| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | |
| 6 | /****************************************************************************/ |
| 7 | /* gccover.cpp */ |
| 8 | /****************************************************************************/ |
| 9 | |
| 10 | /* This file holds code that is designed to test GC pointer tracking in |
| 11 | fully interruptible code. We basically do a GC everywhere we can in |
| 12 | jitted code |
| 13 | */ |
| 14 | /****************************************************************************/ |
| 15 | |
| 16 | |
| 17 | #include "common.h" |
| 18 | |
| 19 | #ifdef HAVE_GCCOVER |
| 20 | |
| 21 | #pragma warning(disable:4663) |
| 22 | |
| 23 | #include "eeconfig.h" |
| 24 | #include "gms.h" |
| 25 | #include "utsem.h" |
| 26 | #include "gccover.h" |
| 27 | #include "virtualcallstub.h" |
| 28 | #include "threadsuspend.h" |
| 29 | |
| 30 | #if defined(_TARGET_AMD64_) || defined(_TARGET_ARM_) |
| 31 | #include "gcinfodecoder.h" |
| 32 | #endif |
| 33 | |
| 34 | #include "disassembler.h" |
| 35 | |
| 36 | /****************************************************************************/ |
| 37 | |
| 38 | MethodDesc* AsMethodDesc(size_t addr); |
| 39 | static SLOT getTargetOfCall(SLOT instrPtr, PCONTEXT regs, SLOT*nextInstr); |
| 40 | bool isCallToStopForGCJitHelper(SLOT instrPtr); |
| 41 | #if defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 42 | static void replaceSafePointInstructionWithGcStressInstr(UINT32 safePointOffset, LPVOID codeStart); |
| 43 | static bool replaceInterruptibleRangesWithGcStressInstr (UINT32 startOffset, UINT32 stopOffset, LPVOID codeStart); |
| 44 | #endif |
| 45 | |
| 46 | // There is a call target instruction, try to find the MethodDesc for where target points to. |
| 47 | // Returns nullptr if it can't find it. |
| 48 | static MethodDesc* getTargetMethodDesc(PCODE target) |
| 49 | { |
| 50 | MethodDesc* targetMD = ExecutionManager::GetCodeMethodDesc(target); |
| 51 | if (targetMD != nullptr) |
| 52 | { |
| 53 | // It is JIT/NGened call. |
| 54 | return targetMD; |
| 55 | } |
| 56 | |
| 57 | VirtualCallStubManager::StubKind vsdStubKind = VirtualCallStubManager::SK_UNKNOWN; |
| 58 | VirtualCallStubManager *pVSDStubManager = VirtualCallStubManager::FindStubManager(target, &vsdStubKind); |
| 59 | if (vsdStubKind != VirtualCallStubManager::SK_BREAKPOINT && vsdStubKind != VirtualCallStubManager::SK_UNKNOWN) |
| 60 | { |
| 61 | // It is a VSD stub manager. |
| 62 | DispatchToken token = VirtualCallStubManager::GetTokenFromStubQuick(pVSDStubManager, target, vsdStubKind); |
| 63 | _ASSERTE(token.IsValid()); |
| 64 | return VirtualCallStubManager::GetInterfaceMethodDescFromToken(token); |
| 65 | } |
| 66 | if (RangeSectionStubManager::GetStubKind(target) == STUB_CODE_BLOCK_PRECODE) |
| 67 | { |
| 68 | // The address looks like a value stub, try to get the method descriptor. |
| 69 | return MethodDesc::GetMethodDescFromStubAddr(target, TRUE); |
| 70 | } |
| 71 | |
| 72 | return nullptr; |
| 73 | } |
| 74 | |
| 75 | |
| 76 | void SetupAndSprinkleBreakpoints( |
| 77 | MethodDesc * pMD, |
| 78 | EECodeInfo * pCodeInfo, |
| 79 | IJitManager::MethodRegionInfo methodRegionInfo, |
| 80 | BOOL fZapped |
| 81 | ) |
| 82 | { |
| 83 | // Allocate room for the GCCoverageInfo and copy of the method instructions |
| 84 | size_t memSize = sizeof(GCCoverageInfo) + methodRegionInfo.hotSize + methodRegionInfo.coldSize; |
| 85 | GCCoverageInfo* gcCover = (GCCoverageInfo*)(void*) pMD->GetLoaderAllocatorForCode()->GetHighFrequencyHeap()->AllocAlignedMem(memSize, CODE_SIZE_ALIGN); |
| 86 | |
| 87 | memset(gcCover, 0, sizeof(GCCoverageInfo)); |
| 88 | |
| 89 | gcCover->methodRegion = methodRegionInfo; |
| 90 | gcCover->codeMan = pCodeInfo->GetCodeManager(); |
| 91 | gcCover->gcInfoToken = pCodeInfo->GetGCInfoToken(); |
| 92 | gcCover->callerThread = 0; |
| 93 | gcCover->doingEpilogChecks = true; |
| 94 | |
| 95 | gcCover->lastMD = pMD; /* pass pMD to SprinkleBreakpoints */ |
| 96 | |
| 97 | gcCover->SprinkleBreakpoints(gcCover->savedCode, |
| 98 | gcCover->methodRegion.hotStartAddress, |
| 99 | gcCover->methodRegion.hotSize, |
| 100 | 0, |
| 101 | fZapped); |
| 102 | |
| 103 | // This is not required for ARM* as the above call does the work for both hot & cold regions |
| 104 | #if !defined(_TARGET_ARM_) && !defined(_TARGET_ARM64_) |
| 105 | if (gcCover->methodRegion.coldSize != 0) |
| 106 | { |
| 107 | gcCover->SprinkleBreakpoints(gcCover->savedCode + gcCover->methodRegion.hotSize, |
| 108 | gcCover->methodRegion.coldStartAddress, |
| 109 | gcCover->methodRegion.coldSize, |
| 110 | gcCover->methodRegion.hotSize, |
| 111 | fZapped); |
| 112 | } |
| 113 | #endif |
| 114 | |
| 115 | gcCover->lastMD = NULL; /* clear lastMD */ |
| 116 | |
| 117 | _ASSERTE(!pMD->m_GcCover); |
| 118 | *EnsureWritablePages(&pMD->m_GcCover) = gcCover; |
| 119 | } |
| 120 | |
| 121 | void SetupAndSprinkleBreakpointsForJittedMethod(MethodDesc * pMD, |
| 122 | PCODE codeStart |
| 123 | ) |
| 124 | { |
| 125 | EECodeInfo codeInfo(codeStart); |
| 126 | _ASSERTE(codeInfo.IsValid()); |
| 127 | _ASSERTE(codeInfo.GetRelOffset() == 0); |
| 128 | |
| 129 | IJitManager::MethodRegionInfo methodRegionInfo; |
| 130 | codeInfo.GetMethodRegionInfo(&methodRegionInfo); |
| 131 | |
| 132 | _ASSERTE(PCODEToPINSTR(codeStart) == methodRegionInfo.hotStartAddress); |
| 133 | |
| 134 | #ifdef _DEBUG |
| 135 | if (!g_pConfig->SkipGCCoverage(pMD->GetModule()->GetSimpleName())) |
| 136 | #endif |
| 137 | SetupAndSprinkleBreakpoints(pMD, |
| 138 | &codeInfo, |
| 139 | methodRegionInfo, |
| 140 | FALSE |
| 141 | ); |
| 142 | } |
| 143 | |
| 144 | /****************************************************************************/ |
| 145 | /* called when a method is first jitted when GCStress level 4 or 8 is on */ |
| 146 | |
| 147 | void SetupGcCoverage(MethodDesc* pMD, BYTE* methodStartPtr) { |
| 148 | |
| 149 | #ifdef _DEBUG |
| 150 | if (!g_pConfig->ShouldGcCoverageOnMethod(pMD->m_pszDebugMethodName)) { |
| 151 | return; |
| 152 | } |
| 153 | #endif |
| 154 | |
| 155 | // Ideally we would assert here that m_GcCover is NULL. |
| 156 | // |
| 157 | // However, we can't do that (at least not yet), because we may |
| 158 | // invoke this method more than once on a given |
| 159 | // MethodDesc. Examples include prejitted methods and rejitted |
| 160 | // methods. |
| 161 | // |
| 162 | // In the prejit case, we can't safely re-instrument an already |
| 163 | // instrumented method. By bailing out here, we will use the |
| 164 | // original instrumentation, which should still be valid as |
| 165 | // the method code has not changed. |
| 166 | // |
| 167 | // In the rejit case, the old method code may still be active and |
| 168 | // instrumented, so we need to preserve that gc cover info. By |
| 169 | // bailing out here we will skip instrumenting the rejitted native |
| 170 | // code, and since the rejitted method does not get instrumented |
| 171 | // we should be able to tolerate that the gc cover info does not |
| 172 | // match. |
| 173 | if (pMD->m_GcCover) |
| 174 | { |
| 175 | return; |
| 176 | } |
| 177 | |
| 178 | PCODE codeStart = (PCODE) methodStartPtr; |
| 179 | SetupAndSprinkleBreakpointsForJittedMethod(pMD, codeStart); |
| 180 | } |
| 181 | |
| 182 | #ifdef FEATURE_PREJIT |
| 183 | |
| 184 | void SetupGcCoverageForNativeMethod(MethodDesc* pMD, |
| 185 | PCODE codeStart, |
| 186 | IJitManager::MethodRegionInfo& methodRegionInfo |
| 187 | ) |
| 188 | { |
| 189 | |
| 190 | EECodeInfo codeInfo(codeStart); |
| 191 | _ASSERTE(codeInfo.IsValid()); |
| 192 | _ASSERTE(codeInfo.GetRelOffset() == 0); |
| 193 | |
| 194 | _ASSERTE(PCODEToPINSTR(codeStart) == methodRegionInfo.hotStartAddress); |
| 195 | |
| 196 | SetupAndSprinkleBreakpoints(pMD, |
| 197 | &codeInfo, |
| 198 | methodRegionInfo, |
| 199 | TRUE |
| 200 | ); |
| 201 | } |
| 202 | |
| 203 | void SetupGcCoverageForNativeImage(Module* module) |
| 204 | { |
| 205 | // Disable IBC logging here because of NGen image is not fully initialized yet. Eager bound |
| 206 | // indirection cells are not initialized yet and so IBC logging would crash while attempting to dereference them. |
| 207 | IBCLoggingDisabler disableLogging; |
| 208 | |
| 209 | #if 0 |
| 210 | // Debug code |
| 211 | LPWSTR wszSetupGcCoverage = CLRConfig::GetConfigValue(CLRConfig::EXTERNAL_SetupGcCoverage); |
| 212 | |
| 213 | if (!wszSetupGcCoverage) |
| 214 | { |
| 215 | printf("wszSetupGcCoverage is NULL. Will not SetupGcCoverage for any module.\n" ); |
| 216 | return; |
| 217 | } |
| 218 | else |
| 219 | { |
| 220 | if ((wcscmp(W("*" ), wszSetupGcCoverage) == 0) || // "*" means will gcstress all modules |
| 221 | (wcsstr(module->GetDebugName(), wszSetupGcCoverage) != NULL)) |
| 222 | { |
| 223 | printf("[%ws] matched %ws\n" , wszSetupGcCoverage, module->GetDebugName()); |
| 224 | // Fall through |
| 225 | } |
| 226 | else |
| 227 | { |
| 228 | printf("[%ws] NOT match %ws\n" , wszSetupGcCoverage, module->GetDebugName()); |
| 229 | return; |
| 230 | } |
| 231 | } |
| 232 | #endif |
| 233 | |
| 234 | #ifdef _DEBUG |
| 235 | if (g_pConfig->SkipGCCoverage(module->GetSimpleName())) |
| 236 | return; |
| 237 | #endif |
| 238 | |
| 239 | MethodIterator mi(module); |
| 240 | while (mi.Next()) |
| 241 | { |
| 242 | PTR_MethodDesc pMD = mi.GetMethodDesc(); |
| 243 | PCODE pMethodStart = mi.GetMethodStartAddress(); |
| 244 | |
| 245 | IJitManager::MethodRegionInfo methodRegionInfo; |
| 246 | mi.GetMethodRegionInfo(&methodRegionInfo); |
| 247 | |
| 248 | SetupGcCoverageForNativeMethod(pMD, pMethodStart, methodRegionInfo); |
| 249 | } |
| 250 | } |
| 251 | #endif |
| 252 | |
| 253 | #ifdef _TARGET_AMD64_ |
| 254 | |
| 255 | class GCCoverageRangeEnumerator |
| 256 | { |
| 257 | private: |
| 258 | |
| 259 | ICodeManager *m_pCodeManager; |
| 260 | GCInfoToken m_pvGCTable; |
| 261 | BYTE *m_codeStart; |
| 262 | BYTE *m_codeEnd; |
| 263 | BYTE *m_curFuncletEnd; |
| 264 | BYTE *m_nextFunclet; |
| 265 | |
| 266 | |
| 267 | BYTE* GetNextFunclet () |
| 268 | { |
| 269 | if (m_nextFunclet == NULL) |
| 270 | return m_codeEnd; |
| 271 | |
| 272 | BYTE *pCurFunclet = (BYTE*)EECodeInfo::findNextFunclet(m_nextFunclet, m_codeEnd - m_nextFunclet, (LPVOID*)&m_curFuncletEnd); |
| 273 | m_nextFunclet = (pCurFunclet != NULL) ? m_curFuncletEnd : NULL; |
| 274 | |
| 275 | if (pCurFunclet == NULL) |
| 276 | return m_codeEnd; |
| 277 | |
| 278 | LOG((LF_JIT, LL_INFO1000, "funclet range %p-%p\n" , pCurFunclet, m_curFuncletEnd)); |
| 279 | |
| 280 | // |
| 281 | // workaround - adjust the funclet end address to exclude uninterruptible |
| 282 | // code at the end of each funclet. The jit currently puts data like |
| 283 | // jump tables in the code portion of the allocation, instead of the |
| 284 | // read-only portion. |
| 285 | // |
| 286 | // TODO: If the entire range is uninterruptible, we should skip the |
| 287 | // entire funclet. |
| 288 | // |
| 289 | unsigned ofsLastInterruptible = m_pCodeManager->FindEndOfLastInterruptibleRegion( |
| 290 | static_cast<unsigned int>(pCurFunclet - m_codeStart), |
| 291 | static_cast<unsigned int>(m_curFuncletEnd - m_codeStart), |
| 292 | m_pvGCTable); |
| 293 | |
| 294 | if (ofsLastInterruptible) |
| 295 | { |
| 296 | m_curFuncletEnd = m_codeStart + ofsLastInterruptible; |
| 297 | LOG((LF_JIT, LL_INFO1000, "adjusted end to %p\n" , m_curFuncletEnd)); |
| 298 | } |
| 299 | |
| 300 | return pCurFunclet; |
| 301 | } |
| 302 | |
| 303 | |
| 304 | public: |
| 305 | |
| 306 | GCCoverageRangeEnumerator (ICodeManager *pCodeManager, GCInfoToken pvGCTable, BYTE *codeStart, SIZE_T codeSize) |
| 307 | { |
| 308 | m_pCodeManager = pCodeManager; |
| 309 | m_pvGCTable = pvGCTable; |
| 310 | m_codeStart = codeStart; |
| 311 | m_codeEnd = codeStart + codeSize; |
| 312 | m_nextFunclet = codeStart; |
| 313 | |
| 314 | GetNextFunclet(); |
| 315 | } |
| 316 | |
| 317 | // Checks that the given pointer is inside of a range where gc should be |
| 318 | // tested. If not, increments the pointer until it is, and returns the |
| 319 | // new pointer. |
| 320 | BYTE *EnsureInRange (BYTE *cur) |
| 321 | { |
| 322 | if (cur >= m_curFuncletEnd) |
| 323 | { |
| 324 | cur = GetNextFunclet(); |
| 325 | } |
| 326 | |
| 327 | return cur; |
| 328 | } |
| 329 | |
| 330 | BYTE * () |
| 331 | { |
| 332 | return GetNextFunclet(); |
| 333 | } |
| 334 | }; |
| 335 | |
| 336 | #endif // _TARGET_AMD64_ |
| 337 | |
| 338 | // When Sprinking break points, we must make sure that certain calls to |
| 339 | // Thread-suspension routines inlined into the managed method are not |
| 340 | // converted to GC-Stress points. Otherwise, this will lead to race |
| 341 | // conditions with the GC. |
| 342 | // |
| 343 | // For example, for an inlined PInvoke stub, the JIT generates the following code |
| 344 | // |
| 345 | // call CORINFO_HELP_INIT_PINVOKE_FRAME // Obtain the thread pointer |
| 346 | // |
| 347 | // mov byte ptr[rsi + 12], 0 // Switch to preemptive mode [thread->premptiveGcDisabled = 0] |
| 348 | // call rax // The actual native call, in preemptive mode |
| 349 | // mov byte ptr[rsi + 12], 1 // Switch the thread to Cooperative mode |
| 350 | // cmp dword ptr[(reloc 0x7ffd1bb77148)], 0 // if(g_TrapReturningThreads) |
| 351 | // je SHORT G_M40565_IG05 |
| 352 | // call[CORINFO_HELP_STOP_FOR_GC] // Call JIT_RareDisableHelper() |
| 353 | // |
| 354 | // |
| 355 | // For the SprinkleBreakPoints() routine, the JIT_RareDisableHelper() itself will |
| 356 | // look like an ordinary indirect call/safepoint. So, it may rewrite it with |
| 357 | // a TRAP to perform GC |
| 358 | // |
| 359 | // call CORINFO_HELP_INIT_PINVOKE_FRAME // Obtain the thread pointer |
| 360 | // |
| 361 | // mov byte ptr[rsi + 12], 0 // Switch to preemptive mode [thread->premptiveGcDisabled = 0] |
| 362 | // cli // INTERRUPT_INSTR_CALL |
| 363 | // mov byte ptr[rsi + 12], 1 // Switch the thread to Cooperative mode |
| 364 | // cmp dword ptr[(reloc 0x7ffd1bb77148)], 0 // if(g_TrapReturningThreads) |
| 365 | // je SHORT G_M40565_IG05 |
| 366 | // cli // INTERRUPT_INSTR_CALL |
| 367 | // |
| 368 | // |
| 369 | // Now, a managed thread (T) can race with the GC as follows: |
| 370 | // 1) At the first safepoint, we notice that T is in preemptive mode during the call for GCStress |
| 371 | // So, it is put it in cooperative mode for the purpose of GCStress(fPremptiveGcDisabledForGcStress) |
| 372 | // 2) We DoGCStress(). Start off background GC in a different thread. |
| 373 | // 3) Then the thread T is put back to preemptive mode (because that's where it was). |
| 374 | // Thread T continues execution along with the GC thread. |
| 375 | // 4) The Jitted code puts thread T to cooperative mode, as part of PInvoke epilog |
| 376 | // 5) Now instead of CORINFO_HELP_STOP_FOR_GC(), we hit the GCStress trap and start |
| 377 | // another round of GCStress while in Cooperative mode. |
| 378 | // 6) Now, thread T can modify the stack (ex: RedirectionFrame setup) while the GC thread is scanning it. |
| 379 | // |
| 380 | // This problem can be avoided by not inserting traps-for-GC in place of calls to CORINFO_HELP_STOP_FOR_GC() |
| 381 | // |
| 382 | // How do we identify the calls to CORINFO_HELP_STOP_FOR_GC()? |
| 383 | // Since this is a GCStress only requirement, its not worth special identification in the GcInfo |
| 384 | // Since CORINFO_HELP_STOP_FOR_GC() calls are realized as indirect calls by the JIT, we cannot identify |
| 385 | // them by address at the time of SprinkleBreakpoints(). |
| 386 | // So, we actually let the SprinkleBreakpoints() replace the call to CORINFO_HELP_STOP_FOR_GC() with a trap, |
| 387 | // and revert it back to the original instruction the first time we hit the trap in OnGcCoverageInterrupt(). |
| 388 | // |
| 389 | // Similarly, inserting breakpoints can be avoided for JIT_PollGC() and JIT_StressGC(). |
| 390 | |
| 391 | #if defined(_TARGET_ARM_) || defined(_TARGET_AMD64_) |
| 392 | extern "C" FCDECL0(VOID, JIT_RareDisableHelper); |
| 393 | #else |
| 394 | FCDECL0(VOID, JIT_RareDisableHelper); |
| 395 | #endif |
| 396 | |
| 397 | /****************************************************************************/ |
| 398 | /* sprinkle interupt instructions that will stop on every GCSafe location |
| 399 | regionOffsetAdj - Represents the offset of the current region |
| 400 | from the beginning of the method (is 0 for hot region) |
| 401 | */ |
| 402 | |
| 403 | void GCCoverageInfo::SprinkleBreakpoints( |
| 404 | BYTE * saveAddr, |
| 405 | PCODE pCode, |
| 406 | size_t codeSize, |
| 407 | size_t regionOffsetAdj, |
| 408 | BOOL fZapped) |
| 409 | { |
| 410 | #if (defined(_TARGET_X86_) || defined(_TARGET_AMD64_)) && USE_DISASSEMBLER |
| 411 | |
| 412 | BYTE * codeStart = (BYTE *)pCode; |
| 413 | |
| 414 | memcpy(saveAddr, codeStart, codeSize); |
| 415 | |
| 416 | // For prejitted code we have to remove the write-protect on the code page |
| 417 | if (fZapped) |
| 418 | { |
| 419 | DWORD oldProtect; |
| 420 | ClrVirtualProtect(codeStart, codeSize, PAGE_EXECUTE_READWRITE, &oldProtect); |
| 421 | } |
| 422 | |
| 423 | SLOT cur; |
| 424 | BYTE* codeEnd = codeStart + codeSize; |
| 425 | |
| 426 | EECodeInfo codeInfo((PCODE)codeStart); |
| 427 | |
| 428 | static ConfigDWORD fGcStressOnDirectCalls; // ConfigDWORD must be a static variable |
| 429 | |
| 430 | |
| 431 | #ifdef _TARGET_AMD64_ |
| 432 | GCCoverageRangeEnumerator rangeEnum(codeMan, gcInfoToken, codeStart, codeSize); |
| 433 | |
| 434 | GcInfoDecoder safePointDecoder(gcInfoToken, (GcInfoDecoderFlags)0, 0); |
| 435 | bool fSawPossibleSwitch = false; |
| 436 | #endif |
| 437 | |
| 438 | cur = codeStart; |
| 439 | Disassembler disassembler; |
| 440 | |
| 441 | // When we find a direct call instruction and we are partially-interruptible |
| 442 | // we determine the target and place a breakpoint after the call |
| 443 | // to simulate the hijack |
| 444 | // However, we need to wait until we disassemble the instruction |
| 445 | // after the call in order to put the breakpoint or we'll mess up |
| 446 | // the disassembly |
| 447 | // This variable is non-null if the previous instruction was a direct call, |
| 448 | // and we have found it's target MethodDesc |
| 449 | MethodDesc* prevDirectCallTargetMD = NULL; |
| 450 | |
| 451 | /* TODO. Simulating the hijack could cause problems in cases where the |
| 452 | return register is not always a valid GC ref on the return offset. |
| 453 | That could happen if we got to the return offset via a branch |
| 454 | and not via return from the preceding call. However, this has not been |
| 455 | an issue so far. |
| 456 | |
| 457 | Example: |
| 458 | mov eax, someval |
| 459 | test eax, eax |
| 460 | jCC AFTERCALL |
| 461 | call MethodWhichReturnsGCobject // return value is not used |
| 462 | AFTERCALL: |
| 463 | */ |
| 464 | |
| 465 | while (cur < codeEnd) |
| 466 | { |
| 467 | _ASSERTE(*cur != INTERRUPT_INSTR && *cur != INTERRUPT_INSTR_CALL); |
| 468 | |
| 469 | MethodDesc* targetMD = NULL; |
| 470 | InstructionType instructionType; |
| 471 | size_t len = disassembler.DisassembleInstruction(cur, codeEnd - cur, &instructionType); |
| 472 | |
| 473 | #ifdef _TARGET_AMD64_ |
| 474 | // REVISIT_TODO apparently the jit does not use the entire RUNTIME_FUNCTION range |
| 475 | // for code. It uses some for switch tables. Because the first few offsets |
| 476 | // may be decodable as instructions, we can't reason about where we should |
| 477 | // encounter invalid instructions. However, we do not want to silently skip |
| 478 | // large chunks of methods just becuase the JIT started emitting a new |
| 479 | // instruction, so only assume it is a switch table if we've seen the switch |
| 480 | // code (an indirect unconditional jump) |
| 481 | if ((len == 0) && fSawPossibleSwitch) |
| 482 | { |
| 483 | LOG((LF_JIT, LL_WARNING, "invalid instruction at %p (possibly start of switch table)\n" , cur)); |
| 484 | cur = rangeEnum.SkipToNextRange(); |
| 485 | prevDirectCallTargetMD = NULL; |
| 486 | fSawPossibleSwitch = false; |
| 487 | continue; |
| 488 | } |
| 489 | #endif |
| 490 | |
| 491 | _ASSERTE(len > 0); |
| 492 | _ASSERTE(len <= (size_t)(codeEnd-cur)); |
| 493 | |
| 494 | switch(instructionType) |
| 495 | { |
| 496 | case InstructionType::Call_IndirectUnconditional: |
| 497 | #ifdef _TARGET_AMD64_ |
| 498 | if(safePointDecoder.IsSafePoint((UINT32)(cur + len - codeStart + regionOffsetAdj))) |
| 499 | #endif |
| 500 | { |
| 501 | *cur = INTERRUPT_INSTR_CALL; // return value. May need to protect |
| 502 | } |
| 503 | break; |
| 504 | |
| 505 | case InstructionType::Call_DirectUnconditional: |
| 506 | if(fGcStressOnDirectCalls.val(CLRConfig::INTERNAL_GcStressOnDirectCalls)) |
| 507 | { |
| 508 | #ifdef _TARGET_AMD64_ |
| 509 | if(safePointDecoder.IsSafePoint((UINT32)(cur + len - codeStart + regionOffsetAdj))) |
| 510 | #endif |
| 511 | { |
| 512 | SLOT nextInstr; |
| 513 | SLOT target = getTargetOfCall(cur, NULL, &nextInstr); |
| 514 | |
| 515 | if (target != 0) |
| 516 | { |
| 517 | // JIT_RareDisableHelper() is expected to be an indirect call. |
| 518 | // If we encounter a direct call (in future), skip the call |
| 519 | _ASSERTE(target != (SLOT)JIT_RareDisableHelper); |
| 520 | targetMD = getTargetMethodDesc((PCODE)target); |
| 521 | } |
| 522 | } |
| 523 | } |
| 524 | break; |
| 525 | |
| 526 | #ifdef _TARGET_AMD64_ |
| 527 | case InstructionType::Branch_IndirectUnconditional: |
| 528 | fSawPossibleSwitch = true; |
| 529 | break; |
| 530 | #endif |
| 531 | |
| 532 | default: |
| 533 | // Clang issues an error saying that some enum values are not handled in the switch, that's intended |
| 534 | break; |
| 535 | } |
| 536 | |
| 537 | if (prevDirectCallTargetMD != 0) |
| 538 | { |
| 539 | if (prevDirectCallTargetMD->ReturnsObject(true) != MetaSig::RETNONOBJ) |
| 540 | *cur = INTERRUPT_INSTR_PROTECT_RET; |
| 541 | else |
| 542 | *cur = INTERRUPT_INSTR; |
| 543 | } |
| 544 | |
| 545 | // For fully interruptible code, we end up whacking every instruction |
| 546 | // to INTERRUPT_INSTR. For non-fully interruptible code, we end |
| 547 | // up only touching the call instructions (specially so that we |
| 548 | // can really do the GC on the instruction just after the call). |
| 549 | _ASSERTE(FitsIn<DWORD>((cur - codeStart) + regionOffsetAdj)); |
| 550 | if (codeMan->IsGcSafe(&codeInfo, static_cast<DWORD>((cur - codeStart) + regionOffsetAdj))) |
| 551 | *cur = INTERRUPT_INSTR; |
| 552 | |
| 553 | #ifdef _TARGET_X86_ |
| 554 | // we will whack every instruction in the prolog and epilog to make certain |
| 555 | // our unwinding logic works there. |
| 556 | if (codeMan->IsInPrologOrEpilog((cur - codeStart) + (DWORD)regionOffsetAdj, gcInfoToken, NULL)) { |
| 557 | *cur = INTERRUPT_INSTR; |
| 558 | } |
| 559 | #endif |
| 560 | |
| 561 | // If we couldn't find the method desc targetMD is zero |
| 562 | prevDirectCallTargetMD = targetMD; |
| 563 | |
| 564 | cur += len; |
| 565 | |
| 566 | #ifdef _TARGET_AMD64_ |
| 567 | SLOT newCur = rangeEnum.EnsureInRange(cur); |
| 568 | if(newCur != cur) |
| 569 | { |
| 570 | prevDirectCallTargetMD = NULL; |
| 571 | cur = newCur; |
| 572 | fSawPossibleSwitch = false; |
| 573 | } |
| 574 | #endif |
| 575 | } |
| 576 | |
| 577 | // If we are not able to place an interrupt at the first instruction, this means that |
| 578 | // we are partially interruptible with no prolog. Just don't bother to do the |
| 579 | // the epilog checks, since the epilog will be trival (a single return instr) |
| 580 | assert(codeSize > 0); |
| 581 | if ((regionOffsetAdj==0) && (*codeStart != INTERRUPT_INSTR)) |
| 582 | doingEpilogChecks = false; |
| 583 | |
| 584 | #elif defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 585 | //Save the method code from hotRegion |
| 586 | memcpy(saveAddr, (BYTE*)methodRegion.hotStartAddress, methodRegion.hotSize); |
| 587 | |
| 588 | if (methodRegion.coldSize > 0) |
| 589 | { |
| 590 | //Save the method code from coldRegion |
| 591 | memcpy(saveAddr+methodRegion.hotSize, (BYTE*)methodRegion.coldStartAddress, methodRegion.coldSize); |
| 592 | } |
| 593 | |
| 594 | // For prejitted code we have to remove the write-protect on the code page |
| 595 | if (fZapped) |
| 596 | { |
| 597 | DWORD oldProtect; |
| 598 | ClrVirtualProtect((BYTE*)methodRegion.hotStartAddress, methodRegion.hotSize, PAGE_EXECUTE_READWRITE, &oldProtect); |
| 599 | |
| 600 | if (methodRegion.coldSize > 0) |
| 601 | { |
| 602 | ClrVirtualProtect((BYTE*)methodRegion.coldStartAddress, methodRegion.coldSize, PAGE_EXECUTE_READWRITE, &oldProtect); |
| 603 | } |
| 604 | } |
| 605 | |
| 606 | GcInfoDecoder safePointDecoder(gcInfoToken, (GcInfoDecoderFlags)0, 0); |
| 607 | |
| 608 | assert(methodRegion.hotSize > 0); |
| 609 | |
| 610 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 611 | safePointDecoder.EnumerateSafePoints(&replaceSafePointInstructionWithGcStressInstr,this); |
| 612 | #endif // PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 613 | |
| 614 | safePointDecoder.EnumerateInterruptibleRanges(&replaceInterruptibleRangesWithGcStressInstr, this); |
| 615 | |
| 616 | FlushInstructionCache(GetCurrentProcess(), (BYTE*)methodRegion.hotStartAddress, methodRegion.hotSize); |
| 617 | |
| 618 | if (methodRegion.coldSize > 0) |
| 619 | { |
| 620 | FlushInstructionCache(GetCurrentProcess(), (BYTE*)methodRegion.coldStartAddress, methodRegion.coldSize); |
| 621 | } |
| 622 | |
| 623 | #else |
| 624 | _ASSERTE(!"not implemented for platform" ); |
| 625 | #endif // _TARGET_X86_ |
| 626 | } |
| 627 | |
| 628 | #if defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 629 | |
| 630 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 631 | |
| 632 | void replaceSafePointInstructionWithGcStressInstr(UINT32 safePointOffset, LPVOID pGCCover) |
| 633 | { |
| 634 | PCODE pCode = NULL; |
| 635 | IJitManager::MethodRegionInfo *ptr = &(((GCCoverageInfo*)pGCCover)->methodRegion); |
| 636 | |
| 637 | //Get code address from offset |
| 638 | if (safePointOffset < ptr->hotSize) |
| 639 | pCode = ptr->hotStartAddress + safePointOffset; |
| 640 | else if(safePointOffset - ptr->hotSize < ptr->coldSize) |
| 641 | { |
| 642 | SIZE_T coldOffset = safePointOffset - ptr->hotSize; |
| 643 | pCode = ptr->coldStartAddress + coldOffset; |
| 644 | } |
| 645 | else |
| 646 | { |
| 647 | //For some methods( eg MCCTest.MyClass.GetSum2 in test file jit\jit64\mcc\interop\mcc_i07.il) gcinfo points to a safepoint |
| 648 | //beyond the length of the method. So commenting the below assert. |
| 649 | //_ASSERTE(safePointOffset - ptr->hotSize < ptr->coldSize); |
| 650 | return; |
| 651 | } |
| 652 | |
| 653 | SLOT instrPtr = (BYTE*)PCODEToPINSTR(pCode); |
| 654 | |
| 655 | // For code sequences of the type |
| 656 | // BL func1 |
| 657 | // BL func2 // Safe point 1 |
| 658 | // mov r1 r0 // Safe point 2 |
| 659 | // Both the above safe points instruction must be replaced with gcStress instruction. |
| 660 | // However as the first safe point is already replaced with gcstress instruction, decoding of the call |
| 661 | // instruction will fail when processing for the 2nd safe point. Therefore saved instruction must be used instead of |
| 662 | // instrPtr for decoding the call instruction. |
| 663 | SLOT savedInstrPtr = ((GCCoverageInfo*)pGCCover)->savedCode + safePointOffset; |
| 664 | |
| 665 | //Determine if instruction before the safe point is call using immediate (BLX Imm) or call by register (BLX Rm) |
| 666 | BOOL instructionIsACallThroughRegister = FALSE; |
| 667 | BOOL instructionIsACallThroughImmediate = FALSE; |
| 668 | #if defined(_TARGET_ARM_) |
| 669 | |
| 670 | // call by register instruction is two bytes (BL<c> Reg T1 encoding) |
| 671 | WORD instr = *((WORD*)savedInstrPtr - 1); |
| 672 | |
| 673 | instr = instr & 0xff87; |
| 674 | if((instr ^ 0x4780) == 0) |
| 675 | // It is call by register |
| 676 | instructionIsACallThroughRegister = TRUE; |
| 677 | |
| 678 | // call using immediate instructions are 4 bytes (BL<c> <label> T1 encoding) |
| 679 | instr = *((WORD*)savedInstrPtr - 2); |
| 680 | instr = instr & 0xf800; |
| 681 | if((instr ^ 0xf000) == 0) |
| 682 | if((*(((WORD*)savedInstrPtr)-1) & 0xd000) == 0xd000) |
| 683 | // It is call by immediate |
| 684 | instructionIsACallThroughImmediate = TRUE; |
| 685 | #elif defined(_TARGET_ARM64_) |
| 686 | DWORD instr = *((DWORD*)savedInstrPtr - 1); |
| 687 | |
| 688 | // Is the call through a register or an immediate offset |
| 689 | // BL |
| 690 | // Encoding: 0x94000000 & [imm26] |
| 691 | if ((instr & 0xFC000000) == 0x94000000) |
| 692 | { |
| 693 | instructionIsACallThroughImmediate = TRUE; |
| 694 | } |
| 695 | // BLR |
| 696 | // Encoding: 0xD63F0000 & (Rn<<5) |
| 697 | else if ((instr & 0xFFFFFC1F) == 0xD63F0000) |
| 698 | { |
| 699 | instructionIsACallThroughRegister = TRUE; |
| 700 | } |
| 701 | #endif |
| 702 | // safe point must always be after a call instruction |
| 703 | // and cannot be both call by register & immediate |
| 704 | // The safe points are also marked at jump calls( a special variant of |
| 705 | // tail call). However that call site will never appear on the stack. |
| 706 | // So commenting the assert for now. As for such places the previous |
| 707 | // instruction will not be a call instruction. |
| 708 | //_ASSERTE(instructionIsACallThroughRegister ^ instructionIsACallThroughImmediate); |
| 709 | |
| 710 | if(instructionIsACallThroughRegister) |
| 711 | { |
| 712 | // If it is call by register then cannot know MethodDesc so replace the call instruction with illegal instruction |
| 713 | // safe point will be replaced with appropiate illegal instruction at execution time when reg value is known |
| 714 | #if defined(_TARGET_ARM_) |
| 715 | *((WORD*)instrPtr - 1) = INTERRUPT_INSTR_CALL; |
| 716 | #elif defined(_TARGET_ARM64_) |
| 717 | *((DWORD*)instrPtr - 1) = INTERRUPT_INSTR_CALL; |
| 718 | #endif |
| 719 | } |
| 720 | else if(instructionIsACallThroughImmediate) |
| 721 | { |
| 722 | // If it is call by immediate then find the methodDesc |
| 723 | SLOT nextInstr; |
| 724 | SLOT target = getTargetOfCall((SLOT)((WORD*)savedInstrPtr-2), NULL, &nextInstr); |
| 725 | |
| 726 | if (target != 0) |
| 727 | { |
| 728 | //Target is calculated wrt the saved instruction pointer |
| 729 | //Find the real target wrt the real instruction pointer |
| 730 | int delta = static_cast<int>(target - savedInstrPtr); |
| 731 | target = delta + instrPtr; |
| 732 | |
| 733 | MethodDesc* targetMD = getTargetMethodDesc((PCODE)target); |
| 734 | |
| 735 | if (targetMD != 0) |
| 736 | { |
| 737 | |
| 738 | // The instruction about to be replaced cannot already be a gcstress instruction |
| 739 | #if defined(_TARGET_ARM_) |
| 740 | size_t instrLen = GetARMInstructionLength(instrPtr); |
| 741 | if (instrLen == 2) |
| 742 | { |
| 743 | _ASSERTE(*((WORD*)instrPtr) != INTERRUPT_INSTR && |
| 744 | *((WORD*)instrPtr) != INTERRUPT_INSTR_CALL && |
| 745 | *((WORD*)instrPtr) != INTERRUPT_INSTR_PROTECT_RET); |
| 746 | } |
| 747 | else |
| 748 | { |
| 749 | _ASSERTE(*((DWORD*)instrPtr) != INTERRUPT_INSTR_32 && |
| 750 | *((DWORD*)instrPtr) != INTERRUPT_INSTR_CALL_32 && |
| 751 | *((DWORD*)instrPtr) != INTERRUPT_INSTR_PROTECT_RET_32); |
| 752 | } |
| 753 | #elif defined(_TARGET_ARM64_) |
| 754 | { |
| 755 | _ASSERTE(*((DWORD*)instrPtr) != INTERRUPT_INSTR && |
| 756 | *((DWORD*)instrPtr) != INTERRUPT_INSTR_CALL && |
| 757 | *((DWORD*)instrPtr) != INTERRUPT_INSTR_PROTECT_RET); |
| 758 | } |
| 759 | #endif |
| 760 | // |
| 761 | // When applying GC coverage breakpoints at native image load time, the code here runs |
| 762 | // before eager fixups are applied for the module being loaded. The direct call target |
| 763 | // never requires restore, however it is possible that it is initially in an invalid state |
| 764 | // and remains invalid until one or more eager fixups are applied. |
| 765 | // |
| 766 | // MethodDesc::ReturnsObject() consults the method signature, meaning it consults the |
| 767 | // metadata in the owning module. For generic instantiations stored in non-preferred |
| 768 | // modules, reaching the owning module requires following the module override pointer for |
| 769 | // the enclosing MethodTable. In this case, the module override pointer is generally |
| 770 | // invalid until an associated eager fixup is applied. |
| 771 | // |
| 772 | // In situations like this, MethodDesc::ReturnsObject() will try to dereference an |
| 773 | // unresolved fixup and will AV. |
| 774 | // |
| 775 | // Given all of this, skip the MethodDesc::ReturnsObject() call by default to avoid |
| 776 | // unexpected AVs. This implies leaving out the GC coverage breakpoints for direct calls |
| 777 | // unless COMPlus_GcStressOnDirectCalls=1 is explicitly set in the environment. |
| 778 | // |
| 779 | |
| 780 | static ConfigDWORD fGcStressOnDirectCalls; |
| 781 | |
| 782 | if (fGcStressOnDirectCalls.val(CLRConfig::INTERNAL_GcStressOnDirectCalls)) |
| 783 | { |
| 784 | // If the method returns an object then should protect the return object |
| 785 | if (targetMD->ReturnsObject(true) != MetaSig::RETNONOBJ) |
| 786 | { |
| 787 | // replace with corresponding 2 or 4 byte illegal instruction (which roots the return value) |
| 788 | #if defined(_TARGET_ARM_) |
| 789 | if (instrLen == 2) |
| 790 | *((WORD*)instrPtr) = INTERRUPT_INSTR_PROTECT_RET; |
| 791 | else |
| 792 | *((DWORD*)instrPtr) = INTERRUPT_INSTR_PROTECT_RET_32; |
| 793 | #elif defined(_TARGET_ARM64_) |
| 794 | *((DWORD*)instrPtr) = INTERRUPT_INSTR_PROTECT_RET; |
| 795 | #endif |
| 796 | } |
| 797 | else // method does not return an objectref |
| 798 | { |
| 799 | // replace with corresponding 2 or 4 byte illegal instruction |
| 800 | #if defined(_TARGET_ARM_) |
| 801 | if (instrLen == 2) |
| 802 | *((WORD*)instrPtr) = INTERRUPT_INSTR; |
| 803 | else |
| 804 | *((DWORD*)instrPtr) = INTERRUPT_INSTR_32; |
| 805 | #elif defined(_TARGET_ARM64_) |
| 806 | *((DWORD*)instrPtr) = INTERRUPT_INSTR; |
| 807 | #endif |
| 808 | } |
| 809 | } |
| 810 | } |
| 811 | } |
| 812 | } |
| 813 | } |
| 814 | #endif |
| 815 | |
| 816 | //Replaces the provided interruptible range with corresponding 2 or 4 byte gcStress illegal instruction |
| 817 | bool replaceInterruptibleRangesWithGcStressInstr (UINT32 startOffset, UINT32 stopOffset, LPVOID pGCCover) |
| 818 | { |
| 819 | PCODE pCode = NULL; |
| 820 | SLOT rangeStart = NULL; |
| 821 | SLOT rangeStop = NULL; |
| 822 | |
| 823 | //Interruptible range can span accross hot & cold region |
| 824 | int acrossHotRegion = 1; // 1 means range is not across end of hot region & 2 is when it is across end of hot region |
| 825 | |
| 826 | //Find the code addresses from offsets |
| 827 | IJitManager::MethodRegionInfo *ptr = &(((GCCoverageInfo*)pGCCover)->methodRegion); |
| 828 | if (startOffset < ptr->hotSize) |
| 829 | { |
| 830 | pCode = ptr->hotStartAddress + startOffset; |
| 831 | rangeStart = (BYTE*)PCODEToPINSTR(pCode); |
| 832 | |
| 833 | if(stopOffset <= ptr->hotSize) |
| 834 | { |
| 835 | pCode = ptr->hotStartAddress + stopOffset; |
| 836 | rangeStop = (BYTE*)PCODEToPINSTR(pCode); |
| 837 | } |
| 838 | else |
| 839 | { |
| 840 | //Interruptible range is spanning across hot & cold region |
| 841 | pCode = ptr->hotStartAddress + ptr->hotSize; |
| 842 | rangeStop = (BYTE*)PCODEToPINSTR(pCode); |
| 843 | acrossHotRegion++; |
| 844 | } |
| 845 | } |
| 846 | else |
| 847 | { |
| 848 | SIZE_T coldOffset = startOffset - ptr->hotSize; |
| 849 | _ASSERTE(coldOffset < ptr->coldSize); |
| 850 | pCode = ptr->coldStartAddress + coldOffset; |
| 851 | rangeStart = (BYTE*)PCODEToPINSTR(pCode); |
| 852 | |
| 853 | coldOffset = stopOffset - ptr->hotSize; |
| 854 | _ASSERTE(coldOffset <= ptr->coldSize); |
| 855 | pCode = ptr->coldStartAddress + coldOffset; |
| 856 | rangeStop = (BYTE*)PCODEToPINSTR(pCode); |
| 857 | } |
| 858 | |
| 859 | // Need to do two iterations if interruptible range spans across hot & cold region |
| 860 | while(acrossHotRegion--) |
| 861 | { |
| 862 | SLOT instrPtr = rangeStart; |
| 863 | while(instrPtr < rangeStop) |
| 864 | { |
| 865 | |
| 866 | // The instruction about to be replaced cannot already be a gcstress instruction |
| 867 | #if defined(_TARGET_ARM_) |
| 868 | size_t instrLen = GetARMInstructionLength(instrPtr); |
| 869 | if (instrLen == 2) |
| 870 | { |
| 871 | _ASSERTE(*((WORD*)instrPtr) != INTERRUPT_INSTR && |
| 872 | *((WORD*)instrPtr) != INTERRUPT_INSTR_CALL && |
| 873 | *((WORD*)instrPtr) != INTERRUPT_INSTR_PROTECT_RET); |
| 874 | } |
| 875 | else |
| 876 | { |
| 877 | _ASSERTE(*((DWORD*)instrPtr) != INTERRUPT_INSTR_32 && |
| 878 | *((DWORD*)instrPtr) != INTERRUPT_INSTR_CALL_32 && |
| 879 | *((DWORD*)instrPtr) != INTERRUPT_INSTR_PROTECT_RET_32); |
| 880 | } |
| 881 | |
| 882 | if (instrLen == 2) |
| 883 | *((WORD*)instrPtr) = INTERRUPT_INSTR; |
| 884 | else |
| 885 | { |
| 886 | // Do not replace with gcstress interrupt instruction at call to JIT_RareDisableHelper |
| 887 | if(!isCallToStopForGCJitHelper(instrPtr)) |
| 888 | *((DWORD*)instrPtr) = INTERRUPT_INSTR_32; |
| 889 | } |
| 890 | |
| 891 | instrPtr += instrLen; |
| 892 | #elif defined(_TARGET_ARM64_) |
| 893 | { |
| 894 | _ASSERTE(*((DWORD*)instrPtr) != INTERRUPT_INSTR && |
| 895 | *((DWORD*)instrPtr) != INTERRUPT_INSTR_CALL && |
| 896 | *((DWORD*)instrPtr) != INTERRUPT_INSTR_PROTECT_RET); |
| 897 | } |
| 898 | |
| 899 | // Do not replace with gcstress interrupt instruction at call to JIT_RareDisableHelper |
| 900 | if(!isCallToStopForGCJitHelper(instrPtr)) |
| 901 | *((DWORD*)instrPtr) = INTERRUPT_INSTR; |
| 902 | instrPtr += 4; |
| 903 | #endif |
| 904 | |
| 905 | } |
| 906 | |
| 907 | if(acrossHotRegion) |
| 908 | { |
| 909 | //Set rangeStart & rangeStop for the second iteration |
| 910 | _ASSERTE(acrossHotRegion==1); |
| 911 | rangeStart = (BYTE*)PCODEToPINSTR(ptr->coldStartAddress); |
| 912 | pCode = ptr->coldStartAddress + stopOffset - ptr->hotSize; |
| 913 | rangeStop = (BYTE*)PCODEToPINSTR(pCode); |
| 914 | } |
| 915 | } |
| 916 | return FALSE; |
| 917 | } |
| 918 | #endif |
| 919 | |
| 920 | // Is this a call instruction to JIT_RareDisableHelper() |
| 921 | // We cannot insert GCStress instruction at this call |
| 922 | // For arm64 & arm (R2R) call to jithelpers happens via a stub. |
| 923 | // For other architectures call does not happen via stub. |
| 924 | // For other architectures we can get the target directly by calling getTargetOfCall(). |
| 925 | // This is not the case for arm64/arm so need to decode the stub |
| 926 | // instruction to find the actual jithelper target. |
| 927 | // For other architecture we detect call to JIT_RareDisableHelper |
| 928 | // in function OnGcCoverageInterrupt() since getTargetOfCall() can |
| 929 | // get the actual jithelper target. |
| 930 | bool isCallToStopForGCJitHelper(SLOT instrPtr) |
| 931 | { |
| 932 | #if defined(_TARGET_ARM64_) |
| 933 | if (((*reinterpret_cast<DWORD*>(instrPtr)) & 0xFC000000) == 0x94000000) // Do we have a BL instruction? |
| 934 | { |
| 935 | // call through immediate |
| 936 | int imm26 = ((*((DWORD*)instrPtr)) & 0x03FFFFFF)<<2; |
| 937 | // SignExtend the immediate value. |
| 938 | imm26 = (imm26 << 4) >> 4; |
| 939 | DWORD* target = (DWORD*) (instrPtr + imm26); |
| 940 | // Call to jithelpers happens via jumpstub |
| 941 | if(*target == 0x58000050 /* ldr xip0, PC+8*/ && *(target+1) == 0xd61f0200 /* br xip0 */) |
| 942 | { |
| 943 | // get the actual jithelper target |
| 944 | target = *(((DWORD**)target) + 1); |
| 945 | if((TADDR)target == GetEEFuncEntryPoint(JIT_RareDisableHelper)) |
| 946 | { |
| 947 | return true; |
| 948 | } |
| 949 | } |
| 950 | } |
| 951 | #elif defined(_TARGET_ARM_) |
| 952 | if((instrPtr[1] & 0xf8) == 0xf0 && (instrPtr[3] & 0xc0) == 0xc0) // call using imm |
| 953 | { |
| 954 | int imm32 = GetThumb2BlRel24((UINT16 *)instrPtr); |
| 955 | WORD* target = (WORD*) (instrPtr + 4 + imm32); |
| 956 | // Is target a stub |
| 957 | if(*target == 0xf8df && *(target+1) == 0xf000) // ldr pc, [pc+4] |
| 958 | { |
| 959 | //get actual target |
| 960 | target = *((WORD**)target + 1); |
| 961 | if((TADDR)target == GetEEFuncEntryPoint(JIT_RareDisableHelper)) |
| 962 | { |
| 963 | return true; |
| 964 | } |
| 965 | } |
| 966 | } |
| 967 | #endif |
| 968 | return false; |
| 969 | } |
| 970 | |
| 971 | static size_t getRegVal(unsigned regNum, PCONTEXT regs) |
| 972 | { |
| 973 | return *getRegAddr(regNum, regs); |
| 974 | } |
| 975 | |
| 976 | /****************************************************************************/ |
| 977 | static SLOT getTargetOfCall(SLOT instrPtr, PCONTEXT regs, SLOT*nextInstr) { |
| 978 | |
| 979 | BYTE sibindexadj = 0; |
| 980 | BYTE baseadj = 0; |
| 981 | WORD displace = 0; |
| 982 | |
| 983 | // In certain situations, the instruction bytes are read from a different |
| 984 | // location than the actual bytes being executed. |
| 985 | // When decoding the instructions of a method which is sprinkled with |
| 986 | // TRAP instructions for GCStress, we decode the bytes from a copy |
| 987 | // of the instructions stored before the traps-for-gc were inserted. |
| 988 | // Hoiwever, the PC-relative addressing/displacement of the CALL-target |
| 989 | // will still be with respect to the currently executing PC. |
| 990 | // So, if a register context is available, we pick the PC from it |
| 991 | // (for address calculation purposes only). |
| 992 | |
| 993 | SLOT PC = (regs) ? (SLOT)GetIP(regs) : instrPtr; |
| 994 | |
| 995 | #ifdef _TARGET_ARM_ |
| 996 | if((instrPtr[1] & 0xf0) == 0xf0) // direct call |
| 997 | { |
| 998 | int imm32 = GetThumb2BlRel24((UINT16 *)instrPtr); |
| 999 | *nextInstr = instrPtr + 4; |
| 1000 | return PC + 4 + imm32; |
| 1001 | } |
| 1002 | else if(((instrPtr[1] & 0x47) == 0x47) & ((instrPtr[0] & 0x80) == 0x80)) // indirect call |
| 1003 | { |
| 1004 | *nextInstr = instrPtr + 2; |
| 1005 | unsigned int regnum = (instrPtr[0] & 0x78) >> 3; |
| 1006 | return (BYTE *)getRegVal(regnum, regs); |
| 1007 | } |
| 1008 | else |
| 1009 | { |
| 1010 | return 0; // Not a call. |
| 1011 | } |
| 1012 | #elif defined(_TARGET_ARM64_) |
| 1013 | if (((*reinterpret_cast<DWORD*>(instrPtr)) & 0xFC000000) == 0x94000000) |
| 1014 | { |
| 1015 | // call through immediate |
| 1016 | int imm26 = ((*((DWORD*)instrPtr)) & 0x03FFFFFF)<<2; |
| 1017 | // SignExtend the immediate value. |
| 1018 | imm26 = (imm26 << 4) >> 4; |
| 1019 | *nextInstr = instrPtr + 4; |
| 1020 | return PC + imm26; |
| 1021 | } |
| 1022 | else if (((*reinterpret_cast<DWORD*>(instrPtr)) & 0xFFFFC1F) == 0xD63F0000) |
| 1023 | { |
| 1024 | // call through register |
| 1025 | *nextInstr = instrPtr + 4; |
| 1026 | unsigned int regnum = ((*(DWORD*)instrPtr) >> 5) & 0x1F; |
| 1027 | return (BYTE *)getRegVal(regnum, regs); |
| 1028 | } |
| 1029 | else |
| 1030 | { |
| 1031 | return 0; // Fail |
| 1032 | } |
| 1033 | #endif |
| 1034 | |
| 1035 | #ifdef _TARGET_AMD64_ |
| 1036 | |
| 1037 | if ((instrPtr[0] & 0xf0) == REX_PREFIX_BASE) |
| 1038 | { |
| 1039 | static_assert_no_msg(REX_SIB_BASE_EXT == REX_MODRM_RM_EXT); |
| 1040 | if (instrPtr[0] & REX_SIB_BASE_EXT) |
| 1041 | baseadj = 8; |
| 1042 | |
| 1043 | if (instrPtr[0] & REX_SIB_INDEX_EXT) |
| 1044 | sibindexadj = 8; |
| 1045 | |
| 1046 | instrPtr++; |
| 1047 | } |
| 1048 | |
| 1049 | #endif // _TARGET_AMD64_ |
| 1050 | |
| 1051 | if (instrPtr[0] == 0xE8) { // Direct Relative Near |
| 1052 | *nextInstr = instrPtr + 5; |
| 1053 | |
| 1054 | size_t base = (size_t) PC + 5; |
| 1055 | |
| 1056 | INT32 displacement = (INT32) ( |
| 1057 | ((UINT32)instrPtr[1]) + |
| 1058 | (((UINT32)instrPtr[2]) << 8) + |
| 1059 | (((UINT32)instrPtr[3]) << 16) + |
| 1060 | (((UINT32)instrPtr[4]) << 24) |
| 1061 | ); |
| 1062 | |
| 1063 | // Note that the signed displacement is sign-extended |
| 1064 | // to 64-bit on AMD64 |
| 1065 | return((SLOT)(base + (SSIZE_T)displacement)); |
| 1066 | } |
| 1067 | |
| 1068 | if (instrPtr[0] == 0xFF) { // Indirect Absolute Near |
| 1069 | |
| 1070 | _ASSERTE(regs); |
| 1071 | |
| 1072 | BYTE mod = (instrPtr[1] & 0xC0) >> 6; |
| 1073 | BYTE rm = (instrPtr[1] & 0x7); |
| 1074 | SLOT result; |
| 1075 | |
| 1076 | switch (mod) { |
| 1077 | case 0: |
| 1078 | case 1: |
| 1079 | case 2: |
| 1080 | |
| 1081 | if (rm == 4) { |
| 1082 | |
| 1083 | // |
| 1084 | // Get values from the SIB byte |
| 1085 | // |
| 1086 | BYTE ss = (instrPtr[2] & 0xC0) >> 6; |
| 1087 | BYTE index = (instrPtr[2] & 0x38) >> 3; |
| 1088 | BYTE base = (instrPtr[2] & 0x7); |
| 1089 | |
| 1090 | // |
| 1091 | // Get starting value |
| 1092 | // |
| 1093 | if ((mod == 0) && (base == 5)) { |
| 1094 | result = 0; |
| 1095 | } else { |
| 1096 | result = (BYTE *)getRegVal(baseadj + base, regs); |
| 1097 | } |
| 1098 | |
| 1099 | // |
| 1100 | // Add in the [index] |
| 1101 | // |
| 1102 | if (index != 0x4) { |
| 1103 | result = result + (getRegVal(sibindexadj + index, regs) << ss); |
| 1104 | } |
| 1105 | |
| 1106 | // |
| 1107 | // Finally add in the offset |
| 1108 | // |
| 1109 | if (mod == 0) { |
| 1110 | |
| 1111 | if (base == 5) { |
| 1112 | result = result + *((int *)&instrPtr[3]); |
| 1113 | displace += 7; |
| 1114 | } else { |
| 1115 | displace += 3; |
| 1116 | } |
| 1117 | |
| 1118 | } else if (mod == 1) { |
| 1119 | |
| 1120 | result = result + *((char *)&instrPtr[3]); |
| 1121 | displace += 4; |
| 1122 | |
| 1123 | } else { // == 2 |
| 1124 | |
| 1125 | result = result + *((int *)&instrPtr[3]); |
| 1126 | displace += 7; |
| 1127 | |
| 1128 | } |
| 1129 | |
| 1130 | } else { |
| 1131 | |
| 1132 | // |
| 1133 | // Get the value we need from the register. |
| 1134 | // |
| 1135 | |
| 1136 | if ((mod == 0) && (rm == 5)) { |
| 1137 | #ifdef _TARGET_AMD64_ |
| 1138 | // at this point instrPtr should be pointing at the beginning |
| 1139 | // of the byte sequence for the call instruction. the operand |
| 1140 | // is a RIP-relative address from the next instruction, so to |
| 1141 | // calculate the address of the next instruction we need to |
| 1142 | // jump forward 6 bytes: 1 for the opcode, 1 for the ModRM byte, |
| 1143 | // and 4 for the operand. see AMD64 Programmer's Manual Vol 3. |
| 1144 | result = PC + 6; |
| 1145 | #else |
| 1146 | result = 0; |
| 1147 | #endif // _TARGET_AMD64_ |
| 1148 | } else { |
| 1149 | result = (SLOT)getRegVal(baseadj + rm, regs); |
| 1150 | } |
| 1151 | |
| 1152 | if (mod == 0) { |
| 1153 | |
| 1154 | if (rm == 5) { |
| 1155 | result = result + *((int *)&instrPtr[2]); |
| 1156 | displace += 6; |
| 1157 | } else { |
| 1158 | displace += 2; |
| 1159 | } |
| 1160 | |
| 1161 | } else if (mod == 1) { |
| 1162 | |
| 1163 | result = result + *((char *)&instrPtr[2]); |
| 1164 | displace += 3; |
| 1165 | |
| 1166 | } else { // == 2 |
| 1167 | |
| 1168 | result = result + *((int *)&instrPtr[2]); |
| 1169 | displace += 6; |
| 1170 | |
| 1171 | } |
| 1172 | |
| 1173 | } |
| 1174 | |
| 1175 | // |
| 1176 | // Now dereference thru the result to get the resulting IP. |
| 1177 | // |
| 1178 | result = (SLOT)(*((SLOT *)result)); |
| 1179 | |
| 1180 | break; |
| 1181 | |
| 1182 | case 3: |
| 1183 | default: |
| 1184 | |
| 1185 | result = (SLOT)getRegVal(baseadj + rm, regs); |
| 1186 | displace += 2; |
| 1187 | break; |
| 1188 | |
| 1189 | } |
| 1190 | |
| 1191 | *nextInstr = instrPtr + displace; |
| 1192 | return result; |
| 1193 | |
| 1194 | } |
| 1195 | |
| 1196 | return(0); // Fail |
| 1197 | } |
| 1198 | |
| 1199 | /****************************************************************************/ |
| 1200 | |
| 1201 | #ifdef _TARGET_X86_ |
| 1202 | |
| 1203 | void checkAndUpdateReg(DWORD& origVal, DWORD curVal, bool gcHappened) { |
| 1204 | if (origVal == curVal) |
| 1205 | return; |
| 1206 | |
| 1207 | // If these asserts go off, they indicate either that unwinding out of a epilog is wrong or that |
| 1208 | // the validation infrastructure has got a bug. |
| 1209 | |
| 1210 | _ASSERTE(gcHappened); // If the register values are different, a GC must have happened |
| 1211 | _ASSERTE(GCHeapUtilities::GetGCHeap()->IsHeapPointer((BYTE*) size_t(origVal))); // And the pointers involved are on the GCHeap |
| 1212 | _ASSERTE(GCHeapUtilities::GetGCHeap()->IsHeapPointer((BYTE*) size_t(curVal))); |
| 1213 | origVal = curVal; // this is now the best estimate of what should be returned. |
| 1214 | } |
| 1215 | |
| 1216 | #endif // _TARGET_X86_ |
| 1217 | |
| 1218 | |
| 1219 | int GCcoverCount = 0; |
| 1220 | |
| 1221 | void* forceStack[8]; |
| 1222 | |
| 1223 | /****************************************************************************/ |
| 1224 | |
| 1225 | bool IsGcCoverageInterrupt(LPVOID ip) |
| 1226 | { |
| 1227 | // Determine if the IP is valid for a GC marker first, before trying to dereference it to check the instruction |
| 1228 | |
| 1229 | EECodeInfo codeInfo(reinterpret_cast<PCODE>(ip)); |
| 1230 | if (!codeInfo.IsValid()) |
| 1231 | { |
| 1232 | return false; |
| 1233 | } |
| 1234 | |
| 1235 | GCCoverageInfo *gcCover = codeInfo.GetMethodDesc()->m_GcCover; |
| 1236 | if (gcCover == nullptr) |
| 1237 | { |
| 1238 | return false; |
| 1239 | } |
| 1240 | |
| 1241 | // Now it's safe to dereference the IP to check the instruction |
| 1242 | #if defined(_TARGET_ARM64_) |
| 1243 | UINT32 instructionCode = *reinterpret_cast<UINT32 *>(ip); |
| 1244 | #elif defined(_TARGET_ARM_) |
| 1245 | UINT16 instructionCode = *reinterpret_cast<UINT16 *>(ip); |
| 1246 | #else |
| 1247 | UINT8 instructionCode = *reinterpret_cast<UINT8 *>(ip); |
| 1248 | #endif |
| 1249 | switch (instructionCode) |
| 1250 | { |
| 1251 | case INTERRUPT_INSTR: |
| 1252 | case INTERRUPT_INSTR_CALL: |
| 1253 | case INTERRUPT_INSTR_PROTECT_RET: |
| 1254 | return true; |
| 1255 | |
| 1256 | default: |
| 1257 | // Another thread may have already changed the code back to the original |
| 1258 | return instructionCode == gcCover->savedCode[codeInfo.GetRelOffset()]; |
| 1259 | } |
| 1260 | } |
| 1261 | |
| 1262 | // Remove the GcCoverage interrupt instruction, and restore the |
| 1263 | // original instruction. Only one instruction must be used, |
| 1264 | // because multiple threads can be executing the same code stream. |
| 1265 | |
| 1266 | void RemoveGcCoverageInterrupt(TADDR instrPtr, BYTE * savedInstrPtr) |
| 1267 | { |
| 1268 | #ifdef _TARGET_ARM_ |
| 1269 | if (GetARMInstructionLength(savedInstrPtr) == 2) |
| 1270 | *(WORD *)instrPtr = *(WORD *)savedInstrPtr; |
| 1271 | else |
| 1272 | *(DWORD *)instrPtr = *(DWORD *)savedInstrPtr; |
| 1273 | #elif defined(_TARGET_ARM64_) |
| 1274 | *(DWORD *)instrPtr = *(DWORD *)savedInstrPtr; |
| 1275 | #else |
| 1276 | *(BYTE *)instrPtr = *savedInstrPtr; |
| 1277 | #endif |
| 1278 | |
| 1279 | FlushInstructionCache(GetCurrentProcess(), (LPCVOID)instrPtr, 4); |
| 1280 | } |
| 1281 | |
| 1282 | BOOL OnGcCoverageInterrupt(PCONTEXT regs) |
| 1283 | { |
| 1284 | SO_NOT_MAINLINE_FUNCTION; |
| 1285 | |
| 1286 | // So that you can set counted breakpoint easily; |
| 1287 | GCcoverCount++; |
| 1288 | forceStack[0]= ®s; // This is so I can see it fastchecked |
| 1289 | |
| 1290 | PCODE controlPc = GetIP(regs); |
| 1291 | TADDR instrPtr = PCODEToPINSTR(controlPc); |
| 1292 | |
| 1293 | forceStack[0] = &instrPtr; // This is so I can see it fastchecked |
| 1294 | |
| 1295 | EECodeInfo codeInfo(controlPc); |
| 1296 | if (!codeInfo.IsValid()) |
| 1297 | return(FALSE); |
| 1298 | |
| 1299 | MethodDesc* pMD = codeInfo.GetMethodDesc(); |
| 1300 | DWORD offset = codeInfo.GetRelOffset(); |
| 1301 | |
| 1302 | forceStack[1] = &pMD; // This is so I can see it fastchecked |
| 1303 | forceStack[2] = &offset; // This is so I can see it fastchecked |
| 1304 | |
| 1305 | GCCoverageInfo* gcCover = pMD->m_GcCover; |
| 1306 | forceStack[3] = &gcCover; // This is so I can see it fastchecked |
| 1307 | if (gcCover == 0) |
| 1308 | return(FALSE); // we aren't doing code gcCoverage on this function |
| 1309 | |
| 1310 | BYTE * savedInstrPtr = &gcCover->savedCode[offset]; |
| 1311 | |
| 1312 | // If this trap instruction is taken in place of CORINFO_HELP_STOP_FOR_GC() |
| 1313 | // Do not start a GC, but continue with the original instruction. |
| 1314 | // See the comments above SprinkleBreakpoints() function. |
| 1315 | SLOT nextInstr; |
| 1316 | SLOT target = getTargetOfCall(savedInstrPtr, regs, &nextInstr); |
| 1317 | |
| 1318 | if (target == (SLOT)JIT_RareDisableHelper) { |
| 1319 | RemoveGcCoverageInterrupt(instrPtr, savedInstrPtr); |
| 1320 | return TRUE; |
| 1321 | } |
| 1322 | |
| 1323 | Thread* pThread = GetThread(); |
| 1324 | _ASSERTE(pThread); |
| 1325 | |
| 1326 | #if defined(USE_REDIRECT_FOR_GCSTRESS) && !defined(PLATFORM_UNIX) |
| 1327 | // If we're unable to redirect, then we simply won't test GC at this |
| 1328 | // location. |
| 1329 | if (!pThread->CheckForAndDoRedirectForGCStress(regs)) |
| 1330 | { |
| 1331 | RemoveGcCoverageInterrupt(instrPtr, savedInstrPtr); |
| 1332 | } |
| 1333 | |
| 1334 | #else // !USE_REDIRECT_FOR_GCSTRESS |
| 1335 | |
| 1336 | #ifdef _DEBUG |
| 1337 | if (!g_pConfig->SkipGCCoverage(pMD->GetModule()->GetSimpleName())) |
| 1338 | #endif |
| 1339 | DoGcStress(regs, pMD); |
| 1340 | |
| 1341 | #endif // !USE_REDIRECT_FOR_GCSTRESS |
| 1342 | |
| 1343 | return TRUE; |
| 1344 | } |
| 1345 | |
| 1346 | // There are some code path in DoGcStress to return without doing a GC but we |
| 1347 | // now relies on EE suspension to update the GC STRESS instruction. |
| 1348 | // We need to do a extra EE suspension/resume even without GC. |
| 1349 | FORCEINLINE void UpdateGCStressInstructionWithoutGC () |
| 1350 | { |
| 1351 | ThreadSuspend::SuspendEE(ThreadSuspend::SUSPEND_OTHER); |
| 1352 | ThreadSuspend::RestartEE(TRUE, TRUE); |
| 1353 | } |
| 1354 | |
| 1355 | /****************************************************************************/ |
| 1356 | |
| 1357 | void DoGcStress (PCONTEXT regs, MethodDesc *pMD) |
| 1358 | { |
| 1359 | PCODE controlPc = GetIP(regs); |
| 1360 | TADDR instrPtr = PCODEToPINSTR(controlPc); |
| 1361 | |
| 1362 | if (!pMD) |
| 1363 | { |
| 1364 | pMD = ExecutionManager::GetCodeMethodDesc(controlPc); |
| 1365 | if (!pMD) |
| 1366 | return; |
| 1367 | } |
| 1368 | |
| 1369 | GCCoverageInfo *gcCover = pMD->m_GcCover; |
| 1370 | |
| 1371 | EECodeInfo codeInfo(controlPc); |
| 1372 | _ASSERTE(codeInfo.GetMethodDesc() == pMD); |
| 1373 | DWORD offset = codeInfo.GetRelOffset(); |
| 1374 | |
| 1375 | Thread *pThread = GetThread(); |
| 1376 | |
| 1377 | #if defined(_TARGET_X86_) || defined(_TARGET_AMD64_) |
| 1378 | |
| 1379 | BYTE instrVal = *(BYTE *)instrPtr; |
| 1380 | forceStack[6] = &instrVal; // This is so I can see it fastchecked |
| 1381 | |
| 1382 | if (instrVal != INTERRUPT_INSTR && |
| 1383 | instrVal != INTERRUPT_INSTR_CALL && |
| 1384 | instrVal != INTERRUPT_INSTR_PROTECT_RET) { |
| 1385 | _ASSERTE(instrVal == gcCover->savedCode[offset]); // someone beat us to it. |
| 1386 | return; // Someone beat us to it, just go on running |
| 1387 | } |
| 1388 | |
| 1389 | bool atCall = (instrVal == INTERRUPT_INSTR_CALL); |
| 1390 | bool afterCallProtect = (instrVal == INTERRUPT_INSTR_PROTECT_RET); |
| 1391 | |
| 1392 | #elif defined(_TARGET_ARM_) |
| 1393 | |
| 1394 | WORD instrVal = *(WORD*)instrPtr; |
| 1395 | forceStack[6] = &instrVal; // This is so I can see it fastchecked |
| 1396 | |
| 1397 | size_t instrLen = GetARMInstructionLength(instrVal); |
| 1398 | |
| 1399 | bool atCall; |
| 1400 | bool afterCallProtect; |
| 1401 | |
| 1402 | if (instrLen == 2) |
| 1403 | { |
| 1404 | if (instrVal != INTERRUPT_INSTR && |
| 1405 | instrVal != INTERRUPT_INSTR_CALL && |
| 1406 | instrVal != INTERRUPT_INSTR_PROTECT_RET) { |
| 1407 | _ASSERTE(instrVal == *(WORD*)(gcCover->savedCode + offset)); // someone beat us to it. |
| 1408 | return; // Someone beat us to it, just go on running |
| 1409 | } |
| 1410 | |
| 1411 | atCall = (instrVal == INTERRUPT_INSTR_CALL); |
| 1412 | afterCallProtect = (instrVal == INTERRUPT_INSTR_PROTECT_RET); |
| 1413 | } |
| 1414 | else |
| 1415 | { |
| 1416 | _ASSERTE(instrLen == 4); |
| 1417 | |
| 1418 | DWORD instrVal32 = *(DWORD*)instrPtr; |
| 1419 | |
| 1420 | if (instrVal32 != INTERRUPT_INSTR_32 && |
| 1421 | instrVal32 != INTERRUPT_INSTR_CALL_32 && |
| 1422 | instrVal32 != INTERRUPT_INSTR_PROTECT_RET_32) { |
| 1423 | _ASSERTE(instrVal32 == *(DWORD*)(gcCover->savedCode + offset)); // someone beat us to it. |
| 1424 | return; // Someone beat us to it, just go on running |
| 1425 | } |
| 1426 | |
| 1427 | atCall = (instrVal32 == INTERRUPT_INSTR_CALL_32); |
| 1428 | afterCallProtect = (instrVal32 == INTERRUPT_INSTR_PROTECT_RET_32); |
| 1429 | } |
| 1430 | #elif defined(_TARGET_ARM64_) |
| 1431 | DWORD instrVal = *(DWORD *)instrPtr; |
| 1432 | forceStack[6] = &instrVal; // This is so I can see it fastchecked |
| 1433 | |
| 1434 | if (instrVal != INTERRUPT_INSTR && |
| 1435 | instrVal != INTERRUPT_INSTR_CALL && |
| 1436 | instrVal != INTERRUPT_INSTR_PROTECT_RET) { |
| 1437 | _ASSERTE(instrVal == *(DWORD *)(gcCover->savedCode + offset)); // someone beat us to it. |
| 1438 | return; // Someone beat us to it, just go on running |
| 1439 | } |
| 1440 | |
| 1441 | bool atCall = (instrVal == INTERRUPT_INSTR_CALL); |
| 1442 | bool afterCallProtect = (instrVal == INTERRUPT_INSTR_PROTECT_RET); |
| 1443 | |
| 1444 | #endif // _TARGET_* |
| 1445 | |
| 1446 | #ifdef _TARGET_X86_ |
| 1447 | /* are we at the very first instruction? If so, capture the register state */ |
| 1448 | bool bShouldUpdateProlog = true; |
| 1449 | if (gcCover->doingEpilogChecks) { |
| 1450 | if (offset == 0) { |
| 1451 | if (gcCover->callerThread == 0) { |
| 1452 | if (FastInterlockCompareExchangePointer(&gcCover->callerThread, pThread, 0) == 0) { |
| 1453 | gcCover->callerRegs = *regs; |
| 1454 | gcCover->gcCount = GCHeapUtilities::GetGCHeap()->GetGcCount(); |
| 1455 | bShouldUpdateProlog = false; |
| 1456 | } |
| 1457 | } |
| 1458 | else { |
| 1459 | // We have been in this routine before. Give up on epilog checking because |
| 1460 | // it is hard to insure that the saved caller register state is correct |
| 1461 | // This also has the effect of only doing the checking once per routine |
| 1462 | // (Even if there are multiple epilogs) |
| 1463 | gcCover->doingEpilogChecks = false; |
| 1464 | } |
| 1465 | } |
| 1466 | |
| 1467 | // If some other thread removes interrupt points, we abandon epilog testing |
| 1468 | // for this routine since the barrier at the begining of the routine may not |
| 1469 | // be up anymore, and thus the caller context is now not guaranteed to be correct. |
| 1470 | // This should happen only very rarely so is not a big deal. |
| 1471 | if (gcCover->callerThread != pThread) |
| 1472 | gcCover->doingEpilogChecks = false; |
| 1473 | } |
| 1474 | |
| 1475 | instrVal = gcCover->savedCode[offset]; |
| 1476 | #endif // _TARGET_X86_ |
| 1477 | |
| 1478 | |
| 1479 | // <GCStress instruction update race> |
| 1480 | // Remove the interrupt instruction the next time we suspend the EE, |
| 1481 | // which should happen below in the call to StressHeap(). This is |
| 1482 | // done with the EE suspended so that we do not race with the executing |
| 1483 | // code on some other thread. If we allow that race, we may sometimes |
| 1484 | // get a STATUS_ACCESS_VIOLATION instead of the expected |
| 1485 | // STATUS_PRIVILEGED_INSTRUCTION because the OS has to inspect the code |
| 1486 | // stream to determine which exception code to raise. As a result, some |
| 1487 | // thread may take the exception due to the HLT, but by the time the OS |
| 1488 | // inspects the code stream, the HLT may be replaced with the original |
| 1489 | // code and it will just raise a STATUS_ACCESS_VIOLATION. |
| 1490 | #ifdef _TARGET_X86_ |
| 1491 | // only restore the original instruction if: |
| 1492 | // this is not the first instruction in the method's prolog, or |
| 1493 | // if it is, only if this is the second time we run in this method |
| 1494 | // note that if this is the second time in the prolog we've already disabled epilog checks |
| 1495 | if (offset != 0 || bShouldUpdateProlog) |
| 1496 | #endif |
| 1497 | pThread->PostGCStressInstructionUpdate((BYTE*)instrPtr, &gcCover->savedCode[offset]); |
| 1498 | |
| 1499 | #ifdef _TARGET_X86_ |
| 1500 | /* are we in a prolog or epilog? If so just test the unwind logic |
| 1501 | but don't actually do a GC since the prolog and epilog are not |
| 1502 | GC safe points */ |
| 1503 | if (gcCover->codeMan->IsInPrologOrEpilog(offset, gcCover->gcInfoToken, NULL)) |
| 1504 | { |
| 1505 | // We are not at a GC safe point so we can't Suspend EE (Suspend EE will yield to GC). |
| 1506 | // But we still have to update the GC Stress instruction. We do it directly without suspending |
| 1507 | // other threads, which means a race on updating is still possible. But for X86 the window of |
| 1508 | // race is so small that we could ignore it. We need a better solution if the race becomes a real problem. |
| 1509 | // see details about <GCStress instruction update race> in comments above |
| 1510 | pThread->CommitGCStressInstructionUpdate (); |
| 1511 | |
| 1512 | REGDISPLAY regDisp; |
| 1513 | CONTEXT copyRegs = *regs; |
| 1514 | |
| 1515 | pThread->Thread::InitRegDisplay(®Disp, ©Regs, true); |
| 1516 | pThread->UnhijackThread(); |
| 1517 | |
| 1518 | CodeManState codeManState; |
| 1519 | codeManState.dwIsSet = 0; |
| 1520 | |
| 1521 | // unwind out of the prolog or epilog |
| 1522 | gcCover->codeMan->UnwindStackFrame(®Disp, |
| 1523 | &codeInfo, UpdateAllRegs, &codeManState, NULL); |
| 1524 | |
| 1525 | // Note we always doing the unwind, since that at does some checking (that we |
| 1526 | // unwind to a valid return address), but we only do the precise checking when |
| 1527 | // we are certain we have a good caller state |
| 1528 | if (gcCover->doingEpilogChecks) { |
| 1529 | // Confirm that we recovered our register state properly |
| 1530 | _ASSERTE(regDisp.PCTAddr == TADDR(gcCover->callerRegs.Esp)); |
| 1531 | |
| 1532 | // If a GC happened in this function, then the registers will not match |
| 1533 | // precisely. However there is still checks we can do. Also we can update |
| 1534 | // the saved register to its new value so that if a GC does not happen between |
| 1535 | // instructions we can recover (and since GCs are not allowed in the |
| 1536 | // prologs and epilogs, we get get complete coverage except for the first |
| 1537 | // instruction in the epilog (TODO: fix it for the first instr Case) |
| 1538 | |
| 1539 | _ASSERTE(pThread->PreemptiveGCDisabled()); // Epilogs should be in cooperative mode, no GC can happen right now. |
| 1540 | bool gcHappened = gcCover->gcCount != GCHeapUtilities::GetGCHeap()->GetGcCount(); |
| 1541 | checkAndUpdateReg(gcCover->callerRegs.Edi, *regDisp.GetEdiLocation(), gcHappened); |
| 1542 | checkAndUpdateReg(gcCover->callerRegs.Esi, *regDisp.GetEsiLocation(), gcHappened); |
| 1543 | checkAndUpdateReg(gcCover->callerRegs.Ebx, *regDisp.GetEbxLocation(), gcHappened); |
| 1544 | checkAndUpdateReg(gcCover->callerRegs.Ebp, *regDisp.GetEbpLocation(), gcHappened); |
| 1545 | |
| 1546 | gcCover->gcCount = GCHeapUtilities::GetGCHeap()->GetGcCount(); |
| 1547 | |
| 1548 | } |
| 1549 | return; |
| 1550 | } |
| 1551 | #endif // _TARGET_X86_ |
| 1552 | |
| 1553 | #if defined(_TARGET_X86_) || defined(_TARGET_AMD64_) || defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 1554 | |
| 1555 | /* In non-fully interrruptable code, if the EIP is just after a call instr |
| 1556 | means something different because it expects that that we are IN the |
| 1557 | called method, not actually at the instruction just after the call. This |
| 1558 | is important, because until the called method returns, IT is responsible |
| 1559 | for protecting the return value. Thus just after a call instruction |
| 1560 | we have to protect EAX if the method being called returns a GC pointer. |
| 1561 | |
| 1562 | To figure this out, we need to stop AT the call so we can determine the |
| 1563 | target (and thus whether it returns a GC pointer), and then place the |
| 1564 | a different interrupt instruction so that the GCCover harness protects |
| 1565 | EAX before doing the GC). This effectively simulates a hijack in |
| 1566 | non-fully interruptible code */ |
| 1567 | |
| 1568 | /* TODO. Simulating the hijack could cause problems in cases where the |
| 1569 | return register is not always a valid GC ref on the return offset. |
| 1570 | That could happen if we got to the return offset via a branch |
| 1571 | and not via return from the preceding call. However, this has not been |
| 1572 | an issue so far. |
| 1573 | |
| 1574 | Example: |
| 1575 | mov eax, someval |
| 1576 | test eax, eax |
| 1577 | jCC AFTERCALL |
| 1578 | call MethodWhichReturnsGCobject // return value is not used |
| 1579 | AFTERCALL: |
| 1580 | */ |
| 1581 | |
| 1582 | if (atCall) { |
| 1583 | // We need to update the GC Stress instruction. With partially-interruptible code |
| 1584 | // the call instruction is not a GC safe point so we can't use |
| 1585 | // StressHeap or UpdateGCStressInstructionWithoutGC to take care of updating; |
| 1586 | // So we just update the instruction directly. There are still chances for a race, |
| 1587 | // but it's not been a problem so far. |
| 1588 | // see details about <GCStress instruction update race> in comments above |
| 1589 | pThread->CommitGCStressInstructionUpdate (); |
| 1590 | BYTE* nextInstr; |
| 1591 | SLOT target = getTargetOfCall((BYTE*) instrPtr, regs, (BYTE**)&nextInstr); |
| 1592 | if (target != 0) |
| 1593 | { |
| 1594 | if (!pThread->PreemptiveGCDisabled()) |
| 1595 | { |
| 1596 | // We are in preemtive mode in JITTed code. This implies that we are into IL stub |
| 1597 | // close to PINVOKE method. This call will never return objectrefs. |
| 1598 | #ifdef _TARGET_ARM_ |
| 1599 | size_t instrLen = GetARMInstructionLength(nextInstr); |
| 1600 | if (instrLen == 2) |
| 1601 | *(WORD*)nextInstr = INTERRUPT_INSTR; |
| 1602 | else |
| 1603 | *(DWORD*)nextInstr = INTERRUPT_INSTR_32; |
| 1604 | #elif defined(_TARGET_ARM64_) |
| 1605 | *(DWORD*)nextInstr = INTERRUPT_INSTR; |
| 1606 | #else |
| 1607 | *nextInstr = INTERRUPT_INSTR; |
| 1608 | #endif |
| 1609 | } |
| 1610 | else |
| 1611 | { |
| 1612 | MethodDesc* targetMD = getTargetMethodDesc((PCODE)target); |
| 1613 | |
| 1614 | if (targetMD != 0) |
| 1615 | { |
| 1616 | // Mark that we are performing a stackwalker like operation on the current thread. |
| 1617 | // This is necessary to allow the ReturnsObject function to work without triggering any loads |
| 1618 | ClrFlsValueSwitch _threadStackWalking(TlsIdx_StackWalkerWalkingThread, pThread); |
| 1619 | |
| 1620 | // @Todo: possible race here, might need to be fixed if it become a problem. |
| 1621 | // It could become a problem if 64bit does partially interrupt work. |
| 1622 | // OK, we have the MD, mark the instruction after the CALL |
| 1623 | // appropriately |
| 1624 | #ifdef _TARGET_ARM_ |
| 1625 | size_t instrLen = GetARMInstructionLength(nextInstr); |
| 1626 | if (targetMD->ReturnsObject(true) != MetaSig::RETNONOBJ) |
| 1627 | if (instrLen == 2) |
| 1628 | *(WORD*)nextInstr = INTERRUPT_INSTR_PROTECT_RET; |
| 1629 | else |
| 1630 | *(DWORD*)nextInstr = INTERRUPT_INSTR_PROTECT_RET_32; |
| 1631 | else |
| 1632 | if (instrLen == 2) |
| 1633 | *(WORD*)nextInstr = INTERRUPT_INSTR; |
| 1634 | else |
| 1635 | *(DWORD*)nextInstr = INTERRUPT_INSTR_32; |
| 1636 | #elif defined(_TARGET_ARM64_) |
| 1637 | if (targetMD->ReturnsObject(true) != MetaSig::RETNONOBJ) |
| 1638 | *(DWORD *)nextInstr = INTERRUPT_INSTR_PROTECT_RET; |
| 1639 | else |
| 1640 | *(DWORD *)nextInstr = INTERRUPT_INSTR; |
| 1641 | #else |
| 1642 | if (targetMD->ReturnsObject(true) != MetaSig::RETNONOBJ) |
| 1643 | *nextInstr = INTERRUPT_INSTR_PROTECT_RET; |
| 1644 | else |
| 1645 | *nextInstr = INTERRUPT_INSTR; |
| 1646 | #endif |
| 1647 | } |
| 1648 | } |
| 1649 | } |
| 1650 | |
| 1651 | // Must flush instruction cache before returning as instruction has been modified. |
| 1652 | // Note this needs to reach beyond the call by up to 4 bytes. |
| 1653 | FlushInstructionCache(GetCurrentProcess(), (LPCVOID)instrPtr, 10); |
| 1654 | |
| 1655 | // It's not GC safe point, the GC Stress instruction is |
| 1656 | // already commited and interrupt is already put at next instruction so we just return. |
| 1657 | return; |
| 1658 | } |
| 1659 | #else |
| 1660 | PORTABILITY_ASSERT("DoGcStress - NYI on this platform" ); |
| 1661 | #endif // _TARGET_* |
| 1662 | |
| 1663 | bool enableWhenDone = false; |
| 1664 | if (!pThread->PreemptiveGCDisabled()) |
| 1665 | { |
| 1666 | pThread->DisablePreemptiveGC(); |
| 1667 | enableWhenDone = true; |
| 1668 | } |
| 1669 | |
| 1670 | |
| 1671 | #if 0 |
| 1672 | // TODO currently disabled. we only do a GC once per instruction location. |
| 1673 | |
| 1674 | /* note that for multiple threads, we can loose track and |
| 1675 | forget to set reset the interrupt after we executed |
| 1676 | an instruction, so some instruction points will not be |
| 1677 | executed twice, but we still ge350t very good coverage |
| 1678 | (perfect for single threaded cases) */ |
| 1679 | |
| 1680 | /* if we have not run this instruction in the past */ |
| 1681 | /* remember to wack it to an INTERUPT_INSTR again */ |
| 1682 | |
| 1683 | if (!gcCover->IsBitSetForOffset(offset)) { |
| 1684 | // gcCover->curInstr = instrPtr; |
| 1685 | gcCover->SetBitForOffset(offset); |
| 1686 | } |
| 1687 | #endif // 0 |
| 1688 | |
| 1689 | |
| 1690 | #if !defined(USE_REDIRECT_FOR_GCSTRESS) |
| 1691 | // |
| 1692 | // If we redirect for gc stress, we don't need this frame on the stack, |
| 1693 | // the redirection will push a resumable frame. |
| 1694 | // |
| 1695 | FrameWithCookie<ResumableFrame> frame(regs); |
| 1696 | frame.Push(pThread); |
| 1697 | #endif // USE_REDIRECT_FOR_GCSTRESS |
| 1698 | |
| 1699 | #if defined(_TARGET_X86_) || defined(_TARGET_AMD64_) || defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 1700 | FrameWithCookie<GCFrame> gcFrame; |
| 1701 | DWORD_PTR retVal = 0; |
| 1702 | |
| 1703 | if (afterCallProtect) // Do I need to protect return value? |
| 1704 | { |
| 1705 | #ifdef _TARGET_AMD64_ |
| 1706 | retVal = regs->Rax; |
| 1707 | #elif defined(_TARGET_X86_) |
| 1708 | retVal = regs->Eax; |
| 1709 | #elif defined(_TARGET_ARM_) |
| 1710 | retVal = regs->R0; |
| 1711 | #elif defined(_TARGET_ARM64_) |
| 1712 | retVal = regs->X0; |
| 1713 | #else |
| 1714 | PORTABILITY_ASSERT("DoGCStress - return register" ); |
| 1715 | #endif |
| 1716 | gcFrame.Init(pThread, (OBJECTREF*) &retVal, 1, TRUE); |
| 1717 | } |
| 1718 | #endif // _TARGET_* |
| 1719 | |
| 1720 | if (gcCover->lastMD != pMD) |
| 1721 | { |
| 1722 | LOG((LF_GCROOTS, LL_INFO100000, "GCCOVER: Doing GC at method %s::%s offset 0x%x\n" , |
| 1723 | pMD->m_pszDebugClassName, pMD->m_pszDebugMethodName, offset)); |
| 1724 | gcCover->lastMD =pMD; |
| 1725 | } |
| 1726 | else |
| 1727 | { |
| 1728 | LOG((LF_GCROOTS, LL_EVERYTHING, "GCCOVER: Doing GC at method %s::%s offset 0x%x\n" , |
| 1729 | pMD->m_pszDebugClassName, pMD->m_pszDebugMethodName, offset)); |
| 1730 | } |
| 1731 | |
| 1732 | //------------------------------------------------------------------------- |
| 1733 | // Do the actual stress work |
| 1734 | // |
| 1735 | |
| 1736 | // BUG(github #10318) - when not using allocation contexts, the alloc lock |
| 1737 | // must be acquired here. Until fixed, this assert prevents random heap corruption. |
| 1738 | assert(GCHeapUtilities::UseThreadAllocationContexts()); |
| 1739 | GCHeapUtilities::GetGCHeap()->StressHeap(GetThread()->GetAllocContext()); |
| 1740 | |
| 1741 | // StressHeap can exit early w/o forcing a SuspendEE to trigger the instruction update |
| 1742 | // We can not rely on the return code to determine if the instruction update happened |
| 1743 | // Use HasPendingGCStressInstructionUpdate() to be certain. |
| 1744 | if(pThread->HasPendingGCStressInstructionUpdate()) |
| 1745 | UpdateGCStressInstructionWithoutGC (); |
| 1746 | |
| 1747 | // Must flush instruction cache before returning as instruction has been modified. |
| 1748 | FlushInstructionCache(GetCurrentProcess(), (LPCVOID)instrPtr, 4); |
| 1749 | |
| 1750 | CONSISTENCY_CHECK(!pThread->HasPendingGCStressInstructionUpdate()); |
| 1751 | |
| 1752 | #if defined(_TARGET_X86_) || defined(_TARGET_AMD64_) || defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 1753 | if (afterCallProtect) |
| 1754 | { |
| 1755 | #ifdef _TARGET_AMD64_ |
| 1756 | regs->Rax = retVal; |
| 1757 | #elif defined(_TARGET_X86_) |
| 1758 | regs->Eax = retVal; |
| 1759 | #elif defined(_TARGET_ARM_) |
| 1760 | regs->R0 = retVal; |
| 1761 | #elif defined(_TARGET_ARM64_) |
| 1762 | regs->X[0] = retVal; |
| 1763 | #else |
| 1764 | PORTABILITY_ASSERT("DoGCStress - return register" ); |
| 1765 | #endif |
| 1766 | gcFrame.Pop(); |
| 1767 | } |
| 1768 | #endif // _TARGET_* |
| 1769 | |
| 1770 | #if !defined(USE_REDIRECT_FOR_GCSTRESS) |
| 1771 | frame.Pop(pThread); |
| 1772 | #endif // USE_REDIRECT_FOR_GCSTRESS |
| 1773 | |
| 1774 | if (enableWhenDone) |
| 1775 | { |
| 1776 | BOOL b = GC_ON_TRANSITIONS(FALSE); // Don't do a GCStress 3 GC here |
| 1777 | pThread->EnablePreemptiveGC(); |
| 1778 | GC_ON_TRANSITIONS(b); |
| 1779 | } |
| 1780 | |
| 1781 | return; |
| 1782 | |
| 1783 | } |
| 1784 | |
| 1785 | #endif // HAVE_GCCOVER |
| 1786 | |
| 1787 | |