| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | |
| 6 | #include "common.h" |
| 7 | |
| 8 | #include "eetwain.h" |
| 9 | #include "dbginterface.h" |
| 10 | #include "gcenv.h" |
| 11 | |
| 12 | #define RETURN_ADDR_OFFS 1 // in DWORDS |
| 13 | |
| 14 | #ifdef USE_GC_INFO_DECODER |
| 15 | #include "gcinfodecoder.h" |
| 16 | #endif |
| 17 | |
| 18 | #include "argdestination.h" |
| 19 | |
| 20 | #define X86_INSTR_W_TEST_ESP 0x4485 // test [esp+N], eax |
| 21 | #define X86_INSTR_TEST_ESP_SIB 0x24 |
| 22 | #define X86_INSTR_PUSH_0 0x6A // push 00, entire instruction is 0x6A00 |
| 23 | #define X86_INSTR_PUSH_IMM 0x68 // push NNNN, |
| 24 | #define X86_INSTR_W_PUSH_IND_IMM 0x35FF // push [NNNN] |
| 25 | #define X86_INSTR_CALL_REL32 0xE8 // call rel32 |
| 26 | #define X86_INSTR_W_CALL_IND_IMM 0x15FF // call [addr32] |
| 27 | #define X86_INSTR_NOP 0x90 // nop |
| 28 | #define X86_INSTR_NOP2 0x9090 // 2-byte nop |
| 29 | #define X86_INSTR_NOP3_1 0x9090 // 1st word of 3-byte nop |
| 30 | #define X86_INSTR_NOP3_3 0x90 // 3rd byte of 3-byte nop |
| 31 | #define X86_INSTR_NOP4 0x90909090 // 4-byte nop |
| 32 | #define X86_INSTR_NOP5_1 0x90909090 // 1st dword of 5-byte nop |
| 33 | #define X86_INSTR_NOP5_5 0x90 // 5th byte of 5-byte nop |
| 34 | #define X86_INSTR_INT3 0xCC // int3 |
| 35 | #define X86_INSTR_HLT 0xF4 // hlt |
| 36 | #define X86_INSTR_PUSH_EBP 0x55 // push ebp |
| 37 | #define X86_INSTR_W_MOV_EBP_ESP 0xEC8B // mov ebp, esp |
| 38 | #define X86_INSTR_POP_ECX 0x59 // pop ecx |
| 39 | #define X86_INSTR_RET 0xC2 // ret imm16 |
| 40 | #define X86_INSTR_RETN 0xC3 // ret |
| 41 | #define X86_INSTR_w_LEA_ESP_EBP_BYTE_OFFSET 0x658d // lea esp, [ebp-bOffset] |
| 42 | #define X86_INSTR_w_LEA_ESP_EBP_DWORD_OFFSET 0xa58d // lea esp, [ebp-dwOffset] |
| 43 | #define X86_INSTR_JMP_NEAR_REL32 0xE9 // near jmp rel32 |
| 44 | #define X86_INSTR_w_JMP_FAR_IND_IMM 0x25FF // far jmp [addr32] |
| 45 | |
| 46 | #ifndef USE_GC_INFO_DECODER |
| 47 | |
| 48 | |
| 49 | #ifdef _DEBUG |
| 50 | // For dumping of verbose info. |
| 51 | #ifndef DACCESS_COMPILE |
| 52 | static bool trFixContext = false; |
| 53 | #endif |
| 54 | static bool trEnumGCRefs = false; |
| 55 | static bool dspPtr = false; // prints the live ptrs as reported |
| 56 | #endif |
| 57 | |
| 58 | // NOTE: enabling compiler optimizations, even for debug builds. |
| 59 | // Comment this out in order to be able to fully debug methods here. |
| 60 | #if defined(_MSC_VER) |
| 61 | #pragma optimize("tg", on) |
| 62 | #endif |
| 63 | |
| 64 | __forceinline unsigned decodeUnsigned(PTR_CBYTE& src) |
| 65 | { |
| 66 | LIMITED_METHOD_CONTRACT; |
| 67 | SUPPORTS_DAC; |
| 68 | |
| 69 | #ifdef DACCESS_COMPILE |
| 70 | PTR_CBYTE begin = src; |
| 71 | #endif |
| 72 | |
| 73 | BYTE byte = *src++; |
| 74 | unsigned value = byte & 0x7f; |
| 75 | while (byte & 0x80) |
| 76 | { |
| 77 | #ifdef DACCESS_COMPILE |
| 78 | // In DAC builds, the target data may be corrupt. Rather than return incorrect data |
| 79 | // and risk wasting time in a potentially long loop, we want to fail early and gracefully. |
| 80 | // The data is encoded with 7 value-bits per byte, and so we may need to read a maximum |
| 81 | // of 5 bytes (7*5=35) to read a full 32-bit integer. |
| 82 | if ((src - begin) > 5) |
| 83 | { |
| 84 | DacError(CORDBG_E_TARGET_INCONSISTENT); |
| 85 | } |
| 86 | #endif |
| 87 | |
| 88 | byte = *src++; |
| 89 | value <<= 7; |
| 90 | value += byte & 0x7f; |
| 91 | } |
| 92 | return value; |
| 93 | } |
| 94 | |
| 95 | __forceinline int decodeSigned(PTR_CBYTE& src) |
| 96 | { |
| 97 | LIMITED_METHOD_CONTRACT; |
| 98 | SUPPORTS_DAC; |
| 99 | |
| 100 | #ifdef DACCESS_COMPILE |
| 101 | PTR_CBYTE begin = src; |
| 102 | #endif |
| 103 | |
| 104 | BYTE byte = *src++; |
| 105 | BYTE first = byte; |
| 106 | int value = byte & 0x3f; |
| 107 | while (byte & 0x80) |
| 108 | { |
| 109 | #ifdef DACCESS_COMPILE |
| 110 | // In DAC builds, the target data may be corrupt. Rather than return incorrect data |
| 111 | // and risk wasting time in a potentially long loop, we want to fail early and gracefully. |
| 112 | // The data is encoded with 7 value-bits per byte, and so we may need to read a maximum |
| 113 | // of 5 bytes (7*5=35) to read a full 32-bit integer. |
| 114 | if ((src - begin) > 5) |
| 115 | { |
| 116 | DacError(CORDBG_E_TARGET_INCONSISTENT); |
| 117 | } |
| 118 | #endif |
| 119 | |
| 120 | byte = *src++; |
| 121 | value <<= 7; |
| 122 | value += byte & 0x7f; |
| 123 | } |
| 124 | if (first & 0x40) |
| 125 | value = -value; |
| 126 | return value; |
| 127 | } |
| 128 | |
| 129 | // Fast versions of the above, with one iteration of the loop unrolled |
| 130 | #define fastDecodeUnsigned(src) (((*(src) & 0x80) == 0) ? (unsigned) (*(src)++) : decodeUnsigned((src))) |
| 131 | #define fastDecodeSigned(src) (((*(src) & 0xC0) == 0) ? (unsigned) (*(src)++) : decodeSigned((src))) |
| 132 | |
| 133 | // Fast skipping past encoded integers |
| 134 | #ifndef DACCESS_COMPILE |
| 135 | #define fastSkipUnsigned(src) { while ((*(src)++) & 0x80) { } } |
| 136 | #define fastSkipSigned(src) { while ((*(src)++) & 0x80) { } } |
| 137 | #else |
| 138 | // In DAC builds we want to trade-off a little perf in the common case for reliaiblity against corrupt data. |
| 139 | #define fastSkipUnsigned(src) (decodeUnsigned(src)) |
| 140 | #define fastSkipSigned(src) (decodeSigned(src)) |
| 141 | #endif |
| 142 | |
| 143 | |
| 144 | /***************************************************************************** |
| 145 | * |
| 146 | * Decodes the X86 GcInfo header and returns the decoded information |
| 147 | * in the hdrInfo struct. |
| 148 | * curOffset is the code offset within the active method used in the |
| 149 | * computation of PrologOffs/EpilogOffs. |
| 150 | * Returns the size of the header (number of bytes decoded). |
| 151 | */ |
| 152 | static size_t DecodeGCHdrInfo(GCInfoToken gcInfoToken, |
| 153 | unsigned curOffset, |
| 154 | hdrInfo * infoPtr) |
| 155 | { |
| 156 | CONTRACTL { |
| 157 | NOTHROW; |
| 158 | GC_NOTRIGGER; |
| 159 | HOST_NOCALLS; |
| 160 | SUPPORTS_DAC; |
| 161 | } CONTRACTL_END; |
| 162 | |
| 163 | PTR_CBYTE table = (PTR_CBYTE) gcInfoToken.Info; |
| 164 | #if VERIFY_GC_TABLES |
| 165 | _ASSERTE(*castto(table, unsigned short *)++ == 0xFEEF); |
| 166 | #endif |
| 167 | |
| 168 | infoPtr->methodSize = fastDecodeUnsigned(table); |
| 169 | |
| 170 | _ASSERTE(curOffset >= 0); |
| 171 | _ASSERTE(curOffset <= infoPtr->methodSize); |
| 172 | |
| 173 | /* Decode the InfoHdr */ |
| 174 | |
| 175 | InfoHdr header; |
| 176 | table = decodeHeader(table, gcInfoToken.Version, &header); |
| 177 | |
| 178 | BOOL hasArgTabOffset = FALSE; |
| 179 | if (header.untrackedCnt == HAS_UNTRACKED) |
| 180 | { |
| 181 | hasArgTabOffset = TRUE; |
| 182 | header.untrackedCnt = fastDecodeUnsigned(table); |
| 183 | } |
| 184 | |
| 185 | if (header.varPtrTableSize == HAS_VARPTR) |
| 186 | { |
| 187 | hasArgTabOffset = TRUE; |
| 188 | header.varPtrTableSize = fastDecodeUnsigned(table); |
| 189 | } |
| 190 | |
| 191 | if (header.gsCookieOffset == HAS_GS_COOKIE_OFFSET) |
| 192 | { |
| 193 | header.gsCookieOffset = fastDecodeUnsigned(table); |
| 194 | } |
| 195 | |
| 196 | if (header.syncStartOffset == HAS_SYNC_OFFSET) |
| 197 | { |
| 198 | header.syncStartOffset = decodeUnsigned(table); |
| 199 | header.syncEndOffset = decodeUnsigned(table); |
| 200 | |
| 201 | _ASSERTE(header.syncStartOffset != INVALID_SYNC_OFFSET && header.syncEndOffset != INVALID_SYNC_OFFSET); |
| 202 | _ASSERTE(header.syncStartOffset < header.syncEndOffset); |
| 203 | } |
| 204 | |
| 205 | if (header.revPInvokeOffset == HAS_REV_PINVOKE_FRAME_OFFSET) |
| 206 | { |
| 207 | header.revPInvokeOffset = fastDecodeUnsigned(table); |
| 208 | } |
| 209 | |
| 210 | /* Some sanity checks on header */ |
| 211 | |
| 212 | _ASSERTE( header.prologSize + |
| 213 | (size_t)(header.epilogCount*header.epilogSize) <= infoPtr->methodSize); |
| 214 | _ASSERTE( header.epilogCount == 1 || !header.epilogAtEnd); |
| 215 | |
| 216 | _ASSERTE( header.untrackedCnt <= header.argCount+header.frameSize); |
| 217 | |
| 218 | _ASSERTE( header.ebpSaved || !(header.ebpFrame || header.doubleAlign)); |
| 219 | _ASSERTE(!header.ebpFrame || !header.doubleAlign ); |
| 220 | _ASSERTE( header.ebpFrame || !header.security ); |
| 221 | _ASSERTE( header.ebpFrame || !header.handlers ); |
| 222 | _ASSERTE( header.ebpFrame || !header.localloc ); |
| 223 | _ASSERTE( header.ebpFrame || !header.editNcontinue); // <TODO> : Esp frames NYI for EnC</TODO> |
| 224 | |
| 225 | /* Initialize the infoPtr struct */ |
| 226 | |
| 227 | infoPtr->argSize = header.argCount * 4; |
| 228 | infoPtr->ebpFrame = header.ebpFrame; |
| 229 | infoPtr->interruptible = header.interruptible; |
| 230 | infoPtr->returnKind = (ReturnKind) header.returnKind; |
| 231 | |
| 232 | infoPtr->prologSize = header.prologSize; |
| 233 | infoPtr->epilogSize = header.epilogSize; |
| 234 | infoPtr->epilogCnt = header.epilogCount; |
| 235 | infoPtr->epilogEnd = header.epilogAtEnd; |
| 236 | |
| 237 | infoPtr->untrackedCnt = header.untrackedCnt; |
| 238 | infoPtr->varPtrTableSize = header.varPtrTableSize; |
| 239 | infoPtr->gsCookieOffset = header.gsCookieOffset; |
| 240 | |
| 241 | infoPtr->syncStartOffset = header.syncStartOffset; |
| 242 | infoPtr->syncEndOffset = header.syncEndOffset; |
| 243 | infoPtr->revPInvokeOffset = header.revPInvokeOffset; |
| 244 | |
| 245 | infoPtr->doubleAlign = header.doubleAlign; |
| 246 | infoPtr->securityCheck = header.security; |
| 247 | infoPtr->handlers = header.handlers; |
| 248 | infoPtr->localloc = header.localloc; |
| 249 | infoPtr->editNcontinue = header.editNcontinue; |
| 250 | infoPtr->varargs = header.varargs; |
| 251 | infoPtr->profCallbacks = header.profCallbacks; |
| 252 | infoPtr->genericsContext = header.genericsContext; |
| 253 | infoPtr->genericsContextIsMethodDesc = header.genericsContextIsMethodDesc; |
| 254 | infoPtr->isSpeculativeStackWalk = false; |
| 255 | |
| 256 | /* Are we within the prolog of the method? */ |
| 257 | |
| 258 | if (curOffset < infoPtr->prologSize) |
| 259 | { |
| 260 | infoPtr->prologOffs = curOffset; |
| 261 | } |
| 262 | else |
| 263 | { |
| 264 | infoPtr->prologOffs = hdrInfo::NOT_IN_PROLOG; |
| 265 | } |
| 266 | |
| 267 | /* Assume we're not in the epilog of the method */ |
| 268 | |
| 269 | infoPtr->epilogOffs = hdrInfo::NOT_IN_EPILOG; |
| 270 | |
| 271 | /* Are we within an epilog of the method? */ |
| 272 | |
| 273 | if (infoPtr->epilogCnt) |
| 274 | { |
| 275 | unsigned epilogStart; |
| 276 | |
| 277 | if (infoPtr->epilogCnt > 1 || !infoPtr->epilogEnd) |
| 278 | { |
| 279 | #if VERIFY_GC_TABLES |
| 280 | _ASSERTE(*castto(table, unsigned short *)++ == 0xFACE); |
| 281 | #endif |
| 282 | epilogStart = 0; |
| 283 | for (unsigned i = 0; i < infoPtr->epilogCnt; i++) |
| 284 | { |
| 285 | epilogStart += fastDecodeUnsigned(table); |
| 286 | if (curOffset > epilogStart && |
| 287 | curOffset < epilogStart + infoPtr->epilogSize) |
| 288 | { |
| 289 | infoPtr->epilogOffs = curOffset - epilogStart; |
| 290 | } |
| 291 | } |
| 292 | } |
| 293 | else |
| 294 | { |
| 295 | epilogStart = infoPtr->methodSize - infoPtr->epilogSize; |
| 296 | |
| 297 | if (curOffset > epilogStart && |
| 298 | curOffset < epilogStart + infoPtr->epilogSize) |
| 299 | { |
| 300 | infoPtr->epilogOffs = curOffset - epilogStart; |
| 301 | } |
| 302 | } |
| 303 | |
| 304 | infoPtr->syncEpilogStart = epilogStart; |
| 305 | } |
| 306 | |
| 307 | unsigned argTabOffset = INVALID_ARGTAB_OFFSET; |
| 308 | if (hasArgTabOffset) |
| 309 | { |
| 310 | argTabOffset = fastDecodeUnsigned(table); |
| 311 | } |
| 312 | infoPtr->argTabOffset = argTabOffset; |
| 313 | |
| 314 | size_t frameDwordCount = header.frameSize; |
| 315 | |
| 316 | /* Set the rawStackSize to the number of bytes that it bumps ESP */ |
| 317 | |
| 318 | infoPtr->rawStkSize = (UINT)(frameDwordCount * sizeof(size_t)); |
| 319 | |
| 320 | /* Calculate the callee saves regMask and adjust stackSize to */ |
| 321 | /* include the callee saves register spills */ |
| 322 | |
| 323 | unsigned savedRegs = RM_NONE; |
| 324 | unsigned savedRegsCount = 0; |
| 325 | |
| 326 | if (header.ediSaved) |
| 327 | { |
| 328 | savedRegsCount++; |
| 329 | savedRegs |= RM_EDI; |
| 330 | } |
| 331 | if (header.esiSaved) |
| 332 | { |
| 333 | savedRegsCount++; |
| 334 | savedRegs |= RM_ESI; |
| 335 | } |
| 336 | if (header.ebxSaved) |
| 337 | { |
| 338 | savedRegsCount++; |
| 339 | savedRegs |= RM_EBX; |
| 340 | } |
| 341 | if (header.ebpSaved) |
| 342 | { |
| 343 | savedRegsCount++; |
| 344 | savedRegs |= RM_EBP; |
| 345 | } |
| 346 | |
| 347 | infoPtr->savedRegMask = (RegMask)savedRegs; |
| 348 | |
| 349 | infoPtr->savedRegsCountExclFP = savedRegsCount; |
| 350 | if (header.ebpFrame || header.doubleAlign) |
| 351 | { |
| 352 | _ASSERTE(header.ebpSaved); |
| 353 | infoPtr->savedRegsCountExclFP = savedRegsCount - 1; |
| 354 | } |
| 355 | |
| 356 | frameDwordCount += savedRegsCount; |
| 357 | |
| 358 | infoPtr->stackSize = (UINT)(frameDwordCount * sizeof(size_t)); |
| 359 | |
| 360 | _ASSERTE(infoPtr->gsCookieOffset == INVALID_GS_COOKIE_OFFSET || |
| 361 | (infoPtr->gsCookieOffset < infoPtr->stackSize) && |
| 362 | ((header.gsCookieOffset % sizeof(void*)) == 0)); |
| 363 | |
| 364 | return table - PTR_CBYTE(gcInfoToken.Info); |
| 365 | } |
| 366 | |
| 367 | /*****************************************************************************/ |
| 368 | |
| 369 | // We do a "pop eax; jmp eax" to return from a fault or finally handler |
| 370 | const size_t END_FIN_POP_STACK = sizeof(TADDR); |
| 371 | |
| 372 | |
| 373 | // The offset (in bytes) from EBP for the secutiy object on the stack |
| 374 | inline size_t GetSecurityObjectOffset(hdrInfo * info) |
| 375 | { |
| 376 | LIMITED_METHOD_DAC_CONTRACT; |
| 377 | |
| 378 | _ASSERTE(info->securityCheck && info->ebpFrame); |
| 379 | |
| 380 | unsigned position = info->savedRegsCountExclFP + |
| 381 | 1; |
| 382 | return position * sizeof(TADDR); |
| 383 | } |
| 384 | |
| 385 | inline |
| 386 | size_t GetLocallocSPOffset(hdrInfo * info) |
| 387 | { |
| 388 | LIMITED_METHOD_DAC_CONTRACT; |
| 389 | |
| 390 | _ASSERTE(info->localloc && info->ebpFrame); |
| 391 | |
| 392 | unsigned position = info->savedRegsCountExclFP + |
| 393 | info->securityCheck + |
| 394 | 1; |
| 395 | return position * sizeof(TADDR); |
| 396 | } |
| 397 | |
| 398 | inline |
| 399 | size_t GetParamTypeArgOffset(hdrInfo * info) |
| 400 | { |
| 401 | LIMITED_METHOD_DAC_CONTRACT; |
| 402 | |
| 403 | _ASSERTE((info->genericsContext || info->handlers) && info->ebpFrame); |
| 404 | |
| 405 | unsigned position = info->savedRegsCountExclFP + |
| 406 | info->securityCheck + |
| 407 | info->localloc + |
| 408 | 1; // For CORINFO_GENERICS_CTXT_FROM_PARAMTYPEARG |
| 409 | return position * sizeof(TADDR); |
| 410 | } |
| 411 | |
| 412 | inline size_t GetStartShadowSPSlotsOffset(hdrInfo * info) |
| 413 | { |
| 414 | LIMITED_METHOD_DAC_CONTRACT; |
| 415 | |
| 416 | _ASSERTE(info->handlers && info->ebpFrame); |
| 417 | |
| 418 | return GetParamTypeArgOffset(info) + |
| 419 | sizeof(TADDR); // Slot for end-of-last-executed-filter |
| 420 | } |
| 421 | |
| 422 | /***************************************************************************** |
| 423 | * Returns the start of the hidden slots for the shadowSP for functions |
| 424 | * with exception handlers. There is one slot per nesting level starting |
| 425 | * near Ebp and is zero-terminated after the active slots. |
| 426 | */ |
| 427 | |
| 428 | inline |
| 429 | PTR_TADDR GetFirstBaseSPslotPtr(TADDR ebp, hdrInfo * info) |
| 430 | { |
| 431 | LIMITED_METHOD_DAC_CONTRACT; |
| 432 | |
| 433 | _ASSERTE(info->handlers && info->ebpFrame); |
| 434 | |
| 435 | size_t offsetFromEBP = GetStartShadowSPSlotsOffset(info) |
| 436 | + sizeof(TADDR); // to get to the *start* of the next slot |
| 437 | |
| 438 | return PTR_TADDR(ebp - offsetFromEBP); |
| 439 | } |
| 440 | |
| 441 | inline size_t GetEndShadowSPSlotsOffset(hdrInfo * info, unsigned maxHandlerNestingLevel) |
| 442 | { |
| 443 | LIMITED_METHOD_DAC_CONTRACT; |
| 444 | |
| 445 | _ASSERTE(info->handlers && info->ebpFrame); |
| 446 | |
| 447 | unsigned numberOfShadowSPSlots = maxHandlerNestingLevel + |
| 448 | 1 + // For zero-termination |
| 449 | 1; // For a filter (which can be active at the same time as a catch/finally handler |
| 450 | |
| 451 | return GetStartShadowSPSlotsOffset(info) + |
| 452 | (numberOfShadowSPSlots * sizeof(TADDR)); |
| 453 | } |
| 454 | |
| 455 | /***************************************************************************** |
| 456 | * returns the base frame pointer corresponding to the target nesting level. |
| 457 | */ |
| 458 | |
| 459 | inline |
| 460 | TADDR GetOutermostBaseFP(TADDR ebp, hdrInfo * info) |
| 461 | { |
| 462 | LIMITED_METHOD_DAC_CONTRACT; |
| 463 | |
| 464 | // we are not taking into account double alignment. We are |
| 465 | // safe because the jit currently bails on double alignment if there |
| 466 | // are handles or localalloc |
| 467 | _ASSERTE(!info->doubleAlign); |
| 468 | if (info->localloc) |
| 469 | { |
| 470 | // If the function uses localloc we will fetch the ESP from the localloc |
| 471 | // slot. |
| 472 | PTR_TADDR pLocalloc = PTR_TADDR(ebp - GetLocallocSPOffset(info)); |
| 473 | |
| 474 | return (*pLocalloc); |
| 475 | } |
| 476 | else |
| 477 | { |
| 478 | // Default, go back all the method's local stack size |
| 479 | return ebp - info->stackSize + sizeof(int); |
| 480 | } |
| 481 | } |
| 482 | |
| 483 | /***************************************************************************** |
| 484 | * |
| 485 | * For functions with handlers, checks if it is currently in a handler. |
| 486 | * Either of unwindESP or unwindLevel will specify the target nesting level. |
| 487 | * If unwindLevel is specified, info about the funclet at that nesting level |
| 488 | * will be returned. (Use if you are interested in a specific nesting level.) |
| 489 | * If unwindESP is specified, info for nesting level invoked before the stack |
| 490 | * reached unwindESP will be returned. (Use if you have a specific ESP value |
| 491 | * during stack walking.) |
| 492 | * |
| 493 | * *pBaseSP is set to the base SP (base of the stack on entry to |
| 494 | * the current funclet) corresponding to the target nesting level. |
| 495 | * *pNestLevel is set to the nesting level of the target nesting level (useful |
| 496 | * if unwindESP!=IGNORE_VAL |
| 497 | * *pHasInnerFilter will be set to true (only when unwindESP!=IGNORE_VAL) if a filter |
| 498 | * is currently active, but the target nesting level is an outer nesting level. |
| 499 | * *pHadInnerFilter - was the last use of the frame to execute a filter. |
| 500 | * This mainly affects GC lifetime reporting. |
| 501 | */ |
| 502 | |
| 503 | enum FrameType |
| 504 | { |
| 505 | FR_NORMAL, // Normal method frame - no exceptions currently active |
| 506 | FR_FILTER, // Frame-let of a filter |
| 507 | FR_HANDLER, // Frame-let of a callable catch/fault/finally |
| 508 | |
| 509 | FR_INVALID, // Invalid frame (for speculative stackwalks) |
| 510 | }; |
| 511 | |
| 512 | enum { IGNORE_VAL = -1 }; |
| 513 | |
| 514 | FrameType GetHandlerFrameInfo(hdrInfo * info, |
| 515 | TADDR frameEBP, |
| 516 | TADDR unwindESP, |
| 517 | DWORD unwindLevel, |
| 518 | TADDR * pBaseSP = NULL, /* OUT */ |
| 519 | DWORD * pNestLevel = NULL, /* OUT */ |
| 520 | bool * pHasInnerFilter = NULL, /* OUT */ |
| 521 | bool * pHadInnerFilter = NULL) /* OUT */ |
| 522 | { |
| 523 | CONTRACTL { |
| 524 | NOTHROW; |
| 525 | GC_NOTRIGGER; |
| 526 | HOST_NOCALLS; |
| 527 | SUPPORTS_DAC; |
| 528 | } CONTRACTL_END; |
| 529 | |
| 530 | _ASSERTE(info->ebpFrame && info->handlers); |
| 531 | // One and only one of them should be IGNORE_VAL |
| 532 | _ASSERTE((unwindESP == (TADDR) IGNORE_VAL) != |
| 533 | (unwindLevel == (DWORD) IGNORE_VAL)); |
| 534 | _ASSERTE(pHasInnerFilter == NULL || unwindESP != (TADDR) IGNORE_VAL); |
| 535 | |
| 536 | // Many of the conditions that we'd like to assert cannot be asserted in the case that we're |
| 537 | // in the middle of a stackwalk seeded by a profiler, since such seeds can't be trusted |
| 538 | // (profilers are external, untrusted sources). So during profiler walks, we test the condition |
| 539 | // and throw an exception if it's not met. Otherwise, we just assert the condition. |
| 540 | #define FAIL_IF_SPECULATIVE_WALK(condition) \ |
| 541 | if (info->isSpeculativeStackWalk) \ |
| 542 | { \ |
| 543 | if (!(condition)) \ |
| 544 | { \ |
| 545 | return FR_INVALID; \ |
| 546 | } \ |
| 547 | } \ |
| 548 | else \ |
| 549 | { \ |
| 550 | _ASSERTE(condition); \ |
| 551 | } |
| 552 | |
| 553 | PTR_TADDR pFirstBaseSPslot = GetFirstBaseSPslotPtr(frameEBP, info); |
| 554 | TADDR baseSP = GetOutermostBaseFP(frameEBP, info); |
| 555 | bool nonLocalHandlers = false; // Are the funclets invoked by EE (instead of managed code itself) |
| 556 | bool hasInnerFilter = false; |
| 557 | bool hadInnerFilter = false; |
| 558 | |
| 559 | /* Get the last non-zero slot >= unwindESP, or lvl<unwindLevel. |
| 560 | Also do some sanity checks */ |
| 561 | |
| 562 | // The shadow slots contain the SP of the nested EH clauses currently active on the stack. |
| 563 | // The slots grow towards lower address on the stack and is terminted by a NULL entry. |
| 564 | // Since each subsequent slot contains the SP of a more nested EH clause, the contents of the slots are |
| 565 | // expected to be in decreasing order. |
| 566 | size_t lvl = 0; |
| 567 | #ifndef WIN64EXCEPTIONS |
| 568 | PTR_TADDR pSlot; |
| 569 | for(lvl = 0, pSlot = pFirstBaseSPslot; |
| 570 | *pSlot && lvl < unwindLevel; |
| 571 | pSlot--, lvl++) |
| 572 | { |
| 573 | // Filters cant have inner funclets |
| 574 | FAIL_IF_SPECULATIVE_WALK(!(baseSP & ICodeManager::SHADOW_SP_IN_FILTER)); |
| 575 | |
| 576 | TADDR curSlotVal = *pSlot; |
| 577 | |
| 578 | // The shadowSPs have to be less unless the stack has been unwound. |
| 579 | FAIL_IF_SPECULATIVE_WALK(baseSP > curSlotVal || |
| 580 | (baseSP == curSlotVal && pSlot == pFirstBaseSPslot)); |
| 581 | |
| 582 | if (curSlotVal == LCL_FINALLY_MARK) |
| 583 | { |
| 584 | // Locally called finally |
| 585 | baseSP -= sizeof(TADDR); |
| 586 | } |
| 587 | else |
| 588 | { |
| 589 | // Is this a funclet we unwound before (can only happen with filters) ? |
| 590 | // If unwindESP is specified, normally we expect it to be the last entry in the shadow slot array. |
| 591 | // Or, if there is a filter, we expect unwindESP to be the second last entry. However, this may |
| 592 | // not be the case in DAC builds. For example, the user can use .cxr in an EH clause to set a |
| 593 | // CONTEXT captured in the try clause. In this case, unwindESP will be the ESP of the parent |
| 594 | // function, but the shadow slot array will contain the SP of the EH clause, which is closer to |
| 595 | // the leaf than the parent method. |
| 596 | |
| 597 | if (unwindESP != (TADDR) IGNORE_VAL && |
| 598 | unwindESP > END_FIN_POP_STACK + |
| 599 | (curSlotVal & ~ICodeManager::SHADOW_SP_BITS)) |
| 600 | { |
| 601 | // In non-DAC builds, the only time unwindESP is closer to the root than entries in the shadow |
| 602 | // slot array is when the last entry in the array is for a filter. Also, filters can't have |
| 603 | // nested handlers. |
| 604 | if ((pSlot[0] & ICodeManager::SHADOW_SP_IN_FILTER) && |
| 605 | (pSlot[-1] == 0) && |
| 606 | !(baseSP & ICodeManager::SHADOW_SP_IN_FILTER)) |
| 607 | { |
| 608 | if (pSlot[0] & ICodeManager::SHADOW_SP_FILTER_DONE) |
| 609 | hadInnerFilter = true; |
| 610 | else |
| 611 | hasInnerFilter = true; |
| 612 | break; |
| 613 | } |
| 614 | else |
| 615 | { |
| 616 | #if defined(DACCESS_COMPILE) |
| 617 | // In DAC builds, this could happen. We just need to bail out of this loop early. |
| 618 | break; |
| 619 | #else // !DACCESS_COMPILE |
| 620 | // In non-DAC builds, this is an error. |
| 621 | FAIL_IF_SPECULATIVE_WALK(FALSE); |
| 622 | #endif // DACCESS_COMPILE |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | nonLocalHandlers = true; |
| 627 | baseSP = curSlotVal; |
| 628 | } |
| 629 | } |
| 630 | #endif // WIN64EXCEPTIONS |
| 631 | |
| 632 | if (unwindESP != (TADDR) IGNORE_VAL) |
| 633 | { |
| 634 | FAIL_IF_SPECULATIVE_WALK(baseSP >= unwindESP || |
| 635 | baseSP == unwindESP - sizeof(TADDR)); // About to locally call a finally |
| 636 | |
| 637 | if (baseSP < unwindESP) // About to locally call a finally |
| 638 | baseSP = unwindESP; |
| 639 | } |
| 640 | else |
| 641 | { |
| 642 | FAIL_IF_SPECULATIVE_WALK(lvl == unwindLevel); // unwindLevel must be currently active on stack |
| 643 | } |
| 644 | |
| 645 | if (pBaseSP) |
| 646 | *pBaseSP = baseSP & ~ICodeManager::SHADOW_SP_BITS; |
| 647 | |
| 648 | if (pNestLevel) |
| 649 | { |
| 650 | *pNestLevel = (DWORD)lvl; |
| 651 | } |
| 652 | |
| 653 | if (pHasInnerFilter) |
| 654 | *pHasInnerFilter = hasInnerFilter; |
| 655 | |
| 656 | if (pHadInnerFilter) |
| 657 | *pHadInnerFilter = hadInnerFilter; |
| 658 | |
| 659 | if (baseSP & ICodeManager::SHADOW_SP_IN_FILTER) |
| 660 | { |
| 661 | FAIL_IF_SPECULATIVE_WALK(!hasInnerFilter); // nested filters not allowed |
| 662 | return FR_FILTER; |
| 663 | } |
| 664 | else if (nonLocalHandlers) |
| 665 | { |
| 666 | return FR_HANDLER; |
| 667 | } |
| 668 | else |
| 669 | { |
| 670 | return FR_NORMAL; |
| 671 | } |
| 672 | |
| 673 | #undef FAIL_IF_SPECULATIVE_WALK |
| 674 | } |
| 675 | |
| 676 | // Returns the number of bytes at the beginning of the stack frame that shouldn't be |
| 677 | // modified by an EnC. This is everything except the space for locals and temporaries. |
| 678 | inline size_t GetSizeOfFrameHeaderForEnC(hdrInfo * info) |
| 679 | { |
| 680 | WRAPPER_NO_CONTRACT; |
| 681 | |
| 682 | // See comment above Compiler::lvaAssignFrameOffsets() in src\jit\il\lclVars.cpp |
| 683 | // for frame layout |
| 684 | |
| 685 | // EnC supports increasing the maximum handler nesting level by always |
| 686 | // assuming that the max is MAX_EnC_HANDLER_NESTING_LEVEL. Methods with |
| 687 | // a higher max cannot be updated by EnC |
| 688 | |
| 689 | // Take the offset (from EBP) of the last slot of the header, plus one for the EBP slot itself |
| 690 | // to get the total size of the header. |
| 691 | return sizeof(TADDR) + |
| 692 | GetEndShadowSPSlotsOffset(info, MAX_EnC_HANDLER_NESTING_LEVEL); |
| 693 | } |
| 694 | #endif // !USE_GC_INFO_DECODER |
| 695 | |
| 696 | #ifndef DACCESS_COMPILE |
| 697 | #ifndef WIN64EXCEPTIONS |
| 698 | |
| 699 | /***************************************************************************** |
| 700 | * |
| 701 | * Setup context to enter an exception handler (a 'catch' block). |
| 702 | * This is the last chance for the runtime support to do fixups in |
| 703 | * the context before execution continues inside a filter, catch handler, |
| 704 | * or finally. |
| 705 | */ |
| 706 | void EECodeManager::FixContext( ContextType ctxType, |
| 707 | EHContext *ctx, |
| 708 | EECodeInfo *pCodeInfo, |
| 709 | DWORD dwRelOffset, |
| 710 | DWORD nestingLevel, |
| 711 | OBJECTREF thrownObject, |
| 712 | CodeManState *pState, |
| 713 | size_t ** ppShadowSP, |
| 714 | size_t ** ppEndRegion) |
| 715 | { |
| 716 | CONTRACTL { |
| 717 | NOTHROW; |
| 718 | GC_NOTRIGGER; |
| 719 | } CONTRACTL_END; |
| 720 | |
| 721 | _ASSERTE((ctxType == FINALLY_CONTEXT) == (thrownObject == NULL)); |
| 722 | |
| 723 | _ASSERTE(sizeof(CodeManStateBuf) <= sizeof(pState->stateBuf)); |
| 724 | CodeManStateBuf * stateBuf = (CodeManStateBuf*)pState->stateBuf; |
| 725 | |
| 726 | /* Extract the necessary information from the info block header */ |
| 727 | |
| 728 | stateBuf->hdrInfoSize = (DWORD)DecodeGCHdrInfo(pCodeInfo->GetGCInfoToken(), |
| 729 | dwRelOffset, |
| 730 | &stateBuf->hdrInfoBody); |
| 731 | pState->dwIsSet = 1; |
| 732 | |
| 733 | #ifdef _DEBUG |
| 734 | if (trFixContext) { |
| 735 | printf("FixContext [%s][%s] for %s.%s: " , |
| 736 | stateBuf->hdrInfoBody.ebpFrame?"ebp" :" " , |
| 737 | stateBuf->hdrInfoBody.interruptible?"int" :" " , |
| 738 | "UnknownClass" ,"UnknownMethod" ); |
| 739 | fflush(stdout); |
| 740 | } |
| 741 | #endif |
| 742 | |
| 743 | /* make sure that we have an ebp stack frame */ |
| 744 | |
| 745 | _ASSERTE(stateBuf->hdrInfoBody.ebpFrame); |
| 746 | _ASSERTE(stateBuf->hdrInfoBody.handlers); // <TODO>@TODO : This will alway be set. Remove it</TODO> |
| 747 | |
| 748 | TADDR baseSP; |
| 749 | GetHandlerFrameInfo(&stateBuf->hdrInfoBody, ctx->Ebp, |
| 750 | ctxType == FILTER_CONTEXT ? ctx->Esp : IGNORE_VAL, |
| 751 | ctxType == FILTER_CONTEXT ? (DWORD) IGNORE_VAL : nestingLevel, |
| 752 | &baseSP, |
| 753 | &nestingLevel); |
| 754 | |
| 755 | _ASSERTE((size_t)ctx->Ebp >= baseSP); |
| 756 | _ASSERTE(baseSP >= (size_t)ctx->Esp); |
| 757 | |
| 758 | ctx->Esp = (DWORD)baseSP; |
| 759 | |
| 760 | // EE will write Esp to **pShadowSP before jumping to handler |
| 761 | |
| 762 | PTR_TADDR pBaseSPslots = |
| 763 | GetFirstBaseSPslotPtr(ctx->Ebp, &stateBuf->hdrInfoBody); |
| 764 | *ppShadowSP = (size_t *)&pBaseSPslots[-(int) nestingLevel ]; |
| 765 | pBaseSPslots[-(int)(nestingLevel+1)] = 0; // Zero out the next slot |
| 766 | |
| 767 | // EE will write the end offset of the filter |
| 768 | if (ctxType == FILTER_CONTEXT) |
| 769 | *ppEndRegion = (size_t *)pBaseSPslots + 1; |
| 770 | |
| 771 | /* This is just a simple assigment of throwObject to ctx->Eax, |
| 772 | just pretend the cast goo isn't there. |
| 773 | */ |
| 774 | |
| 775 | *((OBJECTREF*)&(ctx->Eax)) = thrownObject; |
| 776 | } |
| 777 | |
| 778 | #endif // !WIN64EXCEPTIONS |
| 779 | |
| 780 | |
| 781 | |
| 782 | |
| 783 | |
| 784 | /*****************************************************************************/ |
| 785 | |
| 786 | bool VarIsInReg(ICorDebugInfo::VarLoc varLoc) |
| 787 | { |
| 788 | LIMITED_METHOD_CONTRACT; |
| 789 | |
| 790 | switch(varLoc.vlType) |
| 791 | { |
| 792 | case ICorDebugInfo::VLT_REG: |
| 793 | case ICorDebugInfo::VLT_REG_REG: |
| 794 | case ICorDebugInfo::VLT_REG_STK: |
| 795 | return true; |
| 796 | |
| 797 | default: |
| 798 | return false; |
| 799 | } |
| 800 | } |
| 801 | |
| 802 | #ifdef EnC_SUPPORTED |
| 803 | /***************************************************************************** |
| 804 | * Last chance for the runtime support to do fixups in the context |
| 805 | * before execution continues inside an EnC updated function. |
| 806 | * It also adjusts ESP and munges on the stack. So the caller has to make |
| 807 | * sure that that stack region isnt needed (by doing a localloc) |
| 808 | * Also, if this returns EnC_FAIL, we should not have munged the |
| 809 | * context ie. transcated commit |
| 810 | * The plan of attack is: |
| 811 | * 1) Error checking up front. If we get through here, everything |
| 812 | * else should work |
| 813 | * 2) Get all the info about current variables, registers, etc |
| 814 | * 3) zero out the stack frame - this'll initialize _all_ variables |
| 815 | * 4) Put the variables from step 3 into their new locations. |
| 816 | * |
| 817 | * Note that while we use the ShuffleVariablesGet/Set methods, they don't |
| 818 | * have any info/logic that's internal to the runtime: another codemanger |
| 819 | * could easily duplicate what they do, which is why we're calling into them. |
| 820 | */ |
| 821 | |
| 822 | HRESULT EECodeManager::FixContextForEnC(PCONTEXT pCtx, |
| 823 | EECodeInfo * pOldCodeInfo, |
| 824 | const ICorDebugInfo::NativeVarInfo * oldMethodVars, |
| 825 | SIZE_T oldMethodVarsCount, |
| 826 | EECodeInfo * pNewCodeInfo, |
| 827 | const ICorDebugInfo::NativeVarInfo * newMethodVars, |
| 828 | SIZE_T newMethodVarsCount) |
| 829 | { |
| 830 | CONTRACTL { |
| 831 | DISABLED(NOTHROW); |
| 832 | DISABLED(GC_NOTRIGGER); |
| 833 | } CONTRACTL_END; |
| 834 | |
| 835 | HRESULT hr = S_OK; |
| 836 | |
| 837 | // Grab a copy of the context before the EnC update. |
| 838 | T_CONTEXT oldCtx = *pCtx; |
| 839 | |
| 840 | #if defined(_TARGET_X86_) |
| 841 | LOG((LF_CORDB, LL_INFO100, "EECM::FixContextForEnC\n" )); |
| 842 | |
| 843 | /* Extract the necessary information from the info block header */ |
| 844 | |
| 845 | hdrInfo oldInfo, newInfo; |
| 846 | |
| 847 | DecodeGCHdrInfo(pOldCodeInfo->GetGCInfoToken(), |
| 848 | pOldCodeInfo->GetRelOffset(), |
| 849 | &oldInfo); |
| 850 | |
| 851 | DecodeGCHdrInfo(pNewCodeInfo->GetGCInfoToken(), |
| 852 | pNewCodeInfo->GetRelOffset(), |
| 853 | &newInfo); |
| 854 | |
| 855 | //1) Error checking up front. If we get through here, everything |
| 856 | // else should work |
| 857 | |
| 858 | if (!oldInfo.editNcontinue || !newInfo.editNcontinue) { |
| 859 | LOG((LF_ENC, LL_INFO100, "**Error** EECM::FixContextForEnC EnC_INFOLESS_METHOD\n" )); |
| 860 | return CORDBG_E_ENC_INFOLESS_METHOD; |
| 861 | } |
| 862 | |
| 863 | if (!oldInfo.ebpFrame || !newInfo.ebpFrame) { |
| 864 | LOG((LF_ENC, LL_INFO100, "**Error** EECM::FixContextForEnC Esp frames NYI\n" )); |
| 865 | return E_FAIL; // Esp frames NYI |
| 866 | } |
| 867 | |
| 868 | if (pCtx->Esp != pCtx->Ebp - oldInfo.stackSize + sizeof(DWORD)) { |
| 869 | LOG((LF_ENC, LL_INFO100, "**Error** EECM::FixContextForEnC stack should be empty\n" )); |
| 870 | return E_FAIL; // stack should be empty - <TODO> @TODO : Barring localloc</TODO> |
| 871 | } |
| 872 | |
| 873 | if (oldInfo.handlers) |
| 874 | { |
| 875 | bool hasInnerFilter; |
| 876 | TADDR baseSP; |
| 877 | FrameType frameType = GetHandlerFrameInfo(&oldInfo, pCtx->Ebp, |
| 878 | pCtx->Esp, IGNORE_VAL, |
| 879 | &baseSP, NULL, &hasInnerFilter); |
| 880 | _ASSERTE(frameType != FR_INVALID); |
| 881 | _ASSERTE(!hasInnerFilter); // FixContextForEnC() is called for bottommost funclet |
| 882 | |
| 883 | // If the method is in a fuclet, and if the framesize grows, we are in trouble. |
| 884 | |
| 885 | if (frameType != FR_NORMAL) |
| 886 | { |
| 887 | /* <TODO> @TODO : What if the new method offset is in a fuclet, |
| 888 | and the old is not, or the nesting level changed, etc </TODO> */ |
| 889 | |
| 890 | if (oldInfo.stackSize != newInfo.stackSize) { |
| 891 | LOG((LF_ENC, LL_INFO100, "**Error** EECM::FixContextForEnC stack size mismatch\n" )); |
| 892 | return CORDBG_E_ENC_IN_FUNCLET; |
| 893 | } |
| 894 | } |
| 895 | } |
| 896 | |
| 897 | /* @TODO: Check if we have grown out of space for locals, in the face of localloc */ |
| 898 | _ASSERTE(!oldInfo.localloc && !newInfo.localloc); |
| 899 | |
| 900 | // Always reserve space for the securityCheck slot |
| 901 | _ASSERTE(oldInfo.securityCheck && newInfo.securityCheck); |
| 902 | |
| 903 | // @TODO: If nesting level grows above the MAX_EnC_HANDLER_NESTING_LEVEL, |
| 904 | // we should return EnC_NESTED_HANLDERS |
| 905 | _ASSERTE(oldInfo.handlers && newInfo.handlers); |
| 906 | |
| 907 | LOG((LF_ENC, LL_INFO100, "EECM::FixContextForEnC: Checks out\n" )); |
| 908 | |
| 909 | #elif defined(_TARGET_AMD64_) |
| 910 | |
| 911 | // Strategy for zeroing out the frame on x64: |
| 912 | // |
| 913 | // The stack frame looks like this (stack grows up) |
| 914 | // |
| 915 | // ======================================= |
| 916 | // <--- RSP == RBP (invariant: localalloc disallowed before remap) |
| 917 | // Arguments for next call (if there is one) |
| 918 | // PSPSym (optional) |
| 919 | // JIT temporaries (if any) |
| 920 | // Security object (if any) |
| 921 | // Local variables (if any) |
| 922 | // --------------------------------------- |
| 923 | // Frame header (stuff we must preserve, such as bool for synchronized |
| 924 | // methods, saved RBP, etc.) |
| 925 | // Return address (also included in frame header) |
| 926 | // --------------------------------------- |
| 927 | // Arguments for this frame (that's getting remapped). Will naturally be preserved |
| 928 | // since fixed-frame size doesn't include this. |
| 929 | // ======================================= |
| 930 | // |
| 931 | // Goal: Zero out everything AFTER (above) frame header. |
| 932 | // |
| 933 | // How do we find this stuff? |
| 934 | // |
| 935 | // EECodeInfo::GetFixedStackSize() gives us the full size from the top ("Arguments |
| 936 | // for next call") all the way down to and including Return Address. |
| 937 | // |
| 938 | // GetSizeOfEditAndContinuePreservedArea() gives us the size in bytes of the |
| 939 | // frame header at the bottom. |
| 940 | // |
| 941 | // So we start at RSP, and zero out: |
| 942 | // GetFixedStackSize() - GetSizeOfEditAndContinuePreservedArea() bytes. |
| 943 | // |
| 944 | // We'll need to restore PSPSym; location gotten from GCInfo. |
| 945 | // We'll need to copy security object; location gotten from GCInfo. |
| 946 | |
| 947 | // GCInfo for old method |
| 948 | GcInfoDecoder oldGcDecoder( |
| 949 | pOldCodeInfo->GetGCInfoToken(), |
| 950 | GcInfoDecoderFlags(DECODE_SECURITY_OBJECT | DECODE_PSP_SYM | DECODE_EDIT_AND_CONTINUE), |
| 951 | 0 // Instruction offset (not needed) |
| 952 | ); |
| 953 | |
| 954 | // GCInfo for new method |
| 955 | GcInfoDecoder newGcDecoder( |
| 956 | pNewCodeInfo->GetGCInfoToken(), |
| 957 | GcInfoDecoderFlags(DECODE_SECURITY_OBJECT | DECODE_PSP_SYM | DECODE_EDIT_AND_CONTINUE), |
| 958 | 0 // Instruction offset (not needed) |
| 959 | ); |
| 960 | |
| 961 | UINT32 oldSizeOfPreservedArea = oldGcDecoder.GetSizeOfEditAndContinuePreservedArea(); |
| 962 | UINT32 newSizeOfPreservedArea = newGcDecoder.GetSizeOfEditAndContinuePreservedArea(); |
| 963 | |
| 964 | // This ensures the JIT generated EnC compliant code. |
| 965 | if ((oldSizeOfPreservedArea == NO_SIZE_OF_EDIT_AND_CONTINUE_PRESERVED_AREA) || |
| 966 | (newSizeOfPreservedArea == NO_SIZE_OF_EDIT_AND_CONTINUE_PRESERVED_AREA)) |
| 967 | { |
| 968 | _ASSERTE(!"FixContextForEnC called on a non-EnC-compliant method frame" ); |
| 969 | return CORDBG_E_ENC_INFOLESS_METHOD; |
| 970 | } |
| 971 | |
| 972 | // JIT is required to emit frame register for EnC-compliant code |
| 973 | _ASSERTE(pOldCodeInfo->HasFrameRegister()); |
| 974 | _ASSERTE(pNewCodeInfo->HasFrameRegister()); |
| 975 | |
| 976 | TADDR oldStackBase = GetSP(&oldCtx); |
| 977 | |
| 978 | // This verifies no localallocs were used in the old method. (RBP == RSP for |
| 979 | // EnC-compliant x64 code.) |
| 980 | if (oldStackBase != oldCtx.Rbp) |
| 981 | return E_FAIL; |
| 982 | |
| 983 | // EnC remap inside handlers is not supported |
| 984 | if (pOldCodeInfo->IsFunclet() || pNewCodeInfo->IsFunclet()) |
| 985 | return CORDBG_E_ENC_IN_FUNCLET; |
| 986 | |
| 987 | if (oldSizeOfPreservedArea != newSizeOfPreservedArea) |
| 988 | { |
| 989 | _ASSERTE(!"FixContextForEnC called with method whose frame header size changed from old to new version." ); |
| 990 | return E_FAIL; |
| 991 | } |
| 992 | |
| 993 | // Note: we cannot assert anything about the relationship between oldFixedStackSize |
| 994 | // and newFixedStackSize. It's possible the edited frame grows (new locals) or |
| 995 | // shrinks (less temporaries). |
| 996 | |
| 997 | DWORD oldFixedStackSize = pOldCodeInfo->GetFixedStackSize(); |
| 998 | DWORD newFixedStackSize = pNewCodeInfo->GetFixedStackSize(); |
| 999 | |
| 1000 | TADDR callerSP = oldStackBase + oldFixedStackSize; |
| 1001 | |
| 1002 | // If the old code saved a security object, store the object's reference now. |
| 1003 | OBJECTREF securityObject = NULL; |
| 1004 | INT32 nOldSecurityObjectStackSlot = oldGcDecoder.GetSecurityObjectStackSlot(); |
| 1005 | if (nOldSecurityObjectStackSlot != NO_SECURITY_OBJECT) |
| 1006 | { |
| 1007 | securityObject = ObjectToOBJECTREF(*PTR_PTR_Object(callerSP + nOldSecurityObjectStackSlot)); |
| 1008 | } |
| 1009 | |
| 1010 | #ifdef _DEBUG |
| 1011 | // If the old method has a PSPSym, then its value should == FP |
| 1012 | INT32 nOldPspSymStackSlot = oldGcDecoder.GetPSPSymStackSlot(); |
| 1013 | if (nOldPspSymStackSlot != NO_PSP_SYM) |
| 1014 | { |
| 1015 | // Read the PSP. |
| 1016 | TADDR oldPSP = *PTR_TADDR(oldStackBase + nOldPspSymStackSlot); |
| 1017 | |
| 1018 | // Now we're set up to assert that PSPSym's value == FP |
| 1019 | _ASSERTE(oldPSP == GetFP(&oldCtx)); |
| 1020 | } |
| 1021 | #endif // _DEBUG |
| 1022 | |
| 1023 | #else |
| 1024 | PORTABILITY_ASSERT("Edit-and-continue not enabled on this platform." ); |
| 1025 | #endif |
| 1026 | |
| 1027 | // 2) Get all the info about current variables, registers, etc |
| 1028 | |
| 1029 | const ICorDebugInfo::NativeVarInfo * pOldVar; |
| 1030 | |
| 1031 | // sorted by varNumber |
| 1032 | ICorDebugInfo::NativeVarInfo * oldMethodVarsSorted = NULL; |
| 1033 | ICorDebugInfo::NativeVarInfo * oldMethodVarsSortedBase = NULL; |
| 1034 | ICorDebugInfo::NativeVarInfo *newMethodVarsSorted = NULL; |
| 1035 | ICorDebugInfo::NativeVarInfo *newMethodVarsSortedBase = NULL; |
| 1036 | |
| 1037 | SIZE_T *rgVal1 = NULL; |
| 1038 | SIZE_T *rgVal2 = NULL; |
| 1039 | |
| 1040 | { |
| 1041 | SIZE_T local; |
| 1042 | |
| 1043 | // We'll need to sort the old native var info by variable number, since the |
| 1044 | // order of them isn't necc. the same. We'll use the number as the key. |
| 1045 | // We will assume we may have hidden arguments (which have negative values as the index) |
| 1046 | |
| 1047 | unsigned oldNumVars = unsigned(-ICorDebugInfo::UNKNOWN_ILNUM); |
| 1048 | for (pOldVar = oldMethodVars, local = 0; |
| 1049 | local < oldMethodVarsCount; |
| 1050 | local++, pOldVar++) |
| 1051 | { |
| 1052 | DWORD varNumber = pOldVar->varNumber; |
| 1053 | if (signed(varNumber) >= 0) |
| 1054 | { |
| 1055 | // This is an explicit (not special) var, so add its varNumber + 1 to our |
| 1056 | // max count ("+1" because varNumber is zero-based). |
| 1057 | oldNumVars = max(oldNumVars, unsigned(-ICorDebugInfo::UNKNOWN_ILNUM) + varNumber + 1); |
| 1058 | } |
| 1059 | } |
| 1060 | |
| 1061 | oldMethodVarsSortedBase = new (nothrow) ICorDebugInfo::NativeVarInfo[oldNumVars]; |
| 1062 | if (!oldMethodVarsSortedBase) |
| 1063 | { |
| 1064 | hr = E_FAIL; |
| 1065 | goto ErrExit; |
| 1066 | } |
| 1067 | oldMethodVarsSorted = oldMethodVarsSortedBase + (-ICorDebugInfo::UNKNOWN_ILNUM); |
| 1068 | |
| 1069 | memset((void *)oldMethodVarsSortedBase, 0, oldNumVars * sizeof(ICorDebugInfo::NativeVarInfo)); |
| 1070 | |
| 1071 | for (local = 0; local < oldNumVars;local++) |
| 1072 | oldMethodVarsSortedBase[local].loc.vlType = ICorDebugInfo::VLT_INVALID; |
| 1073 | |
| 1074 | BYTE **rgVCs = NULL; |
| 1075 | DWORD oldMethodOffset = pOldCodeInfo->GetRelOffset(); |
| 1076 | |
| 1077 | for (pOldVar = oldMethodVars, local = 0; |
| 1078 | local < oldMethodVarsCount; |
| 1079 | local++, pOldVar++) |
| 1080 | { |
| 1081 | DWORD varNumber = pOldVar->varNumber; |
| 1082 | |
| 1083 | _ASSERTE(varNumber + unsigned(-ICorDebugInfo::UNKNOWN_ILNUM) < oldNumVars); |
| 1084 | |
| 1085 | // Only care about old local variables alive at oldMethodOffset |
| 1086 | if (pOldVar->startOffset <= oldMethodOffset && |
| 1087 | pOldVar->endOffset > oldMethodOffset) |
| 1088 | { |
| 1089 | oldMethodVarsSorted[varNumber] = *pOldVar; |
| 1090 | } |
| 1091 | } |
| 1092 | |
| 1093 | // 3) Next sort the new var info by varNumber. We want to do this here, since |
| 1094 | // we're allocating memory (which may fail) - do this before going to step 2 |
| 1095 | |
| 1096 | // First, count the new vars the same way we did the old vars above. |
| 1097 | |
| 1098 | const ICorDebugInfo::NativeVarInfo * pNewVar; |
| 1099 | |
| 1100 | unsigned newNumVars = unsigned(-ICorDebugInfo::UNKNOWN_ILNUM); |
| 1101 | for (pNewVar = newMethodVars, local = 0; |
| 1102 | local < newMethodVarsCount; |
| 1103 | local++, pNewVar++) |
| 1104 | { |
| 1105 | DWORD varNumber = pNewVar->varNumber; |
| 1106 | if (signed(varNumber) >= 0) |
| 1107 | { |
| 1108 | // This is an explicit (not special) var, so add its varNumber + 1 to our |
| 1109 | // max count ("+1" because varNumber is zero-based). |
| 1110 | newNumVars = max(newNumVars, unsigned(-ICorDebugInfo::UNKNOWN_ILNUM) + varNumber + 1); |
| 1111 | } |
| 1112 | } |
| 1113 | |
| 1114 | // sorted by varNumber |
| 1115 | newMethodVarsSortedBase = new (nothrow) ICorDebugInfo::NativeVarInfo[newNumVars]; |
| 1116 | if (!newMethodVarsSortedBase) |
| 1117 | { |
| 1118 | hr = E_FAIL; |
| 1119 | goto ErrExit; |
| 1120 | } |
| 1121 | newMethodVarsSorted = newMethodVarsSortedBase + (-ICorDebugInfo::UNKNOWN_ILNUM); |
| 1122 | |
| 1123 | memset(newMethodVarsSortedBase, 0, newNumVars * sizeof(ICorDebugInfo::NativeVarInfo)); |
| 1124 | for (local = 0; local < newNumVars;local++) |
| 1125 | newMethodVarsSortedBase[local].loc.vlType = ICorDebugInfo::VLT_INVALID; |
| 1126 | |
| 1127 | DWORD newMethodOffset = pNewCodeInfo->GetRelOffset(); |
| 1128 | |
| 1129 | for (pNewVar = newMethodVars, local = 0; |
| 1130 | local < newMethodVarsCount; |
| 1131 | local++, pNewVar++) |
| 1132 | { |
| 1133 | DWORD varNumber = pNewVar->varNumber; |
| 1134 | |
| 1135 | _ASSERTE(varNumber + unsigned(-ICorDebugInfo::UNKNOWN_ILNUM) < newNumVars); |
| 1136 | |
| 1137 | // Only care about new local variables alive at newMethodOffset |
| 1138 | if (pNewVar->startOffset <= newMethodOffset && |
| 1139 | pNewVar->endOffset > newMethodOffset) |
| 1140 | { |
| 1141 | newMethodVarsSorted[varNumber] = *pNewVar; |
| 1142 | } |
| 1143 | } |
| 1144 | |
| 1145 | _ASSERTE(newNumVars >= oldNumVars || |
| 1146 | !"Not allowed to reduce the number of locals between versions!" ); |
| 1147 | |
| 1148 | LOG((LF_ENC, LL_INFO100, "EECM::FixContextForEnC: gathered info!\n" )); |
| 1149 | |
| 1150 | rgVal1 = new (nothrow) SIZE_T[newNumVars]; |
| 1151 | if (rgVal1 == NULL) |
| 1152 | { |
| 1153 | hr = E_FAIL; |
| 1154 | goto ErrExit; |
| 1155 | } |
| 1156 | |
| 1157 | rgVal2 = new (nothrow) SIZE_T[newNumVars]; |
| 1158 | if (rgVal2 == NULL) |
| 1159 | { |
| 1160 | hr = E_FAIL; |
| 1161 | goto ErrExit; |
| 1162 | } |
| 1163 | |
| 1164 | // 4) Next we'll zero them out, so any variables that aren't in scope |
| 1165 | // in the old method, but are in scope in the new, will have the |
| 1166 | // default, zero, value. |
| 1167 | |
| 1168 | memset(rgVal1, 0, sizeof(SIZE_T) * newNumVars); |
| 1169 | memset(rgVal2, 0, sizeof(SIZE_T) * newNumVars); |
| 1170 | |
| 1171 | unsigned varsToGet = (oldNumVars > newNumVars) ? newNumVars |
| 1172 | : oldNumVars; |
| 1173 | |
| 1174 | // 2) Get all the info about current variables, registers, etc. |
| 1175 | |
| 1176 | hr = g_pDebugInterface->GetVariablesFromOffset(pOldCodeInfo->GetMethodDesc(), |
| 1177 | varsToGet, |
| 1178 | oldMethodVarsSortedBase, |
| 1179 | oldMethodOffset, |
| 1180 | &oldCtx, |
| 1181 | rgVal1, |
| 1182 | rgVal2, |
| 1183 | newNumVars, |
| 1184 | &rgVCs); |
| 1185 | if (FAILED(hr)) |
| 1186 | { |
| 1187 | goto ErrExit; |
| 1188 | } |
| 1189 | |
| 1190 | |
| 1191 | LOG((LF_ENC, LL_INFO100, "EECM::FixContextForEnC: got vars!\n" )); |
| 1192 | |
| 1193 | /*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* |
| 1194 | * IMPORTANT : Once we start munging on the context, we cannot return |
| 1195 | * EnC_FAIL, as this should be a transacted commit, |
| 1196 | **=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*/ |
| 1197 | |
| 1198 | #if defined(_TARGET_X86_) |
| 1199 | // Zero out all the registers as some may hold new variables. |
| 1200 | pCtx->Eax = pCtx->Ecx = pCtx->Edx = pCtx->Ebx = |
| 1201 | pCtx->Esi = pCtx->Edi = 0; |
| 1202 | |
| 1203 | // 3) zero out the stack frame - this'll initialize _all_ variables |
| 1204 | |
| 1205 | /*------------------------------------------------------------------------- |
| 1206 | * Adjust the stack height |
| 1207 | */ |
| 1208 | pCtx->Esp -= (newInfo.stackSize - oldInfo.stackSize); |
| 1209 | |
| 1210 | // Zero-init the local and tempory section of new stack frame being careful to avoid |
| 1211 | // touching anything in the frame header. |
| 1212 | // This is necessary to ensure that any JIT temporaries in the old version can't be mistaken |
| 1213 | // for ObjRefs now. |
| 1214 | size_t frameHeaderSize = GetSizeOfFrameHeaderForEnC( &newInfo ); |
| 1215 | _ASSERTE( frameHeaderSize <= oldInfo.stackSize ); |
| 1216 | _ASSERTE( GetSizeOfFrameHeaderForEnC( &oldInfo ) == frameHeaderSize ); |
| 1217 | |
| 1218 | #elif defined(_TARGET_AMD64_) |
| 1219 | |
| 1220 | // Next few statements zero out all registers that may end up holding new variables. |
| 1221 | |
| 1222 | // volatile int registers (JIT may use these to enregister variables) |
| 1223 | pCtx->Rax = pCtx->Rcx = pCtx->Rdx = pCtx->R8 = pCtx->R9 = pCtx->R10 = pCtx->R11 = 0; |
| 1224 | |
| 1225 | // volatile float registers |
| 1226 | pCtx->Xmm1.High = pCtx->Xmm1.Low = 0; |
| 1227 | pCtx->Xmm2.High = pCtx->Xmm2.Low = 0; |
| 1228 | pCtx->Xmm3.High = pCtx->Xmm3.Low = 0; |
| 1229 | pCtx->Xmm4.High = pCtx->Xmm4.Low = 0; |
| 1230 | pCtx->Xmm5.High = pCtx->Xmm5.Low = 0; |
| 1231 | |
| 1232 | // Any saved nonvolatile registers should also be zeroed out, but there are none |
| 1233 | // in EnC-compliant x64 code. Yes, you read that right. Registers like RDI, RSI, |
| 1234 | // RBX, etc., which are often saved in the prolog of non-EnC code are NOT saved in |
| 1235 | // EnC code. EnC code instead just agrees never to use those registers so they |
| 1236 | // remain pristine for the caller (except RBP, which is considered part of the frame |
| 1237 | // header, and is thus not zeroed out by us). |
| 1238 | |
| 1239 | // 3) zero out the stack frame - this'll initialize _all_ variables |
| 1240 | |
| 1241 | /*------------------------------------------------------------------------- |
| 1242 | * Adjust the stack height |
| 1243 | */ |
| 1244 | |
| 1245 | TADDR newStackBase = callerSP - newFixedStackSize; |
| 1246 | |
| 1247 | SetSP(pCtx, newStackBase); |
| 1248 | |
| 1249 | // We want to zero-out everything pushed after the frame header. This way we'll zero |
| 1250 | // out locals (both old & new) and temporaries. This is necessary to ensure that any |
| 1251 | // JIT temporaries in the old version can't be mistaken for ObjRefs now. (I am told |
| 1252 | // this last point is less of an issue on x64 as it is on x86, but zeroing out the |
| 1253 | // temporaries is still the cleanest, most robust way to go.) |
| 1254 | size_t frameHeaderSize = newSizeOfPreservedArea; |
| 1255 | _ASSERTE(frameHeaderSize <= oldFixedStackSize); |
| 1256 | _ASSERTE(frameHeaderSize <= newFixedStackSize); |
| 1257 | |
| 1258 | // For EnC-compliant x64 code, Rbp == Rsp. Since Rsp changed above, update Rbp now |
| 1259 | pCtx->Rbp = newStackBase; |
| 1260 | #else // !X86, !AMD64 |
| 1261 | PORTABILITY_ASSERT("Edit-and-continue not enabled on this platform." ); |
| 1262 | #endif |
| 1263 | |
| 1264 | // Perform some debug-only sanity checks on stack variables. Some checks are |
| 1265 | // performed differently between X86/AMD64. |
| 1266 | |
| 1267 | #ifdef _DEBUG |
| 1268 | for( unsigned i = 0; i < newNumVars; i++ ) |
| 1269 | { |
| 1270 | // Make sure that stack variables existing in both old and new methods did not |
| 1271 | // move. This matters if the address of a local is used in the remapped method. |
| 1272 | // For example: |
| 1273 | // |
| 1274 | // static unsafe void Main(string[] args) |
| 1275 | // { |
| 1276 | // int x; |
| 1277 | // int* p = &x; |
| 1278 | // <- Edit made here - cannot move address of x |
| 1279 | // *p = 5; |
| 1280 | // } |
| 1281 | // |
| 1282 | if ((i + unsigned(-ICorDebugInfo::UNKNOWN_ILNUM) < oldNumVars) && // Does variable exist in old method? |
| 1283 | (oldMethodVarsSorted[i].loc.vlType == ICorDebugInfo::VLT_STK) && // Is the variable on the stack? |
| 1284 | (newMethodVarsSorted[i].loc.vlType == ICorDebugInfo::VLT_STK)) |
| 1285 | { |
| 1286 | SIZE_T * pOldVarStackLocation = NativeVarStackAddr(oldMethodVarsSorted[i].loc, &oldCtx); |
| 1287 | SIZE_T * pNewVarStackLocation = NativeVarStackAddr(newMethodVarsSorted[i].loc, pCtx); |
| 1288 | _ASSERTE(pOldVarStackLocation == pNewVarStackLocation); |
| 1289 | } |
| 1290 | |
| 1291 | // Sanity-check that the range we're clearing contains all of the stack variables |
| 1292 | |
| 1293 | #if defined(_TARGET_X86_) |
| 1294 | const ICorDebugInfo::VarLoc &varLoc = newMethodVarsSortedBase[i].loc; |
| 1295 | if( varLoc.vlType == ICorDebugInfo::VLT_STK ) |
| 1296 | { |
| 1297 | // This is an EBP frame, all stack variables should be EBP relative |
| 1298 | _ASSERTE( varLoc.vlStk.vlsBaseReg == ICorDebugInfo::REGNUM_EBP ); |
| 1299 | // Generic special args may show up as locals with positive offset from EBP, so skip them |
| 1300 | if( varLoc.vlStk.vlsOffset <= 0 ) |
| 1301 | { |
| 1302 | // Normal locals must occur after the header on the stack |
| 1303 | _ASSERTE( unsigned(-varLoc.vlStk.vlsOffset) >= frameHeaderSize ); |
| 1304 | // Value must occur before the top of the stack |
| 1305 | _ASSERTE( unsigned(-varLoc.vlStk.vlsOffset) < newInfo.stackSize ); |
| 1306 | } |
| 1307 | |
| 1308 | // Ideally we'd like to verify that the stack locals (if any) start at exactly the end |
| 1309 | // of the header. However, we can't easily determine the size of value classes here, |
| 1310 | // and so (since the stack grows towards 0) can't easily determine where the end of |
| 1311 | // the local lies. |
| 1312 | } |
| 1313 | #elif defined (_TARGET_AMD64_) |
| 1314 | switch(newMethodVarsSortedBase[i].loc.vlType) |
| 1315 | { |
| 1316 | default: |
| 1317 | // No validation here for non-stack locals |
| 1318 | break; |
| 1319 | |
| 1320 | case ICorDebugInfo::VLT_STK_BYREF: |
| 1321 | { |
| 1322 | // For byrefs, verify that the ptr will be zeroed out |
| 1323 | |
| 1324 | SIZE_T regOffs = GetRegOffsInCONTEXT(newMethodVarsSortedBase[i].loc.vlStk.vlsBaseReg); |
| 1325 | TADDR baseReg = *(TADDR *)(regOffs + (BYTE*)pCtx); |
| 1326 | TADDR addrOfPtr = baseReg + newMethodVarsSortedBase[i].loc.vlStk.vlsOffset; |
| 1327 | |
| 1328 | _ASSERTE( |
| 1329 | // The ref must exist in the portion we'll zero-out |
| 1330 | ( |
| 1331 | (newStackBase <= addrOfPtr) && |
| 1332 | (addrOfPtr < newStackBase + (newFixedStackSize - frameHeaderSize)) |
| 1333 | ) || |
| 1334 | // OR in the caller's frame (for parameters) |
| 1335 | (addrOfPtr >= newStackBase + newFixedStackSize)); |
| 1336 | |
| 1337 | // Deliberately fall through, so that we also verify that the value that the ptr |
| 1338 | // points to will be zeroed out |
| 1339 | // ... |
| 1340 | } |
| 1341 | |
| 1342 | case ICorDebugInfo::VLT_STK: |
| 1343 | case ICorDebugInfo::VLT_STK2: |
| 1344 | case ICorDebugInfo::VLT_REG_STK: |
| 1345 | case ICorDebugInfo::VLT_STK_REG: |
| 1346 | SIZE_T * pVarStackLocation = NativeVarStackAddr(newMethodVarsSortedBase[i].loc, pCtx); |
| 1347 | _ASSERTE (pVarStackLocation != NULL); |
| 1348 | _ASSERTE( |
| 1349 | // The value must exist in the portion we'll zero-out |
| 1350 | ( |
| 1351 | (newStackBase <= (TADDR) pVarStackLocation) && |
| 1352 | ((TADDR) pVarStackLocation < newStackBase + (newFixedStackSize - frameHeaderSize)) |
| 1353 | ) || |
| 1354 | // OR in the caller's frame (for parameters) |
| 1355 | ((TADDR) pVarStackLocation >= newStackBase + newFixedStackSize)); |
| 1356 | break; |
| 1357 | } |
| 1358 | #else // !X86, !X64 |
| 1359 | PORTABILITY_ASSERT("Edit-and-continue not enabled on this platform." ); |
| 1360 | #endif |
| 1361 | } |
| 1362 | |
| 1363 | #endif // _DEBUG |
| 1364 | |
| 1365 | // Clear the local and temporary stack space |
| 1366 | |
| 1367 | #if defined (_TARGET_X86_) |
| 1368 | memset((void*)(size_t)(pCtx->Esp), 0, newInfo.stackSize - frameHeaderSize ); |
| 1369 | #elif defined (_TARGET_AMD64_) |
| 1370 | memset((void*)newStackBase, 0, newFixedStackSize - frameHeaderSize); |
| 1371 | |
| 1372 | // On AMD64, after zeroing out the stack, restore the security object and PSPSym... |
| 1373 | |
| 1374 | // There is no relationship we can guarantee between the old code having a security |
| 1375 | // object and the new code having a security object. If the new code does have a |
| 1376 | // security object, then we copy over the old security object's reference if there |
| 1377 | // was one (else we copy over NULL, which is fine). If the new code doesn't have a |
| 1378 | // security object, we do nothing. |
| 1379 | INT32 nNewSecurityObjectStackSlot = newGcDecoder.GetSecurityObjectStackSlot(); |
| 1380 | if (nNewSecurityObjectStackSlot != NO_SECURITY_OBJECT) |
| 1381 | { |
| 1382 | *PTR_PTR_Object(callerSP + nNewSecurityObjectStackSlot) = OBJECTREFToObject(securityObject); |
| 1383 | } |
| 1384 | |
| 1385 | // Restore PSPSym for the new function. Its value should be set to our new FP. But |
| 1386 | // first, we gotta find PSPSym's location on the stack |
| 1387 | INT32 nNewPspSymStackSlot = newGcDecoder.GetPSPSymStackSlot(); |
| 1388 | if (nNewPspSymStackSlot != NO_PSP_SYM) |
| 1389 | { |
| 1390 | *PTR_TADDR(newStackBase + nNewPspSymStackSlot) = GetFP(pCtx); |
| 1391 | } |
| 1392 | #else // !X86, !X64 |
| 1393 | PORTABILITY_ASSERT("Edit-and-continue not enabled on this platform." ); |
| 1394 | #endif |
| 1395 | |
| 1396 | // 4) Put the variables from step 3 into their new locations. |
| 1397 | |
| 1398 | LOG((LF_ENC, LL_INFO100, "EECM::FixContextForEnC: set vars!\n" )); |
| 1399 | |
| 1400 | // Move the old variables into their new places. |
| 1401 | |
| 1402 | hr = g_pDebugInterface->SetVariablesAtOffset(pNewCodeInfo->GetMethodDesc(), |
| 1403 | newNumVars, |
| 1404 | newMethodVarsSortedBase, |
| 1405 | newMethodOffset, |
| 1406 | pCtx, // place them into the new context |
| 1407 | rgVal1, |
| 1408 | rgVal2, |
| 1409 | rgVCs); |
| 1410 | |
| 1411 | /*-----------------------------------------------------------------------*/ |
| 1412 | } |
| 1413 | ErrExit: |
| 1414 | if (oldMethodVarsSortedBase) |
| 1415 | delete[] oldMethodVarsSortedBase; |
| 1416 | if (newMethodVarsSortedBase) |
| 1417 | delete[] newMethodVarsSortedBase; |
| 1418 | if (rgVal1 != NULL) |
| 1419 | delete[] rgVal1; |
| 1420 | if (rgVal2 != NULL) |
| 1421 | delete[] rgVal2; |
| 1422 | |
| 1423 | LOG((LF_ENC, LL_INFO100, "EECM::FixContextForEnC: exiting!\n" )); |
| 1424 | |
| 1425 | return hr; |
| 1426 | } |
| 1427 | #endif // !EnC_SUPPORTED |
| 1428 | |
| 1429 | #endif // #ifndef DACCESS_COMPILE |
| 1430 | |
| 1431 | #ifdef USE_GC_INFO_DECODER |
| 1432 | /***************************************************************************** |
| 1433 | * |
| 1434 | * Is the function currently at a "GC safe point" ? |
| 1435 | */ |
| 1436 | bool EECodeManager::IsGcSafe( EECodeInfo *pCodeInfo, |
| 1437 | DWORD dwRelOffset) |
| 1438 | { |
| 1439 | CONTRACTL { |
| 1440 | NOTHROW; |
| 1441 | GC_NOTRIGGER; |
| 1442 | } CONTRACTL_END; |
| 1443 | |
| 1444 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
| 1445 | |
| 1446 | GcInfoDecoder gcInfoDecoder( |
| 1447 | gcInfoToken, |
| 1448 | DECODE_INTERRUPTIBILITY, |
| 1449 | dwRelOffset |
| 1450 | ); |
| 1451 | |
| 1452 | return gcInfoDecoder.IsInterruptible(); |
| 1453 | } |
| 1454 | |
| 1455 | #if defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 1456 | bool EECodeManager::HasTailCalls( EECodeInfo *pCodeInfo) |
| 1457 | { |
| 1458 | CONTRACTL { |
| 1459 | NOTHROW; |
| 1460 | GC_NOTRIGGER; |
| 1461 | } CONTRACTL_END; |
| 1462 | |
| 1463 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
| 1464 | |
| 1465 | GcInfoDecoder gcInfoDecoder( |
| 1466 | gcInfoToken, |
| 1467 | DECODE_HAS_TAILCALLS, |
| 1468 | 0 |
| 1469 | ); |
| 1470 | |
| 1471 | return gcInfoDecoder.HasTailCalls(); |
| 1472 | } |
| 1473 | #endif // _TARGET_ARM_ || _TARGET_ARM64_ |
| 1474 | |
| 1475 | #if defined(_TARGET_AMD64_) && defined(_DEBUG) |
| 1476 | |
| 1477 | struct FindEndOfLastInterruptibleRegionState |
| 1478 | { |
| 1479 | unsigned curOffset; |
| 1480 | unsigned endOffset; |
| 1481 | unsigned lastRangeOffset; |
| 1482 | }; |
| 1483 | |
| 1484 | bool FindEndOfLastInterruptibleRegionCB ( |
| 1485 | UINT32 startOffset, |
| 1486 | UINT32 stopOffset, |
| 1487 | LPVOID hCallback) |
| 1488 | { |
| 1489 | FindEndOfLastInterruptibleRegionState *pState = (FindEndOfLastInterruptibleRegionState*)hCallback; |
| 1490 | |
| 1491 | // |
| 1492 | // If the current range doesn't overlap the given range, keep searching. |
| 1493 | // |
| 1494 | if ( startOffset >= pState->endOffset |
| 1495 | || stopOffset < pState->curOffset) |
| 1496 | { |
| 1497 | return false; |
| 1498 | } |
| 1499 | |
| 1500 | // |
| 1501 | // If the range overlaps the end, then the last point is the end. |
| 1502 | // |
| 1503 | if ( stopOffset > pState->endOffset |
| 1504 | /*&& startOffset < pState->endOffset*/) |
| 1505 | { |
| 1506 | // The ranges should be sorted in increasing order. |
| 1507 | CONSISTENCY_CHECK(startOffset >= pState->lastRangeOffset); |
| 1508 | |
| 1509 | pState->lastRangeOffset = pState->endOffset; |
| 1510 | return true; |
| 1511 | } |
| 1512 | |
| 1513 | // |
| 1514 | // See if the end of this range is the closet to the end that we've found |
| 1515 | // so far. |
| 1516 | // |
| 1517 | if (stopOffset > pState->lastRangeOffset) |
| 1518 | pState->lastRangeOffset = stopOffset; |
| 1519 | |
| 1520 | return false; |
| 1521 | } |
| 1522 | |
| 1523 | /* |
| 1524 | Locates the end of the last interruptible region in the given code range. |
| 1525 | Returns 0 if the entire range is uninterruptible. Returns the end point |
| 1526 | if the entire range is interruptible. |
| 1527 | */ |
| 1528 | unsigned EECodeManager::FindEndOfLastInterruptibleRegion(unsigned curOffset, |
| 1529 | unsigned endOffset, |
| 1530 | GCInfoToken gcInfoToken) |
| 1531 | { |
| 1532 | #ifndef DACCESS_COMPILE |
| 1533 | GcInfoDecoder gcInfoDecoder( |
| 1534 | gcInfoToken, |
| 1535 | DECODE_FOR_RANGES_CALLBACK |
| 1536 | ); |
| 1537 | |
| 1538 | FindEndOfLastInterruptibleRegionState state; |
| 1539 | state.curOffset = curOffset; |
| 1540 | state.endOffset = endOffset; |
| 1541 | state.lastRangeOffset = 0; |
| 1542 | |
| 1543 | gcInfoDecoder.EnumerateInterruptibleRanges(&FindEndOfLastInterruptibleRegionCB, &state); |
| 1544 | |
| 1545 | return state.lastRangeOffset; |
| 1546 | #else |
| 1547 | DacNotImpl(); |
| 1548 | return NULL; |
| 1549 | #endif // #ifndef DACCESS_COMPILE |
| 1550 | } |
| 1551 | |
| 1552 | #endif // _TARGET_AMD64_ && _DEBUG |
| 1553 | |
| 1554 | |
| 1555 | #else // !USE_GC_INFO_DECODER |
| 1556 | |
| 1557 | /***************************************************************************** |
| 1558 | * |
| 1559 | * Is the function currently at a "GC safe point" ? |
| 1560 | */ |
| 1561 | bool EECodeManager::IsGcSafe( EECodeInfo *pCodeInfo, |
| 1562 | DWORD dwRelOffset) |
| 1563 | { |
| 1564 | CONTRACTL { |
| 1565 | NOTHROW; |
| 1566 | GC_NOTRIGGER; |
| 1567 | SUPPORTS_DAC; |
| 1568 | } CONTRACTL_END; |
| 1569 | |
| 1570 | hdrInfo info; |
| 1571 | BYTE * table; |
| 1572 | |
| 1573 | /* Extract the necessary information from the info block header */ |
| 1574 | |
| 1575 | table = (BYTE *)DecodeGCHdrInfo(pCodeInfo->GetGCInfoToken(), |
| 1576 | dwRelOffset, |
| 1577 | &info); |
| 1578 | |
| 1579 | /* workaround: prevent interruption within prolog/epilog */ |
| 1580 | |
| 1581 | if (info.prologOffs != hdrInfo::NOT_IN_PROLOG || info.epilogOffs != hdrInfo::NOT_IN_EPILOG) |
| 1582 | return false; |
| 1583 | |
| 1584 | #if VERIFY_GC_TABLES |
| 1585 | _ASSERTE(*castto(table, unsigned short *)++ == 0xBEEF); |
| 1586 | #endif |
| 1587 | |
| 1588 | return (info.interruptible); |
| 1589 | } |
| 1590 | |
| 1591 | |
| 1592 | /*****************************************************************************/ |
| 1593 | static |
| 1594 | PTR_CBYTE skipToArgReg(const hdrInfo& info, PTR_CBYTE table) |
| 1595 | { |
| 1596 | CONTRACTL { |
| 1597 | NOTHROW; |
| 1598 | GC_NOTRIGGER; |
| 1599 | SUPPORTS_DAC; |
| 1600 | } CONTRACTL_END; |
| 1601 | |
| 1602 | #ifdef _DEBUG |
| 1603 | PTR_CBYTE tableStart = table; |
| 1604 | #else |
| 1605 | if (info.argTabOffset != INVALID_ARGTAB_OFFSET) |
| 1606 | { |
| 1607 | return table + info.argTabOffset; |
| 1608 | } |
| 1609 | #endif |
| 1610 | |
| 1611 | unsigned count; |
| 1612 | |
| 1613 | #if VERIFY_GC_TABLES |
| 1614 | _ASSERTE(*castto(table, unsigned short *)++ == 0xBEEF); |
| 1615 | #endif |
| 1616 | |
| 1617 | /* Skip over the untracked frame variable table */ |
| 1618 | |
| 1619 | count = info.untrackedCnt; |
| 1620 | while (count-- > 0) { |
| 1621 | fastSkipSigned(table); |
| 1622 | } |
| 1623 | |
| 1624 | #if VERIFY_GC_TABLES |
| 1625 | _ASSERTE(*castto(table, unsigned short *)++ == 0xCAFE); |
| 1626 | #endif |
| 1627 | |
| 1628 | /* Skip over the frame variable lifetime table */ |
| 1629 | |
| 1630 | count = info.varPtrTableSize; |
| 1631 | while (count-- > 0) { |
| 1632 | fastSkipUnsigned(table); fastSkipUnsigned(table); fastSkipUnsigned(table); |
| 1633 | } |
| 1634 | |
| 1635 | #if VERIFY_GC_TABLES |
| 1636 | _ASSERTE(*castto(table, unsigned short *) == 0xBABE); |
| 1637 | #endif |
| 1638 | |
| 1639 | #ifdef _DEBUG |
| 1640 | if (info.argTabOffset != INVALID_ARGTAB_OFFSET) |
| 1641 | { |
| 1642 | CONSISTENCY_CHECK_MSGF((info.argTabOffset == (unsigned) (table - tableStart)), |
| 1643 | ("table = %p, tableStart = %p, info.argTabOffset = %d" , table, tableStart, info.argTabOffset)); |
| 1644 | } |
| 1645 | #endif |
| 1646 | |
| 1647 | return table; |
| 1648 | } |
| 1649 | |
| 1650 | /*****************************************************************************/ |
| 1651 | |
| 1652 | #define regNumToMask(regNum) RegMask(1<<regNum) |
| 1653 | |
| 1654 | /***************************************************************************** |
| 1655 | Helper for scanArgRegTable() and scanArgRegTableI() for regMasks |
| 1656 | */ |
| 1657 | |
| 1658 | void * getCalleeSavedReg(PREGDISPLAY pContext, regNum reg) |
| 1659 | { |
| 1660 | LIMITED_METHOD_CONTRACT; |
| 1661 | SUPPORTS_DAC; |
| 1662 | |
| 1663 | switch (reg) |
| 1664 | { |
| 1665 | case REGI_EBP: return pContext->GetEbpLocation(); |
| 1666 | case REGI_EBX: return pContext->GetEbxLocation(); |
| 1667 | case REGI_ESI: return pContext->GetEsiLocation(); |
| 1668 | case REGI_EDI: return pContext->GetEdiLocation(); |
| 1669 | |
| 1670 | default: _ASSERTE(!"bad info.thisPtrResult" ); return NULL; |
| 1671 | } |
| 1672 | } |
| 1673 | |
| 1674 | /***************************************************************************** |
| 1675 | These functions converts the bits in the GC encoding to RegMask |
| 1676 | */ |
| 1677 | |
| 1678 | inline |
| 1679 | RegMask convertCalleeSavedRegsMask(unsigned inMask) // EBP,EBX,ESI,EDI |
| 1680 | { |
| 1681 | LIMITED_METHOD_CONTRACT; |
| 1682 | SUPPORTS_DAC; |
| 1683 | |
| 1684 | _ASSERTE((inMask & 0x0F) == inMask); |
| 1685 | |
| 1686 | unsigned outMask = RM_NONE; |
| 1687 | if (inMask & 0x1) outMask |= RM_EDI; |
| 1688 | if (inMask & 0x2) outMask |= RM_ESI; |
| 1689 | if (inMask & 0x4) outMask |= RM_EBX; |
| 1690 | if (inMask & 0x8) outMask |= RM_EBP; |
| 1691 | |
| 1692 | return (RegMask) outMask; |
| 1693 | } |
| 1694 | |
| 1695 | inline |
| 1696 | RegMask convertAllRegsMask(unsigned inMask) // EAX,ECX,EDX,EBX, EBP,ESI,EDI |
| 1697 | { |
| 1698 | LIMITED_METHOD_CONTRACT; |
| 1699 | SUPPORTS_DAC; |
| 1700 | |
| 1701 | _ASSERTE((inMask & 0xEF) == inMask); |
| 1702 | |
| 1703 | unsigned outMask = RM_NONE; |
| 1704 | if (inMask & 0x01) outMask |= RM_EAX; |
| 1705 | if (inMask & 0x02) outMask |= RM_ECX; |
| 1706 | if (inMask & 0x04) outMask |= RM_EDX; |
| 1707 | if (inMask & 0x08) outMask |= RM_EBX; |
| 1708 | if (inMask & 0x20) outMask |= RM_EBP; |
| 1709 | if (inMask & 0x40) outMask |= RM_ESI; |
| 1710 | if (inMask & 0x80) outMask |= RM_EDI; |
| 1711 | |
| 1712 | return (RegMask)outMask; |
| 1713 | } |
| 1714 | |
| 1715 | /***************************************************************************** |
| 1716 | * scan the register argument table for the not fully interruptible case. |
| 1717 | this function is called to find all live objects (pushed arguments) |
| 1718 | and to get the stack base for EBP-less methods. |
| 1719 | |
| 1720 | NOTE: If info->argTabResult is NULL, info->argHnumResult indicates |
| 1721 | how many bits in argMask are valid |
| 1722 | If info->argTabResult is non-NULL, then the argMask field does |
| 1723 | not fit in 32-bits and the value in argMask meaningless. |
| 1724 | Instead argHnum specifies the number of (variable-length) elements |
| 1725 | in the array, and argTabBytes specifies the total byte size of the |
| 1726 | array. [ Note this is an extremely rare case ] |
| 1727 | */ |
| 1728 | |
| 1729 | #ifdef _PREFAST_ |
| 1730 | #pragma warning(push) |
| 1731 | #pragma warning(disable:21000) // Suppress PREFast warning about overly large function |
| 1732 | #endif |
| 1733 | static |
| 1734 | unsigned scanArgRegTable(PTR_CBYTE table, |
| 1735 | unsigned curOffs, |
| 1736 | hdrInfo * info) |
| 1737 | { |
| 1738 | CONTRACTL { |
| 1739 | NOTHROW; |
| 1740 | GC_NOTRIGGER; |
| 1741 | SUPPORTS_DAC; |
| 1742 | } CONTRACTL_END; |
| 1743 | |
| 1744 | regNum thisPtrReg = REGI_NA; |
| 1745 | #ifdef _DEBUG |
| 1746 | bool isCall = false; |
| 1747 | #endif |
| 1748 | unsigned regMask = 0; // EBP,EBX,ESI,EDI |
| 1749 | unsigned argMask = 0; |
| 1750 | unsigned argHnum = 0; |
| 1751 | PTR_CBYTE argTab = 0; |
| 1752 | unsigned argTabBytes = 0; |
| 1753 | unsigned stackDepth = 0; |
| 1754 | |
| 1755 | unsigned iregMask = 0; // EBP,EBX,ESI,EDI |
| 1756 | unsigned iargMask = 0; |
| 1757 | unsigned iptrMask = 0; |
| 1758 | |
| 1759 | #if VERIFY_GC_TABLES |
| 1760 | _ASSERTE(*castto(table, unsigned short *)++ == 0xBABE); |
| 1761 | #endif |
| 1762 | |
| 1763 | unsigned scanOffs = 0; |
| 1764 | |
| 1765 | _ASSERTE(scanOffs <= info->methodSize); |
| 1766 | |
| 1767 | if (info->ebpFrame) { |
| 1768 | /* |
| 1769 | Encoding table for methods with an EBP frame and |
| 1770 | that are not fully interruptible |
| 1771 | |
| 1772 | The encoding used is as follows: |
| 1773 | |
| 1774 | this pointer encodings: |
| 1775 | |
| 1776 | 01000000 this pointer in EBX |
| 1777 | 00100000 this pointer in ESI |
| 1778 | 00010000 this pointer in EDI |
| 1779 | |
| 1780 | tiny encoding: |
| 1781 | |
| 1782 | 0bsdDDDD |
| 1783 | requires code delta < 16 (4-bits) |
| 1784 | requires pushed argmask == 0 |
| 1785 | |
| 1786 | where DDDD is code delta |
| 1787 | b indicates that register EBX is a live pointer |
| 1788 | s indicates that register ESI is a live pointer |
| 1789 | d indicates that register EDI is a live pointer |
| 1790 | |
| 1791 | small encoding: |
| 1792 | |
| 1793 | 1DDDDDDD bsdAAAAA |
| 1794 | |
| 1795 | requires code delta < 120 (7-bits) |
| 1796 | requires pushed argmask < 64 (5-bits) |
| 1797 | |
| 1798 | where DDDDDDD is code delta |
| 1799 | AAAAA is the pushed args mask |
| 1800 | b indicates that register EBX is a live pointer |
| 1801 | s indicates that register ESI is a live pointer |
| 1802 | d indicates that register EDI is a live pointer |
| 1803 | |
| 1804 | medium encoding |
| 1805 | |
| 1806 | 0xFD aaaaaaaa AAAAdddd bseDDDDD |
| 1807 | |
| 1808 | requires code delta < 0x1000000000 (9-bits) |
| 1809 | requires pushed argmask < 0x1000000000000 (12-bits) |
| 1810 | |
| 1811 | where DDDDD is the upper 5-bits of the code delta |
| 1812 | dddd is the low 4-bits of the code delta |
| 1813 | AAAA is the upper 4-bits of the pushed arg mask |
| 1814 | aaaaaaaa is the low 8-bits of the pushed arg mask |
| 1815 | b indicates that register EBX is a live pointer |
| 1816 | s indicates that register ESI is a live pointer |
| 1817 | e indicates that register EDI is a live pointer |
| 1818 | |
| 1819 | medium encoding with interior pointers |
| 1820 | |
| 1821 | 0xF9 DDDDDDDD bsdAAAAAA iiiIIIII |
| 1822 | |
| 1823 | requires code delta < (8-bits) |
| 1824 | requires pushed argmask < (5-bits) |
| 1825 | |
| 1826 | where DDDDDDD is the code delta |
| 1827 | b indicates that register EBX is a live pointer |
| 1828 | s indicates that register ESI is a live pointer |
| 1829 | d indicates that register EDI is a live pointer |
| 1830 | AAAAA is the pushed arg mask |
| 1831 | iii indicates that EBX,EDI,ESI are interior pointers |
| 1832 | IIIII indicates that bits is the arg mask are interior |
| 1833 | pointers |
| 1834 | |
| 1835 | large encoding |
| 1836 | |
| 1837 | 0xFE [0BSD0bsd][32-bit code delta][32-bit argMask] |
| 1838 | |
| 1839 | b indicates that register EBX is a live pointer |
| 1840 | s indicates that register ESI is a live pointer |
| 1841 | d indicates that register EDI is a live pointer |
| 1842 | B indicates that register EBX is an interior pointer |
| 1843 | S indicates that register ESI is an interior pointer |
| 1844 | D indicates that register EDI is an interior pointer |
| 1845 | requires pushed argmask < 32-bits |
| 1846 | |
| 1847 | large encoding with interior pointers |
| 1848 | |
| 1849 | 0xFA [0BSD0bsd][32-bit code delta][32-bit argMask][32-bit interior pointer mask] |
| 1850 | |
| 1851 | |
| 1852 | b indicates that register EBX is a live pointer |
| 1853 | s indicates that register ESI is a live pointer |
| 1854 | d indicates that register EDI is a live pointer |
| 1855 | B indicates that register EBX is an interior pointer |
| 1856 | S indicates that register ESI is an interior pointer |
| 1857 | D indicates that register EDI is an interior pointer |
| 1858 | requires pushed argmask < 32-bits |
| 1859 | requires pushed iArgmask < 32-bits |
| 1860 | |
| 1861 | huge encoding This is the only encoding that supports |
| 1862 | a pushed argmask which is greater than |
| 1863 | 32-bits. |
| 1864 | |
| 1865 | 0xFB [0BSD0bsd][32-bit code delta] |
| 1866 | [32-bit table count][32-bit table size] |
| 1867 | [pushed ptr offsets table...] |
| 1868 | |
| 1869 | b indicates that register EBX is a live pointer |
| 1870 | s indicates that register ESI is a live pointer |
| 1871 | d indicates that register EDI is a live pointer |
| 1872 | B indicates that register EBX is an interior pointer |
| 1873 | S indicates that register ESI is an interior pointer |
| 1874 | D indicates that register EDI is an interior pointer |
| 1875 | the list count is the number of entries in the list |
| 1876 | the list size gives the byte-lenght of the list |
| 1877 | the offsets in the list are variable-length |
| 1878 | */ |
| 1879 | while (scanOffs < curOffs) |
| 1880 | { |
| 1881 | iregMask = 0; |
| 1882 | iargMask = 0; |
| 1883 | argTab = NULL; |
| 1884 | #ifdef _DEBUG |
| 1885 | isCall = true; |
| 1886 | #endif |
| 1887 | |
| 1888 | /* Get the next byte and check for a 'special' entry */ |
| 1889 | |
| 1890 | unsigned encType = *table++; |
| 1891 | #if defined(DACCESS_COMPILE) |
| 1892 | // In this scenario, it is invalid to have a zero byte in the GC info encoding (refer to the |
| 1893 | // comments above). At least one bit has to be set. For example, a byte can represent which |
| 1894 | // register is the "this" pointer, and this byte has to be 0x10, 0x20, or 0x40. Having a zero |
| 1895 | // byte indicates there is most likely some sort of DAC error, and it may lead to problems such as |
| 1896 | // infinite loops. So we bail out early instead. |
| 1897 | if (encType == 0) |
| 1898 | { |
| 1899 | DacError(CORDBG_E_TARGET_INCONSISTENT); |
| 1900 | UNREACHABLE(); |
| 1901 | } |
| 1902 | #endif // DACCESS_COMPILE |
| 1903 | |
| 1904 | switch (encType) |
| 1905 | { |
| 1906 | unsigned val, nxt; |
| 1907 | |
| 1908 | default: |
| 1909 | |
| 1910 | /* A tiny or small call entry */ |
| 1911 | val = encType; |
| 1912 | if ((val & 0x80) == 0x00) { |
| 1913 | if (val & 0x0F) { |
| 1914 | /* A tiny call entry */ |
| 1915 | scanOffs += (val & 0x0F); |
| 1916 | regMask = (val & 0x70) >> 4; |
| 1917 | argMask = 0; |
| 1918 | argHnum = 0; |
| 1919 | } |
| 1920 | else { |
| 1921 | /* This pointer liveness encoding */ |
| 1922 | regMask = (val & 0x70) >> 4; |
| 1923 | if (regMask == 0x1) |
| 1924 | thisPtrReg = REGI_EDI; |
| 1925 | else if (regMask == 0x2) |
| 1926 | thisPtrReg = REGI_ESI; |
| 1927 | else if (regMask == 0x4) |
| 1928 | thisPtrReg = REGI_EBX; |
| 1929 | else |
| 1930 | _ASSERTE(!"illegal encoding for 'this' pointer liveness" ); |
| 1931 | } |
| 1932 | } |
| 1933 | else { |
| 1934 | /* A small call entry */ |
| 1935 | scanOffs += (val & 0x7F); |
| 1936 | val = *table++; |
| 1937 | regMask = val >> 5; |
| 1938 | argMask = val & 0x1F; |
| 1939 | argHnum = 5; |
| 1940 | } |
| 1941 | break; |
| 1942 | |
| 1943 | case 0xFD: // medium encoding |
| 1944 | |
| 1945 | argMask = *table++; |
| 1946 | val = *table++; |
| 1947 | argMask |= ((val & 0xF0) << 4); |
| 1948 | argHnum = 12; |
| 1949 | nxt = *table++; |
| 1950 | scanOffs += (val & 0x0F) + ((nxt & 0x1F) << 4); |
| 1951 | regMask = nxt >> 5; // EBX,ESI,EDI |
| 1952 | |
| 1953 | break; |
| 1954 | |
| 1955 | case 0xF9: // medium encoding with interior pointers |
| 1956 | |
| 1957 | scanOffs += *table++; |
| 1958 | val = *table++; |
| 1959 | argMask = val & 0x1F; |
| 1960 | argHnum = 5; |
| 1961 | regMask = val >> 5; |
| 1962 | val = *table++; |
| 1963 | iargMask = val & 0x1F; |
| 1964 | iregMask = val >> 5; |
| 1965 | |
| 1966 | break; |
| 1967 | |
| 1968 | case 0xFE: // large encoding |
| 1969 | case 0xFA: // large encoding with interior pointers |
| 1970 | |
| 1971 | val = *table++; |
| 1972 | regMask = val & 0x7; |
| 1973 | iregMask = val >> 4; |
| 1974 | scanOffs += *dac_cast<PTR_DWORD>(table); table += sizeof(DWORD); |
| 1975 | argMask = *dac_cast<PTR_DWORD>(table); table += sizeof(DWORD); |
| 1976 | argHnum = 31; |
| 1977 | if (encType == 0xFA) // read iargMask |
| 1978 | { |
| 1979 | iargMask = *dac_cast<PTR_DWORD>(table); table += sizeof(DWORD); |
| 1980 | } |
| 1981 | break; |
| 1982 | |
| 1983 | case 0xFB: // huge encoding This is the only partially interruptible |
| 1984 | // encoding that supports a pushed ArgMask |
| 1985 | // which is greater than 32-bits. |
| 1986 | // The ArgMask is encoded using the argTab |
| 1987 | val = *table++; |
| 1988 | regMask = val & 0x7; |
| 1989 | iregMask = val >> 4; |
| 1990 | scanOffs += *dac_cast<PTR_DWORD>(table); table += sizeof(DWORD); |
| 1991 | argHnum = *dac_cast<PTR_DWORD>(table); table += sizeof(DWORD); |
| 1992 | argTabBytes = *dac_cast<PTR_DWORD>(table); table += sizeof(DWORD); |
| 1993 | argTab = table; table += argTabBytes; |
| 1994 | |
| 1995 | argMask = 0; |
| 1996 | break; |
| 1997 | |
| 1998 | case 0xFF: |
| 1999 | scanOffs = curOffs + 1; |
| 2000 | break; |
| 2001 | |
| 2002 | } // end case |
| 2003 | |
| 2004 | // iregMask & iargMask are subsets of regMask & argMask respectively |
| 2005 | |
| 2006 | _ASSERTE((iregMask & regMask) == iregMask); |
| 2007 | _ASSERTE((iargMask & argMask) == iargMask); |
| 2008 | |
| 2009 | } // end while |
| 2010 | |
| 2011 | } |
| 2012 | else { |
| 2013 | |
| 2014 | /* |
| 2015 | * Encoding table for methods with an ESP frame and are not fully interruptible |
| 2016 | * This encoding does not support a pushed ArgMask greater than 32 |
| 2017 | * |
| 2018 | * The encoding used is as follows: |
| 2019 | * |
| 2020 | * push 000DDDDD ESP push one item with 5-bit delta |
| 2021 | * push 00100000 [pushCount] ESP push multiple items |
| 2022 | * reserved 0011xxxx |
| 2023 | * skip 01000000 [Delta] Skip Delta, arbitrary sized delta |
| 2024 | * skip 0100DDDD Skip small Delta, for call (DDDD != 0) |
| 2025 | * pop 01CCDDDD ESP pop CC items with 4-bit delta (CC != 00) |
| 2026 | * call 1PPPPPPP Call Pattern, P=[0..79] |
| 2027 | * call 1101pbsd DDCCCMMM Call RegMask=pbsd,ArgCnt=CCC, |
| 2028 | * ArgMask=MMM Delta=commonDelta[DD] |
| 2029 | * call 1110pbsd [ArgCnt] [ArgMask] Call ArgCnt,RegMask=pbsd,[32-bit ArgMask] |
| 2030 | * call 11111000 [PBSDpbsd][32-bit delta][32-bit ArgCnt] |
| 2031 | * [32-bit PndCnt][32-bit PndSize][PndOffs...] |
| 2032 | * iptr 11110000 [IPtrMask] Arbitrary 32-bit Interior Pointer Mask |
| 2033 | * thisptr 111101RR This pointer is in Register RR |
| 2034 | * 00=EDI,01=ESI,10=EBX,11=EBP |
| 2035 | * reserved 111100xx xx != 00 |
| 2036 | * reserved 111110xx xx != 00 |
| 2037 | * reserved 11111xxx xxx != 000 && xxx != 111(EOT) |
| 2038 | * |
| 2039 | * The value 11111111 [0xFF] indicates the end of the table. |
| 2040 | * |
| 2041 | * An offset (at which stack-walking is performed) without an explicit encoding |
| 2042 | * is assumed to be a trivial call-site (no GC registers, stack empty before and |
| 2043 | * after) to avoid having to encode all trivial calls. |
| 2044 | * |
| 2045 | * Note on the encoding used for interior pointers |
| 2046 | * |
| 2047 | * The iptr encoding must immediately preceed a call encoding. It is used to |
| 2048 | * transform a normal GC pointer addresses into an interior pointers for GC purposes. |
| 2049 | * The mask supplied to the iptr encoding is read from the least signicant bit |
| 2050 | * to the most signicant bit. (i.e the lowest bit is read first) |
| 2051 | * |
| 2052 | * p indicates that register EBP is a live pointer |
| 2053 | * b indicates that register EBX is a live pointer |
| 2054 | * s indicates that register ESI is a live pointer |
| 2055 | * d indicates that register EDI is a live pointer |
| 2056 | * P indicates that register EBP is an interior pointer |
| 2057 | * B indicates that register EBX is an interior pointer |
| 2058 | * S indicates that register ESI is an interior pointer |
| 2059 | * D indicates that register EDI is an interior pointer |
| 2060 | * |
| 2061 | * As an example the following sequence indicates that EDI.ESI and the 2nd pushed pointer |
| 2062 | * in ArgMask are really interior pointers. The pointer in ESI in a normal pointer: |
| 2063 | * |
| 2064 | * iptr 11110000 00010011 => read Interior Ptr, Interior Ptr, Normal Ptr, Normal Ptr, Interior Ptr |
| 2065 | * call 11010011 DDCCC011 RRRR=1011 => read EDI is a GC-pointer, ESI is a GC-pointer. EBP is a GC-pointer |
| 2066 | * MMM=0011 => read two GC-pointers arguments on the stack (nested call) |
| 2067 | * |
| 2068 | * Since the call instruction mentions 5 GC-pointers we list them in the required order: |
| 2069 | * EDI, ESI, EBP, 1st-pushed pointer, 2nd-pushed pointer |
| 2070 | * |
| 2071 | * And we apply the Interior Pointer mask mmmm=10011 to the above five ordered GC-pointers |
| 2072 | * we learn that EDI and ESI are interior GC-pointers and that the second push arg is an |
| 2073 | * interior GC-pointer. |
| 2074 | */ |
| 2075 | |
| 2076 | #if defined(DACCESS_COMPILE) |
| 2077 | DWORD cbZeroBytes = 0; |
| 2078 | #endif // DACCESS_COMPILE |
| 2079 | |
| 2080 | while (scanOffs <= curOffs) |
| 2081 | { |
| 2082 | unsigned callArgCnt; |
| 2083 | unsigned skip; |
| 2084 | unsigned newRegMask, inewRegMask; |
| 2085 | unsigned newArgMask, inewArgMask; |
| 2086 | unsigned oldScanOffs = scanOffs; |
| 2087 | |
| 2088 | if (iptrMask) |
| 2089 | { |
| 2090 | // We found this iptrMask in the previous iteration. |
| 2091 | // This iteration must be for a call. Set these variables |
| 2092 | // so that they are available at the end of the loop |
| 2093 | |
| 2094 | inewRegMask = iptrMask & 0x0F; // EBP,EBX,ESI,EDI |
| 2095 | inewArgMask = iptrMask >> 4; |
| 2096 | |
| 2097 | iptrMask = 0; |
| 2098 | } |
| 2099 | else |
| 2100 | { |
| 2101 | // Zero out any stale values. |
| 2102 | |
| 2103 | inewRegMask = 0; |
| 2104 | inewArgMask = 0; |
| 2105 | } |
| 2106 | |
| 2107 | /* Get the next byte and decode it */ |
| 2108 | |
| 2109 | unsigned val = *table++; |
| 2110 | #if defined(DACCESS_COMPILE) |
| 2111 | // In this scenario, a 0 means that there is a push at the current offset. For a struct with |
| 2112 | // two double fields, the JIT may use two movq instructions to push the struct onto the stack, and |
| 2113 | // the JIT will encode 4 pushes at the same code offset. This means that we can have up to 4 |
| 2114 | // consecutive bytes of 0 without changing the code offset. Having more than 4 consecutive bytes |
| 2115 | // of zero indicates that there is most likely some sort of DAC error, and it may lead to problems |
| 2116 | // such as infinite loops. So we bail out early instead. |
| 2117 | if (val == 0) |
| 2118 | { |
| 2119 | cbZeroBytes += 1; |
| 2120 | if (cbZeroBytes > 4) |
| 2121 | { |
| 2122 | DacError(CORDBG_E_TARGET_INCONSISTENT); |
| 2123 | UNREACHABLE(); |
| 2124 | } |
| 2125 | } |
| 2126 | else |
| 2127 | { |
| 2128 | cbZeroBytes = 0; |
| 2129 | } |
| 2130 | #endif // DACCESS_COMPILE |
| 2131 | |
| 2132 | #ifdef _DEBUG |
| 2133 | if (scanOffs != curOffs) |
| 2134 | isCall = false; |
| 2135 | #endif |
| 2136 | |
| 2137 | /* Check pushes, pops, and skips */ |
| 2138 | |
| 2139 | if (!(val & 0x80)) { |
| 2140 | |
| 2141 | // iptrMask can immediately precede only calls |
| 2142 | |
| 2143 | _ASSERTE(inewRegMask == 0); |
| 2144 | _ASSERTE(inewArgMask == 0); |
| 2145 | |
| 2146 | if (!(val & 0x40)) { |
| 2147 | |
| 2148 | unsigned pushCount; |
| 2149 | |
| 2150 | if (!(val & 0x20)) |
| 2151 | { |
| 2152 | // |
| 2153 | // push 000DDDDD ESP push one item, 5-bit delta |
| 2154 | // |
| 2155 | pushCount = 1; |
| 2156 | scanOffs += val & 0x1f; |
| 2157 | } |
| 2158 | else |
| 2159 | { |
| 2160 | // |
| 2161 | // push 00100000 [pushCount] ESP push multiple items |
| 2162 | // |
| 2163 | _ASSERTE(val == 0x20); |
| 2164 | pushCount = fastDecodeUnsigned(table); |
| 2165 | } |
| 2166 | |
| 2167 | if (scanOffs > curOffs) |
| 2168 | { |
| 2169 | scanOffs = oldScanOffs; |
| 2170 | goto FINISHED; |
| 2171 | } |
| 2172 | |
| 2173 | stackDepth += pushCount; |
| 2174 | } |
| 2175 | else if ((val & 0x3f) != 0) { |
| 2176 | // |
| 2177 | // pop 01CCDDDD pop CC items, 4-bit delta |
| 2178 | // |
| 2179 | scanOffs += val & 0x0f; |
| 2180 | if (scanOffs > curOffs) |
| 2181 | { |
| 2182 | scanOffs = oldScanOffs; |
| 2183 | goto FINISHED; |
| 2184 | } |
| 2185 | stackDepth -= (val & 0x30) >> 4; |
| 2186 | |
| 2187 | } else if (scanOffs < curOffs) { |
| 2188 | // |
| 2189 | // skip 01000000 [Delta] Skip arbitrary sized delta |
| 2190 | // |
| 2191 | skip = fastDecodeUnsigned(table); |
| 2192 | scanOffs += skip; |
| 2193 | } |
| 2194 | else // don't process a skip if we are already at curOffs |
| 2195 | goto FINISHED; |
| 2196 | |
| 2197 | /* reset regs and args state since we advance past last call site */ |
| 2198 | |
| 2199 | regMask = 0; |
| 2200 | iregMask = 0; |
| 2201 | argMask = 0; |
| 2202 | iargMask = 0; |
| 2203 | argHnum = 0; |
| 2204 | |
| 2205 | } |
| 2206 | else /* It must be a call, thisptr, or iptr */ |
| 2207 | { |
| 2208 | switch ((val & 0x70) >> 4) { |
| 2209 | default: // case 0-4, 1000xxxx through 1100xxxx |
| 2210 | // |
| 2211 | // call 1PPPPPPP Call Pattern, P=[0..79] |
| 2212 | // |
| 2213 | decodeCallPattern((val & 0x7f), &callArgCnt, |
| 2214 | &newRegMask, &newArgMask, &skip); |
| 2215 | // If we've already reached curOffs and the skip amount |
| 2216 | // is non-zero then we are done |
| 2217 | if ((scanOffs == curOffs) && (skip > 0)) |
| 2218 | goto FINISHED; |
| 2219 | // otherwise process this call pattern |
| 2220 | scanOffs += skip; |
| 2221 | if (scanOffs > curOffs) |
| 2222 | goto FINISHED; |
| 2223 | #ifdef _DEBUG |
| 2224 | isCall = true; |
| 2225 | #endif |
| 2226 | regMask = newRegMask; |
| 2227 | argMask = newArgMask; argTab = NULL; |
| 2228 | iregMask = inewRegMask; |
| 2229 | iargMask = inewArgMask; |
| 2230 | stackDepth -= callArgCnt; |
| 2231 | argHnum = 2; // argMask is known to be <= 3 |
| 2232 | break; |
| 2233 | |
| 2234 | case 5: |
| 2235 | // |
| 2236 | // call 1101RRRR DDCCCMMM Call RegMask=RRRR,ArgCnt=CCC, |
| 2237 | // ArgMask=MMM Delta=commonDelta[DD] |
| 2238 | // |
| 2239 | newRegMask = val & 0xf; // EBP,EBX,ESI,EDI |
| 2240 | val = *table++; // read next byte |
| 2241 | skip = callCommonDelta[val>>6]; |
| 2242 | // If we've already reached curOffs and the skip amount |
| 2243 | // is non-zero then we are done |
| 2244 | if ((scanOffs == curOffs) && (skip > 0)) |
| 2245 | goto FINISHED; |
| 2246 | // otherwise process this call encoding |
| 2247 | scanOffs += skip; |
| 2248 | if (scanOffs > curOffs) |
| 2249 | goto FINISHED; |
| 2250 | #ifdef _DEBUG |
| 2251 | isCall = true; |
| 2252 | #endif |
| 2253 | regMask = newRegMask; |
| 2254 | iregMask = inewRegMask; |
| 2255 | callArgCnt = (val >> 3) & 0x7; |
| 2256 | stackDepth -= callArgCnt; |
| 2257 | argMask = (val & 0x7); argTab = NULL; |
| 2258 | iargMask = inewArgMask; |
| 2259 | argHnum = 3; |
| 2260 | break; |
| 2261 | |
| 2262 | case 6: |
| 2263 | // |
| 2264 | // call 1110RRRR [ArgCnt] [ArgMask] |
| 2265 | // Call ArgCnt,RegMask=RRR,ArgMask |
| 2266 | // |
| 2267 | #ifdef _DEBUG |
| 2268 | isCall = true; |
| 2269 | #endif |
| 2270 | regMask = val & 0xf; // EBP,EBX,ESI,EDI |
| 2271 | iregMask = inewRegMask; |
| 2272 | callArgCnt = fastDecodeUnsigned(table); |
| 2273 | stackDepth -= callArgCnt; |
| 2274 | argMask = fastDecodeUnsigned(table); argTab = NULL; |
| 2275 | iargMask = inewArgMask; |
| 2276 | argHnum = sizeof(argMask) * 8; // The size of argMask in bits |
| 2277 | break; |
| 2278 | |
| 2279 | case 7: |
| 2280 | switch (val & 0x0C) |
| 2281 | { |
| 2282 | case 0x00: |
| 2283 | // |
| 2284 | // 0xF0 iptr 11110000 [IPtrMask] Arbitrary Interior Pointer Mask |
| 2285 | // |
| 2286 | iptrMask = fastDecodeUnsigned(table); |
| 2287 | break; |
| 2288 | |
| 2289 | case 0x04: |
| 2290 | // |
| 2291 | // 0xF4 thisptr 111101RR This pointer is in Register RR |
| 2292 | // 00=EDI,01=ESI,10=EBX,11=EBP |
| 2293 | // |
| 2294 | { |
| 2295 | static const regNum calleeSavedRegs[] = |
| 2296 | { REGI_EDI, REGI_ESI, REGI_EBX, REGI_EBP }; |
| 2297 | thisPtrReg = calleeSavedRegs[val&0x3]; |
| 2298 | } |
| 2299 | break; |
| 2300 | |
| 2301 | case 0x08: |
| 2302 | // |
| 2303 | // 0xF8 call 11111000 [PBSDpbsd][32-bit delta][32-bit ArgCnt] |
| 2304 | // [32-bit PndCnt][32-bit PndSize][PndOffs...] |
| 2305 | // |
| 2306 | val = *table++; |
| 2307 | skip = *dac_cast<PTR_DWORD>(table); table += sizeof(DWORD); |
| 2308 | // [VSUQFE 4670] |
| 2309 | // If we've already reached curOffs and the skip amount |
| 2310 | // is non-zero then we are done |
| 2311 | if ((scanOffs == curOffs) && (skip > 0)) |
| 2312 | goto FINISHED; |
| 2313 | // [VSUQFE 4670] |
| 2314 | scanOffs += skip; |
| 2315 | if (scanOffs > curOffs) |
| 2316 | goto FINISHED; |
| 2317 | #ifdef _DEBUG |
| 2318 | isCall = true; |
| 2319 | #endif |
| 2320 | regMask = val & 0xF; |
| 2321 | iregMask = val >> 4; |
| 2322 | callArgCnt = *dac_cast<PTR_DWORD>(table); table += sizeof(DWORD); |
| 2323 | stackDepth -= callArgCnt; |
| 2324 | argHnum = *dac_cast<PTR_DWORD>(table); table += sizeof(DWORD); |
| 2325 | argTabBytes = *dac_cast<PTR_DWORD>(table); table += sizeof(DWORD); |
| 2326 | argTab = table; |
| 2327 | table += argTabBytes; |
| 2328 | break; |
| 2329 | |
| 2330 | case 0x0C: |
| 2331 | // |
| 2332 | // 0xFF end 11111111 End of table marker |
| 2333 | // |
| 2334 | _ASSERTE(val==0xff); |
| 2335 | goto FINISHED; |
| 2336 | |
| 2337 | default: |
| 2338 | _ASSERTE(!"reserved GC encoding" ); |
| 2339 | break; |
| 2340 | } |
| 2341 | break; |
| 2342 | |
| 2343 | } // end switch |
| 2344 | |
| 2345 | } // end else (!(val & 0x80)) |
| 2346 | |
| 2347 | // iregMask & iargMask are subsets of regMask & argMask respectively |
| 2348 | |
| 2349 | _ASSERTE((iregMask & regMask) == iregMask); |
| 2350 | _ASSERTE((iargMask & argMask) == iargMask); |
| 2351 | |
| 2352 | } // end while |
| 2353 | |
| 2354 | } // end else ebp-less frame |
| 2355 | |
| 2356 | FINISHED: |
| 2357 | |
| 2358 | // iregMask & iargMask are subsets of regMask & argMask respectively |
| 2359 | |
| 2360 | _ASSERTE((iregMask & regMask) == iregMask); |
| 2361 | _ASSERTE((iargMask & argMask) == iargMask); |
| 2362 | |
| 2363 | if (scanOffs != curOffs) |
| 2364 | { |
| 2365 | /* must have been a boring call */ |
| 2366 | info->regMaskResult = RM_NONE; |
| 2367 | info->argMaskResult = ptrArgTP(0); |
| 2368 | info->iregMaskResult = RM_NONE; |
| 2369 | info->iargMaskResult = ptrArgTP(0); |
| 2370 | info->argHnumResult = 0; |
| 2371 | info->argTabResult = NULL; |
| 2372 | info->argTabBytes = 0; |
| 2373 | } |
| 2374 | else |
| 2375 | { |
| 2376 | info->regMaskResult = convertCalleeSavedRegsMask(regMask); |
| 2377 | info->argMaskResult = ptrArgTP(argMask); |
| 2378 | info->argHnumResult = argHnum; |
| 2379 | info->iregMaskResult = convertCalleeSavedRegsMask(iregMask); |
| 2380 | info->iargMaskResult = ptrArgTP(iargMask); |
| 2381 | info->argTabResult = argTab; |
| 2382 | info->argTabBytes = argTabBytes; |
| 2383 | } |
| 2384 | |
| 2385 | #ifdef _DEBUG |
| 2386 | if (scanOffs != curOffs) { |
| 2387 | isCall = false; |
| 2388 | } |
| 2389 | _ASSERTE(thisPtrReg == REGI_NA || (!isCall || (regNumToMask(thisPtrReg) & info->regMaskResult))); |
| 2390 | #endif |
| 2391 | info->thisPtrResult = thisPtrReg; |
| 2392 | |
| 2393 | _ASSERTE(int(stackDepth) < INT_MAX); // check that it did not underflow |
| 2394 | return (stackDepth * sizeof(unsigned)); |
| 2395 | } |
| 2396 | #ifdef _PREFAST_ |
| 2397 | #pragma warning(pop) |
| 2398 | #endif |
| 2399 | |
| 2400 | |
| 2401 | /***************************************************************************** |
| 2402 | * scan the register argument table for the fully interruptible case. |
| 2403 | this function is called to find all live objects (pushed arguments) |
| 2404 | and to get the stack base for fully interruptible methods. |
| 2405 | Returns size of things pushed on the stack for ESP frames |
| 2406 | |
| 2407 | Arguments: |
| 2408 | table - The pointer table |
| 2409 | curOffsRegs - The current code offset that should be used for reporting registers |
| 2410 | curOffsArgs - The current code offset that should be used for reporting args |
| 2411 | info - Incoming arg used to determine if there's a frame, and to save results |
| 2412 | */ |
| 2413 | |
| 2414 | static |
| 2415 | unsigned scanArgRegTableI(PTR_CBYTE table, |
| 2416 | unsigned curOffsRegs, |
| 2417 | unsigned curOffsArgs, |
| 2418 | hdrInfo * info) |
| 2419 | { |
| 2420 | CONTRACTL { |
| 2421 | NOTHROW; |
| 2422 | GC_NOTRIGGER; |
| 2423 | SUPPORTS_DAC; |
| 2424 | } CONTRACTL_END; |
| 2425 | |
| 2426 | regNum thisPtrReg = REGI_NA; |
| 2427 | unsigned ptrRegs = 0; // The mask of registers that contain pointers |
| 2428 | unsigned iptrRegs = 0; // The subset of ptrRegs that are interior pointers |
| 2429 | unsigned ptrOffs = 0; // The code offset of the table entry we are currently looking at |
| 2430 | unsigned argCnt = 0; // The number of args that have been pushed |
| 2431 | |
| 2432 | ptrArgTP ptrArgs(0); // The mask of stack values that contain pointers. |
| 2433 | ptrArgTP iptrArgs(0); // The subset of ptrArgs that are interior pointers. |
| 2434 | ptrArgTP argHigh(0); // The current mask position that corresponds to the top of the stack. |
| 2435 | |
| 2436 | bool isThis = false; |
| 2437 | bool iptr = false; |
| 2438 | |
| 2439 | // The comment before the call to scanArgRegTableI in EnumGCRefs |
| 2440 | // describes why curOffsRegs can be smaller than curOffsArgs. |
| 2441 | _ASSERTE(curOffsRegs <= curOffsArgs); |
| 2442 | |
| 2443 | #if VERIFY_GC_TABLES |
| 2444 | _ASSERTE(*castto(table, unsigned short *)++ == 0xBABE); |
| 2445 | #endif |
| 2446 | |
| 2447 | bool hasPartialArgInfo; |
| 2448 | |
| 2449 | #ifndef UNIX_X86_ABI |
| 2450 | hasPartialArgInfo = info->ebpFrame; |
| 2451 | #else |
| 2452 | // For x86/Linux, interruptible code always has full arg info |
| 2453 | // |
| 2454 | // This should be aligned with emitFullArgInfo setting at |
| 2455 | // emitter::emitEndCodeGen (in JIT) |
| 2456 | hasPartialArgInfo = false; |
| 2457 | #endif |
| 2458 | |
| 2459 | /* |
| 2460 | Encoding table for methods that are fully interruptible |
| 2461 | |
| 2462 | The encoding used is as follows: |
| 2463 | |
| 2464 | ptr reg dead 00RRRDDD [RRR != 100] |
| 2465 | ptr reg live 01RRRDDD [RRR != 100] |
| 2466 | |
| 2467 | non-ptr arg push 10110DDD [SSS == 110] |
| 2468 | ptr arg push 10SSSDDD [SSS != 110] && [SSS != 111] |
| 2469 | ptr arg pop 11CCCDDD [CCC != 000] && [CCC != 110] && [CCC != 111] |
| 2470 | little delta skip 11000DDD [CCC == 000] |
| 2471 | bigger delta skip 11110BBB [CCC == 110] |
| 2472 | |
| 2473 | The values used in the encodings are as follows: |
| 2474 | |
| 2475 | DDD code offset delta from previous entry (0-7) |
| 2476 | BBB bigger delta 000=8,001=16,010=24,...,111=64 |
| 2477 | RRR register number (EAX=000,ECX=001,EDX=010,EBX=011, |
| 2478 | EBP=101,ESI=110,EDI=111), ESP=100 is reserved |
| 2479 | SSS argument offset from base of stack. This is |
| 2480 | redundant for frameless methods as we can |
| 2481 | infer it from the previous pushes+pops. However, |
| 2482 | for EBP-methods, we only report GC pushes, and |
| 2483 | so we need SSS |
| 2484 | CCC argument count being popped (includes only ptrs for EBP methods) |
| 2485 | |
| 2486 | The following are the 'large' versions: |
| 2487 | |
| 2488 | large delta skip 10111000 [0xB8] , encodeUnsigned(delta) |
| 2489 | |
| 2490 | large ptr arg push 11111000 [0xF8] , encodeUnsigned(pushCount) |
| 2491 | large non-ptr arg push 11111001 [0xF9] , encodeUnsigned(pushCount) |
| 2492 | large ptr arg pop 11111100 [0xFC] , encodeUnsigned(popCount) |
| 2493 | large arg dead 11111101 [0xFD] , encodeUnsigned(popCount) for caller-pop args. |
| 2494 | Any GC args go dead after the call, |
| 2495 | but are still sitting on the stack |
| 2496 | |
| 2497 | this pointer prefix 10111100 [0xBC] the next encoding is a ptr live |
| 2498 | or a ptr arg push |
| 2499 | and contains the this pointer |
| 2500 | |
| 2501 | interior or by-ref 10111111 [0xBF] the next encoding is a ptr live |
| 2502 | pointer prefix or a ptr arg push |
| 2503 | and contains an interior |
| 2504 | or by-ref pointer |
| 2505 | |
| 2506 | |
| 2507 | The value 11111111 [0xFF] indicates the end of the table. |
| 2508 | */ |
| 2509 | |
| 2510 | #if defined(DACCESS_COMPILE) |
| 2511 | bool fLastByteIsZero = false; |
| 2512 | #endif // DACCESS_COMPILE |
| 2513 | |
| 2514 | /* Have we reached the instruction we're looking for? */ |
| 2515 | |
| 2516 | while (ptrOffs <= curOffsArgs) |
| 2517 | { |
| 2518 | unsigned val; |
| 2519 | |
| 2520 | int isPop; |
| 2521 | unsigned argOfs; |
| 2522 | |
| 2523 | unsigned regMask; |
| 2524 | |
| 2525 | // iptrRegs & iptrArgs are subsets of ptrRegs & ptrArgs respectively |
| 2526 | |
| 2527 | _ASSERTE((iptrRegs & ptrRegs) == iptrRegs); |
| 2528 | _ASSERTE((iptrArgs & ptrArgs) == iptrArgs); |
| 2529 | |
| 2530 | /* Now find the next 'life' transition */ |
| 2531 | |
| 2532 | val = *table++; |
| 2533 | #if defined(DACCESS_COMPILE) |
| 2534 | // In this scenario, a zero byte means that EAX is going dead at the current offset. Since EAX |
| 2535 | // can't go dead more than once at any given offset, it's invalid to have two consecutive bytes |
| 2536 | // of zero. If this were to happen, then it means that there is most likely some sort of DAC |
| 2537 | // error, and it may lead to problems such as infinite loops. So we bail out early instead. |
| 2538 | if ((val == 0) && fLastByteIsZero) |
| 2539 | { |
| 2540 | DacError(CORDBG_E_TARGET_INCONSISTENT); |
| 2541 | UNREACHABLE(); |
| 2542 | } |
| 2543 | fLastByteIsZero = (val == 0); |
| 2544 | #endif // DACCESS_COMPILE |
| 2545 | |
| 2546 | if (!(val & 0x80)) |
| 2547 | { |
| 2548 | /* A small 'regPtr' encoding */ |
| 2549 | |
| 2550 | regNum reg; |
| 2551 | |
| 2552 | ptrOffs += (val ) & 0x7; |
| 2553 | if (ptrOffs > curOffsArgs) { |
| 2554 | iptr = isThis = false; |
| 2555 | goto REPORT_REFS; |
| 2556 | } |
| 2557 | else if (ptrOffs > curOffsRegs) { |
| 2558 | iptr = isThis = false; |
| 2559 | continue; |
| 2560 | } |
| 2561 | |
| 2562 | reg = (regNum)((val >> 3) & 0x7); |
| 2563 | regMask = 1 << reg; // EAX,ECX,EDX,EBX,---,EBP,ESI,EDI |
| 2564 | |
| 2565 | #if 0 |
| 2566 | printf("regMask = %04X -> %04X\n" , ptrRegs, |
| 2567 | (val & 0x40) ? (ptrRegs | regMask) |
| 2568 | : (ptrRegs & ~regMask)); |
| 2569 | #endif |
| 2570 | |
| 2571 | /* The register is becoming live/dead here */ |
| 2572 | |
| 2573 | if (val & 0x40) |
| 2574 | { |
| 2575 | /* Becomes Live */ |
| 2576 | _ASSERTE((ptrRegs & regMask) == 0); |
| 2577 | |
| 2578 | ptrRegs |= regMask; |
| 2579 | |
| 2580 | if (isThis) |
| 2581 | { |
| 2582 | thisPtrReg = reg; |
| 2583 | } |
| 2584 | if (iptr) |
| 2585 | { |
| 2586 | iptrRegs |= regMask; |
| 2587 | } |
| 2588 | } |
| 2589 | else |
| 2590 | { |
| 2591 | /* Becomes Dead */ |
| 2592 | _ASSERTE((ptrRegs & regMask) != 0); |
| 2593 | |
| 2594 | ptrRegs &= ~regMask; |
| 2595 | |
| 2596 | if (reg == thisPtrReg) |
| 2597 | { |
| 2598 | thisPtrReg = REGI_NA; |
| 2599 | } |
| 2600 | if (iptrRegs & regMask) |
| 2601 | { |
| 2602 | iptrRegs &= ~regMask; |
| 2603 | } |
| 2604 | } |
| 2605 | iptr = isThis = false; |
| 2606 | continue; |
| 2607 | } |
| 2608 | |
| 2609 | /* This is probably an argument push/pop */ |
| 2610 | |
| 2611 | argOfs = (val & 0x38) >> 3; |
| 2612 | |
| 2613 | /* 6 [110] and 7 [111] are reserved for other encodings */ |
| 2614 | if (argOfs < 6) |
| 2615 | { |
| 2616 | |
| 2617 | /* A small argument encoding */ |
| 2618 | |
| 2619 | ptrOffs += (val & 0x07); |
| 2620 | if (ptrOffs > curOffsArgs) { |
| 2621 | iptr = isThis = false; |
| 2622 | goto REPORT_REFS; |
| 2623 | } |
| 2624 | isPop = (val & 0x40); |
| 2625 | |
| 2626 | ARG: |
| 2627 | |
| 2628 | if (isPop) |
| 2629 | { |
| 2630 | if (argOfs == 0) |
| 2631 | continue; // little skip encoding |
| 2632 | |
| 2633 | /* We remove (pop) the top 'argOfs' entries */ |
| 2634 | |
| 2635 | _ASSERTE(argOfs || argOfs <= argCnt); |
| 2636 | |
| 2637 | /* adjust # of arguments */ |
| 2638 | |
| 2639 | argCnt -= argOfs; |
| 2640 | _ASSERTE(argCnt < MAX_PTRARG_OFS); |
| 2641 | |
| 2642 | // printf("[%04X] popping %u args: mask = %04X\n", ptrOffs, argOfs, (int)ptrArgs); |
| 2643 | |
| 2644 | do |
| 2645 | { |
| 2646 | _ASSERTE(!isZero(argHigh)); |
| 2647 | |
| 2648 | /* Do we have an argument bit that's on? */ |
| 2649 | |
| 2650 | if (intersect(ptrArgs, argHigh)) |
| 2651 | { |
| 2652 | /* Turn off the bit */ |
| 2653 | |
| 2654 | setDiff(ptrArgs, argHigh); |
| 2655 | setDiff(iptrArgs, argHigh); |
| 2656 | |
| 2657 | /* We've removed one more argument bit */ |
| 2658 | |
| 2659 | argOfs--; |
| 2660 | } |
| 2661 | else if (hasPartialArgInfo) |
| 2662 | argCnt--; |
| 2663 | else /* full arg info && not a ref */ |
| 2664 | argOfs--; |
| 2665 | |
| 2666 | /* Continue with the next lower bit */ |
| 2667 | |
| 2668 | argHigh >>= 1; |
| 2669 | } |
| 2670 | while (argOfs); |
| 2671 | |
| 2672 | _ASSERTE(!hasPartialArgInfo || |
| 2673 | isZero(argHigh) || |
| 2674 | (argHigh == CONSTRUCT_ptrArgTP(1, (argCnt-1)))); |
| 2675 | |
| 2676 | if (hasPartialArgInfo) |
| 2677 | { |
| 2678 | // We always leave argHigh pointing to the next ptr arg. |
| 2679 | // So, while argHigh is non-zero, and not a ptrArg, we shift right (and subtract |
| 2680 | // one arg from our argCnt) until it is a ptrArg. |
| 2681 | while (!intersect(argHigh, ptrArgs) && (!isZero(argHigh))) |
| 2682 | { |
| 2683 | argHigh >>= 1; |
| 2684 | argCnt--; |
| 2685 | } |
| 2686 | } |
| 2687 | |
| 2688 | } |
| 2689 | else |
| 2690 | { |
| 2691 | /* Add a new ptr arg entry at stack offset 'argOfs' */ |
| 2692 | |
| 2693 | if (argOfs >= MAX_PTRARG_OFS) |
| 2694 | { |
| 2695 | _ASSERTE_ALL_BUILDS("clr/src/VM/eetwain.cpp" , !"scanArgRegTableI: args pushed 'too deep'" ); |
| 2696 | } |
| 2697 | else |
| 2698 | { |
| 2699 | /* Full arg info reports all pushes, and thus |
| 2700 | argOffs has to be consistent with argCnt */ |
| 2701 | |
| 2702 | _ASSERTE(hasPartialArgInfo || argCnt == argOfs); |
| 2703 | |
| 2704 | /* store arg count */ |
| 2705 | |
| 2706 | argCnt = argOfs + 1; |
| 2707 | _ASSERTE((argCnt < MAX_PTRARG_OFS)); |
| 2708 | |
| 2709 | /* Compute the appropriate argument offset bit */ |
| 2710 | |
| 2711 | ptrArgTP argMask = CONSTRUCT_ptrArgTP(1, argOfs); |
| 2712 | |
| 2713 | // printf("push arg at offset %02u --> mask = %04X\n", argOfs, (int)argMask); |
| 2714 | |
| 2715 | /* We should never push twice at the same offset */ |
| 2716 | |
| 2717 | _ASSERTE(!intersect( ptrArgs, argMask)); |
| 2718 | _ASSERTE(!intersect(iptrArgs, argMask)); |
| 2719 | |
| 2720 | /* We should never push within the current highest offset */ |
| 2721 | |
| 2722 | // _ASSERTE(argHigh < argMask); |
| 2723 | |
| 2724 | /* This is now the highest bit we've set */ |
| 2725 | |
| 2726 | argHigh = argMask; |
| 2727 | |
| 2728 | /* Set the appropriate bit in the argument mask */ |
| 2729 | |
| 2730 | ptrArgs |= argMask; |
| 2731 | |
| 2732 | if (iptr) |
| 2733 | iptrArgs |= argMask; |
| 2734 | } |
| 2735 | |
| 2736 | iptr = isThis = false; |
| 2737 | } |
| 2738 | continue; |
| 2739 | } |
| 2740 | else if (argOfs == 6) |
| 2741 | { |
| 2742 | if (val & 0x40) { |
| 2743 | /* Bigger delta 000=8,001=16,010=24,...,111=64 */ |
| 2744 | ptrOffs += (((val & 0x07) + 1) << 3); |
| 2745 | } |
| 2746 | else { |
| 2747 | /* non-ptr arg push */ |
| 2748 | _ASSERTE(!hasPartialArgInfo); |
| 2749 | ptrOffs += (val & 0x07); |
| 2750 | if (ptrOffs > curOffsArgs) { |
| 2751 | iptr = isThis = false; |
| 2752 | goto REPORT_REFS; |
| 2753 | } |
| 2754 | argHigh = CONSTRUCT_ptrArgTP(1, argCnt); |
| 2755 | argCnt++; |
| 2756 | _ASSERTE(argCnt < MAX_PTRARG_OFS); |
| 2757 | } |
| 2758 | continue; |
| 2759 | } |
| 2760 | |
| 2761 | /* argOfs was 7 [111] which is reserved for the larger encodings */ |
| 2762 | |
| 2763 | _ASSERTE(argOfs==7); |
| 2764 | |
| 2765 | switch (val) |
| 2766 | { |
| 2767 | case 0xFF: |
| 2768 | iptr = isThis = false; |
| 2769 | goto REPORT_REFS; // the method might loop !!! |
| 2770 | |
| 2771 | case 0xB8: |
| 2772 | val = fastDecodeUnsigned(table); |
| 2773 | ptrOffs += val; |
| 2774 | continue; |
| 2775 | |
| 2776 | case 0xBC: |
| 2777 | isThis = true; |
| 2778 | break; |
| 2779 | |
| 2780 | case 0xBF: |
| 2781 | iptr = true; |
| 2782 | break; |
| 2783 | |
| 2784 | case 0xF8: |
| 2785 | case 0xFC: |
| 2786 | isPop = val & 0x04; |
| 2787 | argOfs = fastDecodeUnsigned(table); |
| 2788 | goto ARG; |
| 2789 | |
| 2790 | case 0xFD: { |
| 2791 | argOfs = fastDecodeUnsigned(table); |
| 2792 | _ASSERTE(argOfs && argOfs <= argCnt); |
| 2793 | |
| 2794 | // Kill the top "argOfs" pointers. |
| 2795 | |
| 2796 | ptrArgTP argMask; |
| 2797 | for(argMask = CONSTRUCT_ptrArgTP(1, argCnt); (argOfs != 0); argMask >>= 1) |
| 2798 | { |
| 2799 | _ASSERTE(!isZero(argMask) && !isZero(ptrArgs)); // there should be remaining pointers |
| 2800 | |
| 2801 | if (intersect(ptrArgs, argMask)) |
| 2802 | { |
| 2803 | setDiff(ptrArgs, argMask); |
| 2804 | setDiff(iptrArgs, argMask); |
| 2805 | argOfs--; |
| 2806 | } |
| 2807 | } |
| 2808 | |
| 2809 | // For partial arg info, need to find the next higest pointer for argHigh |
| 2810 | |
| 2811 | if (hasPartialArgInfo) |
| 2812 | { |
| 2813 | for(argHigh = ptrArgTP(0); !isZero(argMask); argMask >>= 1) |
| 2814 | { |
| 2815 | if (intersect(ptrArgs, argMask)) { |
| 2816 | argHigh = argMask; |
| 2817 | break; |
| 2818 | } |
| 2819 | } |
| 2820 | } |
| 2821 | } break; |
| 2822 | |
| 2823 | case 0xF9: |
| 2824 | argOfs = fastDecodeUnsigned(table); |
| 2825 | argCnt += argOfs; |
| 2826 | break; |
| 2827 | |
| 2828 | default: |
| 2829 | _ASSERTE(!"Unexpected special code %04X" ); |
| 2830 | } |
| 2831 | } |
| 2832 | |
| 2833 | /* Report all live pointer registers */ |
| 2834 | REPORT_REFS: |
| 2835 | |
| 2836 | _ASSERTE((iptrRegs & ptrRegs) == iptrRegs); // iptrRegs is a subset of ptrRegs |
| 2837 | _ASSERTE((iptrArgs & ptrArgs) == iptrArgs); // iptrArgs is a subset of ptrArgs |
| 2838 | |
| 2839 | /* Save the current live register, argument set, and argCnt */ |
| 2840 | |
| 2841 | info->regMaskResult = convertAllRegsMask(ptrRegs); |
| 2842 | info->argMaskResult = ptrArgs; |
| 2843 | info->argHnumResult = 0; |
| 2844 | info->iregMaskResult = convertAllRegsMask(iptrRegs); |
| 2845 | info->iargMaskResult = iptrArgs; |
| 2846 | |
| 2847 | info->thisPtrResult = thisPtrReg; |
| 2848 | _ASSERTE(thisPtrReg == REGI_NA || (regNumToMask(thisPtrReg) & info->regMaskResult)); |
| 2849 | |
| 2850 | if (hasPartialArgInfo) |
| 2851 | { |
| 2852 | return 0; |
| 2853 | } |
| 2854 | else |
| 2855 | { |
| 2856 | _ASSERTE(int(argCnt) < INT_MAX); // check that it did not underflow |
| 2857 | return (argCnt * sizeof(unsigned)); |
| 2858 | } |
| 2859 | } |
| 2860 | |
| 2861 | /*****************************************************************************/ |
| 2862 | |
| 2863 | unsigned GetPushedArgSize(hdrInfo * info, PTR_CBYTE table, DWORD curOffs) |
| 2864 | { |
| 2865 | SUPPORTS_DAC; |
| 2866 | |
| 2867 | unsigned sz; |
| 2868 | |
| 2869 | if (info->interruptible) |
| 2870 | { |
| 2871 | sz = scanArgRegTableI(skipToArgReg(*info, table), |
| 2872 | curOffs, |
| 2873 | curOffs, |
| 2874 | info); |
| 2875 | } |
| 2876 | else |
| 2877 | { |
| 2878 | sz = scanArgRegTable(skipToArgReg(*info, table), |
| 2879 | curOffs, |
| 2880 | info); |
| 2881 | } |
| 2882 | |
| 2883 | return sz; |
| 2884 | } |
| 2885 | |
| 2886 | /*****************************************************************************/ |
| 2887 | |
| 2888 | inline |
| 2889 | void TRASH_CALLEE_UNSAVED_REGS(PREGDISPLAY pContext) |
| 2890 | { |
| 2891 | LIMITED_METHOD_DAC_CONTRACT; |
| 2892 | |
| 2893 | #ifdef _DEBUG |
| 2894 | /* This is not completely correct as we lose the current value, but |
| 2895 | it should not really be useful to anyone. */ |
| 2896 | static DWORD s_badData = 0xDEADBEEF; |
| 2897 | pContext->SetEaxLocation(&s_badData); |
| 2898 | pContext->SetEcxLocation(&s_badData); |
| 2899 | pContext->SetEdxLocation(&s_badData); |
| 2900 | #endif //_DEBUG |
| 2901 | } |
| 2902 | |
| 2903 | /***************************************************************************** |
| 2904 | * Sizes of certain i386 instructions which are used in the prolog/epilog |
| 2905 | */ |
| 2906 | |
| 2907 | // Can we use sign-extended byte to encode the imm value, or do we need a dword |
| 2908 | #define CAN_COMPRESS(val) ((INT8)(val) == (INT32)(val)) |
| 2909 | |
| 2910 | #define SZ_ADD_REG(val) ( 2 + (CAN_COMPRESS(val) ? 1 : 4)) |
| 2911 | #define SZ_AND_REG(val) SZ_ADD_REG(val) |
| 2912 | #define SZ_POP_REG 1 |
| 2913 | #define SZ_LEA(offset) SZ_ADD_REG(offset) |
| 2914 | #define SZ_MOV_REG_REG 2 |
| 2915 | |
| 2916 | bool IsMarkerInstr(BYTE val) |
| 2917 | { |
| 2918 | SUPPORTS_DAC; |
| 2919 | #ifdef _DEBUG |
| 2920 | return (val == X86_INSTR_INT3) || // Debugger might stomp with an int3 |
| 2921 | (val == X86_INSTR_HLT && GCStress<cfg_any>::IsEnabled()); // GcCover might stomp with a Hlt |
| 2922 | #else |
| 2923 | return false; |
| 2924 | #endif |
| 2925 | } |
| 2926 | |
| 2927 | /* Check if the given instruction opcode is the one we expect. |
| 2928 | This is a "necessary" but not "sufficient" check as it ignores the check |
| 2929 | if the instruction is one of our special markers (for debugging and GcStress) */ |
| 2930 | |
| 2931 | bool CheckInstrByte(BYTE val, BYTE expectedValue) |
| 2932 | { |
| 2933 | SUPPORTS_DAC; |
| 2934 | return ((val == expectedValue) || IsMarkerInstr(val)); |
| 2935 | } |
| 2936 | |
| 2937 | /* Similar to CheckInstrByte(). Use this to check a masked opcode (ignoring |
| 2938 | optional bits in the opcode encoding). |
| 2939 | valPattern is the masked out value. |
| 2940 | expectedPattern is the mask value we expect. |
| 2941 | val is the actual instruction opcode |
| 2942 | */ |
| 2943 | bool CheckInstrBytePattern(BYTE valPattern, BYTE expectedPattern, BYTE val) |
| 2944 | { |
| 2945 | SUPPORTS_DAC; |
| 2946 | |
| 2947 | _ASSERTE((valPattern & val) == valPattern); |
| 2948 | |
| 2949 | return ((valPattern == expectedPattern) || IsMarkerInstr(val)); |
| 2950 | } |
| 2951 | |
| 2952 | /* Similar to CheckInstrByte() */ |
| 2953 | |
| 2954 | bool CheckInstrWord(WORD val, WORD expectedValue) |
| 2955 | { |
| 2956 | LIMITED_METHOD_CONTRACT; |
| 2957 | SUPPORTS_DAC; |
| 2958 | |
| 2959 | return ((val == expectedValue) || IsMarkerInstr(val & 0xFF)); |
| 2960 | } |
| 2961 | |
| 2962 | // Use this to check if the instruction at offset "walkOffset" has already |
| 2963 | // been executed |
| 2964 | // "actualHaltOffset" is the offset when the code was suspended |
| 2965 | // It is assumed that there is linear control flow from offset 0 to "actualHaltOffset". |
| 2966 | // |
| 2967 | // This has been factored out just so that the intent of the comparison |
| 2968 | // is clear (compared to the opposite intent) |
| 2969 | |
| 2970 | bool InstructionAlreadyExecuted(unsigned walkOffset, unsigned actualHaltOffset) |
| 2971 | { |
| 2972 | SUPPORTS_DAC; |
| 2973 | return (walkOffset < actualHaltOffset); |
| 2974 | } |
| 2975 | |
| 2976 | // skips past a "arith REG, IMM" |
| 2977 | inline unsigned SKIP_ARITH_REG(int val, PTR_CBYTE base, unsigned offset) |
| 2978 | { |
| 2979 | LIMITED_METHOD_DAC_CONTRACT; |
| 2980 | |
| 2981 | unsigned delta = 0; |
| 2982 | if (val != 0) |
| 2983 | { |
| 2984 | #ifdef _DEBUG |
| 2985 | // Confirm that arith instruction is at the correct place |
| 2986 | _ASSERTE(CheckInstrBytePattern(base[offset ] & 0xFD, 0x81, base[offset]) && |
| 2987 | CheckInstrBytePattern(base[offset+1] & 0xC0, 0xC0, base[offset+1])); |
| 2988 | // only use DWORD form if needed |
| 2989 | _ASSERTE(((base[offset] & 2) != 0) == CAN_COMPRESS(val) || |
| 2990 | IsMarkerInstr(base[offset])); |
| 2991 | #endif |
| 2992 | delta = 2 + (CAN_COMPRESS(val) ? 1 : 4); |
| 2993 | } |
| 2994 | return(offset + delta); |
| 2995 | } |
| 2996 | |
| 2997 | inline unsigned SKIP_PUSH_REG(PTR_CBYTE base, unsigned offset) |
| 2998 | { |
| 2999 | LIMITED_METHOD_DAC_CONTRACT; |
| 3000 | |
| 3001 | // Confirm it is a push instruction |
| 3002 | _ASSERTE(CheckInstrBytePattern(base[offset] & 0xF8, 0x50, base[offset])); |
| 3003 | return(offset + 1); |
| 3004 | } |
| 3005 | |
| 3006 | inline unsigned SKIP_POP_REG(PTR_CBYTE base, unsigned offset) |
| 3007 | { |
| 3008 | LIMITED_METHOD_DAC_CONTRACT; |
| 3009 | |
| 3010 | // Confirm it is a pop instruction |
| 3011 | _ASSERTE(CheckInstrBytePattern(base[offset] & 0xF8, 0x58, base[offset])); |
| 3012 | return(offset + 1); |
| 3013 | } |
| 3014 | |
| 3015 | inline unsigned SKIP_MOV_REG_REG(PTR_CBYTE base, unsigned offset) |
| 3016 | { |
| 3017 | LIMITED_METHOD_DAC_CONTRACT; |
| 3018 | |
| 3019 | // Confirm it is a move instruction |
| 3020 | // Note that only the first byte may have been stomped on by IsMarkerInstr() |
| 3021 | // So we can check the second byte directly |
| 3022 | _ASSERTE(CheckInstrBytePattern(base[offset] & 0xFD, 0x89, base[offset]) && |
| 3023 | (base[offset+1] & 0xC0) == 0xC0); |
| 3024 | return(offset + 2); |
| 3025 | } |
| 3026 | |
| 3027 | inline unsigned SKIP_LEA_ESP_EBP(int val, PTR_CBYTE base, unsigned offset) |
| 3028 | { |
| 3029 | LIMITED_METHOD_DAC_CONTRACT; |
| 3030 | |
| 3031 | #ifdef _DEBUG |
| 3032 | // Confirm it is the right instruction |
| 3033 | // Note that only the first byte may have been stomped on by IsMarkerInstr() |
| 3034 | // So we can check the second byte directly |
| 3035 | WORD wOpcode = *(PTR_WORD)base; |
| 3036 | _ASSERTE((CheckInstrWord(wOpcode, X86_INSTR_w_LEA_ESP_EBP_BYTE_OFFSET) && |
| 3037 | (val == *(PTR_SBYTE)(base+2)) && |
| 3038 | CAN_COMPRESS(val)) || |
| 3039 | (CheckInstrWord(wOpcode, X86_INSTR_w_LEA_ESP_EBP_DWORD_OFFSET) && |
| 3040 | (val == *(PTR_INT32)(base+2)) && |
| 3041 | !CAN_COMPRESS(val))); |
| 3042 | #endif |
| 3043 | |
| 3044 | unsigned delta = 2 + (CAN_COMPRESS(val) ? 1 : 4); |
| 3045 | return(offset + delta); |
| 3046 | } |
| 3047 | |
| 3048 | unsigned SKIP_ALLOC_FRAME(int size, PTR_CBYTE base, unsigned offset) |
| 3049 | { |
| 3050 | CONTRACTL { |
| 3051 | NOTHROW; |
| 3052 | GC_NOTRIGGER; |
| 3053 | SUPPORTS_DAC; |
| 3054 | } CONTRACTL_END; |
| 3055 | |
| 3056 | _ASSERTE(size != 0); |
| 3057 | |
| 3058 | if (size == sizeof(void*)) |
| 3059 | { |
| 3060 | // We do "push eax" instead of "sub esp,4" |
| 3061 | return (SKIP_PUSH_REG(base, offset)); |
| 3062 | } |
| 3063 | |
| 3064 | if (size >= (int)GetOsPageSize()) |
| 3065 | { |
| 3066 | if (size < int(3 * GetOsPageSize())) |
| 3067 | { |
| 3068 | // add 7 bytes for one or two TEST EAX, [ESP+GetOsPageSize()] |
| 3069 | offset += (size / GetOsPageSize()) * 7; |
| 3070 | } |
| 3071 | else |
| 3072 | { |
| 3073 | // xor eax, eax 2 |
| 3074 | // [nop] 0-3 |
| 3075 | // loop: |
| 3076 | // test [esp + eax], eax 3 |
| 3077 | // sub eax, 0x1000 5 |
| 3078 | // cmp EAX, -size 5 |
| 3079 | // jge loop 2 |
| 3080 | offset += 2; |
| 3081 | |
| 3082 | // NGEN images that support rejit may have extra nops we need to skip over |
| 3083 | while (offset < 5) |
| 3084 | { |
| 3085 | if (CheckInstrByte(base[offset], X86_INSTR_NOP)) |
| 3086 | { |
| 3087 | offset++; |
| 3088 | } |
| 3089 | else |
| 3090 | { |
| 3091 | break; |
| 3092 | } |
| 3093 | } |
| 3094 | offset += 15; |
| 3095 | } |
| 3096 | } |
| 3097 | |
| 3098 | // sub ESP, size |
| 3099 | return (SKIP_ARITH_REG(size, base, offset)); |
| 3100 | } |
| 3101 | |
| 3102 | |
| 3103 | #endif // !USE_GC_INFO_DECODER |
| 3104 | |
| 3105 | |
| 3106 | #if defined(WIN64EXCEPTIONS) && !defined(CROSSGEN_COMPILE) |
| 3107 | |
| 3108 | void EECodeManager::EnsureCallerContextIsValid( PREGDISPLAY pRD, StackwalkCacheEntry* pCacheEntry, EECodeInfo * pCodeInfo /*= NULL*/ ) |
| 3109 | { |
| 3110 | CONTRACTL |
| 3111 | { |
| 3112 | NOTHROW; |
| 3113 | GC_NOTRIGGER; |
| 3114 | SUPPORTS_DAC; |
| 3115 | } |
| 3116 | CONTRACTL_END; |
| 3117 | |
| 3118 | if( !pRD->IsCallerContextValid ) |
| 3119 | { |
| 3120 | #if !defined(DACCESS_COMPILE) && defined(HAS_QUICKUNWIND) |
| 3121 | if (pCacheEntry != NULL) |
| 3122 | { |
| 3123 | // lightened schema: take stack unwind info from stackwalk cache |
| 3124 | QuickUnwindStackFrame(pRD, pCacheEntry, EnsureCallerStackFrameIsValid); |
| 3125 | } |
| 3126 | else |
| 3127 | #endif // !DACCESS_COMPILE |
| 3128 | { |
| 3129 | // We need to make a copy here (instead of switching the pointers), in order to preserve the current context |
| 3130 | *(pRD->pCallerContext) = *(pRD->pCurrentContext); |
| 3131 | *(pRD->pCallerContextPointers) = *(pRD->pCurrentContextPointers); |
| 3132 | |
| 3133 | Thread::VirtualUnwindCallFrame(pRD->pCallerContext, pRD->pCallerContextPointers, pCodeInfo); |
| 3134 | } |
| 3135 | |
| 3136 | pRD->IsCallerContextValid = TRUE; |
| 3137 | } |
| 3138 | |
| 3139 | _ASSERTE( pRD->IsCallerContextValid ); |
| 3140 | } |
| 3141 | |
| 3142 | size_t EECodeManager::GetCallerSp( PREGDISPLAY pRD ) |
| 3143 | { |
| 3144 | CONTRACTL { |
| 3145 | NOTHROW; |
| 3146 | GC_NOTRIGGER; |
| 3147 | SUPPORTS_DAC; |
| 3148 | } CONTRACTL_END; |
| 3149 | |
| 3150 | // Don't add usage of this field. This is only temporary. |
| 3151 | // See ExceptionTracker::InitializeCrawlFrame() for more information. |
| 3152 | if (!pRD->IsCallerSPValid) |
| 3153 | { |
| 3154 | EnsureCallerContextIsValid(pRD, NULL); |
| 3155 | } |
| 3156 | |
| 3157 | return GetSP(pRD->pCallerContext); |
| 3158 | } |
| 3159 | |
| 3160 | #endif // WIN64EXCEPTIONS && !CROSSGEN_COMPILE |
| 3161 | |
| 3162 | #ifdef HAS_QUICKUNWIND |
| 3163 | /* |
| 3164 | * Light unwind the current stack frame, using provided cache entry. |
| 3165 | * pPC, Esp and pEbp of pContext are updated. |
| 3166 | */ |
| 3167 | |
| 3168 | // static |
| 3169 | void EECodeManager::QuickUnwindStackFrame(PREGDISPLAY pRD, StackwalkCacheEntry *pCacheEntry, QuickUnwindFlag flag) |
| 3170 | { |
| 3171 | CONTRACTL { |
| 3172 | NOTHROW; |
| 3173 | GC_NOTRIGGER; |
| 3174 | } CONTRACTL_END; |
| 3175 | |
| 3176 | _ASSERTE(pCacheEntry); |
| 3177 | _ASSERTE(GetControlPC(pRD) == (PCODE)(pCacheEntry->IP)); |
| 3178 | |
| 3179 | #if defined(_TARGET_X86_) |
| 3180 | _ASSERTE(flag == UnwindCurrentStackFrame); |
| 3181 | |
| 3182 | _ASSERTE(!pCacheEntry->fUseEbp || pCacheEntry->fUseEbpAsFrameReg); |
| 3183 | |
| 3184 | if (pCacheEntry->fUseEbpAsFrameReg) |
| 3185 | { |
| 3186 | _ASSERTE(pCacheEntry->fUseEbp); |
| 3187 | TADDR curEBP = (TADDR)*pRD->GetEbpLocation(); |
| 3188 | |
| 3189 | // EBP frame, update ESP through EBP, since ESPOffset may vary |
| 3190 | pRD->SetEbpLocation(PTR_DWORD(curEBP)); |
| 3191 | pRD->SP = curEBP + sizeof(void*); |
| 3192 | } |
| 3193 | else |
| 3194 | { |
| 3195 | _ASSERTE(!pCacheEntry->fUseEbp); |
| 3196 | // ESP frame, update up to retAddr using ESPOffset |
| 3197 | pRD->SP += pCacheEntry->ESPOffset; |
| 3198 | } |
| 3199 | pRD->PCTAddr = (TADDR)pRD->SP; |
| 3200 | pRD->ControlPC = *PTR_PCODE(pRD->PCTAddr); |
| 3201 | pRD->SP += sizeof(void*) + pCacheEntry->argSize; |
| 3202 | |
| 3203 | #elif defined(_TARGET_AMD64_) |
| 3204 | if (pRD->IsCallerContextValid) |
| 3205 | { |
| 3206 | pRD->pCurrentContext->Rbp = pRD->pCallerContext->Rbp; |
| 3207 | pRD->pCurrentContext->Rsp = pRD->pCallerContext->Rsp; |
| 3208 | pRD->pCurrentContext->Rip = pRD->pCallerContext->Rip; |
| 3209 | } |
| 3210 | else |
| 3211 | { |
| 3212 | PCONTEXT pSourceCtx = NULL; |
| 3213 | PCONTEXT pTargetCtx = NULL; |
| 3214 | if (flag == UnwindCurrentStackFrame) |
| 3215 | { |
| 3216 | pTargetCtx = pRD->pCurrentContext; |
| 3217 | pSourceCtx = pRD->pCurrentContext; |
| 3218 | } |
| 3219 | else |
| 3220 | { |
| 3221 | pTargetCtx = pRD->pCallerContext; |
| 3222 | pSourceCtx = pRD->pCurrentContext; |
| 3223 | } |
| 3224 | |
| 3225 | // Unwind RBP. The offset is relative to the current sp. |
| 3226 | if (pCacheEntry->RBPOffset == 0) |
| 3227 | { |
| 3228 | pTargetCtx->Rbp = pSourceCtx->Rbp; |
| 3229 | } |
| 3230 | else |
| 3231 | { |
| 3232 | pTargetCtx->Rbp = *(UINT_PTR*)(pSourceCtx->Rsp + pCacheEntry->RBPOffset); |
| 3233 | } |
| 3234 | |
| 3235 | // Adjust the sp. From this pointer onwards pCurrentContext->Rsp is the caller sp. |
| 3236 | pTargetCtx->Rsp = pSourceCtx->Rsp + pCacheEntry->RSPOffset; |
| 3237 | |
| 3238 | // Retrieve the return address. |
| 3239 | pTargetCtx->Rip = *(UINT_PTR*)((pTargetCtx->Rsp) - sizeof(UINT_PTR)); |
| 3240 | } |
| 3241 | |
| 3242 | if (flag == UnwindCurrentStackFrame) |
| 3243 | { |
| 3244 | SyncRegDisplayToCurrentContext(pRD); |
| 3245 | pRD->IsCallerContextValid = FALSE; |
| 3246 | pRD->IsCallerSPValid = FALSE; // Don't add usage of this field. This is only temporary. |
| 3247 | } |
| 3248 | |
| 3249 | #else // !_TARGET_X86_ && !_TARGET_AMD64_ |
| 3250 | PORTABILITY_ASSERT("EECodeManager::QuickUnwindStackFrame is not implemented on this platform." ); |
| 3251 | #endif // !_TARGET_X86_ && !_TARGET_AMD64_ |
| 3252 | } |
| 3253 | #endif // HAS_QUICKUNWIND |
| 3254 | |
| 3255 | /*****************************************************************************/ |
| 3256 | #ifdef _TARGET_X86_ // UnwindStackFrame |
| 3257 | /*****************************************************************************/ |
| 3258 | |
| 3259 | const RegMask CALLEE_SAVED_REGISTERS_MASK[] = |
| 3260 | { |
| 3261 | RM_EDI, // first register to be pushed |
| 3262 | RM_ESI, |
| 3263 | RM_EBX, |
| 3264 | RM_EBP // last register to be pushed |
| 3265 | }; |
| 3266 | |
| 3267 | static void SetLocation(PREGDISPLAY pRD, int ind, PDWORD loc) |
| 3268 | { |
| 3269 | #ifdef WIN64EXCEPTIONS |
| 3270 | static const SIZE_T OFFSET_OF_CALLEE_SAVED_REGISTERS[] = |
| 3271 | { |
| 3272 | offsetof(T_KNONVOLATILE_CONTEXT_POINTERS, Edi), // first register to be pushed |
| 3273 | offsetof(T_KNONVOLATILE_CONTEXT_POINTERS, Esi), |
| 3274 | offsetof(T_KNONVOLATILE_CONTEXT_POINTERS, Ebx), |
| 3275 | offsetof(T_KNONVOLATILE_CONTEXT_POINTERS, Ebp), // last register to be pushed |
| 3276 | }; |
| 3277 | |
| 3278 | SIZE_T offsetOfRegPtr = OFFSET_OF_CALLEE_SAVED_REGISTERS[ind]; |
| 3279 | *(LPVOID*)(PBYTE(pRD->pCurrentContextPointers) + offsetOfRegPtr) = loc; |
| 3280 | #else |
| 3281 | static const SIZE_T OFFSET_OF_CALLEE_SAVED_REGISTERS[] = |
| 3282 | { |
| 3283 | offsetof(REGDISPLAY, pEdi), // first register to be pushed |
| 3284 | offsetof(REGDISPLAY, pEsi), |
| 3285 | offsetof(REGDISPLAY, pEbx), |
| 3286 | offsetof(REGDISPLAY, pEbp), // last register to be pushed |
| 3287 | }; |
| 3288 | |
| 3289 | SIZE_T offsetOfRegPtr = OFFSET_OF_CALLEE_SAVED_REGISTERS[ind]; |
| 3290 | *(LPVOID*)(PBYTE(pRD) + offsetOfRegPtr) = loc; |
| 3291 | #endif |
| 3292 | } |
| 3293 | |
| 3294 | /*****************************************************************************/ |
| 3295 | |
| 3296 | void UnwindEspFrameEpilog( |
| 3297 | PREGDISPLAY pContext, |
| 3298 | hdrInfo * info, |
| 3299 | PTR_CBYTE epilogBase, |
| 3300 | unsigned flags) |
| 3301 | { |
| 3302 | LIMITED_METHOD_CONTRACT; |
| 3303 | SUPPORTS_DAC; |
| 3304 | |
| 3305 | _ASSERTE(info->epilogOffs != hdrInfo::NOT_IN_EPILOG); |
| 3306 | _ASSERTE(!info->ebpFrame && !info->doubleAlign); |
| 3307 | _ASSERTE(info->epilogOffs > 0); |
| 3308 | |
| 3309 | int offset = 0; |
| 3310 | unsigned ESP = pContext->SP; |
| 3311 | |
| 3312 | if (info->rawStkSize) |
| 3313 | { |
| 3314 | if (!InstructionAlreadyExecuted(offset, info->epilogOffs)) |
| 3315 | { |
| 3316 | /* We have NOT executed the "ADD ESP, FrameSize", |
| 3317 | so manually adjust stack pointer */ |
| 3318 | ESP += info->rawStkSize; |
| 3319 | } |
| 3320 | |
| 3321 | // We have already popped off the frame (excluding the callee-saved registers) |
| 3322 | |
| 3323 | if (epilogBase[0] == X86_INSTR_POP_ECX) |
| 3324 | { |
| 3325 | // We may use "POP ecx" for doing "ADD ESP, 4", |
| 3326 | // or we may not (in the case of JMP epilogs) |
| 3327 | _ASSERTE(info->rawStkSize == sizeof(void*)); |
| 3328 | offset = SKIP_POP_REG(epilogBase, offset); |
| 3329 | } |
| 3330 | else |
| 3331 | { |
| 3332 | // "add esp, rawStkSize" |
| 3333 | offset = SKIP_ARITH_REG(info->rawStkSize, epilogBase, offset); |
| 3334 | } |
| 3335 | } |
| 3336 | |
| 3337 | /* Remaining callee-saved regs are at ESP. Need to update |
| 3338 | regsMask as well to exclude registers which have already been popped. */ |
| 3339 | |
| 3340 | const RegMask regsMask = info->savedRegMask; |
| 3341 | |
| 3342 | /* Increment "offset" in steps to see which callee-saved |
| 3343 | registers have already been popped */ |
| 3344 | |
| 3345 | for (unsigned i = NumItems(CALLEE_SAVED_REGISTERS_MASK); i > 0; i--) |
| 3346 | { |
| 3347 | RegMask regMask = CALLEE_SAVED_REGISTERS_MASK[i - 1]; |
| 3348 | |
| 3349 | if (!(regMask & regsMask)) |
| 3350 | continue; |
| 3351 | |
| 3352 | if (!InstructionAlreadyExecuted(offset, info->epilogOffs)) |
| 3353 | { |
| 3354 | /* We have NOT yet popped off the register. |
| 3355 | Get the value from the stack if needed */ |
| 3356 | if ((flags & UpdateAllRegs) || (regMask == RM_EBP)) |
| 3357 | { |
| 3358 | SetLocation(pContext, i - 1, PTR_DWORD((TADDR)ESP)); |
| 3359 | } |
| 3360 | |
| 3361 | /* Adjust ESP */ |
| 3362 | ESP += sizeof(void*); |
| 3363 | } |
| 3364 | |
| 3365 | offset = SKIP_POP_REG(epilogBase, offset); |
| 3366 | } |
| 3367 | |
| 3368 | //CEE_JMP generates an epilog similar to a normal CEE_RET epilog except for the last instruction |
| 3369 | _ASSERTE(CheckInstrBytePattern(epilogBase[offset] & X86_INSTR_RET, X86_INSTR_RET, epilogBase[offset]) //ret |
| 3370 | || CheckInstrBytePattern(epilogBase[offset], X86_INSTR_JMP_NEAR_REL32, epilogBase[offset]) //jmp ret32 |
| 3371 | || CheckInstrWord(*PTR_WORD(epilogBase + offset), X86_INSTR_w_JMP_FAR_IND_IMM)); //jmp [addr32] |
| 3372 | |
| 3373 | /* Finally we can set pPC */ |
| 3374 | pContext->PCTAddr = (TADDR)ESP; |
| 3375 | pContext->ControlPC = *PTR_PCODE(pContext->PCTAddr); |
| 3376 | |
| 3377 | pContext->SP = ESP; |
| 3378 | } |
| 3379 | |
| 3380 | /*****************************************************************************/ |
| 3381 | |
| 3382 | void UnwindEbpDoubleAlignFrameEpilog( |
| 3383 | PREGDISPLAY pContext, |
| 3384 | hdrInfo * info, |
| 3385 | PTR_CBYTE epilogBase, |
| 3386 | unsigned flags) |
| 3387 | { |
| 3388 | LIMITED_METHOD_CONTRACT; |
| 3389 | SUPPORTS_DAC; |
| 3390 | |
| 3391 | _ASSERTE(info->epilogOffs != hdrInfo::NOT_IN_EPILOG); |
| 3392 | _ASSERTE(info->ebpFrame || info->doubleAlign); |
| 3393 | |
| 3394 | _ASSERTE(info->argSize < 0x10000); // "ret" only has a 2 byte operand |
| 3395 | |
| 3396 | /* See how many instructions we have executed in the |
| 3397 | epilog to determine which callee-saved registers |
| 3398 | have already been popped */ |
| 3399 | int offset = 0; |
| 3400 | |
| 3401 | unsigned ESP = pContext->SP; |
| 3402 | |
| 3403 | bool needMovEspEbp = false; |
| 3404 | |
| 3405 | if (info->doubleAlign) |
| 3406 | { |
| 3407 | // add esp, rawStkSize |
| 3408 | |
| 3409 | if (!InstructionAlreadyExecuted(offset, info->epilogOffs)) |
| 3410 | ESP += info->rawStkSize; |
| 3411 | _ASSERTE(info->rawStkSize != 0); |
| 3412 | offset = SKIP_ARITH_REG(info->rawStkSize, epilogBase, offset); |
| 3413 | |
| 3414 | // We also need "mov esp, ebp" after popping the callee-saved registers |
| 3415 | needMovEspEbp = true; |
| 3416 | } |
| 3417 | else |
| 3418 | { |
| 3419 | bool needLea = false; |
| 3420 | |
| 3421 | if (info->localloc) |
| 3422 | { |
| 3423 | // ESP may be variable if a localloc was actually executed. We will reset it. |
| 3424 | // lea esp, [ebp-calleeSavedRegs] |
| 3425 | |
| 3426 | needLea = true; |
| 3427 | } |
| 3428 | else if (info->savedRegsCountExclFP == 0) |
| 3429 | { |
| 3430 | // We will just generate "mov esp, ebp" and be done with it. |
| 3431 | |
| 3432 | if (info->rawStkSize != 0) |
| 3433 | { |
| 3434 | needMovEspEbp = true; |
| 3435 | } |
| 3436 | } |
| 3437 | else if (info->rawStkSize == 0) |
| 3438 | { |
| 3439 | // do nothing before popping the callee-saved registers |
| 3440 | } |
| 3441 | else if (info->rawStkSize == sizeof(void*)) |
| 3442 | { |
| 3443 | // "pop ecx" will make ESP point to the callee-saved registers |
| 3444 | if (!InstructionAlreadyExecuted(offset, info->epilogOffs)) |
| 3445 | ESP += sizeof(void*); |
| 3446 | offset = SKIP_POP_REG(epilogBase, offset); |
| 3447 | } |
| 3448 | else |
| 3449 | { |
| 3450 | // We need to make ESP point to the callee-saved registers |
| 3451 | // lea esp, [ebp-calleeSavedRegs] |
| 3452 | |
| 3453 | needLea = true; |
| 3454 | } |
| 3455 | |
| 3456 | if (needLea) |
| 3457 | { |
| 3458 | // lea esp, [ebp-calleeSavedRegs] |
| 3459 | |
| 3460 | unsigned calleeSavedRegsSize = info->savedRegsCountExclFP * sizeof(void*); |
| 3461 | |
| 3462 | if (!InstructionAlreadyExecuted(offset, info->epilogOffs)) |
| 3463 | ESP = *pContext->GetEbpLocation() - calleeSavedRegsSize; |
| 3464 | |
| 3465 | offset = SKIP_LEA_ESP_EBP(-int(calleeSavedRegsSize), epilogBase, offset); |
| 3466 | } |
| 3467 | } |
| 3468 | |
| 3469 | for (unsigned i = NumItems(CALLEE_SAVED_REGISTERS_MASK) - 1; i > 0; i--) |
| 3470 | { |
| 3471 | RegMask regMask = CALLEE_SAVED_REGISTERS_MASK[i - 1]; |
| 3472 | _ASSERTE(regMask != RM_EBP); |
| 3473 | |
| 3474 | if ((info->savedRegMask & regMask) == 0) |
| 3475 | continue; |
| 3476 | |
| 3477 | if (!InstructionAlreadyExecuted(offset, info->epilogOffs)) |
| 3478 | { |
| 3479 | if (flags & UpdateAllRegs) |
| 3480 | { |
| 3481 | SetLocation(pContext, i - 1, PTR_DWORD((TADDR)ESP)); |
| 3482 | } |
| 3483 | ESP += sizeof(void*); |
| 3484 | } |
| 3485 | |
| 3486 | offset = SKIP_POP_REG(epilogBase, offset); |
| 3487 | } |
| 3488 | |
| 3489 | if (needMovEspEbp) |
| 3490 | { |
| 3491 | if (!InstructionAlreadyExecuted(offset, info->epilogOffs)) |
| 3492 | ESP = *pContext->GetEbpLocation(); |
| 3493 | |
| 3494 | offset = SKIP_MOV_REG_REG(epilogBase, offset); |
| 3495 | } |
| 3496 | |
| 3497 | // Have we executed the pop EBP? |
| 3498 | if (!InstructionAlreadyExecuted(offset, info->epilogOffs)) |
| 3499 | { |
| 3500 | pContext->SetEbpLocation(PTR_DWORD(TADDR(ESP))); |
| 3501 | ESP += sizeof(void*); |
| 3502 | } |
| 3503 | offset = SKIP_POP_REG(epilogBase, offset); |
| 3504 | |
| 3505 | pContext->PCTAddr = (TADDR)ESP; |
| 3506 | pContext->ControlPC = *PTR_PCODE(pContext->PCTAddr); |
| 3507 | |
| 3508 | pContext->SP = ESP; |
| 3509 | } |
| 3510 | |
| 3511 | inline SIZE_T GetStackParameterSize(hdrInfo * info) |
| 3512 | { |
| 3513 | SUPPORTS_DAC; |
| 3514 | return (info->varargs ? 0 : info->argSize); // Note varargs is caller-popped |
| 3515 | } |
| 3516 | |
| 3517 | //**************************************************************************** |
| 3518 | // This is the value ESP is incremented by on doing a "return" |
| 3519 | |
| 3520 | inline SIZE_T ESPIncrOnReturn(hdrInfo * info) |
| 3521 | { |
| 3522 | SUPPORTS_DAC; |
| 3523 | return sizeof(void *) + // pop off the return address |
| 3524 | GetStackParameterSize(info); |
| 3525 | } |
| 3526 | |
| 3527 | /*****************************************************************************/ |
| 3528 | |
| 3529 | void UnwindEpilog( |
| 3530 | PREGDISPLAY pContext, |
| 3531 | hdrInfo * info, |
| 3532 | PTR_CBYTE epilogBase, |
| 3533 | unsigned flags) |
| 3534 | { |
| 3535 | LIMITED_METHOD_CONTRACT; |
| 3536 | SUPPORTS_DAC; |
| 3537 | _ASSERTE(info->epilogOffs != hdrInfo::NOT_IN_EPILOG); |
| 3538 | // _ASSERTE(flags & ActiveStackFrame); // <TODO> Wont work for thread death</TODO> |
| 3539 | _ASSERTE(info->epilogOffs > 0); |
| 3540 | |
| 3541 | if (info->ebpFrame || info->doubleAlign) |
| 3542 | { |
| 3543 | UnwindEbpDoubleAlignFrameEpilog(pContext, info, epilogBase, flags); |
| 3544 | } |
| 3545 | else |
| 3546 | { |
| 3547 | UnwindEspFrameEpilog(pContext, info, epilogBase, flags); |
| 3548 | } |
| 3549 | |
| 3550 | #ifdef _DEBUG |
| 3551 | if (flags & UpdateAllRegs) |
| 3552 | TRASH_CALLEE_UNSAVED_REGS(pContext); |
| 3553 | #endif |
| 3554 | |
| 3555 | /* Now adjust stack pointer */ |
| 3556 | |
| 3557 | pContext->SP += ESPIncrOnReturn(info); |
| 3558 | } |
| 3559 | |
| 3560 | /*****************************************************************************/ |
| 3561 | |
| 3562 | void UnwindEspFrameProlog( |
| 3563 | PREGDISPLAY pContext, |
| 3564 | hdrInfo * info, |
| 3565 | PTR_CBYTE methodStart, |
| 3566 | unsigned flags) |
| 3567 | { |
| 3568 | LIMITED_METHOD_CONTRACT; |
| 3569 | SUPPORTS_DAC; |
| 3570 | |
| 3571 | /* we are in the middle of the prolog */ |
| 3572 | _ASSERTE(info->prologOffs != hdrInfo::NOT_IN_PROLOG); |
| 3573 | _ASSERTE(!info->ebpFrame && !info->doubleAlign); |
| 3574 | |
| 3575 | unsigned offset = 0; |
| 3576 | |
| 3577 | #ifdef _DEBUG |
| 3578 | // If the first two instructions are 'nop, int3', then we will |
| 3579 | // assume that is from a JitHalt operation and skip past it |
| 3580 | if (methodStart[0] == X86_INSTR_NOP && methodStart[1] == X86_INSTR_INT3) |
| 3581 | { |
| 3582 | offset += 2; |
| 3583 | } |
| 3584 | #endif |
| 3585 | |
| 3586 | const DWORD curOffs = info->prologOffs; |
| 3587 | unsigned ESP = pContext->SP; |
| 3588 | |
| 3589 | // Find out how many callee-saved regs have already been pushed |
| 3590 | |
| 3591 | unsigned regsMask = RM_NONE; |
| 3592 | PTR_DWORD savedRegPtr = PTR_DWORD((TADDR)ESP); |
| 3593 | |
| 3594 | for (unsigned i = 0; i < NumItems(CALLEE_SAVED_REGISTERS_MASK); i++) |
| 3595 | { |
| 3596 | RegMask regMask = CALLEE_SAVED_REGISTERS_MASK[i]; |
| 3597 | |
| 3598 | if (!(info->savedRegMask & regMask)) |
| 3599 | continue; |
| 3600 | |
| 3601 | if (InstructionAlreadyExecuted(offset, curOffs)) |
| 3602 | { |
| 3603 | ESP += sizeof(void*); |
| 3604 | regsMask |= regMask; |
| 3605 | } |
| 3606 | |
| 3607 | offset = SKIP_PUSH_REG(methodStart, offset); |
| 3608 | } |
| 3609 | |
| 3610 | if (info->rawStkSize) |
| 3611 | { |
| 3612 | offset = SKIP_ALLOC_FRAME(info->rawStkSize, methodStart, offset); |
| 3613 | |
| 3614 | // Note that this assumes that only the last instruction in SKIP_ALLOC_FRAME |
| 3615 | // actually updates ESP |
| 3616 | if (InstructionAlreadyExecuted(offset, curOffs + 1)) |
| 3617 | { |
| 3618 | savedRegPtr += (info->rawStkSize / sizeof(DWORD)); |
| 3619 | ESP += info->rawStkSize; |
| 3620 | } |
| 3621 | } |
| 3622 | |
| 3623 | // |
| 3624 | // Stack probe checks here |
| 3625 | // |
| 3626 | |
| 3627 | // Poison the value, we don't set it properly at the end of the prolog |
| 3628 | INDEBUG(offset = 0xCCCCCCCC); |
| 3629 | |
| 3630 | |
| 3631 | // Always restore EBP |
| 3632 | if (regsMask & RM_EBP) |
| 3633 | pContext->SetEbpLocation(savedRegPtr++); |
| 3634 | |
| 3635 | if (flags & UpdateAllRegs) |
| 3636 | { |
| 3637 | if (regsMask & RM_EBX) |
| 3638 | pContext->SetEbxLocation(savedRegPtr++); |
| 3639 | if (regsMask & RM_ESI) |
| 3640 | pContext->SetEsiLocation(savedRegPtr++); |
| 3641 | if (regsMask & RM_EDI) |
| 3642 | pContext->SetEdiLocation(savedRegPtr++); |
| 3643 | |
| 3644 | TRASH_CALLEE_UNSAVED_REGS(pContext); |
| 3645 | } |
| 3646 | |
| 3647 | #if 0 |
| 3648 | // NOTE: |
| 3649 | // THIS IS ONLY TRUE IF PROLOGSIZE DOES NOT INCLUDE REG-VAR INITIALIZATION !!!! |
| 3650 | // |
| 3651 | /* there is (potentially) only one additional |
| 3652 | instruction in the prolog, (push ebp) |
| 3653 | but if we would have been passed that instruction, |
| 3654 | info->prologOffs would be hdrInfo::NOT_IN_PROLOG! |
| 3655 | */ |
| 3656 | _ASSERTE(offset == info->prologOffs); |
| 3657 | #endif |
| 3658 | |
| 3659 | pContext->SP = ESP; |
| 3660 | } |
| 3661 | |
| 3662 | /*****************************************************************************/ |
| 3663 | |
| 3664 | void UnwindEspFrame( |
| 3665 | PREGDISPLAY pContext, |
| 3666 | hdrInfo * info, |
| 3667 | PTR_CBYTE table, |
| 3668 | PTR_CBYTE methodStart, |
| 3669 | DWORD curOffs, |
| 3670 | unsigned flags) |
| 3671 | { |
| 3672 | LIMITED_METHOD_CONTRACT; |
| 3673 | SUPPORTS_DAC; |
| 3674 | |
| 3675 | _ASSERTE(!info->ebpFrame && !info->doubleAlign); |
| 3676 | _ASSERTE(info->epilogOffs == hdrInfo::NOT_IN_EPILOG); |
| 3677 | |
| 3678 | unsigned ESP = pContext->SP; |
| 3679 | |
| 3680 | |
| 3681 | if (info->prologOffs != hdrInfo::NOT_IN_PROLOG) |
| 3682 | { |
| 3683 | if (info->prologOffs != 0) // Do nothing for the very start of the method |
| 3684 | { |
| 3685 | UnwindEspFrameProlog(pContext, info, methodStart, flags); |
| 3686 | ESP = pContext->SP; |
| 3687 | } |
| 3688 | } |
| 3689 | else |
| 3690 | { |
| 3691 | /* we are past the prolog, ESP has been set above */ |
| 3692 | |
| 3693 | // Are there any arguments pushed on the stack? |
| 3694 | |
| 3695 | ESP += GetPushedArgSize(info, table, curOffs); |
| 3696 | |
| 3697 | ESP += info->rawStkSize; |
| 3698 | |
| 3699 | const RegMask regsMask = info->savedRegMask; |
| 3700 | |
| 3701 | for (unsigned i = NumItems(CALLEE_SAVED_REGISTERS_MASK); i > 0; i--) |
| 3702 | { |
| 3703 | RegMask regMask = CALLEE_SAVED_REGISTERS_MASK[i - 1]; |
| 3704 | |
| 3705 | if ((regMask & regsMask) == 0) |
| 3706 | continue; |
| 3707 | |
| 3708 | SetLocation(pContext, i - 1, PTR_DWORD((TADDR)ESP)); |
| 3709 | |
| 3710 | ESP += sizeof(unsigned); |
| 3711 | } |
| 3712 | } |
| 3713 | |
| 3714 | /* we can now set the (address of the) return address */ |
| 3715 | |
| 3716 | pContext->PCTAddr = (TADDR)ESP; |
| 3717 | pContext->ControlPC = *PTR_PCODE(pContext->PCTAddr); |
| 3718 | |
| 3719 | /* Now adjust stack pointer */ |
| 3720 | |
| 3721 | pContext->SP = ESP + ESPIncrOnReturn(info); |
| 3722 | } |
| 3723 | |
| 3724 | |
| 3725 | /*****************************************************************************/ |
| 3726 | |
| 3727 | void UnwindEbpDoubleAlignFrameProlog( |
| 3728 | PREGDISPLAY pContext, |
| 3729 | hdrInfo * info, |
| 3730 | PTR_CBYTE methodStart, |
| 3731 | unsigned flags) |
| 3732 | { |
| 3733 | LIMITED_METHOD_DAC_CONTRACT; |
| 3734 | |
| 3735 | _ASSERTE(info->prologOffs != hdrInfo::NOT_IN_PROLOG); |
| 3736 | _ASSERTE(info->ebpFrame || info->doubleAlign); |
| 3737 | |
| 3738 | DWORD offset = 0; |
| 3739 | |
| 3740 | #ifdef _DEBUG |
| 3741 | // If the first two instructions are 'nop, int3', then we will |
| 3742 | // assume that is from a JitHalt operation and skip past it |
| 3743 | if (methodStart[0] == X86_INSTR_NOP && methodStart[1] == X86_INSTR_INT3) |
| 3744 | { |
| 3745 | offset += 2; |
| 3746 | } |
| 3747 | #endif |
| 3748 | |
| 3749 | /* Check for the case where EBP has not been updated yet. */ |
| 3750 | |
| 3751 | const DWORD curOffs = info->prologOffs; |
| 3752 | |
| 3753 | // If we have still not excecuted "push ebp; mov ebp, esp", then we need to |
| 3754 | // report the frame relative to ESP |
| 3755 | |
| 3756 | if (!InstructionAlreadyExecuted(offset + 1, curOffs)) |
| 3757 | { |
| 3758 | _ASSERTE(CheckInstrByte(methodStart [offset], X86_INSTR_PUSH_EBP) || |
| 3759 | CheckInstrWord(*PTR_WORD(methodStart + offset), X86_INSTR_W_MOV_EBP_ESP) || |
| 3760 | CheckInstrByte(methodStart [offset], X86_INSTR_JMP_NEAR_REL32)); // a rejit jmp-stamp |
| 3761 | |
| 3762 | /* If we're past the "push ebp", adjust ESP to pop EBP off */ |
| 3763 | |
| 3764 | if (curOffs == (offset + 1)) |
| 3765 | pContext->SP += sizeof(TADDR); |
| 3766 | |
| 3767 | /* Stack pointer points to return address */ |
| 3768 | |
| 3769 | pContext->PCTAddr = (TADDR)pContext->SP; |
| 3770 | pContext->ControlPC = *PTR_PCODE(pContext->PCTAddr); |
| 3771 | |
| 3772 | /* EBP and callee-saved registers still have the correct value */ |
| 3773 | |
| 3774 | return; |
| 3775 | } |
| 3776 | |
| 3777 | // We are atleast after the "push ebp; mov ebp, esp" |
| 3778 | |
| 3779 | offset = SKIP_MOV_REG_REG(methodStart, |
| 3780 | SKIP_PUSH_REG(methodStart, offset)); |
| 3781 | |
| 3782 | /* At this point, EBP has been set up. The caller's ESP and the return value |
| 3783 | can be determined using EBP. Since we are still in the prolog, |
| 3784 | we need to know our exact location to determine the callee-saved registers */ |
| 3785 | |
| 3786 | const unsigned curEBP = *pContext->GetEbpLocation(); |
| 3787 | |
| 3788 | if (flags & UpdateAllRegs) |
| 3789 | { |
| 3790 | PTR_DWORD pSavedRegs = PTR_DWORD((TADDR)curEBP); |
| 3791 | |
| 3792 | /* make sure that we align ESP just like the method's prolog did */ |
| 3793 | if (info->doubleAlign) |
| 3794 | { |
| 3795 | // "and esp,-8" |
| 3796 | offset = SKIP_ARITH_REG(-8, methodStart, offset); |
| 3797 | if (curEBP & 0x04) |
| 3798 | { |
| 3799 | pSavedRegs--; |
| 3800 | #ifdef _DEBUG |
| 3801 | if (dspPtr) printf("EnumRef: dblalign ebp: %08X\n" , curEBP); |
| 3802 | #endif |
| 3803 | } |
| 3804 | } |
| 3805 | |
| 3806 | /* Increment "offset" in steps to see which callee-saved |
| 3807 | registers have been pushed already */ |
| 3808 | |
| 3809 | for (unsigned i = 0; i < NumItems(CALLEE_SAVED_REGISTERS_MASK) - 1; i++) |
| 3810 | { |
| 3811 | RegMask regMask = CALLEE_SAVED_REGISTERS_MASK[i]; |
| 3812 | _ASSERTE(regMask != RM_EBP); |
| 3813 | |
| 3814 | if ((info->savedRegMask & regMask) == 0) |
| 3815 | continue; |
| 3816 | |
| 3817 | if (InstructionAlreadyExecuted(offset, curOffs)) |
| 3818 | { |
| 3819 | SetLocation(pContext, i, PTR_DWORD(--pSavedRegs)); |
| 3820 | } |
| 3821 | |
| 3822 | // "push reg" |
| 3823 | offset = SKIP_PUSH_REG(methodStart, offset) ; |
| 3824 | } |
| 3825 | |
| 3826 | TRASH_CALLEE_UNSAVED_REGS(pContext); |
| 3827 | } |
| 3828 | |
| 3829 | /* The caller's saved EBP is pointed to by our EBP */ |
| 3830 | |
| 3831 | pContext->SetEbpLocation(PTR_DWORD((TADDR)curEBP)); |
| 3832 | pContext->SP = DWORD((TADDR)(curEBP + sizeof(void *))); |
| 3833 | |
| 3834 | /* Stack pointer points to return address */ |
| 3835 | |
| 3836 | pContext->PCTAddr = (TADDR)pContext->SP; |
| 3837 | pContext->ControlPC = *PTR_PCODE(pContext->PCTAddr); |
| 3838 | } |
| 3839 | |
| 3840 | /*****************************************************************************/ |
| 3841 | |
| 3842 | bool UnwindEbpDoubleAlignFrame( |
| 3843 | PREGDISPLAY pContext, |
| 3844 | EECodeInfo *pCodeInfo, |
| 3845 | hdrInfo *info, |
| 3846 | PTR_CBYTE table, |
| 3847 | PTR_CBYTE methodStart, |
| 3848 | DWORD curOffs, |
| 3849 | unsigned flags, |
| 3850 | StackwalkCacheUnwindInfo *pUnwindInfo) // out-only, perf improvement |
| 3851 | { |
| 3852 | LIMITED_METHOD_CONTRACT; |
| 3853 | SUPPORTS_DAC; |
| 3854 | |
| 3855 | _ASSERTE(info->ebpFrame || info->doubleAlign); |
| 3856 | |
| 3857 | const unsigned curESP = pContext->SP; |
| 3858 | const unsigned curEBP = *pContext->GetEbpLocation(); |
| 3859 | |
| 3860 | /* First check if we are in a filter (which is obviously after the prolog) */ |
| 3861 | |
| 3862 | if (info->handlers && info->prologOffs == hdrInfo::NOT_IN_PROLOG) |
| 3863 | { |
| 3864 | TADDR baseSP; |
| 3865 | |
| 3866 | #ifdef WIN64EXCEPTIONS |
| 3867 | // Funclets' frame pointers(EBP) are always restored so they can access to main function's local variables. |
| 3868 | // Therefore the value of EBP is invalid for unwinder so we should use ESP instead. |
| 3869 | // TODO If funclet frame layout is changed from CodeGen::genFuncletProlog() and genFuncletEpilog(), |
| 3870 | // we need to change here accordingly. It is likely to have changes when introducing PSPSym. |
| 3871 | // TODO Currently we assume that ESP of funclet frames is always fixed but actually it could change. |
| 3872 | if (pCodeInfo->IsFunclet()) |
| 3873 | { |
| 3874 | baseSP = curESP; |
| 3875 | // Set baseSP as initial SP |
| 3876 | baseSP += GetPushedArgSize(info, table, curOffs); |
| 3877 | |
| 3878 | // 16-byte stack alignment padding (allocated in genFuncletProlog) |
| 3879 | // Current funclet frame layout (see CodeGen::genFuncletProlog() and genFuncletEpilog()): |
| 3880 | // prolog: sub esp, 12 |
| 3881 | // epilog: add esp, 12 |
| 3882 | // ret |
| 3883 | // SP alignment padding should be added for all instructions except the first one and the last one. |
| 3884 | // Epilog may not exist (unreachable), so we need to check the instruction code. |
| 3885 | const TADDR funcletStart = pCodeInfo->GetJitManager()->GetFuncletStartAddress(pCodeInfo); |
| 3886 | if (funcletStart != pCodeInfo->GetCodeAddress() && methodStart[pCodeInfo->GetRelOffset()] != X86_INSTR_RETN) |
| 3887 | baseSP += 12; |
| 3888 | |
| 3889 | pContext->PCTAddr = baseSP; |
| 3890 | pContext->ControlPC = *PTR_PCODE(pContext->PCTAddr); |
| 3891 | |
| 3892 | pContext->SP = (DWORD)(baseSP + sizeof(TADDR)); |
| 3893 | |
| 3894 | return true; |
| 3895 | } |
| 3896 | #else // WIN64EXCEPTIONS |
| 3897 | |
| 3898 | FrameType frameType = GetHandlerFrameInfo(info, curEBP, |
| 3899 | curESP, (DWORD) IGNORE_VAL, |
| 3900 | &baseSP); |
| 3901 | |
| 3902 | /* If we are in a filter, we only need to unwind the funclet stack. |
| 3903 | For catches/finallies, the normal handling will |
| 3904 | cause the frame to be unwound all the way up to ebp skipping |
| 3905 | other frames above it. This is OK, as those frames will be |
| 3906 | dead. Also, the EE will detect that this has happened and it |
| 3907 | will handle any EE frames correctly. |
| 3908 | */ |
| 3909 | |
| 3910 | if (frameType == FR_INVALID) |
| 3911 | { |
| 3912 | return false; |
| 3913 | } |
| 3914 | |
| 3915 | if (frameType == FR_FILTER) |
| 3916 | { |
| 3917 | pContext->PCTAddr = baseSP; |
| 3918 | pContext->ControlPC = *PTR_PCODE(pContext->PCTAddr); |
| 3919 | |
| 3920 | pContext->SP = (DWORD)(baseSP + sizeof(TADDR)); |
| 3921 | |
| 3922 | // pContext->pEbp = same as before; |
| 3923 | |
| 3924 | #ifdef _DEBUG |
| 3925 | /* The filter has to be called by the VM. So we dont need to |
| 3926 | update callee-saved registers. |
| 3927 | */ |
| 3928 | |
| 3929 | if (flags & UpdateAllRegs) |
| 3930 | { |
| 3931 | static DWORD s_badData = 0xDEADBEEF; |
| 3932 | |
| 3933 | pContext->SetEaxLocation(&s_badData); |
| 3934 | pContext->SetEcxLocation(&s_badData); |
| 3935 | pContext->SetEdxLocation(&s_badData); |
| 3936 | |
| 3937 | pContext->SetEbxLocation(&s_badData); |
| 3938 | pContext->SetEsiLocation(&s_badData); |
| 3939 | pContext->SetEdiLocation(&s_badData); |
| 3940 | } |
| 3941 | #endif |
| 3942 | |
| 3943 | if (pUnwindInfo) |
| 3944 | { |
| 3945 | // The filter funclet is like an ESP-framed-method. |
| 3946 | pUnwindInfo->fUseEbp = FALSE; |
| 3947 | pUnwindInfo->fUseEbpAsFrameReg = FALSE; |
| 3948 | } |
| 3949 | |
| 3950 | return true; |
| 3951 | } |
| 3952 | #endif // !WIN64EXCEPTIONS |
| 3953 | } |
| 3954 | |
| 3955 | // |
| 3956 | // Prolog of an EBP method |
| 3957 | // |
| 3958 | |
| 3959 | if (info->prologOffs != hdrInfo::NOT_IN_PROLOG) |
| 3960 | { |
| 3961 | UnwindEbpDoubleAlignFrameProlog(pContext, info, methodStart, flags); |
| 3962 | |
| 3963 | /* Now adjust stack pointer. */ |
| 3964 | |
| 3965 | pContext->SP += ESPIncrOnReturn(info); |
| 3966 | return true; |
| 3967 | } |
| 3968 | |
| 3969 | if (flags & UpdateAllRegs) |
| 3970 | { |
| 3971 | // Get to the first callee-saved register |
| 3972 | PTR_DWORD pSavedRegs = PTR_DWORD((TADDR)curEBP); |
| 3973 | |
| 3974 | if (info->doubleAlign && (curEBP & 0x04)) |
| 3975 | pSavedRegs--; |
| 3976 | |
| 3977 | for (unsigned i = 0; i < NumItems(CALLEE_SAVED_REGISTERS_MASK) - 1; i++) |
| 3978 | { |
| 3979 | RegMask regMask = CALLEE_SAVED_REGISTERS_MASK[i]; |
| 3980 | if ((info->savedRegMask & regMask) == 0) |
| 3981 | continue; |
| 3982 | |
| 3983 | SetLocation(pContext, i, --pSavedRegs); |
| 3984 | } |
| 3985 | } |
| 3986 | |
| 3987 | /* The caller's ESP will be equal to EBP + retAddrSize + argSize. */ |
| 3988 | |
| 3989 | pContext->SP = (DWORD)(curEBP + sizeof(curEBP) + ESPIncrOnReturn(info)); |
| 3990 | |
| 3991 | /* The caller's saved EIP is right after our EBP */ |
| 3992 | |
| 3993 | pContext->PCTAddr = (TADDR)curEBP + RETURN_ADDR_OFFS * sizeof(TADDR); |
| 3994 | pContext->ControlPC = *PTR_PCODE(pContext->PCTAddr); |
| 3995 | |
| 3996 | /* The caller's saved EBP is pointed to by our EBP */ |
| 3997 | |
| 3998 | pContext->SetEbpLocation(PTR_DWORD((TADDR)curEBP)); |
| 3999 | |
| 4000 | return true; |
| 4001 | } |
| 4002 | |
| 4003 | bool UnwindStackFrame(PREGDISPLAY pContext, |
| 4004 | EECodeInfo *pCodeInfo, |
| 4005 | unsigned flags, |
| 4006 | CodeManState *pState, |
| 4007 | StackwalkCacheUnwindInfo *pUnwindInfo /* out-only, perf improvement */) |
| 4008 | { |
| 4009 | CONTRACTL { |
| 4010 | NOTHROW; |
| 4011 | GC_NOTRIGGER; |
| 4012 | HOST_NOCALLS; |
| 4013 | SUPPORTS_DAC; |
| 4014 | } CONTRACTL_END; |
| 4015 | |
| 4016 | // Address where the method has been interrupted |
| 4017 | PCODE breakPC = pContext->ControlPC; |
| 4018 | _ASSERTE(PCODEToPINSTR(breakPC) == pCodeInfo->GetCodeAddress()); |
| 4019 | |
| 4020 | PTR_CBYTE methodStart = PTR_CBYTE(pCodeInfo->GetSavedMethodCode()); |
| 4021 | |
| 4022 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
| 4023 | PTR_VOID methodInfoPtr = gcInfoToken.Info; |
| 4024 | DWORD curOffs = pCodeInfo->GetRelOffset(); |
| 4025 | |
| 4026 | _ASSERTE(sizeof(CodeManStateBuf) <= sizeof(pState->stateBuf)); |
| 4027 | CodeManStateBuf * stateBuf = (CodeManStateBuf*)pState->stateBuf; |
| 4028 | |
| 4029 | if (pState->dwIsSet == 0) |
| 4030 | { |
| 4031 | /* Extract the necessary information from the info block header */ |
| 4032 | |
| 4033 | stateBuf->hdrInfoSize = (DWORD)DecodeGCHdrInfo(gcInfoToken, |
| 4034 | curOffs, |
| 4035 | &stateBuf->hdrInfoBody); |
| 4036 | } |
| 4037 | |
| 4038 | PTR_CBYTE table = dac_cast<PTR_CBYTE>(methodInfoPtr) + stateBuf->hdrInfoSize; |
| 4039 | |
| 4040 | hdrInfo * info = &stateBuf->hdrInfoBody; |
| 4041 | |
| 4042 | info->isSpeculativeStackWalk = ((flags & SpeculativeStackwalk) != 0); |
| 4043 | |
| 4044 | if (pUnwindInfo != NULL) |
| 4045 | { |
| 4046 | pUnwindInfo->securityObjectOffset = 0; |
| 4047 | if (info->securityCheck) |
| 4048 | { |
| 4049 | _ASSERTE(info->ebpFrame); |
| 4050 | SIZE_T securityObjectOffset = (GetSecurityObjectOffset(info) / sizeof(void*)); |
| 4051 | _ASSERTE(securityObjectOffset != 0); |
| 4052 | pUnwindInfo->securityObjectOffset = DWORD(securityObjectOffset); |
| 4053 | } |
| 4054 | |
| 4055 | pUnwindInfo->fUseEbpAsFrameReg = info->ebpFrame; |
| 4056 | pUnwindInfo->fUseEbp = ((info->savedRegMask & RM_EBP) != 0); |
| 4057 | } |
| 4058 | |
| 4059 | if (info->epilogOffs != hdrInfo::NOT_IN_EPILOG) |
| 4060 | { |
| 4061 | /*--------------------------------------------------------------------- |
| 4062 | * First, handle the epilog |
| 4063 | */ |
| 4064 | |
| 4065 | PTR_CBYTE epilogBase = (PTR_CBYTE) (breakPC - info->epilogOffs); |
| 4066 | UnwindEpilog(pContext, info, epilogBase, flags); |
| 4067 | } |
| 4068 | else if (!info->ebpFrame && !info->doubleAlign) |
| 4069 | { |
| 4070 | /*--------------------------------------------------------------------- |
| 4071 | * Now handle ESP frames |
| 4072 | */ |
| 4073 | |
| 4074 | UnwindEspFrame(pContext, info, table, methodStart, curOffs, flags); |
| 4075 | return true; |
| 4076 | } |
| 4077 | else |
| 4078 | { |
| 4079 | /*--------------------------------------------------------------------- |
| 4080 | * Now we know that have an EBP frame |
| 4081 | */ |
| 4082 | |
| 4083 | if (!UnwindEbpDoubleAlignFrame(pContext, pCodeInfo, info, table, methodStart, curOffs, flags, pUnwindInfo)) |
| 4084 | return false; |
| 4085 | } |
| 4086 | |
| 4087 | // TODO [DAVBR]: For the full fix for VsWhidbey 450273, all the below |
| 4088 | // may be uncommented once isLegalManagedCodeCaller works properly |
| 4089 | // with non-return address inputs, and with non-DEBUG builds |
| 4090 | /* |
| 4091 | // Ensure isLegalManagedCodeCaller succeeds for speculative stackwalks. |
| 4092 | // (We just assert this below for non-speculative stackwalks.) |
| 4093 | // |
| 4094 | FAIL_IF_SPECULATIVE_WALK(isLegalManagedCodeCaller(GetControlPC(pContext))); |
| 4095 | */ |
| 4096 | |
| 4097 | return true; |
| 4098 | } |
| 4099 | |
| 4100 | #endif // _TARGET_X86_ |
| 4101 | |
| 4102 | #ifdef WIN64EXCEPTIONS |
| 4103 | #ifdef _TARGET_X86_ |
| 4104 | size_t EECodeManager::GetResumeSp( PCONTEXT pContext ) |
| 4105 | { |
| 4106 | PCODE currentPc = PCODE(pContext->Eip); |
| 4107 | |
| 4108 | _ASSERTE(ExecutionManager::IsManagedCode(currentPc)); |
| 4109 | |
| 4110 | EECodeInfo codeInfo(currentPc); |
| 4111 | |
| 4112 | PTR_CBYTE methodStart = PTR_CBYTE(codeInfo.GetSavedMethodCode()); |
| 4113 | |
| 4114 | GCInfoToken gcInfoToken = codeInfo.GetGCInfoToken(); |
| 4115 | PTR_VOID methodInfoPtr = gcInfoToken.Info; |
| 4116 | DWORD curOffs = codeInfo.GetRelOffset(); |
| 4117 | |
| 4118 | CodeManStateBuf stateBuf; |
| 4119 | |
| 4120 | stateBuf.hdrInfoSize = (DWORD)DecodeGCHdrInfo(gcInfoToken, |
| 4121 | curOffs, |
| 4122 | &stateBuf.hdrInfoBody); |
| 4123 | |
| 4124 | PTR_CBYTE table = dac_cast<PTR_CBYTE>(methodInfoPtr) + stateBuf.hdrInfoSize; |
| 4125 | |
| 4126 | hdrInfo *info = &stateBuf.hdrInfoBody; |
| 4127 | |
| 4128 | _ASSERTE(info->epilogOffs == hdrInfo::NOT_IN_EPILOG && info->prologOffs == hdrInfo::NOT_IN_PROLOG); |
| 4129 | |
| 4130 | bool isESPFrame = !info->ebpFrame && !info->doubleAlign; |
| 4131 | |
| 4132 | if (codeInfo.IsFunclet()) |
| 4133 | { |
| 4134 | // Treat funclet's frame as ESP frame |
| 4135 | isESPFrame = true; |
| 4136 | } |
| 4137 | |
| 4138 | if (isESPFrame) |
| 4139 | { |
| 4140 | const size_t curESP = (size_t)(pContext->Esp); |
| 4141 | return curESP + GetPushedArgSize(info, table, curOffs); |
| 4142 | } |
| 4143 | |
| 4144 | const size_t curEBP = (size_t)(pContext->Ebp); |
| 4145 | return GetOutermostBaseFP(curEBP, info); |
| 4146 | } |
| 4147 | #endif // _TARGET_X86_ |
| 4148 | #endif // WIN64EXCEPTIONS |
| 4149 | |
| 4150 | #ifndef CROSSGEN_COMPILE |
| 4151 | #ifndef WIN64EXCEPTIONS |
| 4152 | |
| 4153 | /***************************************************************************** |
| 4154 | * |
| 4155 | * Unwind the current stack frame, i.e. update the virtual register |
| 4156 | * set in pContext. This will be similar to the state after the function |
| 4157 | * returns back to caller (IP points to after the call, Frame and Stack |
| 4158 | * pointer has been reset, callee-saved registers restored (if UpdateAllRegs), |
| 4159 | * callee-unsaved registers are trashed. |
| 4160 | * Returns success of operation. |
| 4161 | */ |
| 4162 | |
| 4163 | bool EECodeManager::UnwindStackFrame(PREGDISPLAY pContext, |
| 4164 | EECodeInfo *pCodeInfo, |
| 4165 | unsigned flags, |
| 4166 | CodeManState *pState, |
| 4167 | StackwalkCacheUnwindInfo *pUnwindInfo /* out-only, perf improvement */) |
| 4168 | { |
| 4169 | #ifdef _TARGET_X86_ |
| 4170 | return ::UnwindStackFrame(pContext, pCodeInfo, flags, pState, pUnwindInfo); |
| 4171 | #else // _TARGET_X86_ |
| 4172 | PORTABILITY_ASSERT("EECodeManager::UnwindStackFrame" ); |
| 4173 | return false; |
| 4174 | #endif // _TARGET_???_ |
| 4175 | } |
| 4176 | |
| 4177 | /*****************************************************************************/ |
| 4178 | #else // !WIN64EXCEPTIONS |
| 4179 | /*****************************************************************************/ |
| 4180 | |
| 4181 | bool EECodeManager::UnwindStackFrame(PREGDISPLAY pContext, |
| 4182 | EECodeInfo *pCodeInfo, |
| 4183 | unsigned flags, |
| 4184 | CodeManState *pState, |
| 4185 | StackwalkCacheUnwindInfo *pUnwindInfo /* out-only, perf improvement */) |
| 4186 | { |
| 4187 | CONTRACTL { |
| 4188 | NOTHROW; |
| 4189 | GC_NOTRIGGER; |
| 4190 | } CONTRACTL_END; |
| 4191 | |
| 4192 | #if defined(_TARGET_AMD64_) |
| 4193 | // To avoid unnecessary computation, we only crack the unwind info if pUnwindInfo is not NULL, which only happens |
| 4194 | // if the LIGHTUNWIND flag is passed to StackWalkFramesEx(). |
| 4195 | if (pUnwindInfo != NULL) |
| 4196 | { |
| 4197 | pCodeInfo->GetOffsetsFromUnwindInfo(&(pUnwindInfo->RSPOffsetFromUnwindInfo), |
| 4198 | &(pUnwindInfo->RBPOffset)); |
| 4199 | } |
| 4200 | #endif // _TARGET_AMD64_ |
| 4201 | |
| 4202 | _ASSERTE(pCodeInfo != NULL); |
| 4203 | Thread::VirtualUnwindCallFrame(pContext, pCodeInfo); |
| 4204 | return true; |
| 4205 | } |
| 4206 | |
| 4207 | /*****************************************************************************/ |
| 4208 | #endif // WIN64EXCEPTIONS |
| 4209 | #endif // !CROSSGEN_COMPILE |
| 4210 | |
| 4211 | /*****************************************************************************/ |
| 4212 | |
| 4213 | /* report args in 'msig' to the GC. |
| 4214 | 'argsStart' is start of the stack-based arguments |
| 4215 | 'varArgSig' describes the arguments |
| 4216 | 'ctx' has the GC reporting info |
| 4217 | */ |
| 4218 | void promoteVarArgs(PTR_BYTE argsStart, PTR_VASigCookie varArgSig, GCCONTEXT* ctx) |
| 4219 | { |
| 4220 | WRAPPER_NO_CONTRACT; |
| 4221 | |
| 4222 | //Note: no instantiations needed for varargs |
| 4223 | MetaSig msig(varArgSig->signature, |
| 4224 | varArgSig->pModule, |
| 4225 | NULL); |
| 4226 | |
| 4227 | PTR_BYTE pFrameBase = argsStart - TransitionBlock::GetOffsetOfArgs(); |
| 4228 | |
| 4229 | ArgIterator argit(&msig); |
| 4230 | |
| 4231 | #ifdef _TARGET_X86_ |
| 4232 | // For the X86 target the JIT does not report any of the fixed args for a varargs method |
| 4233 | // So we report the fixed args via the promoteArgs call below |
| 4234 | bool skipFixedArgs = false; |
| 4235 | #else |
| 4236 | // For other platforms the JITs do report the fixed args of a varargs method |
| 4237 | // So we must tell promoteArgs to skip to the end of the fixed args |
| 4238 | bool skipFixedArgs = true; |
| 4239 | #endif |
| 4240 | |
| 4241 | bool inVarArgs = false; |
| 4242 | |
| 4243 | int argOffset; |
| 4244 | while ((argOffset = argit.GetNextOffset()) != TransitionBlock::InvalidOffset) |
| 4245 | { |
| 4246 | if (msig.GetArgProps().AtSentinel()) |
| 4247 | inVarArgs = true; |
| 4248 | |
| 4249 | // if skipFixedArgs is false we report all arguments |
| 4250 | // otherwise we just report the varargs. |
| 4251 | if (!skipFixedArgs || inVarArgs) |
| 4252 | { |
| 4253 | ArgDestination argDest(pFrameBase, argOffset, argit.GetArgLocDescForStructInRegs()); |
| 4254 | msig.GcScanRoots(&argDest, ctx->f, ctx->sc); |
| 4255 | } |
| 4256 | } |
| 4257 | } |
| 4258 | |
| 4259 | INDEBUG(void* forceStack1;) |
| 4260 | |
| 4261 | #ifndef CROSSGEN_COMPILE |
| 4262 | #ifndef USE_GC_INFO_DECODER |
| 4263 | |
| 4264 | /***************************************************************************** |
| 4265 | * |
| 4266 | * Enumerate all live object references in that function using |
| 4267 | * the virtual register set. |
| 4268 | * Returns success of operation. |
| 4269 | */ |
| 4270 | |
| 4271 | bool EECodeManager::EnumGcRefs( PREGDISPLAY pContext, |
| 4272 | EECodeInfo *pCodeInfo, |
| 4273 | unsigned flags, |
| 4274 | GCEnumCallback pCallBack, |
| 4275 | LPVOID hCallBack, |
| 4276 | DWORD relOffsetOverride) |
| 4277 | { |
| 4278 | CONTRACTL { |
| 4279 | NOTHROW; |
| 4280 | GC_NOTRIGGER; |
| 4281 | } CONTRACTL_END; |
| 4282 | |
| 4283 | #ifdef WIN64EXCEPTIONS |
| 4284 | if (flags & ParentOfFuncletStackFrame) |
| 4285 | { |
| 4286 | LOG((LF_GCROOTS, LL_INFO100000, "Not reporting this frame because it was already reported via another funclet.\n" )); |
| 4287 | return true; |
| 4288 | } |
| 4289 | #endif // WIN64EXCEPTIONS |
| 4290 | |
| 4291 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
| 4292 | unsigned curOffs = pCodeInfo->GetRelOffset(); |
| 4293 | |
| 4294 | unsigned EBP = *pContext->GetEbpLocation(); |
| 4295 | unsigned ESP = pContext->SP; |
| 4296 | |
| 4297 | unsigned ptrOffs; |
| 4298 | |
| 4299 | unsigned count; |
| 4300 | |
| 4301 | hdrInfo info; |
| 4302 | PTR_CBYTE table = PTR_CBYTE(gcInfoToken.Info); |
| 4303 | #if 0 |
| 4304 | printf("EECodeManager::EnumGcRefs - EIP = %08x ESP = %08x offset = %x GC Info is at %08x\n" , *pContext->pPC, ESP, curOffs, table); |
| 4305 | #endif |
| 4306 | |
| 4307 | |
| 4308 | /* Extract the necessary information from the info block header */ |
| 4309 | |
| 4310 | table += DecodeGCHdrInfo(gcInfoToken, |
| 4311 | curOffs, |
| 4312 | &info); |
| 4313 | |
| 4314 | _ASSERTE( curOffs <= info.methodSize); |
| 4315 | |
| 4316 | #ifdef _DEBUG |
| 4317 | // if ((gcInfoToken.Info == (void*)0x37760d0) && (curOffs == 0x264)) |
| 4318 | // __asm int 3; |
| 4319 | |
| 4320 | if (trEnumGCRefs) { |
| 4321 | static unsigned lastESP = 0; |
| 4322 | unsigned diffESP = ESP - lastESP; |
| 4323 | if (diffESP > 0xFFFF) { |
| 4324 | printf("------------------------------------------------------\n" ); |
| 4325 | } |
| 4326 | lastESP = ESP; |
| 4327 | printf("EnumGCRefs [%s][%s] at %s.%s + 0x%03X:\n" , |
| 4328 | info.ebpFrame?"ebp" :" " , |
| 4329 | info.interruptible?"int" :" " , |
| 4330 | "UnknownClass" ,"UnknownMethod" , curOffs); |
| 4331 | fflush(stdout); |
| 4332 | } |
| 4333 | #endif |
| 4334 | |
| 4335 | /* Are we in the prolog or epilog of the method? */ |
| 4336 | |
| 4337 | if (info.prologOffs != hdrInfo::NOT_IN_PROLOG || |
| 4338 | info.epilogOffs != hdrInfo::NOT_IN_EPILOG) |
| 4339 | { |
| 4340 | |
| 4341 | #if !DUMP_PTR_REFS |
| 4342 | // Under normal circumstances the system will not suspend a thread |
| 4343 | // if it is in the prolog or epilog of the function. However ThreadAbort |
| 4344 | // exception or stack overflows can cause EH to happen in a prolog. |
| 4345 | // Once in the handler, a GC can happen, so we can get to this code path. |
| 4346 | // However since we are tearing down this frame, we don't need to report |
| 4347 | // anything and we can simply return. |
| 4348 | |
| 4349 | _ASSERTE(flags & ExecutionAborted); |
| 4350 | #endif |
| 4351 | return true; |
| 4352 | } |
| 4353 | |
| 4354 | #ifdef _DEBUG |
| 4355 | #define CHK_AND_REPORT_REG(reg, doIt, iptr, regName) \ |
| 4356 | if (doIt) \ |
| 4357 | { \ |
| 4358 | if (dspPtr) \ |
| 4359 | printf(" Live pointer register %s: ", #regName); \ |
| 4360 | pCallBack(hCallBack, \ |
| 4361 | (OBJECTREF*)(pContext->Get##regName##Location()), \ |
| 4362 | (iptr ? GC_CALL_INTERIOR : 0) \ |
| 4363 | | CHECK_APP_DOMAIN \ |
| 4364 | DAC_ARG(DacSlotLocation(reg, 0, false))); \ |
| 4365 | } |
| 4366 | #else // !_DEBUG |
| 4367 | #define CHK_AND_REPORT_REG(reg, doIt, iptr, regName) \ |
| 4368 | if (doIt) \ |
| 4369 | pCallBack(hCallBack, \ |
| 4370 | (OBJECTREF*)(pContext->Get##regName##Location()), \ |
| 4371 | (iptr ? GC_CALL_INTERIOR : 0) \ |
| 4372 | | CHECK_APP_DOMAIN \ |
| 4373 | DAC_ARG(DacSlotLocation(reg, 0, false))); |
| 4374 | |
| 4375 | #endif // _DEBUG |
| 4376 | |
| 4377 | /* What kind of a frame is this ? */ |
| 4378 | |
| 4379 | FrameType frameType = FR_NORMAL; |
| 4380 | TADDR baseSP = 0; |
| 4381 | |
| 4382 | if (info.handlers) |
| 4383 | { |
| 4384 | _ASSERTE(info.ebpFrame); |
| 4385 | |
| 4386 | bool hasInnerFilter, hadInnerFilter; |
| 4387 | frameType = GetHandlerFrameInfo(&info, EBP, |
| 4388 | ESP, (DWORD) IGNORE_VAL, |
| 4389 | &baseSP, NULL, |
| 4390 | &hasInnerFilter, &hadInnerFilter); |
| 4391 | _ASSERTE(frameType != FR_INVALID); |
| 4392 | |
| 4393 | /* If this is the parent frame of a filter which is currently |
| 4394 | executing, then the filter would have enumerated the frame using |
| 4395 | the filter PC. |
| 4396 | */ |
| 4397 | |
| 4398 | if (hasInnerFilter) |
| 4399 | return true; |
| 4400 | |
| 4401 | /* If are in a try and we had a filter execute, we may have reported |
| 4402 | GC refs from the filter (and not using the try's offset). So |
| 4403 | we had better use the filter's end offset, as the try is |
| 4404 | effectively dead and its GC ref's would be stale */ |
| 4405 | |
| 4406 | if (hadInnerFilter) |
| 4407 | { |
| 4408 | PTR_TADDR pFirstBaseSPslot = GetFirstBaseSPslotPtr(EBP, &info); |
| 4409 | curOffs = (unsigned)pFirstBaseSPslot[1] - 1; |
| 4410 | _ASSERTE(curOffs < info.methodSize); |
| 4411 | |
| 4412 | /* Extract the necessary information from the info block header */ |
| 4413 | |
| 4414 | table = PTR_CBYTE(gcInfoToken.Info); |
| 4415 | |
| 4416 | table += DecodeGCHdrInfo(gcInfoToken, |
| 4417 | curOffs, |
| 4418 | &info); |
| 4419 | } |
| 4420 | } |
| 4421 | |
| 4422 | bool willContinueExecution = !(flags & ExecutionAborted); |
| 4423 | unsigned pushedSize = 0; |
| 4424 | |
| 4425 | /* if we have been interrupted we don't have to report registers/arguments |
| 4426 | * because we are about to lose this context anyway. |
| 4427 | * Alas, if we are in a ebp-less method we have to parse the table |
| 4428 | * in order to adjust ESP. |
| 4429 | * |
| 4430 | * Note that we report "this" for all methods, even if |
| 4431 | * noncontinuable, because because of the off chance they may be |
| 4432 | * synchronized and we have to release the monitor on unwind. This |
| 4433 | * could conceivably be optimized, but it turns out to be more |
| 4434 | * expensive to check whether we're synchronized (which involves |
| 4435 | * consulting metadata) than to just report "this" all the time in |
| 4436 | * our most important scenarios. |
| 4437 | */ |
| 4438 | |
| 4439 | if (info.interruptible) |
| 4440 | { |
| 4441 | // If we are not on the active stack frame, we need to report gc registers |
| 4442 | // that are live before the call. The reason is that the liveness of gc registers |
| 4443 | // may change across a call to a method that does not return. In this case the instruction |
| 4444 | // after the call may be a jump target and a register that didn't have a live gc pointer |
| 4445 | // before the call may have a live gc pointer after the jump. To make sure we report the |
| 4446 | // registers that have live gc pointers before the call we subtract 1 from curOffs. |
| 4447 | unsigned curOffsRegs = (flags & ActiveStackFrame) != 0 ? curOffs : curOffs - 1; |
| 4448 | |
| 4449 | pushedSize = scanArgRegTableI(skipToArgReg(info, table), curOffsRegs, curOffs, &info); |
| 4450 | |
| 4451 | RegMask regs = info.regMaskResult; |
| 4452 | RegMask iregs = info.iregMaskResult; |
| 4453 | ptrArgTP args = info.argMaskResult; |
| 4454 | ptrArgTP iargs = info.iargMaskResult; |
| 4455 | |
| 4456 | _ASSERTE((isZero(args) || pushedSize != 0) || info.ebpFrame); |
| 4457 | _ASSERTE((args & iargs) == iargs); |
| 4458 | // Only synchronized methods and generic code that accesses |
| 4459 | // the type context via "this" need to report "this". |
| 4460 | // If its reported for other methods, its probably |
| 4461 | // done incorrectly. So flag such cases. |
| 4462 | _ASSERTE(info.thisPtrResult == REGI_NA || |
| 4463 | pCodeInfo->GetMethodDesc()->IsSynchronized() || |
| 4464 | pCodeInfo->GetMethodDesc()->AcquiresInstMethodTableFromThis()); |
| 4465 | |
| 4466 | /* now report registers and arguments if we are not interrupted */ |
| 4467 | |
| 4468 | if (willContinueExecution) |
| 4469 | { |
| 4470 | |
| 4471 | /* Propagate unsafed registers only in "current" method */ |
| 4472 | /* If this is not the active method, then the callee wil |
| 4473 | * trash these registers, and so we wont need to report them */ |
| 4474 | |
| 4475 | if (flags & ActiveStackFrame) |
| 4476 | { |
| 4477 | CHK_AND_REPORT_REG(REGI_EAX, regs & RM_EAX, iregs & RM_EAX, Eax); |
| 4478 | CHK_AND_REPORT_REG(REGI_ECX, regs & RM_ECX, iregs & RM_ECX, Ecx); |
| 4479 | CHK_AND_REPORT_REG(REGI_EDX, regs & RM_EDX, iregs & RM_EDX, Edx); |
| 4480 | } |
| 4481 | |
| 4482 | CHK_AND_REPORT_REG(REGI_EBX, regs & RM_EBX, iregs & RM_EBX, Ebx); |
| 4483 | CHK_AND_REPORT_REG(REGI_EBP, regs & RM_EBP, iregs & RM_EBP, Ebp); |
| 4484 | CHK_AND_REPORT_REG(REGI_ESI, regs & RM_ESI, iregs & RM_ESI, Esi); |
| 4485 | CHK_AND_REPORT_REG(REGI_EDI, regs & RM_EDI, iregs & RM_EDI, Edi); |
| 4486 | _ASSERTE(!(regs & RM_ESP)); |
| 4487 | |
| 4488 | /* Report any pending pointer arguments */ |
| 4489 | |
| 4490 | DWORD * pPendingArgFirst; // points **AT** first parameter |
| 4491 | if (!info.ebpFrame) |
| 4492 | { |
| 4493 | // -sizeof(void*) because we want to point *AT* first parameter |
| 4494 | pPendingArgFirst = (DWORD *)(size_t)(ESP + pushedSize - sizeof(void*)); |
| 4495 | } |
| 4496 | else |
| 4497 | { |
| 4498 | _ASSERTE(willContinueExecution); |
| 4499 | |
| 4500 | if (info.handlers) |
| 4501 | { |
| 4502 | // -sizeof(void*) because we want to point *AT* first parameter |
| 4503 | pPendingArgFirst = (DWORD *)(size_t)(baseSP - sizeof(void*)); |
| 4504 | } |
| 4505 | else if (info.localloc) |
| 4506 | { |
| 4507 | baseSP = *(DWORD *)(size_t)(EBP - GetLocallocSPOffset(&info)); |
| 4508 | // -sizeof(void*) because we want to point *AT* first parameter |
| 4509 | pPendingArgFirst = (DWORD *)(size_t) (baseSP - sizeof(void*)); |
| 4510 | } |
| 4511 | else |
| 4512 | { |
| 4513 | // Note that 'info.stackSize includes the size for pushing EBP, but EBP is pushed |
| 4514 | // BEFORE EBP is set from ESP, thus (EBP - info.stackSize) actually points past |
| 4515 | // the frame by one DWORD, and thus points *AT* the first parameter |
| 4516 | |
| 4517 | pPendingArgFirst = (DWORD *)(size_t)(EBP - info.stackSize); |
| 4518 | } |
| 4519 | } |
| 4520 | |
| 4521 | if (!isZero(args)) |
| 4522 | { |
| 4523 | unsigned i = 0; |
| 4524 | ptrArgTP b(1); |
| 4525 | for (; !isZero(args) && (i < MAX_PTRARG_OFS); i += 1, b <<= 1) |
| 4526 | { |
| 4527 | if (intersect(args,b)) |
| 4528 | { |
| 4529 | unsigned argAddr = (unsigned)(size_t)(pPendingArgFirst - i); |
| 4530 | bool iptr = false; |
| 4531 | |
| 4532 | setDiff(args, b); |
| 4533 | if (intersect(iargs,b)) |
| 4534 | { |
| 4535 | setDiff(iargs, b); |
| 4536 | iptr = true; |
| 4537 | } |
| 4538 | |
| 4539 | #ifdef _DEBUG |
| 4540 | if (dspPtr) |
| 4541 | { |
| 4542 | printf(" Pushed ptr arg [E" ); |
| 4543 | if (info.ebpFrame) |
| 4544 | printf("BP-%02XH]: " , EBP - argAddr); |
| 4545 | else |
| 4546 | printf("SP+%02XH]: " , argAddr - ESP); |
| 4547 | } |
| 4548 | #endif |
| 4549 | _ASSERTE(true == GC_CALL_INTERIOR); |
| 4550 | pCallBack(hCallBack, (OBJECTREF *)(size_t)argAddr, (int)iptr | CHECK_APP_DOMAIN |
| 4551 | DAC_ARG(DacSlotLocation(info.ebpFrame ? REGI_EBP : REGI_ESP, |
| 4552 | info.ebpFrame ? EBP - argAddr : argAddr - ESP, |
| 4553 | true))); |
| 4554 | } |
| 4555 | } |
| 4556 | } |
| 4557 | } |
| 4558 | else |
| 4559 | { |
| 4560 | // Is "this" enregistered. If so, report it as we might need to |
| 4561 | // release the monitor for synchronized methods. |
| 4562 | // Else, it is on the stack and will be reported below. |
| 4563 | |
| 4564 | if (info.thisPtrResult != REGI_NA) |
| 4565 | { |
| 4566 | // Synchronized methods and methods satisfying |
| 4567 | // MethodDesc::AcquiresInstMethodTableFromThis (i.e. those |
| 4568 | // where "this" is reported in thisPtrResult) are |
| 4569 | // not supported on value types. |
| 4570 | _ASSERTE((regNumToMask(info.thisPtrResult) & info.iregMaskResult)== 0); |
| 4571 | |
| 4572 | void * thisReg = getCalleeSavedReg(pContext, info.thisPtrResult); |
| 4573 | pCallBack(hCallBack, (OBJECTREF *)thisReg, CHECK_APP_DOMAIN |
| 4574 | DAC_ARG(DacSlotLocation(info.thisPtrResult, 0, false))); |
| 4575 | } |
| 4576 | } |
| 4577 | } |
| 4578 | else /* not interruptible */ |
| 4579 | { |
| 4580 | pushedSize = scanArgRegTable(skipToArgReg(info, table), curOffs, &info); |
| 4581 | |
| 4582 | RegMask regMask = info.regMaskResult; |
| 4583 | RegMask iregMask = info.iregMaskResult; |
| 4584 | ptrArgTP argMask = info.argMaskResult; |
| 4585 | ptrArgTP iargMask = info.iargMaskResult; |
| 4586 | unsigned argHnum = info.argHnumResult; |
| 4587 | PTR_CBYTE argTab = info.argTabResult; |
| 4588 | |
| 4589 | // Only synchronized methods and generic code that accesses |
| 4590 | // the type context via "this" need to report "this". |
| 4591 | // If its reported for other methods, its probably |
| 4592 | // done incorrectly. So flag such cases. |
| 4593 | _ASSERTE(info.thisPtrResult == REGI_NA || |
| 4594 | pCodeInfo->GetMethodDesc()->IsSynchronized() || |
| 4595 | pCodeInfo->GetMethodDesc()->AcquiresInstMethodTableFromThis()); |
| 4596 | |
| 4597 | |
| 4598 | /* now report registers and arguments if we are not interrupted */ |
| 4599 | |
| 4600 | if (willContinueExecution) |
| 4601 | { |
| 4602 | |
| 4603 | /* Report all live pointer registers */ |
| 4604 | |
| 4605 | CHK_AND_REPORT_REG(REGI_EDI, regMask & RM_EDI, iregMask & RM_EDI, Edi); |
| 4606 | CHK_AND_REPORT_REG(REGI_ESI, regMask & RM_ESI, iregMask & RM_ESI, Esi); |
| 4607 | CHK_AND_REPORT_REG(REGI_EBX, regMask & RM_EBX, iregMask & RM_EBX, Ebx); |
| 4608 | CHK_AND_REPORT_REG(REGI_EBP, regMask & RM_EBP, iregMask & RM_EBP, Ebp); |
| 4609 | |
| 4610 | /* Esp cant be reported */ |
| 4611 | _ASSERTE(!(regMask & RM_ESP)); |
| 4612 | /* No callee-trashed registers */ |
| 4613 | _ASSERTE(!(regMask & RM_CALLEE_TRASHED)); |
| 4614 | /* EBP can't be reported unless we have an EBP-less frame */ |
| 4615 | _ASSERTE(!(regMask & RM_EBP) || !(info.ebpFrame)); |
| 4616 | |
| 4617 | /* Report any pending pointer arguments */ |
| 4618 | |
| 4619 | if (argTab != 0) |
| 4620 | { |
| 4621 | unsigned lowBits, stkOffs, argAddr, val; |
| 4622 | |
| 4623 | // argMask does not fit in 32-bits |
| 4624 | // thus arguments are reported via a table |
| 4625 | // Both of these are very rare cases |
| 4626 | |
| 4627 | do |
| 4628 | { |
| 4629 | val = fastDecodeUnsigned(argTab); |
| 4630 | |
| 4631 | lowBits = val & OFFSET_MASK; |
| 4632 | stkOffs = val & ~OFFSET_MASK; |
| 4633 | _ASSERTE((lowBits == 0) || (lowBits == byref_OFFSET_FLAG)); |
| 4634 | |
| 4635 | argAddr = ESP + stkOffs; |
| 4636 | #ifdef _DEBUG |
| 4637 | if (dspPtr) |
| 4638 | printf(" Pushed %sptr arg at [ESP+%02XH]" , |
| 4639 | lowBits ? "iptr " : "" , stkOffs); |
| 4640 | #endif |
| 4641 | _ASSERTE(byref_OFFSET_FLAG == GC_CALL_INTERIOR); |
| 4642 | pCallBack(hCallBack, (OBJECTREF *)(size_t)argAddr, lowBits | CHECK_APP_DOMAIN |
| 4643 | DAC_ARG(DacSlotLocation(REGI_ESP, stkOffs, true))); |
| 4644 | } |
| 4645 | while(--argHnum); |
| 4646 | |
| 4647 | _ASSERTE(info.argTabResult + info.argTabBytes == argTab); |
| 4648 | } |
| 4649 | else |
| 4650 | { |
| 4651 | unsigned argAddr = ESP; |
| 4652 | |
| 4653 | while (!isZero(argMask)) |
| 4654 | { |
| 4655 | _ASSERTE(argHnum-- > 0); |
| 4656 | |
| 4657 | if (toUnsigned(argMask) & 1) |
| 4658 | { |
| 4659 | bool iptr = false; |
| 4660 | |
| 4661 | if (toUnsigned(iargMask) & 1) |
| 4662 | iptr = true; |
| 4663 | #ifdef _DEBUG |
| 4664 | if (dspPtr) |
| 4665 | printf(" Pushed ptr arg at [ESP+%02XH]" , |
| 4666 | argAddr - ESP); |
| 4667 | #endif |
| 4668 | _ASSERTE(true == GC_CALL_INTERIOR); |
| 4669 | pCallBack(hCallBack, (OBJECTREF *)(size_t)argAddr, (int)iptr | CHECK_APP_DOMAIN |
| 4670 | DAC_ARG(DacSlotLocation(REGI_ESP, argAddr - ESP, true))); |
| 4671 | } |
| 4672 | |
| 4673 | argMask >>= 1; |
| 4674 | iargMask >>= 1; |
| 4675 | argAddr += 4; |
| 4676 | } |
| 4677 | |
| 4678 | } |
| 4679 | |
| 4680 | } |
| 4681 | else |
| 4682 | { |
| 4683 | // Is "this" enregistered. If so, report it as we will need to |
| 4684 | // release the monitor. Else, it is on the stack and will be |
| 4685 | // reported below. |
| 4686 | |
| 4687 | // For partially interruptible code, info.thisPtrResult will be |
| 4688 | // the last known location of "this". So the compiler needs to |
| 4689 | // generate information which is correct at every point in the code, |
| 4690 | // not just at call sites. |
| 4691 | |
| 4692 | if (info.thisPtrResult != REGI_NA) |
| 4693 | { |
| 4694 | // Synchronized methods on value types are not supported |
| 4695 | _ASSERTE((regNumToMask(info.thisPtrResult) & info.iregMaskResult)== 0); |
| 4696 | |
| 4697 | void * thisReg = getCalleeSavedReg(pContext, info.thisPtrResult); |
| 4698 | pCallBack(hCallBack, (OBJECTREF *)thisReg, CHECK_APP_DOMAIN |
| 4699 | DAC_ARG(DacSlotLocation(info.thisPtrResult, 0, false))); |
| 4700 | } |
| 4701 | } |
| 4702 | |
| 4703 | } //info.interruptible |
| 4704 | |
| 4705 | /* compute the argument base (reference point) */ |
| 4706 | |
| 4707 | unsigned argBase; |
| 4708 | |
| 4709 | if (info.ebpFrame) |
| 4710 | argBase = EBP; |
| 4711 | else |
| 4712 | argBase = ESP + pushedSize; |
| 4713 | |
| 4714 | #if VERIFY_GC_TABLES |
| 4715 | _ASSERTE(*castto(table, unsigned short *)++ == 0xBEEF); |
| 4716 | #endif |
| 4717 | |
| 4718 | unsigned ptrAddr; |
| 4719 | unsigned lowBits; |
| 4720 | |
| 4721 | |
| 4722 | /* Process the untracked frame variable table */ |
| 4723 | |
| 4724 | #if defined(WIN64EXCEPTIONS) // funclets |
| 4725 | // Filters are the only funclet that run during the 1st pass, and must have |
| 4726 | // both the leaf and the parent frame reported. In order to avoid double |
| 4727 | // reporting of the untracked variables, do not report them for the filter. |
| 4728 | if (!pCodeInfo->GetJitManager()->IsFilterFunclet(pCodeInfo)) |
| 4729 | #endif // WIN64EXCEPTIONS |
| 4730 | { |
| 4731 | count = info.untrackedCnt; |
| 4732 | int lastStkOffs = 0; |
| 4733 | while (count-- > 0) |
| 4734 | { |
| 4735 | int stkOffs = fastDecodeSigned(table); |
| 4736 | stkOffs = lastStkOffs - stkOffs; |
| 4737 | lastStkOffs = stkOffs; |
| 4738 | |
| 4739 | _ASSERTE(0 == ~OFFSET_MASK % sizeof(void*)); |
| 4740 | |
| 4741 | lowBits = OFFSET_MASK & stkOffs; |
| 4742 | stkOffs &= ~OFFSET_MASK; |
| 4743 | |
| 4744 | ptrAddr = argBase + stkOffs; |
| 4745 | if (info.doubleAlign && stkOffs >= int(info.stackSize - sizeof(void*))) { |
| 4746 | // We encode the arguments as if they were ESP based variables even though they aren't |
| 4747 | // If this frame would have ben an ESP based frame, This fake frame is one DWORD |
| 4748 | // smaller than the real frame because it did not push EBP but the real frame did. |
| 4749 | // Thus to get the correct EBP relative offset we have to adjust by info.stackSize-sizeof(void*) |
| 4750 | ptrAddr = EBP + (stkOffs-(info.stackSize - sizeof(void*))); |
| 4751 | } |
| 4752 | |
| 4753 | #ifdef _DEBUG |
| 4754 | if (dspPtr) |
| 4755 | { |
| 4756 | printf(" Untracked %s%s local at [E" , |
| 4757 | (lowBits & pinned_OFFSET_FLAG) ? "pinned " : "" , |
| 4758 | (lowBits & byref_OFFSET_FLAG) ? "byref" : "" ); |
| 4759 | |
| 4760 | int dspOffs = ptrAddr; |
| 4761 | char frameType; |
| 4762 | |
| 4763 | if (info.ebpFrame) { |
| 4764 | dspOffs -= EBP; |
| 4765 | frameType = 'B'; |
| 4766 | } |
| 4767 | else { |
| 4768 | dspOffs -= ESP; |
| 4769 | frameType = 'S'; |
| 4770 | } |
| 4771 | |
| 4772 | if (dspOffs < 0) |
| 4773 | printf("%cP-%02XH]: " , frameType, -dspOffs); |
| 4774 | else |
| 4775 | printf("%cP+%02XH]: " , frameType, +dspOffs); |
| 4776 | } |
| 4777 | #endif |
| 4778 | |
| 4779 | _ASSERTE((pinned_OFFSET_FLAG == GC_CALL_PINNED) && |
| 4780 | (byref_OFFSET_FLAG == GC_CALL_INTERIOR)); |
| 4781 | pCallBack(hCallBack, (OBJECTREF*)(size_t)ptrAddr, lowBits | CHECK_APP_DOMAIN |
| 4782 | DAC_ARG(DacSlotLocation(info.ebpFrame ? REGI_EBP : REGI_ESP, |
| 4783 | info.ebpFrame ? EBP - ptrAddr : ptrAddr - ESP, |
| 4784 | true))); |
| 4785 | } |
| 4786 | |
| 4787 | } |
| 4788 | |
| 4789 | #if VERIFY_GC_TABLES |
| 4790 | _ASSERTE(*castto(table, unsigned short *)++ == 0xCAFE); |
| 4791 | #endif |
| 4792 | |
| 4793 | /* Process the frame variable lifetime table */ |
| 4794 | count = info.varPtrTableSize; |
| 4795 | |
| 4796 | /* If we are not in the active method, we are currently pointing |
| 4797 | * to the return address; at the return address stack variables |
| 4798 | * can become dead if the call the last instruction of a try block |
| 4799 | * and the return address is the jump around the catch block. Therefore |
| 4800 | * we simply assume an offset inside of call instruction. |
| 4801 | */ |
| 4802 | |
| 4803 | unsigned newCurOffs; |
| 4804 | |
| 4805 | if (willContinueExecution) |
| 4806 | { |
| 4807 | newCurOffs = (flags & ActiveStackFrame) ? curOffs // after "call" |
| 4808 | : curOffs-1; // inside "call" |
| 4809 | } |
| 4810 | else |
| 4811 | { |
| 4812 | /* However if ExecutionAborted, then this must be one of the |
| 4813 | * ExceptionFrames. Handle accordingly |
| 4814 | */ |
| 4815 | _ASSERTE(!(flags & AbortingCall) || !(flags & ActiveStackFrame)); |
| 4816 | |
| 4817 | newCurOffs = (flags & AbortingCall) ? curOffs-1 // inside "call" |
| 4818 | : curOffs; // at faulting instr, or start of "try" |
| 4819 | } |
| 4820 | |
| 4821 | ptrOffs = 0; |
| 4822 | |
| 4823 | while (count-- > 0) |
| 4824 | { |
| 4825 | int stkOffs; |
| 4826 | unsigned begOffs; |
| 4827 | unsigned endOffs; |
| 4828 | |
| 4829 | stkOffs = fastDecodeUnsigned(table); |
| 4830 | begOffs = ptrOffs + fastDecodeUnsigned(table); |
| 4831 | endOffs = begOffs + fastDecodeUnsigned(table); |
| 4832 | |
| 4833 | _ASSERTE(0 == ~OFFSET_MASK % sizeof(void*)); |
| 4834 | |
| 4835 | lowBits = OFFSET_MASK & stkOffs; |
| 4836 | stkOffs &= ~OFFSET_MASK; |
| 4837 | |
| 4838 | if (info.ebpFrame) { |
| 4839 | stkOffs = -stkOffs; |
| 4840 | _ASSERTE(stkOffs < 0); |
| 4841 | } |
| 4842 | else { |
| 4843 | _ASSERTE(stkOffs >= 0); |
| 4844 | } |
| 4845 | |
| 4846 | ptrAddr = argBase + stkOffs; |
| 4847 | |
| 4848 | /* Is this variable live right now? */ |
| 4849 | |
| 4850 | if (newCurOffs >= begOffs) |
| 4851 | { |
| 4852 | if (newCurOffs < endOffs) |
| 4853 | { |
| 4854 | #ifdef _DEBUG |
| 4855 | if (dspPtr) { |
| 4856 | printf(" Frame %s%s local at [E" , |
| 4857 | (lowBits & byref_OFFSET_FLAG) ? "byref " : "" , |
| 4858 | #ifndef WIN64EXCEPTIONS |
| 4859 | (lowBits & this_OFFSET_FLAG) ? "this-ptr" : "" ); |
| 4860 | #else |
| 4861 | (lowBits & pinned_OFFSET_FLAG) ? "pinned" : "" ); |
| 4862 | #endif |
| 4863 | |
| 4864 | |
| 4865 | int dspOffs = ptrAddr; |
| 4866 | char frameType; |
| 4867 | |
| 4868 | if (info.ebpFrame) { |
| 4869 | dspOffs -= EBP; |
| 4870 | frameType = 'B'; |
| 4871 | } |
| 4872 | else { |
| 4873 | dspOffs -= ESP; |
| 4874 | frameType = 'S'; |
| 4875 | } |
| 4876 | |
| 4877 | if (dspOffs < 0) |
| 4878 | printf("%cP-%02XH]: " , frameType, -dspOffs); |
| 4879 | else |
| 4880 | printf("%cP+%02XH]: " , frameType, +dspOffs); |
| 4881 | } |
| 4882 | #endif |
| 4883 | |
| 4884 | unsigned flags = CHECK_APP_DOMAIN; |
| 4885 | #ifndef WIN64EXCEPTIONS |
| 4886 | // First Bit : byref |
| 4887 | // Second Bit : this |
| 4888 | // The second bit means `this` not `pinned`. So we ignore it. |
| 4889 | flags |= lowBits & byref_OFFSET_FLAG; |
| 4890 | #else |
| 4891 | // First Bit : byref |
| 4892 | // Second Bit : pinned |
| 4893 | // Both bits are valid |
| 4894 | flags |= lowBits; |
| 4895 | #endif |
| 4896 | |
| 4897 | _ASSERTE(byref_OFFSET_FLAG == GC_CALL_INTERIOR); |
| 4898 | pCallBack(hCallBack, (OBJECTREF*)(size_t)ptrAddr, flags |
| 4899 | DAC_ARG(DacSlotLocation(info.ebpFrame ? REGI_EBP : REGI_ESP, |
| 4900 | info.ebpFrame ? EBP - ptrAddr : ptrAddr - ESP, |
| 4901 | true))); |
| 4902 | } |
| 4903 | } |
| 4904 | // exit loop early if start of live range is beyond PC, as ranges are sorted by lower bound |
| 4905 | else break; |
| 4906 | |
| 4907 | ptrOffs = begOffs; |
| 4908 | } |
| 4909 | |
| 4910 | |
| 4911 | #if VERIFY_GC_TABLES |
| 4912 | _ASSERTE(*castto(table, unsigned short *)++ == 0xBABE); |
| 4913 | #endif |
| 4914 | |
| 4915 | #ifdef WIN64EXCEPTIONS // funclets |
| 4916 | // |
| 4917 | // If we're in a funclet, we do not want to report the incoming varargs. This is |
| 4918 | // taken care of by the parent method and the funclet should access those arguments |
| 4919 | // by way of the parent method's stack frame. |
| 4920 | // |
| 4921 | if(pCodeInfo->IsFunclet()) |
| 4922 | { |
| 4923 | return true; |
| 4924 | } |
| 4925 | #endif // WIN64EXCEPTIONS |
| 4926 | |
| 4927 | /* Are we a varargs function, if so we have to report all args |
| 4928 | except 'this' (note that the GC tables created by the x86 jit |
| 4929 | do not contain ANY arguments except 'this' (even if they |
| 4930 | were statically declared */ |
| 4931 | |
| 4932 | if (info.varargs) { |
| 4933 | LOG((LF_GCINFO, LL_INFO100, "Reporting incoming vararg GC refs\n" )); |
| 4934 | |
| 4935 | PTR_BYTE argsStart; |
| 4936 | |
| 4937 | if (info.ebpFrame || info.doubleAlign) |
| 4938 | argsStart = PTR_BYTE((size_t)EBP) + 2* sizeof(void*); // pushed EBP and retAddr |
| 4939 | else |
| 4940 | argsStart = PTR_BYTE((size_t)argBase) + info.stackSize + sizeof(void*); // ESP + locals + retAddr |
| 4941 | |
| 4942 | #if defined(_DEBUG) && !defined(DACCESS_COMPILE) && !defined(CROSSGEN_COMPILE) |
| 4943 | // Note that I really want to say hCallBack is a GCCONTEXT, but this is pretty close |
| 4944 | extern void GcEnumObject(LPVOID pData, OBJECTREF *pObj, uint32_t flags); |
| 4945 | _ASSERTE((void*) GcEnumObject == pCallBack); |
| 4946 | #endif |
| 4947 | GCCONTEXT *pCtx = (GCCONTEXT *) hCallBack; |
| 4948 | |
| 4949 | // For varargs, look up the signature using the varArgSig token passed on the stack |
| 4950 | PTR_VASigCookie varArgSig = *PTR_PTR_VASigCookie(argsStart); |
| 4951 | |
| 4952 | promoteVarArgs(argsStart, varArgSig, pCtx); |
| 4953 | } |
| 4954 | |
| 4955 | return true; |
| 4956 | } |
| 4957 | |
| 4958 | #else // !USE_GC_INFO_DECODER |
| 4959 | |
| 4960 | |
| 4961 | /***************************************************************************** |
| 4962 | * |
| 4963 | * Enumerate all live object references in that function using |
| 4964 | * the virtual register set. |
| 4965 | * Returns success of operation. |
| 4966 | */ |
| 4967 | |
| 4968 | bool EECodeManager::EnumGcRefs( PREGDISPLAY pRD, |
| 4969 | EECodeInfo *pCodeInfo, |
| 4970 | unsigned flags, |
| 4971 | GCEnumCallback pCallBack, |
| 4972 | LPVOID hCallBack, |
| 4973 | DWORD relOffsetOverride) |
| 4974 | { |
| 4975 | CONTRACTL { |
| 4976 | NOTHROW; |
| 4977 | GC_NOTRIGGER; |
| 4978 | } CONTRACTL_END; |
| 4979 | |
| 4980 | unsigned curOffs = pCodeInfo->GetRelOffset(); |
| 4981 | |
| 4982 | #ifdef _TARGET_ARM_ |
| 4983 | // On ARM, the low-order bit of an instruction pointer indicates Thumb vs. ARM mode. |
| 4984 | // Mask this off; all instructions are two-byte aligned. |
| 4985 | curOffs &= (~THUMB_CODE); |
| 4986 | #endif // _TARGET_ARM_ |
| 4987 | |
| 4988 | #ifdef _DEBUG |
| 4989 | // Get the name of the current method |
| 4990 | const char * methodName = pCodeInfo->GetMethodDesc()->GetName(); |
| 4991 | LOG((LF_GCINFO, LL_INFO1000, "Reporting GC refs for %s at offset %04x.\n" , |
| 4992 | methodName, curOffs)); |
| 4993 | #endif |
| 4994 | |
| 4995 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
| 4996 | |
| 4997 | #if defined(STRESS_HEAP) && defined(PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED) |
| 4998 | // When we simulate a hijack during gcstress |
| 4999 | // we start with ActiveStackFrame and the offset |
| 5000 | // after the call |
| 5001 | // We need to make it look like a non-leaf frame |
| 5002 | // so that it's treated like a regular hijack |
| 5003 | if (flags & ActiveStackFrame) |
| 5004 | { |
| 5005 | GcInfoDecoder _gcInfoDecoder( |
| 5006 | gcInfoToken, |
| 5007 | DECODE_INTERRUPTIBILITY, |
| 5008 | curOffs |
| 5009 | ); |
| 5010 | if(!_gcInfoDecoder.IsInterruptible()) |
| 5011 | { |
| 5012 | // This must be the offset after a call |
| 5013 | #ifdef _DEBUG |
| 5014 | GcInfoDecoder _safePointDecoder(gcInfoToken, (GcInfoDecoderFlags)0, 0); |
| 5015 | _ASSERTE(_safePointDecoder.IsSafePoint(curOffs)); |
| 5016 | #endif |
| 5017 | flags &= ~((unsigned)ActiveStackFrame); |
| 5018 | } |
| 5019 | } |
| 5020 | #endif // STRESS_HEAP && PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 5021 | |
| 5022 | #ifdef _DEBUG |
| 5023 | if (flags & ActiveStackFrame) |
| 5024 | { |
| 5025 | GcInfoDecoder _gcInfoDecoder( |
| 5026 | gcInfoToken, |
| 5027 | DECODE_INTERRUPTIBILITY, |
| 5028 | curOffs |
| 5029 | ); |
| 5030 | _ASSERTE(_gcInfoDecoder.IsInterruptible()); |
| 5031 | } |
| 5032 | #endif |
| 5033 | |
| 5034 | /* If we are not in the active method, we are currently pointing |
| 5035 | * to the return address; at the return address stack variables |
| 5036 | * can become dead if the call is the last instruction of a try block |
| 5037 | * and the return address is the jump around the catch block. Therefore |
| 5038 | * we simply assume an offset inside of call instruction. |
| 5039 | * NOTE: The GcInfoDecoder depends on this; if you change it, you must |
| 5040 | * revisit the GcInfoEncoder/Decoder |
| 5041 | */ |
| 5042 | |
| 5043 | if (!(flags & ExecutionAborted)) |
| 5044 | { |
| 5045 | if (!(flags & ActiveStackFrame)) |
| 5046 | { |
| 5047 | curOffs--; |
| 5048 | LOG((LF_GCINFO, LL_INFO1000, "Adjusted GC reporting offset due to flags !ExecutionAborted && !ActiveStackFrame. Now reporting GC refs for %s at offset %04x.\n" , |
| 5049 | methodName, curOffs)); |
| 5050 | } |
| 5051 | } |
| 5052 | else |
| 5053 | { |
| 5054 | /* However if ExecutionAborted, then this must be one of the |
| 5055 | * ExceptionFrames. Handle accordingly |
| 5056 | */ |
| 5057 | _ASSERTE(!(flags & AbortingCall) || !(flags & ActiveStackFrame)); |
| 5058 | |
| 5059 | if (flags & AbortingCall) |
| 5060 | { |
| 5061 | curOffs--; |
| 5062 | LOG((LF_GCINFO, LL_INFO1000, "Adjusted GC reporting offset due to flags ExecutionAborted && AbortingCall. Now reporting GC refs for %s at offset %04x.\n" , |
| 5063 | methodName, curOffs)); |
| 5064 | } |
| 5065 | } |
| 5066 | |
| 5067 | // Check if we have been given an override value for relOffset |
| 5068 | if (relOffsetOverride != NO_OVERRIDE_OFFSET) |
| 5069 | { |
| 5070 | // We've been given an override offset for GC Info |
| 5071 | #ifdef _DEBUG |
| 5072 | GcInfoDecoder _gcInfoDecoder( |
| 5073 | gcInfoToken, |
| 5074 | DECODE_CODE_LENGTH |
| 5075 | ); |
| 5076 | |
| 5077 | // We only use override offset for wantsReportOnlyLeaf |
| 5078 | _ASSERTE(_gcInfoDecoder.WantsReportOnlyLeaf()); |
| 5079 | #endif // _DEBUG |
| 5080 | |
| 5081 | curOffs = relOffsetOverride; |
| 5082 | |
| 5083 | #ifdef _TARGET_ARM_ |
| 5084 | // On ARM, the low-order bit of an instruction pointer indicates Thumb vs. ARM mode. |
| 5085 | // Mask this off; all instructions are two-byte aligned. |
| 5086 | curOffs &= (~THUMB_CODE); |
| 5087 | #endif // _TARGET_ARM_ |
| 5088 | |
| 5089 | LOG((LF_GCINFO, LL_INFO1000, "Adjusted GC reporting offset to provided override offset. Now reporting GC refs for %s at offset %04x.\n" , |
| 5090 | methodName, curOffs)); |
| 5091 | } |
| 5092 | |
| 5093 | |
| 5094 | #if defined(WIN64EXCEPTIONS) // funclets |
| 5095 | if (pCodeInfo->GetJitManager()->IsFilterFunclet(pCodeInfo)) |
| 5096 | { |
| 5097 | // Filters are the only funclet that run during the 1st pass, and must have |
| 5098 | // both the leaf and the parent frame reported. In order to avoid double |
| 5099 | // reporting of the untracked variables, do not report them for the filter. |
| 5100 | flags |= NoReportUntracked; |
| 5101 | } |
| 5102 | #endif // WIN64EXCEPTIONS |
| 5103 | |
| 5104 | bool reportScratchSlots; |
| 5105 | |
| 5106 | // We report scratch slots only for leaf frames. |
| 5107 | // A frame is non-leaf if we are executing a call, or a fault occurred in the function. |
| 5108 | // The only case in which we need to report scratch slots for a non-leaf frame |
| 5109 | // is when execution has to be resumed at the point of interruption (via ResumableFrame) |
| 5110 | //<TODO>Implement ResumableFrame</TODO> |
| 5111 | _ASSERTE( sizeof( BOOL ) >= sizeof( ActiveStackFrame ) ); |
| 5112 | reportScratchSlots = (flags & ActiveStackFrame) != 0; |
| 5113 | |
| 5114 | |
| 5115 | GcInfoDecoder gcInfoDecoder( |
| 5116 | gcInfoToken, |
| 5117 | GcInfoDecoderFlags (DECODE_GC_LIFETIMES | DECODE_SECURITY_OBJECT | DECODE_VARARG), |
| 5118 | curOffs |
| 5119 | ); |
| 5120 | |
| 5121 | if (!gcInfoDecoder.EnumerateLiveSlots( |
| 5122 | pRD, |
| 5123 | reportScratchSlots, |
| 5124 | flags, |
| 5125 | pCallBack, |
| 5126 | hCallBack |
| 5127 | )) |
| 5128 | { |
| 5129 | return false; |
| 5130 | } |
| 5131 | |
| 5132 | #ifdef WIN64EXCEPTIONS // funclets |
| 5133 | // |
| 5134 | // If we're in a funclet, we do not want to report the incoming varargs. This is |
| 5135 | // taken care of by the parent method and the funclet should access those arguments |
| 5136 | // by way of the parent method's stack frame. |
| 5137 | // |
| 5138 | if(pCodeInfo->IsFunclet()) |
| 5139 | { |
| 5140 | return true; |
| 5141 | } |
| 5142 | #endif // WIN64EXCEPTIONS |
| 5143 | |
| 5144 | if (gcInfoDecoder.GetIsVarArg()) |
| 5145 | { |
| 5146 | MethodDesc* pMD = pCodeInfo->GetMethodDesc(); |
| 5147 | _ASSERTE(pMD != NULL); |
| 5148 | |
| 5149 | // This does not apply to x86 because of how it handles varargs (it never |
| 5150 | // reports the arguments from the explicit method signature). |
| 5151 | // |
| 5152 | #ifndef _TARGET_X86_ |
| 5153 | // |
| 5154 | // SPECIAL CASE: |
| 5155 | // IL marshaling stubs have signatures that are marked as vararg, |
| 5156 | // but they are callsite sigs that actually contain complete sig |
| 5157 | // info. There are two reasons for this: |
| 5158 | // 1) the stub callsites expect the method to be vararg |
| 5159 | // 2) the marshaling stub must have full sig info so that |
| 5160 | // it can do a ldarg.N on the arguments it needs to marshal. |
| 5161 | // The result of this is that the code below will report the |
| 5162 | // variable arguments twice--once from the va sig cookie and once |
| 5163 | // from the explicit method signature (in the method's gc info). |
| 5164 | // |
| 5165 | // This fix to this is to early out of the va sig cookie reporting |
| 5166 | // in this special case. |
| 5167 | // |
| 5168 | if (pMD->IsILStub()) |
| 5169 | { |
| 5170 | return true; |
| 5171 | } |
| 5172 | #endif // !_TARGET_X86_ |
| 5173 | |
| 5174 | LOG((LF_GCINFO, LL_INFO100, "Reporting incoming vararg GC refs\n" )); |
| 5175 | |
| 5176 | // Find the offset of the VASigCookie. It's offsets are relative to |
| 5177 | // the base of a FramedMethodFrame. |
| 5178 | int VASigCookieOffset; |
| 5179 | |
| 5180 | { |
| 5181 | MetaSig msigFindVASig(pMD); |
| 5182 | ArgIterator argit(&msigFindVASig); |
| 5183 | VASigCookieOffset = argit.GetVASigCookieOffset() - TransitionBlock::GetOffsetOfArgs(); |
| 5184 | } |
| 5185 | |
| 5186 | PTR_BYTE prevSP = dac_cast<PTR_BYTE>(GetCallerSp(pRD)); |
| 5187 | |
| 5188 | _ASSERTE(prevSP + VASigCookieOffset >= dac_cast<PTR_BYTE>(GetSP(pRD->pCurrentContext))); |
| 5189 | |
| 5190 | #if defined(_DEBUG) && !defined(DACCESS_COMPILE) |
| 5191 | // Note that I really want to say hCallBack is a GCCONTEXT, but this is pretty close |
| 5192 | extern void GcEnumObject(LPVOID pData, OBJECTREF *pObj, uint32_t flags); |
| 5193 | _ASSERTE((void*) GcEnumObject == pCallBack); |
| 5194 | #endif // _DEBUG && !DACCESS_COMPILE |
| 5195 | GCCONTEXT *pCtx = (GCCONTEXT *) hCallBack; |
| 5196 | |
| 5197 | // For varargs, look up the signature using the varArgSig token passed on the stack |
| 5198 | PTR_VASigCookie varArgSig = *PTR_PTR_VASigCookie(prevSP + VASigCookieOffset); |
| 5199 | |
| 5200 | promoteVarArgs(prevSP, varArgSig, pCtx); |
| 5201 | } |
| 5202 | |
| 5203 | return true; |
| 5204 | |
| 5205 | } |
| 5206 | |
| 5207 | #endif // USE_GC_INFO_DECODER |
| 5208 | #endif // !CROSSGEN_COMPILE |
| 5209 | |
| 5210 | #ifdef _TARGET_X86_ |
| 5211 | /***************************************************************************** |
| 5212 | * |
| 5213 | * Return the address of the local security object reference |
| 5214 | * using data that was previously cached before in UnwindStackFrame |
| 5215 | * using StackwalkCacheUnwindInfo |
| 5216 | */ |
| 5217 | |
| 5218 | OBJECTREF* EECodeManager::GetAddrOfSecurityObjectFromCachedInfo(PREGDISPLAY pRD, StackwalkCacheUnwindInfo * stackwalkCacheUnwindInfo) |
| 5219 | { |
| 5220 | LIMITED_METHOD_CONTRACT; |
| 5221 | size_t securityObjectOffset = stackwalkCacheUnwindInfo->securityObjectOffset; |
| 5222 | |
| 5223 | _ASSERTE(securityObjectOffset != 0); |
| 5224 | // We pretend that filters are ESP-based methods in UnwindEbpDoubleAlignFrame(). |
| 5225 | // Hence we cannot enforce this assert. |
| 5226 | // _ASSERTE(stackwalkCacheUnwindInfo->fUseEbpAsFrameReg); |
| 5227 | return (OBJECTREF *) (size_t) (*pRD->GetEbpLocation() - (securityObjectOffset * sizeof(void*))); |
| 5228 | } |
| 5229 | #endif // _TARGET_X86_ |
| 5230 | |
| 5231 | #if !defined(DACCESS_COMPILE) && !defined(CROSSGEN_COMPILE) |
| 5232 | OBJECTREF* EECodeManager::GetAddrOfSecurityObject(CrawlFrame *pCF) |
| 5233 | { |
| 5234 | CONTRACTL { |
| 5235 | NOTHROW; |
| 5236 | GC_NOTRIGGER; |
| 5237 | } CONTRACTL_END; |
| 5238 | |
| 5239 | REGDISPLAY* pRD = pCF->GetRegisterSet(); |
| 5240 | IJitManager* pJitMan = pCF->GetJitManager(); |
| 5241 | METHODTOKEN methodToken = pCF->GetMethodToken(); |
| 5242 | unsigned relOffset = pCF->GetRelOffset(); |
| 5243 | CodeManState* pState = pCF->GetCodeManState(); |
| 5244 | |
| 5245 | GCInfoToken gcInfoToken = pJitMan->GetGCInfoToken(methodToken); |
| 5246 | |
| 5247 | _ASSERTE(sizeof(CodeManStateBuf) <= sizeof(pState->stateBuf)); |
| 5248 | |
| 5249 | #ifndef USE_GC_INFO_DECODER |
| 5250 | CodeManStateBuf * stateBuf = (CodeManStateBuf*)pState->stateBuf; |
| 5251 | |
| 5252 | /* Extract the necessary information from the info block header */ |
| 5253 | stateBuf->hdrInfoSize = (DWORD)DecodeGCHdrInfo(gcInfoToken, // <TODO>truncation</TODO> |
| 5254 | relOffset, |
| 5255 | &stateBuf->hdrInfoBody); |
| 5256 | |
| 5257 | pState->dwIsSet = 1; |
| 5258 | if (stateBuf->hdrInfoBody.securityCheck) |
| 5259 | { |
| 5260 | _ASSERTE(stateBuf->hdrInfoBody.ebpFrame); |
| 5261 | if(stateBuf->hdrInfoBody.prologOffs == hdrInfo::NOT_IN_PROLOG && |
| 5262 | stateBuf->hdrInfoBody.epilogOffs == hdrInfo::NOT_IN_EPILOG) |
| 5263 | { |
| 5264 | return (OBJECTREF *)(size_t)(*pRD->GetEbpLocation() - GetSecurityObjectOffset(&stateBuf->hdrInfoBody)); |
| 5265 | } |
| 5266 | } |
| 5267 | #else // !USE_GC_INFO_DECODER |
| 5268 | |
| 5269 | GcInfoDecoder gcInfoDecoder( |
| 5270 | gcInfoToken, |
| 5271 | DECODE_SECURITY_OBJECT |
| 5272 | ); |
| 5273 | |
| 5274 | INT32 spOffset = gcInfoDecoder.GetSecurityObjectStackSlot(); |
| 5275 | if( spOffset != NO_SECURITY_OBJECT ) |
| 5276 | { |
| 5277 | UINT_PTR uCallerSP = GetCallerSp(pRD); |
| 5278 | |
| 5279 | if (pCF->IsFunclet()) |
| 5280 | { |
| 5281 | if (!pCF->IsFilterFunclet()) |
| 5282 | { |
| 5283 | // Cannot retrieve the security object for a non-filter funclet. |
| 5284 | return NULL; |
| 5285 | } |
| 5286 | |
| 5287 | DWORD dwParentOffset = 0; |
| 5288 | UINT_PTR uParentCallerSP = 0; |
| 5289 | |
| 5290 | // If this is a filter funclet, retrieve the information of the parent method |
| 5291 | // and use that to find the security object. |
| 5292 | ExceptionTracker::FindParentStackFrameEx(pCF, &dwParentOffset, &uParentCallerSP); |
| 5293 | |
| 5294 | relOffset = dwParentOffset; |
| 5295 | uCallerSP = uParentCallerSP; |
| 5296 | } |
| 5297 | |
| 5298 | // Security object is always live anyplace we can throw or take a GC |
| 5299 | OBJECTREF* pSlot = (OBJECTREF*) (spOffset + uCallerSP); |
| 5300 | return pSlot; |
| 5301 | } |
| 5302 | #endif // USE_GC_INFO_DECODER |
| 5303 | |
| 5304 | return NULL; |
| 5305 | } |
| 5306 | #endif // !DACCESS_COMPILE && !CROSSGEN_COMPILE |
| 5307 | |
| 5308 | #ifndef CROSSGEN_COMPILE |
| 5309 | /***************************************************************************** |
| 5310 | * |
| 5311 | * Returns "this" pointer if it is a non-static method |
| 5312 | * AND the object is still alive. |
| 5313 | * Returns NULL in all other cases. |
| 5314 | * Unfortunately, the semantics of this call currently depend on the architecture. |
| 5315 | * On non-x86 architectures, where we use GcInfo{En,De}Coder, this returns NULL for |
| 5316 | * all cases except the case where the GenericsContext is determined via "this." On x86, |
| 5317 | * it will definitely return a non-NULL value in that case, and for synchronized methods; |
| 5318 | * it may also return a non-NULL value for other cases, depending on how the method is compiled. |
| 5319 | */ |
| 5320 | OBJECTREF EECodeManager::GetInstance( PREGDISPLAY pContext, |
| 5321 | EECodeInfo* pCodeInfo) |
| 5322 | { |
| 5323 | CONTRACTL { |
| 5324 | NOTHROW; |
| 5325 | GC_NOTRIGGER; |
| 5326 | MODE_COOPERATIVE; |
| 5327 | SUPPORTS_DAC; |
| 5328 | } CONTRACTL_END; |
| 5329 | |
| 5330 | #ifndef USE_GC_INFO_DECODER |
| 5331 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
| 5332 | unsigned relOffset = pCodeInfo->GetRelOffset(); |
| 5333 | |
| 5334 | PTR_CBYTE table = PTR_CBYTE(gcInfoToken.Info); |
| 5335 | hdrInfo info; |
| 5336 | unsigned stackDepth; |
| 5337 | TADDR taArgBase; |
| 5338 | unsigned count; |
| 5339 | |
| 5340 | /* Extract the necessary information from the info block header */ |
| 5341 | |
| 5342 | table += DecodeGCHdrInfo(gcInfoToken, |
| 5343 | relOffset, |
| 5344 | &info); |
| 5345 | |
| 5346 | // We do not have accurate information in the prolog or the epilog |
| 5347 | if (info.prologOffs != hdrInfo::NOT_IN_PROLOG || |
| 5348 | info.epilogOffs != hdrInfo::NOT_IN_EPILOG) |
| 5349 | { |
| 5350 | return NULL; |
| 5351 | } |
| 5352 | |
| 5353 | if (info.interruptible) |
| 5354 | { |
| 5355 | stackDepth = scanArgRegTableI(skipToArgReg(info, table), relOffset, relOffset, &info); |
| 5356 | } |
| 5357 | else |
| 5358 | { |
| 5359 | stackDepth = scanArgRegTable (skipToArgReg(info, table), (unsigned)relOffset, &info); |
| 5360 | } |
| 5361 | |
| 5362 | if (info.ebpFrame) |
| 5363 | { |
| 5364 | _ASSERTE(stackDepth == 0); |
| 5365 | taArgBase = GetRegdisplayFP(pContext); |
| 5366 | } |
| 5367 | else |
| 5368 | { |
| 5369 | taArgBase = pContext->SP + stackDepth; |
| 5370 | } |
| 5371 | |
| 5372 | // Only synchronized methods and generic code that accesses |
| 5373 | // the type context via "this" need to report "this". |
| 5374 | // If it's reported for other methods, it's probably |
| 5375 | // done incorrectly. So flag such cases. |
| 5376 | _ASSERTE(info.thisPtrResult == REGI_NA || |
| 5377 | pCodeInfo->GetMethodDesc()->IsSynchronized() || |
| 5378 | pCodeInfo->GetMethodDesc()->AcquiresInstMethodTableFromThis()); |
| 5379 | |
| 5380 | if (info.thisPtrResult != REGI_NA) |
| 5381 | { |
| 5382 | // the register contains the Object pointer. |
| 5383 | TADDR uRegValue = *(reinterpret_cast<TADDR *>(getCalleeSavedReg(pContext, info.thisPtrResult))); |
| 5384 | return ObjectToOBJECTREF(PTR_Object(uRegValue)); |
| 5385 | } |
| 5386 | |
| 5387 | #if VERIFY_GC_TABLES |
| 5388 | _ASSERTE(*castto(table, unsigned short *)++ == 0xBEEF); |
| 5389 | #endif |
| 5390 | |
| 5391 | #ifndef WIN64EXCEPTIONS |
| 5392 | /* Parse the untracked frame variable table */ |
| 5393 | |
| 5394 | /* The 'this' pointer can never be located in the untracked table */ |
| 5395 | /* as we only allow pinned and byrefs in the untracked table */ |
| 5396 | |
| 5397 | count = info.untrackedCnt; |
| 5398 | while (count-- > 0) |
| 5399 | { |
| 5400 | fastSkipSigned(table); |
| 5401 | } |
| 5402 | |
| 5403 | /* Look for the 'this' pointer in the frame variable lifetime table */ |
| 5404 | |
| 5405 | count = info.varPtrTableSize; |
| 5406 | unsigned tmpOffs = 0; |
| 5407 | while (count-- > 0) |
| 5408 | { |
| 5409 | unsigned varOfs = fastDecodeUnsigned(table); |
| 5410 | unsigned begOfs = tmpOffs + fastDecodeUnsigned(table); |
| 5411 | unsigned endOfs = begOfs + fastDecodeUnsigned(table); |
| 5412 | _ASSERTE(!info.ebpFrame || (varOfs!=0)); |
| 5413 | /* Is this variable live right now? */ |
| 5414 | if (((unsigned)relOffset >= begOfs) && ((unsigned)relOffset < endOfs)) |
| 5415 | { |
| 5416 | /* Does it contain the 'this' pointer */ |
| 5417 | if (varOfs & this_OFFSET_FLAG) |
| 5418 | { |
| 5419 | unsigned ofs = varOfs & ~OFFSET_MASK; |
| 5420 | |
| 5421 | /* Tracked locals for EBP frames are always at negative offsets */ |
| 5422 | |
| 5423 | if (info.ebpFrame) |
| 5424 | taArgBase -= ofs; |
| 5425 | else |
| 5426 | taArgBase += ofs; |
| 5427 | |
| 5428 | return (OBJECTREF)(size_t)(*PTR_DWORD(taArgBase)); |
| 5429 | } |
| 5430 | } |
| 5431 | tmpOffs = begOfs; |
| 5432 | } |
| 5433 | |
| 5434 | #if VERIFY_GC_TABLES |
| 5435 | _ASSERTE(*castto(table, unsigned short *) == 0xBABE); |
| 5436 | #endif |
| 5437 | |
| 5438 | #else // WIN64EXCEPTIONS |
| 5439 | if (pCodeInfo->GetMethodDesc()->AcquiresInstMethodTableFromThis()) // Generic Context is "this" |
| 5440 | { |
| 5441 | // Untracked table must have at least one entry - this pointer |
| 5442 | _ASSERTE(info.untrackedCnt > 0); |
| 5443 | |
| 5444 | // The first entry must be "this" pointer |
| 5445 | int stkOffs = fastDecodeSigned(table); |
| 5446 | taArgBase -= stkOffs & ~OFFSET_MASK; |
| 5447 | return (OBJECTREF)(size_t)(*PTR_DWORD(taArgBase)); |
| 5448 | } |
| 5449 | #endif // WIN64EXCEPTIONS |
| 5450 | |
| 5451 | return NULL; |
| 5452 | #else // !USE_GC_INFO_DECODER |
| 5453 | PTR_VOID token = EECodeManager::GetExactGenericsToken(pContext, pCodeInfo); |
| 5454 | |
| 5455 | OBJECTREF oRef = ObjectToOBJECTREF(PTR_Object(dac_cast<TADDR>(token))); |
| 5456 | VALIDATEOBJECTREF(oRef); |
| 5457 | return oRef; |
| 5458 | #endif // USE_GC_INFO_DECODER |
| 5459 | } |
| 5460 | #endif // !CROSSGEN_COMPILE |
| 5461 | |
| 5462 | GenericParamContextType EECodeManager::GetParamContextType(PREGDISPLAY pContext, |
| 5463 | EECodeInfo * pCodeInfo) |
| 5464 | { |
| 5465 | LIMITED_METHOD_DAC_CONTRACT; |
| 5466 | |
| 5467 | #ifndef USE_GC_INFO_DECODER |
| 5468 | /* Extract the necessary information from the info block header */ |
| 5469 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
| 5470 | PTR_VOID methodInfoPtr = pCodeInfo->GetGCInfo(); |
| 5471 | unsigned relOffset = pCodeInfo->GetRelOffset(); |
| 5472 | |
| 5473 | hdrInfo info; |
| 5474 | PTR_CBYTE table = PTR_CBYTE(gcInfoToken.Info); |
| 5475 | table += DecodeGCHdrInfo(gcInfoToken, |
| 5476 | relOffset, |
| 5477 | &info); |
| 5478 | |
| 5479 | if (!info.genericsContext || |
| 5480 | info.prologOffs != hdrInfo::NOT_IN_PROLOG || |
| 5481 | info.epilogOffs != hdrInfo::NOT_IN_EPILOG) |
| 5482 | { |
| 5483 | return GENERIC_PARAM_CONTEXT_NONE; |
| 5484 | } |
| 5485 | |
| 5486 | if (info.genericsContextIsMethodDesc) |
| 5487 | { |
| 5488 | return GENERIC_PARAM_CONTEXT_METHODDESC; |
| 5489 | } |
| 5490 | |
| 5491 | return GENERIC_PARAM_CONTEXT_METHODTABLE; |
| 5492 | |
| 5493 | // On x86 the generic param context parameter is never this. |
| 5494 | #else // !USE_GC_INFO_DECODER |
| 5495 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
| 5496 | |
| 5497 | GcInfoDecoder gcInfoDecoder( |
| 5498 | gcInfoToken, |
| 5499 | GcInfoDecoderFlags (DECODE_GENERICS_INST_CONTEXT) |
| 5500 | ); |
| 5501 | |
| 5502 | INT32 spOffsetGenericsContext = gcInfoDecoder.GetGenericsInstContextStackSlot(); |
| 5503 | if (spOffsetGenericsContext != NO_GENERICS_INST_CONTEXT) |
| 5504 | { |
| 5505 | if (gcInfoDecoder.HasMethodDescGenericsInstContext()) |
| 5506 | { |
| 5507 | return GENERIC_PARAM_CONTEXT_METHODDESC; |
| 5508 | } |
| 5509 | else if (gcInfoDecoder.HasMethodTableGenericsInstContext()) |
| 5510 | { |
| 5511 | return GENERIC_PARAM_CONTEXT_METHODTABLE; |
| 5512 | } |
| 5513 | return GENERIC_PARAM_CONTEXT_THIS; |
| 5514 | } |
| 5515 | return GENERIC_PARAM_CONTEXT_NONE; |
| 5516 | #endif // USE_GC_INFO_DECODER |
| 5517 | } |
| 5518 | |
| 5519 | #ifndef CROSSGEN_COMPILE |
| 5520 | /***************************************************************************** |
| 5521 | * |
| 5522 | * Returns the extra argument passed to to shared generic code if it is still alive. |
| 5523 | * Returns NULL in all other cases. |
| 5524 | */ |
| 5525 | PTR_VOID EECodeManager::GetParamTypeArg(PREGDISPLAY pContext, |
| 5526 | EECodeInfo * pCodeInfo) |
| 5527 | |
| 5528 | { |
| 5529 | LIMITED_METHOD_DAC_CONTRACT; |
| 5530 | |
| 5531 | #ifndef USE_GC_INFO_DECODER |
| 5532 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
| 5533 | PTR_VOID methodInfoPtr = pCodeInfo->GetGCInfo(); |
| 5534 | unsigned relOffset = pCodeInfo->GetRelOffset(); |
| 5535 | |
| 5536 | /* Extract the necessary information from the info block header */ |
| 5537 | hdrInfo info; |
| 5538 | PTR_CBYTE table = PTR_CBYTE(gcInfoToken.Info); |
| 5539 | table += DecodeGCHdrInfo(gcInfoToken, |
| 5540 | relOffset, |
| 5541 | &info); |
| 5542 | |
| 5543 | if (!info.genericsContext || |
| 5544 | info.prologOffs != hdrInfo::NOT_IN_PROLOG || |
| 5545 | info.epilogOffs != hdrInfo::NOT_IN_EPILOG) |
| 5546 | { |
| 5547 | return NULL; |
| 5548 | } |
| 5549 | |
| 5550 | TADDR fp = GetRegdisplayFP(pContext); |
| 5551 | TADDR taParamTypeArg = *PTR_TADDR(fp - GetParamTypeArgOffset(&info)); |
| 5552 | return PTR_VOID(taParamTypeArg); |
| 5553 | |
| 5554 | #else // !USE_GC_INFO_DECODER |
| 5555 | return EECodeManager::GetExactGenericsToken(pContext, pCodeInfo); |
| 5556 | |
| 5557 | #endif // USE_GC_INFO_DECODER |
| 5558 | } |
| 5559 | #endif // !CROSSGEN_COMPILE |
| 5560 | |
| 5561 | #if defined(WIN64EXCEPTIONS) && defined(USE_GC_INFO_DECODER) && !defined(CROSSGEN_COMPILE) |
| 5562 | /* |
| 5563 | Returns the generics token. This is used by GetInstance() and GetParamTypeArg() on WIN64. |
| 5564 | */ |
| 5565 | //static |
| 5566 | PTR_VOID EECodeManager::GetExactGenericsToken(PREGDISPLAY pContext, |
| 5567 | EECodeInfo * pCodeInfo) |
| 5568 | { |
| 5569 | LIMITED_METHOD_DAC_CONTRACT; |
| 5570 | |
| 5571 | return EECodeManager::GetExactGenericsToken(GetCallerSp(pContext), pCodeInfo); |
| 5572 | } |
| 5573 | |
| 5574 | //static |
| 5575 | PTR_VOID EECodeManager::GetExactGenericsToken(SIZE_T baseStackSlot, |
| 5576 | EECodeInfo * pCodeInfo) |
| 5577 | { |
| 5578 | LIMITED_METHOD_DAC_CONTRACT; |
| 5579 | |
| 5580 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
| 5581 | |
| 5582 | GcInfoDecoder gcInfoDecoder( |
| 5583 | gcInfoToken, |
| 5584 | GcInfoDecoderFlags (DECODE_PSP_SYM | DECODE_GENERICS_INST_CONTEXT) |
| 5585 | ); |
| 5586 | |
| 5587 | INT32 spOffsetGenericsContext = gcInfoDecoder.GetGenericsInstContextStackSlot(); |
| 5588 | if (spOffsetGenericsContext != NO_GENERICS_INST_CONTEXT) |
| 5589 | { |
| 5590 | |
| 5591 | TADDR taSlot; |
| 5592 | if (pCodeInfo->IsFunclet()) |
| 5593 | { |
| 5594 | INT32 spOffsetPSPSym = gcInfoDecoder.GetPSPSymStackSlot(); |
| 5595 | _ASSERTE(spOffsetPSPSym != NO_PSP_SYM); |
| 5596 | |
| 5597 | #ifdef _TARGET_AMD64_ |
| 5598 | // On AMD64 the spOffsetPSPSym is relative to the "Initial SP": the stack |
| 5599 | // pointer at the end of the prolog before and dynamic allocations, so it |
| 5600 | // can be the same for funclets and the main function. |
| 5601 | // However, we have a caller SP, so we need to convert |
| 5602 | baseStackSlot -= pCodeInfo->GetFixedStackSize(); |
| 5603 | |
| 5604 | #endif // _TARGET_AMD64_ |
| 5605 | |
| 5606 | // For funclets we have to do an extra dereference to get the PSPSym first. |
| 5607 | TADDR newBaseStackSlot = *PTR_TADDR(baseStackSlot + spOffsetPSPSym); |
| 5608 | |
| 5609 | #ifdef _TARGET_AMD64_ |
| 5610 | // On AMD64 the PSPSym stores the "Initial SP": the stack pointer at the end of |
| 5611 | // prolog, before any dynamic allocations. |
| 5612 | // However, the GenericsContext offset is relative to the caller SP for all |
| 5613 | // platforms. So here we adjust to convert AMD64's initial sp to a caller SP. |
| 5614 | // But we have to be careful to use the main function's EECodeInfo, not the |
| 5615 | // funclet's EECodeInfo because they have different stack sizes! |
| 5616 | newBaseStackSlot += pCodeInfo->GetMainFunctionInfo().GetFixedStackSize(); |
| 5617 | #endif // _TARGET_AMD64_ |
| 5618 | |
| 5619 | taSlot = (TADDR)( spOffsetGenericsContext + newBaseStackSlot ); |
| 5620 | } |
| 5621 | else |
| 5622 | { |
| 5623 | taSlot = (TADDR)( spOffsetGenericsContext + baseStackSlot ); |
| 5624 | } |
| 5625 | TADDR taExactGenericsToken = *PTR_TADDR(taSlot); |
| 5626 | return PTR_VOID(taExactGenericsToken); |
| 5627 | } |
| 5628 | return NULL; |
| 5629 | } |
| 5630 | |
| 5631 | |
| 5632 | #endif // WIN64EXCEPTIONS && USE_GC_INFO_DECODER && !CROSSGEN_COMPILE |
| 5633 | |
| 5634 | #ifndef CROSSGEN_COMPILE |
| 5635 | /*****************************************************************************/ |
| 5636 | |
| 5637 | void * EECodeManager::GetGSCookieAddr(PREGDISPLAY pContext, |
| 5638 | EECodeInfo * pCodeInfo, |
| 5639 | CodeManState * pState) |
| 5640 | { |
| 5641 | CONTRACTL { |
| 5642 | NOTHROW; |
| 5643 | GC_NOTRIGGER; |
| 5644 | } CONTRACTL_END; |
| 5645 | |
| 5646 | _ASSERTE(sizeof(CodeManStateBuf) <= sizeof(pState->stateBuf)); |
| 5647 | |
| 5648 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
| 5649 | unsigned relOffset = pCodeInfo->GetRelOffset(); |
| 5650 | |
| 5651 | #ifdef WIN64EXCEPTIONS |
| 5652 | if (pCodeInfo->IsFunclet()) |
| 5653 | { |
| 5654 | return NULL; |
| 5655 | } |
| 5656 | #endif |
| 5657 | |
| 5658 | #ifndef USE_GC_INFO_DECODER |
| 5659 | CodeManStateBuf * stateBuf = (CodeManStateBuf*)pState->stateBuf; |
| 5660 | |
| 5661 | /* Extract the necessary information from the info block header */ |
| 5662 | hdrInfo * info = &stateBuf->hdrInfoBody; |
| 5663 | stateBuf->hdrInfoSize = (DWORD)DecodeGCHdrInfo(gcInfoToken, // <TODO>truncation</TODO> |
| 5664 | relOffset, |
| 5665 | info); |
| 5666 | |
| 5667 | pState->dwIsSet = 1; |
| 5668 | |
| 5669 | if (info->prologOffs != hdrInfo::NOT_IN_PROLOG || |
| 5670 | info->epilogOffs != hdrInfo::NOT_IN_EPILOG || |
| 5671 | info->gsCookieOffset == INVALID_GS_COOKIE_OFFSET) |
| 5672 | { |
| 5673 | return NULL; |
| 5674 | } |
| 5675 | |
| 5676 | if (info->ebpFrame) |
| 5677 | { |
| 5678 | DWORD curEBP = GetRegdisplayFP(pContext); |
| 5679 | |
| 5680 | return PVOID(SIZE_T(curEBP - info->gsCookieOffset)); |
| 5681 | } |
| 5682 | else |
| 5683 | { |
| 5684 | PTR_CBYTE table = PTR_CBYTE(gcInfoToken.Info) + stateBuf->hdrInfoSize; |
| 5685 | unsigned argSize = GetPushedArgSize(info, table, relOffset); |
| 5686 | |
| 5687 | return PVOID(SIZE_T(pContext->SP + argSize + info->gsCookieOffset)); |
| 5688 | } |
| 5689 | |
| 5690 | #else // !USE_GC_INFO_DECODER |
| 5691 | GcInfoDecoder gcInfoDecoder( |
| 5692 | gcInfoToken, |
| 5693 | DECODE_GS_COOKIE |
| 5694 | ); |
| 5695 | |
| 5696 | INT32 spOffsetGSCookie = gcInfoDecoder.GetGSCookieStackSlot(); |
| 5697 | if (spOffsetGSCookie != NO_GS_COOKIE) |
| 5698 | { |
| 5699 | if(relOffset >= gcInfoDecoder.GetGSCookieValidRangeStart() |
| 5700 | && relOffset < gcInfoDecoder.GetGSCookieValidRangeEnd()) |
| 5701 | { |
| 5702 | SIZE_T baseStackSlot = GetCallerSp(pContext); |
| 5703 | return (LPVOID)( spOffsetGSCookie + baseStackSlot ); |
| 5704 | } |
| 5705 | } |
| 5706 | return NULL; |
| 5707 | |
| 5708 | #endif // USE_GC_INFO_DECODER |
| 5709 | } |
| 5710 | #endif // !CROSSGEN_COMPILE |
| 5711 | |
| 5712 | #ifndef USE_GC_INFO_DECODER |
| 5713 | /***************************************************************************** |
| 5714 | * |
| 5715 | * Returns true if the given IP is in the given method's prolog or epilog. |
| 5716 | */ |
| 5717 | bool EECodeManager::IsInPrologOrEpilog(DWORD relPCoffset, |
| 5718 | GCInfoToken gcInfoToken, |
| 5719 | size_t* prologSize) |
| 5720 | { |
| 5721 | CONTRACTL { |
| 5722 | NOTHROW; |
| 5723 | GC_NOTRIGGER; |
| 5724 | } CONTRACTL_END; |
| 5725 | |
| 5726 | hdrInfo info; |
| 5727 | |
| 5728 | DecodeGCHdrInfo(gcInfoToken, relPCoffset, &info); |
| 5729 | |
| 5730 | if (prologSize) |
| 5731 | *prologSize = info.prologSize; |
| 5732 | |
| 5733 | return ((info.prologOffs != hdrInfo::NOT_IN_PROLOG) || |
| 5734 | (info.epilogOffs != hdrInfo::NOT_IN_EPILOG)); |
| 5735 | } |
| 5736 | |
| 5737 | /***************************************************************************** |
| 5738 | * |
| 5739 | * Returns true if the given IP is in the synchronized region of the method (valid for synchronized functions only) |
| 5740 | */ |
| 5741 | bool EECodeManager::IsInSynchronizedRegion(DWORD relOffset, |
| 5742 | GCInfoToken gcInfoToken, |
| 5743 | unsigned flags) |
| 5744 | { |
| 5745 | CONTRACTL { |
| 5746 | NOTHROW; |
| 5747 | GC_NOTRIGGER; |
| 5748 | } CONTRACTL_END; |
| 5749 | |
| 5750 | hdrInfo info; |
| 5751 | |
| 5752 | DecodeGCHdrInfo(gcInfoToken, relOffset, &info); |
| 5753 | |
| 5754 | // We should be called only for synchronized methods |
| 5755 | _ASSERTE(info.syncStartOffset != INVALID_SYNC_OFFSET && info.syncEndOffset != INVALID_SYNC_OFFSET); |
| 5756 | |
| 5757 | _ASSERTE(info.syncStartOffset < info.syncEndOffset); |
| 5758 | _ASSERTE(info.epilogCnt <= 1); |
| 5759 | _ASSERTE(info.epilogCnt == 0 || info.syncEndOffset <= info.syncEpilogStart); |
| 5760 | |
| 5761 | return (info.syncStartOffset < relOffset && relOffset < info.syncEndOffset) || |
| 5762 | (info.syncStartOffset == relOffset && (flags & (ActiveStackFrame|ExecutionAborted))) || |
| 5763 | // Synchronized methods have at most one epilog. The epilog does not have to be at the end of the method though. |
| 5764 | // Everything after the epilog is also in synchronized region. |
| 5765 | (info.epilogCnt != 0 && info.syncEpilogStart + info.epilogSize <= relOffset); |
| 5766 | } |
| 5767 | #endif // !USE_GC_INFO_DECODER |
| 5768 | |
| 5769 | /***************************************************************************** |
| 5770 | * |
| 5771 | * Returns the size of a given function. |
| 5772 | */ |
| 5773 | size_t EECodeManager::GetFunctionSize(GCInfoToken gcInfoToken) |
| 5774 | { |
| 5775 | CONTRACTL { |
| 5776 | NOTHROW; |
| 5777 | GC_NOTRIGGER; |
| 5778 | SUPPORTS_DAC; |
| 5779 | } CONTRACTL_END; |
| 5780 | |
| 5781 | #ifndef USE_GC_INFO_DECODER |
| 5782 | hdrInfo info; |
| 5783 | |
| 5784 | DecodeGCHdrInfo(gcInfoToken, 0, &info); |
| 5785 | |
| 5786 | return info.methodSize; |
| 5787 | #else // !USE_GC_INFO_DECODER |
| 5788 | |
| 5789 | GcInfoDecoder gcInfoDecoder( |
| 5790 | gcInfoToken, |
| 5791 | DECODE_CODE_LENGTH |
| 5792 | ); |
| 5793 | |
| 5794 | UINT32 codeLength = gcInfoDecoder.GetCodeLength(); |
| 5795 | _ASSERTE( codeLength > 0 ); |
| 5796 | return codeLength; |
| 5797 | |
| 5798 | #endif // USE_GC_INFO_DECODER |
| 5799 | } |
| 5800 | |
| 5801 | /***************************************************************************** |
| 5802 | * |
| 5803 | * Returns the size of a given function. |
| 5804 | */ |
| 5805 | ReturnKind EECodeManager::GetReturnKind(GCInfoToken gcInfoToken) |
| 5806 | { |
| 5807 | CONTRACTL{ |
| 5808 | NOTHROW; |
| 5809 | GC_NOTRIGGER; |
| 5810 | SUPPORTS_DAC; |
| 5811 | } CONTRACTL_END; |
| 5812 | |
| 5813 | if (!gcInfoToken.IsReturnKindAvailable()) |
| 5814 | { |
| 5815 | return RT_Illegal; |
| 5816 | } |
| 5817 | |
| 5818 | #ifndef USE_GC_INFO_DECODER |
| 5819 | hdrInfo info; |
| 5820 | |
| 5821 | DecodeGCHdrInfo(gcInfoToken, 0, &info); |
| 5822 | |
| 5823 | return info.returnKind; |
| 5824 | #else // !USE_GC_INFO_DECODER |
| 5825 | |
| 5826 | GcInfoDecoder gcInfoDecoder(gcInfoToken, DECODE_RETURN_KIND); |
| 5827 | return gcInfoDecoder.GetReturnKind(); |
| 5828 | |
| 5829 | #endif // USE_GC_INFO_DECODER |
| 5830 | } |
| 5831 | |
| 5832 | #ifndef USE_GC_INFO_DECODER |
| 5833 | /***************************************************************************** |
| 5834 | * |
| 5835 | * Returns the size of the frame of the given function. |
| 5836 | */ |
| 5837 | unsigned int EECodeManager::GetFrameSize(GCInfoToken gcInfoToken) |
| 5838 | { |
| 5839 | CONTRACTL { |
| 5840 | NOTHROW; |
| 5841 | GC_NOTRIGGER; |
| 5842 | } CONTRACTL_END; |
| 5843 | |
| 5844 | hdrInfo info; |
| 5845 | |
| 5846 | DecodeGCHdrInfo(gcInfoToken, 0, &info); |
| 5847 | |
| 5848 | // currently only used by E&C callers need to know about doubleAlign |
| 5849 | // in all likelyhood |
| 5850 | _ASSERTE(!info.doubleAlign); |
| 5851 | return info.stackSize; |
| 5852 | } |
| 5853 | #endif // USE_GC_INFO_DECODER |
| 5854 | |
| 5855 | #ifndef DACCESS_COMPILE |
| 5856 | |
| 5857 | /*****************************************************************************/ |
| 5858 | |
| 5859 | #ifndef WIN64EXCEPTIONS |
| 5860 | const BYTE* EECodeManager::GetFinallyReturnAddr(PREGDISPLAY pReg) |
| 5861 | { |
| 5862 | LIMITED_METHOD_CONTRACT; |
| 5863 | |
| 5864 | return *(const BYTE**)(size_t)(GetRegdisplaySP(pReg)); |
| 5865 | } |
| 5866 | |
| 5867 | BOOL EECodeManager::IsInFilter(GCInfoToken gcInfoToken, |
| 5868 | unsigned offset, |
| 5869 | PCONTEXT pCtx, |
| 5870 | DWORD curNestLevel) |
| 5871 | { |
| 5872 | CONTRACTL { |
| 5873 | NOTHROW; |
| 5874 | GC_NOTRIGGER; |
| 5875 | } CONTRACTL_END; |
| 5876 | |
| 5877 | /* Extract the necessary information from the info block header */ |
| 5878 | |
| 5879 | hdrInfo info; |
| 5880 | |
| 5881 | DecodeGCHdrInfo(gcInfoToken, |
| 5882 | offset, |
| 5883 | &info); |
| 5884 | |
| 5885 | /* make sure that we have an ebp stack frame */ |
| 5886 | |
| 5887 | _ASSERTE(info.ebpFrame); |
| 5888 | _ASSERTE(info.handlers); // <TODO> This will alway be set. Remove it</TODO> |
| 5889 | |
| 5890 | TADDR baseSP; |
| 5891 | DWORD nestingLevel; |
| 5892 | |
| 5893 | FrameType frameType = GetHandlerFrameInfo(&info, pCtx->Ebp, |
| 5894 | pCtx->Esp, (DWORD) IGNORE_VAL, |
| 5895 | &baseSP, &nestingLevel); |
| 5896 | _ASSERTE(frameType != FR_INVALID); |
| 5897 | |
| 5898 | // _ASSERTE(nestingLevel == curNestLevel); |
| 5899 | |
| 5900 | return frameType == FR_FILTER; |
| 5901 | } |
| 5902 | |
| 5903 | |
| 5904 | BOOL EECodeManager::LeaveFinally(GCInfoToken gcInfoToken, |
| 5905 | unsigned offset, |
| 5906 | PCONTEXT pCtx) |
| 5907 | { |
| 5908 | CONTRACTL { |
| 5909 | NOTHROW; |
| 5910 | GC_NOTRIGGER; |
| 5911 | } CONTRACTL_END; |
| 5912 | |
| 5913 | |
| 5914 | hdrInfo info; |
| 5915 | |
| 5916 | DecodeGCHdrInfo(gcInfoToken, |
| 5917 | offset, |
| 5918 | &info); |
| 5919 | |
| 5920 | DWORD nestingLevel; |
| 5921 | GetHandlerFrameInfo(&info, pCtx->Ebp, pCtx->Esp, (DWORD) IGNORE_VAL, NULL, &nestingLevel); |
| 5922 | |
| 5923 | // Compute an index into the stack-based table of esp values from |
| 5924 | // each level of catch block. |
| 5925 | PTR_TADDR pBaseSPslots = GetFirstBaseSPslotPtr(pCtx->Ebp, &info); |
| 5926 | PTR_TADDR pPrevSlot = pBaseSPslots - (nestingLevel - 1); |
| 5927 | |
| 5928 | /* Currently, LeaveFinally() is not used if the finally is invoked in the |
| 5929 | second pass for unwinding. So we expect the finally to be called locally */ |
| 5930 | _ASSERTE(*pPrevSlot == LCL_FINALLY_MARK); |
| 5931 | |
| 5932 | *pPrevSlot = 0; // Zero out the previous shadow ESP |
| 5933 | |
| 5934 | pCtx->Esp += sizeof(TADDR); // Pop the return value off the stack |
| 5935 | return TRUE; |
| 5936 | } |
| 5937 | |
| 5938 | void EECodeManager::LeaveCatch(GCInfoToken gcInfoToken, |
| 5939 | unsigned offset, |
| 5940 | PCONTEXT pCtx) |
| 5941 | { |
| 5942 | CONTRACTL { |
| 5943 | NOTHROW; |
| 5944 | GC_NOTRIGGER; |
| 5945 | } CONTRACTL_END; |
| 5946 | |
| 5947 | #ifdef _DEBUG |
| 5948 | TADDR baseSP; |
| 5949 | DWORD nestingLevel; |
| 5950 | bool hasInnerFilter; |
| 5951 | hdrInfo info; |
| 5952 | |
| 5953 | DecodeGCHdrInfo(gcInfoToken, offset, &info); |
| 5954 | GetHandlerFrameInfo(&info, pCtx->Ebp, pCtx->Esp, (DWORD) IGNORE_VAL, |
| 5955 | &baseSP, &nestingLevel, &hasInnerFilter); |
| 5956 | // _ASSERTE(frameType == FR_HANDLER); |
| 5957 | // _ASSERTE(pCtx->Esp == baseSP); |
| 5958 | #endif |
| 5959 | |
| 5960 | return; |
| 5961 | } |
| 5962 | #endif // !WIN64EXCEPTIONS |
| 5963 | #endif // #ifndef DACCESS_COMPILE |
| 5964 | |
| 5965 | #ifdef DACCESS_COMPILE |
| 5966 | |
| 5967 | void EECodeManager::EnumMemoryRegions(CLRDataEnumMemoryFlags flags) |
| 5968 | { |
| 5969 | DAC_ENUM_VTHIS(); |
| 5970 | } |
| 5971 | |
| 5972 | #endif // #ifdef DACCESS_COMPILE |
| 5973 | |
| 5974 | |
| 5975 | #ifdef _TARGET_X86_ |
| 5976 | /* |
| 5977 | * GetAmbientSP |
| 5978 | * |
| 5979 | * This function computes the zero-depth stack pointer for the given nesting |
| 5980 | * level within the method given. Nesting level is the the depth within |
| 5981 | * try-catch-finally blocks, and is zero based. It is up to the caller to |
| 5982 | * supply a valid nesting level value. |
| 5983 | * |
| 5984 | */ |
| 5985 | |
| 5986 | TADDR EECodeManager::GetAmbientSP(PREGDISPLAY pContext, |
| 5987 | EECodeInfo *pCodeInfo, |
| 5988 | DWORD dwRelOffset, |
| 5989 | DWORD nestingLevel, |
| 5990 | CodeManState *pState) |
| 5991 | { |
| 5992 | CONTRACTL { |
| 5993 | NOTHROW; |
| 5994 | GC_NOTRIGGER; |
| 5995 | SUPPORTS_DAC; |
| 5996 | } CONTRACTL_END; |
| 5997 | |
| 5998 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
| 5999 | |
| 6000 | _ASSERTE(sizeof(CodeManStateBuf) <= sizeof(pState->stateBuf)); |
| 6001 | CodeManStateBuf * stateBuf = (CodeManStateBuf*)pState->stateBuf; |
| 6002 | PTR_CBYTE table = PTR_CBYTE(gcInfoToken.Info); |
| 6003 | |
| 6004 | /* Extract the necessary information from the info block header */ |
| 6005 | |
| 6006 | stateBuf->hdrInfoSize = (DWORD)DecodeGCHdrInfo(gcInfoToken, |
| 6007 | dwRelOffset, |
| 6008 | &stateBuf->hdrInfoBody); |
| 6009 | table += stateBuf->hdrInfoSize; |
| 6010 | |
| 6011 | pState->dwIsSet = 1; |
| 6012 | |
| 6013 | #if defined(_DEBUG) && !defined(DACCESS_COMPILE) |
| 6014 | if (trFixContext) |
| 6015 | { |
| 6016 | printf("GetAmbientSP [%s][%s] for %s.%s: " , |
| 6017 | stateBuf->hdrInfoBody.ebpFrame?"ebp" :" " , |
| 6018 | stateBuf->hdrInfoBody.interruptible?"int" :" " , |
| 6019 | "UnknownClass" ,"UnknownMethod" ); |
| 6020 | fflush(stdout); |
| 6021 | } |
| 6022 | #endif // _DEBUG && !DACCESS_COMPILE |
| 6023 | |
| 6024 | if ((stateBuf->hdrInfoBody.prologOffs != hdrInfo::NOT_IN_PROLOG) || |
| 6025 | (stateBuf->hdrInfoBody.epilogOffs != hdrInfo::NOT_IN_EPILOG)) |
| 6026 | { |
| 6027 | return NULL; |
| 6028 | } |
| 6029 | |
| 6030 | /* make sure that we have an ebp stack frame */ |
| 6031 | |
| 6032 | if (stateBuf->hdrInfoBody.handlers) |
| 6033 | { |
| 6034 | _ASSERTE(stateBuf->hdrInfoBody.ebpFrame); |
| 6035 | |
| 6036 | TADDR baseSP; |
| 6037 | GetHandlerFrameInfo(&stateBuf->hdrInfoBody, |
| 6038 | GetRegdisplayFP(pContext), |
| 6039 | (DWORD) IGNORE_VAL, |
| 6040 | nestingLevel, |
| 6041 | &baseSP); |
| 6042 | |
| 6043 | _ASSERTE((GetRegdisplayFP(pContext) >= baseSP) && (baseSP >= GetRegdisplaySP(pContext))); |
| 6044 | |
| 6045 | return baseSP; |
| 6046 | } |
| 6047 | |
| 6048 | _ASSERTE(nestingLevel == 0); |
| 6049 | |
| 6050 | if (stateBuf->hdrInfoBody.ebpFrame) |
| 6051 | { |
| 6052 | return GetOutermostBaseFP(GetRegdisplayFP(pContext), &stateBuf->hdrInfoBody); |
| 6053 | } |
| 6054 | |
| 6055 | TADDR baseSP = GetRegdisplaySP(pContext); |
| 6056 | if (stateBuf->hdrInfoBody.interruptible) |
| 6057 | { |
| 6058 | baseSP += scanArgRegTableI(skipToArgReg(stateBuf->hdrInfoBody, table), |
| 6059 | dwRelOffset, |
| 6060 | dwRelOffset, |
| 6061 | &stateBuf->hdrInfoBody); |
| 6062 | } |
| 6063 | else |
| 6064 | { |
| 6065 | baseSP += scanArgRegTable(skipToArgReg(stateBuf->hdrInfoBody, table), |
| 6066 | dwRelOffset, |
| 6067 | &stateBuf->hdrInfoBody); |
| 6068 | } |
| 6069 | |
| 6070 | return baseSP; |
| 6071 | } |
| 6072 | #endif // _TARGET_X86_ |
| 6073 | |
| 6074 | /* |
| 6075 | Get the number of bytes used for stack parameters. |
| 6076 | This is currently only used on x86. |
| 6077 | */ |
| 6078 | |
| 6079 | // virtual |
| 6080 | ULONG32 EECodeManager::GetStackParameterSize(EECodeInfo * pCodeInfo) |
| 6081 | { |
| 6082 | CONTRACTL { |
| 6083 | NOTHROW; |
| 6084 | GC_NOTRIGGER; |
| 6085 | SUPPORTS_DAC; |
| 6086 | } CONTRACTL_END; |
| 6087 | |
| 6088 | #if defined(_TARGET_X86_) |
| 6089 | #if defined(WIN64EXCEPTIONS) |
| 6090 | if (pCodeInfo->IsFunclet()) |
| 6091 | { |
| 6092 | // Funclet has no stack argument |
| 6093 | return 0; |
| 6094 | } |
| 6095 | #endif // WIN64EXCEPTIONS |
| 6096 | |
| 6097 | GCInfoToken gcInfoToken = pCodeInfo->GetGCInfoToken(); |
| 6098 | unsigned dwOffset = pCodeInfo->GetRelOffset(); |
| 6099 | |
| 6100 | CodeManState state; |
| 6101 | state.dwIsSet = 0; |
| 6102 | |
| 6103 | _ASSERTE(sizeof(CodeManStateBuf) <= sizeof(state.stateBuf)); |
| 6104 | CodeManStateBuf * pStateBuf = reinterpret_cast<CodeManStateBuf *>(state.stateBuf); |
| 6105 | |
| 6106 | hdrInfo * pHdrInfo = &(pStateBuf->hdrInfoBody); |
| 6107 | pStateBuf->hdrInfoSize = (DWORD)DecodeGCHdrInfo(gcInfoToken, dwOffset, pHdrInfo); |
| 6108 | |
| 6109 | // We need to subtract 4 here because ESPIncrOnReturn() includes the stack slot containing the return |
| 6110 | // address. |
| 6111 | return (ULONG32)::GetStackParameterSize(pHdrInfo); |
| 6112 | |
| 6113 | #else |
| 6114 | return 0; |
| 6115 | |
| 6116 | #endif // _TARGET_X86_ |
| 6117 | } |
| 6118 | |
| 6119 | |