
922 | // --------------------------------------- |
923 | // Frame header (stuff we must preserve, such as bool for synchronized |
924 | // methods, saved RBP, etc.) |
925 | // Return address (also included in frame header) |
926 | // --------------------------------------- |
927 | // Arguments for this frame (that's getting remapped). Will naturally be preserved |
928 | // since fixed-frame size doesn't include this. |
929 | // ======================================= |
930 | // |
931 | // Goal: Zero out everything AFTER (above) frame header. |
932 | // |
933 | // How do we find this stuff? |
934 | // |
935 | // EECodeInfo::GetFixedStackSize() gives us the full size from the top ("Arguments |
936 | // for next call") all the way down to and including Return Address. |
937 | // |
938 | // GetSizeOfEditAndContinuePreservedArea() gives us the size in bytes of the |
939 | // frame header at the bottom. |
940 | // |
941 | // So we start at RSP, and zero out: |
942 | // GetFixedStackSize() - GetSizeOfEditAndContinuePreservedArea() bytes. |
943 | // |
944 | // We'll need to restore PSPSym; location gotten from GCInfo. |
945 | // We'll need to copy security object; location gotten from GCInfo. |
946 | |
947 | // GCInfo for old method |
948 | GcInfoDecoder oldGcDecoder( |
949 | pOldCodeInfo->GetGCInfoToken(), |
950 | GcInfoDecoderFlags(DECODE_SECURITY_OBJECT | DECODE_PSP_SYM | DECODE_EDIT_AND_CONTINUE), |
951 | 0 // Instruction offset (not needed) |
952 | ); |
953 | |
954 | // GCInfo for new method |
955 | GcInfoDecoder newGcDecoder( |
956 | pNewCodeInfo->GetGCInfoToken(), |
957 | GcInfoDecoderFlags(DECODE_SECURITY_OBJECT | DECODE_PSP_SYM | DECODE_EDIT_AND_CONTINUE), |
958 | 0 // Instruction offset (not needed) |
959 | ); |
960 | |
961 | UINT32 oldSizeOfPreservedArea = oldGcDecoder.GetSizeOfEditAndContinuePreservedArea(); |
962 | UINT32 newSizeOfPreservedArea = newGcDecoder.GetSizeOfEditAndContinuePreservedArea(); |
963 | |
964 | // This ensures the JIT generated EnC compliant code. |
965 | if ((oldSizeOfPreservedArea == NO_SIZE_OF_EDIT_AND_CONTINUE_PRESERVED_AREA) || |
966 | (newSizeOfPreservedArea == NO_SIZE_OF_EDIT_AND_CONTINUE_PRESERVED_AREA)) |
967 | { |
968 | _ASSERTE(!"FixContextForEnC called on a non-EnC-compliant method frame" ); |
969 | return CORDBG_E_ENC_INFOLESS_METHOD; |
970 | } |
971 | |
972 | // JIT is required to emit frame register for EnC-compliant code |
973 | _ASSERTE(pOldCodeInfo->HasFrameRegister()); |
974 | _ASSERTE(pNewCodeInfo->HasFrameRegister()); |
975 | |
976 | TADDR oldStackBase = GetSP(&oldCtx); |
977 | |
978 | // This verifies no localallocs were used in the old method. (RBP == RSP for |
979 | // EnC-compliant x64 code.) |
980 | if (oldStackBase != oldCtx.Rbp) |
981 | return E_FAIL; |
982 | |
983 | // EnC remap inside handlers is not supported |
984 | if (pOldCodeInfo->IsFunclet() || pNewCodeInfo->IsFunclet()) |
985 | return CORDBG_E_ENC_IN_FUNCLET; |
986 | |
987 | if (oldSizeOfPreservedArea != newSizeOfPreservedArea) |
988 | { |
989 | _ASSERTE(!"FixContextForEnC called with method whose frame header size changed from old to new version." ); |
990 | return E_FAIL; |
991 | } |
992 | |
993 | // Note: we cannot assert anything about the relationship between oldFixedStackSize |
994 | // and newFixedStackSize. It's possible the edited frame grows (new locals) or |
995 | // shrinks (less temporaries). |
996 | |
997 | DWORD oldFixedStackSize = pOldCodeInfo->GetFixedStackSize(); |
998 | DWORD newFixedStackSize = pNewCodeInfo->GetFixedStackSize(); |
999 | |
1000 | TADDR callerSP = oldStackBase + oldFixedStackSize; |
1001 | |
1002 | // If the old code saved a security object, store the object's reference now. |
1003 | OBJECTREF securityObject = NULL; |
1004 | INT32 nOldSecurityObjectStackSlot = oldGcDecoder.GetSecurityObjectStackSlot(); |
1005 | if (nOldSecurityObjectStackSlot != NO_SECURITY_OBJECT) |
1006 | { |
1007 | securityObject = ObjectToOBJECTREF(*PTR_PTR_Object(callerSP + nOldSecurityObjectStackSlot)); |
1008 | } |
1009 | |
1010 | #ifdef _DEBUG |
1011 | // If the old method has a PSPSym, then its value should == FP |
1012 | INT32 nOldPspSymStackSlot = oldGcDecoder.GetPSPSymStackSlot(); |
1013 | if (nOldPspSymStackSlot != NO_PSP_SYM) |
1014 | { |
1015 | // Read the PSP. |
1016 | TADDR oldPSP = *PTR_TADDR(oldStackBase + nOldPspSymStackSlot); |
1017 | |
1018 | // Now we're set up to assert that PSPSym's value == FP |
1019 | _ASSERTE(oldPSP == GetFP(&oldCtx)); |
1020 | } |
1021 | #endif // _DEBUG |
1022 | |
1023 | #else |
1024 | PORTABILITY_ASSERT("Edit-and-continue not enabled on this platform." ); |
1025 | #endif |
1026 | |
1027 | // 2) Get all the info about current variables, registers, etc |
1028 | |
1029 | const ICorDebugInfo::NativeVarInfo * pOldVar; |
1030 | |
1031 | // sorted by varNumber |
1032 | ICorDebugInfo::NativeVarInfo * oldMethodVarsSorted = NULL; |
1033 | ICorDebugInfo::NativeVarInfo * oldMethodVarsSortedBase = NULL; |
1034 | ICorDebugInfo::NativeVarInfo *newMethodVarsSorted = NULL; |
1035 | ICorDebugInfo::NativeVarInfo *newMethodVarsSortedBase = NULL; |
1036 | |
1037 | SIZE_T *rgVal1 = NULL; |
1038 | SIZE_T *rgVal2 = NULL; |
1039 | |
1040 | { |
1041 | SIZE_T local; |
1042 | |
1043 | // We'll need to sort the old native var info by variable number, since the |
1044 | // order of them isn't necc. the same. We'll use the number as the key. |
1045 | // We will assume we may have hidden arguments (which have negative values as the index) |
1046 | |
1047 | unsigned oldNumVars = unsigned(-ICorDebugInfo::UNKNOWN_ILNUM); |
1048 | for (pOldVar = oldMethodVars, local = 0; |
1049 | local < oldMethodVarsCount; |
1050 | local++, pOldVar++) |
1051 | { |
1052 | DWORD varNumber = pOldVar->varNumber; |
1053 | if (signed(varNumber) >= 0) |
1054 | { |
1055 | // This is an explicit (not special) var, so add its varNumber + 1 to our |
1056 | // max count ("+1" because varNumber is zero-based). |
1057 | oldNumVars = max(oldNumVars, unsigned(-ICorDebugInfo::UNKNOWN_ILNUM) + varNumber + 1); |
1058 | } |
1059 | } |
1060 | |
1061 | oldMethodVarsSortedBase = new (nothrow) ICorDebugInfo::NativeVarInfo[oldNumVars]; |
1062 | if (!oldMethodVarsSortedBase) |
1063 | { |
1064 | hr = E_FAIL; |
1065 | goto ErrExit; |
1066 | } |
1067 | oldMethodVarsSorted = oldMethodVarsSortedBase + (-ICorDebugInfo::UNKNOWN_ILNUM); |
1068 | |
1069 | memset((void *)oldMethodVarsSortedBase, 0, oldNumVars * sizeof(ICorDebugInfo::NativeVarInfo)); |
1070 | |
1071 | for (local = 0; local < oldNumVars;local++) |
1072 | oldMethodVarsSortedBase[local].loc.vlType = ICorDebugInfo::VLT_INVALID; |
1073 | |
1074 | BYTE **rgVCs = NULL; |
1075 | DWORD oldMethodOffset = pOldCodeInfo->GetRelOffset(); |
1076 | |
1077 | for (pOldVar = oldMethodVars, local = 0; |
1078 | local < oldMethodVarsCount; |
1079 | local++, pOldVar++) |
1080 | { |
1081 | DWORD varNumber = pOldVar->varNumber; |
1082 | |
1083 | _ASSERTE(varNumber + unsigned(-ICorDebugInfo::UNKNOWN_ILNUM) < oldNumVars); |
1084 | |
1085 | // Only care about old local variables alive at oldMethodOffset |
1086 | if (pOldVar->startOffset <= oldMethodOffset && |
1087 | pOldVar->endOffset > oldMethodOffset) |
1088 | { |
1089 | oldMethodVarsSorted[varNumber] = *pOldVar; |
1090 | } |
1091 | } |
1092 | |
1093 | // 3) Next sort the new var info by varNumber. We want to do this here, since |
1094 | // we're allocating memory (which may fail) - do this before going to step 2 |
1095 | |
1096 | // First, count the new vars the same way we did the old vars above. |
1097 | |
1098 | const ICorDebugInfo::NativeVarInfo * pNewVar; |
1099 | |
1100 | unsigned newNumVars = unsigned(-ICorDebugInfo::UNKNOWN_ILNUM); |
1101 | for (pNewVar = newMethodVars, local = 0; |
1102 | local < newMethodVarsCount; |
1103 | local++, pNewVar++) |
1104 | { |
1105 | DWORD varNumber = pNewVar->varNumber; |
1106 | if (signed(varNumber) >= 0) |
1107 | { |
1108 | // This is an explicit (not special) var, so add its varNumber + 1 to our |
1109 | // max count ("+1" because varNumber is zero-based). |
1110 | newNumVars = max(newNumVars, unsigned(-ICorDebugInfo::UNKNOWN_ILNUM) + varNumber + 1); |
1111 | } |
1112 | } |
1113 | |
1114 | // sorted by varNumber |
1115 | newMethodVarsSortedBase = new (nothrow) ICorDebugInfo::NativeVarInfo[newNumVars]; |
1116 | if (!newMethodVarsSortedBase) |
1117 | { |
1118 | hr = E_FAIL; |
1119 | goto ErrExit; |
1120 | } |
1121 | newMethodVarsSorted = newMethodVarsSortedBase + (-ICorDebugInfo::UNKNOWN_ILNUM); |
1122 | |
1123 | memset(newMethodVarsSortedBase, 0, newNumVars * sizeof(ICorDebugInfo::NativeVarInfo)); |
1124 | for (local = 0; local < newNumVars;local++) |
1125 | newMethodVarsSortedBase[local].loc.vlType = ICorDebugInfo::VLT_INVALID; |
1126 | |
1127 | DWORD newMethodOffset = pNewCodeInfo->GetRelOffset(); |
1128 | |
1129 | for (pNewVar = newMethodVars, local = 0; |
1130 | local < newMethodVarsCount; |
1131 | local++, pNewVar++) |
1132 | { |
1133 | DWORD varNumber = pNewVar->varNumber; |
1134 | |
1135 | _ASSERTE(varNumber + unsigned(-ICorDebugInfo::UNKNOWN_ILNUM) < newNumVars); |
1136 | |
1137 | // Only care about new local variables alive at newMethodOffset |
1138 | if (pNewVar->startOffset <= newMethodOffset && |
1139 | pNewVar->endOffset > newMethodOffset) |
1140 | { |
1141 | newMethodVarsSorted[varNumber] = *pNewVar; |
1142 | } |
1143 | } |
1144 | |
1145 | _ASSERTE(newNumVars >= oldNumVars || |
1146 | !"Not allowed to reduce the number of locals between versions!" ); |
1147 | |
1148 | LOG((LF_ENC, LL_INFO100, "EECM::FixContextForEnC: gathered info!\n" )); |
1149 | |
1150 | rgVal1 = new (nothrow) SIZE_T[newNumVars]; |
1151 | if (rgVal1 == NULL) |
1152 | { |
1153 | hr = E_FAIL; |
1154 | goto ErrExit; |
1155 | } |
1156 | |
1157 | rgVal2 = new (nothrow) SIZE_T[newNumVars]; |
1158 | if (rgVal2 == NULL) |
1159 | { |
1160 | hr = E_FAIL; |
1161 | goto ErrExit; |
1162 | } |
1163 | |
1164 | // 4) Next we'll zero them out, so any variables that aren't in scope |
1165 | // in the old method, but are in scope in the new, will have the |
1166 | // default, zero, value. |
1167 | |
1168 | memset(rgVal1, 0, sizeof(SIZE_T) * newNumVars); |
1169 | memset(rgVal2, 0, sizeof(SIZE_T) * newNumVars); |
1170 | |
1171 | unsigned varsToGet = (oldNumVars > newNumVars) ? newNumVars |
1172 | : oldNumVars; |
1173 | |
1174 | // 2) Get all the info about current variables, registers, etc. |
1175 | |
1176 | hr = g_pDebugInterface->GetVariablesFromOffset(pOldCodeInfo->GetMethodDesc(), |
1177 | varsToGet, |
1178 | oldMethodVarsSortedBase, |
1179 | oldMethodOffset, |
1180 | &oldCtx, |
1181 | rgVal1, |
1182 | rgVal2, |
1183 | newNumVars, |
1184 | &rgVCs); |
1185 | if (FAILED(hr)) |
1186 | { |
1187 | goto ErrExit; |
1188 | } |
1189 | |
1190 | |
1191 | LOG((LF_ENC, LL_INFO100, "EECM::FixContextForEnC: got vars!\n" )); |
1192 | |
1193 | /*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* |
1194 | * IMPORTANT : Once we start munging on the context, we cannot return |
1195 | * EnC_FAIL, as this should be a transacted commit, |
1196 | **=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*/ |
1197 | |
1198 | #if defined(_TARGET_X86_) |
1199 | // Zero out all the registers as some may hold new variables. |
1200 | pCtx->Eax = pCtx->Ecx = pCtx->Edx = pCtx->Ebx = |
1201 | pCtx->Esi = pCtx->Edi = 0; |
1202 | |
1203 | // 3) zero out the stack frame - this'll initialize _all_ variables |
1204 | |
1205 | /*------------------------------------------------------------------------- |
1206 | * Adjust the stack height |
1207 | */ |
1208 | pCtx->Esp -= (newInfo.stackSize - oldInfo.stackSize); |
1209 | |
1210 | // Zero-init the local and tempory section of new stack frame being careful to avoid |
1211 | // touching anything in the frame header. |
1212 | // This is necessary to ensure that any JIT temporaries in the old version can't be mistaken |
1213 | // for ObjRefs now. |
1214 | size_t frameHeaderSize = GetSizeOfFrameHeaderForEnC( &newInfo ); |
1215 | _ASSERTE( frameHeaderSize <= oldInfo.stackSize ); |
1216 | _ASSERTE( GetSizeOfFrameHeaderForEnC( &oldInfo ) == frameHeaderSize ); |
1217 | |
1218 | #elif defined(_TARGET_AMD64_) |
1219 | |
1220 | // Next few statements zero out all registers that may end up holding new variables. |
1221 | |
1222 | // volatile int registers (JIT may use these to enregister variables) |
1223 | pCtx->Rax = pCtx->Rcx = pCtx->Rdx = pCtx->R8 = pCtx->R9 = pCtx->R10 = pCtx->R11 = 0; |
1224 | |
1225 | // volatile float registers |
1226 | pCtx->Xmm1.High = pCtx->Xmm1.Low = 0; |
1227 | pCtx->Xmm2.High = pCtx->Xmm2.Low = 0; |
1228 | pCtx->Xmm3.High = pCtx->Xmm3.Low = 0; |
1229 | pCtx->Xmm4.High = pCtx->Xmm4.Low = 0; |
1230 | pCtx->Xmm5.High = pCtx->Xmm5.Low = 0; |
1231 | |
1232 | // Any saved nonvolatile registers should also be zeroed out, but there are none |
1233 | // in EnC-compliant x64 code. Yes, you read that right. Registers like RDI, RSI, |
1234 | // RBX, etc., which are often saved in the prolog of non-EnC code are NOT saved in |
1235 | // EnC code. EnC code instead just agrees never to use those registers so they |
1236 | // remain pristine for the caller (except RBP, which is considered part of the frame |
1237 | // header, and is thus not zeroed out by us). |
1238 | |
1239 | // 3) zero out the stack frame - this'll initialize _all_ variables |
1240 | |
1241 | /*------------------------------------------------------------------------- |
1242 | * Adjust the stack height |
1243 | */ |
1244 | |
1245 | TADDR newStackBase = callerSP - newFixedStackSize; |
1246 | |
1247 | SetSP(pCtx, newStackBase); |
1248 | |
1249 | // We want to zero-out everything pushed after the frame header. This way we'll zero |
1250 | // out locals (both old & new) and temporaries. This is necessary to ensure that any |
1251 | // JIT temporaries in the old version can't be mistaken for ObjRefs now. (I am told |
1252 | // this last point is less of an issue on x64 as it is on x86, but zeroing out the |
1253 | // temporaries is still the cleanest, most robust way to go.) |
1254 | size_t frameHeaderSize = newSizeOfPreservedArea; |
1255 | _ASSERTE(frameHeaderSize <= oldFixedStackSize); |
1256 | _ASSERTE(frameHeaderSize <= newFixedStackSize); |
1257 | |
1258 | // For EnC-compliant x64 code, Rbp == Rsp. Since Rsp changed above, update Rbp now |
1259 | pCtx->Rbp = newStackBase; |
1260 | #else // !X86, !AMD64 |
1261 | PORTABILITY_ASSERT("Edit-and-continue not enabled on this platform." ); |
1262 | #endif |
1263 | |
1264 | // Perform some debug-only sanity checks on stack variables. Some checks are |
1265 | // performed differently between X86/AMD64. |
1266 | |
1267 | #ifdef _DEBUG |
1268 | for( unsigned i = 0; i < newNumVars; i++ ) |
1269 | { |
1270 | // Make sure that stack variables existing in both old and new methods did not |
1271 | // move. This matters if the address of a local is used in the remapped method. |
1272 | // For example: |
1273 | // |
1274 | // static unsafe void Main(string[] args) |
1275 | // { |
1276 | // int x; |
1277 | // int* p = &x; |
1278 | // <- Edit made here - cannot move address of x |
1279 | // *p = 5; |
1280 | // } |
1281 | // |
1282 | if ((i + unsigned(-ICorDebugInfo::UNKNOWN_ILNUM) < oldNumVars) && // Does variable exist in old method? |
1283 | (oldMethodVarsSorted[i].loc.vlType == ICorDebugInfo::VLT_STK) && // Is the variable on the stack? |
1284 | (newMethodVarsSorted[i].loc.vlType == ICorDebugInfo::VLT_STK)) |
1285 | { |
1286 | SIZE_T * pOldVarStackLocation = NativeVarStackAddr(oldMethodVarsSorted[i].loc, &oldCtx); |
1287 | SIZE_T * pNewVarStackLocation = NativeVarStackAddr(newMethodVarsSorted[i].loc, pCtx); |
1288 | _ASSERTE(pOldVarStackLocation == pNewVarStackLocation); |
1289 | } |
1290 | |
1291 | // Sanity-check that the range we're clearing contains all of the stack variables |
1292 | |
1293 | #if defined(_TARGET_X86_) |
1294 | const ICorDebugInfo::VarLoc &varLoc = newMethodVarsSortedBase[i].loc; |
1295 | if( varLoc.vlType == ICorDebugInfo::VLT_STK ) |
1296 | { |
1297 | // This is an EBP frame, all stack variables should be EBP relative |
1298 | _ASSERTE( varLoc.vlStk.vlsBaseReg == ICorDebugInfo::REGNUM_EBP ); |
1299 | // Generic special args may show up as locals with positive offset from EBP, so skip them |
1300 | if( varLoc.vlStk.vlsOffset <= 0 ) |
1301 | { |
1302 | // Normal locals must occur after the header on the stack |
1303 | _ASSERTE( unsigned(-varLoc.vlStk.vlsOffset) >= frameHeaderSize ); |
1304 | // Value must occur before the top of the stack |
1305 | _ASSERTE( unsigned(-varLoc.vlStk.vlsOffset) < newInfo.stackSize ); |
1306 | } |
1307 | |
1308 | // Ideally we'd like to verify that the stack locals (if any) start at exactly the end |
1309 | // of the header. However, we can't easily determine the size of value classes here, |
1310 | // and so (since the stack grows towards 0) can't easily determine where the end of |
1311 | // the local lies. |
1312 | } |
1313 | #elif defined (_TARGET_AMD64_) |
1314 | switch(newMethodVarsSortedBase[i].loc.vlType) |
1315 | { |
1316 | default: |
1317 | // No validation here for non-stack locals |
1318 | break; |
1319 | |
1320 | case ICorDebugInfo::VLT_STK_BYREF: |
1321 | { |
1322 | // For byrefs, verify that the ptr will be zeroed out |
1323 | |
1324 | SIZE_T regOffs = GetRegOffsInCONTEXT(newMethodVarsSortedBase[i].loc.vlStk.vlsBaseReg); |
1325 | TADDR baseReg = *(TADDR *)(regOffs + (BYTE*)pCtx); |
1326 | TADDR addrOfPtr = baseReg + newMethodVarsSortedBase[i].loc.vlStk.vlsOffset; |
1327 | |
1328 | _ASSERTE( |
1329 | // The ref must exist in the portion we'll zero-out |
1330 | ( |
1331 | (newStackBase <= addrOfPtr) && |
1332 | (addrOfPtr < newStackBase + (newFixedStackSize - frameHeaderSize)) |
1333 | ) || |
1334 | // OR in the caller's frame (for parameters) |
1335 | (addrOfPtr >= newStackBase + newFixedStackSize)); |
1336 | |
1337 | // Deliberately fall through, so that we also verify that the value that the ptr |
1338 | // points to will be zeroed out |
1339 | // ... |
1340 | } |
1341 | |
1342 | case ICorDebugInfo::VLT_STK: |
1343 | case ICorDebugInfo::VLT_STK2: |
1344 | case ICorDebugInfo::VLT_REG_STK: |
1345 | case ICorDebugInfo::VLT_STK_REG: |
1346 | SIZE_T * pVarStackLocation = NativeVarStackAddr(newMethodVarsSortedBase[i].loc, pCtx); |
1347 | _ASSERTE (pVarStackLocation != NULL); |
1348 | _ASSERTE( |
1349 | // The value must exist in the portion we'll zero-out |
1350 | ( |
1351 | (newStackBase <= (TADDR) pVarStackLocation) && |
1352 | ((TADDR) pVarStackLocation < newStackBase + (newFixedStackSize - frameHeaderSize)) |
1353 | ) || |
1354 | // OR in the caller's frame (for parameters) |
1355 | ((TADDR) pVarStackLocation >= newStackBase + newFixedStackSize)); |
1356 | break; |
1357 | } |
1358 | #else // !X86, !X64 |
1359 | PORTABILITY_ASSERT("Edit-and-continue not enabled on this platform." ); |
1360 | #endif |
1361 | } |
1362 | |
1363 | #endif // _DEBUG |
1364 | |
1365 | // Clear the local and temporary stack space |
1366 | |
1367 | #if defined (_TARGET_X86_) |
1368 | memset((void*)(size_t)(pCtx->Esp), 0, newInfo.stackSize - frameHeaderSize ); |
1369 | #elif defined (_TARGET_AMD64_) |
1370 | memset((void*)newStackBase, 0, newFixedStackSize - frameHeaderSize); |
1371 | |
1372 | // On AMD64, after zeroing out the stack, restore the security object and PSPSym... |
1373 | |
1374 | // There is no relationship we can guarantee between the old code having a security |
1375 | // object and the new code having a security object. If the new code does have a |
1376 | // security object, then we copy over the old security object's reference if there |
1377 | // was one (else we copy over NULL, which is fine). If the new code doesn't have a |
1378 | // security object, we do nothing. |
1379 | INT32 nNewSecurityObjectStackSlot = newGcDecoder.GetSecurityObjectStackSlot(); |
1380 | if (nNewSecurityObjectStackSlot != NO_SECURITY_OBJECT) |
1381 | { |
1382 | *PTR_PTR_Object(callerSP + nNewSecurityObjectStackSlot) = OBJECTREFToObject(securityObject); |
1383 | } |
1384 | |
1385 | // Restore PSPSym for the new function. Its value should be set to our new FP. But |
1386 | // first, we gotta find PSPSym's location on the stack |
1387 | INT32 nNewPspSymStackSlot = newGcDecoder.GetPSPSymStackSlot(); |
1388 | if (nNewPspSymStackSlot != NO_PSP_SYM) |
1389 | { |
1390 | *PTR_TADDR(newStackBase + nNewPspSymStackSlot) = GetFP(pCtx); |
1391 | } |
1392 | #else // !X86, !X64 |
1393 | PORTABILITY_ASSERT("Edit-and-continue not enabled on this platform." ); |
1394 | #endif |
1395 | |
1396 | // 4) Put the variables from step 3 into their new locations. |
1397 | |
1398 | LOG((LF_ENC, LL_INFO100, "EECM::FixContextForEnC: set vars!\n" )); |
1399 | |
1400 | // Move the old variables into their new places. |
1401 | |
1402 | hr = g_pDebugInterface->SetVariablesAtOffset(pNewCodeInfo->GetMethodDesc(), |
1403 | newNumVars, |
1404 | newMethodVarsSortedBase, |
1405 | newMethodOffset, |
1406 | pCtx, // place them into the new context |
1407 | rgVal1, |
1408 | rgVal2, |
1409 | rgVCs); |
1410 | |
1411 | /*-----------------------------------------------------------------------*/ |
1412 | } |
1413 | ErrExit: |
1414 | if (oldMethodVarsSortedBase) |
1415 | delete[] oldMethodVarsSortedBase; |
1416 | if (newMethodVarsSortedBase) |
1417 | delete[] newMethodVarsSortedBase; |
1418 | if (rgVal1 != NULL) |
1419 | delete[] rgVal1; |
1420 | if (rgVal2 != NULL) |
1421 | delete[] rgVal2; |
1422 | |
1423 | LOG((LF_ENC, LL_INFO100, "EECM::FixContextForEnC: exiting!\n" )); |
1424 | |
1425 | return hr; |
1426 | } |
1427 | #endif // !EnC_SUPPORTED |
1428 | |
1429 | #endif // #ifndef DACCESS_COMPILE |
1430 | |
1431 | #ifdef USE_GC_INFO_DECODER |
1432 | /***************************************************************************** |
1433 | * |
1434 | * Is the function currently at a "GC safe point" ? |
1435 | */ |
1436 | bool EECodeManager::IsGcSafe( EECodeInfo *pCodeInfo, |
1437 | DWORD dwRelOffset) |
1438 | { |
1439 | CONTRACTL { |
1440 | NOTHROW; |
1441 | GC_NOTRIGGER; |
1442 | } CONTRACTL_END; |
1443 | |
1444 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
1445 | |
1446 | GcInfoDecoder gcInfoDecoder( |
1447 | gcInfoToken, |
1448 | DECODE_INTERRUPTIBILITY, |
1449 | dwRelOffset |
1450 | ); |
1451 | |
1452 | return gcInfoDecoder.IsInterruptible(); |
1453 | } |
1454 | |
1455 | #if defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
1456 | bool EECodeManager::HasTailCalls( EECodeInfo *pCodeInfo) |
1457 | { |
1458 | CONTRACTL { |
1459 | NOTHROW; |
1460 | GC_NOTRIGGER; |
1461 | } CONTRACTL_END; |
1462 | |
1463 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
1464 | |
1465 | GcInfoDecoder gcInfoDecoder( |
1466 | gcInfoToken, |
1467 | DECODE_HAS_TAILCALLS, |
1468 | 0 |
1469 | ); |
1470 | |
1471 | return gcInfoDecoder.HasTailCalls(); |
1472 | } |
1473 | #endif // _TARGET_ARM_ || _TARGET_ARM64_ |
1474 | |
1475 | #if defined(_TARGET_AMD64_) && defined(_DEBUG) |
1476 | |
1477 | struct FindEndOfLastInterruptibleRegionState |
1478 | { |
1479 | unsigned curOffset; |
1480 | unsigned endOffset; |
1481 | unsigned lastRangeOffset; |
1482 | }; |
1483 | |
1484 | bool FindEndOfLastInterruptibleRegionCB ( |
1485 | UINT32 startOffset, |
1486 | UINT32 stopOffset, |
1487 | LPVOID hCallback) |
1488 | { |
1489 | FindEndOfLastInterruptibleRegionState *pState = (FindEndOfLastInterruptibleRegionState*)hCallback; |
1490 | |
1491 | // |
1492 | // If the current range doesn't overlap the given range, keep searching. |
1493 | // |
1494 | if ( startOffset >= pState->endOffset |
1495 | || stopOffset < pState->curOffset) |
1496 | { |
1497 | return false; |
1498 | } |
1499 | |
1500 | // |
1501 | // If the range overlaps the end, then the last point is the end. |
1502 | // |
1503 | if ( stopOffset > pState->endOffset |
1504 | /*&& startOffset < pState->endOffset*/) |
1505 | { |
1506 | // The ranges should be sorted in increasing order. |
1507 | CONSISTENCY_CHECK(startOffset >= pState->lastRangeOffset); |
1508 | |
1509 | pState->lastRangeOffset = pState->endOffset; |
1510 | return true; |
1511 | } |
1512 | |
1513 | // |
1514 | // See if the end of this range is the closet to the end that we've found |
1515 | // so far. |
1516 | // |
1517 | if (stopOffset > pState->lastRangeOffset) |
1518 | pState->lastRangeOffset = stopOffset; |
1519 | |
1520 | return false; |
1521 | } |
1522 | |
1523 | /* |
1524 | Locates the end of the last interruptible region in the given code range. |
1525 | Returns 0 if the entire range is uninterruptible. Returns the end point |
1526 | if the entire range is interruptible. |
1527 | */ |
1528 | unsigned EECodeManager::FindEndOfLastInterruptibleRegion(unsigned curOffset, |
1529 | unsigned endOffset, |
1530 | GCInfoToken gcInfoToken) |
1531 | { |
1532 | #ifndef DACCESS_COMPILE |
1533 | GcInfoDecoder gcInfoDecoder( |
1534 | gcInfoToken, |
1535 | DECODE_FOR_RANGES_CALLBACK |
1536 | ); |
1537 | |
1538 | FindEndOfLastInterruptibleRegionState state; |
1539 | state.curOffset = curOffset; |
1540 | state.endOffset = endOffset; |
1541 | state.lastRangeOffset = 0; |
1542 | |
1543 | gcInfoDecoder.EnumerateInterruptibleRanges(&FindEndOfLastInterruptibleRegionCB, &state); |
1544 | |
1545 | return state.lastRangeOffset; |
1546 | #else |
1547 | DacNotImpl(); |
1548 | return NULL; |
1549 | #endif // #ifndef DACCESS_COMPILE |
1550 | } |
1551 | |
1552 | #endif // _TARGET_AMD64_ && _DEBUG |
1553 | |
1554 | |
1555 | #else // !USE_GC_INFO_DECODER |
1556 | |
1557 | /***************************************************************************** |
1558 | * |
1559 | * Is the function currently at a "GC safe point" ? |
1560 | */ |
1561 | bool EECodeManager::IsGcSafe( EECodeInfo *pCodeInfo, |
1562 | DWORD dwRelOffset) |
1563 | { |
1564 | CONTRACTL { |
1565 | NOTHROW; |
1566 | GC_NOTRIGGER; |
1567 | SUPPORTS_DAC; |
1568 | } CONTRACTL_END; |
1569 | |
1570 | hdrInfo info; |
1571 | BYTE * table; |
1572 | |
1573 | /* Extract the necessary information from the info block header */ |
1574 | |
1575 | table = (BYTE *)DecodeGCHdrInfo(pCodeInfo->GetGCInfoToken(), |
1576 | dwRelOffset, |
1577 | &info); |
1578 | |
1579 | /* workaround: prevent interruption within prolog/epilog */ |
1580 | |
1581 | if (info.prologOffs != hdrInfo::NOT_IN_PROLOG || info.epilogOffs != hdrInfo::NOT_IN_EPILOG) |
1582 | return false; |
1583 | |
1584 | #if VERIFY_GC_TABLES |
1585 | _ASSERTE(*castto(table, unsigned short *)++ == 0xBEEF); |
1586 | #endif |
1587 | |
1588 | return (info.interruptible); |
1589 | } |
1590 | |
1591 | |
1592 | /*****************************************************************************/ |
1593 | static |
1594 | PTR_CBYTE skipToArgReg(const hdrInfo& info, PTR_CBYTE table) |
1595 | { |
1596 | CONTRACTL { |
1597 | NOTHROW; |
1598 | GC_NOTRIGGER; |
1599 | SUPPORTS_DAC; |
1600 | } CONTRACTL_END; |
1601 | |
1602 | #ifdef _DEBUG |
1603 | PTR_CBYTE tableStart = table; |
1604 | #else |
1605 | if (info.argTabOffset != INVALID_ARGTAB_OFFSET) |
1606 | { |
1607 | return table + info.argTabOffset; |
1608 | } |
1609 | #endif |
1610 | |
1611 | unsigned count; |
1612 | |
1613 | #if VERIFY_GC_TABLES |
1614 | _ASSERTE(*castto(table, unsigned short *)++ == 0xBEEF); |
1615 | #endif |
1616 | |
1617 | /* Skip over the untracked frame variable table */ |
1618 | |
1619 | count = info.untrackedCnt; |
1620 | while (count-- > 0) { |
1621 | fastSkipSigned(table); |
1622 | } |
1623 | |
1624 | #if VERIFY_GC_TABLES |
1625 | _ASSERTE(*castto(table, unsigned short *)++ == 0xCAFE); |
1626 | #endif |
1627 | |
1628 | /* Skip over the frame variable lifetime table */ |
1629 | |
1630 | count = info.varPtrTableSize; |
1631 | while (count-- > 0) { |
1632 | fastSkipUnsigned(table); fastSkipUnsigned(table); fastSkipUnsigned(table); |
1633 | } |
1634 | |
1635 | #if VERIFY_GC_TABLES |
1636 | _ASSERTE(*castto(table, unsigned short *) == 0xBABE); |
1637 | #endif |
1638 | |
1639 | #ifdef _DEBUG |
1640 | if (info.argTabOffset != INVALID_ARGTAB_OFFSET) |
1641 | { |
1642 | CONSISTENCY_CHECK_MSGF((info.argTabOffset == (unsigned) (table - tableStart)), |
1643 | ("table = %p, tableStart = %p, info.argTabOffset = %d" , table, tableStart, info.argTabOffset)); |
1644 | } |
1645 | #endif |
1646 | |
1647 | return table; |
1648 | } |
1649 | |
1650 | /*****************************************************************************/ |
1651 | |
1652 | #define regNumToMask(regNum) RegMask(1<<regNum) |
1653 | |
1654 | /***************************************************************************** |
1655 | Helper for scanArgRegTable() and scanArgRegTableI() for regMasks |
1656 | */ |
1657 | |
1658 | void * getCalleeSavedReg(PREGDISPLAY pContext, regNum reg) |
1659 | { |
1660 | LIMITED_METHOD_CONTRACT; |
1661 | SUPPORTS_DAC; |
1662 | |
1663 | switch (reg) |
1664 | { |
1665 | case REGI_EBP: return pContext->GetEbpLocation(); |
1666 | case REGI_EBX: return pContext->GetEbxLocation(); |
1667 | case REGI_ESI: return pContext->GetEsiLocation(); |
1668 | case REGI_EDI: return pContext->GetEdiLocation(); |
1669 | |
1670 | default: _ASSERTE(!"bad info.thisPtrResult" ); return NULL; |
1671 | } |
1672 | } |
1673 | |
1674 | /***************************************************************************** |
1675 | These functions converts the bits in the GC encoding to RegMask |
1676 | */ |
1677 | |
1678 | inline |
1679 | RegMask convertCalleeSavedRegsMask(unsigned inMask) // EBP,EBX,ESI,EDI |
1680 | { |
1681 | LIMITED_METHOD_CONTRACT; |
1682 | SUPPORTS_DAC; |
1683 | |
1684 | _ASSERTE((inMask & 0x0F) == inMask); |
1685 | |
1686 | unsigned outMask = RM_NONE; |
1687 | if (inMask & 0x1) outMask |= RM_EDI; |
1688 | if (inMask & 0x2) outMask |= RM_ESI; |
1689 | if (inMask & 0x4) outMask |= RM_EBX; |
1690 | if (inMask & 0x8) outMask |= RM_EBP; |
1691 | |
1692 | return (RegMask) outMask; |
1693 | } |
1694 | |
1695 | inline |
1696 | RegMask convertAllRegsMask(unsigned inMask) // EAX,ECX,EDX,EBX, EBP,ESI,EDI |
1697 | { |
1698 | LIMITED_METHOD_CONTRACT; |
1699 | SUPPORTS_DAC; |
1700 | |
1701 | _ASSERTE((inMask & 0xEF) == inMask); |
1702 | |
1703 | unsigned outMask = RM_NONE; |
1704 | if (inMask & 0x01) outMask |= RM_EAX; |
1705 | if (inMask & 0x02) outMask |= RM_ECX; |
1706 | if (inMask & 0x04) outMask |= RM_EDX; |
1707 | if (inMask & 0x08) outMask |= RM_EBX; |
1708 | if (inMask & 0x20) outMask |= RM_EBP; |
1709 | if (inMask & 0x40) outMask |= RM_ESI; |
1710 | if (inMask & 0x80) outMask |= RM_EDI; |
1711 | |
1712 | return (RegMask)outMask; |
1713 | } |
1714 | |
1715 | /***************************************************************************** |
1716 | * scan the register argument table for the not fully interruptible case. |
1717 | this function is called to find all live objects (pushed arguments) |
1718 | and to get the stack base for EBP-less methods. |
1719 | |
1720 | NOTE: If info->argTabResult is NULL, info->argHnumResult indicates |
1721 | how many bits in argMask are valid |
1722 | If info->argTabResult is non-NULL, then the argMask field does |
1723 | not fit in 32-bits and the value in argMask meaningless. |
1724 | Instead argHnum specifies the number of (variable-length) elements |
1725 | in the array, and argTabBytes specifies the total byte size of the |
1726 | array. [ Note this is an extremely rare case ] |
1727 | */ |
1728 | |
1729 | #ifdef _PREFAST_ |
1730 | #pragma warning(push) |
1731 | #pragma warning(disable:21000) // Suppress PREFast warning about overly large function |
1732 | #endif |
1733 | static |
1734 | unsigned scanArgRegTable(PTR_CBYTE table, |
1735 | unsigned curOffs, |
1736 | hdrInfo * info) |
1737 | { |
1738 | CONTRACTL { |
1739 | NOTHROW; |
1740 | GC_NOTRIGGER; |
1741 | SUPPORTS_DAC; |
1742 | } CONTRACTL_END; |
1743 | |
1744 | regNum thisPtrReg = REGI_NA; |
1745 | #ifdef _DEBUG |
1746 | bool isCall = false; |
1747 | #endif |
1748 | unsigned regMask = 0; // EBP,EBX,ESI,EDI |
1749 | unsigned argMask = 0; |
1750 | unsigned argHnum = 0; |
1751 | PTR_CBYTE argTab = 0; |
1752 | unsigned argTabBytes = 0; |
1753 | unsigned stackDepth = 0; |
1754 | |
1755 | unsigned iregMask = 0; // EBP,EBX,ESI,EDI |
1756 | unsigned iargMask = 0; |
1757 | unsigned iptrMask = 0; |
1758 | |
1759 | #if VERIFY_GC_TABLES |
1760 | _ASSERTE(*castto(table, unsigned short *)++ == 0xBABE); |
1761 | #endif |
1762 | |
1763 | unsigned scanOffs = 0; |
1764 | |
1765 | _ASSERTE(scanOffs <= info->methodSize); |
1766 | |
1767 | if (info->ebpFrame) { |
1768 | /* |
1769 | Encoding table for methods with an EBP frame and |
1770 | that are not fully interruptible |
1771 | |
1772 | The encoding used is as follows: |
1773 | |
1774 | this pointer encodings: |
1775 | |
1776 | 01000000 this pointer in EBX |
1777 | 00100000 this pointer in ESI |
1778 | 00010000 this pointer in EDI |
1779 | |
1780 | tiny encoding: |
1781 | |
1782 | 0bsdDDDD |
1783 | requires code delta < 16 (4-bits) |
1784 | requires pushed argmask == 0 |
1785 | |
1786 | where DDDD is code delta |
1787 | b indicates that register EBX is a live pointer |
1788 | s indicates that register ESI is a live pointer |
1789 | d indicates that register EDI is a live pointer |
1790 | |
1791 | small encoding: |
1792 | |
1793 | 1DDDDDDD bsdAAAAA |
1794 | |
1795 | requires code delta < 120 (7-bits) |
1796 | requires pushed argmask < 64 (5-bits) |
1797 | |
1798 | where DDDDDDD is code delta |
1799 | AAAAA is the pushed args mask |
1800 | b indicates that register EBX is a live pointer |
1801 | s indicates that register ESI is a live pointer |
1802 | d indicates that register EDI is a live pointer |
1803 | |
1804 | medium encoding |
1805 | |
1806 | 0xFD aaaaaaaa AAAAdddd bseDDDDD |
1807 | |
1808 | requires code delta < 0x1000000000 (9-bits) |
1809 | requires pushed argmask < 0x1000000000000 (12-bits) |
1810 | |
1811 | where DDDDD is the upper 5-bits of the code delta |
1812 | dddd is the low 4-bits of the code delta |
1813 | AAAA is the upper 4-bits of the pushed arg mask |
1814 | aaaaaaaa is the low 8-bits of the pushed arg mask |
1815 | b indicates that register EBX is a live pointer |
1816 | s indicates that register ESI is a live pointer |
1817 | e indicates that register EDI is a live pointer |
1818 | |
1819 | medium encoding with interior pointers |
1820 | |
1821 | 0xF9 DDDDDDDD bsdAAAAAA iiiIIIII |
1822 | |
1823 | requires code delta < (8-bits) |
1824 | requires pushed argmask < (5-bits) |
1825 | |
1826 | where DDDDDDD is the code delta |
1827 | b indicates that register EBX is a live pointer |
1828 | s indicates that register ESI is a live pointer |
1829 | d indicates that register EDI is a live pointer |
1830 | AAAAA is the pushed arg mask |
1831 | iii indicates that EBX,EDI,ESI are interior pointers |
1832 | IIIII indicates that bits is the arg mask are interior |
1833 | pointers |
1834 | |
1835 | large encoding |
1836 | |
1837 | 0xFE [0BSD0bsd][32-bit code delta][32-bit argMask] |
1838 | |
1839 | b indicates that register EBX is a live pointer |
1840 | s indicates that register ESI is a live pointer |
1841 | d indicates that register EDI is a live pointer |
1842 | B indicates that register EBX is an interior pointer |
1843 | S indicates that register ESI is an interior pointer |
1844 | D indicates that register EDI is an interior pointer |
1845 | requires pushed argmask < 32-bits |
1846 | |
1847 | large encoding with interior pointers |
1848 | |
1849 | 0xFA [0BSD0bsd][32-bit code delta][32-bit argMask][32-bit interior pointer mask] |
1850 | |
1851 | |
1852 | b indicates that register EBX is a live pointer |
1853 | s indicates that register ESI is a live pointer |
1854 | d indicates that register EDI is a live pointer |
1855 | B indicates that register EBX is an interior pointer |
1856 | S indicates that register ESI is an interior pointer |
1857 | D indicates that register EDI is an interior pointer |
1858 | requires pushed argmask < 32-bits |
1859 | requires pushed iArgmask < 32-bits |
1860 | |
1861 | huge encoding This is the only encoding that supports |
1862 | a pushed argmask which is greater than |
1863 | 32-bits. |
1864 | |
1865 | 0xFB [0BSD0bsd][32-bit code delta] |
1866 | [32-bit table count][32-bit table size] |
1867 | [pushed ptr offsets table...] |
1868 | |
1869 | b indicates that register EBX is a live pointer |
1870 | s indicates that register ESI is a live pointer |
1871 | d indicates that register EDI is a live pointer |
1872 | B indicates that register EBX is an interior pointer |
1873 | S indicates that register ESI is an interior pointer |
1874 | D indicates that register EDI is an interior pointer |
1875 | the list count is the number of entries in the list |
1876 | the list size gives the byte-lenght of the list |
1877 | the offsets in the list are variable-length |
1878 | */ |
1879 | while (scanOffs < curOffs) |
1880 | { |
1881 | iregMask = 0; |
1882 | iargMask = 0; |
1883 | argTab = NULL; |
1884 | #ifdef _DEBUG |
1885 | isCall = true; |
1886 | #endif |
1887 | |
1888 | /* Get the next byte and check for a 'special' entry */ |
1889 | |
1890 | unsigned encType = *table++; |
1891 | #if defined(DACCESS_COMPILE) |
1892 | // In this scenario, it is invalid to have a zero byte in the GC info encoding (refer to the |
1893 | // comments above). At least one bit has to be set. For example, a byte can represent which |
1894 | // register is the "this" pointer, and this byte has to be 0x10, 0x20, or 0x40. Having a zero |
1895 | // byte indicates there is most likely some sort of DAC error, and it may lead to problems such as |
1896 | // infinite loops. So we bail out early instead. |
1897 | if (encType == 0) |
1898 | { |
1899 | DacError(CORDBG_E_TARGET_INCONSISTENT); |
1900 | UNREACHABLE(); |
1901 | } |
1902 | #endif // DACCESS_COMPILE |
1903 | |
1904 | switch (encType) |
1905 | { |
1906 | unsigned val, nxt; |
1907 | |
1908 | default: |
1909 | |
1910 | /* A tiny or small call entry */ |
1911 | val = encType; |
1912 | if ((val & 0x80) == 0x00) { |
1913 | if (val & 0x0F) { |
1914 | /* A tiny call entry */ |
1915 | scanOffs += (val & 0x0F); |
1916 | regMask = (val & 0x70) >> 4; |
1917 | argMask = 0; |
1918 | argHnum = 0; |
1919 | } |
1920 | else { |
1921 | /* This pointer liveness encoding */ |
1922 | regMask = (val & 0x70) >> 4; |
1923 | if (regMask == 0x1) |
1924 | thisPtrReg = REGI_EDI; |
1925 | else if (regMask == 0x2) |
1926 | thisPtrReg = REGI_ESI; |
1927 | else if (regMask == 0x4) |
1928 | thisPtrReg = REGI_EBX; |
1929 | else |
1930 | _ASSERTE(!"illegal encoding for 'this' pointer liveness" ); |
1931 | } |
1932 | } |
1933 | else { |
1934 | /* A small call entry */ |
1935 | scanOffs += (val & 0x7F); |
1936 | val = *table++; |
1937 | regMask = val >> 5; |
1938 | argMask = val & 0x1F; |
1939 | argHnum = 5; |
1940 | } |
1941 | break; |
1942 | |
1943 | case 0xFD: // medium encoding |
1944 | |
1945 | argMask = *table++; |
1946 | val = *table++; |
1947 | argMask |= ((val & 0xF0) << 4); |
1948 | argHnum = 12; |
1949 | nxt = *table++; |
1950 | scanOffs += (val & 0x0F) + ((nxt & 0x1F) << 4); |
1951 | regMask = nxt >> 5; // EBX,ESI,EDI |
1952 | |
1953 | break; |
1954 | |
1955 | case 0xF9: // medium encoding with interior pointers |
1956 | |
1957 | scanOffs += *table++; |
1958 | val = *table++; |
1959 | argMask = val & 0x1F; |
1960 | argHnum = 5; |
1961 | regMask = val >> 5; |
1962 | val = *table++; |
1963 | iargMask = val & 0x1F; |
1964 | iregMask = val >> 5; |
1965 | |
1966 | break; |
1967 | |
1968 | case 0xFE: // large encoding |
1969 | case 0xFA: // large encoding with interior pointers |
1970 | |
1971 | val = *table++; |
1972 | regMask = val & 0x7; |
1973 | iregMask = val >> 4; |
1974 | scanOffs += *dac_cast<PTR_DWORD>(table); table += sizeof(DWORD); |
1975 | argMask = *dac_cast<PTR_DWORD>(table); table += sizeof(DWORD); |
1976 | argHnum = 31; |
1977 | if (encType == 0xFA) // read iargMask |
1978 | { |
1979 | iargMask = *dac_cast<PTR_DWORD>(table); table += sizeof(DWORD); |
1980 | } |
1981 | break; |
1982 | |
1983 | case 0xFB: // huge encoding This is the only partially interruptible |
1984 | // encoding that supports a pushed ArgMask |
1985 | // which is greater than 32-bits. |
1986 | // The ArgMask is encoded using the argTab |
1987 | val = *table++; |
1988 | regMask = val & 0x7; |
1989 | iregMask = val >> 4; |
1990 | scanOffs += *dac_cast<PTR_DWORD>(table); table += sizeof(DWORD); |
1991 | argHnum = *dac_cast<PTR_DWORD>(table); table += sizeof(DWORD); |
1992 | argTabBytes = *dac_cast<PTR_DWORD>(table); table += sizeof(DWORD); |
1993 | argTab = table; table += argTabBytes; |
1994 | |
1995 | argMask = 0; |
1996 | break; |
1997 | |
1998 | case 0xFF: |
1999 | scanOffs = curOffs + 1; |
2000 | break; |
2001 | |
2002 | } // end case |
2003 | |
2004 | // iregMask & iargMask are subsets of regMask & argMask respectively |
2005 | |
2006 | _ASSERTE((iregMask & regMask) == iregMask); |
2007 | _ASSERTE((iargMask & argMask) == iargMask); |
2008 | |
2009 | } // end while |
2010 | |
2011 | } |
2012 | else { |
2013 | |
2014 | /* |
2015 | * Encoding table for methods with an ESP frame and are not fully interruptible |
2016 | * This encoding does not support a pushed ArgMask greater than 32 |
2017 | * |
2018 | * The encoding used is as follows: |
2019 | * |
2020 | * push 000DDDDD ESP push one item with 5-bit delta |
2021 | * push 00100000 [pushCount] ESP push multiple items |
2022 | * reserved 0011xxxx |
2023 | * skip 01000000 [Delta] Skip Delta, arbitrary sized delta |
2024 | * skip 0100DDDD Skip small Delta, for call (DDDD != 0) |
2025 | * pop 01CCDDDD ESP pop CC items with 4-bit delta (CC != 00) |
2026 | * call 1PPPPPPP Call Pattern, P=[0..79] |
2027 | * call 1101pbsd DDCCCMMM Call RegMask=pbsd,ArgCnt=CCC, |
2028 | * ArgMask=MMM Delta=commonDelta[DD] |
2029 | * call 1110pbsd [ArgCnt] [ArgMask] Call ArgCnt,RegMask=pbsd,[32-bit ArgMask] |
2030 | * call 11111000 [PBSDpbsd][32-bit delta][32-bit ArgCnt] |
2031 | * [32-bit PndCnt][32-bit PndSize][PndOffs...] |
2032 | * iptr 11110000 [IPtrMask] Arbitrary 32-bit Interior Pointer Mask |
2033 | * thisptr 111101RR This pointer is in Register RR |
2034 | * 00=EDI,01=ESI,10=EBX,11=EBP |
2035 | * reserved 111100xx xx != 00 |
2036 | * reserved 111110xx xx != 00 |
2037 | * reserved 11111xxx xxx != 000 && xxx != 111(EOT) |
2038 | * |
2039 | * The value 11111111 [0xFF] indicates the end of the table. |
2040 | * |
2041 | * An offset (at which stack-walking is performed) without an explicit encoding |
2042 | * is assumed to be a trivial call-site (no GC registers, stack empty before and |
2043 | * after) to avoid having to encode all trivial calls. |
2044 | * |
2045 | * Note on the encoding used for interior pointers |
2046 | * |
2047 | * The iptr encoding must immediately preceed a call encoding. It is used to |
2048 | * transform a normal GC pointer addresses into an interior pointers for GC purposes. |
2049 | * The mask supplied to the iptr encoding is read from the least signicant bit |
2050 | * to the most signicant bit. (i.e the lowest bit is read first) |
2051 | * |
2052 | * p indicates that register EBP is a live pointer |
2053 | * b indicates that register EBX is a live pointer |
2054 | * s indicates that register ESI is a live pointer |
2055 | * d indicates that register EDI is a live pointer |
2056 | * P indicates that register EBP is an interior pointer |
2057 | * B indicates that register EBX is an interior pointer |
2058 | * S indicates that register ESI is an interior pointer |
2059 | * D indicates that register EDI is an interior pointer |
2060 | * |
2061 | * As an example the following sequence indicates that EDI.ESI and the 2nd pushed pointer |
2062 | * in ArgMask are really interior pointers. The pointer in ESI in a normal pointer: |
2063 | * |
2064 | * iptr 11110000 00010011 => read Interior Ptr, Interior Ptr, Normal Ptr, Normal Ptr, Interior Ptr |
2065 | * call 11010011 DDCCC011 RRRR=1011 => read EDI is a GC-pointer, ESI is a GC-pointer. EBP is a GC-pointer |
2066 | * MMM=0011 => read two GC-pointers arguments on the stack (nested call) |
2067 | * |
2068 | * Since the call instruction mentions 5 GC-pointers we list them in the required order: |
2069 | * EDI, ESI, EBP, 1st-pushed pointer, 2nd-pushed pointer |
2070 | * |
2071 | * And we apply the Interior Pointer mask mmmm=10011 to the above five ordered GC-pointers |
2072 | * we learn that EDI and ESI are interior GC-pointers and that the second push arg is an |
2073 | * interior GC-pointer. |
2074 | */ |
2075 | |
2076 | #if defined(DACCESS_COMPILE) |
2077 | DWORD cbZeroBytes = 0; |
2078 | #endif // DACCESS_COMPILE |
2079 | |
2080 | while (scanOffs <= curOffs) |
2081 | { |
2082 | unsigned callArgCnt; |
2083 | unsigned skip; |
2084 | unsigned newRegMask, inewRegMask; |
2085 | unsigned newArgMask, inewArgMask; |
2086 | unsigned oldScanOffs = scanOffs; |
2087 | |
2088 | if (iptrMask) |
2089 | { |
2090 | // We found this iptrMask in the previous iteration. |
2091 | // This iteration must be for a call. Set these variables |
2092 | // so that they are available at the end of the loop |
2093 | |
2094 | inewRegMask = iptrMask & 0x0F; // EBP,EBX,ESI,EDI |
2095 | inewArgMask = iptrMask >> 4; |
2096 | |
2097 | iptrMask = 0; |
2098 | } |
2099 | else |
2100 | { |
2101 | // Zero out any stale values. |
2102 | |
2103 | inewRegMask = 0; |
2104 | inewArgMask = 0; |
2105 | } |
2106 | |
2107 | /* Get the next byte and decode it */ |
2108 | |
2109 | unsigned val = *table++; |
2110 | #if defined(DACCESS_COMPILE) |
2111 | // In this scenario, a 0 means that there is a push at the current offset. For a struct with |
2112 | // two double fields, the JIT may use two movq instructions to push the struct onto the stack, and |
2113 | // the JIT will encode 4 pushes at the same code offset. This means that we can have up to 4 |
2114 | // consecutive bytes of 0 without changing the code offset. Having more than 4 consecutive bytes |
2115 | // of zero indicates that there is most likely some sort of DAC error, and it may lead to problems |
2116 | // such as infinite loops. So we bail out early instead. |
2117 | if (val == 0) |
2118 | { |
2119 | cbZeroBytes += 1; |
2120 | if (cbZeroBytes > 4) |
2121 | { |
2122 | DacError(CORDBG_E_TARGET_INCONSISTENT); |
2123 | UNREACHABLE(); |
2124 | } |
2125 | } |
2126 | else |
2127 | { |
2128 | cbZeroBytes = 0; |
2129 | } |
2130 | #endif // DACCESS_COMPILE |
2131 | |
2132 | #ifdef _DEBUG |
2133 | if (scanOffs != curOffs) |
2134 | isCall = false; |
2135 | #endif |
2136 | |
2137 | /* Check pushes, pops, and skips */ |
2138 | |
2139 | if (!(val & 0x80)) { |
2140 | |
2141 | // iptrMask can immediately precede only calls |
2142 | |
2143 | _ASSERTE(inewRegMask == 0); |
2144 | _ASSERTE(inewArgMask == 0); |
2145 | |
2146 | if (!(val & 0x40)) { |
2147 | |
2148 | unsigned pushCount; |
2149 | |
2150 | if (!(val & 0x20)) |
2151 | { |
2152 | // |
2153 | // push 000DDDDD ESP push one item, 5-bit delta |
2154 | // |
2155 | pushCount = 1; |
2156 | scanOffs += val & 0x1f; |
2157 | } |
2158 | else |
2159 | { |
2160 | // |
2161 | // push 00100000 [pushCount] ESP push multiple items |
2162 | // |
2163 | _ASSERTE(val == 0x20); |
2164 | pushCount = fastDecodeUnsigned(table); |
2165 | } |
2166 | |
2167 | if (scanOffs > curOffs) |
2168 | { |
2169 | scanOffs = oldScanOffs; |
2170 | goto FINISHED; |
2171 | } |
2172 | |
2173 | stackDepth += pushCount; |
2174 | } |
2175 | else if ((val & 0x3f) != 0) { |
2176 | // |
2177 | // pop 01CCDDDD pop CC items, 4-bit delta |
2178 | // |
2179 | scanOffs += val & 0x0f; |
2180 | if (scanOffs > curOffs) |
2181 | { |
2182 | scanOffs = oldScanOffs; |
2183 | goto FINISHED; |
2184 | } |
2185 | stackDepth -= (val & 0x30) >> 4; |
2186 | |
2187 | } else if (scanOffs < curOffs) { |
2188 | // |
2189 | // skip 01000000 [Delta] Skip arbitrary sized delta |
2190 | // |
2191 | skip = fastDecodeUnsigned(table); |
2192 | scanOffs += skip; |
2193 | } |
2194 | else // don't process a skip if we are already at curOffs |
2195 | goto FINISHED; |
2196 | |
2197 | /* reset regs and args state since we advance past last call site */ |
2198 | |
2199 | regMask = 0; |
2200 | iregMask = 0; |
2201 | argMask = 0; |
2202 | iargMask = 0; |
2203 | argHnum = 0; |
2204 | |
2205 | } |
2206 | else /* It must be a call, thisptr, or iptr */ |
2207 | { |
2208 | switch ((val & 0x70) >> 4) { |
2209 | default: // case 0-4, 1000xxxx through 1100xxxx |
2210 | // |
2211 | // call 1PPPPPPP Call Pattern, P=[0..79] |
2212 | // |
2213 | decodeCallPattern((val & 0x7f), &callArgCnt, |
2214 | &newRegMask, &newArgMask, &skip); |
2215 | // If we've already reached curOffs and the skip amount |
2216 | // is non-zero then we are done |
2217 | if ((scanOffs == curOffs) && (skip > 0)) |
2218 | goto FINISHED; |
2219 | // otherwise process this call pattern |
2220 | scanOffs += skip; |
2221 | if (scanOffs > curOffs) |
2222 | goto FINISHED; |
2223 | #ifdef _DEBUG |
2224 | isCall = true; |
2225 | #endif |
2226 | regMask = newRegMask; |
2227 | argMask = newArgMask; argTab = NULL; |
2228 | iregMask = inewRegMask; |
2229 | iargMask = inewArgMask; |
2230 | stackDepth -= callArgCnt; |
2231 | argHnum = 2; // argMask is known to be <= 3 |
2232 | break; |
2233 | |
2234 | case 5: |
2235 | // |
2236 | // call 1101RRRR DDCCCMMM Call RegMask=RRRR,ArgCnt=CCC, |
2237 | // ArgMask=MMM Delta=commonDelta[DD] |
2238 | // |
2239 | newRegMask = val & 0xf; // EBP,EBX,ESI,EDI |
2240 | val = *table++; // read next byte |
2241 | skip = callCommonDelta[val>>6]; |
2242 | // If we've already reached curOffs and the skip amount |
2243 | // is non-zero then we are done |
2244 | if ((scanOffs == curOffs) && (skip > 0)) |
2245 | goto FINISHED; |
2246 | // otherwise process this call encoding |
2247 | scanOffs += skip; |
2248 | if (scanOffs > curOffs) |
2249 | goto FINISHED; |
2250 | #ifdef _DEBUG |
2251 | isCall = true; |
2252 | #endif |
2253 | regMask = newRegMask; |
2254 | iregMask = inewRegMask; |
2255 | callArgCnt = (val >> 3) & 0x7; |
2256 | stackDepth -= callArgCnt; |
2257 | argMask = (val & 0x7); argTab = NULL; |
2258 | iargMask = inewArgMask; |
2259 | argHnum = 3; |
2260 | break; |
2261 | |
2262 | case 6: |
2263 | // |
2264 | // call 1110RRRR [ArgCnt] [ArgMask] |
2265 | // Call ArgCnt,RegMask=RRR,ArgMask |
2266 | // |
2267 | #ifdef _DEBUG |
2268 | isCall = true; |
2269 | #endif |
2270 | regMask = val & 0xf; // EBP,EBX,ESI,EDI |
2271 | iregMask = inewRegMask; |
2272 | callArgCnt = fastDecodeUnsigned(table); |
2273 | stackDepth -= callArgCnt; |
2274 | argMask = fastDecodeUnsigned(table); argTab = NULL; |
2275 | iargMask = inewArgMask; |
2276 | argHnum = sizeof(argMask) * 8; // The size of argMask in bits |
2277 | break; |
2278 | |
2279 | case 7: |
2280 | switch (val & 0x0C) |
2281 | { |
2282 | case 0x00: |
2283 | // |
2284 | // 0xF0 iptr 11110000 [IPtrMask] Arbitrary Interior Pointer Mask |
2285 | // |
2286 | iptrMask = fastDecodeUnsigned(table); |
2287 | break; |
2288 | |
2289 | case 0x04: |
2290 | // |
2291 | // 0xF4 thisptr 111101RR This pointer is in Register RR |
2292 | // 00=EDI,01=ESI,10=EBX,11=EBP |
2293 | // |
2294 | { |
2295 | static const regNum calleeSavedRegs[] = |
2296 | { REGI_EDI, REGI_ESI, REGI_EBX, REGI_EBP }; |
2297 | thisPtrReg = calleeSavedRegs[val&0x3]; |
2298 | } |
2299 | break; |
2300 | |
2301 | case 0x08: |
2302 | // |
2303 | // 0xF8 call 11111000 [PBSDpbsd][32-bit delta][32-bit ArgCnt] |
2304 | // [32-bit PndCnt][32-bit PndSize][PndOffs...] |
2305 | // |
2306 | val = *table++; |
2307 | skip = *dac_cast<PTR_DWORD>(table); table += sizeof(DWORD); |
2308 | // [VSUQFE 4670] |
2309 | // If we've already reached curOffs and the skip amount |
2310 | // is non-zero then we are done |
2311 | if ((scanOffs == curOffs) && (skip > 0)) |
2312 | goto FINISHED; |
2313 | // [VSUQFE 4670] |
2314 | scanOffs += skip; |
2315 | if (scanOffs > curOffs) |
2316 | goto FINISHED; |
2317 | #ifdef _DEBUG |
2318 | isCall = true; |
2319 | #endif |
2320 | regMask = val & 0xF; |
2321 | iregMask = val >> 4; |
2322 | callArgCnt = *dac_cast<PTR_DWORD>(table); table += sizeof(DWORD); |
2323 | stackDepth -= callArgCnt; |
2324 | argHnum = *dac_cast<PTR_DWORD>(table); table += sizeof(DWORD); |
2325 | argTabBytes = *dac_cast<PTR_DWORD>(table); table += sizeof(DWORD); |
2326 | argTab = table; |
2327 | table += argTabBytes; |
2328 | break; |
2329 | |
2330 | case 0x0C: |
2331 | // |
2332 | // 0xFF end 11111111 End of table marker |
2333 | // |
2334 | _ASSERTE(val==0xff); |
2335 | goto FINISHED; |
2336 | |
2337 | default: |
2338 | _ASSERTE(!"reserved GC encoding" ); |
2339 | break; |
2340 | } |
2341 | break; |
2342 | |
2343 | } // end switch |
2344 | |
2345 | } // end else (!(val & 0x80)) |
2346 | |
2347 | // iregMask & iargMask are subsets of regMask & argMask respectively |
2348 | |
2349 | _ASSERTE((iregMask & regMask) == iregMask); |
2350 | _ASSERTE((iargMask & argMask) == iargMask); |
2351 | |
2352 | } // end while |
2353 | |
2354 | } // end else ebp-less frame |
2355 | |
2356 | FINISHED: |
2357 | |
2358 | // iregMask & iargMask are subsets of regMask & argMask respectively |
2359 | |
2360 | _ASSERTE((iregMask & regMask) == iregMask); |
2361 | _ASSERTE((iargMask & argMask) == iargMask); |
2362 | |
2363 | if (scanOffs != curOffs) |
2364 | { |
2365 | /* must have been a boring call */ |
2366 | info->regMaskResult = RM_NONE; |
2367 | info->argMaskResult = ptrArgTP(0); |
2368 | info->iregMaskResult = RM_NONE; |
2369 | info->iargMaskResult = ptrArgTP(0); |
2370 | info->argHnumResult = 0; |
2371 | info->argTabResult = NULL; |
2372 | info->argTabBytes = 0; |
2373 | } |
2374 | else |
2375 | { |
2376 | info->regMaskResult = convertCalleeSavedRegsMask(regMask); |
2377 | info->argMaskResult = ptrArgTP(argMask); |
2378 | info->argHnumResult = argHnum; |
2379 | info->iregMaskResult = convertCalleeSavedRegsMask(iregMask); |
2380 | info->iargMaskResult = ptrArgTP(iargMask); |
2381 | info->argTabResult = argTab; |
2382 | info->argTabBytes = argTabBytes; |
2383 | } |
2384 | |
2385 | #ifdef _DEBUG |
2386 | if (scanOffs != curOffs) { |
2387 | isCall = false; |
2388 | } |
2389 | _ASSERTE(thisPtrReg == REGI_NA || (!isCall || (regNumToMask(thisPtrReg) & info->regMaskResult))); |
2390 | #endif |
2391 | info->thisPtrResult = thisPtrReg; |
2392 | |
2393 | _ASSERTE(int(stackDepth) < INT_MAX); // check that it did not underflow |
2394 | return (stackDepth * sizeof(unsigned)); |
2395 | } |
2396 | #ifdef _PREFAST_ |
2397 | #pragma warning(pop) |
2398 | #endif |
2399 | |
2400 | |
2401 | /***************************************************************************** |
2402 | * scan the register argument table for the fully interruptible case. |
2403 | this function is called to find all live objects (pushed arguments) |
2404 | and to get the stack base for fully interruptible methods. |
2405 | Returns size of things pushed on the stack for ESP frames |
2406 | |
2407 | Arguments: |
2408 | table - The pointer table |
2409 | curOffsRegs - The current code offset that should be used for reporting registers |
2410 | curOffsArgs - The current code offset that should be used for reporting args |
2411 | info - Incoming arg used to determine if there's a frame, and to save results |
2412 | */ |
2413 | |
2414 | static |
2415 | unsigned scanArgRegTableI(PTR_CBYTE table, |
2416 | unsigned curOffsRegs, |
2417 | unsigned curOffsArgs, |
2418 | hdrInfo * info) |
2419 | { |
2420 | CONTRACTL { |
2421 | NOTHROW; |
2422 | GC_NOTRIGGER; |
2423 | SUPPORTS_DAC; |
2424 | } CONTRACTL_END; |
2425 | |
2426 | regNum thisPtrReg = REGI_NA; |
2427 | unsigned ptrRegs = 0; // The mask of registers that contain pointers |
2428 | unsigned iptrRegs = 0; // The subset of ptrRegs that are interior pointers |
2429 | unsigned ptrOffs = 0; // The code offset of the table entry we are currently looking at |
2430 | unsigned argCnt = 0; // The number of args that have been pushed |
2431 | |
2432 | ptrArgTP ptrArgs(0); // The mask of stack values that contain pointers. |
2433 | ptrArgTP iptrArgs(0); // The subset of ptrArgs that are interior pointers. |
2434 | ptrArgTP argHigh(0); // The current mask position that corresponds to the top of the stack. |
2435 | |
2436 | bool isThis = false; |
2437 | bool iptr = false; |
2438 | |
2439 | // The comment before the call to scanArgRegTableI in EnumGCRefs |
2440 | // describes why curOffsRegs can be smaller than curOffsArgs. |
2441 | _ASSERTE(curOffsRegs <= curOffsArgs); |
2442 | |
2443 | #if VERIFY_GC_TABLES |
2444 | _ASSERTE(*castto(table, unsigned short *)++ == 0xBABE); |
2445 | #endif |
2446 | |
2447 | bool hasPartialArgInfo; |
2448 | |
2449 | #ifndef UNIX_X86_ABI |
2450 | hasPartialArgInfo = info->ebpFrame; |
2451 | #else |
2452 | // For x86/Linux, interruptible code always has full arg info |
2453 | // |
2454 | // This should be aligned with emitFullArgInfo setting at |
2455 | // emitter::emitEndCodeGen (in JIT) |
2456 | hasPartialArgInfo = false; |
2457 | #endif |
2458 | |
2459 | /* |
2460 | Encoding table for methods that are fully interruptible |
2461 | |
2462 | The encoding used is as follows: |
2463 | |
2464 | ptr reg dead 00RRRDDD [RRR != 100] |
2465 | ptr reg live 01RRRDDD [RRR != 100] |
2466 | |
2467 | non-ptr arg push 10110DDD [SSS == 110] |
2468 | ptr arg push 10SSSDDD [SSS != 110] && [SSS != 111] |
2469 | ptr arg pop 11CCCDDD [CCC != 000] && [CCC != 110] && [CCC != 111] |
2470 | little delta skip 11000DDD [CCC == 000] |
2471 | bigger delta skip 11110BBB [CCC == 110] |
2472 | |
2473 | The values used in the encodings are as follows: |
2474 | |
2475 | DDD code offset delta from previous entry (0-7) |
2476 | BBB bigger delta 000=8,001=16,010=24,...,111=64 |
2477 | RRR register number (EAX=000,ECX=001,EDX=010,EBX=011, |
2478 | EBP=101,ESI=110,EDI=111), ESP=100 is reserved |
2479 | SSS argument offset from base of stack. This is |
2480 | redundant for frameless methods as we can |
2481 | infer it from the previous pushes+pops. However, |
2482 | for EBP-methods, we only report GC pushes, and |
2483 | so we need SSS |
2484 | CCC argument count being popped (includes only ptrs for EBP methods) |
2485 | |
2486 | The following are the 'large' versions: |
2487 | |
2488 | large delta skip 10111000 [0xB8] , encodeUnsigned(delta) |
2489 | |
2490 | large ptr arg push 11111000 [0xF8] , encodeUnsigned(pushCount) |
2491 | large non-ptr arg push 11111001 [0xF9] , encodeUnsigned(pushCount) |
2492 | large ptr arg pop 11111100 [0xFC] , encodeUnsigned(popCount) |
2493 | large arg dead 11111101 [0xFD] , encodeUnsigned(popCount) for caller-pop args. |
2494 | Any GC args go dead after the call, |
2495 | but are still sitting on the stack |
2496 | |
2497 | this pointer prefix 10111100 [0xBC] the next encoding is a ptr live |
2498 | or a ptr arg push |
2499 | and contains the this pointer |
2500 | |
2501 | interior or by-ref 10111111 [0xBF] the next encoding is a ptr live |
2502 | pointer prefix or a ptr arg push |
2503 | and contains an interior |
2504 | or by-ref pointer |
2505 | |
2506 | |
2507 | The value 11111111 [0xFF] indicates the end of the table. |
2508 | */ |
2509 | |
2510 | #if defined(DACCESS_COMPILE) |
2511 | bool fLastByteIsZero = false; |
2512 | #endif // DACCESS_COMPILE |
2513 | |
2514 | /* Have we reached the instruction we're looking for? */ |
2515 | |
2516 | while (ptrOffs <= curOffsArgs) |
2517 | { |
2518 | unsigned val; |
2519 | |
2520 | int isPop; |
2521 | unsigned argOfs; |
2522 | |
2523 | unsigned regMask; |
2524 | |
2525 | // iptrRegs & iptrArgs are subsets of ptrRegs & ptrArgs respectively |
2526 | |
2527 | _ASSERTE((iptrRegs & ptrRegs) == iptrRegs); |
2528 | _ASSERTE((iptrArgs & ptrArgs) == iptrArgs); |
2529 | |
2530 | /* Now find the next 'life' transition */ |
2531 | |
2532 | val = *table++; |
2533 | #if defined(DACCESS_COMPILE) |
2534 | // In this scenario, a zero byte means that EAX is going dead at the current offset. Since EAX |
2535 | // can't go dead more than once at any given offset, it's invalid to have two consecutive bytes |
2536 | // of zero. If this were to happen, then it means that there is most likely some sort of DAC |
2537 | // error, and it may lead to problems such as infinite loops. So we bail out early instead. |
2538 | if ((val == 0) && fLastByteIsZero) |
2539 | { |
2540 | DacError(CORDBG_E_TARGET_INCONSISTENT); |
2541 | UNREACHABLE(); |
2542 | } |
2543 | fLastByteIsZero = (val == 0); |
2544 | #endif // DACCESS_COMPILE |
2545 | |
2546 | if (!(val & 0x80)) |
2547 | { |
2548 | /* A small 'regPtr' encoding */ |
2549 | |
2550 | regNum reg; |
2551 | |
2552 | ptrOffs += (val ) & 0x7; |
2553 | if (ptrOffs > curOffsArgs) { |
2554 | iptr = isThis = false; |
2555 | goto REPORT_REFS; |
2556 | } |
2557 | else if (ptrOffs > curOffsRegs) { |
2558 | iptr = isThis = false; |
2559 | continue; |
2560 | } |
2561 | |
2562 | reg = (regNum)((val >> 3) & 0x7); |
2563 | regMask = 1 << reg; // EAX,ECX,EDX,EBX,---,EBP,ESI,EDI |
2564 | |
2565 | #if 0 |
2566 | printf("regMask = %04X -> %04X\n" , ptrRegs, |
2567 | (val & 0x40) ? (ptrRegs | regMask) |
2568 | : (ptrRegs & ~regMask)); |
2569 | #endif |
2570 | |
2571 | /* The register is becoming live/dead here */ |
2572 | |
2573 | if (val & 0x40) |
2574 | { |
2575 | /* Becomes Live */ |
2576 | _ASSERTE((ptrRegs & regMask) == 0); |
2577 | |
2578 | ptrRegs |= regMask; |
2579 | |
2580 | if (isThis) |
2581 | { |
2582 | thisPtrReg = reg; |
2583 | } |
2584 | if (iptr) |
2585 | { |
2586 | iptrRegs |= regMask; |
2587 | } |
2588 | } |
2589 | else |
2590 | { |
2591 | /* Becomes Dead */ |
2592 | _ASSERTE((ptrRegs & regMask) != 0); |
2593 | |
2594 | ptrRegs &= ~regMask; |
2595 | |
2596 | if (reg == thisPtrReg) |
2597 | { |
2598 | thisPtrReg = REGI_NA; |
2599 | } |
2600 | if (iptrRegs & regMask) |
2601 | { |
2602 | iptrRegs &= ~regMask; |
2603 | } |
2604 | } |
2605 | iptr = isThis = false; |
2606 | continue; |
2607 | } |
2608 | |
2609 | /* This is probably an argument push/pop */ |
2610 | |
2611 | argOfs = (val & 0x38) >> 3; |
2612 | |
2613 | /* 6 [110] and 7 [111] are reserved for other encodings */ |
2614 | if (argOfs < 6) |
2615 | { |
2616 | |
2617 | /* A small argument encoding */ |
2618 | |
2619 | ptrOffs += (val & 0x07); |
2620 | if (ptrOffs > curOffsArgs) { |
2621 | iptr = isThis = false; |
2622 | goto REPORT_REFS; |
2623 | } |
2624 | isPop = (val & 0x40); |
2625 | |
2626 | ARG: |
2627 | |
2628 | if (isPop) |
2629 | { |
2630 | if (argOfs == 0) |
2631 | continue; // little skip encoding |
2632 | |
2633 | /* We remove (pop) the top 'argOfs' entries */ |
2634 | |
2635 | _ASSERTE(argOfs || argOfs <= argCnt); |
2636 | |
2637 | /* adjust # of arguments */ |
2638 | |
2639 | argCnt -= argOfs; |
2640 | _ASSERTE(argCnt < MAX_PTRARG_OFS); |
2641 | |
2642 | // printf("[%04X] popping %u args: mask = %04X\n", ptrOffs, argOfs, (int)ptrArgs); |
2643 | |
2644 | do |
2645 | { |
2646 | _ASSERTE(!isZero(argHigh)); |
2647 | |
2648 | /* Do we have an argument bit that's on? */ |
2649 | |
2650 | if (intersect(ptrArgs, argHigh)) |
2651 | { |
2652 | /* Turn off the bit */ |
2653 | |
2654 | setDiff(ptrArgs, argHigh); |
2655 | setDiff(iptrArgs, argHigh); |
2656 | |
2657 | /* We've removed one more argument bit */ |
2658 | |
2659 | argOfs--; |
2660 | } |
2661 | else if (hasPartialArgInfo) |
2662 | argCnt--; |
2663 | else /* full arg info && not a ref */ |
2664 | argOfs--; |
2665 | |
2666 | /* Continue with the next lower bit */ |
2667 | |
2668 | argHigh >>= 1; |
2669 | } |
2670 | while (argOfs); |
2671 | |
2672 | _ASSERTE(!hasPartialArgInfo || |
2673 | isZero(argHigh) || |
2674 | (argHigh == CONSTRUCT_ptrArgTP(1, (argCnt-1)))); |
2675 | |
2676 | if (hasPartialArgInfo) |
2677 | { |
2678 | // We always leave argHigh pointing to the next ptr arg. |
2679 | // So, while argHigh is non-zero, and not a ptrArg, we shift right (and subtract |
2680 | // one arg from our argCnt) until it is a ptrArg. |
2681 | while (!intersect(argHigh, ptrArgs) && (!isZero(argHigh))) |
2682 | { |
2683 | argHigh >>= 1; |
2684 | argCnt--; |
2685 | } |
2686 | } |
2687 | |
2688 | } |
2689 | else |
2690 | { |
2691 | /* Add a new ptr arg entry at stack offset 'argOfs' */ |
2692 | |
2693 | if (argOfs >= MAX_PTRARG_OFS) |
2694 | { |
2695 | _ASSERTE_ALL_BUILDS("clr/src/VM/eetwain.cpp" , !"scanArgRegTableI: args pushed 'too deep'" ); |
2696 | } |
2697 | else |
2698 | { |
2699 | /* Full arg info reports all pushes, and thus |
2700 | argOffs has to be consistent with argCnt */ |
2701 | |
2702 | _ASSERTE(hasPartialArgInfo || argCnt == argOfs); |
2703 | |
2704 | /* store arg count */ |
2705 | |
2706 | argCnt = argOfs + 1; |
2707 | _ASSERTE((argCnt < MAX_PTRARG_OFS)); |
2708 | |
2709 | /* Compute the appropriate argument offset bit */ |
2710 | |
2711 | ptrArgTP argMask = CONSTRUCT_ptrArgTP(1, argOfs); |
2712 | |
2713 | // printf("push arg at offset %02u --> mask = %04X\n", argOfs, (int)argMask); |
2714 | |
2715 | /* We should never push twice at the same offset */ |
2716 | |
2717 | _ASSERTE(!intersect( ptrArgs, argMask)); |
2718 | _ASSERTE(!intersect(iptrArgs, argMask)); |
2719 | |
2720 | /* We should never push within the current highest offset */ |
2721 | |
2722 | // _ASSERTE(argHigh < argMask); |
2723 | |
2724 | /* This is now the highest bit we've set */ |
2725 | |
2726 | argHigh = argMask; |
2727 | |
2728 | /* Set the appropriate bit in the argument mask */ |
2729 | |
2730 | ptrArgs |= argMask; |
2731 | |
2732 | if (iptr) |
2733 | iptrArgs |= argMask; |
2734 | } |
2735 | |
2736 | iptr = isThis = false; |
2737 | } |
2738 | continue; |
2739 | } |
2740 | else if (argOfs == 6) |
2741 | { |
2742 | if (val & 0x40) { |
2743 | /* Bigger delta 000=8,001=16,010=24,...,111=64 */ |
2744 | ptrOffs += (((val & 0x07) + 1) << 3); |
2745 | } |
2746 | else { |
2747 | /* non-ptr arg push */ |
2748 | _ASSERTE(!hasPartialArgInfo); |
2749 | ptrOffs += (val & 0x07); |
2750 | if (ptrOffs > curOffsArgs) { |
2751 | iptr = isThis = false; |
2752 | goto REPORT_REFS; |
2753 | } |
2754 | argHigh = CONSTRUCT_ptrArgTP(1, argCnt); |
2755 | argCnt++; |
2756 | _ASSERTE(argCnt < MAX_PTRARG_OFS); |
2757 | } |
2758 | continue; |
2759 | } |
2760 | |
2761 | /* argOfs was 7 [111] which is reserved for the larger encodings */ |
2762 | |
2763 | _ASSERTE(argOfs==7); |
2764 | |
2765 | switch (val) |
2766 | { |
2767 | case 0xFF: |
2768 | iptr = isThis = false; |
2769 | goto REPORT_REFS; // the method might loop !!! |
2770 | |
2771 | case 0xB8: |
2772 | val = fastDecodeUnsigned(table); |
2773 | ptrOffs += val; |
2774 | continue; |
2775 | |
2776 | case 0xBC: |
2777 | isThis = true; |
2778 | break; |
2779 | |
2780 | case 0xBF: |
2781 | iptr = true; |
2782 | break; |
2783 | |
2784 | case 0xF8: |
2785 | case 0xFC: |
2786 | isPop = val & 0x04; |
2787 | argOfs = fastDecodeUnsigned(table); |
2788 | goto ARG; |
2789 | |
2790 | case 0xFD: { |
2791 | argOfs = fastDecodeUnsigned(table); |
2792 | _ASSERTE(argOfs && argOfs <= argCnt); |
2793 | |
2794 | // Kill the top "argOfs" pointers. |
2795 | |
2796 | ptrArgTP argMask; |
2797 | for(argMask = CONSTRUCT_ptrArgTP(1, argCnt); (argOfs != 0); argMask >>= 1) |
2798 | { |
2799 | _ASSERTE(!isZero(argMask) && !isZero(ptrArgs)); // there should be remaining pointers |
2800 | |
2801 | if (intersect(ptrArgs, argMask)) |
2802 | { |
2803 | setDiff(ptrArgs, argMask); |
2804 | setDiff(iptrArgs, argMask); |
2805 | argOfs--; |
2806 | } |
2807 | } |
2808 | |
2809 | // For partial arg info, need to find the next higest pointer for argHigh |
2810 | |
2811 | if (hasPartialArgInfo) |
2812 | { |
2813 | for(argHigh = ptrArgTP(0); !isZero(argMask); argMask >>= 1) |
2814 | { |
2815 | if (intersect(ptrArgs, argMask)) { |
2816 | argHigh = argMask; |
2817 | break; |
2818 | } |
2819 | } |
2820 | } |
2821 | } break; |
2822 | |
2823 | case 0xF9: |
2824 | argOfs = fastDecodeUnsigned(table); |
2825 | argCnt += argOfs; |
2826 | break; |
2827 | |
2828 | default: |
2829 | _ASSERTE(!"Unexpected special code %04X" ); |
2830 | } |
2831 | } |
2832 | |
2833 | /* Report all live pointer registers */ |
2834 | REPORT_REFS: |
2835 | |
2836 | _ASSERTE((iptrRegs & ptrRegs) == iptrRegs); // iptrRegs is a subset of ptrRegs |
2837 | _ASSERTE((iptrArgs & ptrArgs) == iptrArgs); // iptrArgs is a subset of ptrArgs |
2838 | |
2839 | /* Save the current live register, argument set, and argCnt */ |
2840 | |
2841 | info->regMaskResult = convertAllRegsMask(ptrRegs); |
2842 | info->argMaskResult = ptrArgs; |
2843 | info->argHnumResult = 0; |
2844 | info->iregMaskResult = convertAllRegsMask(iptrRegs); |
2845 | info->iargMaskResult = iptrArgs; |
2846 | |
2847 | info->thisPtrResult = thisPtrReg; |
2848 | _ASSERTE(thisPtrReg == REGI_NA || (regNumToMask(thisPtrReg) & info->regMaskResult)); |
2849 | |
2850 | if (hasPartialArgInfo) |
2851 | { |
2852 | return 0; |
2853 | } |
2854 | else |
2855 | { |
2856 | _ASSERTE(int(argCnt) < INT_MAX); // check that it did not underflow |
2857 | return (argCnt * sizeof(unsigned)); |
2858 | } |
2859 | } |
2860 | |
2861 | /*****************************************************************************/ |
2862 | |
2863 | unsigned GetPushedArgSize(hdrInfo * info, PTR_CBYTE table, DWORD curOffs) |
2864 | { |
2865 | SUPPORTS_DAC; |
2866 | |
2867 | unsigned sz; |
2868 | |
2869 | if (info->interruptible) |
2870 | { |
2871 | sz = scanArgRegTableI(skipToArgReg(*info, table), |
2872 | curOffs, |
2873 | curOffs, |
2874 | info); |
2875 | } |
2876 | else |
2877 | { |
2878 | sz = scanArgRegTable(skipToArgReg(*info, table), |
2879 | curOffs, |
2880 | info); |
2881 | } |
2882 | |
2883 | return sz; |
2884 | } |
2885 | |
2886 | /*****************************************************************************/ |
2887 | |
2888 | inline |
2889 | void TRASH_CALLEE_UNSAVED_REGS(PREGDISPLAY pContext) |
2890 | { |
2891 | LIMITED_METHOD_DAC_CONTRACT; |
2892 | |
2893 | #ifdef _DEBUG |
2894 | /* This is not completely correct as we lose the current value, but |
2895 | it should not really be useful to anyone. */ |
2896 | static DWORD s_badData = 0xDEADBEEF; |
2897 | pContext->SetEaxLocation(&s_badData); |
2898 | pContext->SetEcxLocation(&s_badData); |
2899 | pContext->SetEdxLocation(&s_badData); |
2900 | #endif //_DEBUG |
2901 | } |
2902 | |
2903 | /***************************************************************************** |
2904 | * Sizes of certain i386 instructions which are used in the prolog/epilog |
2905 | */ |
2906 | |
2907 | // Can we use sign-extended byte to encode the imm value, or do we need a dword |
2908 | #define CAN_COMPRESS(val) ((INT8)(val) == (INT32)(val)) |
2909 | |
2910 | #define SZ_ADD_REG(val) ( 2 + (CAN_COMPRESS(val) ? 1 : 4)) |
2911 | #define SZ_AND_REG(val) SZ_ADD_REG(val) |
2912 | #define SZ_POP_REG 1 |
2913 | #define SZ_LEA(offset) SZ_ADD_REG(offset) |
2914 | #define SZ_MOV_REG_REG 2 |
2915 | |
2916 | bool IsMarkerInstr(BYTE val) |
2917 | { |
2918 | SUPPORTS_DAC; |
2919 | #ifdef _DEBUG |
2920 | return (val == X86_INSTR_INT3) || // Debugger might stomp with an int3 |
2921 | (val == X86_INSTR_HLT && GCStress<cfg_any>::IsEnabled()); // GcCover might stomp with a Hlt |
2922 | #else |
2923 | return false; |
2924 | #endif |
2925 | } |
2926 | |
2927 | /* Check if the given instruction opcode is the one we expect. |
2928 | This is a "necessary" but not "sufficient" check as it ignores the check |
2929 | if the instruction is one of our special markers (for debugging and GcStress) */ |
2930 | |
2931 | bool CheckInstrByte(BYTE val, BYTE expectedValue) |
2932 | { |
2933 | SUPPORTS_DAC; |
2934 | return ((val == expectedValue) || IsMarkerInstr(val)); |
2935 | } |
2936 | |
2937 | /* Similar to CheckInstrByte(). Use this to check a masked opcode (ignoring |
2938 | optional bits in the opcode encoding). |
2939 | valPattern is the masked out value. |
2940 | expectedPattern is the mask value we expect. |
2941 | val is the actual instruction opcode |
2942 | */ |
2943 | bool CheckInstrBytePattern(BYTE valPattern, BYTE expectedPattern, BYTE val) |
2944 | { |
2945 | SUPPORTS_DAC; |
2946 | |
2947 | _ASSERTE((valPattern & val) == valPattern); |
2948 | |
2949 | return ((valPattern == expectedPattern) || IsMarkerInstr(val)); |
2950 | } |
2951 | |
2952 | /* Similar to CheckInstrByte() */ |
2953 | |
2954 | bool CheckInstrWord(WORD val, WORD expectedValue) |
2955 | { |
2956 | LIMITED_METHOD_CONTRACT; |
2957 | SUPPORTS_DAC; |
2958 | |
2959 | return ((val == expectedValue) || IsMarkerInstr(val & 0xFF)); |
2960 | } |
2961 | |
2962 | // Use this to check if the instruction at offset "walkOffset" has already |
2963 | // been executed |
2964 | // "actualHaltOffset" is the offset when the code was suspended |
2965 | // It is assumed that there is linear control flow from offset 0 to "actualHaltOffset". |
2966 | // |
2967 | // This has been factored out just so that the intent of the comparison |
2968 | // is clear (compared to the opposite intent) |
2969 | |
2970 | bool InstructionAlreadyExecuted(unsigned walkOffset, unsigned actualHaltOffset) |
2971 | { |
2972 | SUPPORTS_DAC; |
2973 | return (walkOffset < actualHaltOffset); |
2974 | } |
2975 | |
2976 | // skips past a "arith REG, IMM" |
2977 | inline unsigned SKIP_ARITH_REG(int val, PTR_CBYTE base, unsigned offset) |
2978 | { |
2979 | LIMITED_METHOD_DAC_CONTRACT; |
2980 | |
2981 | unsigned delta = 0; |
2982 | if (val != 0) |
2983 | { |
2984 | #ifdef _DEBUG |
2985 | // Confirm that arith instruction is at the correct place |
2986 | _ASSERTE(CheckInstrBytePattern(base[offset ] & 0xFD, 0x81, base[offset]) && |
2987 | CheckInstrBytePattern(base[offset+1] & 0xC0, 0xC0, base[offset+1])); |
2988 | // only use DWORD form if needed |
2989 | _ASSERTE(((base[offset] & 2) != 0) == CAN_COMPRESS(val) || |
2990 | IsMarkerInstr(base[offset])); |
2991 | #endif |
2992 | delta = 2 + (CAN_COMPRESS(val) ? 1 : 4); |
2993 | } |
2994 | return(offset + delta); |
2995 | } |
2996 | |
2997 | inline unsigned SKIP_PUSH_REG(PTR_CBYTE base, unsigned offset) |
2998 | { |
2999 | LIMITED_METHOD_DAC_CONTRACT; |
3000 | |
3001 | // Confirm it is a push instruction |
3002 | _ASSERTE(CheckInstrBytePattern(base[offset] & 0xF8, 0x50, base[offset])); |
3003 | return(offset + 1); |
3004 | } |
3005 | |
3006 | inline unsigned SKIP_POP_REG(PTR_CBYTE base, unsigned offset) |
3007 | { |
3008 | LIMITED_METHOD_DAC_CONTRACT; |
3009 | |
3010 | // Confirm it is a pop instruction |
3011 | _ASSERTE(CheckInstrBytePattern(base[offset] & 0xF8, 0x58, base[offset])); |
3012 | return(offset + 1); |
3013 | } |
3014 | |
3015 | inline unsigned SKIP_MOV_REG_REG(PTR_CBYTE base, unsigned offset) |
3016 | { |
3017 | LIMITED_METHOD_DAC_CONTRACT; |
3018 | |
3019 | // Confirm it is a move instruction |
3020 | // Note that only the first byte may have been stomped on by IsMarkerInstr() |
3021 | // So we can check the second byte directly |
3022 | _ASSERTE(CheckInstrBytePattern(base[offset] & 0xFD, 0x89, base[offset]) && |
3023 | (base[offset+1] & 0xC0) == 0xC0); |
3024 | return(offset + 2); |
3025 | } |
3026 | |
3027 | inline unsigned SKIP_LEA_ESP_EBP(int val, PTR_CBYTE base, unsigned offset) |
3028 | { |
3029 | LIMITED_METHOD_DAC_CONTRACT; |
3030 | |
3031 | #ifdef _DEBUG |
3032 | // Confirm it is the right instruction |
3033 | // Note that only the first byte may have been stomped on by IsMarkerInstr() |
3034 | // So we can check the second byte directly |
3035 | WORD wOpcode = *(PTR_WORD)base; |
3036 | _ASSERTE((CheckInstrWord(wOpcode, X86_INSTR_w_LEA_ESP_EBP_BYTE_OFFSET) && |
3037 | (val == *(PTR_SBYTE)(base+2)) && |
3038 | CAN_COMPRESS(val)) || |
3039 | (CheckInstrWord(wOpcode, X86_INSTR_w_LEA_ESP_EBP_DWORD_OFFSET) && |
3040 | (val == *(PTR_INT32)(base+2)) && |
3041 | !CAN_COMPRESS(val))); |
3042 | #endif |
3043 | |
3044 | unsigned delta = 2 + (CAN_COMPRESS(val) ? 1 : 4); |
3045 | return(offset + delta); |
3046 | } |
3047 | |
3048 | unsigned SKIP_ALLOC_FRAME(int size, PTR_CBYTE base, unsigned offset) |
3049 | { |
3050 | CONTRACTL { |
3051 | NOTHROW; |
3052 | GC_NOTRIGGER; |
3053 | SUPPORTS_DAC; |
3054 | } CONTRACTL_END; |
3055 | |
3056 | _ASSERTE(size != 0); |
3057 | |
3058 | if (size == sizeof(void*)) |
3059 | { |
3060 | // We do "push eax" instead of "sub esp,4" |
3061 | return (SKIP_PUSH_REG(base, offset)); |
3062 | } |
3063 | |
3064 | if (size >= (int)GetOsPageSize()) |
3065 | { |
3066 | if (size < int(3 * GetOsPageSize())) |
3067 | { |
3068 | // add 7 bytes for one or two TEST EAX, [ESP+GetOsPageSize()] |
3069 | offset += (size / GetOsPageSize()) * 7; |
3070 | } |
3071 | else |
3072 | { |
3073 | // xor eax, eax 2 |
3074 | // [nop] 0-3 |
3075 | // loop: |
3076 | // test [esp + eax], eax 3 |
3077 | // sub eax, 0x1000 5 |
3078 | // cmp EAX, -size 5 |
3079 | // jge loop 2 |
3080 | offset += 2; |
3081 | |
3082 | // NGEN images that support rejit may have extra nops we need to skip over |
3083 | while (offset < 5) |
3084 | { |
3085 | if (CheckInstrByte(base[offset], X86_INSTR_NOP)) |
3086 | { |
3087 | offset++; |
3088 | } |
3089 | else |
3090 | { |
3091 | break; |
3092 | } |
3093 | } |
3094 | offset += 15; |
3095 | } |
3096 | } |
3097 | |
3098 | // sub ESP, size |
3099 | return (SKIP_ARITH_REG(size, base, offset)); |
3100 | } |
3101 | |
3102 | |
3103 | #endif // !USE_GC_INFO_DECODER |
3104 | |
3105 | |
3106 | #if defined(WIN64EXCEPTIONS) && !defined(CROSSGEN_COMPILE) |
3107 | |
3108 | void EECodeManager::EnsureCallerContextIsValid( PREGDISPLAY pRD, StackwalkCacheEntry* pCacheEntry, EECodeInfo * pCodeInfo /*= NULL*/ ) |
3109 | { |
3110 | CONTRACTL |
3111 | { |
3112 | NOTHROW; |
3113 | GC_NOTRIGGER; |
3114 | SUPPORTS_DAC; |
3115 | } |
3116 | CONTRACTL_END; |
3117 | |
3118 | if( !pRD->IsCallerContextValid ) |
3119 | { |
3120 | #if !defined(DACCESS_COMPILE) && defined(HAS_QUICKUNWIND) |
3121 | if (pCacheEntry != NULL) |
3122 | { |
3123 | // lightened schema: take stack unwind info from stackwalk cache |
3124 | QuickUnwindStackFrame(pRD, pCacheEntry, EnsureCallerStackFrameIsValid); |
3125 | } |
3126 | else |
3127 | #endif // !DACCESS_COMPILE |
3128 | { |
3129 | // We need to make a copy here (instead of switching the pointers), in order to preserve the current context |
3130 | *(pRD->pCallerContext) = *(pRD->pCurrentContext); |
3131 | *(pRD->pCallerContextPointers) = *(pRD->pCurrentContextPointers); |
3132 | |
3133 | Thread::VirtualUnwindCallFrame(pRD->pCallerContext, pRD->pCallerContextPointers, pCodeInfo); |
3134 | } |
3135 | |
3136 | pRD->IsCallerContextValid = TRUE; |
3137 | } |
3138 | |
3139 | _ASSERTE( pRD->IsCallerContextValid ); |
3140 | } |
3141 | |
3142 | size_t EECodeManager::GetCallerSp( PREGDISPLAY pRD ) |
3143 | { |
3144 | CONTRACTL { |
3145 | NOTHROW; |
3146 | GC_NOTRIGGER; |
3147 | SUPPORTS_DAC; |
3148 | } CONTRACTL_END; |
3149 | |
3150 | // Don't add usage of this field. This is only temporary. |
3151 | // See ExceptionTracker::InitializeCrawlFrame() for more information. |
3152 | if (!pRD->IsCallerSPValid) |
3153 | { |
3154 | EnsureCallerContextIsValid(pRD, NULL); |
3155 | } |
3156 | |
3157 | return GetSP(pRD->pCallerContext); |
3158 | } |
3159 | |
3160 | #endif // WIN64EXCEPTIONS && !CROSSGEN_COMPILE |
3161 | |
3162 | #ifdef HAS_QUICKUNWIND |
3163 | /* |
3164 | * Light unwind the current stack frame, using provided cache entry. |
3165 | * pPC, Esp and pEbp of pContext are updated. |
3166 | */ |
3167 | |
3168 | // static |
3169 | void EECodeManager::QuickUnwindStackFrame(PREGDISPLAY pRD, StackwalkCacheEntry *pCacheEntry, QuickUnwindFlag flag) |
3170 | { |
3171 | CONTRACTL { |
3172 | NOTHROW; |
3173 | GC_NOTRIGGER; |
3174 | } CONTRACTL_END; |
3175 | |
3176 | _ASSERTE(pCacheEntry); |
3177 | _ASSERTE(GetControlPC(pRD) == (PCODE)(pCacheEntry->IP)); |
3178 | |
3179 | #if defined(_TARGET_X86_) |
3180 | _ASSERTE(flag == UnwindCurrentStackFrame); |
3181 | |
3182 | _ASSERTE(!pCacheEntry->fUseEbp || pCacheEntry->fUseEbpAsFrameReg); |
3183 | |
3184 | if (pCacheEntry->fUseEbpAsFrameReg) |
3185 | { |
3186 | _ASSERTE(pCacheEntry->fUseEbp); |
3187 | TADDR curEBP = (TADDR)*pRD->GetEbpLocation(); |
3188 | |
3189 | // EBP frame, update ESP through EBP, since ESPOffset may vary |
3190 | pRD->SetEbpLocation(PTR_DWORD(curEBP)); |
3191 | pRD->SP = curEBP + sizeof(void*); |
3192 | } |
3193 | else |
3194 | { |
3195 | _ASSERTE(!pCacheEntry->fUseEbp); |
3196 | // ESP frame, update up to retAddr using ESPOffset |
3197 | pRD->SP += pCacheEntry->ESPOffset; |
3198 | } |
3199 | pRD->PCTAddr = (TADDR)pRD->SP; |
3200 | pRD->ControlPC = *PTR_PCODE(pRD->PCTAddr); |
3201 | pRD->SP += sizeof(void*) + pCacheEntry->argSize; |
3202 | |
3203 | #elif defined(_TARGET_AMD64_) |
3204 | if (pRD->IsCallerContextValid) |
3205 | { |
3206 | pRD->pCurrentContext->Rbp = pRD->pCallerContext->Rbp; |
3207 | pRD->pCurrentContext->Rsp = pRD->pCallerContext->Rsp; |
3208 | pRD->pCurrentContext->Rip = pRD->pCallerContext->Rip; |
3209 | } |
3210 | else |
3211 | { |
3212 | PCONTEXT pSourceCtx = NULL; |
3213 | PCONTEXT pTargetCtx = NULL; |
3214 | if (flag == UnwindCurrentStackFrame) |
3215 | { |
3216 | pTargetCtx = pRD->pCurrentContext; |
3217 | pSourceCtx = pRD->pCurrentContext; |
3218 | } |
3219 | else |
3220 | { |
3221 | pTargetCtx = pRD->pCallerContext; |
3222 | pSourceCtx = pRD->pCurrentContext; |
3223 | } |
3224 | |
3225 | // Unwind RBP. The offset is relative to the current sp. |
3226 | if (pCacheEntry->RBPOffset == 0) |
3227 | { |
3228 | pTargetCtx->Rbp = pSourceCtx->Rbp; |
3229 | } |
3230 | else |
3231 | { |
3232 | pTargetCtx->Rbp = *(UINT_PTR*)(pSourceCtx->Rsp + pCacheEntry->RBPOffset); |
3233 | } |
3234 | |
3235 | // Adjust the sp. From this pointer onwards pCurrentContext->Rsp is the caller sp. |
3236 | pTargetCtx->Rsp = pSourceCtx->Rsp + pCacheEntry->RSPOffset; |
3237 | |
3238 | // Retrieve the return address. |
3239 | pTargetCtx->Rip = *(UINT_PTR*)((pTargetCtx->Rsp) - sizeof(UINT_PTR)); |
3240 | } |
3241 | |
3242 | if (flag == UnwindCurrentStackFrame) |
3243 | { |
3244 | SyncRegDisplayToCurrentContext(pRD); |
3245 | pRD->IsCallerContextValid = FALSE; |
3246 | pRD->IsCallerSPValid = FALSE; // Don't add usage of this field. This is only temporary. |
3247 | } |
3248 | |
3249 | #else // !_TARGET_X86_ && !_TARGET_AMD64_ |
3250 | PORTABILITY_ASSERT("EECodeManager::QuickUnwindStackFrame is not implemented on this platform." ); |
3251 | #endif // !_TARGET_X86_ && !_TARGET_AMD64_ |
3252 | } |
3253 | #endif // HAS_QUICKUNWIND |
3254 | |
3255 | /*****************************************************************************/ |
3256 | #ifdef _TARGET_X86_ // UnwindStackFrame |
3257 | /*****************************************************************************/ |
3258 | |
3259 | const RegMask CALLEE_SAVED_REGISTERS_MASK[] = |
3260 | { |
3261 | RM_EDI, // first register to be pushed |
3262 | RM_ESI, |
3263 | RM_EBX, |
3264 | RM_EBP // last register to be pushed |
3265 | }; |
3266 | |
3267 | static void SetLocation(PREGDISPLAY pRD, int ind, PDWORD loc) |
3268 | { |
3269 | #ifdef WIN64EXCEPTIONS |
3270 | static const SIZE_T OFFSET_OF_CALLEE_SAVED_REGISTERS[] = |
3271 | { |
3272 | offsetof(T_KNONVOLATILE_CONTEXT_POINTERS, Edi), // first register to be pushed |
3273 | offsetof(T_KNONVOLATILE_CONTEXT_POINTERS, Esi), |
3274 | offsetof(T_KNONVOLATILE_CONTEXT_POINTERS, Ebx), |
3275 | offsetof(T_KNONVOLATILE_CONTEXT_POINTERS, Ebp), // last register to be pushed |
3276 | }; |
3277 | |
3278 | SIZE_T offsetOfRegPtr = OFFSET_OF_CALLEE_SAVED_REGISTERS[ind]; |
3279 | *(LPVOID*)(PBYTE(pRD->pCurrentContextPointers) + offsetOfRegPtr) = loc; |
3280 | #else |
3281 | static const SIZE_T OFFSET_OF_CALLEE_SAVED_REGISTERS[] = |
3282 | { |
3283 | offsetof(REGDISPLAY, pEdi), // first register to be pushed |
3284 | offsetof(REGDISPLAY, pEsi), |
3285 | offsetof(REGDISPLAY, pEbx), |
3286 | offsetof(REGDISPLAY, pEbp), // last register to be pushed |
3287 | }; |
3288 | |
3289 | SIZE_T offsetOfRegPtr = OFFSET_OF_CALLEE_SAVED_REGISTERS[ind]; |
3290 | *(LPVOID*)(PBYTE(pRD) + offsetOfRegPtr) = loc; |
3291 | #endif |
3292 | } |
3293 | |
3294 | /*****************************************************************************/ |
3295 | |
3296 | void UnwindEspFrameEpilog( |
3297 | PREGDISPLAY pContext, |
3298 | hdrInfo * info, |
3299 | PTR_CBYTE epilogBase, |
3300 | unsigned flags) |
3301 | { |
3302 | LIMITED_METHOD_CONTRACT; |
3303 | SUPPORTS_DAC; |
3304 | |
3305 | _ASSERTE(info->epilogOffs != hdrInfo::NOT_IN_EPILOG); |
3306 | _ASSERTE(!info->ebpFrame && !info->doubleAlign); |
3307 | _ASSERTE(info->epilogOffs > 0); |
3308 | |
3309 | int offset = 0; |
3310 | unsigned ESP = pContext->SP; |
3311 | |
3312 | if (info->rawStkSize) |
3313 | { |
3314 | if (!InstructionAlreadyExecuted(offset, info->epilogOffs)) |
3315 | { |
3316 | /* We have NOT executed the "ADD ESP, FrameSize", |
3317 | so manually adjust stack pointer */ |
3318 | ESP += info->rawStkSize; |
3319 | } |
3320 | |
3321 | // We have already popped off the frame (excluding the callee-saved registers) |
3322 | |
3323 | if (epilogBase[0] == X86_INSTR_POP_ECX) |
3324 | { |
3325 | // We may use "POP ecx" for doing "ADD ESP, 4", |
3326 | // or we may not (in the case of JMP epilogs) |
3327 | _ASSERTE(info->rawStkSize == sizeof(void*)); |
3328 | offset = SKIP_POP_REG(epilogBase, offset); |
3329 | } |
3330 | else |
3331 | { |
3332 | // "add esp, rawStkSize" |
3333 | offset = SKIP_ARITH_REG(info->rawStkSize, epilogBase, offset); |
3334 | } |
3335 | } |
3336 | |
3337 | /* Remaining callee-saved regs are at ESP. Need to update |
3338 | regsMask as well to exclude registers which have already been popped. */ |
3339 | |
3340 | const RegMask regsMask = info->savedRegMask; |
3341 | |
3342 | /* Increment "offset" in steps to see which callee-saved |
3343 | registers have already been popped */ |
3344 | |
3345 | for (unsigned i = NumItems(CALLEE_SAVED_REGISTERS_MASK); i > 0; i--) |
3346 | { |
3347 | RegMask regMask = CALLEE_SAVED_REGISTERS_MASK[i - 1]; |
3348 | |
3349 | if (!(regMask & regsMask)) |
3350 | continue; |
3351 | |
3352 | if (!InstructionAlreadyExecuted(offset, info->epilogOffs)) |
3353 | { |
3354 | /* We have NOT yet popped off the register. |
3355 | Get the value from the stack if needed */ |
3356 | if ((flags & UpdateAllRegs) || (regMask == RM_EBP)) |
3357 | { |
3358 | SetLocation(pContext, i - 1, PTR_DWORD((TADDR)ESP)); |
3359 | } |
3360 | |
3361 | /* Adjust ESP */ |
3362 | ESP += sizeof(void*); |
3363 | } |
3364 | |
3365 | offset = SKIP_POP_REG(epilogBase, offset); |
3366 | } |
3367 | |
3368 | //CEE_JMP generates an epilog similar to a normal CEE_RET epilog except for the last instruction |
3369 | _ASSERTE(CheckInstrBytePattern(epilogBase[offset] & X86_INSTR_RET, X86_INSTR_RET, epilogBase[offset]) //ret |
3370 | || CheckInstrBytePattern(epilogBase[offset], X86_INSTR_JMP_NEAR_REL32, epilogBase[offset]) //jmp ret32 |
3371 | || CheckInstrWord(*PTR_WORD(epilogBase + offset), X86_INSTR_w_JMP_FAR_IND_IMM)); //jmp [addr32] |
3372 | |
3373 | /* Finally we can set pPC */ |
3374 | pContext->PCTAddr = (TADDR)ESP; |
3375 | pContext->ControlPC = *PTR_PCODE(pContext->PCTAddr); |
3376 | |
3377 | pContext->SP = ESP; |
3378 | } |
3379 | |
3380 | /*****************************************************************************/ |
3381 | |
3382 | void UnwindEbpDoubleAlignFrameEpilog( |
3383 | PREGDISPLAY pContext, |
3384 | hdrInfo * info, |
3385 | PTR_CBYTE epilogBase, |
3386 | unsigned flags) |
3387 | { |
3388 | LIMITED_METHOD_CONTRACT; |
3389 | SUPPORTS_DAC; |
3390 | |
3391 | _ASSERTE(info->epilogOffs != hdrInfo::NOT_IN_EPILOG); |
3392 | _ASSERTE(info->ebpFrame || info->doubleAlign); |
3393 | |
3394 | _ASSERTE(info->argSize < 0x10000); // "ret" only has a 2 byte operand |
3395 | |
3396 | /* See how many instructions we have executed in the |
3397 | epilog to determine which callee-saved registers |
3398 | have already been popped */ |
3399 | int offset = 0; |
3400 | |
3401 | unsigned ESP = pContext->SP; |
3402 | |
3403 | bool needMovEspEbp = false; |
3404 | |
3405 | if (info->doubleAlign) |
3406 | { |
3407 | // add esp, rawStkSize |
3408 | |
3409 | if (!InstructionAlreadyExecuted(offset, info->epilogOffs)) |
3410 | ESP += info->rawStkSize; |
3411 | _ASSERTE(info->rawStkSize != 0); |
3412 | offset = SKIP_ARITH_REG(info->rawStkSize, epilogBase, offset); |
3413 | |
3414 | // We also need "mov esp, ebp" after popping the callee-saved registers |
3415 | needMovEspEbp = true; |
3416 | } |
3417 | else |
3418 | { |
3419 | bool needLea = false; |
3420 | |
3421 | if (info->localloc) |
3422 | { |
3423 | // ESP may be variable if a localloc was actually executed. We will reset it. |
3424 | // lea esp, [ebp-calleeSavedRegs] |
3425 | |
3426 | needLea = true; |
3427 | } |
3428 | else if (info->savedRegsCountExclFP == 0) |
3429 | { |
3430 | // We will just generate "mov esp, ebp" and be done with it. |
3431 | |
3432 | if (info->rawStkSize != 0) |
3433 | { |
3434 | needMovEspEbp = true; |
3435 | } |
3436 | } |
3437 | else if (info->rawStkSize == 0) |
3438 | { |
3439 | // do nothing before popping the callee-saved registers |
3440 | } |
3441 | else if (info->rawStkSize == sizeof(void*)) |
3442 | { |
3443 | // "pop ecx" will make ESP point to the callee-saved registers |
3444 | if (!InstructionAlreadyExecuted(offset, info->epilogOffs)) |
3445 | ESP += sizeof(void*); |
3446 | offset = SKIP_POP_REG(epilogBase, offset); |
3447 | } |
3448 | else |
3449 | { |
3450 | // We need to make ESP point to the callee-saved registers |
3451 | // lea esp, [ebp-calleeSavedRegs] |
3452 | |
3453 | needLea = true; |
3454 | } |
3455 | |
3456 | if (needLea) |
3457 | { |
3458 | // lea esp, [ebp-calleeSavedRegs] |
3459 | |
3460 | unsigned calleeSavedRegsSize = info->savedRegsCountExclFP * sizeof(void*); |
3461 | |
3462 | if (!InstructionAlreadyExecuted(offset, info->epilogOffs)) |
3463 | ESP = *pContext->GetEbpLocation() - calleeSavedRegsSize; |
3464 | |
3465 | offset = SKIP_LEA_ESP_EBP(-int(calleeSavedRegsSize), epilogBase, offset); |
3466 | } |
3467 | } |
3468 | |
3469 | for (unsigned i = NumItems(CALLEE_SAVED_REGISTERS_MASK) - 1; i > 0; i--) |
3470 | { |
3471 | RegMask regMask = CALLEE_SAVED_REGISTERS_MASK[i - 1]; |
3472 | _ASSERTE(regMask != RM_EBP); |
3473 | |
3474 | if ((info->savedRegMask & regMask) == 0) |
3475 | continue; |
3476 | |
3477 | if (!InstructionAlreadyExecuted(offset, info->epilogOffs)) |
3478 | { |
3479 | if (flags & UpdateAllRegs) |
3480 | { |
3481 | SetLocation(pContext, i - 1, PTR_DWORD((TADDR)ESP)); |
3482 | } |
3483 | ESP += sizeof(void*); |
3484 | } |
3485 | |
3486 | offset = SKIP_POP_REG(epilogBase, offset); |
3487 | } |
3488 | |
3489 | if (needMovEspEbp) |
3490 | { |
3491 | if (!InstructionAlreadyExecuted(offset, info->epilogOffs)) |
3492 | ESP = *pContext->GetEbpLocation(); |
3493 | |
3494 | offset = SKIP_MOV_REG_REG(epilogBase, offset); |
3495 | } |
3496 | |
3497 | // Have we executed the pop EBP? |
3498 | if (!InstructionAlreadyExecuted(offset, info->epilogOffs)) |
3499 | { |
3500 | pContext->SetEbpLocation(PTR_DWORD(TADDR(ESP))); |
3501 | ESP += sizeof(void*); |
3502 | } |
3503 | offset = SKIP_POP_REG(epilogBase, offset); |
3504 | |
3505 | pContext->PCTAddr = (TADDR)ESP; |
3506 | pContext->ControlPC = *PTR_PCODE(pContext->PCTAddr); |
3507 | |
3508 | pContext->SP = ESP; |
3509 | } |
3510 | |
3511 | inline SIZE_T GetStackParameterSize(hdrInfo * info) |
3512 | { |
3513 | SUPPORTS_DAC; |
3514 | return (info->varargs ? 0 : info->argSize); // Note varargs is caller-popped |
3515 | } |
3516 | |
3517 | //**************************************************************************** |
3518 | // This is the value ESP is incremented by on doing a "return" |
3519 | |
3520 | inline SIZE_T ESPIncrOnReturn(hdrInfo * info) |
3521 | { |
3522 | SUPPORTS_DAC; |
3523 | return sizeof(void *) + // pop off the return address |
3524 | GetStackParameterSize(info); |
3525 | } |
3526 | |
3527 | /*****************************************************************************/ |
3528 | |
3529 | void UnwindEpilog( |
3530 | PREGDISPLAY pContext, |
3531 | hdrInfo * info, |
3532 | PTR_CBYTE epilogBase, |
3533 | unsigned flags) |
3534 | { |
3535 | LIMITED_METHOD_CONTRACT; |
3536 | SUPPORTS_DAC; |
3537 | _ASSERTE(info->epilogOffs != hdrInfo::NOT_IN_EPILOG); |
3538 | // _ASSERTE(flags & ActiveStackFrame); // <TODO> Wont work for thread death</TODO> |
3539 | _ASSERTE(info->epilogOffs > 0); |
3540 | |
3541 | if (info->ebpFrame || info->doubleAlign) |
3542 | { |
3543 | UnwindEbpDoubleAlignFrameEpilog(pContext, info, epilogBase, flags); |
3544 | } |
3545 | else |
3546 | { |
3547 | UnwindEspFrameEpilog(pContext, info, epilogBase, flags); |
3548 | } |
3549 | |
3550 | #ifdef _DEBUG |
3551 | if (flags & UpdateAllRegs) |
3552 | TRASH_CALLEE_UNSAVED_REGS(pContext); |
3553 | #endif |
3554 | |
3555 | /* Now adjust stack pointer */ |
3556 | |
3557 | pContext->SP += ESPIncrOnReturn(info); |
3558 | } |
3559 | |
3560 | /*****************************************************************************/ |
3561 | |
3562 | void UnwindEspFrameProlog( |
3563 | PREGDISPLAY pContext, |
3564 | hdrInfo * info, |
3565 | PTR_CBYTE methodStart, |
3566 | unsigned flags) |
3567 | { |
3568 | LIMITED_METHOD_CONTRACT; |
3569 | SUPPORTS_DAC; |
3570 | |
3571 | /* we are in the middle of the prolog */ |
3572 | _ASSERTE(info->prologOffs != hdrInfo::NOT_IN_PROLOG); |
3573 | _ASSERTE(!info->ebpFrame && !info->doubleAlign); |
3574 | |
3575 | unsigned offset = 0; |
3576 | |
3577 | #ifdef _DEBUG |
3578 | // If the first two instructions are 'nop, int3', then we will |
3579 | // assume that is from a JitHalt operation and skip past it |
3580 | if (methodStart[0] == X86_INSTR_NOP && methodStart[1] == X86_INSTR_INT3) |
3581 | { |
3582 | offset += 2; |
3583 | } |
3584 | #endif |
3585 | |
3586 | const DWORD curOffs = info->prologOffs; |
3587 | unsigned ESP = pContext->SP; |
3588 | |
3589 | // Find out how many callee-saved regs have already been pushed |
3590 | |
3591 | unsigned regsMask = RM_NONE; |
3592 | PTR_DWORD savedRegPtr = PTR_DWORD((TADDR)ESP); |
3593 | |
3594 | for (unsigned i = 0; i < NumItems(CALLEE_SAVED_REGISTERS_MASK); i++) |
3595 | { |
3596 | RegMask regMask = CALLEE_SAVED_REGISTERS_MASK[i]; |
3597 | |
3598 | if (!(info->savedRegMask & regMask)) |
3599 | continue; |
3600 | |
3601 | if (InstructionAlreadyExecuted(offset, curOffs)) |
3602 | { |
3603 | ESP += sizeof(void*); |
3604 | regsMask |= regMask; |
3605 | } |
3606 | |
3607 | offset = SKIP_PUSH_REG(methodStart, offset); |
3608 | } |
3609 | |
3610 | if (info->rawStkSize) |
3611 | { |
3612 | offset = SKIP_ALLOC_FRAME(info->rawStkSize, methodStart, offset); |
3613 | |
3614 | // Note that this assumes that only the last instruction in SKIP_ALLOC_FRAME |
3615 | // actually updates ESP |
3616 | if (InstructionAlreadyExecuted(offset, curOffs + 1)) |
3617 | { |
3618 | savedRegPtr += (info->rawStkSize / sizeof(DWORD)); |
3619 | ESP += info->rawStkSize; |
3620 | } |
3621 | } |
3622 | |
3623 | // |
3624 | // Stack probe checks here |
3625 | // |
3626 | |
3627 | // Poison the value, we don't set it properly at the end of the prolog |
3628 | INDEBUG(offset = 0xCCCCCCCC); |
3629 | |
3630 | |
3631 | // Always restore EBP |
3632 | if (regsMask & RM_EBP) |
3633 | pContext->SetEbpLocation(savedRegPtr++); |
3634 | |
3635 | if (flags & UpdateAllRegs) |
3636 | { |
3637 | if (regsMask & RM_EBX) |
3638 | pContext->SetEbxLocation(savedRegPtr++); |
3639 | if (regsMask & RM_ESI) |
3640 | pContext->SetEsiLocation(savedRegPtr++); |
3641 | if (regsMask & RM_EDI) |
3642 | pContext->SetEdiLocation(savedRegPtr++); |
3643 | |
3644 | TRASH_CALLEE_UNSAVED_REGS(pContext); |
3645 | } |
3646 | |
3647 | #if 0 |
3648 | // NOTE: |
3649 | // THIS IS ONLY TRUE IF PROLOGSIZE DOES NOT INCLUDE REG-VAR INITIALIZATION !!!! |
3650 | // |
3651 | /* there is (potentially) only one additional |
3652 | instruction in the prolog, (push ebp) |
3653 | but if we would have been passed that instruction, |
3654 | info->prologOffs would be hdrInfo::NOT_IN_PROLOG! |
3655 | */ |
3656 | _ASSERTE(offset == info->prologOffs); |
3657 | #endif |
3658 | |
3659 | pContext->SP = ESP; |
3660 | } |
3661 | |
3662 | /*****************************************************************************/ |
3663 | |
3664 | void UnwindEspFrame( |
3665 | PREGDISPLAY pContext, |
3666 | hdrInfo * info, |
3667 | PTR_CBYTE table, |
3668 | PTR_CBYTE methodStart, |
3669 | DWORD curOffs, |
3670 | unsigned flags) |
3671 | { |
3672 | LIMITED_METHOD_CONTRACT; |
3673 | SUPPORTS_DAC; |
3674 | |
3675 | _ASSERTE(!info->ebpFrame && !info->doubleAlign); |
3676 | _ASSERTE(info->epilogOffs == hdrInfo::NOT_IN_EPILOG); |
3677 | |
3678 | unsigned ESP = pContext->SP; |
3679 | |
3680 | |
3681 | if (info->prologOffs != hdrInfo::NOT_IN_PROLOG) |
3682 | { |
3683 | if (info->prologOffs != 0) // Do nothing for the very start of the method |
3684 | { |
3685 | UnwindEspFrameProlog(pContext, info, methodStart, flags); |
3686 | ESP = pContext->SP; |
3687 | } |
3688 | } |
3689 | else |
3690 | { |
3691 | /* we are past the prolog, ESP has been set above */ |
3692 | |
3693 | // Are there any arguments pushed on the stack? |
3694 | |
3695 | ESP += GetPushedArgSize(info, table, curOffs); |
3696 | |
3697 | ESP += info->rawStkSize; |
3698 | |
3699 | const RegMask regsMask = info->savedRegMask; |
3700 | |
3701 | for (unsigned i = NumItems(CALLEE_SAVED_REGISTERS_MASK); i > 0; i--) |
3702 | { |
3703 | RegMask regMask = CALLEE_SAVED_REGISTERS_MASK[i - 1]; |
3704 | |
3705 | if ((regMask & regsMask) == 0) |
3706 | continue; |
3707 | |
3708 | SetLocation(pContext, i - 1, PTR_DWORD((TADDR)ESP)); |
3709 | |
3710 | ESP += sizeof(unsigned); |
3711 | } |
3712 | } |
3713 | |
3714 | /* we can now set the (address of the) return address */ |
3715 | |
3716 | pContext->PCTAddr = (TADDR)ESP; |
3717 | pContext->ControlPC = *PTR_PCODE(pContext->PCTAddr); |
3718 | |
3719 | /* Now adjust stack pointer */ |
3720 | |
3721 | pContext->SP = ESP + ESPIncrOnReturn(info); |
3722 | } |
3723 | |
3724 | |
3725 | /*****************************************************************************/ |
3726 | |
3727 | void UnwindEbpDoubleAlignFrameProlog( |
3728 | PREGDISPLAY pContext, |
3729 | hdrInfo * info, |
3730 | PTR_CBYTE methodStart, |
3731 | unsigned flags) |
3732 | { |
3733 | LIMITED_METHOD_DAC_CONTRACT; |
3734 | |
3735 | _ASSERTE(info->prologOffs != hdrInfo::NOT_IN_PROLOG); |
3736 | _ASSERTE(info->ebpFrame || info->doubleAlign); |
3737 | |
3738 | DWORD offset = 0; |
3739 | |
3740 | #ifdef _DEBUG |
3741 | // If the first two instructions are 'nop, int3', then we will |
3742 | // assume that is from a JitHalt operation and skip past it |
3743 | if (methodStart[0] == X86_INSTR_NOP && methodStart[1] == X86_INSTR_INT3) |
3744 | { |
3745 | offset += 2; |
3746 | } |
3747 | #endif |
3748 | |
3749 | /* Check for the case where EBP has not been updated yet. */ |
3750 | |
3751 | const DWORD curOffs = info->prologOffs; |
3752 | |
3753 | // If we have still not excecuted "push ebp; mov ebp, esp", then we need to |
3754 | // report the frame relative to ESP |
3755 | |
3756 | if (!InstructionAlreadyExecuted(offset + 1, curOffs)) |
3757 | { |
3758 | _ASSERTE(CheckInstrByte(methodStart [offset], X86_INSTR_PUSH_EBP) || |
3759 | CheckInstrWord(*PTR_WORD(methodStart + offset), X86_INSTR_W_MOV_EBP_ESP) || |
3760 | CheckInstrByte(methodStart [offset], X86_INSTR_JMP_NEAR_REL32)); // a rejit jmp-stamp |
3761 | |
3762 | /* If we're past the "push ebp", adjust ESP to pop EBP off */ |
3763 | |
3764 | if (curOffs == (offset + 1)) |
3765 | pContext->SP += sizeof(TADDR); |
3766 | |
3767 | /* Stack pointer points to return address */ |
3768 | |
3769 | pContext->PCTAddr = (TADDR)pContext->SP; |
3770 | pContext->ControlPC = *PTR_PCODE(pContext->PCTAddr); |
3771 | |
3772 | /* EBP and callee-saved registers still have the correct value */ |
3773 | |
3774 | return; |
3775 | } |
3776 | |
3777 | // We are atleast after the "push ebp; mov ebp, esp" |
3778 | |
3779 | offset = SKIP_MOV_REG_REG(methodStart, |
3780 | SKIP_PUSH_REG(methodStart, offset)); |
3781 | |
3782 | /* At this point, EBP has been set up. The caller's ESP and the return value |
3783 | can be determined using EBP. Since we are still in the prolog, |
3784 | we need to know our exact location to determine the callee-saved registers */ |
3785 | |
3786 | const unsigned curEBP = *pContext->GetEbpLocation(); |
3787 | |
3788 | if (flags & UpdateAllRegs) |
3789 | { |
3790 | PTR_DWORD pSavedRegs = PTR_DWORD((TADDR)curEBP); |
3791 | |
3792 | /* make sure that we align ESP just like the method's prolog did */ |
3793 | if (info->doubleAlign) |
3794 | { |
3795 | // "and esp,-8" |
3796 | offset = SKIP_ARITH_REG(-8, methodStart, offset); |
3797 | if (curEBP & 0x04) |
3798 | { |
3799 | pSavedRegs--; |
3800 | #ifdef _DEBUG |
3801 | if (dspPtr) printf("EnumRef: dblalign ebp: %08X\n" , curEBP); |
3802 | #endif |
3803 | } |
3804 | } |
3805 | |
3806 | /* Increment "offset" in steps to see which callee-saved |
3807 | registers have been pushed already */ |
3808 | |
3809 | for (unsigned i = 0; i < NumItems(CALLEE_SAVED_REGISTERS_MASK) - 1; i++) |
3810 | { |
3811 | RegMask regMask = CALLEE_SAVED_REGISTERS_MASK[i]; |
3812 | _ASSERTE(regMask != RM_EBP); |
3813 | |
3814 | if ((info->savedRegMask & regMask) == 0) |
3815 | continue; |
3816 | |
3817 | if (InstructionAlreadyExecuted(offset, curOffs)) |
3818 | { |
3819 | SetLocation(pContext, i, PTR_DWORD(--pSavedRegs)); |
3820 | } |
3821 | |
3822 | // "push reg" |
3823 | offset = SKIP_PUSH_REG(methodStart, offset) ; |
3824 | } |
3825 | |
3826 | TRASH_CALLEE_UNSAVED_REGS(pContext); |
3827 | } |
3828 | |
3829 | /* The caller's saved EBP is pointed to by our EBP */ |
3830 | |
3831 | pContext->SetEbpLocation(PTR_DWORD((TADDR)curEBP)); |
3832 | pContext->SP = DWORD((TADDR)(curEBP + sizeof(void *))); |
3833 | |
3834 | /* Stack pointer points to return address */ |
3835 | |
3836 | pContext->PCTAddr = (TADDR)pContext->SP; |
3837 | pContext->ControlPC = *PTR_PCODE(pContext->PCTAddr); |
3838 | } |
3839 | |
3840 | /*****************************************************************************/ |
3841 | |
3842 | bool UnwindEbpDoubleAlignFrame( |
3843 | PREGDISPLAY pContext, |
3844 | EECodeInfo *pCodeInfo, |
3845 | hdrInfo *info, |
3846 | PTR_CBYTE table, |
3847 | PTR_CBYTE methodStart, |
3848 | DWORD curOffs, |
3849 | unsigned flags, |
3850 | StackwalkCacheUnwindInfo *pUnwindInfo) // out-only, perf improvement |
3851 | { |
3852 | LIMITED_METHOD_CONTRACT; |
3853 | SUPPORTS_DAC; |
3854 | |
3855 | _ASSERTE(info->ebpFrame || info->doubleAlign); |
3856 | |
3857 | const unsigned curESP = pContext->SP; |
3858 | const unsigned curEBP = *pContext->GetEbpLocation(); |
3859 | |
3860 | /* First check if we are in a filter (which is obviously after the prolog) */ |
3861 | |
3862 | if (info->handlers && info->prologOffs == hdrInfo::NOT_IN_PROLOG) |
3863 | { |
3864 | TADDR baseSP; |
3865 | |
3866 | #ifdef WIN64EXCEPTIONS |
3867 | // Funclets' frame pointers(EBP) are always restored so they can access to main function's local variables. |
3868 | // Therefore the value of EBP is invalid for unwinder so we should use ESP instead. |
3869 | // TODO If funclet frame layout is changed from CodeGen::genFuncletProlog() and genFuncletEpilog(), |
3870 | // we need to change here accordingly. It is likely to have changes when introducing PSPSym. |
3871 | // TODO Currently we assume that ESP of funclet frames is always fixed but actually it could change. |
3872 | if (pCodeInfo->IsFunclet()) |
3873 | { |
3874 | baseSP = curESP; |
3875 | // Set baseSP as initial SP |
3876 | baseSP += GetPushedArgSize(info, table, curOffs); |
3877 | |
3878 | // 16-byte stack alignment padding (allocated in genFuncletProlog) |
3879 | // Current funclet frame layout (see CodeGen::genFuncletProlog() and genFuncletEpilog()): |
3880 | // prolog: sub esp, 12 |
3881 | // epilog: add esp, 12 |
3882 | // ret |
3883 | // SP alignment padding should be added for all instructions except the first one and the last one. |
3884 | // Epilog may not exist (unreachable), so we need to check the instruction code. |
3885 | const TADDR funcletStart = pCodeInfo->GetJitManager()->GetFuncletStartAddress(pCodeInfo); |
3886 | if (funcletStart != pCodeInfo->GetCodeAddress() && methodStart[pCodeInfo->GetRelOffset()] != X86_INSTR_RETN) |
3887 | baseSP += 12; |
3888 | |
3889 | pContext->PCTAddr = baseSP; |
3890 | pContext->ControlPC = *PTR_PCODE(pContext->PCTAddr); |
3891 | |
3892 | pContext->SP = (DWORD)(baseSP + sizeof(TADDR)); |
3893 | |
3894 | return true; |
3895 | } |
3896 | #else // WIN64EXCEPTIONS |
3897 | |
3898 | FrameType frameType = GetHandlerFrameInfo(info, curEBP, |
3899 | curESP, (DWORD) IGNORE_VAL, |
3900 | &baseSP); |
3901 | |
3902 | /* If we are in a filter, we only need to unwind the funclet stack. |
3903 | For catches/finallies, the normal handling will |
3904 | cause the frame to be unwound all the way up to ebp skipping |
3905 | other frames above it. This is OK, as those frames will be |
3906 | dead. Also, the EE will detect that this has happened and it |
3907 | will handle any EE frames correctly. |
3908 | */ |
3909 | |
3910 | if (frameType == FR_INVALID) |
3911 | { |
3912 | return false; |
3913 | } |
3914 | |
3915 | if (frameType == FR_FILTER) |
3916 | { |
3917 | pContext->PCTAddr = baseSP; |
3918 | pContext->ControlPC = *PTR_PCODE(pContext->PCTAddr); |
3919 | |
3920 | pContext->SP = (DWORD)(baseSP + sizeof(TADDR)); |
3921 | |
3922 | // pContext->pEbp = same as before; |
3923 | |
3924 | #ifdef _DEBUG |
3925 | /* The filter has to be called by the VM. So we dont need to |
3926 | update callee-saved registers. |
3927 | */ |
3928 | |
3929 | if (flags & UpdateAllRegs) |
3930 | { |
3931 | static DWORD s_badData = 0xDEADBEEF; |
3932 | |
3933 | pContext->SetEaxLocation(&s_badData); |
3934 | pContext->SetEcxLocation(&s_badData); |
3935 | pContext->SetEdxLocation(&s_badData); |
3936 | |
3937 | pContext->SetEbxLocation(&s_badData); |
3938 | pContext->SetEsiLocation(&s_badData); |
3939 | pContext->SetEdiLocation(&s_badData); |
3940 | } |
3941 | #endif |
3942 | |
3943 | if (pUnwindInfo) |
3944 | { |
3945 | // The filter funclet is like an ESP-framed-method. |
3946 | pUnwindInfo->fUseEbp = FALSE; |
3947 | pUnwindInfo->fUseEbpAsFrameReg = FALSE; |
3948 | } |
3949 | |
3950 | return true; |
3951 | } |
3952 | #endif // !WIN64EXCEPTIONS |
3953 | } |
3954 | |
3955 | // |
3956 | // Prolog of an EBP method |
3957 | // |
3958 | |
3959 | if (info->prologOffs != hdrInfo::NOT_IN_PROLOG) |
3960 | { |
3961 | UnwindEbpDoubleAlignFrameProlog(pContext, info, methodStart, flags); |
3962 | |
3963 | /* Now adjust stack pointer. */ |
3964 | |
3965 | pContext->SP += ESPIncrOnReturn(info); |
3966 | return true; |
3967 | } |
3968 | |
3969 | if (flags & UpdateAllRegs) |
3970 | { |
3971 | // Get to the first callee-saved register |
3972 | PTR_DWORD pSavedRegs = PTR_DWORD((TADDR)curEBP); |
3973 | |
3974 | if (info->doubleAlign && (curEBP & 0x04)) |
3975 | pSavedRegs--; |
3976 | |
3977 | for (unsigned i = 0; i < NumItems(CALLEE_SAVED_REGISTERS_MASK) - 1; i++) |
3978 | { |
3979 | RegMask regMask = CALLEE_SAVED_REGISTERS_MASK[i]; |
3980 | if ((info->savedRegMask & regMask) == 0) |
3981 | continue; |
3982 | |
3983 | SetLocation(pContext, i, --pSavedRegs); |
3984 | } |
3985 | } |
3986 | |
3987 | /* The caller's ESP will be equal to EBP + retAddrSize + argSize. */ |
3988 | |
3989 | pContext->SP = (DWORD)(curEBP + sizeof(curEBP) + ESPIncrOnReturn(info)); |
3990 | |
3991 | /* The caller's saved EIP is right after our EBP */ |
3992 | |
3993 | pContext->PCTAddr = (TADDR)curEBP + RETURN_ADDR_OFFS * sizeof(TADDR); |
3994 | pContext->ControlPC = *PTR_PCODE(pContext->PCTAddr); |
3995 | |
3996 | /* The caller's saved EBP is pointed to by our EBP */ |
3997 | |
3998 | pContext->SetEbpLocation(PTR_DWORD((TADDR)curEBP)); |
3999 | |
4000 | return true; |
4001 | } |
4002 | |
4003 | bool UnwindStackFrame(PREGDISPLAY pContext, |
4004 | EECodeInfo *pCodeInfo, |
4005 | unsigned flags, |
4006 | CodeManState *pState, |
4007 | StackwalkCacheUnwindInfo *pUnwindInfo /* out-only, perf improvement */) |
4008 | { |
4009 | CONTRACTL { |
4010 | NOTHROW; |
4011 | GC_NOTRIGGER; |
4012 | HOST_NOCALLS; |
4013 | SUPPORTS_DAC; |
4014 | } CONTRACTL_END; |
4015 | |
4016 | // Address where the method has been interrupted |
4017 | PCODE breakPC = pContext->ControlPC; |
4018 | _ASSERTE(PCODEToPINSTR(breakPC) == pCodeInfo->GetCodeAddress()); |
4019 | |
4020 | PTR_CBYTE methodStart = PTR_CBYTE(pCodeInfo->GetSavedMethodCode()); |
4021 | |
4022 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
4023 | PTR_VOID methodInfoPtr = gcInfoToken.Info; |
4024 | DWORD curOffs = pCodeInfo->GetRelOffset(); |
4025 | |
4026 | _ASSERTE(sizeof(CodeManStateBuf) <= sizeof(pState->stateBuf)); |
4027 | CodeManStateBuf * stateBuf = (CodeManStateBuf*)pState->stateBuf; |
4028 | |
4029 | if (pState->dwIsSet == 0) |
4030 | { |
4031 | /* Extract the necessary information from the info block header */ |
4032 | |
4033 | stateBuf->hdrInfoSize = (DWORD)DecodeGCHdrInfo(gcInfoToken, |
4034 | curOffs, |
4035 | &stateBuf->hdrInfoBody); |
4036 | } |
4037 | |
4038 | PTR_CBYTE table = dac_cast<PTR_CBYTE>(methodInfoPtr) + stateBuf->hdrInfoSize; |
4039 | |
4040 | hdrInfo * info = &stateBuf->hdrInfoBody; |
4041 | |
4042 | info->isSpeculativeStackWalk = ((flags & SpeculativeStackwalk) != 0); |
4043 | |
4044 | if (pUnwindInfo != NULL) |
4045 | { |
4046 | pUnwindInfo->securityObjectOffset = 0; |
4047 | if (info->securityCheck) |
4048 | { |
4049 | _ASSERTE(info->ebpFrame); |
4050 | SIZE_T securityObjectOffset = (GetSecurityObjectOffset(info) / sizeof(void*)); |
4051 | _ASSERTE(securityObjectOffset != 0); |
4052 | pUnwindInfo->securityObjectOffset = DWORD(securityObjectOffset); |
4053 | } |
4054 | |
4055 | pUnwindInfo->fUseEbpAsFrameReg = info->ebpFrame; |
4056 | pUnwindInfo->fUseEbp = ((info->savedRegMask & RM_EBP) != 0); |
4057 | } |
4058 | |
4059 | if (info->epilogOffs != hdrInfo::NOT_IN_EPILOG) |
4060 | { |
4061 | /*--------------------------------------------------------------------- |
4062 | * First, handle the epilog |
4063 | */ |
4064 | |
4065 | PTR_CBYTE epilogBase = (PTR_CBYTE) (breakPC - info->epilogOffs); |
4066 | UnwindEpilog(pContext, info, epilogBase, flags); |
4067 | } |
4068 | else if (!info->ebpFrame && !info->doubleAlign) |
4069 | { |
4070 | /*--------------------------------------------------------------------- |
4071 | * Now handle ESP frames |
4072 | */ |
4073 | |
4074 | UnwindEspFrame(pContext, info, table, methodStart, curOffs, flags); |
4075 | return true; |
4076 | } |
4077 | else |
4078 | { |
4079 | /*--------------------------------------------------------------------- |
4080 | * Now we know that have an EBP frame |
4081 | */ |
4082 | |
4083 | if (!UnwindEbpDoubleAlignFrame(pContext, pCodeInfo, info, table, methodStart, curOffs, flags, pUnwindInfo)) |
4084 | return false; |
4085 | } |
4086 | |
4087 | // TODO [DAVBR]: For the full fix for VsWhidbey 450273, all the below |
4088 | // may be uncommented once isLegalManagedCodeCaller works properly |
4089 | // with non-return address inputs, and with non-DEBUG builds |
4090 | /* |
4091 | // Ensure isLegalManagedCodeCaller succeeds for speculative stackwalks. |
4092 | // (We just assert this below for non-speculative stackwalks.) |
4093 | // |
4094 | FAIL_IF_SPECULATIVE_WALK(isLegalManagedCodeCaller(GetControlPC(pContext))); |
4095 | */ |
4096 | |
4097 | return true; |
4098 | } |
4099 | |
4100 | #endif // _TARGET_X86_ |
4101 | |
4102 | #ifdef WIN64EXCEPTIONS |
4103 | #ifdef _TARGET_X86_ |
4104 | size_t EECodeManager::GetResumeSp( PCONTEXT pContext ) |
4105 | { |
4106 | PCODE currentPc = PCODE(pContext->Eip); |
4107 | |
4108 | _ASSERTE(ExecutionManager::IsManagedCode(currentPc)); |
4109 | |
4110 | EECodeInfo codeInfo(currentPc); |
4111 | |
4112 | PTR_CBYTE methodStart = PTR_CBYTE(codeInfo.GetSavedMethodCode()); |
4113 | |
4114 | GCInfoToken gcInfoToken = codeInfo.GetGCInfoToken(); |
4115 | PTR_VOID methodInfoPtr = gcInfoToken.Info; |
4116 | DWORD curOffs = codeInfo.GetRelOffset(); |
4117 | |
4118 | CodeManStateBuf stateBuf; |
4119 | |
4120 | stateBuf.hdrInfoSize = (DWORD)DecodeGCHdrInfo(gcInfoToken, |
4121 | curOffs, |
4122 | &stateBuf.hdrInfoBody); |
4123 | |
4124 | PTR_CBYTE table = dac_cast<PTR_CBYTE>(methodInfoPtr) + stateBuf.hdrInfoSize; |
4125 | |
4126 | hdrInfo *info = &stateBuf.hdrInfoBody; |
4127 | |
4128 | _ASSERTE(info->epilogOffs == hdrInfo::NOT_IN_EPILOG && info->prologOffs == hdrInfo::NOT_IN_PROLOG); |
4129 | |
4130 | bool isESPFrame = !info->ebpFrame && !info->doubleAlign; |
4131 | |
4132 | if (codeInfo.IsFunclet()) |
4133 | { |
4134 | // Treat funclet's frame as ESP frame |
4135 | isESPFrame = true; |
4136 | } |
4137 | |
4138 | if (isESPFrame) |
4139 | { |
4140 | const size_t curESP = (size_t)(pContext->Esp); |
4141 | return curESP + GetPushedArgSize(info, table, curOffs); |
4142 | } |
4143 | |
4144 | const size_t curEBP = (size_t)(pContext->Ebp); |
4145 | return GetOutermostBaseFP(curEBP, info); |
4146 | } |
4147 | #endif // _TARGET_X86_ |
4148 | #endif // WIN64EXCEPTIONS |
4149 | |
4150 | #ifndef CROSSGEN_COMPILE |
4151 | #ifndef WIN64EXCEPTIONS |
4152 | |
4153 | /***************************************************************************** |
4154 | * |
4155 | * Unwind the current stack frame, i.e. update the virtual register |
4156 | * set in pContext. This will be similar to the state after the function |
4157 | * returns back to caller (IP points to after the call, Frame and Stack |
4158 | * pointer has been reset, callee-saved registers restored (if UpdateAllRegs), |
4159 | * callee-unsaved registers are trashed. |
4160 | * Returns success of operation. |
4161 | */ |
4162 | |
4163 | bool EECodeManager::UnwindStackFrame(PREGDISPLAY pContext, |
4164 | EECodeInfo *pCodeInfo, |
4165 | unsigned flags, |
4166 | CodeManState *pState, |
4167 | StackwalkCacheUnwindInfo *pUnwindInfo /* out-only, perf improvement */) |
4168 | { |
4169 | #ifdef _TARGET_X86_ |
4170 | return ::UnwindStackFrame(pContext, pCodeInfo, flags, pState, pUnwindInfo); |
4171 | #else // _TARGET_X86_ |
4172 | PORTABILITY_ASSERT("EECodeManager::UnwindStackFrame" ); |
4173 | return false; |
4174 | #endif // _TARGET_???_ |
4175 | } |
4176 | |
4177 | /*****************************************************************************/ |
4178 | #else // !WIN64EXCEPTIONS |
4179 | /*****************************************************************************/ |
4180 | |
4181 | bool EECodeManager::UnwindStackFrame(PREGDISPLAY pContext, |
4182 | EECodeInfo *pCodeInfo, |
4183 | unsigned flags, |
4184 | CodeManState *pState, |
4185 | StackwalkCacheUnwindInfo *pUnwindInfo /* out-only, perf improvement */) |
4186 | { |
4187 | CONTRACTL { |
4188 | NOTHROW; |
4189 | GC_NOTRIGGER; |
4190 | } CONTRACTL_END; |
4191 | |
4192 | #if defined(_TARGET_AMD64_) |
4193 | // To avoid unnecessary computation, we only crack the unwind info if pUnwindInfo is not NULL, which only happens |
4194 | // if the LIGHTUNWIND flag is passed to StackWalkFramesEx(). |
4195 | if (pUnwindInfo != NULL) |
4196 | { |
4197 | pCodeInfo->GetOffsetsFromUnwindInfo(&(pUnwindInfo->RSPOffsetFromUnwindInfo), |
4198 | &(pUnwindInfo->RBPOffset)); |
4199 | } |
4200 | #endif // _TARGET_AMD64_ |
4201 | |
4202 | _ASSERTE(pCodeInfo != NULL); |
4203 | Thread::VirtualUnwindCallFrame(pContext, pCodeInfo); |
4204 | return true; |
4205 | } |
4206 | |
4207 | /*****************************************************************************/ |
4208 | #endif // WIN64EXCEPTIONS |
4209 | #endif // !CROSSGEN_COMPILE |
4210 | |
4211 | /*****************************************************************************/ |
4212 | |
4213 | /* report args in 'msig' to the GC. |
4214 | 'argsStart' is start of the stack-based arguments |
4215 | 'varArgSig' describes the arguments |
4216 | 'ctx' has the GC reporting info |
4217 | */ |
4218 | void promoteVarArgs(PTR_BYTE argsStart, PTR_VASigCookie varArgSig, GCCONTEXT* ctx) |
4219 | { |
4220 | WRAPPER_NO_CONTRACT; |
4221 | |
4222 | //Note: no instantiations needed for varargs |
4223 | MetaSig msig(varArgSig->signature, |
4224 | varArgSig->pModule, |
4225 | NULL); |
4226 | |
4227 | PTR_BYTE pFrameBase = argsStart - TransitionBlock::GetOffsetOfArgs(); |
4228 | |
4229 | ArgIterator argit(&msig); |
4230 | |
4231 | #ifdef _TARGET_X86_ |
4232 | // For the X86 target the JIT does not report any of the fixed args for a varargs method |
4233 | // So we report the fixed args via the promoteArgs call below |
4234 | bool skipFixedArgs = false; |
4235 | #else |
4236 | // For other platforms the JITs do report the fixed args of a varargs method |
4237 | // So we must tell promoteArgs to skip to the end of the fixed args |
4238 | bool skipFixedArgs = true; |
4239 | #endif |
4240 | |
4241 | bool inVarArgs = false; |
4242 | |
4243 | int argOffset; |
4244 | while ((argOffset = argit.GetNextOffset()) != TransitionBlock::InvalidOffset) |
4245 | { |
4246 | if (msig.GetArgProps().AtSentinel()) |
4247 | inVarArgs = true; |
4248 | |
4249 | // if skipFixedArgs is false we report all arguments |
4250 | // otherwise we just report the varargs. |
4251 | if (!skipFixedArgs || inVarArgs) |
4252 | { |
4253 | ArgDestination argDest(pFrameBase, argOffset, argit.GetArgLocDescForStructInRegs()); |
4254 | msig.GcScanRoots(&argDest, ctx->f, ctx->sc); |
4255 | } |
4256 | } |
4257 | } |
4258 | |
4259 | INDEBUG(void* forceStack1;) |
4260 | |
4261 | #ifndef CROSSGEN_COMPILE |
4262 | #ifndef USE_GC_INFO_DECODER |
4263 | |
4264 | /***************************************************************************** |
4265 | * |
4266 | * Enumerate all live object references in that function using |
4267 | * the virtual register set. |
4268 | * Returns success of operation. |
4269 | */ |
4270 | |
4271 | bool EECodeManager::EnumGcRefs( PREGDISPLAY pContext, |
4272 | EECodeInfo *pCodeInfo, |
4273 | unsigned flags, |
4274 | GCEnumCallback pCallBack, |
4275 | LPVOID hCallBack, |
4276 | DWORD relOffsetOverride) |
4277 | { |
4278 | CONTRACTL { |
4279 | NOTHROW; |
4280 | GC_NOTRIGGER; |
4281 | } CONTRACTL_END; |
4282 | |
4283 | #ifdef WIN64EXCEPTIONS |
4284 | if (flags & ParentOfFuncletStackFrame) |
4285 | { |
4286 | LOG((LF_GCROOTS, LL_INFO100000, "Not reporting this frame because it was already reported via another funclet.\n" )); |
4287 | return true; |
4288 | } |
4289 | #endif // WIN64EXCEPTIONS |
4290 | |
4291 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
4292 | unsigned curOffs = pCodeInfo->GetRelOffset(); |
4293 | |
4294 | unsigned EBP = *pContext->GetEbpLocation(); |
4295 | unsigned ESP = pContext->SP; |
4296 | |
4297 | unsigned ptrOffs; |
4298 | |
4299 | unsigned count; |
4300 | |
4301 | hdrInfo info; |
4302 | PTR_CBYTE table = PTR_CBYTE(gcInfoToken.Info); |
4303 | #if 0 |
4304 | printf("EECodeManager::EnumGcRefs - EIP = %08x ESP = %08x offset = %x GC Info is at %08x\n" , *pContext->pPC, ESP, curOffs, table); |
4305 | #endif |
4306 | |
4307 | |
4308 | /* Extract the necessary information from the info block header */ |
4309 | |
4310 | table += DecodeGCHdrInfo(gcInfoToken, |
4311 | curOffs, |
4312 | &info); |
4313 | |
4314 | _ASSERTE( curOffs <= info.methodSize); |
4315 | |
4316 | #ifdef _DEBUG |
4317 | // if ((gcInfoToken.Info == (void*)0x37760d0) && (curOffs == 0x264)) |
4318 | // __asm int 3; |
4319 | |
4320 | if (trEnumGCRefs) { |
4321 | static unsigned lastESP = 0; |
4322 | unsigned diffESP = ESP - lastESP; |
4323 | if (diffESP > 0xFFFF) { |
4324 | printf("------------------------------------------------------\n" ); |
4325 | } |
4326 | lastESP = ESP; |
4327 | printf("EnumGCRefs [%s][%s] at %s.%s + 0x%03X:\n" , |
4328 | info.ebpFrame?"ebp" :" " , |
4329 | info.interruptible?"int" :" " , |
4330 | "UnknownClass" ,"UnknownMethod" , curOffs); |
4331 | fflush(stdout); |
4332 | } |
4333 | #endif |
4334 | |
4335 | /* Are we in the prolog or epilog of the method? */ |
4336 | |
4337 | if (info.prologOffs != hdrInfo::NOT_IN_PROLOG || |
4338 | info.epilogOffs != hdrInfo::NOT_IN_EPILOG) |
4339 | { |
4340 | |
4341 | #if !DUMP_PTR_REFS |
4342 | // Under normal circumstances the system will not suspend a thread |
4343 | // if it is in the prolog or epilog of the function. However ThreadAbort |
4344 | // exception or stack overflows can cause EH to happen in a prolog. |
4345 | // Once in the handler, a GC can happen, so we can get to this code path. |
4346 | // However since we are tearing down this frame, we don't need to report |
4347 | // anything and we can simply return. |
4348 | |
4349 | _ASSERTE(flags & ExecutionAborted); |
4350 | #endif |
4351 | return true; |
4352 | } |
4353 | |
4354 | #ifdef _DEBUG |
4355 | #define CHK_AND_REPORT_REG(reg, doIt, iptr, regName) \ |
4356 | if (doIt) \ |
4357 | { \ |
4358 | if (dspPtr) \ |
4359 | printf(" Live pointer register %s: ", #regName); \ |
4360 | pCallBack(hCallBack, \ |
4361 | (OBJECTREF*)(pContext->Get##regName##Location()), \ |
4362 | (iptr ? GC_CALL_INTERIOR : 0) \ |
4363 | | CHECK_APP_DOMAIN \ |
4364 | DAC_ARG(DacSlotLocation(reg, 0, false))); \ |
4365 | } |
4366 | #else // !_DEBUG |
4367 | #define CHK_AND_REPORT_REG(reg, doIt, iptr, regName) \ |
4368 | if (doIt) \ |
4369 | pCallBack(hCallBack, \ |
4370 | (OBJECTREF*)(pContext->Get##regName##Location()), \ |
4371 | (iptr ? GC_CALL_INTERIOR : 0) \ |
4372 | | CHECK_APP_DOMAIN \ |
4373 | DAC_ARG(DacSlotLocation(reg, 0, false))); |
4374 | |
4375 | #endif // _DEBUG |
4376 | |
4377 | /* What kind of a frame is this ? */ |
4378 | |
4379 | FrameType frameType = FR_NORMAL; |
4380 | TADDR baseSP = 0; |
4381 | |
4382 | if (info.handlers) |
4383 | { |
4384 | _ASSERTE(info.ebpFrame); |
4385 | |
4386 | bool hasInnerFilter, hadInnerFilter; |
4387 | frameType = GetHandlerFrameInfo(&info, EBP, |
4388 | ESP, (DWORD) IGNORE_VAL, |
4389 | &baseSP, NULL, |
4390 | &hasInnerFilter, &hadInnerFilter); |
4391 | _ASSERTE(frameType != FR_INVALID); |
4392 | |
4393 | /* If this is the parent frame of a filter which is currently |
4394 | executing, then the filter would have enumerated the frame using |
4395 | the filter PC. |
4396 | */ |
4397 | |
4398 | if (hasInnerFilter) |
4399 | return true; |
4400 | |
4401 | /* If are in a try and we had a filter execute, we may have reported |
4402 | GC refs from the filter (and not using the try's offset). So |
4403 | we had better use the filter's end offset, as the try is |
4404 | effectively dead and its GC ref's would be stale */ |
4405 | |
4406 | if (hadInnerFilter) |
4407 | { |
4408 | PTR_TADDR pFirstBaseSPslot = GetFirstBaseSPslotPtr(EBP, &info); |
4409 | curOffs = (unsigned)pFirstBaseSPslot[1] - 1; |
4410 | _ASSERTE(curOffs < info.methodSize); |
4411 | |
4412 | /* Extract the necessary information from the info block header */ |
4413 | |
4414 | table = PTR_CBYTE(gcInfoToken.Info); |
4415 | |
4416 | table += DecodeGCHdrInfo(gcInfoToken, |
4417 | curOffs, |
4418 | &info); |
4419 | } |
4420 | } |
4421 | |
4422 | bool willContinueExecution = !(flags & ExecutionAborted); |
4423 | unsigned pushedSize = 0; |
4424 | |
4425 | /* if we have been interrupted we don't have to report registers/arguments |
4426 | * because we are about to lose this context anyway. |
4427 | * Alas, if we are in a ebp-less method we have to parse the table |
4428 | * in order to adjust ESP. |
4429 | * |
4430 | * Note that we report "this" for all methods, even if |
4431 | * noncontinuable, because because of the off chance they may be |
4432 | * synchronized and we have to release the monitor on unwind. This |
4433 | * could conceivably be optimized, but it turns out to be more |
4434 | * expensive to check whether we're synchronized (which involves |
4435 | * consulting metadata) than to just report "this" all the time in |
4436 | * our most important scenarios. |
4437 | */ |
4438 | |
4439 | if (info.interruptible) |
4440 | { |
4441 | // If we are not on the active stack frame, we need to report gc registers |
4442 | // that are live before the call. The reason is that the liveness of gc registers |
4443 | // may change across a call to a method that does not return. In this case the instruction |
4444 | // after the call may be a jump target and a register that didn't have a live gc pointer |
4445 | // before the call may have a live gc pointer after the jump. To make sure we report the |
4446 | // registers that have live gc pointers before the call we subtract 1 from curOffs. |
4447 | unsigned curOffsRegs = (flags & ActiveStackFrame) != 0 ? curOffs : curOffs - 1; |
4448 | |
4449 | pushedSize = scanArgRegTableI(skipToArgReg(info, table), curOffsRegs, curOffs, &info); |
4450 | |
4451 | RegMask regs = info.regMaskResult; |
4452 | RegMask iregs = info.iregMaskResult; |
4453 | ptrArgTP args = info.argMaskResult; |
4454 | ptrArgTP iargs = info.iargMaskResult; |
4455 | |
4456 | _ASSERTE((isZero(args) || pushedSize != 0) || info.ebpFrame); |
4457 | _ASSERTE((args & iargs) == iargs); |
4458 | // Only synchronized methods and generic code that accesses |
4459 | // the type context via "this" need to report "this". |
4460 | // If its reported for other methods, its probably |
4461 | // done incorrectly. So flag such cases. |
4462 | _ASSERTE(info.thisPtrResult == REGI_NA || |
4463 | pCodeInfo->GetMethodDesc()->IsSynchronized() || |
4464 | pCodeInfo->GetMethodDesc()->AcquiresInstMethodTableFromThis()); |
4465 | |
4466 | /* now report registers and arguments if we are not interrupted */ |
4467 | |
4468 | if (willContinueExecution) |
4469 | { |
4470 | |
4471 | /* Propagate unsafed registers only in "current" method */ |
4472 | /* If this is not the active method, then the callee wil |
4473 | * trash these registers, and so we wont need to report them */ |
4474 | |
4475 | if (flags & ActiveStackFrame) |
4476 | { |
4477 | CHK_AND_REPORT_REG(REGI_EAX, regs & RM_EAX, iregs & RM_EAX, Eax); |
4478 | CHK_AND_REPORT_REG(REGI_ECX, regs & RM_ECX, iregs & RM_ECX, Ecx); |
4479 | CHK_AND_REPORT_REG(REGI_EDX, regs & RM_EDX, iregs & RM_EDX, Edx); |
4480 | } |
4481 | |
4482 | CHK_AND_REPORT_REG(REGI_EBX, regs & RM_EBX, iregs & RM_EBX, Ebx); |
4483 | CHK_AND_REPORT_REG(REGI_EBP, regs & RM_EBP, iregs & RM_EBP, Ebp); |
4484 | CHK_AND_REPORT_REG(REGI_ESI, regs & RM_ESI, iregs & RM_ESI, Esi); |
4485 | CHK_AND_REPORT_REG(REGI_EDI, regs & RM_EDI, iregs & RM_EDI, Edi); |
4486 | _ASSERTE(!(regs & RM_ESP)); |
4487 | |
4488 | /* Report any pending pointer arguments */ |
4489 | |
4490 | DWORD * pPendingArgFirst; // points **AT** first parameter |
4491 | if (!info.ebpFrame) |
4492 | { |
4493 | // -sizeof(void*) because we want to point *AT* first parameter |
4494 | pPendingArgFirst = (DWORD *)(size_t)(ESP + pushedSize - sizeof(void*)); |
4495 | } |
4496 | else |
4497 | { |
4498 | _ASSERTE(willContinueExecution); |
4499 | |
4500 | if (info.handlers) |
4501 | { |
4502 | // -sizeof(void*) because we want to point *AT* first parameter |
4503 | pPendingArgFirst = (DWORD *)(size_t)(baseSP - sizeof(void*)); |
4504 | } |
4505 | else if (info.localloc) |
4506 | { |
4507 | baseSP = *(DWORD *)(size_t)(EBP - GetLocallocSPOffset(&info)); |
4508 | // -sizeof(void*) because we want to point *AT* first parameter |
4509 | pPendingArgFirst = (DWORD *)(size_t) (baseSP - sizeof(void*)); |
4510 | } |
4511 | else |
4512 | { |
4513 | // Note that 'info.stackSize includes the size for pushing EBP, but EBP is pushed |
4514 | // BEFORE EBP is set from ESP, thus (EBP - info.stackSize) actually points past |
4515 | // the frame by one DWORD, and thus points *AT* the first parameter |
4516 | |
4517 | pPendingArgFirst = (DWORD *)(size_t)(EBP - info.stackSize); |
4518 | } |
4519 | } |
4520 | |
4521 | if (!isZero(args)) |
4522 | { |
4523 | unsigned i = 0; |
4524 | ptrArgTP b(1); |
4525 | for (; !isZero(args) && (i < MAX_PTRARG_OFS); i += 1, b <<= 1) |
4526 | { |
4527 | if (intersect(args,b)) |
4528 | { |
4529 | unsigned argAddr = (unsigned)(size_t)(pPendingArgFirst - i); |
4530 | bool iptr = false; |
4531 | |
4532 | setDiff(args, b); |
4533 | if (intersect(iargs,b)) |
4534 | { |
4535 | setDiff(iargs, b); |
4536 | iptr = true; |
4537 | } |
4538 | |
4539 | #ifdef _DEBUG |
4540 | if (dspPtr) |
4541 | { |
4542 | printf(" Pushed ptr arg [E" ); |
4543 | if (info.ebpFrame) |
4544 | printf("BP-%02XH]: " , EBP - argAddr); |
4545 | else |
4546 | printf("SP+%02XH]: " , argAddr - ESP); |
4547 | } |
4548 | #endif |
4549 | _ASSERTE(true == GC_CALL_INTERIOR); |
4550 | pCallBack(hCallBack, (OBJECTREF *)(size_t)argAddr, (int)iptr | CHECK_APP_DOMAIN |
4551 | DAC_ARG(DacSlotLocation(info.ebpFrame ? REGI_EBP : REGI_ESP, |
4552 | info.ebpFrame ? EBP - argAddr : argAddr - ESP, |
4553 | true))); |
4554 | } |
4555 | } |
4556 | } |
4557 | } |
4558 | else |
4559 | { |
4560 | // Is "this" enregistered. If so, report it as we might need to |
4561 | // release the monitor for synchronized methods. |
4562 | // Else, it is on the stack and will be reported below. |
4563 | |
4564 | if (info.thisPtrResult != REGI_NA) |
4565 | { |
4566 | // Synchronized methods and methods satisfying |
4567 | // MethodDesc::AcquiresInstMethodTableFromThis (i.e. those |
4568 | // where "this" is reported in thisPtrResult) are |
4569 | // not supported on value types. |
4570 | _ASSERTE((regNumToMask(info.thisPtrResult) & info.iregMaskResult)== 0); |
4571 | |
4572 | void * thisReg = getCalleeSavedReg(pContext, info.thisPtrResult); |
4573 | pCallBack(hCallBack, (OBJECTREF *)thisReg, CHECK_APP_DOMAIN |
4574 | DAC_ARG(DacSlotLocation(info.thisPtrResult, 0, false))); |
4575 | } |
4576 | } |
4577 | } |
4578 | else /* not interruptible */ |
4579 | { |
4580 | pushedSize = scanArgRegTable(skipToArgReg(info, table), curOffs, &info); |
4581 | |
4582 | RegMask regMask = info.regMaskResult; |
4583 | RegMask iregMask = info.iregMaskResult; |
4584 | ptrArgTP argMask = info.argMaskResult; |
4585 | ptrArgTP iargMask = info.iargMaskResult; |
4586 | unsigned argHnum = info.argHnumResult; |
4587 | PTR_CBYTE argTab = info.argTabResult; |
4588 | |
4589 | // Only synchronized methods and generic code that accesses |
4590 | // the type context via "this" need to report "this". |
4591 | // If its reported for other methods, its probably |
4592 | // done incorrectly. So flag such cases. |
4593 | _ASSERTE(info.thisPtrResult == REGI_NA || |
4594 | pCodeInfo->GetMethodDesc()->IsSynchronized() || |
4595 | pCodeInfo->GetMethodDesc()->AcquiresInstMethodTableFromThis()); |
4596 | |
4597 | |
4598 | /* now report registers and arguments if we are not interrupted */ |
4599 | |
4600 | if (willContinueExecution) |
4601 | { |
4602 | |
4603 | /* Report all live pointer registers */ |
4604 | |
4605 | CHK_AND_REPORT_REG(REGI_EDI, regMask & RM_EDI, iregMask & RM_EDI, Edi); |
4606 | CHK_AND_REPORT_REG(REGI_ESI, regMask & RM_ESI, iregMask & RM_ESI, Esi); |
4607 | CHK_AND_REPORT_REG(REGI_EBX, regMask & RM_EBX, iregMask & RM_EBX, Ebx); |
4608 | CHK_AND_REPORT_REG(REGI_EBP, regMask & RM_EBP, iregMask & RM_EBP, Ebp); |
4609 | |
4610 | /* Esp cant be reported */ |
4611 | _ASSERTE(!(regMask & RM_ESP)); |
4612 | /* No callee-trashed registers */ |
4613 | _ASSERTE(!(regMask & RM_CALLEE_TRASHED)); |
4614 | /* EBP can't be reported unless we have an EBP-less frame */ |
4615 | _ASSERTE(!(regMask & RM_EBP) || !(info.ebpFrame)); |
4616 | |
4617 | /* Report any pending pointer arguments */ |
4618 | |
4619 | if (argTab != 0) |
4620 | { |
4621 | unsigned lowBits, stkOffs, argAddr, val; |
4622 | |
4623 | // argMask does not fit in 32-bits |
4624 | // thus arguments are reported via a table |
4625 | // Both of these are very rare cases |
4626 | |
4627 | do |
4628 | { |
4629 | val = fastDecodeUnsigned(argTab); |
4630 | |
4631 | lowBits = val & OFFSET_MASK; |
4632 | stkOffs = val & ~OFFSET_MASK; |
4633 | _ASSERTE((lowBits == 0) || (lowBits == byref_OFFSET_FLAG)); |
4634 | |
4635 | argAddr = ESP + stkOffs; |
4636 | #ifdef _DEBUG |
4637 | if (dspPtr) |
4638 | printf(" Pushed %sptr arg at [ESP+%02XH]" , |
4639 | lowBits ? "iptr " : "" , stkOffs); |
4640 | #endif |
4641 | _ASSERTE(byref_OFFSET_FLAG == GC_CALL_INTERIOR); |
4642 | pCallBack(hCallBack, (OBJECTREF *)(size_t)argAddr, lowBits | CHECK_APP_DOMAIN |
4643 | DAC_ARG(DacSlotLocation(REGI_ESP, stkOffs, true))); |
4644 | } |
4645 | while(--argHnum); |
4646 | |
4647 | _ASSERTE(info.argTabResult + info.argTabBytes == argTab); |
4648 | } |
4649 | else |
4650 | { |
4651 | unsigned argAddr = ESP; |
4652 | |
4653 | while (!isZero(argMask)) |
4654 | { |
4655 | _ASSERTE(argHnum-- > 0); |
4656 | |
4657 | if (toUnsigned(argMask) & 1) |
4658 | { |
4659 | bool iptr = false; |
4660 | |
4661 | if (toUnsigned(iargMask) & 1) |
4662 | iptr = true; |
4663 | #ifdef _DEBUG |
4664 | if (dspPtr) |
4665 | printf(" Pushed ptr arg at [ESP+%02XH]" , |
4666 | argAddr - ESP); |
4667 | #endif |
4668 | _ASSERTE(true == GC_CALL_INTERIOR); |
4669 | pCallBack(hCallBack, (OBJECTREF *)(size_t)argAddr, (int)iptr | CHECK_APP_DOMAIN |
4670 | DAC_ARG(DacSlotLocation(REGI_ESP, argAddr - ESP, true))); |
4671 | } |
4672 | |
4673 | argMask >>= 1; |
4674 | iargMask >>= 1; |
4675 | argAddr += 4; |
4676 | } |
4677 | |
4678 | } |
4679 | |
4680 | } |
4681 | else |
4682 | { |
4683 | // Is "this" enregistered. If so, report it as we will need to |
4684 | // release the monitor. Else, it is on the stack and will be |
4685 | // reported below. |
4686 | |
4687 | // For partially interruptible code, info.thisPtrResult will be |
4688 | // the last known location of "this". So the compiler needs to |
4689 | // generate information which is correct at every point in the code, |
4690 | // not just at call sites. |
4691 | |
4692 | if (info.thisPtrResult != REGI_NA) |
4693 | { |
4694 | // Synchronized methods on value types are not supported |
4695 | _ASSERTE((regNumToMask(info.thisPtrResult) & info.iregMaskResult)== 0); |
4696 | |
4697 | void * thisReg = getCalleeSavedReg(pContext, info.thisPtrResult); |
4698 | pCallBack(hCallBack, (OBJECTREF *)thisReg, CHECK_APP_DOMAIN |
4699 | DAC_ARG(DacSlotLocation(info.thisPtrResult, 0, false))); |
4700 | } |
4701 | } |
4702 | |
4703 | } //info.interruptible |
4704 | |
4705 | /* compute the argument base (reference point) */ |
4706 | |
4707 | unsigned argBase; |
4708 | |
4709 | if (info.ebpFrame) |
4710 | argBase = EBP; |
4711 | else |
4712 | argBase = ESP + pushedSize; |
4713 | |
4714 | #if VERIFY_GC_TABLES |
4715 | _ASSERTE(*castto(table, unsigned short *)++ == 0xBEEF); |
4716 | #endif |
4717 | |
4718 | unsigned ptrAddr; |
4719 | unsigned lowBits; |
4720 | |
4721 | |
4722 | /* Process the untracked frame variable table */ |
4723 | |
4724 | #if defined(WIN64EXCEPTIONS) // funclets |
4725 | // Filters are the only funclet that run during the 1st pass, and must have |
4726 | // both the leaf and the parent frame reported. In order to avoid double |
4727 | // reporting of the untracked variables, do not report them for the filter. |
4728 | if (!pCodeInfo->GetJitManager()->IsFilterFunclet(pCodeInfo)) |
4729 | #endif // WIN64EXCEPTIONS |
4730 | { |
4731 | count = info.untrackedCnt; |
4732 | int lastStkOffs = 0; |
4733 | while (count-- > 0) |
4734 | { |
4735 | int stkOffs = fastDecodeSigned(table); |
4736 | stkOffs = lastStkOffs - stkOffs; |
4737 | lastStkOffs = stkOffs; |
4738 | |
4739 | _ASSERTE(0 == ~OFFSET_MASK % sizeof(void*)); |
4740 | |
4741 | lowBits = OFFSET_MASK & stkOffs; |
4742 | stkOffs &= ~OFFSET_MASK; |
4743 | |
4744 | ptrAddr = argBase + stkOffs; |
4745 | if (info.doubleAlign && stkOffs >= int(info.stackSize - sizeof(void*))) { |
4746 | // We encode the arguments as if they were ESP based variables even though they aren't |
4747 | // If this frame would have ben an ESP based frame, This fake frame is one DWORD |
4748 | // smaller than the real frame because it did not push EBP but the real frame did. |
4749 | // Thus to get the correct EBP relative offset we have to adjust by info.stackSize-sizeof(void*) |
4750 | ptrAddr = EBP + (stkOffs-(info.stackSize - sizeof(void*))); |
4751 | } |
4752 | |
4753 | #ifdef _DEBUG |
4754 | if (dspPtr) |
4755 | { |
4756 | printf(" Untracked %s%s local at [E" , |
4757 | (lowBits & pinned_OFFSET_FLAG) ? "pinned " : "" , |
4758 | (lowBits & byref_OFFSET_FLAG) ? "byref" : "" ); |
4759 | |
4760 | int dspOffs = ptrAddr; |
4761 | char frameType; |
4762 | |
4763 | if (info.ebpFrame) { |
4764 | dspOffs -= EBP; |
4765 | frameType = 'B'; |
4766 | } |
4767 | else { |
4768 | dspOffs -= ESP; |
4769 | frameType = 'S'; |
4770 | } |
4771 | |
4772 | if (dspOffs < 0) |
4773 | printf("%cP-%02XH]: " , frameType, -dspOffs); |
4774 | else |
4775 | printf("%cP+%02XH]: " , frameType, +dspOffs); |
4776 | } |
4777 | #endif |
4778 | |
4779 | _ASSERTE((pinned_OFFSET_FLAG == GC_CALL_PINNED) && |
4780 | (byref_OFFSET_FLAG == GC_CALL_INTERIOR)); |
4781 | pCallBack(hCallBack, (OBJECTREF*)(size_t)ptrAddr, lowBits | CHECK_APP_DOMAIN |
4782 | DAC_ARG(DacSlotLocation(info.ebpFrame ? REGI_EBP : REGI_ESP, |
4783 | info.ebpFrame ? EBP - ptrAddr : ptrAddr - ESP, |
4784 | true))); |
4785 | } |
4786 | |
4787 | } |
4788 | |
4789 | #if VERIFY_GC_TABLES |
4790 | _ASSERTE(*castto(table, unsigned short *)++ == 0xCAFE); |
4791 | #endif |
4792 | |
4793 | /* Process the frame variable lifetime table */ |
4794 | count = info.varPtrTableSize; |
4795 | |
4796 | /* If we are not in the active method, we are currently pointing |
4797 | * to the return address; at the return address stack variables |
4798 | * can become dead if the call the last instruction of a try block |
4799 | * and the return address is the jump around the catch block. Therefore |
4800 | * we simply assume an offset inside of call instruction. |
4801 | */ |
4802 | |
4803 | unsigned newCurOffs; |
4804 | |
4805 | if (willContinueExecution) |
4806 | { |
4807 | newCurOffs = (flags & ActiveStackFrame) ? curOffs // after "call" |
4808 | : curOffs-1; // inside "call" |
4809 | } |
4810 | else |
4811 | { |
4812 | /* However if ExecutionAborted, then this must be one of the |
4813 | * ExceptionFrames. Handle accordingly |
4814 | */ |
4815 | _ASSERTE(!(flags & AbortingCall) || !(flags & ActiveStackFrame)); |
4816 | |
4817 | newCurOffs = (flags & AbortingCall) ? curOffs-1 // inside "call" |
4818 | : curOffs; // at faulting instr, or start of "try" |
4819 | } |
4820 | |
4821 | ptrOffs = 0; |
4822 | |
4823 | while (count-- > 0) |
4824 | { |
4825 | int stkOffs; |
4826 | unsigned begOffs; |
4827 | unsigned endOffs; |
4828 | |
4829 | stkOffs = fastDecodeUnsigned(table); |
4830 | begOffs = ptrOffs + fastDecodeUnsigned(table); |
4831 | endOffs = begOffs + fastDecodeUnsigned(table); |
4832 | |
4833 | _ASSERTE(0 == ~OFFSET_MASK % sizeof(void*)); |
4834 | |
4835 | lowBits = OFFSET_MASK & stkOffs; |
4836 | stkOffs &= ~OFFSET_MASK; |
4837 | |
4838 | if (info.ebpFrame) { |
4839 | stkOffs = -stkOffs; |
4840 | _ASSERTE(stkOffs < 0); |
4841 | } |
4842 | else { |
4843 | _ASSERTE(stkOffs >= 0); |
4844 | } |
4845 | |
4846 | ptrAddr = argBase + stkOffs; |
4847 | |
4848 | /* Is this variable live right now? */ |
4849 | |
4850 | if (newCurOffs >= begOffs) |
4851 | { |
4852 | if (newCurOffs < endOffs) |
4853 | { |
4854 | #ifdef _DEBUG |
4855 | if (dspPtr) { |
4856 | printf(" Frame %s%s local at [E" , |
4857 | (lowBits & byref_OFFSET_FLAG) ? "byref " : "" , |
4858 | #ifndef WIN64EXCEPTIONS |
4859 | (lowBits & this_OFFSET_FLAG) ? "this-ptr" : "" ); |
4860 | #else |
4861 | (lowBits & pinned_OFFSET_FLAG) ? "pinned" : "" ); |
4862 | #endif |
4863 | |
4864 | |
4865 | int dspOffs = ptrAddr; |
4866 | char frameType; |
4867 | |
4868 | if (info.ebpFrame) { |
4869 | dspOffs -= EBP; |
4870 | frameType = 'B'; |
4871 | } |
4872 | else { |
4873 | dspOffs -= ESP; |
4874 | frameType = 'S'; |
4875 | } |
4876 | |
4877 | if (dspOffs < 0) |
4878 | printf("%cP-%02XH]: " , frameType, -dspOffs); |
4879 | else |
4880 | printf("%cP+%02XH]: " , frameType, +dspOffs); |
4881 | } |
4882 | #endif |
4883 | |
4884 | unsigned flags = CHECK_APP_DOMAIN; |
4885 | #ifndef WIN64EXCEPTIONS |
4886 | // First Bit : byref |
4887 | // Second Bit : this |
4888 | // The second bit means `this` not `pinned`. So we ignore it. |
4889 | flags |= lowBits & byref_OFFSET_FLAG; |
4890 | #else |
4891 | // First Bit : byref |
4892 | // Second Bit : pinned |
4893 | // Both bits are valid |
4894 | flags |= lowBits; |
4895 | #endif |
4896 | |
4897 | _ASSERTE(byref_OFFSET_FLAG == GC_CALL_INTERIOR); |
4898 | pCallBack(hCallBack, (OBJECTREF*)(size_t)ptrAddr, flags |
4899 | DAC_ARG(DacSlotLocation(info.ebpFrame ? REGI_EBP : REGI_ESP, |
4900 | info.ebpFrame ? EBP - ptrAddr : ptrAddr - ESP, |
4901 | true))); |
4902 | } |
4903 | } |
4904 | // exit loop early if start of live range is beyond PC, as ranges are sorted by lower bound |
4905 | else break; |
4906 | |
4907 | ptrOffs = begOffs; |
4908 | } |
4909 | |
4910 | |
4911 | #if VERIFY_GC_TABLES |
4912 | _ASSERTE(*castto(table, unsigned short *)++ == 0xBABE); |
4913 | #endif |
4914 | |
4915 | #ifdef WIN64EXCEPTIONS // funclets |
4916 | // |
4917 | // If we're in a funclet, we do not want to report the incoming varargs. This is |
4918 | // taken care of by the parent method and the funclet should access those arguments |
4919 | // by way of the parent method's stack frame. |
4920 | // |
4921 | if(pCodeInfo->IsFunclet()) |
4922 | { |
4923 | return true; |
4924 | } |
4925 | #endif // WIN64EXCEPTIONS |
4926 | |
4927 | /* Are we a varargs function, if so we have to report all args |
4928 | except 'this' (note that the GC tables created by the x86 jit |
4929 | do not contain ANY arguments except 'this' (even if they |
4930 | were statically declared */ |
4931 | |
4932 | if (info.varargs) { |
4933 | LOG((LF_GCINFO, LL_INFO100, "Reporting incoming vararg GC refs\n" )); |
4934 | |
4935 | PTR_BYTE argsStart; |
4936 | |
4937 | if (info.ebpFrame || info.doubleAlign) |
4938 | argsStart = PTR_BYTE((size_t)EBP) + 2* sizeof(void*); // pushed EBP and retAddr |
4939 | else |
4940 | argsStart = PTR_BYTE((size_t)argBase) + info.stackSize + sizeof(void*); // ESP + locals + retAddr |
4941 | |
4942 | #if defined(_DEBUG) && !defined(DACCESS_COMPILE) && !defined(CROSSGEN_COMPILE) |
4943 | // Note that I really want to say hCallBack is a GCCONTEXT, but this is pretty close |
4944 | extern void GcEnumObject(LPVOID pData, OBJECTREF *pObj, uint32_t flags); |
4945 | _ASSERTE((void*) GcEnumObject == pCallBack); |
4946 | #endif |
4947 | GCCONTEXT *pCtx = (GCCONTEXT *) hCallBack; |
4948 | |
4949 | // For varargs, look up the signature using the varArgSig token passed on the stack |
4950 | PTR_VASigCookie varArgSig = *PTR_PTR_VASigCookie(argsStart); |
4951 | |
4952 | promoteVarArgs(argsStart, varArgSig, pCtx); |
4953 | } |
4954 | |
4955 | return true; |
4956 | } |
4957 | |
4958 | #else // !USE_GC_INFO_DECODER |
4959 | |
4960 | |
4961 | /***************************************************************************** |
4962 | * |
4963 | * Enumerate all live object references in that function using |
4964 | * the virtual register set. |
4965 | * Returns success of operation. |
4966 | */ |
4967 | |
4968 | bool EECodeManager::EnumGcRefs( PREGDISPLAY pRD, |
4969 | EECodeInfo *pCodeInfo, |
4970 | unsigned flags, |
4971 | GCEnumCallback pCallBack, |
4972 | LPVOID hCallBack, |
4973 | DWORD relOffsetOverride) |
4974 | { |
4975 | CONTRACTL { |
4976 | NOTHROW; |
4977 | GC_NOTRIGGER; |
4978 | } CONTRACTL_END; |
4979 | |
4980 | unsigned curOffs = pCodeInfo->GetRelOffset(); |
4981 | |
4982 | #ifdef _TARGET_ARM_ |
4983 | // On ARM, the low-order bit of an instruction pointer indicates Thumb vs. ARM mode. |
4984 | // Mask this off; all instructions are two-byte aligned. |
4985 | curOffs &= (~THUMB_CODE); |
4986 | #endif // _TARGET_ARM_ |
4987 | |
4988 | #ifdef _DEBUG |
4989 | // Get the name of the current method |
4990 | const char * methodName = pCodeInfo->GetMethodDesc()->GetName(); |
4991 | LOG((LF_GCINFO, LL_INFO1000, "Reporting GC refs for %s at offset %04x.\n" , |
4992 | methodName, curOffs)); |
4993 | #endif |
4994 | |
4995 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
4996 | |
4997 | #if defined(STRESS_HEAP) && defined(PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED) |
4998 | // When we simulate a hijack during gcstress |
4999 | // we start with ActiveStackFrame and the offset |
5000 | // after the call |
5001 | // We need to make it look like a non-leaf frame |
5002 | // so that it's treated like a regular hijack |
5003 | if (flags & ActiveStackFrame) |
5004 | { |
5005 | GcInfoDecoder _gcInfoDecoder( |
5006 | gcInfoToken, |
5007 | DECODE_INTERRUPTIBILITY, |
5008 | curOffs |
5009 | ); |
5010 | if(!_gcInfoDecoder.IsInterruptible()) |
5011 | { |
5012 | // This must be the offset after a call |
5013 | #ifdef _DEBUG |
5014 | GcInfoDecoder _safePointDecoder(gcInfoToken, (GcInfoDecoderFlags)0, 0); |
5015 | _ASSERTE(_safePointDecoder.IsSafePoint(curOffs)); |
5016 | #endif |
5017 | flags &= ~((unsigned)ActiveStackFrame); |
5018 | } |
5019 | } |
5020 | #endif // STRESS_HEAP && PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
5021 | |
5022 | #ifdef _DEBUG |
5023 | if (flags & ActiveStackFrame) |
5024 | { |
5025 | GcInfoDecoder _gcInfoDecoder( |
5026 | gcInfoToken, |
5027 | DECODE_INTERRUPTIBILITY, |
5028 | curOffs |
5029 | ); |
5030 | _ASSERTE(_gcInfoDecoder.IsInterruptible()); |
5031 | } |
5032 | #endif |
5033 | |
5034 | /* If we are not in the active method, we are currently pointing |
5035 | * to the return address; at the return address stack variables |
5036 | * can become dead if the call is the last instruction of a try block |
5037 | * and the return address is the jump around the catch block. Therefore |
5038 | * we simply assume an offset inside of call instruction. |
5039 | * NOTE: The GcInfoDecoder depends on this; if you change it, you must |
5040 | * revisit the GcInfoEncoder/Decoder |
5041 | */ |
5042 | |
5043 | if (!(flags & ExecutionAborted)) |
5044 | { |
5045 | if (!(flags & ActiveStackFrame)) |
5046 | { |
5047 | curOffs--; |
5048 | LOG((LF_GCINFO, LL_INFO1000, "Adjusted GC reporting offset due to flags !ExecutionAborted && !ActiveStackFrame. Now reporting GC refs for %s at offset %04x.\n" , |
5049 | methodName, curOffs)); |
5050 | } |
5051 | } |
5052 | else |
5053 | { |
5054 | /* However if ExecutionAborted, then this must be one of the |
5055 | * ExceptionFrames. Handle accordingly |
5056 | */ |
5057 | _ASSERTE(!(flags & AbortingCall) || !(flags & ActiveStackFrame)); |
5058 | |
5059 | if (flags & AbortingCall) |
5060 | { |
5061 | curOffs--; |
5062 | LOG((LF_GCINFO, LL_INFO1000, "Adjusted GC reporting offset due to flags ExecutionAborted && AbortingCall. Now reporting GC refs for %s at offset %04x.\n" , |
5063 | methodName, curOffs)); |
5064 | } |
5065 | } |
5066 | |
5067 | // Check if we have been given an override value for relOffset |
5068 | if (relOffsetOverride != NO_OVERRIDE_OFFSET) |
5069 | { |
5070 | // We've been given an override offset for GC Info |
5071 | #ifdef _DEBUG |
5072 | GcInfoDecoder _gcInfoDecoder( |
5073 | gcInfoToken, |
5074 | DECODE_CODE_LENGTH |
5075 | ); |
5076 | |
5077 | // We only use override offset for wantsReportOnlyLeaf |
5078 | _ASSERTE(_gcInfoDecoder.WantsReportOnlyLeaf()); |
5079 | #endif // _DEBUG |
5080 | |
5081 | curOffs = relOffsetOverride; |
5082 | |
5083 | #ifdef _TARGET_ARM_ |
5084 | // On ARM, the low-order bit of an instruction pointer indicates Thumb vs. ARM mode. |
5085 | // Mask this off; all instructions are two-byte aligned. |
5086 | curOffs &= (~THUMB_CODE); |
5087 | #endif // _TARGET_ARM_ |
5088 | |
5089 | LOG((LF_GCINFO, LL_INFO1000, "Adjusted GC reporting offset to provided override offset. Now reporting GC refs for %s at offset %04x.\n" , |
5090 | methodName, curOffs)); |
5091 | } |
5092 | |
5093 | |
5094 | #if defined(WIN64EXCEPTIONS) // funclets |
5095 | if (pCodeInfo->GetJitManager()->IsFilterFunclet(pCodeInfo)) |
5096 | { |
5097 | // Filters are the only funclet that run during the 1st pass, and must have |
5098 | // both the leaf and the parent frame reported. In order to avoid double |
5099 | // reporting of the untracked variables, do not report them for the filter. |
5100 | flags |= NoReportUntracked; |
5101 | } |
5102 | #endif // WIN64EXCEPTIONS |
5103 | |
5104 | bool reportScratchSlots; |
5105 | |
5106 | // We report scratch slots only for leaf frames. |
5107 | // A frame is non-leaf if we are executing a call, or a fault occurred in the function. |
5108 | // The only case in which we need to report scratch slots for a non-leaf frame |
5109 | // is when execution has to be resumed at the point of interruption (via ResumableFrame) |
5110 | //<TODO>Implement ResumableFrame</TODO> |
5111 | _ASSERTE( sizeof( BOOL ) >= sizeof( ActiveStackFrame ) ); |
5112 | reportScratchSlots = (flags & ActiveStackFrame) != 0; |
5113 | |
5114 | |
5115 | GcInfoDecoder gcInfoDecoder( |
5116 | gcInfoToken, |
5117 | GcInfoDecoderFlags (DECODE_GC_LIFETIMES | DECODE_SECURITY_OBJECT | DECODE_VARARG), |
5118 | curOffs |
5119 | ); |
5120 | |
5121 | if (!gcInfoDecoder.EnumerateLiveSlots( |
5122 | pRD, |
5123 | reportScratchSlots, |
5124 | flags, |
5125 | pCallBack, |
5126 | hCallBack |
5127 | )) |
5128 | { |
5129 | return false; |
5130 | } |
5131 | |
5132 | #ifdef WIN64EXCEPTIONS // funclets |
5133 | // |
5134 | // If we're in a funclet, we do not want to report the incoming varargs. This is |
5135 | // taken care of by the parent method and the funclet should access those arguments |
5136 | // by way of the parent method's stack frame. |
5137 | // |
5138 | if(pCodeInfo->IsFunclet()) |
5139 | { |
5140 | return true; |
5141 | } |
5142 | #endif // WIN64EXCEPTIONS |
5143 | |
5144 | if (gcInfoDecoder.GetIsVarArg()) |
5145 | { |
5146 | MethodDesc* pMD = pCodeInfo->GetMethodDesc(); |
5147 | _ASSERTE(pMD != NULL); |
5148 | |
5149 | // This does not apply to x86 because of how it handles varargs (it never |
5150 | // reports the arguments from the explicit method signature). |
5151 | // |
5152 | #ifndef _TARGET_X86_ |
5153 | // |
5154 | // SPECIAL CASE: |
5155 | // IL marshaling stubs have signatures that are marked as vararg, |
5156 | // but they are callsite sigs that actually contain complete sig |
5157 | // info. There are two reasons for this: |
5158 | // 1) the stub callsites expect the method to be vararg |
5159 | // 2) the marshaling stub must have full sig info so that |
5160 | // it can do a ldarg.N on the arguments it needs to marshal. |
5161 | // The result of this is that the code below will report the |
5162 | // variable arguments twice--once from the va sig cookie and once |
5163 | // from the explicit method signature (in the method's gc info). |
5164 | // |
5165 | // This fix to this is to early out of the va sig cookie reporting |
5166 | // in this special case. |
5167 | // |
5168 | if (pMD->IsILStub()) |
5169 | { |
5170 | return true; |
5171 | } |
5172 | #endif // !_TARGET_X86_ |
5173 | |
5174 | LOG((LF_GCINFO, LL_INFO100, "Reporting incoming vararg GC refs\n" )); |
5175 | |
5176 | // Find the offset of the VASigCookie. It's offsets are relative to |
5177 | // the base of a FramedMethodFrame. |
5178 | int VASigCookieOffset; |
5179 | |
5180 | { |
5181 | MetaSig msigFindVASig(pMD); |
5182 | ArgIterator argit(&msigFindVASig); |
5183 | VASigCookieOffset = argit.GetVASigCookieOffset() - TransitionBlock::GetOffsetOfArgs(); |
5184 | } |
5185 | |
5186 | PTR_BYTE prevSP = dac_cast<PTR_BYTE>(GetCallerSp(pRD)); |
5187 | |
5188 | _ASSERTE(prevSP + VASigCookieOffset >= dac_cast<PTR_BYTE>(GetSP(pRD->pCurrentContext))); |
5189 | |
5190 | #if defined(_DEBUG) && !defined(DACCESS_COMPILE) |
5191 | // Note that I really want to say hCallBack is a GCCONTEXT, but this is pretty close |
5192 | extern void GcEnumObject(LPVOID pData, OBJECTREF *pObj, uint32_t flags); |
5193 | _ASSERTE((void*) GcEnumObject == pCallBack); |
5194 | #endif // _DEBUG && !DACCESS_COMPILE |
5195 | GCCONTEXT *pCtx = (GCCONTEXT *) hCallBack; |
5196 | |
5197 | // For varargs, look up the signature using the varArgSig token passed on the stack |
5198 | PTR_VASigCookie varArgSig = *PTR_PTR_VASigCookie(prevSP + VASigCookieOffset); |
5199 | |
5200 | promoteVarArgs(prevSP, varArgSig, pCtx); |
5201 | } |
5202 | |
5203 | return true; |
5204 | |
5205 | } |
5206 | |
5207 | #endif // USE_GC_INFO_DECODER |
5208 | #endif // !CROSSGEN_COMPILE |
5209 | |
5210 | #ifdef _TARGET_X86_ |
5211 | /***************************************************************************** |
5212 | * |
5213 | * Return the address of the local security object reference |
5214 | * using data that was previously cached before in UnwindStackFrame |
5215 | * using StackwalkCacheUnwindInfo |
5216 | */ |
5217 | |
5218 | OBJECTREF* EECodeManager::GetAddrOfSecurityObjectFromCachedInfo(PREGDISPLAY pRD, StackwalkCacheUnwindInfo * stackwalkCacheUnwindInfo) |
5219 | { |
5220 | LIMITED_METHOD_CONTRACT; |
5221 | size_t securityObjectOffset = stackwalkCacheUnwindInfo->securityObjectOffset; |
5222 | |
5223 | _ASSERTE(securityObjectOffset != 0); |
5224 | // We pretend that filters are ESP-based methods in UnwindEbpDoubleAlignFrame(). |
5225 | // Hence we cannot enforce this assert. |
5226 | // _ASSERTE(stackwalkCacheUnwindInfo->fUseEbpAsFrameReg); |
5227 | return (OBJECTREF *) (size_t) (*pRD->GetEbpLocation() - (securityObjectOffset * sizeof(void*))); |
5228 | } |
5229 | #endif // _TARGET_X86_ |
5230 | |
5231 | #if !defined(DACCESS_COMPILE) && !defined(CROSSGEN_COMPILE) |
5232 | OBJECTREF* EECodeManager::GetAddrOfSecurityObject(CrawlFrame *pCF) |
5233 | { |
5234 | CONTRACTL { |
5235 | NOTHROW; |
5236 | GC_NOTRIGGER; |
5237 | } CONTRACTL_END; |
5238 | |
5239 | REGDISPLAY* pRD = pCF->GetRegisterSet(); |
5240 | IJitManager* pJitMan = pCF->GetJitManager(); |
5241 | METHODTOKEN methodToken = pCF->GetMethodToken(); |
5242 | unsigned relOffset = pCF->GetRelOffset(); |
5243 | CodeManState* pState = pCF->GetCodeManState(); |
5244 | |
5245 | GCInfoToken gcInfoToken = pJitMan->GetGCInfoToken(methodToken); |
5246 | |
5247 | _ASSERTE(sizeof(CodeManStateBuf) <= sizeof(pState->stateBuf)); |
5248 | |
5249 | #ifndef USE_GC_INFO_DECODER |
5250 | CodeManStateBuf * stateBuf = (CodeManStateBuf*)pState->stateBuf; |
5251 | |
5252 | /* Extract the necessary information from the info block header */ |
5253 | stateBuf->hdrInfoSize = (DWORD)DecodeGCHdrInfo(gcInfoToken, // <TODO>truncation</TODO> |
5254 | relOffset, |
5255 | &stateBuf->hdrInfoBody); |
5256 | |
5257 | pState->dwIsSet = 1; |
5258 | if (stateBuf->hdrInfoBody.securityCheck) |
5259 | { |
5260 | _ASSERTE(stateBuf->hdrInfoBody.ebpFrame); |
5261 | if(stateBuf->hdrInfoBody.prologOffs == hdrInfo::NOT_IN_PROLOG && |
5262 | stateBuf->hdrInfoBody.epilogOffs == hdrInfo::NOT_IN_EPILOG) |
5263 | { |
5264 | return (OBJECTREF *)(size_t)(*pRD->GetEbpLocation() - GetSecurityObjectOffset(&stateBuf->hdrInfoBody)); |
5265 | } |
5266 | } |
5267 | #else // !USE_GC_INFO_DECODER |
5268 | |
5269 | GcInfoDecoder gcInfoDecoder( |
5270 | gcInfoToken, |
5271 | DECODE_SECURITY_OBJECT |
5272 | ); |
5273 | |
5274 | INT32 spOffset = gcInfoDecoder.GetSecurityObjectStackSlot(); |
5275 | if( spOffset != NO_SECURITY_OBJECT ) |
5276 | { |
5277 | UINT_PTR uCallerSP = GetCallerSp(pRD); |
5278 | |
5279 | if (pCF->IsFunclet()) |
5280 | { |
5281 | if (!pCF->IsFilterFunclet()) |
5282 | { |
5283 | // Cannot retrieve the security object for a non-filter funclet. |
5284 | return NULL; |
5285 | } |
5286 | |
5287 | DWORD dwParentOffset = 0; |
5288 | UINT_PTR uParentCallerSP = 0; |
5289 | |
5290 | // If this is a filter funclet, retrieve the information of the parent method |
5291 | // and use that to find the security object. |
5292 | ExceptionTracker::FindParentStackFrameEx(pCF, &dwParentOffset, &uParentCallerSP); |
5293 | |
5294 | relOffset = dwParentOffset; |
5295 | uCallerSP = uParentCallerSP; |
5296 | } |
5297 | |
5298 | // Security object is always live anyplace we can throw or take a GC |
5299 | OBJECTREF* pSlot = (OBJECTREF*) (spOffset + uCallerSP); |
5300 | return pSlot; |
5301 | } |
5302 | #endif // USE_GC_INFO_DECODER |
5303 | |
5304 | return NULL; |
5305 | } |
5306 | #endif // !DACCESS_COMPILE && !CROSSGEN_COMPILE |
5307 | |
5308 | #ifndef CROSSGEN_COMPILE |
5309 | /***************************************************************************** |
5310 | * |
5311 | * Returns "this" pointer if it is a non-static method |
5312 | * AND the object is still alive. |
5313 | * Returns NULL in all other cases. |
5314 | * Unfortunately, the semantics of this call currently depend on the architecture. |
5315 | * On non-x86 architectures, where we use GcInfo{En,De}Coder, this returns NULL for |
5316 | * all cases except the case where the GenericsContext is determined via "this." On x86, |
5317 | * it will definitely return a non-NULL value in that case, and for synchronized methods; |
5318 | * it may also return a non-NULL value for other cases, depending on how the method is compiled. |
5319 | */ |
5320 | OBJECTREF EECodeManager::GetInstance( PREGDISPLAY pContext, |
5321 | EECodeInfo* pCodeInfo) |
5322 | { |
5323 | CONTRACTL { |
5324 | NOTHROW; |
5325 | GC_NOTRIGGER; |
5326 | MODE_COOPERATIVE; |
5327 | SUPPORTS_DAC; |
5328 | } CONTRACTL_END; |
5329 | |
5330 | #ifndef USE_GC_INFO_DECODER |
5331 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
5332 | unsigned relOffset = pCodeInfo->GetRelOffset(); |
5333 | |
5334 | PTR_CBYTE table = PTR_CBYTE(gcInfoToken.Info); |
5335 | hdrInfo info; |
5336 | unsigned stackDepth; |
5337 | TADDR taArgBase; |
5338 | unsigned count; |
5339 | |
5340 | /* Extract the necessary information from the info block header */ |
5341 | |
5342 | table += DecodeGCHdrInfo(gcInfoToken, |
5343 | relOffset, |
5344 | &info); |
5345 | |
5346 | // We do not have accurate information in the prolog or the epilog |
5347 | if (info.prologOffs != hdrInfo::NOT_IN_PROLOG || |
5348 | info.epilogOffs != hdrInfo::NOT_IN_EPILOG) |
5349 | { |
5350 | return NULL; |
5351 | } |
5352 | |
5353 | if (info.interruptible) |
5354 | { |
5355 | stackDepth = scanArgRegTableI(skipToArgReg(info, table), relOffset, relOffset, &info); |
5356 | } |
5357 | else |
5358 | { |
5359 | stackDepth = scanArgRegTable (skipToArgReg(info, table), (unsigned)relOffset, &info); |
5360 | } |
5361 | |
5362 | if (info.ebpFrame) |
5363 | { |
5364 | _ASSERTE(stackDepth == 0); |
5365 | taArgBase = GetRegdisplayFP(pContext); |
5366 | } |
5367 | else |
5368 | { |
5369 | taArgBase = pContext->SP + stackDepth; |
5370 | } |
5371 | |
5372 | // Only synchronized methods and generic code that accesses |
5373 | // the type context via "this" need to report "this". |
5374 | // If it's reported for other methods, it's probably |
5375 | // done incorrectly. So flag such cases. |
5376 | _ASSERTE(info.thisPtrResult == REGI_NA || |
5377 | pCodeInfo->GetMethodDesc()->IsSynchronized() || |
5378 | pCodeInfo->GetMethodDesc()->AcquiresInstMethodTableFromThis()); |
5379 | |
5380 | if (info.thisPtrResult != REGI_NA) |
5381 | { |
5382 | // the register contains the Object pointer. |
5383 | TADDR uRegValue = *(reinterpret_cast<TADDR *>(getCalleeSavedReg(pContext, info.thisPtrResult))); |
5384 | return ObjectToOBJECTREF(PTR_Object(uRegValue)); |
5385 | } |
5386 | |
5387 | #if VERIFY_GC_TABLES |
5388 | _ASSERTE(*castto(table, unsigned short *)++ == 0xBEEF); |
5389 | #endif |
5390 | |
5391 | #ifndef WIN64EXCEPTIONS |
5392 | /* Parse the untracked frame variable table */ |
5393 | |
5394 | /* The 'this' pointer can never be located in the untracked table */ |
5395 | /* as we only allow pinned and byrefs in the untracked table */ |
5396 | |
5397 | count = info.untrackedCnt; |
5398 | while (count-- > 0) |
5399 | { |
5400 | fastSkipSigned(table); |
5401 | } |
5402 | |
5403 | /* Look for the 'this' pointer in the frame variable lifetime table */ |
5404 | |
5405 | count = info.varPtrTableSize; |
5406 | unsigned tmpOffs = 0; |
5407 | while (count-- > 0) |
5408 | { |
5409 | unsigned varOfs = fastDecodeUnsigned(table); |
5410 | unsigned begOfs = tmpOffs + fastDecodeUnsigned(table); |
5411 | unsigned endOfs = begOfs + fastDecodeUnsigned(table); |
5412 | _ASSERTE(!info.ebpFrame || (varOfs!=0)); |
5413 | /* Is this variable live right now? */ |
5414 | if (((unsigned)relOffset >= begOfs) && ((unsigned)relOffset < endOfs)) |
5415 | { |
5416 | /* Does it contain the 'this' pointer */ |
5417 | if (varOfs & this_OFFSET_FLAG) |
5418 | { |
5419 | unsigned ofs = varOfs & ~OFFSET_MASK; |
5420 | |
5421 | /* Tracked locals for EBP frames are always at negative offsets */ |
5422 | |
5423 | if (info.ebpFrame) |
5424 | taArgBase -= ofs; |
5425 | else |
5426 | taArgBase += ofs; |
5427 | |
5428 | return (OBJECTREF)(size_t)(*PTR_DWORD(taArgBase)); |
5429 | } |
5430 | } |
5431 | tmpOffs = begOfs; |
5432 | } |
5433 | |
5434 | #if VERIFY_GC_TABLES |
5435 | _ASSERTE(*castto(table, unsigned short *) == 0xBABE); |
5436 | #endif |
5437 | |
5438 | #else // WIN64EXCEPTIONS |
5439 | if (pCodeInfo->GetMethodDesc()->AcquiresInstMethodTableFromThis()) // Generic Context is "this" |
5440 | { |
5441 | // Untracked table must have at least one entry - this pointer |
5442 | _ASSERTE(info.untrackedCnt > 0); |
5443 | |
5444 | // The first entry must be "this" pointer |
5445 | int stkOffs = fastDecodeSigned(table); |
5446 | taArgBase -= stkOffs & ~OFFSET_MASK; |
5447 | return (OBJECTREF)(size_t)(*PTR_DWORD(taArgBase)); |
5448 | } |
5449 | #endif // WIN64EXCEPTIONS |
5450 | |
5451 | return NULL; |
5452 | #else // !USE_GC_INFO_DECODER |
5453 | PTR_VOID token = EECodeManager::GetExactGenericsToken(pContext, pCodeInfo); |
5454 | |
5455 | OBJECTREF oRef = ObjectToOBJECTREF(PTR_Object(dac_cast<TADDR>(token))); |
5456 | VALIDATEOBJECTREF(oRef); |
5457 | return oRef; |
5458 | #endif // USE_GC_INFO_DECODER |
5459 | } |
5460 | #endif // !CROSSGEN_COMPILE |
5461 | |
5462 | GenericParamContextType EECodeManager::GetParamContextType(PREGDISPLAY pContext, |
5463 | EECodeInfo * pCodeInfo) |
5464 | { |
5465 | LIMITED_METHOD_DAC_CONTRACT; |
5466 | |
5467 | #ifndef USE_GC_INFO_DECODER |
5468 | /* Extract the necessary information from the info block header */ |
5469 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
5470 | PTR_VOID methodInfoPtr = pCodeInfo->GetGCInfo(); |
5471 | unsigned relOffset = pCodeInfo->GetRelOffset(); |
5472 | |
5473 | hdrInfo info; |
5474 | PTR_CBYTE table = PTR_CBYTE(gcInfoToken.Info); |
5475 | table += DecodeGCHdrInfo(gcInfoToken, |
5476 | relOffset, |
5477 | &info); |
5478 | |
5479 | if (!info.genericsContext || |
5480 | info.prologOffs != hdrInfo::NOT_IN_PROLOG || |
5481 | info.epilogOffs != hdrInfo::NOT_IN_EPILOG) |
5482 | { |
5483 | return GENERIC_PARAM_CONTEXT_NONE; |
5484 | } |
5485 | |
5486 | if (info.genericsContextIsMethodDesc) |
5487 | { |
5488 | return GENERIC_PARAM_CONTEXT_METHODDESC; |
5489 | } |
5490 | |
5491 | return GENERIC_PARAM_CONTEXT_METHODTABLE; |
5492 | |
5493 | // On x86 the generic param context parameter is never this. |
5494 | #else // !USE_GC_INFO_DECODER |
5495 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
5496 | |
5497 | GcInfoDecoder gcInfoDecoder( |
5498 | gcInfoToken, |
5499 | GcInfoDecoderFlags (DECODE_GENERICS_INST_CONTEXT) |
5500 | ); |
5501 | |
5502 | INT32 spOffsetGenericsContext = gcInfoDecoder.GetGenericsInstContextStackSlot(); |
5503 | if (spOffsetGenericsContext != NO_GENERICS_INST_CONTEXT) |
5504 | { |
5505 | if (gcInfoDecoder.HasMethodDescGenericsInstContext()) |
5506 | { |
5507 | return GENERIC_PARAM_CONTEXT_METHODDESC; |
5508 | } |
5509 | else if (gcInfoDecoder.HasMethodTableGenericsInstContext()) |
5510 | { |
5511 | return GENERIC_PARAM_CONTEXT_METHODTABLE; |
5512 | } |
5513 | return GENERIC_PARAM_CONTEXT_THIS; |
5514 | } |
5515 | return GENERIC_PARAM_CONTEXT_NONE; |
5516 | #endif // USE_GC_INFO_DECODER |
5517 | } |
5518 | |
5519 | #ifndef CROSSGEN_COMPILE |
5520 | /***************************************************************************** |
5521 | * |
5522 | * Returns the extra argument passed to to shared generic code if it is still alive. |
5523 | * Returns NULL in all other cases. |
5524 | */ |
5525 | PTR_VOID EECodeManager::GetParamTypeArg(PREGDISPLAY pContext, |
5526 | EECodeInfo * pCodeInfo) |
5527 | |
5528 | { |
5529 | LIMITED_METHOD_DAC_CONTRACT; |
5530 | |
5531 | #ifndef USE_GC_INFO_DECODER |
5532 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
5533 | PTR_VOID methodInfoPtr = pCodeInfo->GetGCInfo(); |
5534 | unsigned relOffset = pCodeInfo->GetRelOffset(); |
5535 | |
5536 | /* Extract the necessary information from the info block header */ |
5537 | hdrInfo info; |
5538 | PTR_CBYTE table = PTR_CBYTE(gcInfoToken.Info); |
5539 | table += DecodeGCHdrInfo(gcInfoToken, |
5540 | relOffset, |
5541 | &info); |
5542 | |
5543 | if (!info.genericsContext || |
5544 | info.prologOffs != hdrInfo::NOT_IN_PROLOG || |
5545 | info.epilogOffs != hdrInfo::NOT_IN_EPILOG) |
5546 | { |
5547 | return NULL; |
5548 | } |
5549 | |
5550 | TADDR fp = GetRegdisplayFP(pContext); |
5551 | TADDR taParamTypeArg = *PTR_TADDR(fp - GetParamTypeArgOffset(&info)); |
5552 | return PTR_VOID(taParamTypeArg); |
5553 | |
5554 | #else // !USE_GC_INFO_DECODER |
5555 | return EECodeManager::GetExactGenericsToken(pContext, pCodeInfo); |
5556 | |
5557 | #endif // USE_GC_INFO_DECODER |
5558 | } |
5559 | #endif // !CROSSGEN_COMPILE |
5560 | |
5561 | #if defined(WIN64EXCEPTIONS) && defined(USE_GC_INFO_DECODER) && !defined(CROSSGEN_COMPILE) |
5562 | /* |
5563 | Returns the generics token. This is used by GetInstance() and GetParamTypeArg() on WIN64. |
5564 | */ |
5565 | //static |
5566 | PTR_VOID EECodeManager::GetExactGenericsToken(PREGDISPLAY pContext, |
5567 | EECodeInfo * pCodeInfo) |
5568 | { |
5569 | LIMITED_METHOD_DAC_CONTRACT; |
5570 | |
5571 | return EECodeManager::GetExactGenericsToken(GetCallerSp(pContext), pCodeInfo); |
5572 | } |
5573 | |
5574 | //static |
5575 | PTR_VOID EECodeManager::GetExactGenericsToken(SIZE_T baseStackSlot, |
5576 | EECodeInfo * pCodeInfo) |
5577 | { |
5578 | LIMITED_METHOD_DAC_CONTRACT; |
5579 | |
5580 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
5581 | |
5582 | GcInfoDecoder gcInfoDecoder( |
5583 | gcInfoToken, |
5584 | GcInfoDecoderFlags (DECODE_PSP_SYM | DECODE_GENERICS_INST_CONTEXT) |
5585 | ); |
5586 | |
5587 | INT32 spOffsetGenericsContext = gcInfoDecoder.GetGenericsInstContextStackSlot(); |
5588 | if (spOffsetGenericsContext != NO_GENERICS_INST_CONTEXT) |
5589 | { |
5590 | |
5591 | TADDR taSlot; |
5592 | if (pCodeInfo->IsFunclet()) |
5593 | { |
5594 | INT32 spOffsetPSPSym = gcInfoDecoder.GetPSPSymStackSlot(); |
5595 | _ASSERTE(spOffsetPSPSym != NO_PSP_SYM); |
5596 | |
5597 | #ifdef _TARGET_AMD64_ |
5598 | // On AMD64 the spOffsetPSPSym is relative to the "Initial SP": the stack |
5599 | // pointer at the end of the prolog before and dynamic allocations, so it |
5600 | // can be the same for funclets and the main function. |
5601 | // However, we have a caller SP, so we need to convert |
5602 | baseStackSlot -= pCodeInfo->GetFixedStackSize(); |
5603 | |
5604 | #endif // _TARGET_AMD64_ |
5605 | |
5606 | // For funclets we have to do an extra dereference to get the PSPSym first. |
5607 | TADDR newBaseStackSlot = *PTR_TADDR(baseStackSlot + spOffsetPSPSym); |
5608 | |
5609 | #ifdef _TARGET_AMD64_ |
5610 | // On AMD64 the PSPSym stores the "Initial SP": the stack pointer at the end of |
5611 | // prolog, before any dynamic allocations. |
5612 | // However, the GenericsContext offset is relative to the caller SP for all |
5613 | // platforms. So here we adjust to convert AMD64's initial sp to a caller SP. |
5614 | // But we have to be careful to use the main function's EECodeInfo, not the |
5615 | // funclet's EECodeInfo because they have different stack sizes! |
5616 | newBaseStackSlot += pCodeInfo->GetMainFunctionInfo().GetFixedStackSize(); |
5617 | #endif // _TARGET_AMD64_ |
5618 | |
5619 | taSlot = (TADDR)( spOffsetGenericsContext + newBaseStackSlot ); |
5620 | } |
5621 | else |
5622 | { |
5623 | taSlot = (TADDR)( spOffsetGenericsContext + baseStackSlot ); |
5624 | } |
5625 | TADDR taExactGenericsToken = *PTR_TADDR(taSlot); |
5626 | return PTR_VOID(taExactGenericsToken); |
5627 | } |
5628 | return NULL; |
5629 | } |
5630 | |
5631 | |
5632 | #endif // WIN64EXCEPTIONS && USE_GC_INFO_DECODER && !CROSSGEN_COMPILE |
5633 | |
5634 | #ifndef CROSSGEN_COMPILE |
5635 | /*****************************************************************************/ |
5636 | |
5637 | void * EECodeManager::GetGSCookieAddr(PREGDISPLAY pContext, |
5638 | EECodeInfo * pCodeInfo, |
5639 | CodeManState * pState) |
5640 | { |
5641 | CONTRACTL { |
5642 | NOTHROW; |
5643 | GC_NOTRIGGER; |
5644 | } CONTRACTL_END; |
5645 | |
5646 | _ASSERTE(sizeof(CodeManStateBuf) <= sizeof(pState->stateBuf)); |
5647 | |
5648 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
5649 | unsigned relOffset = pCodeInfo->GetRelOffset(); |
5650 | |
5651 | #ifdef WIN64EXCEPTIONS |
5652 | if (pCodeInfo->IsFunclet()) |
5653 | { |
5654 | return NULL; |
5655 | } |
5656 | #endif |
5657 | |
5658 | #ifndef USE_GC_INFO_DECODER |
5659 | CodeManStateBuf * stateBuf = (CodeManStateBuf*)pState->stateBuf; |
5660 | |
5661 | /* Extract the necessary information from the info block header */ |
5662 | hdrInfo * info = &stateBuf->hdrInfoBody; |
5663 | stateBuf->hdrInfoSize = (DWORD)DecodeGCHdrInfo(gcInfoToken, // <TODO>truncation</TODO> |
5664 | relOffset, |
5665 | info); |
5666 | |
5667 | pState->dwIsSet = 1; |
5668 | |
5669 | if (info->prologOffs != hdrInfo::NOT_IN_PROLOG || |
5670 | info->epilogOffs != hdrInfo::NOT_IN_EPILOG || |
5671 | info->gsCookieOffset == INVALID_GS_COOKIE_OFFSET) |
5672 | { |
5673 | return NULL; |
5674 | } |
5675 | |
5676 | if (info->ebpFrame) |
5677 | { |
5678 | DWORD curEBP = GetRegdisplayFP(pContext); |
5679 | |
5680 | return PVOID(SIZE_T(curEBP - info->gsCookieOffset)); |
5681 | } |
5682 | else |
5683 | { |
5684 | PTR_CBYTE table = PTR_CBYTE(gcInfoToken.Info) + stateBuf->hdrInfoSize; |
5685 | unsigned argSize = GetPushedArgSize(info, table, relOffset); |
5686 | |
5687 | return PVOID(SIZE_T(pContext->SP + argSize + info->gsCookieOffset)); |
5688 | } |
5689 | |
5690 | #else // !USE_GC_INFO_DECODER |
5691 | GcInfoDecoder gcInfoDecoder( |
5692 | gcInfoToken, |
5693 | DECODE_GS_COOKIE |
5694 | ); |
5695 | |
5696 | INT32 spOffsetGSCookie = gcInfoDecoder.GetGSCookieStackSlot(); |
5697 | if (spOffsetGSCookie != NO_GS_COOKIE) |
5698 | { |
5699 | if(relOffset >= gcInfoDecoder.GetGSCookieValidRangeStart() |
5700 | && relOffset < gcInfoDecoder.GetGSCookieValidRangeEnd()) |
5701 | { |
5702 | SIZE_T baseStackSlot = GetCallerSp(pContext); |
5703 | return (LPVOID)( spOffsetGSCookie + baseStackSlot ); |
5704 | } |
5705 | } |
5706 | return NULL; |
5707 | |
5708 | #endif // USE_GC_INFO_DECODER |
5709 | } |
5710 | #endif // !CROSSGEN_COMPILE |
5711 | |
5712 | #ifndef USE_GC_INFO_DECODER |
5713 | /***************************************************************************** |
5714 | * |
5715 | * Returns true if the given IP is in the given method's prolog or epilog. |
5716 | */ |
5717 | bool EECodeManager::IsInPrologOrEpilog(DWORD relPCoffset, |
5718 | GCInfoToken gcInfoToken, |
5719 | size_t* prologSize) |
5720 | { |
5721 | CONTRACTL { |
5722 | NOTHROW; |
5723 | GC_NOTRIGGER; |
5724 | } CONTRACTL_END; |
5725 | |
5726 | hdrInfo info; |
5727 | |
5728 | DecodeGCHdrInfo(gcInfoToken, relPCoffset, &info); |
5729 | |
5730 | if (prologSize) |
5731 | *prologSize = info.prologSize; |
5732 | |
5733 | return ((info.prologOffs != hdrInfo::NOT_IN_PROLOG) || |
5734 | (info.epilogOffs != hdrInfo::NOT_IN_EPILOG)); |
5735 | } |
5736 | |
5737 | /***************************************************************************** |
5738 | * |
5739 | * Returns true if the given IP is in the synchronized region of the method (valid for synchronized functions only) |
5740 | */ |
5741 | bool EECodeManager::IsInSynchronizedRegion(DWORD relOffset, |
5742 | GCInfoToken gcInfoToken, |
5743 | unsigned flags) |
5744 | { |
5745 | CONTRACTL { |
5746 | NOTHROW; |
5747 | GC_NOTRIGGER; |
5748 | } CONTRACTL_END; |
5749 | |
5750 | hdrInfo info; |
5751 | |
5752 | DecodeGCHdrInfo(gcInfoToken, relOffset, &info); |
5753 | |
5754 | // We should be called only for synchronized methods |
5755 | _ASSERTE(info.syncStartOffset != INVALID_SYNC_OFFSET && info.syncEndOffset != INVALID_SYNC_OFFSET); |
5756 | |
5757 | _ASSERTE(info.syncStartOffset < info.syncEndOffset); |
5758 | _ASSERTE(info.epilogCnt <= 1); |
5759 | _ASSERTE(info.epilogCnt == 0 || info.syncEndOffset <= info.syncEpilogStart); |
5760 | |
5761 | return (info.syncStartOffset < relOffset && relOffset < info.syncEndOffset) || |
5762 | (info.syncStartOffset == relOffset && (flags & (ActiveStackFrame|ExecutionAborted))) || |
5763 | // Synchronized methods have at most one epilog. The epilog does not have to be at the end of the method though. |
5764 | // Everything after the epilog is also in synchronized region. |
5765 | (info.epilogCnt != 0 && info.syncEpilogStart + info.epilogSize <= relOffset); |
5766 | } |
5767 | #endif // !USE_GC_INFO_DECODER |
5768 | |
5769 | /***************************************************************************** |
5770 | * |
5771 | * Returns the size of a given function. |
5772 | */ |
5773 | size_t EECodeManager::GetFunctionSize(GCInfoToken gcInfoToken) |
5774 | { |
5775 | CONTRACTL { |
5776 | NOTHROW; |
5777 | GC_NOTRIGGER; |
5778 | SUPPORTS_DAC; |
5779 | } CONTRACTL_END; |
5780 | |
5781 | #ifndef USE_GC_INFO_DECODER |
5782 | hdrInfo info; |
5783 | |
5784 | DecodeGCHdrInfo(gcInfoToken, 0, &info); |
5785 | |
5786 | return info.methodSize; |
5787 | #else // !USE_GC_INFO_DECODER |
5788 | |
5789 | GcInfoDecoder gcInfoDecoder( |
5790 | gcInfoToken, |
5791 | DECODE_CODE_LENGTH |
5792 | ); |
5793 | |
5794 | UINT32 codeLength = gcInfoDecoder.GetCodeLength(); |
5795 | _ASSERTE( codeLength > 0 ); |
5796 | return codeLength; |
5797 | |
5798 | #endif // USE_GC_INFO_DECODER |
5799 | } |
5800 | |
5801 | /***************************************************************************** |
5802 | * |
5803 | * Returns the size of a given function. |
5804 | */ |
5805 | ReturnKind EECodeManager::GetReturnKind(GCInfoToken gcInfoToken) |
5806 | { |
5807 | CONTRACTL{ |
5808 | NOTHROW; |
5809 | GC_NOTRIGGER; |
5810 | SUPPORTS_DAC; |
5811 | } CONTRACTL_END; |
5812 | |
5813 | if (!gcInfoToken.IsReturnKindAvailable()) |
5814 | { |
5815 | return RT_Illegal; |
5816 | } |
5817 | |
5818 | #ifndef USE_GC_INFO_DECODER |
5819 | hdrInfo info; |
5820 | |
5821 | DecodeGCHdrInfo(gcInfoToken, 0, &info); |
5822 | |
5823 | return info.returnKind; |
5824 | #else // !USE_GC_INFO_DECODER |
5825 | |
5826 | GcInfoDecoder gcInfoDecoder(gcInfoToken, DECODE_RETURN_KIND); |
5827 | return gcInfoDecoder.GetReturnKind(); |
5828 | |
5829 | #endif // USE_GC_INFO_DECODER |
5830 | } |
5831 | |
5832 | #ifndef USE_GC_INFO_DECODER |
5833 | /***************************************************************************** |
5834 | * |
5835 | * Returns the size of the frame of the given function. |
5836 | */ |
5837 | unsigned int EECodeManager::GetFrameSize(GCInfoToken gcInfoToken) |
5838 | { |
5839 | CONTRACTL { |
5840 | NOTHROW; |
5841 | GC_NOTRIGGER; |
5842 | } CONTRACTL_END; |
5843 | |
5844 | hdrInfo info; |
5845 | |
5846 | DecodeGCHdrInfo(gcInfoToken, 0, &info); |
5847 | |
5848 | // currently only used by E&C callers need to know about doubleAlign |
5849 | // in all likelyhood |
5850 | _ASSERTE(!info.doubleAlign); |
5851 | return info.stackSize; |
5852 | } |
5853 | #endif // USE_GC_INFO_DECODER |
5854 | |
5855 | #ifndef DACCESS_COMPILE |
5856 | |
5857 | /*****************************************************************************/ |
5858 | |
5859 | #ifndef WIN64EXCEPTIONS |
5860 | const BYTE* EECodeManager::GetFinallyReturnAddr(PREGDISPLAY pReg) |
5861 | { |
5862 | LIMITED_METHOD_CONTRACT; |
5863 | |
5864 | return *(const BYTE**)(size_t)(GetRegdisplaySP(pReg)); |
5865 | } |
5866 | |
5867 | BOOL EECodeManager::IsInFilter(GCInfoToken gcInfoToken, |
5868 | unsigned offset, |
5869 | PCONTEXT pCtx, |
5870 | DWORD curNestLevel) |
5871 | { |
5872 | CONTRACTL { |
5873 | NOTHROW; |
5874 | GC_NOTRIGGER; |
5875 | } CONTRACTL_END; |
5876 | |
5877 | /* Extract the necessary information from the info block header */ |
5878 | |
5879 | hdrInfo info; |
5880 | |
5881 | DecodeGCHdrInfo(gcInfoToken, |
5882 | offset, |
5883 | &info); |
5884 | |
5885 | /* make sure that we have an ebp stack frame */ |
5886 | |
5887 | _ASSERTE(info.ebpFrame); |
5888 | _ASSERTE(info.handlers); // <TODO> This will alway be set. Remove it</TODO> |
5889 | |
5890 | TADDR baseSP; |
5891 | DWORD nestingLevel; |
5892 | |
5893 | FrameType frameType = GetHandlerFrameInfo(&info, pCtx->Ebp, |
5894 | pCtx->Esp, (DWORD) IGNORE_VAL, |
5895 | &baseSP, &nestingLevel); |
5896 | _ASSERTE(frameType != FR_INVALID); |
5897 | |
5898 | // _ASSERTE(nestingLevel == curNestLevel); |
5899 | |
5900 | return frameType == FR_FILTER; |
5901 | } |
5902 | |
5903 | |
5904 | BOOL EECodeManager::LeaveFinally(GCInfoToken gcInfoToken, |
5905 | unsigned offset, |
5906 | PCONTEXT pCtx) |
5907 | { |
5908 | CONTRACTL { |
5909 | NOTHROW; |
5910 | GC_NOTRIGGER; |
5911 | } CONTRACTL_END; |
5912 | |
5913 | |
5914 | hdrInfo info; |
5915 | |
5916 | DecodeGCHdrInfo(gcInfoToken, |
5917 | offset, |
5918 | &info); |
5919 | |
5920 | DWORD nestingLevel; |
5921 | GetHandlerFrameInfo(&info, pCtx->Ebp, pCtx->Esp, (DWORD) IGNORE_VAL, NULL, &nestingLevel); |
5922 | |
5923 | // Compute an index into the stack-based table of esp values from |
5924 | // each level of catch block. |
5925 | PTR_TADDR pBaseSPslots = GetFirstBaseSPslotPtr(pCtx->Ebp, &info); |
5926 | PTR_TADDR pPrevSlot = pBaseSPslots - (nestingLevel - 1); |
5927 | |
5928 | /* Currently, LeaveFinally() is not used if the finally is invoked in the |
5929 | second pass for unwinding. So we expect the finally to be called locally */ |
5930 | _ASSERTE(*pPrevSlot == LCL_FINALLY_MARK); |
5931 | |
5932 | *pPrevSlot = 0; // Zero out the previous shadow ESP |
5933 | |
5934 | pCtx->Esp += sizeof(TADDR); // Pop the return value off the stack |
5935 | return TRUE; |
5936 | } |
5937 | |
5938 | void EECodeManager::LeaveCatch(GCInfoToken gcInfoToken, |
5939 | unsigned offset, |
5940 | PCONTEXT pCtx) |
5941 | { |
5942 | CONTRACTL { |
5943 | NOTHROW; |
5944 | GC_NOTRIGGER; |
5945 | } CONTRACTL_END; |
5946 | |
5947 | #ifdef _DEBUG |
5948 | TADDR baseSP; |
5949 | DWORD nestingLevel; |
5950 | bool hasInnerFilter; |
5951 | hdrInfo info; |
5952 | |
5953 | DecodeGCHdrInfo(gcInfoToken, offset, &info); |
5954 | GetHandlerFrameInfo(&info, pCtx->Ebp, pCtx->Esp, (DWORD) IGNORE_VAL, |
5955 | &baseSP, &nestingLevel, &hasInnerFilter); |
5956 | // _ASSERTE(frameType == FR_HANDLER); |
5957 | // _ASSERTE(pCtx->Esp == baseSP); |
5958 | #endif |
5959 | |
5960 | return; |
5961 | } |
5962 | #endif // !WIN64EXCEPTIONS |
5963 | #endif // #ifndef DACCESS_COMPILE |
5964 | |
5965 | #ifdef DACCESS_COMPILE |
5966 | |
5967 | void EECodeManager::EnumMemoryRegions(CLRDataEnumMemoryFlags flags) |
5968 | { |
5969 | DAC_ENUM_VTHIS(); |
5970 | } |
5971 | |
5972 | #endif // #ifdef DACCESS_COMPILE |
5973 | |
5974 | |
5975 | #ifdef _TARGET_X86_ |
5976 | /* |
5977 | * GetAmbientSP |
5978 | * |
5979 | * This function computes the zero-depth stack pointer for the given nesting |
5980 | * level within the method given. Nesting level is the the depth within |
5981 | * try-catch-finally blocks, and is zero based. It is up to the caller to |
5982 | * supply a valid nesting level value. |
5983 | * |
5984 | */ |
5985 | |
5986 | TADDR EECodeManager::GetAmbientSP(PREGDISPLAY pContext, |
5987 | EECodeInfo *pCodeInfo, |
5988 | DWORD dwRelOffset, |
5989 | DWORD nestingLevel, |
5990 | CodeManState *pState) |
5991 | { |
5992 | CONTRACTL { |
5993 | NOTHROW; |
5994 | GC_NOTRIGGER; |
5995 | SUPPORTS_DAC; |
5996 | } CONTRACTL_END; |
5997 | |
5998 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
5999 | |
6000 | _ASSERTE(sizeof(CodeManStateBuf) <= sizeof(pState->stateBuf)); |
6001 | CodeManStateBuf * stateBuf = (CodeManStateBuf*)pState->stateBuf; |
6002 | PTR_CBYTE table = PTR_CBYTE(gcInfoToken.Info); |
6003 | |
6004 | /* Extract the necessary information from the info block header */ |
6005 | |
6006 | stateBuf->hdrInfoSize = (DWORD)DecodeGCHdrInfo(gcInfoToken, |
6007 | dwRelOffset, |
6008 | &stateBuf->hdrInfoBody); |
6009 | table += stateBuf->hdrInfoSize; |
6010 | |
6011 | pState->dwIsSet = 1; |
6012 | |
6013 | #if defined(_DEBUG) && !defined(DACCESS_COMPILE) |
6014 | if (trFixContext) |
6015 | { |
6016 | printf("GetAmbientSP [%s][%s] for %s.%s: " , |
6017 | stateBuf->hdrInfoBody.ebpFrame?"ebp" :" " , |
6018 | stateBuf->hdrInfoBody.interruptible?"int" :" " , |
6019 | "UnknownClass" ,"UnknownMethod" ); |
6020 | fflush(stdout); |
6021 | } |
6022 | #endif // _DEBUG && !DACCESS_COMPILE |
6023 | |
6024 | if ((stateBuf->hdrInfoBody.prologOffs != hdrInfo::NOT_IN_PROLOG) || |
6025 | (stateBuf->hdrInfoBody.epilogOffs != hdrInfo::NOT_IN_EPILOG)) |
6026 | { |
6027 | return NULL; |
6028 | } |
6029 | |
6030 | /* make sure that we have an ebp stack frame */ |
6031 | |
6032 | if (stateBuf->hdrInfoBody.handlers) |
6033 | { |
6034 | _ASSERTE(stateBuf->hdrInfoBody.ebpFrame); |
6035 | |
6036 | TADDR baseSP; |
6037 | GetHandlerFrameInfo(&stateBuf->hdrInfoBody, |
6038 | GetRegdisplayFP(pContext), |
6039 | (DWORD) IGNORE_VAL, |
6040 | nestingLevel, |
6041 | &baseSP); |
6042 | |
6043 | _ASSERTE((GetRegdisplayFP(pContext) >= baseSP) && (baseSP >= GetRegdisplaySP(pContext))); |
6044 | |
6045 | return baseSP; |
6046 | } |
6047 | |
6048 | _ASSERTE(nestingLevel == 0); |
6049 | |
6050 | if (stateBuf->hdrInfoBody.ebpFrame) |
6051 | { |
6052 | return GetOutermostBaseFP(GetRegdisplayFP(pContext), &stateBuf->hdrInfoBody); |
6053 | } |
6054 | |
6055 | TADDR baseSP = GetRegdisplaySP(pContext); |
6056 | if (stateBuf->hdrInfoBody.interruptible) |
6057 | { |
6058 | baseSP += scanArgRegTableI(skipToArgReg(stateBuf->hdrInfoBody, table), |
6059 | dwRelOffset, |
6060 | dwRelOffset, |
6061 | &stateBuf->hdrInfoBody); |
6062 | } |
6063 | else |
6064 | { |
6065 | baseSP += scanArgRegTable(skipToArgReg(stateBuf->hdrInfoBody, table), |
6066 | dwRelOffset, |
6067 | &stateBuf->hdrInfoBody); |
6068 | } |
6069 | |
6070 | return baseSP; |
6071 | } |
6072 | #endif // _TARGET_X86_ |
6073 | |
6074 | /* |
6075 | Get the number of bytes used for stack parameters. |
6076 | This is currently only used on x86. |
6077 | */ |
6078 | |
6079 | // virtual |
6080 | ULONG32 EECodeManager::GetStackParameterSize(EECodeInfo * pCodeInfo) |
6081 | { |
6082 | CONTRACTL { |
6083 | NOTHROW; |
6084 | GC_NOTRIGGER; |
6085 | SUPPORTS_DAC; |
6086 | } CONTRACTL_END; |
6087 | |
6088 | #if defined(_TARGET_X86_) |
6089 | #if defined(WIN64EXCEPTIONS) |
6090 | if (pCodeInfo->IsFunclet()) |
6091 | { |
6092 | // Funclet has no stack argument |
6093 | return 0; |
6094 | } |
6095 | #endif // WIN64EXCEPTIONS |
6096 | |
6097 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
6098 | unsigned dwOffset = pCodeInfo->GetRelOffset(); |
6099 | |
6100 | CodeManState state; |
6101 | state.dwIsSet = 0; |
6102 | |
6103 | _ASSERTE(sizeof(CodeManStateBuf) <= sizeof(state.stateBuf)); |
6104 | CodeManStateBuf * pStateBuf = reinterpret_cast<CodeManStateBuf *>(state.stateBuf); |
6105 | |
6106 | hdrInfo * pHdrInfo = &(pStateBuf->hdrInfoBody); |
6107 | pStateBuf->hdrInfoSize = (DWORD)DecodeGCHdrInfo(gcInfoToken, dwOffset, pHdrInfo); |
6108 | |
6109 | // We need to subtract 4 here because ESPIncrOnReturn() includes the stack slot containing the return |
6110 | // address. |
6111 | return (ULONG32)::GetStackParameterSize(pHdrInfo); |
6112 | |
6113 | #else |
6114 | return 0; |
6115 | |
6116 | #endif // _TARGET_X86_ |
6117 | } |
6118 | |
6119 | |