1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | // |
5 | // File: generics.cpp |
6 | // |
7 | |
8 | |
9 | // |
10 | // Helper functions for generics prototype |
11 | // |
12 | |
13 | // |
14 | // ============================================================================ |
15 | |
16 | #include "common.h" |
17 | #include "method.hpp" |
18 | #include "field.h" |
19 | #include "eeconfig.h" |
20 | #include "generics.h" |
21 | #include "genericdict.h" |
22 | #include "stackprobe.h" |
23 | #include "typestring.h" |
24 | #include "typekey.h" |
25 | #include "dumpcommon.h" |
26 | #include "array.h" |
27 | |
28 | #include "generics.inl" |
29 | #ifdef FEATURE_COMINTEROP |
30 | #include "winrttypenameconverter.h" |
31 | #endif // FEATURE_COMINTEROP |
32 | |
33 | /* static */ |
34 | TypeHandle ClassLoader::CanonicalizeGenericArg(TypeHandle thGenericArg) |
35 | { |
36 | CONTRACT(TypeHandle) |
37 | { |
38 | NOTHROW; |
39 | GC_NOTRIGGER; |
40 | POSTCONDITION(CheckPointer(RETVAL)); |
41 | } |
42 | CONTRACT_END |
43 | |
44 | #if defined(FEATURE_SHARE_GENERIC_CODE) |
45 | CorElementType et = thGenericArg.GetSignatureCorElementType(); |
46 | |
47 | // Note that generic variables do not share |
48 | |
49 | if (CorTypeInfo::IsObjRef_NoThrow(et)) |
50 | RETURN(TypeHandle(g_pCanonMethodTableClass)); |
51 | |
52 | if (et == ELEMENT_TYPE_VALUETYPE) |
53 | { |
54 | // Don't share structs. But sharability must be propagated through |
55 | // them (i.e. struct<object> * shares with struct<string> *) |
56 | RETURN(TypeHandle(thGenericArg.GetCanonicalMethodTable())); |
57 | } |
58 | |
59 | _ASSERTE(et != ELEMENT_TYPE_PTR && et != ELEMENT_TYPE_FNPTR); |
60 | RETURN(thGenericArg); |
61 | #else |
62 | RETURN (thGenericArg); |
63 | #endif // FEATURE_SHARE_GENERIC_CODE |
64 | } |
65 | |
66 | // Given the build-time ShareGenericCode setting, is the specified type |
67 | // representation-sharable as a type parameter to a generic type or method ? |
68 | /* static */ BOOL ClassLoader::IsSharableInstantiation(Instantiation inst) |
69 | { |
70 | CONTRACTL |
71 | { |
72 | NOTHROW; |
73 | GC_NOTRIGGER; |
74 | FORBID_FAULT; |
75 | } |
76 | CONTRACTL_END |
77 | |
78 | for (DWORD i = 0; i < inst.GetNumArgs(); i++) |
79 | { |
80 | if (CanonicalizeGenericArg(inst[i]).IsCanonicalSubtype()) |
81 | return TRUE; |
82 | } |
83 | return FALSE; |
84 | } |
85 | |
86 | /* static */ BOOL ClassLoader::IsCanonicalGenericInstantiation(Instantiation inst) |
87 | { |
88 | CONTRACTL |
89 | { |
90 | NOTHROW; |
91 | GC_NOTRIGGER; |
92 | FORBID_FAULT; |
93 | } |
94 | CONTRACTL_END |
95 | |
96 | for (DWORD i = 0; i < inst.GetNumArgs(); i++) |
97 | { |
98 | if (CanonicalizeGenericArg(inst[i]) != inst[i]) |
99 | return FALSE; |
100 | } |
101 | return TRUE; |
102 | } |
103 | |
104 | /* static */ BOOL ClassLoader::IsTypicalSharedInstantiation(Instantiation inst) |
105 | { |
106 | CONTRACTL |
107 | { |
108 | NOTHROW; |
109 | GC_NOTRIGGER; |
110 | FORBID_FAULT; |
111 | } |
112 | CONTRACTL_END |
113 | |
114 | for (DWORD i = 0; i < inst.GetNumArgs(); i++) |
115 | { |
116 | if (inst[i] != TypeHandle(g_pCanonMethodTableClass)) |
117 | return FALSE; |
118 | } |
119 | return TRUE; |
120 | } |
121 | |
122 | #ifndef DACCESS_COMPILE |
123 | |
124 | TypeHandle ClassLoader::LoadCanonicalGenericInstantiation(TypeKey *pTypeKey, |
125 | LoadTypesFlag fLoadTypes/*=LoadTypes*/, |
126 | ClassLoadLevel level/*=CLASS_LOADED*/) |
127 | { |
128 | CONTRACT(TypeHandle) |
129 | { |
130 | if (FORBIDGC_LOADER_USE_ENABLED()) NOTHROW; else THROWS; |
131 | if (FORBIDGC_LOADER_USE_ENABLED()) GC_NOTRIGGER; else GC_TRIGGERS; |
132 | if (FORBIDGC_LOADER_USE_ENABLED() || fLoadTypes != LoadTypes) { LOADS_TYPE(CLASS_LOAD_BEGIN); } else { LOADS_TYPE(level); } |
133 | POSTCONDITION(CheckPointer(RETVAL, ((fLoadTypes == LoadTypes) ? NULL_NOT_OK : NULL_OK))); |
134 | POSTCONDITION(RETVAL.IsNull() || RETVAL.CheckLoadLevel(level)); |
135 | } |
136 | CONTRACT_END |
137 | |
138 | Instantiation inst = pTypeKey->GetInstantiation(); |
139 | DWORD ntypars = inst.GetNumArgs(); |
140 | |
141 | // Canonicalize the type arguments. |
142 | DWORD dwAllocSize = 0; |
143 | if (!ClrSafeInt<DWORD>::multiply(ntypars, sizeof(TypeHandle), dwAllocSize)) |
144 | ThrowHR(COR_E_OVERFLOW); |
145 | |
146 | TypeHandle ret = TypeHandle(); |
147 | DECLARE_INTERIOR_STACK_PROBE; |
148 | #ifndef DACCESS_COMPILE |
149 | if ((dwAllocSize/GetOsPageSize()+1) >= 2) |
150 | { |
151 | DO_INTERIOR_STACK_PROBE_FOR_NOTHROW_CHECK_THREAD((10+dwAllocSize/GetOsPageSize()+1), NO_FORBIDGC_LOADER_USE_ThrowSO();); |
152 | } |
153 | #endif // DACCESS_COMPILE |
154 | TypeHandle *repInst = (TypeHandle*) _alloca(dwAllocSize); |
155 | |
156 | for (DWORD i = 0; i < ntypars; i++) |
157 | { |
158 | repInst[i] = ClassLoader::CanonicalizeGenericArg(inst[i]); |
159 | } |
160 | |
161 | // Load the canonical instantiation |
162 | TypeKey canonKey(pTypeKey->GetModule(), pTypeKey->GetTypeToken(), Instantiation(repInst, ntypars)); |
163 | ret = ClassLoader::LoadConstructedTypeThrowing(&canonKey, fLoadTypes, level); |
164 | |
165 | END_INTERIOR_STACK_PROBE; |
166 | RETURN(ret); |
167 | } |
168 | |
169 | // Create a non-canonical instantiation of a generic type, by |
170 | // copying the method table of the canonical instantiation |
171 | // |
172 | /* static */ |
173 | TypeHandle |
174 | ClassLoader::CreateTypeHandleForNonCanonicalGenericInstantiation( |
175 | TypeKey *pTypeKey, |
176 | AllocMemTracker *pamTracker) |
177 | { |
178 | CONTRACT(TypeHandle) |
179 | { |
180 | STANDARD_VM_CHECK; |
181 | PRECONDITION(CheckPointer(pTypeKey)); |
182 | PRECONDITION(CheckPointer(pamTracker)); |
183 | PRECONDITION(pTypeKey->HasInstantiation()); |
184 | PRECONDITION(ClassLoader::IsSharableInstantiation(pTypeKey->GetInstantiation())); |
185 | PRECONDITION(!TypeHandle::IsCanonicalSubtypeInstantiation(pTypeKey->GetInstantiation())); |
186 | POSTCONDITION(CheckPointer(RETVAL)); |
187 | POSTCONDITION(RETVAL.CheckMatchesKey(pTypeKey)); |
188 | } |
189 | CONTRACT_END |
190 | |
191 | Module *pLoaderModule = ClassLoader::ComputeLoaderModule(pTypeKey); |
192 | LoaderAllocator* pAllocator=pLoaderModule->GetLoaderAllocator(); |
193 | |
194 | Instantiation inst = pTypeKey->GetInstantiation(); |
195 | pAllocator->EnsureInstantiation(pTypeKey->GetModule(), inst); |
196 | DWORD ntypars = inst.GetNumArgs(); |
197 | |
198 | #ifdef _DEBUG |
199 | if (LoggingOn(LF_CLASSLOADER, LL_INFO1000) || g_pConfig->BreakOnInstantiationEnabled()) |
200 | { |
201 | StackSString debugTypeKeyName; |
202 | TypeString::AppendTypeKeyDebug(debugTypeKeyName, pTypeKey); |
203 | LOG((LF_CLASSLOADER, LL_INFO1000, "GENERICS: New instantiation requested: %S\n" , debugTypeKeyName.GetUnicode())); |
204 | |
205 | StackScratchBuffer buf; |
206 | if (g_pConfig->ShouldBreakOnInstantiation(debugTypeKeyName.GetUTF8(buf))) |
207 | CONSISTENCY_CHECK_MSGF(false, ("BreakOnInstantiation: typename '%s' " , debugTypeKeyName.GetUTF8(buf))); |
208 | } |
209 | #endif // _DEBUG |
210 | |
211 | TypeHandle canonType; |
212 | { |
213 | OVERRIDE_TYPE_LOAD_LEVEL_LIMIT(CLASS_LOAD_APPROXPARENTS); |
214 | canonType = ClassLoader::LoadCanonicalGenericInstantiation(pTypeKey, ClassLoader::LoadTypes, CLASS_LOAD_APPROXPARENTS); |
215 | } |
216 | |
217 | // Now fabricate a method table |
218 | MethodTable* pOldMT = canonType.AsMethodTable(); |
219 | |
220 | // We only need true vtable entries as the rest can be found in the representative method table |
221 | WORD cSlots = static_cast<WORD>(pOldMT->GetNumVirtuals()); |
222 | |
223 | BOOL fContainsGenericVariables = MethodTable::ComputeContainsGenericVariables(inst); |
224 | |
225 | // These are all copied across from the old MT, i.e. don't depend on the |
226 | // instantiation. |
227 | BOOL fHasGenericsStaticsInfo = pOldMT->HasGenericsStaticsInfo(); |
228 | |
229 | #ifdef FEATURE_COMINTEROP |
230 | BOOL fHasDynamicInterfaceMap = pOldMT->HasDynamicInterfaceMap(); |
231 | BOOL fHasRCWPerTypeData = pOldMT->HasRCWPerTypeData(); |
232 | #else // FEATURE_COMINTEROP |
233 | BOOL fHasDynamicInterfaceMap = FALSE; |
234 | BOOL fHasRCWPerTypeData = FALSE; |
235 | #endif // FEATURE_COMINTEROP |
236 | |
237 | // Collectible types have some special restrictions |
238 | if (pAllocator->IsCollectible()) |
239 | { |
240 | if (pOldMT->HasFixedAddressVTStatics()) |
241 | { |
242 | ClassLoader::ThrowTypeLoadException(pTypeKey, IDS_CLASSLOAD_COLLECTIBLEFIXEDVTATTR); |
243 | } |
244 | } |
245 | |
246 | // The number of bytes used for GC info |
247 | size_t cbGC = pOldMT->ContainsPointers() ? ((CGCDesc*) pOldMT)->GetSize() : 0; |
248 | |
249 | // Bytes are required for the vtable itself |
250 | S_SIZE_T safe_cbMT = S_SIZE_T( cbGC ) + S_SIZE_T( sizeof(MethodTable) ); |
251 | safe_cbMT += MethodTable::GetNumVtableIndirections(cSlots) * sizeof(MethodTable::VTableIndir_t); |
252 | if (safe_cbMT.IsOverflow()) |
253 | { |
254 | ThrowHR(COR_E_OVERFLOW); |
255 | } |
256 | const size_t cbMT = safe_cbMT.Value(); |
257 | |
258 | // After the optional members (see below) comes the duplicated interface map. |
259 | // For dynamic interfaces the interface map area begins one word |
260 | // before the location returned by GetInterfaceMap() |
261 | WORD wNumInterfaces = static_cast<WORD>(pOldMT->GetNumInterfaces()); |
262 | DWORD cbIMap = pOldMT->GetInterfaceMapSize(); |
263 | InterfaceInfo_t * pOldIMap = (InterfaceInfo_t *)pOldMT->GetInterfaceMap(); |
264 | |
265 | BOOL fHasGuidInfo = FALSE; |
266 | BOOL fHasCCWTemplate = FALSE; |
267 | |
268 | Generics::DetermineCCWTemplateAndGUIDPresenceOnNonCanonicalMethodTable(pOldMT, fContainsGenericVariables, &fHasGuidInfo, &fHasCCWTemplate); |
269 | |
270 | DWORD dwMultipurposeSlotsMask = 0; |
271 | dwMultipurposeSlotsMask |= MethodTable::enum_flag_HasPerInstInfo; |
272 | if (wNumInterfaces != 0) |
273 | dwMultipurposeSlotsMask |= MethodTable::enum_flag_HasInterfaceMap; |
274 | |
275 | // NonVirtualSlots, DispatchMap and ModuleOverride multipurpose slots are used |
276 | // from the canonical methodtable, so we do not need to store them here. |
277 | |
278 | // We need space for the optional members. |
279 | DWORD cbOptional = MethodTable::GetOptionalMembersAllocationSize(dwMultipurposeSlotsMask, |
280 | fHasGenericsStaticsInfo, |
281 | fHasGuidInfo, |
282 | fHasCCWTemplate, |
283 | fHasRCWPerTypeData, |
284 | pOldMT->HasTokenOverflow()); |
285 | |
286 | // We need space for the PerInstInfo, i.e. the generic dictionary pointers... |
287 | DWORD cbPerInst = sizeof(GenericsDictInfo) + pOldMT->GetPerInstInfoSize(); |
288 | |
289 | // Finally we need space for the instantiation/dictionary for this type |
290 | DWORD cbInstAndDict = pOldMT->GetInstAndDictSize(); |
291 | |
292 | // Allocate from the high frequence heap of the correct domain |
293 | S_SIZE_T allocSize = safe_cbMT; |
294 | allocSize += cbOptional; |
295 | allocSize += cbIMap; |
296 | allocSize += cbPerInst; |
297 | allocSize += cbInstAndDict; |
298 | |
299 | if (allocSize.IsOverflow()) |
300 | { |
301 | ThrowHR(COR_E_OVERFLOW); |
302 | } |
303 | |
304 | #ifdef FEATURE_PREJIT |
305 | Module *pComputedPZM = Module::ComputePreferredZapModule(pTypeKey); |
306 | BOOL canShareVtableChunks = MethodTable::CanShareVtableChunksFrom(pOldMT, pLoaderModule, pComputedPZM); |
307 | #else |
308 | BOOL canShareVtableChunks = MethodTable::CanShareVtableChunksFrom(pOldMT, pLoaderModule); |
309 | #endif // FEATURE_PREJIT |
310 | |
311 | SIZE_T offsetOfUnsharedVtableChunks = allocSize.Value(); |
312 | |
313 | // We either share all of the canonical's virtual slots or none of them |
314 | // If none, we need to allocate space for the slots |
315 | if (!canShareVtableChunks) |
316 | { |
317 | allocSize += S_SIZE_T( cSlots ) * S_SIZE_T( sizeof(MethodTable::VTableIndir2_t) ); |
318 | } |
319 | |
320 | if (allocSize.IsOverflow()) |
321 | { |
322 | ThrowHR(COR_E_OVERFLOW); |
323 | } |
324 | |
325 | BYTE* pMemory = (BYTE *) pamTracker->Track(pAllocator->GetHighFrequencyHeap()->AllocMem( allocSize )); |
326 | |
327 | // Head of MethodTable memory |
328 | MethodTable *pMT = (MethodTable*) (pMemory + cbGC); |
329 | |
330 | // Copy of GC |
331 | memcpy((BYTE*)pMT - cbGC, (BYTE*) pOldMT - cbGC, cbGC); |
332 | |
333 | // Allocate the private data block ("private" during runtime in the ngen'ed case) |
334 | MethodTableWriteableData * pMTWriteableData = (MethodTableWriteableData *) (BYTE *) |
335 | pamTracker->Track(pAllocator->GetHighFrequencyHeap()->AllocMem(S_SIZE_T(sizeof(MethodTableWriteableData)))); |
336 | // Note: Memory allocated on loader heap is zero filled |
337 | pMT->SetWriteableData(pMTWriteableData); |
338 | |
339 | // This also disables IBC logging until the type is sufficiently intitialized so |
340 | // it needs to be done early |
341 | pMTWriteableData->SetIsNotFullyLoadedForBuildMethodTable(); |
342 | |
343 | // <TODO> this is incredibly fragile. We should just construct the MT all over agin. </TODO> |
344 | pMT->CopyFlags(pOldMT); |
345 | |
346 | pMT->ClearFlag(MethodTable::enum_flag_MultipurposeSlotsMask); |
347 | pMT->SetMultipurposeSlotsMask(dwMultipurposeSlotsMask); |
348 | |
349 | // Set generics flags |
350 | pMT->ClearFlag(MethodTable::enum_flag_GenericsMask); |
351 | pMT->SetFlag(MethodTable::enum_flag_GenericsMask_GenericInst); |
352 | |
353 | // Freshly allocated - does not need restore |
354 | pMT->ClearFlag(MethodTable::enum_flag_IsZapped); |
355 | pMT->ClearFlag(MethodTable::enum_flag_IsPreRestored); |
356 | |
357 | pMT->ClearFlag(MethodTable::enum_flag_HasIndirectParent); |
358 | pMT->m_pParentMethodTable.SetValueMaybeNull(NULL); |
359 | |
360 | // Non non-virtual slots |
361 | pMT->ClearFlag(MethodTable::enum_flag_HasSingleNonVirtualSlot); |
362 | |
363 | pMT->SetBaseSize(pOldMT->GetBaseSize()); |
364 | pMT->SetParentMethodTable(pOldMT->GetParentMethodTable()); |
365 | pMT->SetCanonicalMethodTable(pOldMT); |
366 | |
367 | pMT->m_wNumInterfaces = pOldMT->m_wNumInterfaces; |
368 | |
369 | #ifdef FEATURE_TYPEEQUIVALENCE |
370 | if (pMT->IsInterface() && !pMT->HasTypeEquivalence()) |
371 | { |
372 | // fHasTypeEquivalence flag is "inherited" from generic arguments so we can quickly detect |
373 | // types like IList<IFoo> where IFoo is an interface with the TypeIdentifierAttribute. |
374 | for (DWORD i = 0; i < ntypars; i++) |
375 | { |
376 | if (inst[i].HasTypeEquivalence()) |
377 | { |
378 | pMT->SetHasTypeEquivalence(); |
379 | break; |
380 | } |
381 | } |
382 | } |
383 | #endif // FEATURE_TYPEEQUIVALENCE |
384 | |
385 | if (pOldMT->IsInterface() && IsImplicitInterfaceOfSZArray(pOldMT)) |
386 | { |
387 | // Determine if we are creating an interface methodtable that may be used to dispatch through VSD |
388 | // on an array object using a generic interface (such as IList<T>). |
389 | // Please read comments in IsArray block of code:MethodTable::FindDispatchImpl. |
390 | // |
391 | // Arrays are special because we use the same method table (object[]) for all arrays of reference |
392 | // classes (eg string[]). This means that the method table for an array is not a complete description of |
393 | // the type of the array and thus the target of if something list IList<T>::IndexOf can not be determined |
394 | // simply by looking at the method table of T[] (which might be the method table of object[], if T is a |
395 | // reference type). |
396 | // |
397 | // This is done to minimize MethodTables, but as a side-effect of this optimization, |
398 | // we end up using a domain-shared type (object[]) with a domain-specific dispatch token. |
399 | // This is a problem because the same domain-specific dispatch token value can appear in |
400 | // multiple unshared domains (VSD takes advantage of the fact that in general a shared type |
401 | // cannot implement an unshared interface). This means that the same <token, object[]> pair |
402 | // value can mean different things in different domains (since the token could represent |
403 | // IList<Foo> in one domain and IEnumerable<Bar> in another). This is a problem because the |
404 | // VSD polymorphic lookup mechanism relies on a process-wide cache table, and as a result |
405 | // these duplicate values would collide if we didn't use fat dispatch token to ensure uniqueness |
406 | // and the interface methodtable is not in the shared domain. |
407 | // |
408 | // Of note: there is also some interesting array-specific behaviour where if B inherits from A |
409 | // and you have an array of B (B[]) then B[] implements IList<B> and IList<A>, but a dispatch |
410 | // on an IList<A> reference results in a dispatch to SZArrayHelper<A> rather than |
411 | // SZArrayHelper<B> (i.e., the variance implemention is not done like virtual methods). |
412 | // |
413 | // For example If Sub inherits from Super inherits from Object, then |
414 | // * Sub[] implements IList<Super> |
415 | // * Sub[] implements IList<Sub> |
416 | // |
417 | // And as a result we have the following mappings: |
418 | // * IList<Super>::IndexOf for Sub[] goes to SZArrayHelper<Super>::IndexOf |
419 | // * IList<Sub>::IndexOf for Sub[] goes to SZArrayHelper<Sub>::IndexOf |
420 | // |
421 | pMT->SetRequiresFatDispatchTokens(); |
422 | } |
423 | |
424 | // Number of slots only includes vtable slots |
425 | pMT->SetNumVirtuals(cSlots); |
426 | |
427 | // Fill out the vtable indirection slots |
428 | MethodTable::VtableIndirectionSlotIterator it = pMT->IterateVtableIndirectionSlots(); |
429 | while (it.Next()) |
430 | { |
431 | if (canShareVtableChunks) |
432 | { |
433 | // Share the canonical chunk |
434 | it.SetIndirectionSlot(pOldMT->GetVtableIndirections()[it.GetIndex()].GetValueMaybeNull()); |
435 | } |
436 | else |
437 | { |
438 | // Use the locally allocated chunk |
439 | it.SetIndirectionSlot((MethodTable::VTableIndir2_t *)(pMemory+offsetOfUnsharedVtableChunks)); |
440 | offsetOfUnsharedVtableChunks += it.GetSize(); |
441 | } |
442 | } |
443 | |
444 | // If we are not sharing parent chunks, copy down the slot contents |
445 | if (!canShareVtableChunks) |
446 | { |
447 | // Need to assign the slots one by one to filter out jump thunks |
448 | for (DWORD i = 0; i < cSlots; i++) |
449 | { |
450 | pMT->SetSlot(i, pOldMT->GetRestoredSlot(i)); |
451 | } |
452 | } |
453 | |
454 | // All flags on m_pNgenPrivateData data apart |
455 | // are initially false for a dynamically generated instantiation. |
456 | |
457 | if (fContainsGenericVariables) |
458 | pMT->SetContainsGenericVariables(); |
459 | |
460 | if (fHasGenericsStaticsInfo) |
461 | pMT->SetDynamicStatics(TRUE); |
462 | |
463 | |
464 | #ifdef FEATURE_COMINTEROP |
465 | if (fHasCCWTemplate) |
466 | pMT->SetHasCCWTemplate(); |
467 | if (fHasGuidInfo) |
468 | pMT->SetHasGuidInfo(); |
469 | #endif |
470 | |
471 | // Since we are fabricating a new MT based on an existing one, the per-inst info should |
472 | // be non-null |
473 | _ASSERTE(pOldMT->HasPerInstInfo()); |
474 | |
475 | // Fill in per-inst map pointer (which points to the array of generic dictionary pointers) |
476 | pMT->SetPerInstInfo((MethodTable::PerInstInfoElem_t *) (pMemory + cbMT + cbOptional + cbIMap + sizeof(GenericsDictInfo))); |
477 | _ASSERTE(FitsIn<WORD>(pOldMT->GetNumDicts())); |
478 | _ASSERTE(FitsIn<WORD>(pOldMT->GetNumGenericArgs())); |
479 | pMT->SetDictInfo(static_cast<WORD>(pOldMT->GetNumDicts()), static_cast<WORD>(pOldMT->GetNumGenericArgs())); |
480 | |
481 | // Fill in the last entry in the array of generic dictionary pointers ("per inst info") |
482 | // The others are filled in by LoadExactParents which copied down any inherited generic |
483 | // dictionary pointers. |
484 | Dictionary * pDict = (Dictionary*) (pMemory + cbMT + cbOptional + cbIMap + cbPerInst); |
485 | MethodTable::PerInstInfoElem_t *pPInstInfo = (MethodTable::PerInstInfoElem_t *) (pMT->GetPerInstInfo() + (pOldMT->GetNumDicts()-1)); |
486 | pPInstInfo->SetValueMaybeNull(pDict); |
487 | |
488 | // Fill in the instantiation section of the generic dictionary. The remainder of the |
489 | // generic dictionary will be zeroed, which is the correct initial state. |
490 | TypeHandle * pInstDest = (TypeHandle *)pDict->GetInstantiation(); |
491 | for (DWORD iArg = 0; iArg < ntypars; iArg++) |
492 | { |
493 | pInstDest[iArg] = inst[iArg]; |
494 | } |
495 | |
496 | // Copy interface map across |
497 | InterfaceInfo_t * pInterfaceMap = (InterfaceInfo_t *)(pMemory + cbMT + cbOptional + (fHasDynamicInterfaceMap ? sizeof(DWORD_PTR) : 0)); |
498 | |
499 | #ifdef FEATURE_COMINTEROP |
500 | // Extensible RCW's are prefixed with the count of dynamic interfaces. |
501 | if (fHasDynamicInterfaceMap) |
502 | { |
503 | *(((DWORD_PTR *)pInterfaceMap) - 1) = 0; |
504 | } |
505 | #endif // FEATURE_COMINTEROP |
506 | |
507 | for (WORD iItf = 0; iItf < wNumInterfaces; iItf++) |
508 | { |
509 | OVERRIDE_TYPE_LOAD_LEVEL_LIMIT(CLASS_LOAD_APPROXPARENTS); |
510 | pInterfaceMap[iItf].SetMethodTable(pOldIMap[iItf].GetApproxMethodTable(pOldMT->GetLoaderModule())); |
511 | } |
512 | |
513 | // Set the interface map pointer stored in the main section of the vtable (actually |
514 | // an optional member) to point to the correct region within the newly |
515 | // allocated method table. |
516 | |
517 | // Fill in interface map pointer |
518 | pMT->SetInterfaceMap(wNumInterfaces, pInterfaceMap); |
519 | |
520 | // Copy across extra flags for these interfaces as well. We may need additional memory for this. |
521 | PVOID pExtraInterfaceInfo = NULL; |
522 | SIZE_T cbExtraInterfaceInfo = MethodTable::GetExtraInterfaceInfoSize(wNumInterfaces); |
523 | if (cbExtraInterfaceInfo) |
524 | pExtraInterfaceInfo = pamTracker->Track(pAllocator->GetLowFrequencyHeap()->AllocMem(S_SIZE_T(cbExtraInterfaceInfo))); |
525 | |
526 | // Call this even in the case where pExtraInterfaceInfo == NULL (certain cases are optimized and don't |
527 | // require extra buffer space). |
528 | pMT->InitializeExtraInterfaceInfo(pExtraInterfaceInfo); |
529 | |
530 | for (UINT32 i = 0; i < pOldMT->GetNumInterfaces(); i++) |
531 | { |
532 | if (pOldMT->IsInterfaceDeclaredOnClass(i)) |
533 | pMT->SetInterfaceDeclaredOnClass(i); |
534 | } |
535 | |
536 | pMT->SetLoaderModule(pLoaderModule); |
537 | pMT->SetLoaderAllocator(pAllocator); |
538 | |
539 | |
540 | #ifdef _DEBUG |
541 | // Name for debugging |
542 | StackSString debug_ClassNameString; |
543 | TypeString::AppendTypeKey(debug_ClassNameString, pTypeKey, TypeString::FormatNamespace | TypeString::FormatAngleBrackets | TypeString::FormatFullInst); |
544 | StackScratchBuffer debug_ClassNameBuffer; |
545 | const char *debug_szClassNameBuffer = debug_ClassNameString.GetUTF8(debug_ClassNameBuffer); |
546 | S_SIZE_T safeLen = S_SIZE_T(strlen(debug_szClassNameBuffer)) + S_SIZE_T(1); |
547 | if (safeLen.IsOverflow()) COMPlusThrowHR(COR_E_OVERFLOW); |
548 | |
549 | size_t len = safeLen.Value(); |
550 | char *debug_szClassName = (char *)pamTracker->Track(pAllocator->GetLowFrequencyHeap()->AllocMem(safeLen)); |
551 | strcpy_s(debug_szClassName, len, debug_szClassNameBuffer); |
552 | pMT->SetDebugClassName(debug_szClassName); |
553 | |
554 | // Debugging information |
555 | if (pOldMT->Debug_HasInjectedInterfaceDuplicates()) |
556 | pMT->Debug_SetHasInjectedInterfaceDuplicates(); |
557 | #endif // _DEBUG |
558 | |
559 | // <NICE>This logic is identical to logic in class.cpp. Factor these out.</NICE> |
560 | // No need to generate IDs for open types. However |
561 | // we still leave the optional member in the MethodTable holding the value -1 for the ID. |
562 | if (fHasGenericsStaticsInfo) |
563 | { |
564 | FieldDesc* pStaticFieldDescs = NULL; |
565 | |
566 | if (pOldMT->GetNumStaticFields() != 0) |
567 | { |
568 | pStaticFieldDescs = (FieldDesc*) pamTracker->Track(pAllocator->GetLowFrequencyHeap()->AllocMem(S_SIZE_T(sizeof(FieldDesc)) * S_SIZE_T(pOldMT->GetNumStaticFields()))); |
569 | FieldDesc* pOldFD = pOldMT->GetGenericsStaticFieldDescs(); |
570 | |
571 | g_IBCLogger.LogFieldDescsAccess(pOldFD); |
572 | |
573 | for (DWORD i = 0; i < pOldMT->GetNumStaticFields(); i++) |
574 | { |
575 | pStaticFieldDescs[i].InitializeFrom(pOldFD[i], pMT); |
576 | } |
577 | } |
578 | pMT->SetupGenericsStaticsInfo(pStaticFieldDescs); |
579 | } |
580 | |
581 | |
582 | // VTS info doesn't depend on the exact instantiation but we make a copy |
583 | // anyway since we can't currently deal with the possibility of having a |
584 | // cross module pointer to the data block. Eventually we might be able to |
585 | // tokenize this reference, but determine first whether there's enough |
586 | // performance degradation to justify the extra complexity. |
587 | |
588 | pMT->SetCl(pOldMT->GetCl()); |
589 | |
590 | // Check we've set up the flags correctly on the new method table |
591 | _ASSERTE(!fContainsGenericVariables == !pMT->ContainsGenericVariables()); |
592 | _ASSERTE(!fHasGenericsStaticsInfo == !pMT->HasGenericsStaticsInfo()); |
593 | #ifdef FEATURE_COMINTEROP |
594 | _ASSERTE(!fHasDynamicInterfaceMap == !pMT->HasDynamicInterfaceMap()); |
595 | _ASSERTE(!fHasRCWPerTypeData == !pMT->HasRCWPerTypeData()); |
596 | _ASSERTE(!fHasCCWTemplate == !pMT->HasCCWTemplate()); |
597 | _ASSERTE(!fHasGuidInfo == !pMT->HasGuidInfo()); |
598 | #endif |
599 | |
600 | LOG((LF_CLASSLOADER, LL_INFO1000, "GENERICS: Replicated methodtable to create type %s\n" , pMT->GetDebugClassName())); |
601 | |
602 | #ifdef _DEBUG |
603 | if (g_pConfig->ShouldDumpOnClassLoad(debug_szClassName)) |
604 | { |
605 | LOG((LF_ALWAYS, LL_ALWAYS, |
606 | "Method table summary for '%s' (instantiation):\n" , |
607 | pMT->GetDebugClassName())); |
608 | pMT->Debug_DumpInterfaceMap("Approximate" ); |
609 | } |
610 | #endif //_DEBUG |
611 | |
612 | #ifdef FEATURE_PREJIT |
613 | _ASSERTE(pComputedPZM == Module::GetPreferredZapModuleForMethodTable(pMT)); |
614 | #endif //FEATURE_PREJIT |
615 | |
616 | // We never have non-virtual slots in this method table (set SetNumVtableSlots and SetNumVirtuals above) |
617 | _ASSERTE(!pMT->HasNonVirtualSlots()); |
618 | |
619 | pMTWriteableData->SetIsRestoredForBuildMethodTable(); |
620 | |
621 | RETURN(TypeHandle(pMT)); |
622 | } // ClassLoader::CreateTypeHandleForNonCanonicalGenericInstantiation |
623 | |
624 | namespace Generics |
625 | { |
626 | |
627 | BOOL CheckInstantiation(Instantiation inst) |
628 | { |
629 | CONTRACTL |
630 | { |
631 | NOTHROW; |
632 | GC_NOTRIGGER; |
633 | } |
634 | CONTRACTL_END |
635 | |
636 | for (DWORD i = 0; i < inst.GetNumArgs(); i++) |
637 | { |
638 | TypeHandle th = inst[i]; |
639 | if (th.IsNull()) |
640 | { |
641 | return FALSE; |
642 | } |
643 | |
644 | CorElementType type = th.GetSignatureCorElementType(); |
645 | if (CorTypeInfo::IsGenericVariable_NoThrow(type)) |
646 | { |
647 | return TRUE; |
648 | } |
649 | |
650 | g_IBCLogger.LogTypeMethodTableAccess(&th); |
651 | |
652 | if ( type == ELEMENT_TYPE_BYREF |
653 | || type == ELEMENT_TYPE_TYPEDBYREF |
654 | || type == ELEMENT_TYPE_VOID |
655 | || type == ELEMENT_TYPE_PTR |
656 | || type == ELEMENT_TYPE_FNPTR) |
657 | { |
658 | return FALSE; |
659 | } |
660 | |
661 | MethodTable* pMT = th.GetMethodTable(); |
662 | if (pMT != NULL) |
663 | { |
664 | if (pMT->IsByRefLike()) |
665 | { |
666 | return FALSE; |
667 | } |
668 | } |
669 | } |
670 | return TRUE; |
671 | } |
672 | |
673 | // Just records the owner and links to the previous graph. |
674 | RecursionGraph::RecursionGraph(RecursionGraph *pPrev, TypeHandle thOwner) |
675 | { |
676 | LIMITED_METHOD_CONTRACT; |
677 | |
678 | m_pPrev = pPrev; |
679 | m_thOwner = thOwner; |
680 | |
681 | m_pNodes = NULL; |
682 | } |
683 | |
684 | RecursionGraph::~RecursionGraph() |
685 | { |
686 | WRAPPER_NO_CONTRACT; |
687 | if (m_pNodes != NULL) |
688 | delete [] m_pNodes; |
689 | } |
690 | |
691 | // Adds edges generated by the parent and implemented interfaces; returns TRUE iff |
692 | // an expanding cycle was found. |
693 | BOOL RecursionGraph::CheckForIllegalRecursion() |
694 | { |
695 | CONTRACTL |
696 | { |
697 | THROWS; |
698 | GC_TRIGGERS; |
699 | PRECONDITION(!m_thOwner.IsTypeDesc()); |
700 | } |
701 | CONTRACTL_END; |
702 | |
703 | MethodTable *pMT = m_thOwner.AsMethodTable(); |
704 | |
705 | Instantiation inst = pMT->GetInstantiation(); |
706 | |
707 | // Initialize the node array. |
708 | m_pNodes = new Node[inst.GetNumArgs()]; |
709 | |
710 | for (DWORD i = 0; i < inst.GetNumArgs(); i++) |
711 | { |
712 | m_pNodes[i].SetSourceVar(inst[i].AsGenericVariable()); |
713 | } |
714 | |
715 | // Record edges generated by inheriting from the parent. |
716 | MethodTable *pParentMT = pMT->GetParentMethodTable(); |
717 | if (pParentMT) |
718 | { |
719 | AddDependency(pParentMT); |
720 | } |
721 | |
722 | // Record edges generated by implementing interfaces. |
723 | MethodTable::InterfaceMapIterator it = pMT->IterateInterfaceMap(); |
724 | while (it.Next()) |
725 | { |
726 | AddDependency(it.GetInterface()); |
727 | } |
728 | |
729 | // Check all owned nodes for expanding cycles. The edges recorded above must all |
730 | // go from owned nodes so it suffices to look only at these. |
731 | for (DWORD i = 0; i < inst.GetNumArgs(); i++) |
732 | { |
733 | if (HasExpandingCycle(&m_pNodes[i], &m_pNodes[i])) |
734 | return TRUE; |
735 | } |
736 | |
737 | return FALSE; |
738 | } |
739 | |
740 | // Returns TRUE iff the given type is already on the stack (in fact an analogue of |
741 | // code:TypeHandleList::Exists). |
742 | // |
743 | // static |
744 | BOOL RecursionGraph::HasSeenType(RecursionGraph *pDepGraph, TypeHandle thType) |
745 | { |
746 | LIMITED_METHOD_CONTRACT; |
747 | |
748 | while (pDepGraph != NULL) |
749 | { |
750 | if (pDepGraph->m_thOwner == thType) return TRUE; |
751 | pDepGraph = pDepGraph->m_pPrev; |
752 | } |
753 | return FALSE; |
754 | } |
755 | |
756 | // Adds the specified MT as a dependency (parent or interface) of the owner. |
757 | void RecursionGraph::AddDependency(MethodTable *pMT, TypeHandleList *pExpansionVars /*= NULL*/) |
758 | { |
759 | CONTRACTL |
760 | { |
761 | THROWS; |
762 | GC_TRIGGERS; |
763 | PRECONDITION(pMT != NULL); |
764 | } |
765 | CONTRACTL_END |
766 | |
767 | // ECMA: |
768 | // - If T appears as the actual type argument to be substituted for U in some referenced |
769 | // type D<..., U, ...> add a non-expanding (->) edge from T to U. |
770 | // - If T appears somewhere inside (but not as) the actual type argument to be substituted |
771 | // for U in referenced type D<..., U, ...> add an expanding (=>) edge from T to U. |
772 | |
773 | // Non-generic dependencies are not interesting. |
774 | if (!pMT->HasInstantiation()) |
775 | return; |
776 | |
777 | // Get the typical instantiation of pMT to figure out its type vars. |
778 | TypeHandle thTypical = ClassLoader::LoadTypeDefThrowing( |
779 | pMT->GetModule(), pMT->GetCl(), |
780 | ClassLoader::ThrowIfNotFound, |
781 | ClassLoader::PermitUninstDefOrRef, tdNoTypes, |
782 | CLASS_LOAD_APPROXPARENTS); |
783 | |
784 | Instantiation inst = pMT->GetInstantiation(); |
785 | Instantiation typicalInst = thTypical.GetInstantiation(); |
786 | |
787 | _ASSERTE(inst.GetNumArgs() == typicalInst.GetNumArgs()); |
788 | |
789 | for (DWORD i = 0; i < inst.GetNumArgs(); i++) |
790 | { |
791 | TypeHandle thArg = inst[i]; |
792 | TypeHandle thVar = typicalInst[i]; |
793 | if (thArg.IsGenericVariable()) |
794 | { |
795 | // Add a non-expanding edge from thArg to i-th generic parameter of pMT. |
796 | AddEdge(thArg.AsGenericVariable(), thVar.AsGenericVariable(), FALSE); |
797 | |
798 | // Process the backlog. |
799 | TypeHandle thTo; |
800 | TypeHandleList *pList = pExpansionVars; |
801 | while (TypeHandleList::GetNext(&pList, &thTo)) |
802 | { |
803 | AddEdge(thArg.AsGenericVariable(), thTo.AsGenericVariable(), TRUE); |
804 | } |
805 | } |
806 | else |
807 | { |
808 | while (thArg.IsTypeDesc()) |
809 | { |
810 | _ASSERTE(thArg.HasTypeParam()); |
811 | thArg = (static_cast<PTR_ParamTypeDesc>(thArg.AsTypeDesc()))->GetModifiedType(); |
812 | |
813 | if (thArg.IsGenericVariable()) // : A<!T[]> |
814 | { |
815 | // Add an expanding edge from thArg to i-th parameter of pMT. |
816 | AddEdge(thArg.AsGenericVariable(), thVar.AsGenericVariable(), TRUE); |
817 | break; |
818 | } |
819 | } |
820 | |
821 | if (!thArg.IsTypeDesc()) // : A<B<!T>> |
822 | { |
823 | // We will add an expanding edge but we do not yet know from which variable(s). |
824 | // Add the to-variable to the list and call recursively to inspect thArg's |
825 | // instantiation. |
826 | TypeHandleList newExpansionVars(thVar, pExpansionVars); |
827 | AddDependency(thArg.AsMethodTable(), &newExpansionVars); |
828 | } |
829 | } |
830 | } |
831 | } |
832 | |
833 | // Add an edge from pFromVar to pToVar - either non-expanding or expanding. |
834 | void RecursionGraph::AddEdge(TypeVarTypeDesc *pFromVar, TypeVarTypeDesc *pToVar, BOOL fExpanding) |
835 | { |
836 | CONTRACTL |
837 | { |
838 | THROWS; |
839 | GC_NOTRIGGER; |
840 | PRECONDITION(pFromVar != NULL); |
841 | PRECONDITION(pToVar != NULL); |
842 | } |
843 | CONTRACTL_END |
844 | |
845 | LOG((LF_CLASSLOADER, LL_INFO10000, "GENERICS: Adding %s edge: from %x(0x%x) to %x(0x%x) into recursion graph owned by MT: %x\n" , |
846 | (fExpanding ? "EXPANDING" : "NON-EXPANDING" ), |
847 | pFromVar->GetToken(), pFromVar->GetModule(), |
848 | pToVar->GetToken(), pToVar->GetModule(), |
849 | m_thOwner.AsMethodTable())); |
850 | |
851 | // Get the source node. |
852 | Node *pNode = &m_pNodes[pFromVar->GetIndex()]; |
853 | _ASSERTE(pFromVar == pNode->GetSourceVar()); |
854 | |
855 | // Add the edge. |
856 | ULONG_PTR edge = (ULONG_PTR)pToVar; |
857 | if (fExpanding) edge |= Node::EDGE_EXPANDING_FLAG; |
858 | |
859 | IfFailThrow(pNode->GetEdges()->Append((void *)edge)); |
860 | } |
861 | |
862 | // Recursive worker that checks whether this node is part of an expanding cycle. |
863 | BOOL RecursionGraph::HasExpandingCycle(Node *pCurrentNode, Node *pStartNode, BOOL fExpanded /*= FALSE*/) |
864 | { |
865 | CONTRACTL |
866 | { |
867 | NOTHROW; |
868 | GC_NOTRIGGER; |
869 | PRECONDITION(CheckPointer(pCurrentNode)); |
870 | PRECONDITION(CheckPointer(pStartNode)); |
871 | } |
872 | CONTRACTL_END; |
873 | |
874 | // This method performs a modified DFS. We are not looking for any cycle but for a cycle |
875 | // which has at least one expanding edge. Therefore we: |
876 | // 1) Pass aroung the fExpanded flag to indicate that we've seen an expanding edge. |
877 | // 2) Explicitly check for returning to the starting point rather an arbitrary visited node. |
878 | |
879 | // Did we just find the cycle? |
880 | if (fExpanded && pCurrentNode == pStartNode) |
881 | return TRUE; |
882 | |
883 | // Have we been here before or is this a dead end? |
884 | if (pCurrentNode->IsVisited() || pCurrentNode->GetEdges()->GetCount() == 0) |
885 | return FALSE; |
886 | |
887 | pCurrentNode->SetVisited(); |
888 | |
889 | ArrayList::Iterator iter = pCurrentNode->GetEdges()->Iterate(); |
890 | while (iter.Next()) |
891 | { |
892 | ULONG_PTR edge = (ULONG_PTR)iter.GetElement(); |
893 | |
894 | BOOL fExpanding = (edge & Node::EDGE_EXPANDING_FLAG); |
895 | |
896 | TypeVarTypeDesc *pToVar = (TypeVarTypeDesc *)(edge & ~Node::EDGE_EXPANDING_FLAG); |
897 | unsigned int dwIndex = pToVar->GetIndex(); |
898 | |
899 | Node *pNode = NULL; |
900 | RecursionGraph *pGraph = this; |
901 | |
902 | // Find the destination node. |
903 | do |
904 | { |
905 | if (pGraph->m_pNodes != NULL && |
906 | dwIndex < pGraph->m_thOwner.GetNumGenericArgs() && |
907 | pGraph->m_pNodes[dwIndex].GetSourceVar() == pToVar) |
908 | { |
909 | pNode = &pGraph->m_pNodes[dwIndex]; |
910 | break; |
911 | } |
912 | pGraph = pGraph->m_pPrev; |
913 | } |
914 | while (pGraph != NULL); |
915 | |
916 | if (pNode != NULL) |
917 | { |
918 | // The new path is expanding if it was expanding already or if the edge we follow is expanding. |
919 | if (HasExpandingCycle(pNode, pStartNode, fExpanded || fExpanding)) |
920 | return TRUE; |
921 | } |
922 | } |
923 | |
924 | pCurrentNode->ClearVisited(); |
925 | |
926 | return FALSE; |
927 | } |
928 | |
929 | } // namespace Generics |
930 | |
931 | #endif // !DACCESS_COMPILE |
932 | |
933 | namespace Generics |
934 | { |
935 | |
936 | /* |
937 | * GetExactInstantiationsOfMethodAndItsClassFromCallInformation |
938 | * |
939 | * This routine takes in the various pieces of information of a call site to managed code |
940 | * and returns the exact instatiations for the method and the class on which the method is defined. |
941 | * |
942 | * Parameters: |
943 | * pRepMethod - A MethodDesc to the representative instantiation method. |
944 | * pThis - The OBJECTREF that is being passed to pRepMethod. |
945 | * pParamTypeArg - The extra argument passed to pRepMethod when pRepMethod is either |
946 | * RequiresInstMethodTableArg() or RequiresInstMethodDescArg(). |
947 | * pSpecificClass - A pointer to a TypeHandle for storing the exact instantiation |
948 | * of the class on which pRepMethod is defined, based on the call information |
949 | * pSpecificMethod - A pointer to a MethodDesc* for storing the exact instantiation |
950 | * of pRepMethod, based on the call information |
951 | * |
952 | * Returns: |
953 | * TRUE if successful. |
954 | * FALSE if could not get the exact TypeHandle & MethodDesc requested. In this case, |
955 | * the SpecificClass may be correct, iff the class is not a generic class. |
956 | * |
957 | */ |
958 | BOOL GetExactInstantiationsOfMethodAndItsClassFromCallInformation( |
959 | /* in */ MethodDesc *pRepMethod, |
960 | /* in */ OBJECTREF pThis, |
961 | /* in */ PTR_VOID pParamTypeArg, |
962 | /* out*/ TypeHandle *pSpecificClass, |
963 | /* out*/ MethodDesc** pSpecificMethod |
964 | ) |
965 | { |
966 | CONTRACTL |
967 | { |
968 | NOTHROW; |
969 | GC_NOTRIGGER; |
970 | SO_TOLERANT; |
971 | CANNOT_TAKE_LOCK; |
972 | PRECONDITION(CheckPointer(pRepMethod)); |
973 | SUPPORTS_DAC; |
974 | } |
975 | CONTRACTL_END; |
976 | |
977 | PTR_VOID pExactGenericArgsToken = NULL; |
978 | |
979 | if (pRepMethod->AcquiresInstMethodTableFromThis()) |
980 | { |
981 | if (pThis != NULL) |
982 | { |
983 | // We could be missing the memory from a dump, or the target could have simply been corrupted. |
984 | ALLOW_DATATARGET_MISSING_MEMORY( |
985 | pExactGenericArgsToken = dac_cast<PTR_VOID>(pThis->GetMethodTable()); |
986 | ); |
987 | } |
988 | } |
989 | else |
990 | { |
991 | pExactGenericArgsToken = pParamTypeArg; |
992 | } |
993 | |
994 | return GetExactInstantiationsOfMethodAndItsClassFromCallInformation(pRepMethod, pExactGenericArgsToken, |
995 | pSpecificClass, pSpecificMethod); |
996 | } |
997 | |
998 | BOOL GetExactInstantiationsOfMethodAndItsClassFromCallInformation( |
999 | /* in */ MethodDesc *pRepMethod, |
1000 | /* in */ PTR_VOID pExactGenericArgsToken, |
1001 | /* out*/ TypeHandle *pSpecificClass, |
1002 | /* out*/ MethodDesc** pSpecificMethod |
1003 | ) |
1004 | { |
1005 | CONTRACTL |
1006 | { |
1007 | NOTHROW; |
1008 | GC_NOTRIGGER; |
1009 | SO_TOLERANT; |
1010 | CANNOT_TAKE_LOCK; |
1011 | PRECONDITION(CheckPointer(pRepMethod)); |
1012 | SUPPORTS_DAC; |
1013 | } |
1014 | CONTRACTL_END; |
1015 | |
1016 | // |
1017 | // Start with some decent default values. |
1018 | // |
1019 | MethodDesc * pMD = pRepMethod; |
1020 | MethodTable * pMT = pRepMethod->GetMethodTable(); |
1021 | |
1022 | *pSpecificMethod = pMD; |
1023 | *pSpecificClass = pMT; |
1024 | |
1025 | if (!pRepMethod->IsSharedByGenericInstantiations()) |
1026 | { |
1027 | return TRUE; |
1028 | } |
1029 | |
1030 | if (pExactGenericArgsToken == NULL) |
1031 | { |
1032 | return FALSE; |
1033 | } |
1034 | |
1035 | BOOL retVal = FALSE; |
1036 | |
1037 | // The following target memory reads will not necessarily succeed against dumps, and will throw on failure. |
1038 | EX_TRY_ALLOW_DATATARGET_MISSING_MEMORY |
1039 | { |
1040 | if (pRepMethod->RequiresInstMethodTableArg()) |
1041 | { |
1042 | pMT = dac_cast<PTR_MethodTable>(pExactGenericArgsToken); |
1043 | retVal = TRUE; |
1044 | } |
1045 | else if (pRepMethod->RequiresInstMethodDescArg()) |
1046 | { |
1047 | pMD = dac_cast<PTR_MethodDesc>(pExactGenericArgsToken); |
1048 | pMT = pMD->GetMethodTable(); |
1049 | retVal = TRUE; |
1050 | } |
1051 | else if (pRepMethod->AcquiresInstMethodTableFromThis()) |
1052 | { |
1053 | // The exact token might actually be a child class of the class containing |
1054 | // the specified function so walk up the parent chain to make sure we return |
1055 | // an exact instantiation of the CORRECT parent class. |
1056 | pMT = pMD->GetExactDeclaringType(dac_cast<PTR_MethodTable>(pExactGenericArgsToken)); |
1057 | _ASSERTE(pMT != NULL); |
1058 | retVal = TRUE; |
1059 | } |
1060 | else |
1061 | { |
1062 | _ASSERTE(!"Should not happen." ); |
1063 | } |
1064 | } |
1065 | EX_END_CATCH_ALLOW_DATATARGET_MISSING_MEMORY |
1066 | |
1067 | *pSpecificMethod = pMD; |
1068 | *pSpecificClass = pMT; |
1069 | |
1070 | return retVal; |
1071 | } |
1072 | |
1073 | } // namespace Generics; |
1074 | |
1075 | |