| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | |
| 6 | // NOTE on Frame Size C_ASSERT usage in this file |
| 7 | // if the frame size changes then the stubs have to be revisited for correctness |
| 8 | // kindly revist the logic and then update the constants so that the C_ASSERT will again fire |
| 9 | // if someone changes the frame size. You are expected to keep this hard coded constant |
| 10 | // up to date so that changes in the frame size trigger errors at compile time if the code is not altered |
| 11 | |
| 12 | // Precompiled Header |
| 13 | |
| 14 | #include "common.h" |
| 15 | |
| 16 | #include "field.h" |
| 17 | #include "stublink.h" |
| 18 | |
| 19 | #include "frames.h" |
| 20 | #include "excep.h" |
| 21 | #include "dllimport.h" |
| 22 | #include "log.h" |
| 23 | #include "comdelegate.h" |
| 24 | #include "array.h" |
| 25 | #include "jitinterface.h" |
| 26 | #include "codeman.h" |
| 27 | #include "dbginterface.h" |
| 28 | #include "eeprofinterfaces.h" |
| 29 | #include "eeconfig.h" |
| 30 | #ifdef _TARGET_X86_ |
| 31 | #include "asmconstants.h" |
| 32 | #endif // _TARGET_X86_ |
| 33 | #include "class.h" |
| 34 | #include "stublink.inl" |
| 35 | |
| 36 | #ifdef FEATURE_COMINTEROP |
| 37 | #include "comtoclrcall.h" |
| 38 | #include "runtimecallablewrapper.h" |
| 39 | #include "comcache.h" |
| 40 | #include "olevariant.h" |
| 41 | #include "notifyexternals.h" |
| 42 | #endif // FEATURE_COMINTEROP |
| 43 | |
| 44 | #ifdef FEATURE_PREJIT |
| 45 | #include "compile.h" |
| 46 | #endif |
| 47 | |
| 48 | #if defined(_DEBUG) && defined(STUBLINKER_GENERATES_UNWIND_INFO) |
| 49 | #include <psapi.h> |
| 50 | #endif |
| 51 | |
| 52 | |
| 53 | #ifndef DACCESS_COMPILE |
| 54 | |
| 55 | extern "C" VOID __cdecl StubRareEnable(Thread *pThread); |
| 56 | #ifdef FEATURE_COMINTEROP |
| 57 | extern "C" HRESULT __cdecl StubRareDisableHR(Thread *pThread); |
| 58 | #endif // FEATURE_COMINTEROP |
| 59 | extern "C" VOID __cdecl StubRareDisableTHROW(Thread *pThread, Frame *pFrame); |
| 60 | |
| 61 | #ifndef FEATURE_ARRAYSTUB_AS_IL |
| 62 | extern "C" VOID __cdecl ArrayOpStubNullException(void); |
| 63 | extern "C" VOID __cdecl ArrayOpStubRangeException(void); |
| 64 | extern "C" VOID __cdecl ArrayOpStubTypeMismatchException(void); |
| 65 | |
| 66 | #if defined(_TARGET_AMD64_) |
| 67 | #define EXCEPTION_HELPERS(base) \ |
| 68 | extern "C" VOID __cdecl base##_RSIRDI_ScratchArea(void); \ |
| 69 | extern "C" VOID __cdecl base##_ScratchArea(void); \ |
| 70 | extern "C" VOID __cdecl base##_RSIRDI(void); \ |
| 71 | extern "C" VOID __cdecl base(void) |
| 72 | EXCEPTION_HELPERS(ArrayOpStubNullException); |
| 73 | EXCEPTION_HELPERS(ArrayOpStubRangeException); |
| 74 | EXCEPTION_HELPERS(ArrayOpStubTypeMismatchException); |
| 75 | #undef EXCEPTION_HELPERS |
| 76 | #endif // !_TARGET_AMD64_ |
| 77 | #endif // !FEATURE_ARRAYSTUB_AS_IL |
| 78 | |
| 79 | #if defined(_TARGET_AMD64_) |
| 80 | #if defined(_DEBUG) |
| 81 | extern "C" VOID __cdecl DebugCheckStubUnwindInfo(); |
| 82 | #endif // _DEBUG |
| 83 | #endif // _TARGET_AMD64_ |
| 84 | |
| 85 | // Presumably this code knows what it is doing with TLS. If we are hiding these |
| 86 | // services from normal code, reveal them here. |
| 87 | #ifdef TlsGetValue |
| 88 | #undef TlsGetValue |
| 89 | #endif |
| 90 | |
| 91 | #ifdef FEATURE_COMINTEROP |
| 92 | Thread* __stdcall CreateThreadBlockReturnHr(ComMethodFrame *pFrame); |
| 93 | #endif |
| 94 | |
| 95 | |
| 96 | |
| 97 | #ifdef _TARGET_AMD64_ |
| 98 | |
| 99 | BOOL IsPreservedReg (X86Reg reg) |
| 100 | { |
| 101 | UINT16 PreservedRegMask = |
| 102 | (1 << kRBX) |
| 103 | | (1 << kRBP) |
| 104 | | (1 << kRSI) |
| 105 | | (1 << kRDI) |
| 106 | | (1 << kR12) |
| 107 | | (1 << kR13) |
| 108 | | (1 << kR14) |
| 109 | | (1 << kR15); |
| 110 | return PreservedRegMask & (1 << reg); |
| 111 | } |
| 112 | |
| 113 | #endif // _TARGET_AMD64_ |
| 114 | |
| 115 | #ifdef _TARGET_AMD64_ |
| 116 | //----------------------------------------------------------------------- |
| 117 | // InstructionFormat for near Jump and short Jump |
| 118 | //----------------------------------------------------------------------- |
| 119 | |
| 120 | //X64EmitTailcallWithRSPAdjust |
| 121 | class X64NearJumpSetup : public InstructionFormat |
| 122 | { |
| 123 | public: |
| 124 | X64NearJumpSetup() : InstructionFormat( InstructionFormat::k8|InstructionFormat::k32 |
| 125 | | InstructionFormat::k64Small | InstructionFormat::k64 |
| 126 | ) |
| 127 | { |
| 128 | LIMITED_METHOD_CONTRACT; |
| 129 | } |
| 130 | |
| 131 | virtual UINT GetSizeOfInstruction(UINT refsize, UINT variationCode) |
| 132 | { |
| 133 | LIMITED_METHOD_CONTRACT |
| 134 | switch (refsize) |
| 135 | { |
| 136 | case k8: |
| 137 | return 0; |
| 138 | |
| 139 | case k32: |
| 140 | return 0; |
| 141 | |
| 142 | case k64Small: |
| 143 | return 5; |
| 144 | |
| 145 | case k64: |
| 146 | return 10; |
| 147 | |
| 148 | default: |
| 149 | _ASSERTE(!"unexpected refsize" ); |
| 150 | return 0; |
| 151 | |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | virtual VOID EmitInstruction(UINT refsize, __int64 fixedUpReference, BYTE *pOutBuffer, UINT variationCode, BYTE *pDataBuffer) |
| 156 | { |
| 157 | LIMITED_METHOD_CONTRACT |
| 158 | if (k8 == refsize) |
| 159 | { |
| 160 | // do nothing, X64NearJump will take care of this |
| 161 | } |
| 162 | else if (k32 == refsize) |
| 163 | { |
| 164 | // do nothing, X64NearJump will take care of this |
| 165 | } |
| 166 | else if (k64Small == refsize) |
| 167 | { |
| 168 | UINT64 TargetAddress = (INT64)pOutBuffer + fixedUpReference + GetSizeOfInstruction(refsize, variationCode); |
| 169 | _ASSERTE(FitsInU4(TargetAddress)); |
| 170 | |
| 171 | // mov eax, imm32 ; zero-extended |
| 172 | pOutBuffer[0] = 0xB8; |
| 173 | *((UINT32*)&pOutBuffer[1]) = (UINT32)TargetAddress; |
| 174 | } |
| 175 | else if (k64 == refsize) |
| 176 | { |
| 177 | // mov rax, imm64 |
| 178 | pOutBuffer[0] = REX_PREFIX_BASE | REX_OPERAND_SIZE_64BIT; |
| 179 | pOutBuffer[1] = 0xB8; |
| 180 | *((UINT64*)&pOutBuffer[2]) = (UINT64)(((INT64)pOutBuffer) + fixedUpReference + GetSizeOfInstruction(refsize, variationCode)); |
| 181 | } |
| 182 | else |
| 183 | { |
| 184 | _ASSERTE(!"unreached" ); |
| 185 | } |
| 186 | } |
| 187 | |
| 188 | virtual BOOL CanReach(UINT refsize, UINT variationCode, BOOL fExternal, INT_PTR offset) |
| 189 | { |
| 190 | STATIC_CONTRACT_NOTHROW; |
| 191 | STATIC_CONTRACT_GC_NOTRIGGER; |
| 192 | STATIC_CONTRACT_FORBID_FAULT; |
| 193 | |
| 194 | |
| 195 | if (fExternal) |
| 196 | { |
| 197 | switch (refsize) |
| 198 | { |
| 199 | case InstructionFormat::k8: |
| 200 | // For external, we don't have enough info to predict |
| 201 | // the offset. |
| 202 | return FALSE; |
| 203 | |
| 204 | case InstructionFormat::k32: |
| 205 | return sizeof(PVOID) <= sizeof(UINT32); |
| 206 | |
| 207 | case InstructionFormat::k64Small: |
| 208 | return FitsInI4(offset); |
| 209 | |
| 210 | case InstructionFormat::k64: |
| 211 | // intentional fallthru |
| 212 | case InstructionFormat::kAllowAlways: |
| 213 | return TRUE; |
| 214 | |
| 215 | default: |
| 216 | _ASSERTE(0); |
| 217 | return FALSE; |
| 218 | } |
| 219 | } |
| 220 | else |
| 221 | { |
| 222 | switch (refsize) |
| 223 | { |
| 224 | case InstructionFormat::k8: |
| 225 | return FitsInI1(offset); |
| 226 | |
| 227 | case InstructionFormat::k32: |
| 228 | return FitsInI4(offset); |
| 229 | |
| 230 | case InstructionFormat::k64Small: |
| 231 | // EmitInstruction emits a non-relative jmp for |
| 232 | // k64Small. We don't have enough info to predict the |
| 233 | // target address. (Even if we did, this would only |
| 234 | // handle the set of unsigned offsets with bit 31 set |
| 235 | // and no higher bits set, too uncommon/hard to test.) |
| 236 | return FALSE; |
| 237 | |
| 238 | case InstructionFormat::k64: |
| 239 | // intentional fallthru |
| 240 | case InstructionFormat::kAllowAlways: |
| 241 | return TRUE; |
| 242 | default: |
| 243 | _ASSERTE(0); |
| 244 | return FALSE; |
| 245 | } |
| 246 | } |
| 247 | } |
| 248 | }; |
| 249 | |
| 250 | class X64NearJumpExecute : public InstructionFormat |
| 251 | { |
| 252 | public: |
| 253 | X64NearJumpExecute() : InstructionFormat( InstructionFormat::k8|InstructionFormat::k32 |
| 254 | | InstructionFormat::k64Small | InstructionFormat::k64 |
| 255 | ) |
| 256 | { |
| 257 | LIMITED_METHOD_CONTRACT; |
| 258 | } |
| 259 | |
| 260 | virtual UINT GetSizeOfInstruction(UINT refsize, UINT variationCode) |
| 261 | { |
| 262 | LIMITED_METHOD_CONTRACT |
| 263 | switch (refsize) |
| 264 | { |
| 265 | case k8: |
| 266 | return 2; |
| 267 | |
| 268 | case k32: |
| 269 | return 5; |
| 270 | |
| 271 | case k64Small: |
| 272 | return 3; |
| 273 | |
| 274 | case k64: |
| 275 | return 3; |
| 276 | |
| 277 | default: |
| 278 | _ASSERTE(!"unexpected refsize" ); |
| 279 | return 0; |
| 280 | |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | virtual VOID EmitInstruction(UINT refsize, __int64 fixedUpReference, BYTE *pOutBuffer, UINT variationCode, BYTE *pDataBuffer) |
| 285 | { |
| 286 | LIMITED_METHOD_CONTRACT |
| 287 | if (k8 == refsize) |
| 288 | { |
| 289 | pOutBuffer[0] = 0xeb; |
| 290 | *((__int8*)(pOutBuffer+1)) = (__int8)fixedUpReference; |
| 291 | } |
| 292 | else if (k32 == refsize) |
| 293 | { |
| 294 | pOutBuffer[0] = 0xe9; |
| 295 | *((__int32*)(pOutBuffer+1)) = (__int32)fixedUpReference; |
| 296 | } |
| 297 | else if (k64Small == refsize) |
| 298 | { |
| 299 | // REX.W jmp rax |
| 300 | pOutBuffer[0] = REX_PREFIX_BASE | REX_OPERAND_SIZE_64BIT; |
| 301 | pOutBuffer[1] = 0xFF; |
| 302 | pOutBuffer[2] = 0xE0; |
| 303 | } |
| 304 | else if (k64 == refsize) |
| 305 | { |
| 306 | // REX.W jmp rax |
| 307 | pOutBuffer[0] = REX_PREFIX_BASE | REX_OPERAND_SIZE_64BIT; |
| 308 | pOutBuffer[1] = 0xFF; |
| 309 | pOutBuffer[2] = 0xE0; |
| 310 | } |
| 311 | else |
| 312 | { |
| 313 | _ASSERTE(!"unreached" ); |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | virtual BOOL CanReach(UINT refsize, UINT variationCode, BOOL fExternal, INT_PTR offset) |
| 318 | { |
| 319 | STATIC_CONTRACT_NOTHROW; |
| 320 | STATIC_CONTRACT_GC_NOTRIGGER; |
| 321 | STATIC_CONTRACT_FORBID_FAULT; |
| 322 | |
| 323 | |
| 324 | if (fExternal) |
| 325 | { |
| 326 | switch (refsize) |
| 327 | { |
| 328 | case InstructionFormat::k8: |
| 329 | // For external, we don't have enough info to predict |
| 330 | // the offset. |
| 331 | return FALSE; |
| 332 | |
| 333 | case InstructionFormat::k32: |
| 334 | return sizeof(PVOID) <= sizeof(UINT32); |
| 335 | |
| 336 | case InstructionFormat::k64Small: |
| 337 | return FitsInI4(offset); |
| 338 | |
| 339 | case InstructionFormat::k64: |
| 340 | // intentional fallthru |
| 341 | case InstructionFormat::kAllowAlways: |
| 342 | return TRUE; |
| 343 | |
| 344 | default: |
| 345 | _ASSERTE(0); |
| 346 | return FALSE; |
| 347 | } |
| 348 | } |
| 349 | else |
| 350 | { |
| 351 | switch (refsize) |
| 352 | { |
| 353 | case InstructionFormat::k8: |
| 354 | return FitsInI1(offset); |
| 355 | |
| 356 | case InstructionFormat::k32: |
| 357 | return FitsInI4(offset); |
| 358 | |
| 359 | case InstructionFormat::k64Small: |
| 360 | // EmitInstruction emits a non-relative jmp for |
| 361 | // k64Small. We don't have enough info to predict the |
| 362 | // target address. (Even if we did, this would only |
| 363 | // handle the set of unsigned offsets with bit 31 set |
| 364 | // and no higher bits set, too uncommon/hard to test.) |
| 365 | return FALSE; |
| 366 | |
| 367 | case InstructionFormat::k64: |
| 368 | // intentional fallthru |
| 369 | case InstructionFormat::kAllowAlways: |
| 370 | return TRUE; |
| 371 | default: |
| 372 | _ASSERTE(0); |
| 373 | return FALSE; |
| 374 | } |
| 375 | } |
| 376 | } |
| 377 | }; |
| 378 | |
| 379 | #endif |
| 380 | |
| 381 | //----------------------------------------------------------------------- |
| 382 | // InstructionFormat for near Jump and short Jump |
| 383 | //----------------------------------------------------------------------- |
| 384 | class X86NearJump : public InstructionFormat |
| 385 | { |
| 386 | public: |
| 387 | X86NearJump() : InstructionFormat( InstructionFormat::k8|InstructionFormat::k32 |
| 388 | #ifdef _TARGET_AMD64_ |
| 389 | | InstructionFormat::k64Small | InstructionFormat::k64 |
| 390 | #endif // _TARGET_AMD64_ |
| 391 | ) |
| 392 | { |
| 393 | LIMITED_METHOD_CONTRACT; |
| 394 | } |
| 395 | |
| 396 | virtual UINT GetSizeOfInstruction(UINT refsize, UINT variationCode) |
| 397 | { |
| 398 | LIMITED_METHOD_CONTRACT |
| 399 | switch (refsize) |
| 400 | { |
| 401 | case k8: |
| 402 | return 2; |
| 403 | |
| 404 | case k32: |
| 405 | return 5; |
| 406 | #ifdef _TARGET_AMD64_ |
| 407 | case k64Small: |
| 408 | return 5 + 2; |
| 409 | |
| 410 | case k64: |
| 411 | return 12; |
| 412 | #endif // _TARGET_AMD64_ |
| 413 | default: |
| 414 | _ASSERTE(!"unexpected refsize" ); |
| 415 | return 0; |
| 416 | |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | virtual VOID EmitInstruction(UINT refsize, __int64 fixedUpReference, BYTE *pOutBuffer, UINT variationCode, BYTE *pDataBuffer) |
| 421 | { |
| 422 | LIMITED_METHOD_CONTRACT |
| 423 | if (k8 == refsize) |
| 424 | { |
| 425 | pOutBuffer[0] = 0xeb; |
| 426 | *((__int8*)(pOutBuffer+1)) = (__int8)fixedUpReference; |
| 427 | } |
| 428 | else if (k32 == refsize) |
| 429 | { |
| 430 | pOutBuffer[0] = 0xe9; |
| 431 | *((__int32*)(pOutBuffer+1)) = (__int32)fixedUpReference; |
| 432 | } |
| 433 | #ifdef _TARGET_AMD64_ |
| 434 | else if (k64Small == refsize) |
| 435 | { |
| 436 | UINT64 TargetAddress = (INT64)pOutBuffer + fixedUpReference + GetSizeOfInstruction(refsize, variationCode); |
| 437 | _ASSERTE(FitsInU4(TargetAddress)); |
| 438 | |
| 439 | // mov eax, imm32 ; zero-extended |
| 440 | pOutBuffer[0] = 0xB8; |
| 441 | *((UINT32*)&pOutBuffer[1]) = (UINT32)TargetAddress; |
| 442 | |
| 443 | // jmp rax |
| 444 | pOutBuffer[5] = 0xFF; |
| 445 | pOutBuffer[6] = 0xE0; |
| 446 | } |
| 447 | else if (k64 == refsize) |
| 448 | { |
| 449 | // mov rax, imm64 |
| 450 | pOutBuffer[0] = REX_PREFIX_BASE | REX_OPERAND_SIZE_64BIT; |
| 451 | pOutBuffer[1] = 0xB8; |
| 452 | *((UINT64*)&pOutBuffer[2]) = (UINT64)(((INT64)pOutBuffer) + fixedUpReference + GetSizeOfInstruction(refsize, variationCode)); |
| 453 | |
| 454 | // jmp rax |
| 455 | pOutBuffer[10] = 0xFF; |
| 456 | pOutBuffer[11] = 0xE0; |
| 457 | } |
| 458 | #endif // _TARGET_AMD64_ |
| 459 | else |
| 460 | { |
| 461 | _ASSERTE(!"unreached" ); |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | virtual BOOL CanReach(UINT refsize, UINT variationCode, BOOL fExternal, INT_PTR offset) |
| 466 | { |
| 467 | STATIC_CONTRACT_NOTHROW; |
| 468 | STATIC_CONTRACT_GC_NOTRIGGER; |
| 469 | STATIC_CONTRACT_FORBID_FAULT; |
| 470 | |
| 471 | |
| 472 | if (fExternal) |
| 473 | { |
| 474 | switch (refsize) |
| 475 | { |
| 476 | case InstructionFormat::k8: |
| 477 | // For external, we don't have enough info to predict |
| 478 | // the offset. |
| 479 | return FALSE; |
| 480 | |
| 481 | case InstructionFormat::k32: |
| 482 | return sizeof(PVOID) <= sizeof(UINT32); |
| 483 | |
| 484 | #ifdef _TARGET_AMD64_ |
| 485 | case InstructionFormat::k64Small: |
| 486 | return FitsInI4(offset); |
| 487 | |
| 488 | case InstructionFormat::k64: |
| 489 | // intentional fallthru |
| 490 | #endif |
| 491 | case InstructionFormat::kAllowAlways: |
| 492 | return TRUE; |
| 493 | |
| 494 | default: |
| 495 | _ASSERTE(0); |
| 496 | return FALSE; |
| 497 | } |
| 498 | } |
| 499 | else |
| 500 | { |
| 501 | switch (refsize) |
| 502 | { |
| 503 | case InstructionFormat::k8: |
| 504 | return FitsInI1(offset); |
| 505 | |
| 506 | case InstructionFormat::k32: |
| 507 | #ifdef _TARGET_AMD64_ |
| 508 | return FitsInI4(offset); |
| 509 | #else |
| 510 | return TRUE; |
| 511 | #endif |
| 512 | |
| 513 | #ifdef _TARGET_AMD64_ |
| 514 | case InstructionFormat::k64Small: |
| 515 | // EmitInstruction emits a non-relative jmp for |
| 516 | // k64Small. We don't have enough info to predict the |
| 517 | // target address. (Even if we did, this would only |
| 518 | // handle the set of unsigned offsets with bit 31 set |
| 519 | // and no higher bits set, too uncommon/hard to test.) |
| 520 | return FALSE; |
| 521 | |
| 522 | case InstructionFormat::k64: |
| 523 | // intentional fallthru |
| 524 | #endif |
| 525 | case InstructionFormat::kAllowAlways: |
| 526 | return TRUE; |
| 527 | default: |
| 528 | _ASSERTE(0); |
| 529 | return FALSE; |
| 530 | } |
| 531 | } |
| 532 | } |
| 533 | }; |
| 534 | |
| 535 | |
| 536 | //----------------------------------------------------------------------- |
| 537 | // InstructionFormat for conditional jump. Set the variationCode |
| 538 | // to members of X86CondCode. |
| 539 | //----------------------------------------------------------------------- |
| 540 | class X86CondJump : public InstructionFormat |
| 541 | { |
| 542 | public: |
| 543 | X86CondJump(UINT allowedSizes) : InstructionFormat(allowedSizes) |
| 544 | { |
| 545 | LIMITED_METHOD_CONTRACT; |
| 546 | } |
| 547 | |
| 548 | virtual UINT GetSizeOfInstruction(UINT refsize, UINT variationCode) |
| 549 | { |
| 550 | LIMITED_METHOD_CONTRACT |
| 551 | return (refsize == k8 ? 2 : 6); |
| 552 | } |
| 553 | |
| 554 | virtual VOID EmitInstruction(UINT refsize, __int64 fixedUpReference, BYTE *pOutBuffer, UINT variationCode, BYTE *pDataBuffer) |
| 555 | { |
| 556 | LIMITED_METHOD_CONTRACT |
| 557 | if (refsize == k8) |
| 558 | { |
| 559 | pOutBuffer[0] = static_cast<BYTE>(0x70 | variationCode); |
| 560 | *((__int8*)(pOutBuffer+1)) = (__int8)fixedUpReference; |
| 561 | } |
| 562 | else |
| 563 | { |
| 564 | pOutBuffer[0] = 0x0f; |
| 565 | pOutBuffer[1] = static_cast<BYTE>(0x80 | variationCode); |
| 566 | *((__int32*)(pOutBuffer+2)) = (__int32)fixedUpReference; |
| 567 | } |
| 568 | } |
| 569 | }; |
| 570 | |
| 571 | |
| 572 | //----------------------------------------------------------------------- |
| 573 | // InstructionFormat for near call. |
| 574 | //----------------------------------------------------------------------- |
| 575 | class X86Call : public InstructionFormat |
| 576 | { |
| 577 | public: |
| 578 | X86Call () |
| 579 | : InstructionFormat( InstructionFormat::k32 |
| 580 | #ifdef _TARGET_AMD64_ |
| 581 | | InstructionFormat::k64Small | InstructionFormat::k64 |
| 582 | #endif // _TARGET_AMD64_ |
| 583 | ) |
| 584 | { |
| 585 | LIMITED_METHOD_CONTRACT; |
| 586 | } |
| 587 | |
| 588 | virtual UINT GetSizeOfInstruction(UINT refsize, UINT variationCode) |
| 589 | { |
| 590 | LIMITED_METHOD_CONTRACT; |
| 591 | |
| 592 | switch (refsize) |
| 593 | { |
| 594 | case k32: |
| 595 | return 5; |
| 596 | |
| 597 | #ifdef _TARGET_AMD64_ |
| 598 | case k64Small: |
| 599 | return 5 + 2; |
| 600 | |
| 601 | case k64: |
| 602 | return 10 + 2; |
| 603 | #endif // _TARGET_AMD64_ |
| 604 | |
| 605 | default: |
| 606 | _ASSERTE(!"unexpected refsize" ); |
| 607 | return 0; |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | virtual VOID EmitInstruction(UINT refsize, __int64 fixedUpReference, BYTE *pOutBuffer, UINT variationCode, BYTE *pDataBuffer) |
| 612 | { |
| 613 | LIMITED_METHOD_CONTRACT |
| 614 | |
| 615 | switch (refsize) |
| 616 | { |
| 617 | case k32: |
| 618 | pOutBuffer[0] = 0xE8; |
| 619 | *((__int32*)(1+pOutBuffer)) = (__int32)fixedUpReference; |
| 620 | break; |
| 621 | |
| 622 | #ifdef _TARGET_AMD64_ |
| 623 | case k64Small: |
| 624 | UINT64 TargetAddress; |
| 625 | |
| 626 | TargetAddress = (INT64)pOutBuffer + fixedUpReference + GetSizeOfInstruction(refsize, variationCode); |
| 627 | _ASSERTE(FitsInU4(TargetAddress)); |
| 628 | |
| 629 | // mov eax,<fixedUpReference> ; zero-extends |
| 630 | pOutBuffer[0] = 0xB8; |
| 631 | *((UINT32*)&pOutBuffer[1]) = (UINT32)TargetAddress; |
| 632 | |
| 633 | // call rax |
| 634 | pOutBuffer[5] = 0xff; |
| 635 | pOutBuffer[6] = 0xd0; |
| 636 | break; |
| 637 | |
| 638 | case k64: |
| 639 | // mov rax,<fixedUpReference> |
| 640 | pOutBuffer[0] = REX_PREFIX_BASE | REX_OPERAND_SIZE_64BIT; |
| 641 | pOutBuffer[1] = 0xB8; |
| 642 | *((UINT64*)&pOutBuffer[2]) = (UINT64)(((INT64)pOutBuffer) + fixedUpReference + GetSizeOfInstruction(refsize, variationCode)); |
| 643 | |
| 644 | // call rax |
| 645 | pOutBuffer[10] = 0xff; |
| 646 | pOutBuffer[11] = 0xd0; |
| 647 | break; |
| 648 | #endif // _TARGET_AMD64_ |
| 649 | |
| 650 | default: |
| 651 | _ASSERTE(!"unreached" ); |
| 652 | break; |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | // For x86, the default CanReach implementation will suffice. It only needs |
| 657 | // to handle k32. |
| 658 | #ifdef _TARGET_AMD64_ |
| 659 | virtual BOOL CanReach(UINT refsize, UINT variationCode, BOOL fExternal, INT_PTR offset) |
| 660 | { |
| 661 | if (fExternal) |
| 662 | { |
| 663 | switch (refsize) |
| 664 | { |
| 665 | case InstructionFormat::k32: |
| 666 | // For external, we don't have enough info to predict |
| 667 | // the offset. |
| 668 | return FALSE; |
| 669 | |
| 670 | case InstructionFormat::k64Small: |
| 671 | return FitsInI4(offset); |
| 672 | |
| 673 | case InstructionFormat::k64: |
| 674 | // intentional fallthru |
| 675 | case InstructionFormat::kAllowAlways: |
| 676 | return TRUE; |
| 677 | |
| 678 | default: |
| 679 | _ASSERTE(0); |
| 680 | return FALSE; |
| 681 | } |
| 682 | } |
| 683 | else |
| 684 | { |
| 685 | switch (refsize) |
| 686 | { |
| 687 | case InstructionFormat::k32: |
| 688 | return FitsInI4(offset); |
| 689 | |
| 690 | case InstructionFormat::k64Small: |
| 691 | // EmitInstruction emits a non-relative jmp for |
| 692 | // k64Small. We don't have enough info to predict the |
| 693 | // target address. (Even if we did, this would only |
| 694 | // handle the set of unsigned offsets with bit 31 set |
| 695 | // and no higher bits set, too uncommon/hard to test.) |
| 696 | return FALSE; |
| 697 | |
| 698 | case InstructionFormat::k64: |
| 699 | // intentional fallthru |
| 700 | case InstructionFormat::kAllowAlways: |
| 701 | return TRUE; |
| 702 | default: |
| 703 | _ASSERTE(0); |
| 704 | return FALSE; |
| 705 | } |
| 706 | } |
| 707 | } |
| 708 | #endif // _TARGET_AMD64_ |
| 709 | }; |
| 710 | |
| 711 | |
| 712 | //----------------------------------------------------------------------- |
| 713 | // InstructionFormat for push imm32. |
| 714 | //----------------------------------------------------------------------- |
| 715 | class X86PushImm32 : public InstructionFormat |
| 716 | { |
| 717 | public: |
| 718 | X86PushImm32(UINT allowedSizes) : InstructionFormat(allowedSizes) |
| 719 | { |
| 720 | LIMITED_METHOD_CONTRACT; |
| 721 | } |
| 722 | |
| 723 | virtual UINT GetSizeOfInstruction(UINT refsize, UINT variationCode) |
| 724 | { |
| 725 | LIMITED_METHOD_CONTRACT; |
| 726 | |
| 727 | return 5; |
| 728 | } |
| 729 | |
| 730 | virtual VOID EmitInstruction(UINT refsize, __int64 fixedUpReference, BYTE *pOutBuffer, UINT variationCode, BYTE *pDataBuffer) |
| 731 | { |
| 732 | LIMITED_METHOD_CONTRACT; |
| 733 | |
| 734 | pOutBuffer[0] = 0x68; |
| 735 | // only support absolute pushimm32 of the label address. The fixedUpReference is |
| 736 | // the offset to the label from the current point, so add to get address |
| 737 | *((__int32*)(1+pOutBuffer)) = (__int32)(fixedUpReference); |
| 738 | } |
| 739 | }; |
| 740 | |
| 741 | #if defined(_TARGET_AMD64_) |
| 742 | //----------------------------------------------------------------------- |
| 743 | // InstructionFormat for lea reg, [RIP relative]. |
| 744 | //----------------------------------------------------------------------- |
| 745 | class X64LeaRIP : public InstructionFormat |
| 746 | { |
| 747 | public: |
| 748 | X64LeaRIP() : InstructionFormat(InstructionFormat::k64Small) |
| 749 | { |
| 750 | LIMITED_METHOD_CONTRACT; |
| 751 | } |
| 752 | |
| 753 | virtual UINT GetSizeOfInstruction(UINT refsize, UINT variationCode) |
| 754 | { |
| 755 | LIMITED_METHOD_CONTRACT; |
| 756 | |
| 757 | return 7; |
| 758 | } |
| 759 | |
| 760 | virtual BOOL CanReach(UINT refsize, UINT variationCode, BOOL fExternal, INT_PTR offset) |
| 761 | { |
| 762 | if (fExternal) |
| 763 | { |
| 764 | switch (refsize) |
| 765 | { |
| 766 | case InstructionFormat::k64Small: |
| 767 | // For external, we don't have enough info to predict |
| 768 | // the offset. |
| 769 | return FALSE; |
| 770 | |
| 771 | case InstructionFormat::k64: |
| 772 | // intentional fallthru |
| 773 | case InstructionFormat::kAllowAlways: |
| 774 | return TRUE; |
| 775 | |
| 776 | default: |
| 777 | _ASSERTE(0); |
| 778 | return FALSE; |
| 779 | } |
| 780 | } |
| 781 | else |
| 782 | { |
| 783 | switch (refsize) |
| 784 | { |
| 785 | case InstructionFormat::k64Small: |
| 786 | return FitsInI4(offset); |
| 787 | |
| 788 | case InstructionFormat::k64: |
| 789 | // intentional fallthru |
| 790 | case InstructionFormat::kAllowAlways: |
| 791 | return TRUE; |
| 792 | |
| 793 | default: |
| 794 | _ASSERTE(0); |
| 795 | return FALSE; |
| 796 | } |
| 797 | } |
| 798 | } |
| 799 | |
| 800 | virtual VOID EmitInstruction(UINT refsize, __int64 fixedUpReference, BYTE *pOutBuffer, UINT variationCode, BYTE *pDataBuffer) |
| 801 | { |
| 802 | LIMITED_METHOD_CONTRACT; |
| 803 | |
| 804 | X86Reg reg = (X86Reg)variationCode; |
| 805 | BYTE rex = REX_PREFIX_BASE | REX_OPERAND_SIZE_64BIT; |
| 806 | |
| 807 | if (reg >= kR8) |
| 808 | { |
| 809 | rex |= REX_MODRM_REG_EXT; |
| 810 | reg = X86RegFromAMD64Reg(reg); |
| 811 | } |
| 812 | |
| 813 | pOutBuffer[0] = rex; |
| 814 | pOutBuffer[1] = 0x8D; |
| 815 | pOutBuffer[2] = 0x05 | (reg << 3); |
| 816 | // only support absolute pushimm32 of the label address. The fixedUpReference is |
| 817 | // the offset to the label from the current point, so add to get address |
| 818 | *((__int32*)(3+pOutBuffer)) = (__int32)(fixedUpReference); |
| 819 | } |
| 820 | }; |
| 821 | |
| 822 | #endif // _TARGET_AMD64_ |
| 823 | |
| 824 | #if defined(_TARGET_AMD64_) |
| 825 | static BYTE gX64NearJumpSetup[sizeof(X64NearJumpSetup)]; |
| 826 | static BYTE gX64NearJumpExecute[sizeof(X64NearJumpExecute)]; |
| 827 | static BYTE gX64LeaRIP[sizeof(X64LeaRIP)]; |
| 828 | #endif |
| 829 | |
| 830 | static BYTE gX86NearJump[sizeof(X86NearJump)]; |
| 831 | static BYTE gX86CondJump[sizeof(X86CondJump)]; |
| 832 | static BYTE gX86Call[sizeof(X86Call)]; |
| 833 | static BYTE gX86PushImm32[sizeof(X86PushImm32)]; |
| 834 | |
| 835 | /* static */ void StubLinkerCPU::Init() |
| 836 | { |
| 837 | CONTRACTL |
| 838 | { |
| 839 | THROWS; |
| 840 | GC_NOTRIGGER; |
| 841 | INJECT_FAULT(COMPlusThrowOM();); |
| 842 | } |
| 843 | CONTRACTL_END; |
| 844 | new (gX86NearJump) X86NearJump(); |
| 845 | new (gX86CondJump) X86CondJump( InstructionFormat::k8|InstructionFormat::k32); |
| 846 | new (gX86Call) X86Call(); |
| 847 | new (gX86PushImm32) X86PushImm32(InstructionFormat::k32); |
| 848 | |
| 849 | #if defined(_TARGET_AMD64_) |
| 850 | new (gX64NearJumpSetup) X64NearJumpSetup(); |
| 851 | new (gX64NearJumpExecute) X64NearJumpExecute(); |
| 852 | new (gX64LeaRIP) X64LeaRIP(); |
| 853 | #endif |
| 854 | } |
| 855 | |
| 856 | //--------------------------------------------------------------- |
| 857 | // Emits: |
| 858 | // mov destReg, srcReg |
| 859 | //--------------------------------------------------------------- |
| 860 | VOID StubLinkerCPU::X86EmitMovRegReg(X86Reg destReg, X86Reg srcReg) |
| 861 | { |
| 862 | STANDARD_VM_CONTRACT; |
| 863 | |
| 864 | #ifdef _TARGET_AMD64_ |
| 865 | BYTE rex = REX_PREFIX_BASE | REX_OPERAND_SIZE_64BIT; |
| 866 | |
| 867 | if (destReg >= kR8) |
| 868 | { |
| 869 | rex |= REX_MODRM_RM_EXT; |
| 870 | destReg = X86RegFromAMD64Reg(destReg); |
| 871 | } |
| 872 | if (srcReg >= kR8) |
| 873 | { |
| 874 | rex |= REX_MODRM_REG_EXT; |
| 875 | srcReg = X86RegFromAMD64Reg(srcReg); |
| 876 | } |
| 877 | Emit8(rex); |
| 878 | #endif |
| 879 | |
| 880 | Emit8(0x89); |
| 881 | Emit8(static_cast<UINT8>(0xC0 | (srcReg << 3) | destReg)); |
| 882 | } |
| 883 | |
| 884 | //--------------------------------------------------------------- |
| 885 | |
| 886 | VOID StubLinkerCPU::X86EmitMovSPReg(X86Reg srcReg) |
| 887 | { |
| 888 | STANDARD_VM_CONTRACT; |
| 889 | const X86Reg kESP = (X86Reg)4; |
| 890 | X86EmitMovRegReg(kESP, srcReg); |
| 891 | } |
| 892 | |
| 893 | VOID StubLinkerCPU::X86EmitMovRegSP(X86Reg destReg) |
| 894 | { |
| 895 | STANDARD_VM_CONTRACT; |
| 896 | const X86Reg kESP = (X86Reg)4; |
| 897 | X86EmitMovRegReg(destReg, kESP); |
| 898 | } |
| 899 | |
| 900 | |
| 901 | //--------------------------------------------------------------- |
| 902 | // Emits: |
| 903 | // PUSH <reg32> |
| 904 | //--------------------------------------------------------------- |
| 905 | VOID StubLinkerCPU::X86EmitPushReg(X86Reg reg) |
| 906 | { |
| 907 | STANDARD_VM_CONTRACT; |
| 908 | |
| 909 | #ifdef STUBLINKER_GENERATES_UNWIND_INFO |
| 910 | X86Reg origReg = reg; |
| 911 | #endif |
| 912 | |
| 913 | #ifdef _TARGET_AMD64_ |
| 914 | if (reg >= kR8) |
| 915 | { |
| 916 | Emit8(REX_PREFIX_BASE | REX_OPERAND_SIZE_64BIT | REX_OPCODE_REG_EXT); |
| 917 | reg = X86RegFromAMD64Reg(reg); |
| 918 | } |
| 919 | #endif |
| 920 | Emit8(static_cast<UINT8>(0x50 + reg)); |
| 921 | |
| 922 | #ifdef STUBLINKER_GENERATES_UNWIND_INFO |
| 923 | if (IsPreservedReg(origReg)) |
| 924 | { |
| 925 | UnwindPushedReg(origReg); |
| 926 | } |
| 927 | else |
| 928 | #endif |
| 929 | { |
| 930 | Push(sizeof(void*)); |
| 931 | } |
| 932 | } |
| 933 | |
| 934 | |
| 935 | //--------------------------------------------------------------- |
| 936 | // Emits: |
| 937 | // POP <reg32> |
| 938 | //--------------------------------------------------------------- |
| 939 | VOID StubLinkerCPU::X86EmitPopReg(X86Reg reg) |
| 940 | { |
| 941 | STANDARD_VM_CONTRACT; |
| 942 | |
| 943 | #ifdef _TARGET_AMD64_ |
| 944 | if (reg >= kR8) |
| 945 | { |
| 946 | Emit8(REX_PREFIX_BASE | REX_OPERAND_SIZE_64BIT | REX_OPCODE_REG_EXT); |
| 947 | reg = X86RegFromAMD64Reg(reg); |
| 948 | } |
| 949 | #endif // _TARGET_AMD64_ |
| 950 | |
| 951 | Emit8(static_cast<UINT8>(0x58 + reg)); |
| 952 | Pop(sizeof(void*)); |
| 953 | } |
| 954 | |
| 955 | //--------------------------------------------------------------- |
| 956 | // Emits: |
| 957 | // PUSH <imm32> |
| 958 | //--------------------------------------------------------------- |
| 959 | VOID StubLinkerCPU::X86EmitPushImm32(UINT32 value) |
| 960 | { |
| 961 | STANDARD_VM_CONTRACT; |
| 962 | |
| 963 | Emit8(0x68); |
| 964 | Emit32(value); |
| 965 | Push(sizeof(void*)); |
| 966 | } |
| 967 | |
| 968 | |
| 969 | //--------------------------------------------------------------- |
| 970 | // Emits: |
| 971 | // PUSH <imm32> |
| 972 | //--------------------------------------------------------------- |
| 973 | VOID StubLinkerCPU::X86EmitPushImm32(CodeLabel &target) |
| 974 | { |
| 975 | STANDARD_VM_CONTRACT; |
| 976 | |
| 977 | EmitLabelRef(&target, reinterpret_cast<X86PushImm32&>(gX86PushImm32), 0); |
| 978 | } |
| 979 | |
| 980 | |
| 981 | //--------------------------------------------------------------- |
| 982 | // Emits: |
| 983 | // PUSH <imm8> |
| 984 | //--------------------------------------------------------------- |
| 985 | VOID StubLinkerCPU::X86EmitPushImm8(BYTE value) |
| 986 | { |
| 987 | STANDARD_VM_CONTRACT; |
| 988 | |
| 989 | Emit8(0x6a); |
| 990 | Emit8(value); |
| 991 | Push(sizeof(void*)); |
| 992 | } |
| 993 | |
| 994 | |
| 995 | //--------------------------------------------------------------- |
| 996 | // Emits: |
| 997 | // PUSH <ptr> |
| 998 | //--------------------------------------------------------------- |
| 999 | VOID StubLinkerCPU::X86EmitPushImmPtr(LPVOID value WIN64_ARG(X86Reg tmpReg /*=kR10*/)) |
| 1000 | { |
| 1001 | STANDARD_VM_CONTRACT; |
| 1002 | |
| 1003 | #ifdef _TARGET_AMD64_ |
| 1004 | X86EmitRegLoad(tmpReg, (UINT_PTR) value); |
| 1005 | X86EmitPushReg(tmpReg); |
| 1006 | #else |
| 1007 | X86EmitPushImm32((UINT_PTR) value); |
| 1008 | #endif |
| 1009 | } |
| 1010 | |
| 1011 | //--------------------------------------------------------------- |
| 1012 | // Emits: |
| 1013 | // XOR <reg32>,<reg32> |
| 1014 | //--------------------------------------------------------------- |
| 1015 | VOID StubLinkerCPU::X86EmitZeroOutReg(X86Reg reg) |
| 1016 | { |
| 1017 | STANDARD_VM_CONTRACT; |
| 1018 | |
| 1019 | #ifdef _TARGET_AMD64_ |
| 1020 | // 32-bit results are zero-extended, so we only need the REX byte if |
| 1021 | // it's an extended register. |
| 1022 | if (reg >= kR8) |
| 1023 | { |
| 1024 | Emit8(REX_PREFIX_BASE | REX_MODRM_REG_EXT | REX_MODRM_RM_EXT); |
| 1025 | reg = X86RegFromAMD64Reg(reg); |
| 1026 | } |
| 1027 | #endif |
| 1028 | Emit8(0x33); |
| 1029 | Emit8(static_cast<UINT8>(0xc0 | (reg << 3) | reg)); |
| 1030 | } |
| 1031 | |
| 1032 | //--------------------------------------------------------------- |
| 1033 | // Emits: |
| 1034 | // jmp [reg] |
| 1035 | //--------------------------------------------------------------- |
| 1036 | VOID StubLinkerCPU::X86EmitJumpReg(X86Reg reg) |
| 1037 | { |
| 1038 | CONTRACTL |
| 1039 | { |
| 1040 | STANDARD_VM_CHECK; |
| 1041 | } |
| 1042 | CONTRACTL_END; |
| 1043 | |
| 1044 | Emit8(0xff); |
| 1045 | Emit8(static_cast<BYTE>(0xe0) | static_cast<BYTE>(reg)); |
| 1046 | } |
| 1047 | |
| 1048 | //--------------------------------------------------------------- |
| 1049 | // Emits: |
| 1050 | // CMP <reg32>,imm32 |
| 1051 | //--------------------------------------------------------------- |
| 1052 | VOID StubLinkerCPU::X86EmitCmpRegImm32(X86Reg reg, INT32 imm32) |
| 1053 | { |
| 1054 | CONTRACTL |
| 1055 | { |
| 1056 | STANDARD_VM_CHECK; |
| 1057 | PRECONDITION((int) reg < NumX86Regs); |
| 1058 | } |
| 1059 | CONTRACTL_END; |
| 1060 | |
| 1061 | #ifdef _TARGET_AMD64_ |
| 1062 | BYTE rex = REX_PREFIX_BASE | REX_OPERAND_SIZE_64BIT; |
| 1063 | |
| 1064 | if (reg >= kR8) |
| 1065 | { |
| 1066 | rex |= REX_OPCODE_REG_EXT; |
| 1067 | reg = X86RegFromAMD64Reg(reg); |
| 1068 | } |
| 1069 | Emit8(rex); |
| 1070 | #endif |
| 1071 | |
| 1072 | if (FitsInI1(imm32)) { |
| 1073 | Emit8(0x83); |
| 1074 | Emit8(static_cast<UINT8>(0xF8 | reg)); |
| 1075 | Emit8((INT8)imm32); |
| 1076 | } else { |
| 1077 | Emit8(0x81); |
| 1078 | Emit8(static_cast<UINT8>(0xF8 | reg)); |
| 1079 | Emit32(imm32); |
| 1080 | } |
| 1081 | } |
| 1082 | |
| 1083 | #ifdef _TARGET_AMD64_ |
| 1084 | //--------------------------------------------------------------- |
| 1085 | // Emits: |
| 1086 | // CMP [reg+offs], imm32 |
| 1087 | // CMP [reg], imm32 |
| 1088 | //--------------------------------------------------------------- |
| 1089 | VOID StubLinkerCPU:: X86EmitCmpRegIndexImm32(X86Reg reg, INT32 offs, INT32 imm32) |
| 1090 | { |
| 1091 | STANDARD_VM_CONTRACT; |
| 1092 | |
| 1093 | BYTE rex = REX_PREFIX_BASE | REX_OPERAND_SIZE_64BIT; |
| 1094 | |
| 1095 | if (reg >= kR8) |
| 1096 | { |
| 1097 | rex |= REX_OPCODE_REG_EXT; |
| 1098 | reg = X86RegFromAMD64Reg(reg); |
| 1099 | } |
| 1100 | Emit8(rex); |
| 1101 | |
| 1102 | X64EmitCmp32RegIndexImm32(reg, offs, imm32); |
| 1103 | } |
| 1104 | |
| 1105 | VOID StubLinkerCPU:: X64EmitCmp32RegIndexImm32(X86Reg reg, INT32 offs, INT32 imm32) |
| 1106 | #else // _TARGET_AMD64_ |
| 1107 | VOID StubLinkerCPU:: X86EmitCmpRegIndexImm32(X86Reg reg, INT32 offs, INT32 imm32) |
| 1108 | #endif // _TARGET_AMD64_ |
| 1109 | { |
| 1110 | CONTRACTL |
| 1111 | { |
| 1112 | STANDARD_VM_CHECK; |
| 1113 | PRECONDITION((int) reg < NumX86Regs); |
| 1114 | } |
| 1115 | CONTRACTL_END; |
| 1116 | |
| 1117 | // |
| 1118 | // The binary representation of "cmp [mem], imm32" is : |
| 1119 | // 1000-00sw mod11-1r/m |
| 1120 | // |
| 1121 | |
| 1122 | unsigned wBit = (FitsInI1(imm32) ? 0 : 1); |
| 1123 | Emit8(static_cast<UINT8>(0x80 | wBit)); |
| 1124 | |
| 1125 | unsigned modBits; |
| 1126 | if (offs == 0) |
| 1127 | modBits = 0; |
| 1128 | else if (FitsInI1(offs)) |
| 1129 | modBits = 1; |
| 1130 | else |
| 1131 | modBits = 2; |
| 1132 | |
| 1133 | Emit8(static_cast<UINT8>((modBits << 6) | 0x38 | reg)); |
| 1134 | |
| 1135 | if (offs) |
| 1136 | { |
| 1137 | if (FitsInI1(offs)) |
| 1138 | Emit8((INT8)offs); |
| 1139 | else |
| 1140 | Emit32(offs); |
| 1141 | } |
| 1142 | |
| 1143 | if (FitsInI1(imm32)) |
| 1144 | Emit8((INT8)imm32); |
| 1145 | else |
| 1146 | Emit32(imm32); |
| 1147 | } |
| 1148 | |
| 1149 | //--------------------------------------------------------------- |
| 1150 | // Emits: |
| 1151 | #if defined(_TARGET_AMD64_) |
| 1152 | // mov rax, <target> |
| 1153 | // add rsp, imm32 |
| 1154 | // jmp rax |
| 1155 | #else |
| 1156 | // add rsp, imm32 |
| 1157 | // jmp <target> |
| 1158 | #endif |
| 1159 | //--------------------------------------------------------------- |
| 1160 | VOID StubLinkerCPU::X86EmitTailcallWithESPAdjust(CodeLabel *pTarget, INT32 imm32) |
| 1161 | { |
| 1162 | STANDARD_VM_CONTRACT; |
| 1163 | |
| 1164 | #if defined(_TARGET_AMD64_) |
| 1165 | EmitLabelRef(pTarget, reinterpret_cast<X64NearJumpSetup&>(gX64NearJumpSetup), 0); |
| 1166 | X86EmitAddEsp(imm32); |
| 1167 | EmitLabelRef(pTarget, reinterpret_cast<X64NearJumpExecute&>(gX64NearJumpExecute), 0); |
| 1168 | #else |
| 1169 | X86EmitAddEsp(imm32); |
| 1170 | X86EmitNearJump(pTarget); |
| 1171 | #endif |
| 1172 | } |
| 1173 | |
| 1174 | //--------------------------------------------------------------- |
| 1175 | // Emits: |
| 1176 | #if defined(_TARGET_AMD64_) |
| 1177 | // mov rax, <target> |
| 1178 | // pop reg |
| 1179 | // jmp rax |
| 1180 | #else |
| 1181 | // pop reg |
| 1182 | // jmp <target> |
| 1183 | #endif |
| 1184 | //--------------------------------------------------------------- |
| 1185 | VOID StubLinkerCPU::X86EmitTailcallWithSinglePop(CodeLabel *pTarget, X86Reg reg) |
| 1186 | { |
| 1187 | STANDARD_VM_CONTRACT; |
| 1188 | |
| 1189 | #if defined(_TARGET_AMD64_) |
| 1190 | EmitLabelRef(pTarget, reinterpret_cast<X64NearJumpSetup&>(gX64NearJumpSetup), 0); |
| 1191 | X86EmitPopReg(reg); |
| 1192 | EmitLabelRef(pTarget, reinterpret_cast<X64NearJumpExecute&>(gX64NearJumpExecute), 0); |
| 1193 | #else |
| 1194 | X86EmitPopReg(reg); |
| 1195 | X86EmitNearJump(pTarget); |
| 1196 | #endif |
| 1197 | } |
| 1198 | |
| 1199 | //--------------------------------------------------------------- |
| 1200 | // Emits: |
| 1201 | // JMP <ofs8> or |
| 1202 | // JMP <ofs32} |
| 1203 | //--------------------------------------------------------------- |
| 1204 | VOID StubLinkerCPU::X86EmitNearJump(CodeLabel *target) |
| 1205 | { |
| 1206 | STANDARD_VM_CONTRACT; |
| 1207 | EmitLabelRef(target, reinterpret_cast<X86NearJump&>(gX86NearJump), 0); |
| 1208 | } |
| 1209 | |
| 1210 | |
| 1211 | //--------------------------------------------------------------- |
| 1212 | // Emits: |
| 1213 | // Jcc <ofs8> or |
| 1214 | // Jcc <ofs32> |
| 1215 | //--------------------------------------------------------------- |
| 1216 | VOID StubLinkerCPU::X86EmitCondJump(CodeLabel *target, X86CondCode::cc condcode) |
| 1217 | { |
| 1218 | STANDARD_VM_CONTRACT; |
| 1219 | EmitLabelRef(target, reinterpret_cast<X86CondJump&>(gX86CondJump), condcode); |
| 1220 | } |
| 1221 | |
| 1222 | |
| 1223 | //--------------------------------------------------------------- |
| 1224 | // Emits: |
| 1225 | // call <ofs32> |
| 1226 | //--------------------------------------------------------------- |
| 1227 | VOID StubLinkerCPU::X86EmitCall(CodeLabel *target, int iArgBytes) |
| 1228 | { |
| 1229 | STANDARD_VM_CONTRACT; |
| 1230 | |
| 1231 | EmitLabelRef(target, reinterpret_cast<X86Call&>(gX86Call), 0); |
| 1232 | |
| 1233 | INDEBUG(Emit8(0x90)); // Emit a nop after the call in debug so that |
| 1234 | // we know that this is a call that can directly call |
| 1235 | // managed code |
| 1236 | #ifndef _TARGET_AMD64_ |
| 1237 | Pop(iArgBytes); |
| 1238 | #endif // !_TARGET_AMD64_ |
| 1239 | } |
| 1240 | |
| 1241 | |
| 1242 | //--------------------------------------------------------------- |
| 1243 | // Emits: |
| 1244 | // ret n |
| 1245 | //--------------------------------------------------------------- |
| 1246 | VOID StubLinkerCPU::X86EmitReturn(WORD wArgBytes) |
| 1247 | { |
| 1248 | CONTRACTL |
| 1249 | { |
| 1250 | STANDARD_VM_CHECK; |
| 1251 | #if defined(_TARGET_AMD64_) || defined(UNIX_X86_ABI) |
| 1252 | PRECONDITION(wArgBytes == 0); |
| 1253 | #endif |
| 1254 | |
| 1255 | } |
| 1256 | CONTRACTL_END; |
| 1257 | |
| 1258 | if (wArgBytes == 0) |
| 1259 | Emit8(0xc3); |
| 1260 | else |
| 1261 | { |
| 1262 | Emit8(0xc2); |
| 1263 | Emit16(wArgBytes); |
| 1264 | } |
| 1265 | |
| 1266 | Pop(wArgBytes); |
| 1267 | } |
| 1268 | |
| 1269 | #ifdef _TARGET_AMD64_ |
| 1270 | //--------------------------------------------------------------- |
| 1271 | // Emits: |
| 1272 | // JMP <ofs8> or |
| 1273 | // JMP <ofs32} |
| 1274 | //--------------------------------------------------------------- |
| 1275 | VOID StubLinkerCPU::X86EmitLeaRIP(CodeLabel *target, X86Reg reg) |
| 1276 | { |
| 1277 | STANDARD_VM_CONTRACT; |
| 1278 | EmitLabelRef(target, reinterpret_cast<X64LeaRIP&>(gX64LeaRIP), reg); |
| 1279 | } |
| 1280 | #endif // _TARGET_AMD64_ |
| 1281 | |
| 1282 | |
| 1283 | |
| 1284 | VOID StubLinkerCPU::X86EmitPushRegs(unsigned regSet) |
| 1285 | { |
| 1286 | STANDARD_VM_CONTRACT; |
| 1287 | |
| 1288 | for (X86Reg r = kEAX; r <= NumX86Regs; r = (X86Reg)(r+1)) |
| 1289 | if (regSet & (1U<<r)) |
| 1290 | { |
| 1291 | X86EmitPushReg(r); |
| 1292 | } |
| 1293 | } |
| 1294 | |
| 1295 | |
| 1296 | VOID StubLinkerCPU::X86EmitPopRegs(unsigned regSet) |
| 1297 | { |
| 1298 | STANDARD_VM_CONTRACT; |
| 1299 | |
| 1300 | for (X86Reg r = NumX86Regs; r >= kEAX; r = (X86Reg)(r-1)) |
| 1301 | if (regSet & (1U<<r)) |
| 1302 | X86EmitPopReg(r); |
| 1303 | } |
| 1304 | |
| 1305 | |
| 1306 | //--------------------------------------------------------------- |
| 1307 | // Emits: |
| 1308 | // mov <dstreg>, [<srcreg> + <ofs>] |
| 1309 | //--------------------------------------------------------------- |
| 1310 | VOID StubLinkerCPU::X86EmitIndexRegLoad(X86Reg dstreg, |
| 1311 | X86Reg srcreg, |
| 1312 | __int32 ofs) |
| 1313 | { |
| 1314 | STANDARD_VM_CONTRACT; |
| 1315 | X86EmitOffsetModRM(0x8b, dstreg, srcreg, ofs); |
| 1316 | } |
| 1317 | |
| 1318 | |
| 1319 | //--------------------------------------------------------------- |
| 1320 | // Emits: |
| 1321 | // mov [<dstreg> + <ofs>],<srcreg> |
| 1322 | // |
| 1323 | // Note: If you intend to use this to perform 64bit moves to a RSP |
| 1324 | // based offset, then this method may not work. Consider |
| 1325 | // using X86EmitIndexRegStoreRSP. |
| 1326 | //--------------------------------------------------------------- |
| 1327 | VOID StubLinkerCPU::X86EmitIndexRegStore(X86Reg dstreg, |
| 1328 | __int32 ofs, |
| 1329 | X86Reg srcreg) |
| 1330 | { |
| 1331 | STANDARD_VM_CONTRACT; |
| 1332 | |
| 1333 | if (dstreg != kESP_Unsafe) |
| 1334 | X86EmitOffsetModRM(0x89, srcreg, dstreg, ofs); |
| 1335 | else |
| 1336 | X86EmitOp(0x89, srcreg, (X86Reg)kESP_Unsafe, ofs); |
| 1337 | } |
| 1338 | |
| 1339 | #if defined(_TARGET_AMD64_) |
| 1340 | //--------------------------------------------------------------- |
| 1341 | // Emits: |
| 1342 | // mov [RSP + <ofs>],<srcreg> |
| 1343 | // |
| 1344 | // It marks the instruction has 64bit so that the processor |
| 1345 | // performs a 8byte data move to a RSP based stack location. |
| 1346 | //--------------------------------------------------------------- |
| 1347 | VOID StubLinkerCPU::X86EmitIndexRegStoreRSP(__int32 ofs, |
| 1348 | X86Reg srcreg) |
| 1349 | { |
| 1350 | STANDARD_VM_CONTRACT; |
| 1351 | |
| 1352 | X86EmitOp(0x89, srcreg, (X86Reg)kESP_Unsafe, ofs, (X86Reg)0, 0, k64BitOp); |
| 1353 | } |
| 1354 | |
| 1355 | //--------------------------------------------------------------- |
| 1356 | // Emits: |
| 1357 | // mov [R12 + <ofs>],<srcreg> |
| 1358 | // |
| 1359 | // It marks the instruction has 64bit so that the processor |
| 1360 | // performs a 8byte data move to a R12 based stack location. |
| 1361 | //--------------------------------------------------------------- |
| 1362 | VOID StubLinkerCPU::X86EmitIndexRegStoreR12(__int32 ofs, |
| 1363 | X86Reg srcreg) |
| 1364 | { |
| 1365 | STANDARD_VM_CONTRACT; |
| 1366 | |
| 1367 | X86EmitOp(0x89, srcreg, (X86Reg)kR12, ofs, (X86Reg)0, 0, k64BitOp); |
| 1368 | } |
| 1369 | #endif // defined(_TARGET_AMD64_) |
| 1370 | |
| 1371 | //--------------------------------------------------------------- |
| 1372 | // Emits: |
| 1373 | // push dword ptr [<srcreg> + <ofs>] |
| 1374 | //--------------------------------------------------------------- |
| 1375 | VOID StubLinkerCPU::X86EmitIndexPush(X86Reg srcreg, __int32 ofs) |
| 1376 | { |
| 1377 | STANDARD_VM_CONTRACT; |
| 1378 | |
| 1379 | if(srcreg != kESP_Unsafe) |
| 1380 | X86EmitOffsetModRM(0xff, (X86Reg)0x6, srcreg, ofs); |
| 1381 | else |
| 1382 | X86EmitOp(0xff,(X86Reg)0x6, srcreg, ofs); |
| 1383 | |
| 1384 | Push(sizeof(void*)); |
| 1385 | } |
| 1386 | |
| 1387 | //--------------------------------------------------------------- |
| 1388 | // Emits: |
| 1389 | // push dword ptr [<baseReg> + <indexReg>*<scale> + <ofs>] |
| 1390 | //--------------------------------------------------------------- |
| 1391 | VOID StubLinkerCPU::X86EmitBaseIndexPush( |
| 1392 | X86Reg baseReg, |
| 1393 | X86Reg indexReg, |
| 1394 | __int32 scale, |
| 1395 | __int32 ofs) |
| 1396 | { |
| 1397 | STANDARD_VM_CONTRACT; |
| 1398 | |
| 1399 | X86EmitOffsetModRmSIB(0xff, (X86Reg)0x6, baseReg, indexReg, scale, ofs); |
| 1400 | Push(sizeof(void*)); |
| 1401 | } |
| 1402 | |
| 1403 | //--------------------------------------------------------------- |
| 1404 | // Emits: |
| 1405 | // push dword ptr [ESP + <ofs>] |
| 1406 | //--------------------------------------------------------------- |
| 1407 | VOID StubLinkerCPU::X86EmitSPIndexPush(__int32 ofs) |
| 1408 | { |
| 1409 | STANDARD_VM_CONTRACT; |
| 1410 | |
| 1411 | __int8 ofs8 = (__int8) ofs; |
| 1412 | if (ofs == (__int32) ofs8) |
| 1413 | { |
| 1414 | // The offset can be expressed in a byte (can use the byte |
| 1415 | // form of the push esp instruction) |
| 1416 | |
| 1417 | BYTE code[] = {0xff, 0x74, 0x24, ofs8}; |
| 1418 | EmitBytes(code, sizeof(code)); |
| 1419 | } |
| 1420 | else |
| 1421 | { |
| 1422 | // The offset requires 4 bytes (need to use the long form |
| 1423 | // of the push esp instruction) |
| 1424 | |
| 1425 | BYTE code[] = {0xff, 0xb4, 0x24, 0x0, 0x0, 0x0, 0x0}; |
| 1426 | *(__int32 *)(&code[3]) = ofs; |
| 1427 | EmitBytes(code, sizeof(code)); |
| 1428 | } |
| 1429 | |
| 1430 | Push(sizeof(void*)); |
| 1431 | } |
| 1432 | |
| 1433 | |
| 1434 | //--------------------------------------------------------------- |
| 1435 | // Emits: |
| 1436 | // pop dword ptr [<srcreg> + <ofs>] |
| 1437 | //--------------------------------------------------------------- |
| 1438 | VOID StubLinkerCPU::X86EmitIndexPop(X86Reg srcreg, __int32 ofs) |
| 1439 | { |
| 1440 | STANDARD_VM_CONTRACT; |
| 1441 | |
| 1442 | if(srcreg != kESP_Unsafe) |
| 1443 | X86EmitOffsetModRM(0x8f, (X86Reg)0x0, srcreg, ofs); |
| 1444 | else |
| 1445 | X86EmitOp(0x8f,(X86Reg)0x0, srcreg, ofs); |
| 1446 | |
| 1447 | Pop(sizeof(void*)); |
| 1448 | } |
| 1449 | |
| 1450 | //--------------------------------------------------------------- |
| 1451 | // Emits: |
| 1452 | // lea <dstreg>, [<srcreg> + <ofs> |
| 1453 | //--------------------------------------------------------------- |
| 1454 | VOID StubLinkerCPU::X86EmitIndexLea(X86Reg dstreg, X86Reg srcreg, __int32 ofs) |
| 1455 | { |
| 1456 | CONTRACTL |
| 1457 | { |
| 1458 | STANDARD_VM_CHECK; |
| 1459 | PRECONDITION((int) dstreg < NumX86Regs); |
| 1460 | PRECONDITION((int) srcreg < NumX86Regs); |
| 1461 | } |
| 1462 | CONTRACTL_END; |
| 1463 | |
| 1464 | X86EmitOffsetModRM(0x8d, dstreg, srcreg, ofs); |
| 1465 | } |
| 1466 | |
| 1467 | #if defined(_TARGET_AMD64_) |
| 1468 | VOID StubLinkerCPU::X86EmitIndexLeaRSP(X86Reg dstreg, X86Reg srcreg, __int32 ofs) |
| 1469 | { |
| 1470 | STANDARD_VM_CONTRACT; |
| 1471 | |
| 1472 | X86EmitOp(0x8d, dstreg, (X86Reg)kESP_Unsafe, ofs, (X86Reg)0, 0, k64BitOp); |
| 1473 | } |
| 1474 | #endif // defined(_TARGET_AMD64_) |
| 1475 | |
| 1476 | //--------------------------------------------------------------- |
| 1477 | // Emits: |
| 1478 | // sub esp, IMM |
| 1479 | //--------------------------------------------------------------- |
| 1480 | VOID StubLinkerCPU::X86EmitSubEsp(INT32 imm32) |
| 1481 | { |
| 1482 | STANDARD_VM_CONTRACT; |
| 1483 | |
| 1484 | if (imm32 < 0x1000-100) |
| 1485 | { |
| 1486 | // As long as the esp size is less than 1 page plus a small |
| 1487 | // safety fudge factor, we can just bump esp. |
| 1488 | X86EmitSubEspWorker(imm32); |
| 1489 | } |
| 1490 | else |
| 1491 | { |
| 1492 | // Otherwise, must touch at least one byte for each page. |
| 1493 | while (imm32 >= 0x1000) |
| 1494 | { |
| 1495 | |
| 1496 | X86EmitSubEspWorker(0x1000-4); |
| 1497 | X86EmitPushReg(kEAX); |
| 1498 | |
| 1499 | imm32 -= 0x1000; |
| 1500 | } |
| 1501 | if (imm32 < 500) |
| 1502 | { |
| 1503 | X86EmitSubEspWorker(imm32); |
| 1504 | } |
| 1505 | else |
| 1506 | { |
| 1507 | // If the remainder is large, touch the last byte - again, |
| 1508 | // as a fudge factor. |
| 1509 | X86EmitSubEspWorker(imm32-4); |
| 1510 | X86EmitPushReg(kEAX); |
| 1511 | } |
| 1512 | } |
| 1513 | } |
| 1514 | |
| 1515 | |
| 1516 | //--------------------------------------------------------------- |
| 1517 | // Emits: |
| 1518 | // sub esp, IMM |
| 1519 | //--------------------------------------------------------------- |
| 1520 | VOID StubLinkerCPU::X86EmitSubEspWorker(INT32 imm32) |
| 1521 | { |
| 1522 | CONTRACTL |
| 1523 | { |
| 1524 | STANDARD_VM_CHECK; |
| 1525 | |
| 1526 | // On Win32, stacks must be faulted in one page at a time. |
| 1527 | PRECONDITION(imm32 < 0x1000); |
| 1528 | } |
| 1529 | CONTRACTL_END; |
| 1530 | |
| 1531 | if (!imm32) |
| 1532 | { |
| 1533 | // nop |
| 1534 | } |
| 1535 | else |
| 1536 | { |
| 1537 | X86_64BitOperands(); |
| 1538 | |
| 1539 | if (FitsInI1(imm32)) |
| 1540 | { |
| 1541 | Emit16(0xec83); |
| 1542 | Emit8((INT8)imm32); |
| 1543 | } |
| 1544 | else |
| 1545 | { |
| 1546 | Emit16(0xec81); |
| 1547 | Emit32(imm32); |
| 1548 | } |
| 1549 | |
| 1550 | Push(imm32); |
| 1551 | } |
| 1552 | } |
| 1553 | |
| 1554 | |
| 1555 | //--------------------------------------------------------------- |
| 1556 | // Emits: |
| 1557 | // add esp, IMM |
| 1558 | //--------------------------------------------------------------- |
| 1559 | VOID StubLinkerCPU::X86EmitAddEsp(INT32 imm32) |
| 1560 | { |
| 1561 | STANDARD_VM_CONTRACT; |
| 1562 | |
| 1563 | if (!imm32) |
| 1564 | { |
| 1565 | // nop |
| 1566 | } |
| 1567 | else |
| 1568 | { |
| 1569 | X86_64BitOperands(); |
| 1570 | |
| 1571 | if (FitsInI1(imm32)) |
| 1572 | { |
| 1573 | Emit16(0xc483); |
| 1574 | Emit8((INT8)imm32); |
| 1575 | } |
| 1576 | else |
| 1577 | { |
| 1578 | Emit16(0xc481); |
| 1579 | Emit32(imm32); |
| 1580 | } |
| 1581 | } |
| 1582 | Pop(imm32); |
| 1583 | } |
| 1584 | |
| 1585 | VOID StubLinkerCPU::X86EmitAddReg(X86Reg reg, INT32 imm32) |
| 1586 | { |
| 1587 | CONTRACTL |
| 1588 | { |
| 1589 | STANDARD_VM_CHECK; |
| 1590 | PRECONDITION((int) reg < NumX86Regs); |
| 1591 | } |
| 1592 | CONTRACTL_END; |
| 1593 | |
| 1594 | if (imm32 == 0) |
| 1595 | return; |
| 1596 | |
| 1597 | #ifdef _TARGET_AMD64_ |
| 1598 | BYTE rex = REX_PREFIX_BASE | REX_OPERAND_SIZE_64BIT; |
| 1599 | |
| 1600 | if (reg >= kR8) |
| 1601 | { |
| 1602 | rex |= REX_OPCODE_REG_EXT; |
| 1603 | reg = X86RegFromAMD64Reg(reg); |
| 1604 | } |
| 1605 | Emit8(rex); |
| 1606 | #endif |
| 1607 | |
| 1608 | if (FitsInI1(imm32)) { |
| 1609 | Emit8(0x83); |
| 1610 | Emit8(static_cast<UINT8>(0xC0 | reg)); |
| 1611 | Emit8(static_cast<UINT8>(imm32)); |
| 1612 | } else { |
| 1613 | Emit8(0x81); |
| 1614 | Emit8(static_cast<UINT8>(0xC0 | reg)); |
| 1615 | Emit32(imm32); |
| 1616 | } |
| 1617 | } |
| 1618 | |
| 1619 | //--------------------------------------------------------------- |
| 1620 | // Emits: add destReg, srcReg |
| 1621 | //--------------------------------------------------------------- |
| 1622 | |
| 1623 | VOID StubLinkerCPU::X86EmitAddRegReg(X86Reg destReg, X86Reg srcReg) |
| 1624 | { |
| 1625 | STANDARD_VM_CONTRACT; |
| 1626 | |
| 1627 | X86EmitR2ROp(0x01, srcReg, destReg); |
| 1628 | } |
| 1629 | |
| 1630 | |
| 1631 | |
| 1632 | |
| 1633 | VOID StubLinkerCPU::X86EmitSubReg(X86Reg reg, INT32 imm32) |
| 1634 | { |
| 1635 | CONTRACTL |
| 1636 | { |
| 1637 | STANDARD_VM_CHECK; |
| 1638 | PRECONDITION((int) reg < NumX86Regs); |
| 1639 | } |
| 1640 | CONTRACTL_END; |
| 1641 | |
| 1642 | #ifdef _TARGET_AMD64_ |
| 1643 | BYTE rex = REX_PREFIX_BASE | REX_OPERAND_SIZE_64BIT; |
| 1644 | |
| 1645 | if (reg >= kR8) |
| 1646 | { |
| 1647 | rex |= REX_OPCODE_REG_EXT; |
| 1648 | reg = X86RegFromAMD64Reg(reg); |
| 1649 | } |
| 1650 | Emit8(rex); |
| 1651 | #endif |
| 1652 | |
| 1653 | if (FitsInI1(imm32)) { |
| 1654 | Emit8(0x83); |
| 1655 | Emit8(static_cast<UINT8>(0xE8 | reg)); |
| 1656 | Emit8(static_cast<UINT8>(imm32)); |
| 1657 | } else { |
| 1658 | Emit8(0x81); |
| 1659 | Emit8(static_cast<UINT8>(0xE8 | reg)); |
| 1660 | Emit32(imm32); |
| 1661 | } |
| 1662 | } |
| 1663 | |
| 1664 | //--------------------------------------------------------------- |
| 1665 | // Emits: sub destReg, srcReg |
| 1666 | //--------------------------------------------------------------- |
| 1667 | |
| 1668 | VOID StubLinkerCPU::X86EmitSubRegReg(X86Reg destReg, X86Reg srcReg) |
| 1669 | { |
| 1670 | STANDARD_VM_CONTRACT; |
| 1671 | |
| 1672 | X86EmitR2ROp(0x29, srcReg, destReg); |
| 1673 | } |
| 1674 | |
| 1675 | #if defined(_TARGET_AMD64_) |
| 1676 | |
| 1677 | //--------------------------------------------------------------- |
| 1678 | // movdqa destXmmreg, srcXmmReg |
| 1679 | //--------------------------------------------------------------- |
| 1680 | VOID StubLinkerCPU::X64EmitMovXmmXmm(X86Reg destXmmreg, X86Reg srcXmmReg) |
| 1681 | { |
| 1682 | STANDARD_VM_CONTRACT; |
| 1683 | // There are several that could be used to mov xmm registers. MovAps is |
| 1684 | // what C++ compiler uses so let's use it here too. |
| 1685 | X86EmitR2ROp(X86_INSTR_MOVAPS_R_RM, destXmmreg, srcXmmReg, k32BitOp); |
| 1686 | } |
| 1687 | |
| 1688 | //--------------------------------------------------------------- |
| 1689 | // movdqa XmmN, [baseReg + offset] |
| 1690 | //--------------------------------------------------------------- |
| 1691 | VOID StubLinkerCPU::X64EmitMovdqaFromMem(X86Reg Xmmreg, X86Reg baseReg, __int32 ofs) |
| 1692 | { |
| 1693 | STANDARD_VM_CONTRACT; |
| 1694 | X64EmitMovXmmWorker(0x66, 0x6F, Xmmreg, baseReg, ofs); |
| 1695 | } |
| 1696 | |
| 1697 | //--------------------------------------------------------------- |
| 1698 | // movdqa [baseReg + offset], XmmN |
| 1699 | //--------------------------------------------------------------- |
| 1700 | VOID StubLinkerCPU::X64EmitMovdqaToMem(X86Reg Xmmreg, X86Reg baseReg, __int32 ofs) |
| 1701 | { |
| 1702 | STANDARD_VM_CONTRACT; |
| 1703 | X64EmitMovXmmWorker(0x66, 0x7F, Xmmreg, baseReg, ofs); |
| 1704 | } |
| 1705 | |
| 1706 | //--------------------------------------------------------------- |
| 1707 | // movsd XmmN, [baseReg + offset] |
| 1708 | //--------------------------------------------------------------- |
| 1709 | VOID StubLinkerCPU::X64EmitMovSDFromMem(X86Reg Xmmreg, X86Reg baseReg, __int32 ofs) |
| 1710 | { |
| 1711 | STANDARD_VM_CONTRACT; |
| 1712 | X64EmitMovXmmWorker(0xF2, 0x10, Xmmreg, baseReg, ofs); |
| 1713 | } |
| 1714 | |
| 1715 | //--------------------------------------------------------------- |
| 1716 | // movsd [baseReg + offset], XmmN |
| 1717 | //--------------------------------------------------------------- |
| 1718 | VOID StubLinkerCPU::X64EmitMovSDToMem(X86Reg Xmmreg, X86Reg baseReg, __int32 ofs) |
| 1719 | { |
| 1720 | STANDARD_VM_CONTRACT; |
| 1721 | X64EmitMovXmmWorker(0xF2, 0x11, Xmmreg, baseReg, ofs); |
| 1722 | } |
| 1723 | |
| 1724 | //--------------------------------------------------------------- |
| 1725 | // movss XmmN, [baseReg + offset] |
| 1726 | //--------------------------------------------------------------- |
| 1727 | VOID StubLinkerCPU::X64EmitMovSSFromMem(X86Reg Xmmreg, X86Reg baseReg, __int32 ofs) |
| 1728 | { |
| 1729 | STANDARD_VM_CONTRACT; |
| 1730 | X64EmitMovXmmWorker(0xF3, 0x10, Xmmreg, baseReg, ofs); |
| 1731 | } |
| 1732 | |
| 1733 | //--------------------------------------------------------------- |
| 1734 | // movss [baseReg + offset], XmmN |
| 1735 | //--------------------------------------------------------------- |
| 1736 | VOID StubLinkerCPU::X64EmitMovSSToMem(X86Reg Xmmreg, X86Reg baseReg, __int32 ofs) |
| 1737 | { |
| 1738 | STANDARD_VM_CONTRACT; |
| 1739 | X64EmitMovXmmWorker(0xF3, 0x11, Xmmreg, baseReg, ofs); |
| 1740 | } |
| 1741 | |
| 1742 | //--------------------------------------------------------------- |
| 1743 | // Helper method for emitting of XMM from/to memory moves |
| 1744 | //--------------------------------------------------------------- |
| 1745 | VOID StubLinkerCPU::X64EmitMovXmmWorker(BYTE prefix, BYTE opcode, X86Reg Xmmreg, X86Reg baseReg, __int32 ofs) |
| 1746 | { |
| 1747 | STANDARD_VM_CONTRACT; |
| 1748 | |
| 1749 | BYTE codeBuffer[10]; |
| 1750 | unsigned int nBytes = 0; |
| 1751 | |
| 1752 | // Setup the legacyPrefix for movsd |
| 1753 | codeBuffer[nBytes++] = prefix; |
| 1754 | |
| 1755 | // By default, assume we dont have to emit the REX byte. |
| 1756 | bool fEmitRex = false; |
| 1757 | |
| 1758 | BYTE rex = REX_PREFIX_BASE; |
| 1759 | |
| 1760 | if (baseReg >= kR8) |
| 1761 | { |
| 1762 | rex |= REX_MODRM_RM_EXT; |
| 1763 | baseReg = X86RegFromAMD64Reg(baseReg); |
| 1764 | fEmitRex = true; |
| 1765 | } |
| 1766 | if (Xmmreg >= kXMM8) |
| 1767 | { |
| 1768 | rex |= REX_MODRM_REG_EXT; |
| 1769 | Xmmreg = X86RegFromAMD64Reg(Xmmreg); |
| 1770 | fEmitRex = true; |
| 1771 | } |
| 1772 | |
| 1773 | if (fEmitRex == true) |
| 1774 | { |
| 1775 | codeBuffer[nBytes++] = rex; |
| 1776 | } |
| 1777 | |
| 1778 | // Next, specify the two byte opcode - first byte is always 0x0F. |
| 1779 | codeBuffer[nBytes++] = 0x0F; |
| 1780 | codeBuffer[nBytes++] = opcode; |
| 1781 | |
| 1782 | BYTE modrm = static_cast<BYTE>((Xmmreg << 3) | baseReg); |
| 1783 | bool fOffsetFitsInSignedByte = FitsInI1(ofs)?true:false; |
| 1784 | |
| 1785 | if (fOffsetFitsInSignedByte) |
| 1786 | codeBuffer[nBytes++] = 0x40|modrm; |
| 1787 | else |
| 1788 | codeBuffer[nBytes++] = 0x80|modrm; |
| 1789 | |
| 1790 | // If we are dealing with RSP or R12 as the baseReg, we need to emit the SIB byte. |
| 1791 | if ((baseReg == (X86Reg)4 /*kRSP*/) || (baseReg == kR12)) |
| 1792 | { |
| 1793 | codeBuffer[nBytes++] = 0x24; |
| 1794 | } |
| 1795 | |
| 1796 | // Finally, specify the offset |
| 1797 | if (fOffsetFitsInSignedByte) |
| 1798 | { |
| 1799 | codeBuffer[nBytes++] = (BYTE)ofs; |
| 1800 | } |
| 1801 | else |
| 1802 | { |
| 1803 | *((__int32*)(codeBuffer+nBytes)) = ofs; |
| 1804 | nBytes += 4; |
| 1805 | } |
| 1806 | |
| 1807 | _ASSERTE(nBytes <= _countof(codeBuffer)); |
| 1808 | |
| 1809 | // Lastly, emit the encoded bytes |
| 1810 | EmitBytes(codeBuffer, nBytes); |
| 1811 | } |
| 1812 | |
| 1813 | #endif // defined(_TARGET_AMD64_) |
| 1814 | |
| 1815 | //--------------------------------------------------------------- |
| 1816 | // Emits a MOD/RM for accessing a dword at [<indexreg> + ofs32] |
| 1817 | //--------------------------------------------------------------- |
| 1818 | VOID StubLinkerCPU::X86EmitOffsetModRM(BYTE opcode, X86Reg opcodereg, X86Reg indexreg, __int32 ofs) |
| 1819 | { |
| 1820 | STANDARD_VM_CONTRACT; |
| 1821 | |
| 1822 | BYTE codeBuffer[7]; |
| 1823 | BYTE* code = codeBuffer; |
| 1824 | int nBytes = 0; |
| 1825 | #ifdef _TARGET_AMD64_ |
| 1826 | code++; |
| 1827 | // |
| 1828 | // code points to base X86 instruction, |
| 1829 | // codeBuffer points to full AMD64 instruction |
| 1830 | // |
| 1831 | BYTE rex = REX_PREFIX_BASE | REX_OPERAND_SIZE_64BIT; |
| 1832 | |
| 1833 | if (indexreg >= kR8) |
| 1834 | { |
| 1835 | rex |= REX_MODRM_RM_EXT; |
| 1836 | indexreg = X86RegFromAMD64Reg(indexreg); |
| 1837 | } |
| 1838 | if (opcodereg >= kR8) |
| 1839 | { |
| 1840 | rex |= REX_MODRM_REG_EXT; |
| 1841 | opcodereg = X86RegFromAMD64Reg(opcodereg); |
| 1842 | } |
| 1843 | |
| 1844 | nBytes++; |
| 1845 | code[-1] = rex; |
| 1846 | #endif |
| 1847 | code[0] = opcode; |
| 1848 | nBytes++; |
| 1849 | BYTE modrm = static_cast<BYTE>((opcodereg << 3) | indexreg); |
| 1850 | if (ofs == 0 && indexreg != kEBP) |
| 1851 | { |
| 1852 | code[1] = modrm; |
| 1853 | nBytes++; |
| 1854 | EmitBytes(codeBuffer, nBytes); |
| 1855 | } |
| 1856 | else if (FitsInI1(ofs)) |
| 1857 | { |
| 1858 | code[1] = 0x40|modrm; |
| 1859 | code[2] = (BYTE)ofs; |
| 1860 | nBytes += 2; |
| 1861 | EmitBytes(codeBuffer, nBytes); |
| 1862 | } |
| 1863 | else |
| 1864 | { |
| 1865 | code[1] = 0x80|modrm; |
| 1866 | *((__int32*)(2+code)) = ofs; |
| 1867 | nBytes += 5; |
| 1868 | EmitBytes(codeBuffer, nBytes); |
| 1869 | } |
| 1870 | } |
| 1871 | |
| 1872 | //--------------------------------------------------------------- |
| 1873 | // Emits a MOD/RM for accessing a dword at [<baseReg> + <indexReg>*<scale> + ofs32] |
| 1874 | //--------------------------------------------------------------- |
| 1875 | VOID StubLinkerCPU::X86EmitOffsetModRmSIB(BYTE opcode, X86Reg opcodeOrReg, X86Reg baseReg, X86Reg indexReg, __int32 scale, __int32 ofs) |
| 1876 | { |
| 1877 | CONTRACTL |
| 1878 | { |
| 1879 | STANDARD_VM_CHECK; |
| 1880 | PRECONDITION(scale == 1 || scale == 2 || scale == 4 || scale == 8); |
| 1881 | PRECONDITION(indexReg != kESP_Unsafe); |
| 1882 | } |
| 1883 | CONTRACTL_END; |
| 1884 | |
| 1885 | BYTE codeBuffer[8]; |
| 1886 | BYTE* code = codeBuffer; |
| 1887 | int nBytes = 0; |
| 1888 | |
| 1889 | #ifdef _TARGET_AMD64_ |
| 1890 | _ASSERTE(!"NYI" ); |
| 1891 | #endif |
| 1892 | code[0] = opcode; |
| 1893 | nBytes++; |
| 1894 | |
| 1895 | BYTE scaleEnc = 0; |
| 1896 | switch(scale) |
| 1897 | { |
| 1898 | case 1: scaleEnc = 0; break; |
| 1899 | case 2: scaleEnc = 1; break; |
| 1900 | case 4: scaleEnc = 2; break; |
| 1901 | case 8: scaleEnc = 3; break; |
| 1902 | default: _ASSERTE(!"Unexpected" ); |
| 1903 | } |
| 1904 | |
| 1905 | BYTE sib = static_cast<BYTE>((scaleEnc << 6) | (indexReg << 3) | baseReg); |
| 1906 | |
| 1907 | if (FitsInI1(ofs)) |
| 1908 | { |
| 1909 | code[1] = static_cast<BYTE>(0x44 | (opcodeOrReg << 3)); |
| 1910 | code[2] = sib; |
| 1911 | code[3] = (BYTE)ofs; |
| 1912 | nBytes += 3; |
| 1913 | EmitBytes(codeBuffer, nBytes); |
| 1914 | } |
| 1915 | else |
| 1916 | { |
| 1917 | code[1] = static_cast<BYTE>(0x84 | (opcodeOrReg << 3)); |
| 1918 | code[2] = sib; |
| 1919 | *(__int32*)(&code[3]) = ofs; |
| 1920 | nBytes += 6; |
| 1921 | EmitBytes(codeBuffer, nBytes); |
| 1922 | } |
| 1923 | } |
| 1924 | |
| 1925 | |
| 1926 | |
| 1927 | VOID StubLinkerCPU::X86EmitRegLoad(X86Reg reg, UINT_PTR imm) |
| 1928 | { |
| 1929 | STANDARD_VM_CONTRACT; |
| 1930 | |
| 1931 | if (!imm) |
| 1932 | { |
| 1933 | X86EmitZeroOutReg(reg); |
| 1934 | return; |
| 1935 | } |
| 1936 | |
| 1937 | UINT cbimm = sizeof(void*); |
| 1938 | |
| 1939 | #ifdef _TARGET_AMD64_ |
| 1940 | // amd64 zero-extends all 32-bit operations. If the immediate will fit in |
| 1941 | // 32 bits, use the smaller encoding. |
| 1942 | |
| 1943 | if (reg >= kR8 || !FitsInU4(imm)) |
| 1944 | { |
| 1945 | BYTE rex = REX_PREFIX_BASE | REX_OPERAND_SIZE_64BIT; |
| 1946 | if (reg >= kR8) |
| 1947 | { |
| 1948 | rex |= REX_MODRM_RM_EXT; |
| 1949 | reg = X86RegFromAMD64Reg(reg); |
| 1950 | } |
| 1951 | Emit8(rex); |
| 1952 | } |
| 1953 | else |
| 1954 | { |
| 1955 | // amd64 is little endian, so the &imm below will correctly read off |
| 1956 | // the low 4 bytes. |
| 1957 | cbimm = sizeof(UINT32); |
| 1958 | } |
| 1959 | #endif // _TARGET_AMD64_ |
| 1960 | Emit8(0xB8 | (BYTE)reg); |
| 1961 | EmitBytes((BYTE*)&imm, cbimm); |
| 1962 | } |
| 1963 | |
| 1964 | |
| 1965 | //--------------------------------------------------------------- |
| 1966 | // Emits the most efficient form of the operation: |
| 1967 | // |
| 1968 | // opcode altreg, [basereg + scaledreg*scale + ofs] |
| 1969 | // |
| 1970 | // or |
| 1971 | // |
| 1972 | // opcode [basereg + scaledreg*scale + ofs], altreg |
| 1973 | // |
| 1974 | // (the opcode determines which comes first.) |
| 1975 | // |
| 1976 | // |
| 1977 | // Limitations: |
| 1978 | // |
| 1979 | // scale must be 0,1,2,4 or 8. |
| 1980 | // if scale == 0, scaledreg is ignored. |
| 1981 | // basereg and altreg may be equal to 4 (ESP) but scaledreg cannot |
| 1982 | // for some opcodes, "altreg" may actually select an operation |
| 1983 | // rather than a second register argument. |
| 1984 | // if basereg is EBP, scale must be 0. |
| 1985 | // |
| 1986 | //--------------------------------------------------------------- |
| 1987 | VOID StubLinkerCPU::X86EmitOp(WORD opcode, |
| 1988 | X86Reg altreg, |
| 1989 | X86Reg basereg, |
| 1990 | __int32 ofs /*=0*/, |
| 1991 | X86Reg scaledreg /*=0*/, |
| 1992 | BYTE scale /*=0*/ |
| 1993 | AMD64_ARG(X86OperandSize OperandSize /*= k32BitOp*/)) |
| 1994 | { |
| 1995 | CONTRACTL |
| 1996 | { |
| 1997 | STANDARD_VM_CHECK; |
| 1998 | |
| 1999 | // All 2-byte opcodes start with 0x0f. |
| 2000 | PRECONDITION(!(opcode >> 8) || (opcode & 0xff) == 0x0f); |
| 2001 | |
| 2002 | PRECONDITION(scale == 0 || scale == 1 || scale == 2 || scale == 4 || scale == 8); |
| 2003 | PRECONDITION(scaledreg != (X86Reg)4); |
| 2004 | PRECONDITION(!(basereg == kEBP && scale != 0)); |
| 2005 | |
| 2006 | PRECONDITION( ((UINT)basereg) < NumX86Regs ); |
| 2007 | PRECONDITION( ((UINT)scaledreg) < NumX86Regs ); |
| 2008 | PRECONDITION( ((UINT)altreg) < NumX86Regs ); |
| 2009 | } |
| 2010 | CONTRACTL_END; |
| 2011 | |
| 2012 | #ifdef _TARGET_AMD64_ |
| 2013 | if ( k64BitOp == OperandSize |
| 2014 | || altreg >= kR8 |
| 2015 | || basereg >= kR8 |
| 2016 | || scaledreg >= kR8) |
| 2017 | { |
| 2018 | BYTE rex = REX_PREFIX_BASE; |
| 2019 | |
| 2020 | if (k64BitOp == OperandSize) |
| 2021 | rex |= REX_OPERAND_SIZE_64BIT; |
| 2022 | |
| 2023 | if (altreg >= kR8) |
| 2024 | { |
| 2025 | rex |= REX_MODRM_REG_EXT; |
| 2026 | altreg = X86RegFromAMD64Reg(altreg); |
| 2027 | } |
| 2028 | |
| 2029 | if (basereg >= kR8) |
| 2030 | { |
| 2031 | // basereg might be in the modrm or sib fields. This will be |
| 2032 | // decided below, but the encodings are the same either way. |
| 2033 | _ASSERTE(REX_SIB_BASE_EXT == REX_MODRM_RM_EXT); |
| 2034 | rex |= REX_SIB_BASE_EXT; |
| 2035 | basereg = X86RegFromAMD64Reg(basereg); |
| 2036 | } |
| 2037 | |
| 2038 | if (scaledreg >= kR8) |
| 2039 | { |
| 2040 | rex |= REX_SIB_INDEX_EXT; |
| 2041 | scaledreg = X86RegFromAMD64Reg(scaledreg); |
| 2042 | } |
| 2043 | |
| 2044 | Emit8(rex); |
| 2045 | } |
| 2046 | #endif // _TARGET_AMD64_ |
| 2047 | |
| 2048 | BYTE modrmbyte = static_cast<BYTE>(altreg << 3); |
| 2049 | BOOL fNeedSIB = FALSE; |
| 2050 | BYTE SIBbyte = 0; |
| 2051 | BYTE ofssize; |
| 2052 | BYTE scaleselect= 0; |
| 2053 | |
| 2054 | if (ofs == 0 && basereg != kEBP) |
| 2055 | { |
| 2056 | ofssize = 0; // Don't change this constant! |
| 2057 | } |
| 2058 | else if (FitsInI1(ofs)) |
| 2059 | { |
| 2060 | ofssize = 1; // Don't change this constant! |
| 2061 | } |
| 2062 | else |
| 2063 | { |
| 2064 | ofssize = 2; // Don't change this constant! |
| 2065 | } |
| 2066 | |
| 2067 | switch (scale) |
| 2068 | { |
| 2069 | case 1: scaleselect = 0; break; |
| 2070 | case 2: scaleselect = 1; break; |
| 2071 | case 4: scaleselect = 2; break; |
| 2072 | case 8: scaleselect = 3; break; |
| 2073 | } |
| 2074 | |
| 2075 | if (scale == 0 && basereg != (X86Reg)4 /*ESP*/) |
| 2076 | { |
| 2077 | // [basereg + ofs] |
| 2078 | modrmbyte |= basereg | (ofssize << 6); |
| 2079 | } |
| 2080 | else if (scale == 0) |
| 2081 | { |
| 2082 | // [esp + ofs] |
| 2083 | _ASSERTE(basereg == (X86Reg)4); |
| 2084 | fNeedSIB = TRUE; |
| 2085 | SIBbyte = 0044; |
| 2086 | |
| 2087 | modrmbyte |= 4 | (ofssize << 6); |
| 2088 | } |
| 2089 | else |
| 2090 | { |
| 2091 | |
| 2092 | //[basereg + scaledreg*scale + ofs] |
| 2093 | |
| 2094 | modrmbyte |= 0004 | (ofssize << 6); |
| 2095 | fNeedSIB = TRUE; |
| 2096 | SIBbyte = static_cast<BYTE>((scaleselect << 6) | (scaledreg << 3) | basereg); |
| 2097 | |
| 2098 | } |
| 2099 | |
| 2100 | //Some sanity checks: |
| 2101 | _ASSERTE(!(fNeedSIB && basereg == kEBP)); // EBP not valid as a SIB base register. |
| 2102 | _ASSERTE(!( (!fNeedSIB) && basereg == (X86Reg)4 )) ; // ESP addressing requires SIB byte |
| 2103 | |
| 2104 | Emit8((BYTE)opcode); |
| 2105 | |
| 2106 | if (opcode >> 8) |
| 2107 | Emit8(opcode >> 8); |
| 2108 | |
| 2109 | Emit8(modrmbyte); |
| 2110 | if (fNeedSIB) |
| 2111 | { |
| 2112 | Emit8(SIBbyte); |
| 2113 | } |
| 2114 | switch (ofssize) |
| 2115 | { |
| 2116 | case 0: break; |
| 2117 | case 1: Emit8( (__int8)ofs ); break; |
| 2118 | case 2: Emit32( ofs ); break; |
| 2119 | default: _ASSERTE(!"Can't get here." ); |
| 2120 | } |
| 2121 | } |
| 2122 | |
| 2123 | |
| 2124 | // Emits |
| 2125 | // |
| 2126 | // opcode altreg, modrmreg |
| 2127 | // |
| 2128 | // or |
| 2129 | // |
| 2130 | // opcode modrmreg, altreg |
| 2131 | // |
| 2132 | // (the opcode determines which one comes first) |
| 2133 | // |
| 2134 | // For single-operand opcodes, "altreg" actually selects |
| 2135 | // an operation rather than a register. |
| 2136 | |
| 2137 | VOID StubLinkerCPU::X86EmitR2ROp (WORD opcode, |
| 2138 | X86Reg altreg, |
| 2139 | X86Reg modrmreg |
| 2140 | AMD64_ARG(X86OperandSize OperandSize /*= k64BitOp*/) |
| 2141 | ) |
| 2142 | { |
| 2143 | CONTRACTL |
| 2144 | { |
| 2145 | STANDARD_VM_CHECK; |
| 2146 | |
| 2147 | // All 2-byte opcodes start with 0x0f. |
| 2148 | PRECONDITION(!(opcode >> 8) || (opcode & 0xff) == 0x0f); |
| 2149 | |
| 2150 | PRECONDITION( ((UINT)altreg) < NumX86Regs ); |
| 2151 | PRECONDITION( ((UINT)modrmreg) < NumX86Regs ); |
| 2152 | } |
| 2153 | CONTRACTL_END; |
| 2154 | |
| 2155 | #ifdef _TARGET_AMD64_ |
| 2156 | BYTE rex = 0; |
| 2157 | |
| 2158 | if (modrmreg >= kR8) |
| 2159 | { |
| 2160 | rex |= REX_MODRM_RM_EXT; |
| 2161 | modrmreg = X86RegFromAMD64Reg(modrmreg); |
| 2162 | } |
| 2163 | |
| 2164 | if (altreg >= kR8) |
| 2165 | { |
| 2166 | rex |= REX_MODRM_REG_EXT; |
| 2167 | altreg = X86RegFromAMD64Reg(altreg); |
| 2168 | } |
| 2169 | |
| 2170 | if (k64BitOp == OperandSize) |
| 2171 | rex |= REX_OPERAND_SIZE_64BIT; |
| 2172 | |
| 2173 | if (rex) |
| 2174 | Emit8(REX_PREFIX_BASE | rex); |
| 2175 | #endif // _TARGET_AMD64_ |
| 2176 | |
| 2177 | Emit8((BYTE)opcode); |
| 2178 | |
| 2179 | if (opcode >> 8) |
| 2180 | Emit8(opcode >> 8); |
| 2181 | |
| 2182 | Emit8(static_cast<UINT8>(0300 | (altreg << 3) | modrmreg)); |
| 2183 | } |
| 2184 | |
| 2185 | |
| 2186 | //--------------------------------------------------------------- |
| 2187 | // Emits: |
| 2188 | // op altreg, [esp+ofs] |
| 2189 | //--------------------------------------------------------------- |
| 2190 | VOID StubLinkerCPU::X86EmitEspOffset(BYTE opcode, |
| 2191 | X86Reg altreg, |
| 2192 | __int32 ofs |
| 2193 | AMD64_ARG(X86OperandSize OperandSize /*= k64BitOp*/) |
| 2194 | ) |
| 2195 | { |
| 2196 | STANDARD_VM_CONTRACT; |
| 2197 | |
| 2198 | BYTE codeBuffer[8]; |
| 2199 | BYTE *code = codeBuffer; |
| 2200 | int nBytes; |
| 2201 | |
| 2202 | #ifdef _TARGET_AMD64_ |
| 2203 | BYTE rex = 0; |
| 2204 | |
| 2205 | if (k64BitOp == OperandSize) |
| 2206 | rex |= REX_OPERAND_SIZE_64BIT; |
| 2207 | |
| 2208 | if (altreg >= kR8) |
| 2209 | { |
| 2210 | rex |= REX_MODRM_REG_EXT; |
| 2211 | altreg = X86RegFromAMD64Reg(altreg); |
| 2212 | } |
| 2213 | |
| 2214 | if (rex) |
| 2215 | { |
| 2216 | *code = (REX_PREFIX_BASE | rex); |
| 2217 | code++; |
| 2218 | nBytes = 1; |
| 2219 | } |
| 2220 | else |
| 2221 | #endif // _TARGET_AMD64_ |
| 2222 | { |
| 2223 | nBytes = 0; |
| 2224 | } |
| 2225 | |
| 2226 | code[0] = opcode; |
| 2227 | BYTE modrm = static_cast<BYTE>((altreg << 3) | 004); |
| 2228 | if (ofs == 0) |
| 2229 | { |
| 2230 | code[1] = modrm; |
| 2231 | code[2] = 0044; |
| 2232 | EmitBytes(codeBuffer, 3 + nBytes); |
| 2233 | } |
| 2234 | else if (FitsInI1(ofs)) |
| 2235 | { |
| 2236 | code[1] = 0x40|modrm; |
| 2237 | code[2] = 0044; |
| 2238 | code[3] = (BYTE)ofs; |
| 2239 | EmitBytes(codeBuffer, 4 + nBytes); |
| 2240 | } |
| 2241 | else |
| 2242 | { |
| 2243 | code[1] = 0x80|modrm; |
| 2244 | code[2] = 0044; |
| 2245 | *((__int32*)(3+code)) = ofs; |
| 2246 | EmitBytes(codeBuffer, 7 + nBytes); |
| 2247 | } |
| 2248 | |
| 2249 | } |
| 2250 | |
| 2251 | //--------------------------------------------------------------- |
| 2252 | |
| 2253 | VOID StubLinkerCPU::X86EmitPushEBPframe() |
| 2254 | { |
| 2255 | STANDARD_VM_CONTRACT; |
| 2256 | |
| 2257 | // push ebp |
| 2258 | X86EmitPushReg(kEBP); |
| 2259 | // mov ebp,esp |
| 2260 | X86EmitMovRegSP(kEBP); |
| 2261 | } |
| 2262 | |
| 2263 | #ifdef _DEBUG |
| 2264 | //--------------------------------------------------------------- |
| 2265 | // Emits: |
| 2266 | // mov <reg32>,0xcccccccc |
| 2267 | //--------------------------------------------------------------- |
| 2268 | VOID StubLinkerCPU::X86EmitDebugTrashReg(X86Reg reg) |
| 2269 | { |
| 2270 | STANDARD_VM_CONTRACT; |
| 2271 | |
| 2272 | #ifdef _TARGET_AMD64_ |
| 2273 | BYTE rex = REX_PREFIX_BASE | REX_OPERAND_SIZE_64BIT; |
| 2274 | |
| 2275 | if (reg >= kR8) |
| 2276 | { |
| 2277 | rex |= REX_OPCODE_REG_EXT; |
| 2278 | reg = X86RegFromAMD64Reg(reg); |
| 2279 | } |
| 2280 | Emit8(rex); |
| 2281 | Emit8(0xb8|reg); |
| 2282 | Emit64(0xcccccccccccccccc); |
| 2283 | #else |
| 2284 | Emit8(static_cast<UINT8>(0xb8 | reg)); |
| 2285 | Emit32(0xcccccccc); |
| 2286 | #endif |
| 2287 | } |
| 2288 | #endif //_DEBUG |
| 2289 | |
| 2290 | |
| 2291 | // Get X86Reg indexes of argument registers based on offset into ArgumentRegister |
| 2292 | X86Reg GetX86ArgumentRegisterFromOffset(size_t ofs) |
| 2293 | { |
| 2294 | CONTRACT(X86Reg) |
| 2295 | { |
| 2296 | NOTHROW; |
| 2297 | GC_NOTRIGGER; |
| 2298 | |
| 2299 | } |
| 2300 | CONTRACT_END; |
| 2301 | |
| 2302 | #define ARGUMENT_REGISTER(reg) if (ofs == offsetof(ArgumentRegisters, reg)) RETURN k##reg ; |
| 2303 | ENUM_ARGUMENT_REGISTERS(); |
| 2304 | #undef ARGUMENT_REGISTER |
| 2305 | |
| 2306 | _ASSERTE(0);//Can't get here. |
| 2307 | RETURN kEBP; |
| 2308 | } |
| 2309 | |
| 2310 | |
| 2311 | #ifdef _TARGET_AMD64_ |
| 2312 | static const X86Reg c_argRegs[] = { |
| 2313 | #define ARGUMENT_REGISTER(regname) k##regname, |
| 2314 | ENUM_ARGUMENT_REGISTERS() |
| 2315 | #undef ARGUMENT_REGISTER |
| 2316 | }; |
| 2317 | #endif |
| 2318 | |
| 2319 | |
| 2320 | #ifndef CROSSGEN_COMPILE |
| 2321 | |
| 2322 | #if defined(_DEBUG) && !defined(FEATURE_PAL) |
| 2323 | void StubLinkerCPU::EmitJITHelperLoggingThunk(PCODE pJitHelper, LPVOID helperFuncCount) |
| 2324 | { |
| 2325 | STANDARD_VM_CONTRACT; |
| 2326 | |
| 2327 | VMHELPCOUNTDEF* pHelperFuncCount = (VMHELPCOUNTDEF*)helperFuncCount; |
| 2328 | /* |
| 2329 | push rcx |
| 2330 | mov rcx, &(pHelperFuncCount->count) |
| 2331 | lock inc [rcx] |
| 2332 | pop rcx |
| 2333 | #ifdef _TARGET_AMD64_ |
| 2334 | mov rax, <pJitHelper> |
| 2335 | jmp rax |
| 2336 | #else |
| 2337 | jmp <pJitHelper> |
| 2338 | #endif |
| 2339 | */ |
| 2340 | |
| 2341 | // push rcx |
| 2342 | // mov rcx, &(pHelperFuncCount->count) |
| 2343 | X86EmitPushReg(kECX); |
| 2344 | X86EmitRegLoad(kECX, (UINT_PTR)(&(pHelperFuncCount->count))); |
| 2345 | |
| 2346 | // lock inc [rcx] |
| 2347 | BYTE lock_inc_RCX[] = { 0xf0, 0xff, 0x01 }; |
| 2348 | EmitBytes(lock_inc_RCX, sizeof(lock_inc_RCX)); |
| 2349 | |
| 2350 | #if defined(_TARGET_AMD64_) |
| 2351 | // mov rax, <pJitHelper> |
| 2352 | // pop rcx |
| 2353 | // jmp rax |
| 2354 | #else |
| 2355 | // pop rcx |
| 2356 | // jmp <pJitHelper> |
| 2357 | #endif |
| 2358 | X86EmitTailcallWithSinglePop(NewExternalCodeLabel(pJitHelper), kECX); |
| 2359 | } |
| 2360 | #endif // _DEBUG && !FEATURE_PAL |
| 2361 | |
| 2362 | VOID StubLinkerCPU::X86EmitCurrentThreadFetch(X86Reg dstreg, unsigned preservedRegSet) |
| 2363 | { |
| 2364 | CONTRACTL |
| 2365 | { |
| 2366 | STANDARD_VM_CHECK; |
| 2367 | |
| 2368 | // It doesn't make sense to have the destination register be preserved |
| 2369 | PRECONDITION((preservedRegSet & (1 << dstreg)) == 0); |
| 2370 | AMD64_ONLY(PRECONDITION(dstreg < 8)); // code below doesn't support high registers |
| 2371 | } |
| 2372 | CONTRACTL_END; |
| 2373 | |
| 2374 | #ifdef FEATURE_PAL |
| 2375 | |
| 2376 | X86EmitPushRegs(preservedRegSet & ((1 << kEAX) | (1 << kEDX) | (1 << kECX))); |
| 2377 | |
| 2378 | // call GetThread |
| 2379 | X86EmitCall(NewExternalCodeLabel((LPVOID)GetThread), sizeof(void*)); |
| 2380 | |
| 2381 | // mov dstreg, eax |
| 2382 | X86EmitMovRegReg(dstreg, kEAX); |
| 2383 | |
| 2384 | X86EmitPopRegs(preservedRegSet & ((1 << kEAX) | (1 << kEDX) | (1 << kECX))); |
| 2385 | |
| 2386 | #ifdef _DEBUG |
| 2387 | // Trash caller saved regs that we were not told to preserve, and that aren't the dstreg. |
| 2388 | preservedRegSet |= 1 << dstreg; |
| 2389 | if (!(preservedRegSet & (1 << kEAX))) |
| 2390 | X86EmitDebugTrashReg(kEAX); |
| 2391 | if (!(preservedRegSet & (1 << kEDX))) |
| 2392 | X86EmitDebugTrashReg(kEDX); |
| 2393 | if (!(preservedRegSet & (1 << kECX))) |
| 2394 | X86EmitDebugTrashReg(kECX); |
| 2395 | #endif // _DEBUG |
| 2396 | |
| 2397 | #else // FEATURE_PAL |
| 2398 | |
| 2399 | #ifdef _TARGET_AMD64_ |
| 2400 | BYTE code[] = { 0x65,0x48,0x8b,0x04,0x25 }; // mov dstreg, qword ptr gs:[IMM32] |
| 2401 | static const int regByteIndex = 3; |
| 2402 | #elif defined(_TARGET_X86_) |
| 2403 | BYTE code[] = { 0x64,0x8b,0x05 }; // mov dstreg, dword ptr fs:[IMM32] |
| 2404 | static const int regByteIndex = 2; |
| 2405 | #endif |
| 2406 | code[regByteIndex] |= (dstreg << 3); |
| 2407 | |
| 2408 | EmitBytes(code, sizeof(code)); |
| 2409 | Emit32(offsetof(TEB, ThreadLocalStoragePointer)); |
| 2410 | |
| 2411 | X86EmitIndexRegLoad(dstreg, dstreg, sizeof(void *) * (g_TlsIndex & 0xFFFF)); |
| 2412 | |
| 2413 | X86EmitIndexRegLoad(dstreg, dstreg, (g_TlsIndex & 0x7FFF0000) >> 16); |
| 2414 | |
| 2415 | #endif // FEATURE_PAL |
| 2416 | } |
| 2417 | |
| 2418 | #if defined(_TARGET_X86_) |
| 2419 | |
| 2420 | #if defined(PROFILING_SUPPORTED) && !defined(FEATURE_STUBS_AS_IL) |
| 2421 | VOID StubLinkerCPU::EmitProfilerComCallProlog(TADDR pFrameVptr, X86Reg regFrame) |
| 2422 | { |
| 2423 | STANDARD_VM_CONTRACT; |
| 2424 | |
| 2425 | if (pFrameVptr == UMThkCallFrame::GetMethodFrameVPtr()) |
| 2426 | { |
| 2427 | // Load the methoddesc into ECX (UMThkCallFrame->m_pvDatum->m_pMD) |
| 2428 | X86EmitIndexRegLoad(kECX, regFrame, UMThkCallFrame::GetOffsetOfDatum()); |
| 2429 | X86EmitIndexRegLoad(kECX, kECX, UMEntryThunk::GetOffsetOfMethodDesc()); |
| 2430 | |
| 2431 | // Push arguments and notify profiler |
| 2432 | X86EmitPushImm32(COR_PRF_TRANSITION_CALL); // Reason |
| 2433 | X86EmitPushReg(kECX); // MethodDesc* |
| 2434 | X86EmitCall(NewExternalCodeLabel((LPVOID) ProfilerUnmanagedToManagedTransitionMD), 2*sizeof(void*)); |
| 2435 | } |
| 2436 | |
| 2437 | #ifdef FEATURE_COMINTEROP |
| 2438 | else if (pFrameVptr == ComMethodFrame::GetMethodFrameVPtr()) |
| 2439 | { |
| 2440 | // Load the methoddesc into ECX (Frame->m_pvDatum->m_pMD) |
| 2441 | X86EmitIndexRegLoad(kECX, regFrame, ComMethodFrame::GetOffsetOfDatum()); |
| 2442 | X86EmitIndexRegLoad(kECX, kECX, ComCallMethodDesc::GetOffsetOfMethodDesc()); |
| 2443 | |
| 2444 | // Push arguments and notify profiler |
| 2445 | X86EmitPushImm32(COR_PRF_TRANSITION_CALL); // Reason |
| 2446 | X86EmitPushReg(kECX); // MethodDesc* |
| 2447 | X86EmitCall(NewExternalCodeLabel((LPVOID) ProfilerUnmanagedToManagedTransitionMD), 2*sizeof(void*)); |
| 2448 | } |
| 2449 | #endif // FEATURE_COMINTEROP |
| 2450 | |
| 2451 | // Unrecognized frame vtbl |
| 2452 | else |
| 2453 | { |
| 2454 | _ASSERTE(!"Unrecognized vtble passed to EmitComMethodStubProlog with profiling turned on." ); |
| 2455 | } |
| 2456 | } |
| 2457 | |
| 2458 | |
| 2459 | VOID StubLinkerCPU::EmitProfilerComCallEpilog(TADDR pFrameVptr, X86Reg regFrame) |
| 2460 | { |
| 2461 | CONTRACTL |
| 2462 | { |
| 2463 | STANDARD_VM_CHECK; |
| 2464 | #ifdef FEATURE_COMINTEROP |
| 2465 | PRECONDITION(pFrameVptr == UMThkCallFrame::GetMethodFrameVPtr() || pFrameVptr == ComMethodFrame::GetMethodFrameVPtr()); |
| 2466 | #else |
| 2467 | PRECONDITION(pFrameVptr == UMThkCallFrame::GetMethodFrameVPtr()); |
| 2468 | #endif // FEATURE_COMINTEROP |
| 2469 | } |
| 2470 | CONTRACTL_END; |
| 2471 | |
| 2472 | if (pFrameVptr == UMThkCallFrame::GetMethodFrameVPtr()) |
| 2473 | { |
| 2474 | // Load the methoddesc into ECX (UMThkCallFrame->m_pvDatum->m_pMD) |
| 2475 | X86EmitIndexRegLoad(kECX, regFrame, UMThkCallFrame::GetOffsetOfDatum()); |
| 2476 | X86EmitIndexRegLoad(kECX, kECX, UMEntryThunk::GetOffsetOfMethodDesc()); |
| 2477 | |
| 2478 | // Push arguments and notify profiler |
| 2479 | X86EmitPushImm32(COR_PRF_TRANSITION_RETURN); // Reason |
| 2480 | X86EmitPushReg(kECX); // MethodDesc* |
| 2481 | X86EmitCall(NewExternalCodeLabel((LPVOID) ProfilerManagedToUnmanagedTransitionMD), 2*sizeof(void*)); |
| 2482 | } |
| 2483 | |
| 2484 | #ifdef FEATURE_COMINTEROP |
| 2485 | else if (pFrameVptr == ComMethodFrame::GetMethodFrameVPtr()) |
| 2486 | { |
| 2487 | // Load the methoddesc into ECX (Frame->m_pvDatum->m_pMD) |
| 2488 | X86EmitIndexRegLoad(kECX, regFrame, ComMethodFrame::GetOffsetOfDatum()); |
| 2489 | X86EmitIndexRegLoad(kECX, kECX, ComCallMethodDesc::GetOffsetOfMethodDesc()); |
| 2490 | |
| 2491 | // Push arguments and notify profiler |
| 2492 | X86EmitPushImm32(COR_PRF_TRANSITION_RETURN); // Reason |
| 2493 | X86EmitPushReg(kECX); // MethodDesc* |
| 2494 | X86EmitCall(NewExternalCodeLabel((LPVOID) ProfilerManagedToUnmanagedTransitionMD), 2*sizeof(void*)); |
| 2495 | } |
| 2496 | #endif // FEATURE_COMINTEROP |
| 2497 | |
| 2498 | // Unrecognized frame vtbl |
| 2499 | else |
| 2500 | { |
| 2501 | _ASSERTE(!"Unrecognized vtble passed to EmitComMethodStubEpilog with profiling turned on." ); |
| 2502 | } |
| 2503 | } |
| 2504 | #endif // PROFILING_SUPPORTED && !FEATURE_STUBS_AS_IL |
| 2505 | |
| 2506 | |
| 2507 | #ifndef FEATURE_STUBS_AS_IL |
| 2508 | //======================================================================== |
| 2509 | // Prolog for entering managed code from COM |
| 2510 | // pushes the appropriate frame ptr |
| 2511 | // sets up a thread and returns a label that needs to be emitted by the caller |
| 2512 | // At the end: |
| 2513 | // ESI will hold the pointer to the ComMethodFrame or UMThkCallFrame |
| 2514 | // EBX will hold the result of GetThread() |
| 2515 | // EDI will hold the previous Frame ptr |
| 2516 | |
| 2517 | void StubLinkerCPU::EmitComMethodStubProlog(TADDR pFrameVptr, |
| 2518 | CodeLabel** rgRareLabels, |
| 2519 | CodeLabel** rgRejoinLabels, |
| 2520 | BOOL bShouldProfile) |
| 2521 | { |
| 2522 | CONTRACTL |
| 2523 | { |
| 2524 | STANDARD_VM_CHECK; |
| 2525 | |
| 2526 | PRECONDITION(rgRareLabels != NULL); |
| 2527 | PRECONDITION(rgRareLabels[0] != NULL && rgRareLabels[1] != NULL && rgRareLabels[2] != NULL); |
| 2528 | PRECONDITION(rgRejoinLabels != NULL); |
| 2529 | PRECONDITION(rgRejoinLabels[0] != NULL && rgRejoinLabels[1] != NULL && rgRejoinLabels[2] != NULL); |
| 2530 | } |
| 2531 | CONTRACTL_END; |
| 2532 | |
| 2533 | // push ebp ;; save callee-saved register |
| 2534 | // push ebx ;; save callee-saved register |
| 2535 | // push esi ;; save callee-saved register |
| 2536 | // push edi ;; save callee-saved register |
| 2537 | X86EmitPushEBPframe(); |
| 2538 | |
| 2539 | X86EmitPushReg(kEBX); |
| 2540 | X86EmitPushReg(kESI); |
| 2541 | X86EmitPushReg(kEDI); |
| 2542 | |
| 2543 | // push eax ; datum |
| 2544 | X86EmitPushReg(kEAX); |
| 2545 | |
| 2546 | // push edx ;leave room for m_next (edx is an arbitrary choice) |
| 2547 | X86EmitPushReg(kEDX); |
| 2548 | |
| 2549 | // push IMM32 ; push Frame vptr |
| 2550 | X86EmitPushImmPtr((LPVOID) pFrameVptr); |
| 2551 | |
| 2552 | X86EmitPushImmPtr((LPVOID)GetProcessGSCookie()); |
| 2553 | |
| 2554 | // lea esi, [esp+4] ;; set ESI -> new frame |
| 2555 | X86EmitEspOffset(0x8d, kESI, 4); // lea ESI, [ESP+4] |
| 2556 | |
| 2557 | if (pFrameVptr == UMThkCallFrame::GetMethodFrameVPtr()) |
| 2558 | { |
| 2559 | // Preserve argument registers for thiscall/fastcall |
| 2560 | X86EmitPushReg(kECX); |
| 2561 | X86EmitPushReg(kEDX); |
| 2562 | } |
| 2563 | |
| 2564 | // Emit Setup thread |
| 2565 | EmitSetup(rgRareLabels[0]); // rareLabel for rare setup |
| 2566 | EmitLabel(rgRejoinLabels[0]); // rejoin label for rare setup |
| 2567 | |
| 2568 | #ifdef PROFILING_SUPPORTED |
| 2569 | // If profiling is active, emit code to notify profiler of transition |
| 2570 | // Must do this before preemptive GC is disabled, so no problem if the |
| 2571 | // profiler blocks. |
| 2572 | if (CORProfilerTrackTransitions() && bShouldProfile) |
| 2573 | { |
| 2574 | EmitProfilerComCallProlog(pFrameVptr, /*Frame*/ kESI); |
| 2575 | } |
| 2576 | #endif // PROFILING_SUPPORTED |
| 2577 | |
| 2578 | //----------------------------------------------------------------------- |
| 2579 | // Generate the inline part of disabling preemptive GC. It is critical |
| 2580 | // that this part happen before we link in the frame. That's because |
| 2581 | // we won't be able to unlink the frame from preemptive mode. And during |
| 2582 | // shutdown, we cannot switch to cooperative mode under some circumstances |
| 2583 | //----------------------------------------------------------------------- |
| 2584 | EmitDisable(rgRareLabels[1], /*fCallIn=*/TRUE, kEBX); // rare disable gc |
| 2585 | EmitLabel(rgRejoinLabels[1]); // rejoin for rare disable gc |
| 2586 | |
| 2587 | // If we take an SO after installing the new frame but before getting the exception |
| 2588 | // handlers in place, we will have a corrupt frame stack. So probe-by-touch first for |
| 2589 | // sufficient stack space to erect the handler. Because we know we will be touching |
| 2590 | // that stack right away when install the handler, this probe-by-touch will not incur |
| 2591 | // unnecessary cache misses. And this allows us to do the probe with one instruction. |
| 2592 | |
| 2593 | // Note that for Win64, the personality routine will handle unlinking the frame, so |
| 2594 | // we don't need to probe in the Win64 stubs. The exception is ComToCLRWorker |
| 2595 | // where we don't setup a personality routine. However, we push the frame inside |
| 2596 | // that function and it is probe-protected with an entry point probe first, so we are |
| 2597 | // OK there too. |
| 2598 | |
| 2599 | // We push two registers to setup the EH handler and none to setup the frame |
| 2600 | // so probe for double that to give ourselves a small margin for error. |
| 2601 | // mov eax, [esp+n] ;; probe for sufficient stack to setup EH |
| 2602 | X86EmitEspOffset(0x8B, kEAX, -0x20); |
| 2603 | // mov edi,[ebx + Thread.GetFrame()] ;; get previous frame |
| 2604 | X86EmitIndexRegLoad(kEDI, kEBX, Thread::GetOffsetOfCurrentFrame()); |
| 2605 | |
| 2606 | // mov [esi + Frame.m_next], edi |
| 2607 | X86EmitIndexRegStore(kESI, Frame::GetOffsetOfNextLink(), kEDI); |
| 2608 | |
| 2609 | // mov [ebx + Thread.GetFrame()], esi |
| 2610 | X86EmitIndexRegStore(kEBX, Thread::GetOffsetOfCurrentFrame(), kESI); |
| 2611 | |
| 2612 | if (pFrameVptr == UMThkCallFrame::GetMethodFrameVPtr()) |
| 2613 | { |
| 2614 | // push UnmanagedToManagedExceptHandler |
| 2615 | X86EmitPushImmPtr((LPVOID)UMThunkPrestubHandler); |
| 2616 | |
| 2617 | // mov eax, fs:[0] |
| 2618 | static const BYTE codeSEH1[] = { 0x64, 0xA1, 0x0, 0x0, 0x0, 0x0}; |
| 2619 | EmitBytes(codeSEH1, sizeof(codeSEH1)); |
| 2620 | |
| 2621 | // push eax |
| 2622 | X86EmitPushReg(kEAX); |
| 2623 | |
| 2624 | // mov dword ptr fs:[0], esp |
| 2625 | static const BYTE codeSEH2[] = { 0x64, 0x89, 0x25, 0x0, 0x0, 0x0, 0x0}; |
| 2626 | EmitBytes(codeSEH2, sizeof(codeSEH2)); |
| 2627 | } |
| 2628 | |
| 2629 | #if _DEBUG |
| 2630 | if (Frame::ShouldLogTransitions()) |
| 2631 | { |
| 2632 | // call LogTransition |
| 2633 | X86EmitPushReg(kESI); |
| 2634 | X86EmitCall(NewExternalCodeLabel((LPVOID) Frame::LogTransition), sizeof(void*)); |
| 2635 | } |
| 2636 | #endif |
| 2637 | } |
| 2638 | |
| 2639 | //======================================================================== |
| 2640 | // Epilog for stubs that enter managed code from COM |
| 2641 | // |
| 2642 | // At this point of the stub, the state should be as follows: |
| 2643 | // ESI holds the ComMethodFrame or UMThkCallFrame ptr |
| 2644 | // EBX holds the result of GetThread() |
| 2645 | // EDI holds the previous Frame ptr |
| 2646 | // |
| 2647 | void StubLinkerCPU::EmitComMethodStubEpilog(TADDR pFrameVptr, |
| 2648 | CodeLabel** rgRareLabels, |
| 2649 | CodeLabel** rgRejoinLabels, |
| 2650 | BOOL bShouldProfile) |
| 2651 | { |
| 2652 | CONTRACTL |
| 2653 | { |
| 2654 | STANDARD_VM_CHECK; |
| 2655 | |
| 2656 | PRECONDITION(rgRareLabels != NULL); |
| 2657 | PRECONDITION(rgRareLabels[0] != NULL && rgRareLabels[1] != NULL && rgRareLabels[2] != NULL); |
| 2658 | PRECONDITION(rgRejoinLabels != NULL); |
| 2659 | PRECONDITION(rgRejoinLabels[0] != NULL && rgRejoinLabels[1] != NULL && rgRejoinLabels[2] != NULL); |
| 2660 | } |
| 2661 | CONTRACTL_END; |
| 2662 | |
| 2663 | EmitCheckGSCookie(kESI, UnmanagedToManagedFrame::GetOffsetOfGSCookie()); |
| 2664 | |
| 2665 | if (pFrameVptr == UMThkCallFrame::GetMethodFrameVPtr()) |
| 2666 | { |
| 2667 | // if we are using exceptions, unlink the SEH |
| 2668 | // mov ecx,[esp] ;;pointer to the next exception record |
| 2669 | X86EmitEspOffset(0x8b, kECX, 0); |
| 2670 | |
| 2671 | // mov dword ptr fs:[0], ecx |
| 2672 | static const BYTE codeSEH[] = { 0x64, 0x89, 0x0D, 0x0, 0x0, 0x0, 0x0 }; |
| 2673 | EmitBytes(codeSEH, sizeof(codeSEH)); |
| 2674 | |
| 2675 | X86EmitAddEsp(sizeof(EXCEPTION_REGISTRATION_RECORD)); |
| 2676 | } |
| 2677 | |
| 2678 | // mov [ebx + Thread.GetFrame()], edi ;; restore previous frame |
| 2679 | X86EmitIndexRegStore(kEBX, Thread::GetOffsetOfCurrentFrame(), kEDI); |
| 2680 | |
| 2681 | //----------------------------------------------------------------------- |
| 2682 | // Generate the inline part of disabling preemptive GC |
| 2683 | //----------------------------------------------------------------------- |
| 2684 | EmitEnable(rgRareLabels[2]); // rare gc |
| 2685 | EmitLabel(rgRejoinLabels[2]); // rejoin for rare gc |
| 2686 | |
| 2687 | if (pFrameVptr == UMThkCallFrame::GetMethodFrameVPtr()) |
| 2688 | { |
| 2689 | // Restore argument registers for thiscall/fastcall |
| 2690 | X86EmitPopReg(kEDX); |
| 2691 | X86EmitPopReg(kECX); |
| 2692 | } |
| 2693 | |
| 2694 | // add esp, popstack |
| 2695 | X86EmitAddEsp(sizeof(GSCookie) + UnmanagedToManagedFrame::GetOffsetOfCalleeSavedRegisters()); |
| 2696 | |
| 2697 | // pop edi ; restore callee-saved registers |
| 2698 | // pop esi |
| 2699 | // pop ebx |
| 2700 | // pop ebp |
| 2701 | X86EmitPopReg(kEDI); |
| 2702 | X86EmitPopReg(kESI); |
| 2703 | X86EmitPopReg(kEBX); |
| 2704 | X86EmitPopReg(kEBP); |
| 2705 | |
| 2706 | // jmp eax //reexecute! |
| 2707 | X86EmitR2ROp(0xff, (X86Reg)4, kEAX); |
| 2708 | |
| 2709 | // ret |
| 2710 | // This will never be executed. It is just to help out stack-walking logic |
| 2711 | // which disassembles the epilog to unwind the stack. A "ret" instruction |
| 2712 | // indicates that no more code needs to be disassembled, if the stack-walker |
| 2713 | // keeps on going past the previous "jmp eax". |
| 2714 | X86EmitReturn(0); |
| 2715 | |
| 2716 | //----------------------------------------------------------------------- |
| 2717 | // The out-of-line portion of enabling preemptive GC - rarely executed |
| 2718 | //----------------------------------------------------------------------- |
| 2719 | EmitLabel(rgRareLabels[2]); // label for rare enable gc |
| 2720 | EmitRareEnable(rgRejoinLabels[2]); // emit rare enable gc |
| 2721 | |
| 2722 | //----------------------------------------------------------------------- |
| 2723 | // The out-of-line portion of disabling preemptive GC - rarely executed |
| 2724 | //----------------------------------------------------------------------- |
| 2725 | EmitLabel(rgRareLabels[1]); // label for rare disable gc |
| 2726 | EmitRareDisable(rgRejoinLabels[1]); // emit rare disable gc |
| 2727 | |
| 2728 | //----------------------------------------------------------------------- |
| 2729 | // The out-of-line portion of setup thread - rarely executed |
| 2730 | //----------------------------------------------------------------------- |
| 2731 | EmitLabel(rgRareLabels[0]); // label for rare setup thread |
| 2732 | EmitRareSetup(rgRejoinLabels[0], /*fThrow*/ TRUE); // emit rare setup thread |
| 2733 | } |
| 2734 | #endif // !FEATURE_STUBS_AS_IL |
| 2735 | |
| 2736 | //--------------------------------------------------------------- |
| 2737 | // Emit code to store the setup current Thread structure in eax. |
| 2738 | // TRASHES eax,ecx&edx. |
| 2739 | // RESULTS ebx = current Thread |
| 2740 | //--------------------------------------------------------------- |
| 2741 | VOID StubLinkerCPU::EmitSetup(CodeLabel *pForwardRef) |
| 2742 | { |
| 2743 | STANDARD_VM_CONTRACT; |
| 2744 | |
| 2745 | X86EmitCurrentThreadFetch(kEBX, 0); |
| 2746 | |
| 2747 | // cmp ebx, 0 |
| 2748 | static const BYTE b[] = { 0x83, 0xFB, 0x0}; |
| 2749 | |
| 2750 | EmitBytes(b, sizeof(b)); |
| 2751 | |
| 2752 | // jz RarePath |
| 2753 | X86EmitCondJump(pForwardRef, X86CondCode::kJZ); |
| 2754 | |
| 2755 | #ifdef _DEBUG |
| 2756 | X86EmitDebugTrashReg(kECX); |
| 2757 | X86EmitDebugTrashReg(kEDX); |
| 2758 | #endif |
| 2759 | } |
| 2760 | |
| 2761 | VOID StubLinkerCPU::EmitRareSetup(CodeLabel *pRejoinPoint, BOOL fThrow) |
| 2762 | { |
| 2763 | STANDARD_VM_CONTRACT; |
| 2764 | |
| 2765 | #ifndef FEATURE_COMINTEROP |
| 2766 | _ASSERTE(fThrow); |
| 2767 | #else // !FEATURE_COMINTEROP |
| 2768 | if (!fThrow) |
| 2769 | { |
| 2770 | X86EmitPushReg(kESI); |
| 2771 | X86EmitCall(NewExternalCodeLabel((LPVOID) CreateThreadBlockReturnHr), sizeof(void*)); |
| 2772 | } |
| 2773 | else |
| 2774 | #endif // !FEATURE_COMINTEROP |
| 2775 | { |
| 2776 | X86EmitCall(NewExternalCodeLabel((LPVOID) CreateThreadBlockThrow), 0); |
| 2777 | } |
| 2778 | |
| 2779 | // mov ebx,eax |
| 2780 | Emit16(0xc389); |
| 2781 | X86EmitNearJump(pRejoinPoint); |
| 2782 | } |
| 2783 | |
| 2784 | //======================================================================== |
| 2785 | #endif // _TARGET_X86_ |
| 2786 | //======================================================================== |
| 2787 | #if defined(FEATURE_COMINTEROP) && defined(_TARGET_X86_) |
| 2788 | //======================================================================== |
| 2789 | // Epilog for stubs that enter managed code from COM |
| 2790 | // |
| 2791 | // On entry, ESI points to the Frame |
| 2792 | // ESP points to below FramedMethodFrame::m_vc5Frame |
| 2793 | // EBX hold GetThread() |
| 2794 | // EDI holds the previous Frame |
| 2795 | |
| 2796 | void StubLinkerCPU::EmitSharedComMethodStubEpilog(TADDR pFrameVptr, |
| 2797 | CodeLabel** rgRareLabels, |
| 2798 | CodeLabel** rgRejoinLabels, |
| 2799 | unsigned offsetRetThunk, |
| 2800 | BOOL bShouldProfile) |
| 2801 | { |
| 2802 | CONTRACTL |
| 2803 | { |
| 2804 | STANDARD_VM_CHECK; |
| 2805 | |
| 2806 | PRECONDITION(rgRareLabels != NULL); |
| 2807 | PRECONDITION(rgRareLabels[0] != NULL && rgRareLabels[1] != NULL && rgRareLabels[2] != NULL); |
| 2808 | PRECONDITION(rgRejoinLabels != NULL); |
| 2809 | PRECONDITION(rgRejoinLabels[0] != NULL && rgRejoinLabels[1] != NULL && rgRejoinLabels[2] != NULL); |
| 2810 | } |
| 2811 | CONTRACTL_END; |
| 2812 | |
| 2813 | CodeLabel *NoEntryLabel; |
| 2814 | NoEntryLabel = NewCodeLabel(); |
| 2815 | |
| 2816 | EmitCheckGSCookie(kESI, UnmanagedToManagedFrame::GetOffsetOfGSCookie()); |
| 2817 | |
| 2818 | // mov [ebx + Thread.GetFrame()], edi ;; restore previous frame |
| 2819 | X86EmitIndexRegStore(kEBX, Thread::GetOffsetOfCurrentFrame(), kEDI); |
| 2820 | |
| 2821 | //----------------------------------------------------------------------- |
| 2822 | // Generate the inline part of enabling preemptive GC |
| 2823 | //----------------------------------------------------------------------- |
| 2824 | EmitLabel(NoEntryLabel); // need to enable preemp mode even when we fail the disable as rare disable will return in coop mode |
| 2825 | |
| 2826 | EmitEnable(rgRareLabels[2]); // rare enable gc |
| 2827 | EmitLabel(rgRejoinLabels[2]); // rejoin for rare enable gc |
| 2828 | |
| 2829 | #ifdef PROFILING_SUPPORTED |
| 2830 | // If profiling is active, emit code to notify profiler of transition |
| 2831 | if (CORProfilerTrackTransitions() && bShouldProfile) |
| 2832 | { |
| 2833 | // Save return value |
| 2834 | X86EmitPushReg(kEAX); |
| 2835 | X86EmitPushReg(kEDX); |
| 2836 | |
| 2837 | EmitProfilerComCallEpilog(pFrameVptr, kESI); |
| 2838 | |
| 2839 | // Restore return value |
| 2840 | X86EmitPopReg(kEDX); |
| 2841 | X86EmitPopReg(kEAX); |
| 2842 | } |
| 2843 | #endif // PROFILING_SUPPORTED |
| 2844 | |
| 2845 | X86EmitAddEsp(sizeof(GSCookie) + UnmanagedToManagedFrame::GetOffsetOfDatum()); |
| 2846 | |
| 2847 | // pop ecx |
| 2848 | X86EmitPopReg(kECX); // pop the MethodDesc* |
| 2849 | |
| 2850 | // pop edi ; restore callee-saved registers |
| 2851 | // pop esi |
| 2852 | // pop ebx |
| 2853 | // pop ebp |
| 2854 | X86EmitPopReg(kEDI); |
| 2855 | X86EmitPopReg(kESI); |
| 2856 | X86EmitPopReg(kEBX); |
| 2857 | X86EmitPopReg(kEBP); |
| 2858 | |
| 2859 | // add ecx, offsetRetThunk |
| 2860 | X86EmitAddReg(kECX, offsetRetThunk); |
| 2861 | |
| 2862 | // jmp ecx |
| 2863 | // This will jump to the "ret cbStackArgs" instruction in COMMETHOD_PREPAD. |
| 2864 | static const BYTE bjmpecx[] = { 0xff, 0xe1 }; |
| 2865 | EmitBytes(bjmpecx, sizeof(bjmpecx)); |
| 2866 | |
| 2867 | // ret |
| 2868 | // This will never be executed. It is just to help out stack-walking logic |
| 2869 | // which disassembles the epilog to unwind the stack. A "ret" instruction |
| 2870 | // indicates that no more code needs to be disassembled, if the stack-walker |
| 2871 | // keeps on going past the previous "jmp ecx". |
| 2872 | X86EmitReturn(0); |
| 2873 | |
| 2874 | //----------------------------------------------------------------------- |
| 2875 | // The out-of-line portion of enabling preemptive GC - rarely executed |
| 2876 | //----------------------------------------------------------------------- |
| 2877 | EmitLabel(rgRareLabels[2]); // label for rare enable gc |
| 2878 | EmitRareEnable(rgRejoinLabels[2]); // emit rare enable gc |
| 2879 | |
| 2880 | //----------------------------------------------------------------------- |
| 2881 | // The out-of-line portion of disabling preemptive GC - rarely executed |
| 2882 | //----------------------------------------------------------------------- |
| 2883 | EmitLabel(rgRareLabels[1]); // label for rare disable gc |
| 2884 | EmitRareDisableHRESULT(rgRejoinLabels[1], NoEntryLabel); |
| 2885 | |
| 2886 | //----------------------------------------------------------------------- |
| 2887 | // The out-of-line portion of setup thread - rarely executed |
| 2888 | //----------------------------------------------------------------------- |
| 2889 | EmitLabel(rgRareLabels[0]); // label for rare setup thread |
| 2890 | EmitRareSetup(rgRejoinLabels[0],/*fThrow*/ FALSE); // emit rare setup thread |
| 2891 | } |
| 2892 | |
| 2893 | //======================================================================== |
| 2894 | #endif // defined(FEATURE_COMINTEROP) && defined(_TARGET_X86_) |
| 2895 | |
| 2896 | #ifndef FEATURE_STUBS_AS_IL |
| 2897 | /*============================================================================== |
| 2898 | Pushes a TransitionFrame on the stack |
| 2899 | If you make any changes to the prolog instruction sequence, be sure |
| 2900 | to update UpdateRegdisplay, too!! This service should only be called from |
| 2901 | within the runtime. It should not be called for any unmanaged -> managed calls in. |
| 2902 | |
| 2903 | At the end of the generated prolog stub code: |
| 2904 | pFrame is in ESI/RSI. |
| 2905 | the previous pFrame is in EDI/RDI |
| 2906 | The current Thread* is in EBX/RBX. |
| 2907 | For x86, ESP points to TransitionFrame |
| 2908 | For amd64, ESP points to the space reserved for the outgoing argument registers |
| 2909 | */ |
| 2910 | |
| 2911 | VOID StubLinkerCPU::EmitMethodStubProlog(TADDR pFrameVptr, int transitionBlockOffset) |
| 2912 | { |
| 2913 | STANDARD_VM_CONTRACT; |
| 2914 | |
| 2915 | #ifdef _TARGET_AMD64_ |
| 2916 | X86EmitPushReg(kR15); // CalleeSavedRegisters |
| 2917 | X86EmitPushReg(kR14); |
| 2918 | X86EmitPushReg(kR13); |
| 2919 | X86EmitPushReg(kR12); |
| 2920 | X86EmitPushReg(kRBP); |
| 2921 | X86EmitPushReg(kRBX); |
| 2922 | X86EmitPushReg(kRSI); |
| 2923 | X86EmitPushReg(kRDI); |
| 2924 | |
| 2925 | // Push m_datum |
| 2926 | X86EmitPushReg(SCRATCH_REGISTER_X86REG); |
| 2927 | |
| 2928 | // push edx ;leave room for m_next (edx is an arbitrary choice) |
| 2929 | X86EmitPushReg(kEDX); |
| 2930 | |
| 2931 | // push Frame vptr |
| 2932 | X86EmitPushImmPtr((LPVOID) pFrameVptr); |
| 2933 | |
| 2934 | // mov rsi, rsp |
| 2935 | X86EmitR2ROp(0x8b, kRSI, (X86Reg)4 /*kESP*/); |
| 2936 | UnwindSetFramePointer(kRSI); |
| 2937 | |
| 2938 | // Save ArgumentRegisters |
| 2939 | #define ARGUMENT_REGISTER(regname) X86EmitRegSave(k##regname, SecureDelegateFrame::GetOffsetOfTransitionBlock() + \ |
| 2940 | sizeof(TransitionBlock) + offsetof(ArgumentRegisters, regname)); |
| 2941 | ENUM_ARGUMENT_REGISTERS(); |
| 2942 | #undef ARGUMENT_REGISTER |
| 2943 | |
| 2944 | _ASSERTE(((Frame*)&pFrameVptr)->GetGSCookiePtr() == PTR_GSCookie(PBYTE(&pFrameVptr) - sizeof(GSCookie))); |
| 2945 | X86EmitPushImmPtr((LPVOID)GetProcessGSCookie()); |
| 2946 | |
| 2947 | // sub rsp, 4*sizeof(void*) ;; allocate callee scratch area and ensure rsp is 16-byte-aligned |
| 2948 | const INT32 padding = sizeof(ArgumentRegisters) + ((sizeof(FramedMethodFrame) % (2 * sizeof(LPVOID))) ? 0 : sizeof(LPVOID)); |
| 2949 | X86EmitSubEsp(padding); |
| 2950 | #endif // _TARGET_AMD64_ |
| 2951 | |
| 2952 | #ifdef _TARGET_X86_ |
| 2953 | // push ebp ;; save callee-saved register |
| 2954 | // mov ebp,esp |
| 2955 | // push ebx ;; save callee-saved register |
| 2956 | // push esi ;; save callee-saved register |
| 2957 | // push edi ;; save callee-saved register |
| 2958 | X86EmitPushEBPframe(); |
| 2959 | |
| 2960 | X86EmitPushReg(kEBX); |
| 2961 | X86EmitPushReg(kESI); |
| 2962 | X86EmitPushReg(kEDI); |
| 2963 | |
| 2964 | // Push & initialize ArgumentRegisters |
| 2965 | #define ARGUMENT_REGISTER(regname) X86EmitPushReg(k##regname); |
| 2966 | ENUM_ARGUMENT_REGISTERS(); |
| 2967 | #undef ARGUMENT_REGISTER |
| 2968 | |
| 2969 | // Push m_datum |
| 2970 | X86EmitPushReg(kEAX); |
| 2971 | |
| 2972 | // push edx ;leave room for m_next (edx is an arbitrary choice) |
| 2973 | X86EmitPushReg(kEDX); |
| 2974 | |
| 2975 | // push Frame vptr |
| 2976 | X86EmitPushImmPtr((LPVOID) pFrameVptr); |
| 2977 | |
| 2978 | // mov esi,esp |
| 2979 | X86EmitMovRegSP(kESI); |
| 2980 | |
| 2981 | X86EmitPushImmPtr((LPVOID)GetProcessGSCookie()); |
| 2982 | #endif // _TARGET_X86_ |
| 2983 | |
| 2984 | // ebx <-- GetThread() |
| 2985 | X86EmitCurrentThreadFetch(kEBX, 0); |
| 2986 | |
| 2987 | #if _DEBUG |
| 2988 | |
| 2989 | // call ObjectRefFlush |
| 2990 | #ifdef _TARGET_AMD64_ |
| 2991 | |
| 2992 | // mov rcx, rbx |
| 2993 | X86EmitR2ROp(0x8b, kECX, kEBX); // arg in reg |
| 2994 | |
| 2995 | #else // !_TARGET_AMD64_ |
| 2996 | X86EmitPushReg(kEBX); // arg on stack |
| 2997 | #endif // _TARGET_AMD64_ |
| 2998 | |
| 2999 | // Make the call |
| 3000 | X86EmitCall(NewExternalCodeLabel((LPVOID) Thread::ObjectRefFlush), sizeof(void*)); |
| 3001 | |
| 3002 | #endif // _DEBUG |
| 3003 | |
| 3004 | // mov edi,[ebx + Thread.GetFrame()] ;; get previous frame |
| 3005 | X86EmitIndexRegLoad(kEDI, kEBX, Thread::GetOffsetOfCurrentFrame()); |
| 3006 | |
| 3007 | // mov [esi + Frame.m_next], edi |
| 3008 | X86EmitIndexRegStore(kESI, Frame::GetOffsetOfNextLink(), kEDI); |
| 3009 | |
| 3010 | // mov [ebx + Thread.GetFrame()], esi |
| 3011 | X86EmitIndexRegStore(kEBX, Thread::GetOffsetOfCurrentFrame(), kESI); |
| 3012 | |
| 3013 | #if _DEBUG |
| 3014 | |
| 3015 | if (Frame::ShouldLogTransitions()) |
| 3016 | { |
| 3017 | // call LogTransition |
| 3018 | #ifdef _TARGET_AMD64_ |
| 3019 | |
| 3020 | // mov rcx, rsi |
| 3021 | X86EmitR2ROp(0x8b, kECX, kESI); // arg in reg |
| 3022 | |
| 3023 | #else // !_TARGET_AMD64_ |
| 3024 | X86EmitPushReg(kESI); // arg on stack |
| 3025 | #endif // _TARGET_AMD64_ |
| 3026 | |
| 3027 | X86EmitCall(NewExternalCodeLabel((LPVOID) Frame::LogTransition), sizeof(void*)); |
| 3028 | |
| 3029 | #ifdef _TARGET_AMD64_ |
| 3030 | // Reload parameter registers |
| 3031 | // mov r, [esp+offs] |
| 3032 | #define ARGUMENT_REGISTER(regname) X86EmitEspOffset(0x8b, k##regname, sizeof(ArgumentRegisters) + \ |
| 3033 | sizeof(TransitionFrame) + offsetof(ArgumentRegisters, regname)); |
| 3034 | ENUM_ARGUMENT_REGISTERS(); |
| 3035 | #undef ARGUMENT_REGISTER |
| 3036 | |
| 3037 | #endif // _TARGET_AMD64_ |
| 3038 | } |
| 3039 | |
| 3040 | #endif // _DEBUG |
| 3041 | |
| 3042 | |
| 3043 | #ifdef _TARGET_AMD64_ |
| 3044 | // OK for the debugger to examine the new frame now |
| 3045 | // (Note that if it's not OK yet for some stub, another patch label |
| 3046 | // can be emitted later which will override this one.) |
| 3047 | EmitPatchLabel(); |
| 3048 | #else |
| 3049 | // For x86, the patch label can be specified only after the GSCookie is pushed |
| 3050 | // Otherwise the debugger will see a Frame without a valid GSCookie |
| 3051 | #endif |
| 3052 | } |
| 3053 | |
| 3054 | /*============================================================================== |
| 3055 | EmitMethodStubEpilog generates the part of the stub that will pop off the |
| 3056 | Frame |
| 3057 | |
| 3058 | restoreArgRegs - indicates whether the argument registers need to be |
| 3059 | restored from m_argumentRegisters |
| 3060 | |
| 3061 | At this point of the stub: |
| 3062 | pFrame is in ESI/RSI. |
| 3063 | the previous pFrame is in EDI/RDI |
| 3064 | The current Thread* is in EBX/RBX. |
| 3065 | For x86, ESP points to the FramedMethodFrame::NegInfo |
| 3066 | */ |
| 3067 | |
| 3068 | VOID StubLinkerCPU::EmitMethodStubEpilog(WORD numArgBytes, int transitionBlockOffset) |
| 3069 | { |
| 3070 | STANDARD_VM_CONTRACT; |
| 3071 | |
| 3072 | // mov [ebx + Thread.GetFrame()], edi ;; restore previous frame |
| 3073 | X86EmitIndexRegStore(kEBX, Thread::GetOffsetOfCurrentFrame(), kEDI); |
| 3074 | |
| 3075 | #ifdef _TARGET_X86_ |
| 3076 | // deallocate Frame |
| 3077 | X86EmitAddEsp(sizeof(GSCookie) + transitionBlockOffset + TransitionBlock::GetOffsetOfCalleeSavedRegisters()); |
| 3078 | |
| 3079 | #elif defined(_TARGET_AMD64_) |
| 3080 | // lea rsp, [rsi + <offset of preserved registers>] |
| 3081 | X86EmitOffsetModRM(0x8d, (X86Reg)4 /*kRSP*/, kRSI, transitionBlockOffset + TransitionBlock::GetOffsetOfCalleeSavedRegisters()); |
| 3082 | #endif // _TARGET_AMD64_ |
| 3083 | |
| 3084 | // pop edi ; restore callee-saved registers |
| 3085 | // pop esi |
| 3086 | // pop ebx |
| 3087 | // pop ebp |
| 3088 | X86EmitPopReg(kEDI); |
| 3089 | X86EmitPopReg(kESI); |
| 3090 | X86EmitPopReg(kEBX); |
| 3091 | X86EmitPopReg(kEBP); |
| 3092 | |
| 3093 | #ifdef _TARGET_AMD64_ |
| 3094 | X86EmitPopReg(kR12); |
| 3095 | X86EmitPopReg(kR13); |
| 3096 | X86EmitPopReg(kR14); |
| 3097 | X86EmitPopReg(kR15); |
| 3098 | #endif |
| 3099 | |
| 3100 | #if defined(_TARGET_AMD64_) || defined(UNIX_X86_ABI) |
| 3101 | // Caller deallocates argument space. (Bypasses ASSERT in |
| 3102 | // X86EmitReturn.) |
| 3103 | numArgBytes = 0; |
| 3104 | #endif |
| 3105 | |
| 3106 | X86EmitReturn(numArgBytes); |
| 3107 | } |
| 3108 | |
| 3109 | |
| 3110 | // On entry, ESI should be pointing to the Frame |
| 3111 | |
| 3112 | VOID StubLinkerCPU::EmitCheckGSCookie(X86Reg frameReg, int gsCookieOffset) |
| 3113 | { |
| 3114 | STANDARD_VM_CONTRACT; |
| 3115 | |
| 3116 | #ifdef _DEBUG |
| 3117 | // cmp dword ptr[frameReg-gsCookieOffset], gsCookie |
| 3118 | #ifdef _TARGET_X86_ |
| 3119 | X86EmitCmpRegIndexImm32(frameReg, gsCookieOffset, GetProcessGSCookie()); |
| 3120 | #else |
| 3121 | X64EmitCmp32RegIndexImm32(frameReg, gsCookieOffset, (INT32)GetProcessGSCookie()); |
| 3122 | #endif |
| 3123 | |
| 3124 | CodeLabel * pLabel = NewCodeLabel(); |
| 3125 | X86EmitCondJump(pLabel, X86CondCode::kJE); |
| 3126 | |
| 3127 | X86EmitCall(NewExternalCodeLabel((LPVOID) JIT_FailFast), 0); |
| 3128 | |
| 3129 | EmitLabel(pLabel); |
| 3130 | #endif |
| 3131 | } |
| 3132 | #endif // !FEATURE_STUBS_AS_IL |
| 3133 | |
| 3134 | |
| 3135 | // This method unboxes the THIS pointer and then calls pRealMD |
| 3136 | // If it's shared code for a method in a generic value class, then also extract the vtable pointer |
| 3137 | // and pass it as an extra argument. Thus this stub generator really covers both |
| 3138 | // - Unboxing, non-instantiating stubs |
| 3139 | // - Unboxing, method-table-instantiating stubs |
| 3140 | VOID StubLinkerCPU::EmitUnboxMethodStub(MethodDesc* pUnboxMD) |
| 3141 | { |
| 3142 | CONTRACTL |
| 3143 | { |
| 3144 | STANDARD_VM_CHECK; |
| 3145 | PRECONDITION(!pUnboxMD->IsStatic()); |
| 3146 | } |
| 3147 | CONTRACTL_END; |
| 3148 | |
| 3149 | #ifdef FEATURE_STUBS_AS_IL |
| 3150 | _ASSERTE(!pUnboxMD->RequiresInstMethodTableArg()); |
| 3151 | #else |
| 3152 | if (pUnboxMD->RequiresInstMethodTableArg()) |
| 3153 | { |
| 3154 | EmitInstantiatingMethodStub(pUnboxMD, NULL); |
| 3155 | return; |
| 3156 | } |
| 3157 | #endif |
| 3158 | |
| 3159 | // |
| 3160 | // unboxing a value class simply means adding sizeof(void*) to the THIS pointer |
| 3161 | // |
| 3162 | #ifdef _TARGET_AMD64_ |
| 3163 | X86EmitAddReg(THIS_kREG, sizeof(void*)); |
| 3164 | |
| 3165 | // Use direct call if possible |
| 3166 | if (pUnboxMD->HasStableEntryPoint()) |
| 3167 | { |
| 3168 | X86EmitRegLoad(kRAX, pUnboxMD->GetStableEntryPoint());// MOV RAX, DWORD |
| 3169 | } |
| 3170 | else |
| 3171 | { |
| 3172 | X86EmitRegLoad(kRAX, (UINT_PTR)pUnboxMD->GetAddrOfSlot()); // MOV RAX, DWORD |
| 3173 | |
| 3174 | X86EmitIndexRegLoad(kRAX, kRAX); // MOV RAX, [RAX] |
| 3175 | } |
| 3176 | |
| 3177 | Emit16(X86_INSTR_JMP_EAX); // JMP EAX |
| 3178 | #else // _TARGET_AMD64_ |
| 3179 | X86EmitAddReg(THIS_kREG, sizeof(void*)); |
| 3180 | |
| 3181 | // Use direct call if possible |
| 3182 | if (pUnboxMD->HasStableEntryPoint()) |
| 3183 | { |
| 3184 | X86EmitNearJump(NewExternalCodeLabel((LPVOID) pUnboxMD->GetStableEntryPoint())); |
| 3185 | } |
| 3186 | else |
| 3187 | { |
| 3188 | // jmp [slot] |
| 3189 | Emit16(0x25ff); |
| 3190 | Emit32((DWORD)(size_t)pUnboxMD->GetAddrOfSlot()); |
| 3191 | } |
| 3192 | #endif //_TARGET_AMD64_ |
| 3193 | } |
| 3194 | |
| 3195 | |
| 3196 | #if defined(FEATURE_SHARE_GENERIC_CODE) && !defined(FEATURE_STUBS_AS_IL) |
| 3197 | // The stub generated by this method passes an extra dictionary argument before jumping to |
| 3198 | // shared-instantiation generic code. |
| 3199 | // |
| 3200 | // pMD is either |
| 3201 | // * An InstantiatedMethodDesc for a generic method whose code is shared across instantiations. |
| 3202 | // In this case, the extra argument is the InstantiatedMethodDesc for the instantiation-specific stub itself. |
| 3203 | // or * A MethodDesc for a static method in a generic class whose code is shared across instantiations. |
| 3204 | // In this case, the extra argument is the MethodTable pointer of the instantiated type. |
| 3205 | // or * A MethodDesc for unboxing stub. In this case, the extra argument is null. |
| 3206 | VOID StubLinkerCPU::EmitInstantiatingMethodStub(MethodDesc* pMD, void* extra) |
| 3207 | { |
| 3208 | CONTRACTL |
| 3209 | { |
| 3210 | STANDARD_VM_CHECK; |
| 3211 | PRECONDITION(pMD->RequiresInstArg()); |
| 3212 | } |
| 3213 | CONTRACTL_END; |
| 3214 | |
| 3215 | MetaSig msig(pMD); |
| 3216 | ArgIterator argit(&msig); |
| 3217 | |
| 3218 | #ifdef _TARGET_AMD64_ |
| 3219 | int paramTypeArgOffset = argit.GetParamTypeArgOffset(); |
| 3220 | int paramTypeArgIndex = TransitionBlock::GetArgumentIndexFromOffset(paramTypeArgOffset); |
| 3221 | |
| 3222 | CorElementType argTypes[5]; |
| 3223 | |
| 3224 | int firstRealArg = paramTypeArgIndex + 1; |
| 3225 | int argNum = firstRealArg; |
| 3226 | |
| 3227 | // |
| 3228 | // Compute types of the 4 register args and first stack arg |
| 3229 | // |
| 3230 | |
| 3231 | CorElementType sigType; |
| 3232 | while ((sigType = msig.NextArgNormalized()) != ELEMENT_TYPE_END) |
| 3233 | { |
| 3234 | argTypes[argNum++] = sigType; |
| 3235 | if (argNum > 4) |
| 3236 | break; |
| 3237 | } |
| 3238 | msig.Reset(); |
| 3239 | |
| 3240 | BOOL fUseInstantiatingMethodStubWorker = FALSE; |
| 3241 | |
| 3242 | if (argNum > 4) |
| 3243 | { |
| 3244 | // |
| 3245 | // We will need to go through assembly helper. |
| 3246 | // |
| 3247 | fUseInstantiatingMethodStubWorker = TRUE; |
| 3248 | |
| 3249 | // Allocate space for frame before pushing the arguments for the assembly helper |
| 3250 | X86EmitSubEsp((INT32)(AlignUp(sizeof(void *) /* extra stack param */ + sizeof(GSCookie) + sizeof(StubHelperFrame), 16) - sizeof(void *) /* return address */)); |
| 3251 | |
| 3252 | // |
| 3253 | // Store extra arg stack arg param for the helper. |
| 3254 | // |
| 3255 | CorElementType argType = argTypes[--argNum]; |
| 3256 | switch (argType) |
| 3257 | { |
| 3258 | case ELEMENT_TYPE_R4: |
| 3259 | // movss dword ptr [rsp], xmm? |
| 3260 | X64EmitMovSSToMem(kXMM3, (X86Reg)4 /*kRSP*/); |
| 3261 | break; |
| 3262 | case ELEMENT_TYPE_R8: |
| 3263 | // movsd qword ptr [rsp], xmm? |
| 3264 | X64EmitMovSDToMem(kXMM3, (X86Reg)4 /*kRSP*/); |
| 3265 | break; |
| 3266 | default: |
| 3267 | X86EmitIndexRegStoreRSP(0, kR9); |
| 3268 | break; |
| 3269 | } |
| 3270 | } |
| 3271 | |
| 3272 | // |
| 3273 | // Shuffle the register arguments |
| 3274 | // |
| 3275 | while (argNum > firstRealArg) |
| 3276 | { |
| 3277 | CorElementType argType = argTypes[--argNum]; |
| 3278 | |
| 3279 | switch (argType) |
| 3280 | { |
| 3281 | case ELEMENT_TYPE_R4: |
| 3282 | case ELEMENT_TYPE_R8: |
| 3283 | // mov xmm#, xmm#-1 |
| 3284 | X64EmitMovXmmXmm((X86Reg)argNum, (X86Reg)(argNum - 1)); |
| 3285 | break; |
| 3286 | default: |
| 3287 | //mov reg#, reg#-1 |
| 3288 | X86EmitMovRegReg(c_argRegs[argNum], c_argRegs[argNum-1]); |
| 3289 | break; |
| 3290 | } |
| 3291 | } |
| 3292 | |
| 3293 | // |
| 3294 | // Setup the hidden instantiation argument |
| 3295 | // |
| 3296 | if (extra != NULL) |
| 3297 | { |
| 3298 | X86EmitRegLoad(c_argRegs[paramTypeArgIndex], (UINT_PTR)extra); |
| 3299 | } |
| 3300 | else |
| 3301 | { |
| 3302 | X86EmitIndexRegLoad(c_argRegs[paramTypeArgIndex], THIS_kREG); |
| 3303 | |
| 3304 | X86EmitAddReg(THIS_kREG, sizeof(void*)); |
| 3305 | } |
| 3306 | |
| 3307 | // Use direct call if possible |
| 3308 | if (pMD->HasStableEntryPoint()) |
| 3309 | { |
| 3310 | X86EmitRegLoad(kRAX, pMD->GetStableEntryPoint());// MOV RAX, DWORD |
| 3311 | } |
| 3312 | else |
| 3313 | { |
| 3314 | X86EmitRegLoad(kRAX, (UINT_PTR)pMD->GetAddrOfSlot()); // MOV RAX, DWORD |
| 3315 | |
| 3316 | X86EmitIndexRegLoad(kRAX, kRAX); // MOV RAX, [RAX] |
| 3317 | } |
| 3318 | |
| 3319 | if (fUseInstantiatingMethodStubWorker) |
| 3320 | { |
| 3321 | X86EmitPushReg(kRAX); |
| 3322 | |
| 3323 | UINT cbStack = argit.SizeOfArgStack(); |
| 3324 | _ASSERTE(cbStack > 0); |
| 3325 | |
| 3326 | X86EmitPushImm32((AlignUp(cbStack, 16) / sizeof(void*)) - 1); // -1 for extra stack arg |
| 3327 | |
| 3328 | X86EmitRegLoad(kRAX, GetEEFuncEntryPoint(InstantiatingMethodStubWorker));// MOV RAX, DWORD |
| 3329 | } |
| 3330 | else |
| 3331 | { |
| 3332 | _ASSERTE(argit.SizeOfArgStack() == 0); |
| 3333 | } |
| 3334 | |
| 3335 | Emit16(X86_INSTR_JMP_EAX); |
| 3336 | |
| 3337 | #else |
| 3338 | int paramTypeArgOffset = argit.GetParamTypeArgOffset(); |
| 3339 | |
| 3340 | // It's on the stack |
| 3341 | if (TransitionBlock::IsStackArgumentOffset(paramTypeArgOffset)) |
| 3342 | { |
| 3343 | // Pop return address into AX |
| 3344 | X86EmitPopReg(kEAX); |
| 3345 | |
| 3346 | if (extra != NULL) |
| 3347 | { |
| 3348 | // Push extra dictionary argument |
| 3349 | X86EmitPushImmPtr(extra); |
| 3350 | } |
| 3351 | else |
| 3352 | { |
| 3353 | // Push the vtable pointer from "this" |
| 3354 | X86EmitIndexPush(THIS_kREG, 0); |
| 3355 | } |
| 3356 | |
| 3357 | // Put return address back |
| 3358 | X86EmitPushReg(kEAX); |
| 3359 | } |
| 3360 | // It's in a register |
| 3361 | else |
| 3362 | { |
| 3363 | X86Reg paramReg = GetX86ArgumentRegisterFromOffset(paramTypeArgOffset - TransitionBlock::GetOffsetOfArgumentRegisters()); |
| 3364 | |
| 3365 | if (extra != NULL) |
| 3366 | { |
| 3367 | X86EmitRegLoad(paramReg, (UINT_PTR)extra); |
| 3368 | } |
| 3369 | else |
| 3370 | { |
| 3371 | // Just extract the vtable pointer from "this" |
| 3372 | X86EmitIndexRegLoad(paramReg, THIS_kREG); |
| 3373 | } |
| 3374 | } |
| 3375 | |
| 3376 | if (extra == NULL) |
| 3377 | { |
| 3378 | // Unboxing stub case. |
| 3379 | X86EmitAddReg(THIS_kREG, sizeof(void*)); |
| 3380 | } |
| 3381 | |
| 3382 | // Use direct call if possible |
| 3383 | if (pMD->HasStableEntryPoint()) |
| 3384 | { |
| 3385 | X86EmitNearJump(NewExternalCodeLabel((LPVOID) pMD->GetStableEntryPoint())); |
| 3386 | } |
| 3387 | else |
| 3388 | { |
| 3389 | // jmp [slot] |
| 3390 | Emit16(0x25ff); |
| 3391 | Emit32((DWORD)(size_t)pMD->GetAddrOfSlot()); |
| 3392 | } |
| 3393 | #endif // |
| 3394 | } |
| 3395 | #endif // FEATURE_SHARE_GENERIC_CODE && FEATURE_STUBS_AS_IL |
| 3396 | |
| 3397 | |
| 3398 | #if defined(_DEBUG) && defined(STUBLINKER_GENERATES_UNWIND_INFO) |
| 3399 | |
| 3400 | typedef BOOL GetModuleInformationProc( |
| 3401 | HANDLE hProcess, |
| 3402 | HMODULE hModule, |
| 3403 | LPMODULEINFO lpmodinfo, |
| 3404 | DWORD cb |
| 3405 | ); |
| 3406 | |
| 3407 | GetModuleInformationProc *g_pfnGetModuleInformation = NULL; |
| 3408 | |
| 3409 | extern "C" VOID __cdecl DebugCheckStubUnwindInfoWorker (CONTEXT *pStubContext) |
| 3410 | { |
| 3411 | BEGIN_ENTRYPOINT_VOIDRET; |
| 3412 | |
| 3413 | LOG((LF_STUBS, LL_INFO1000000, "checking stub unwind info:\n" )); |
| 3414 | |
| 3415 | // |
| 3416 | // Make a copy of the CONTEXT. RtlVirtualUnwind will modify this copy. |
| 3417 | // DebugCheckStubUnwindInfo will need to restore registers from the |
| 3418 | // original CONTEXT. |
| 3419 | // |
| 3420 | CONTEXT ctx = *pStubContext; |
| 3421 | ctx.ContextFlags = (CONTEXT_CONTROL | CONTEXT_INTEGER); |
| 3422 | |
| 3423 | // |
| 3424 | // Find the upper bound of the stack and address range of KERNEL32. This |
| 3425 | // is where we expect the unwind to stop. |
| 3426 | // |
| 3427 | void *pvStackTop = GetThread()->GetCachedStackBase(); |
| 3428 | |
| 3429 | if (!g_pfnGetModuleInformation) |
| 3430 | { |
| 3431 | HMODULE hmodPSAPI = WszGetModuleHandle(W("PSAPI.DLL" )); |
| 3432 | |
| 3433 | if (!hmodPSAPI) |
| 3434 | { |
| 3435 | hmodPSAPI = WszLoadLibrary(W("PSAPI.DLL" )); |
| 3436 | if (!hmodPSAPI) |
| 3437 | { |
| 3438 | _ASSERTE(!"unable to load PSAPI.DLL" ); |
| 3439 | goto ErrExit; |
| 3440 | } |
| 3441 | } |
| 3442 | |
| 3443 | g_pfnGetModuleInformation = (GetModuleInformationProc*)GetProcAddress(hmodPSAPI, "GetModuleInformation" ); |
| 3444 | if (!g_pfnGetModuleInformation) |
| 3445 | { |
| 3446 | _ASSERTE(!"can't find PSAPI!GetModuleInformation" ); |
| 3447 | goto ErrExit; |
| 3448 | } |
| 3449 | |
| 3450 | // Intentionally leak hmodPSAPI. We don't want to |
| 3451 | // LoadLibrary/FreeLibrary every time, this is slow + produces lots of |
| 3452 | // debugger spew. This is just debugging code after all... |
| 3453 | } |
| 3454 | |
| 3455 | HMODULE hmodKERNEL32 = WszGetModuleHandle(W("KERNEL32" )); |
| 3456 | _ASSERTE(hmodKERNEL32); |
| 3457 | |
| 3458 | MODULEINFO modinfoKERNEL32; |
| 3459 | if (!g_pfnGetModuleInformation(GetCurrentProcess(), hmodKERNEL32, &modinfoKERNEL32, sizeof(modinfoKERNEL32))) |
| 3460 | { |
| 3461 | _ASSERTE(!"unable to get bounds of KERNEL32" ); |
| 3462 | goto ErrExit; |
| 3463 | } |
| 3464 | |
| 3465 | // |
| 3466 | // Unwind until IP is 0, sp is at the stack top, and callee IP is in kernel32. |
| 3467 | // |
| 3468 | |
| 3469 | for (;;) |
| 3470 | { |
| 3471 | ULONG64 ControlPc = (ULONG64)GetIP(&ctx); |
| 3472 | |
| 3473 | LOG((LF_STUBS, LL_INFO1000000, "pc %p, sp %p\n" , ControlPc, GetSP(&ctx))); |
| 3474 | |
| 3475 | ULONG64 ImageBase; |
| 3476 | T_RUNTIME_FUNCTION *pFunctionEntry = RtlLookupFunctionEntry( |
| 3477 | ControlPc, |
| 3478 | &ImageBase, |
| 3479 | NULL); |
| 3480 | if (pFunctionEntry) |
| 3481 | { |
| 3482 | PVOID HandlerData; |
| 3483 | ULONG64 EstablisherFrame; |
| 3484 | |
| 3485 | RtlVirtualUnwind( |
| 3486 | 0, |
| 3487 | ImageBase, |
| 3488 | ControlPc, |
| 3489 | pFunctionEntry, |
| 3490 | &ctx, |
| 3491 | &HandlerData, |
| 3492 | &EstablisherFrame, |
| 3493 | NULL); |
| 3494 | |
| 3495 | ULONG64 NewControlPc = (ULONG64)GetIP(&ctx); |
| 3496 | |
| 3497 | LOG((LF_STUBS, LL_INFO1000000, "function %p, image %p, new pc %p, new sp %p\n" , pFunctionEntry, ImageBase, NewControlPc, GetSP(&ctx))); |
| 3498 | |
| 3499 | if (!NewControlPc) |
| 3500 | { |
| 3501 | if (dac_cast<PTR_BYTE>(GetSP(&ctx)) < (BYTE*)pvStackTop - 0x100) |
| 3502 | { |
| 3503 | _ASSERTE(!"SP did not end up at top of stack" ); |
| 3504 | goto ErrExit; |
| 3505 | } |
| 3506 | |
| 3507 | if (!( ControlPc > (ULONG64)modinfoKERNEL32.lpBaseOfDll |
| 3508 | && ControlPc < (ULONG64)modinfoKERNEL32.lpBaseOfDll + modinfoKERNEL32.SizeOfImage)) |
| 3509 | { |
| 3510 | _ASSERTE(!"PC did not end up in KERNEL32" ); |
| 3511 | goto ErrExit; |
| 3512 | } |
| 3513 | |
| 3514 | break; |
| 3515 | } |
| 3516 | } |
| 3517 | else |
| 3518 | { |
| 3519 | // Nested functions that do not use any stack space or nonvolatile |
| 3520 | // registers are not required to have unwind info (ex. |
| 3521 | // USER32!ZwUserCreateWindowEx). |
| 3522 | ctx.Rip = *(ULONG64*)(ctx.Rsp); |
| 3523 | ctx.Rsp += sizeof(ULONG64); |
| 3524 | } |
| 3525 | } |
| 3526 | ErrExit: |
| 3527 | |
| 3528 | END_ENTRYPOINT_VOIDRET; |
| 3529 | return; |
| 3530 | } |
| 3531 | |
| 3532 | //virtual |
| 3533 | VOID StubLinkerCPU::EmitUnwindInfoCheckWorker (CodeLabel *pCheckLabel) |
| 3534 | { |
| 3535 | STANDARD_VM_CONTRACT; |
| 3536 | X86EmitCall(pCheckLabel, 0); |
| 3537 | } |
| 3538 | |
| 3539 | //virtual |
| 3540 | VOID StubLinkerCPU::EmitUnwindInfoCheckSubfunction() |
| 3541 | { |
| 3542 | STANDARD_VM_CONTRACT; |
| 3543 | |
| 3544 | #ifdef _TARGET_AMD64_ |
| 3545 | // X86EmitCall will generate "mov rax, target/jmp rax", so we have to save |
| 3546 | // rax on the stack. DO NOT use X86EmitPushReg. That will induce infinite |
| 3547 | // recursion, since the push may require more unwind info. This "push rax" |
| 3548 | // will be accounted for by DebugCheckStubUnwindInfo's unwind info |
| 3549 | // (considered part of its locals), so there doesn't have to be unwind |
| 3550 | // info for it. |
| 3551 | Emit8(0x50); |
| 3552 | #endif |
| 3553 | |
| 3554 | X86EmitNearJump(NewExternalCodeLabel(DebugCheckStubUnwindInfo)); |
| 3555 | } |
| 3556 | |
| 3557 | #endif // defined(_DEBUG) && defined(STUBLINKER_GENERATES_UNWIND_INFO) |
| 3558 | |
| 3559 | |
| 3560 | #ifdef _TARGET_X86_ |
| 3561 | |
| 3562 | //----------------------------------------------------------------------- |
| 3563 | // Generates the inline portion of the code to enable preemptive GC. Hopefully, |
| 3564 | // the inline code is all that will execute most of the time. If this code |
| 3565 | // path is entered at certain times, however, it will need to jump out to |
| 3566 | // a separate out-of-line path which is more expensive. The "pForwardRef" |
| 3567 | // label indicates the start of the out-of-line path. |
| 3568 | // |
| 3569 | // Assumptions: |
| 3570 | // ebx = Thread |
| 3571 | // Preserves |
| 3572 | // all registers except ecx. |
| 3573 | // |
| 3574 | //----------------------------------------------------------------------- |
| 3575 | VOID StubLinkerCPU::EmitEnable(CodeLabel *pForwardRef) |
| 3576 | { |
| 3577 | CONTRACTL |
| 3578 | { |
| 3579 | STANDARD_VM_CHECK; |
| 3580 | |
| 3581 | PRECONDITION(4 == sizeof( ((Thread*)0)->m_State )); |
| 3582 | PRECONDITION(4 == sizeof( ((Thread*)0)->m_fPreemptiveGCDisabled )); |
| 3583 | } |
| 3584 | CONTRACTL_END; |
| 3585 | |
| 3586 | // move byte ptr [ebx + Thread.m_fPreemptiveGCDisabled],0 |
| 3587 | X86EmitOffsetModRM(0xc6, (X86Reg)0, kEBX, Thread::GetOffsetOfGCFlag()); |
| 3588 | Emit8(0); |
| 3589 | |
| 3590 | _ASSERTE(FitsInI1(Thread::TS_CatchAtSafePoint)); |
| 3591 | |
| 3592 | // test byte ptr [ebx + Thread.m_State], TS_CatchAtSafePoint |
| 3593 | X86EmitOffsetModRM(0xf6, (X86Reg)0, kEBX, Thread::GetOffsetOfState()); |
| 3594 | Emit8(Thread::TS_CatchAtSafePoint); |
| 3595 | |
| 3596 | // jnz RarePath |
| 3597 | X86EmitCondJump(pForwardRef, X86CondCode::kJNZ); |
| 3598 | |
| 3599 | #ifdef _DEBUG |
| 3600 | X86EmitDebugTrashReg(kECX); |
| 3601 | #endif |
| 3602 | |
| 3603 | } |
| 3604 | |
| 3605 | |
| 3606 | //----------------------------------------------------------------------- |
| 3607 | // Generates the out-of-line portion of the code to enable preemptive GC. |
| 3608 | // After the work is done, the code jumps back to the "pRejoinPoint" |
| 3609 | // which should be emitted right after the inline part is generated. |
| 3610 | // |
| 3611 | // Assumptions: |
| 3612 | // ebx = Thread |
| 3613 | // Preserves |
| 3614 | // all registers except ecx. |
| 3615 | // |
| 3616 | //----------------------------------------------------------------------- |
| 3617 | VOID StubLinkerCPU::EmitRareEnable(CodeLabel *pRejoinPoint) |
| 3618 | { |
| 3619 | STANDARD_VM_CONTRACT; |
| 3620 | |
| 3621 | X86EmitCall(NewExternalCodeLabel((LPVOID) StubRareEnable), 0); |
| 3622 | #ifdef _DEBUG |
| 3623 | X86EmitDebugTrashReg(kECX); |
| 3624 | #endif |
| 3625 | if (pRejoinPoint) |
| 3626 | { |
| 3627 | X86EmitNearJump(pRejoinPoint); |
| 3628 | } |
| 3629 | |
| 3630 | } |
| 3631 | |
| 3632 | |
| 3633 | //----------------------------------------------------------------------- |
| 3634 | // Generates the inline portion of the code to disable preemptive GC. Hopefully, |
| 3635 | // the inline code is all that will execute most of the time. If this code |
| 3636 | // path is entered at certain times, however, it will need to jump out to |
| 3637 | // a separate out-of-line path which is more expensive. The "pForwardRef" |
| 3638 | // label indicates the start of the out-of-line path. |
| 3639 | // |
| 3640 | // Assumptions: |
| 3641 | // ebx = Thread |
| 3642 | // Preserves |
| 3643 | // all registers except ecx. |
| 3644 | // |
| 3645 | //----------------------------------------------------------------------- |
| 3646 | VOID StubLinkerCPU::EmitDisable(CodeLabel *pForwardRef, BOOL fCallIn, X86Reg ThreadReg) |
| 3647 | { |
| 3648 | CONTRACTL |
| 3649 | { |
| 3650 | STANDARD_VM_CHECK; |
| 3651 | |
| 3652 | PRECONDITION(4 == sizeof( ((Thread*)0)->m_fPreemptiveGCDisabled )); |
| 3653 | PRECONDITION(4 == sizeof(g_TrapReturningThreads)); |
| 3654 | } |
| 3655 | CONTRACTL_END; |
| 3656 | |
| 3657 | #if defined(FEATURE_COMINTEROP) && defined(MDA_SUPPORTED) |
| 3658 | // If we are checking whether the current thread is already holds the loader lock, vector |
| 3659 | // such cases to the rare disable pathway, where we can check again. |
| 3660 | if (fCallIn && (NULL != MDA_GET_ASSISTANT(Reentrancy))) |
| 3661 | { |
| 3662 | CodeLabel *pNotReentrantLabel = NewCodeLabel(); |
| 3663 | |
| 3664 | // test byte ptr [ebx + Thread.m_fPreemptiveGCDisabled],1 |
| 3665 | X86EmitOffsetModRM(0xf6, (X86Reg)0, ThreadReg, Thread::GetOffsetOfGCFlag()); |
| 3666 | Emit8(1); |
| 3667 | |
| 3668 | // jz NotReentrant |
| 3669 | X86EmitCondJump(pNotReentrantLabel, X86CondCode::kJZ); |
| 3670 | |
| 3671 | X86EmitPushReg(kEAX); |
| 3672 | X86EmitPushReg(kEDX); |
| 3673 | X86EmitPushReg(kECX); |
| 3674 | |
| 3675 | X86EmitCall(NewExternalCodeLabel((LPVOID) HasIllegalReentrancy), 0); |
| 3676 | |
| 3677 | // If the probe fires, we go ahead and allow the call anyway. At this point, there could be |
| 3678 | // GC heap corruptions. So the probe detects the illegal case, but doesn't prevent it. |
| 3679 | |
| 3680 | X86EmitPopReg(kECX); |
| 3681 | X86EmitPopReg(kEDX); |
| 3682 | X86EmitPopReg(kEAX); |
| 3683 | |
| 3684 | EmitLabel(pNotReentrantLabel); |
| 3685 | } |
| 3686 | #endif |
| 3687 | |
| 3688 | // move byte ptr [ebx + Thread.m_fPreemptiveGCDisabled],1 |
| 3689 | X86EmitOffsetModRM(0xc6, (X86Reg)0, ThreadReg, Thread::GetOffsetOfGCFlag()); |
| 3690 | Emit8(1); |
| 3691 | |
| 3692 | // cmp dword ptr g_TrapReturningThreads, 0 |
| 3693 | Emit16(0x3d83); |
| 3694 | EmitPtr((void *)&g_TrapReturningThreads); |
| 3695 | Emit8(0); |
| 3696 | |
| 3697 | // jnz RarePath |
| 3698 | X86EmitCondJump(pForwardRef, X86CondCode::kJNZ); |
| 3699 | |
| 3700 | #if defined(FEATURE_COMINTEROP) && !defined(FEATURE_CORESYSTEM) |
| 3701 | // If we are checking whether the current thread holds the loader lock, vector |
| 3702 | // such cases to the rare disable pathway, where we can check again. |
| 3703 | if (fCallIn && ShouldCheckLoaderLock()) |
| 3704 | { |
| 3705 | X86EmitPushReg(kEAX); |
| 3706 | X86EmitPushReg(kEDX); |
| 3707 | |
| 3708 | if (ThreadReg == kECX) |
| 3709 | X86EmitPushReg(kECX); |
| 3710 | |
| 3711 | // BOOL AuxUlibIsDLLSynchronizationHeld(BOOL *IsHeld) |
| 3712 | // |
| 3713 | // So we need to be sure that both the return value and the passed BOOL are both TRUE. |
| 3714 | // If either is FALSE, then the call failed or the lock is not held. Either way, the |
| 3715 | // probe should not fire. |
| 3716 | |
| 3717 | X86EmitPushReg(kEDX); // BOOL temp |
| 3718 | Emit8(0x54); // push ESP because arg is &temp |
| 3719 | X86EmitCall(NewExternalCodeLabel((LPVOID) AuxUlibIsDLLSynchronizationHeld), 0); |
| 3720 | |
| 3721 | // callee has popped. |
| 3722 | X86EmitPopReg(kEDX); // recover temp |
| 3723 | |
| 3724 | CodeLabel *pPopLabel = NewCodeLabel(); |
| 3725 | |
| 3726 | Emit16(0xc085); // test eax, eax |
| 3727 | X86EmitCondJump(pPopLabel, X86CondCode::kJZ); |
| 3728 | |
| 3729 | Emit16(0xd285); // test edx, edx |
| 3730 | |
| 3731 | EmitLabel(pPopLabel); // retain the conditional flags across the pops |
| 3732 | |
| 3733 | if (ThreadReg == kECX) |
| 3734 | X86EmitPopReg(kECX); |
| 3735 | |
| 3736 | X86EmitPopReg(kEDX); |
| 3737 | X86EmitPopReg(kEAX); |
| 3738 | |
| 3739 | X86EmitCondJump(pForwardRef, X86CondCode::kJNZ); |
| 3740 | } |
| 3741 | #endif |
| 3742 | |
| 3743 | #ifdef _DEBUG |
| 3744 | if (ThreadReg != kECX) |
| 3745 | X86EmitDebugTrashReg(kECX); |
| 3746 | #endif |
| 3747 | |
| 3748 | } |
| 3749 | |
| 3750 | |
| 3751 | //----------------------------------------------------------------------- |
| 3752 | // Generates the out-of-line portion of the code to disable preemptive GC. |
| 3753 | // After the work is done, the code jumps back to the "pRejoinPoint" |
| 3754 | // which should be emitted right after the inline part is generated. However, |
| 3755 | // if we cannot execute managed code at this time, an exception is thrown |
| 3756 | // which cannot be caught by managed code. |
| 3757 | // |
| 3758 | // Assumptions: |
| 3759 | // ebx = Thread |
| 3760 | // Preserves |
| 3761 | // all registers except ecx, eax. |
| 3762 | // |
| 3763 | //----------------------------------------------------------------------- |
| 3764 | VOID StubLinkerCPU::EmitRareDisable(CodeLabel *pRejoinPoint) |
| 3765 | { |
| 3766 | STANDARD_VM_CONTRACT; |
| 3767 | |
| 3768 | X86EmitCall(NewExternalCodeLabel((LPVOID) StubRareDisableTHROW), 0); |
| 3769 | |
| 3770 | #ifdef _DEBUG |
| 3771 | X86EmitDebugTrashReg(kECX); |
| 3772 | #endif |
| 3773 | X86EmitNearJump(pRejoinPoint); |
| 3774 | } |
| 3775 | |
| 3776 | #ifdef FEATURE_COMINTEROP |
| 3777 | //----------------------------------------------------------------------- |
| 3778 | // Generates the out-of-line portion of the code to disable preemptive GC. |
| 3779 | // After the work is done, the code normally jumps back to the "pRejoinPoint" |
| 3780 | // which should be emitted right after the inline part is generated. However, |
| 3781 | // if we cannot execute managed code at this time, an HRESULT is returned |
| 3782 | // via the ExitPoint. |
| 3783 | // |
| 3784 | // Assumptions: |
| 3785 | // ebx = Thread |
| 3786 | // Preserves |
| 3787 | // all registers except ecx, eax. |
| 3788 | // |
| 3789 | //----------------------------------------------------------------------- |
| 3790 | VOID StubLinkerCPU::EmitRareDisableHRESULT(CodeLabel *pRejoinPoint, CodeLabel *pExitPoint) |
| 3791 | { |
| 3792 | STANDARD_VM_CONTRACT; |
| 3793 | |
| 3794 | X86EmitCall(NewExternalCodeLabel((LPVOID) StubRareDisableHR), 0); |
| 3795 | |
| 3796 | #ifdef _DEBUG |
| 3797 | X86EmitDebugTrashReg(kECX); |
| 3798 | #endif |
| 3799 | |
| 3800 | // test eax, eax ;; test the result of StubRareDisableHR |
| 3801 | Emit16(0xc085); |
| 3802 | |
| 3803 | // JZ pRejoinPoint |
| 3804 | X86EmitCondJump(pRejoinPoint, X86CondCode::kJZ); |
| 3805 | |
| 3806 | X86EmitNearJump(pExitPoint); |
| 3807 | } |
| 3808 | #endif // FEATURE_COMINTEROP |
| 3809 | |
| 3810 | #endif // _TARGET_X86_ |
| 3811 | |
| 3812 | #endif // CROSSGEN_COMPILE |
| 3813 | |
| 3814 | |
| 3815 | VOID StubLinkerCPU::EmitShuffleThunk(ShuffleEntry *pShuffleEntryArray) |
| 3816 | { |
| 3817 | STANDARD_VM_CONTRACT; |
| 3818 | |
| 3819 | #ifdef _TARGET_AMD64_ |
| 3820 | |
| 3821 | // mov SCRATCHREG,rsp |
| 3822 | X86_64BitOperands(); |
| 3823 | Emit8(0x8b); |
| 3824 | Emit8(0304 | (SCRATCH_REGISTER_X86REG << 3)); |
| 3825 | |
| 3826 | // save the real target in r11, will jump to it later. r10 is used below. |
| 3827 | // Windows: mov r11, rcx |
| 3828 | // Unix: mov r11, rdi |
| 3829 | X86EmitMovRegReg(kR11, THIS_kREG); |
| 3830 | |
| 3831 | #ifdef UNIX_AMD64_ABI |
| 3832 | for (ShuffleEntry* pEntry = pShuffleEntryArray; pEntry->srcofs != ShuffleEntry::SENTINEL; pEntry++) |
| 3833 | { |
| 3834 | if (pEntry->srcofs & ShuffleEntry::REGMASK) |
| 3835 | { |
| 3836 | // Source in a general purpose or float register, destination in the same kind of a register or on stack |
| 3837 | int srcRegIndex = pEntry->srcofs & ShuffleEntry::OFSREGMASK; |
| 3838 | |
| 3839 | if (pEntry->dstofs & ShuffleEntry::REGMASK) |
| 3840 | { |
| 3841 | // Source in register, destination in register |
| 3842 | |
| 3843 | // Both the srcofs and dstofs must be of the same kind of registers - float or general purpose. |
| 3844 | _ASSERTE((pEntry->dstofs & ShuffleEntry::FPREGMASK) == (pEntry->srcofs & ShuffleEntry::FPREGMASK)); |
| 3845 | int dstRegIndex = pEntry->dstofs & ShuffleEntry::OFSREGMASK; |
| 3846 | |
| 3847 | if (pEntry->srcofs & ShuffleEntry::FPREGMASK) |
| 3848 | { |
| 3849 | // movdqa dstReg, srcReg |
| 3850 | X64EmitMovXmmXmm((X86Reg)(kXMM0 + dstRegIndex), (X86Reg)(kXMM0 + srcRegIndex)); |
| 3851 | } |
| 3852 | else |
| 3853 | { |
| 3854 | // mov dstReg, srcReg |
| 3855 | X86EmitMovRegReg(c_argRegs[dstRegIndex], c_argRegs[srcRegIndex]); |
| 3856 | } |
| 3857 | } |
| 3858 | else |
| 3859 | { |
| 3860 | // Source in register, destination on stack |
| 3861 | int dstOffset = (pEntry->dstofs + 1) * sizeof(void*); |
| 3862 | |
| 3863 | if (pEntry->srcofs & ShuffleEntry::FPREGMASK) |
| 3864 | { |
| 3865 | if (pEntry->dstofs & ShuffleEntry::FPSINGLEMASK) |
| 3866 | { |
| 3867 | // movss [rax + dst], srcReg |
| 3868 | X64EmitMovSSToMem((X86Reg)(kXMM0 + srcRegIndex), SCRATCH_REGISTER_X86REG, dstOffset); |
| 3869 | } |
| 3870 | else |
| 3871 | { |
| 3872 | // movsd [rax + dst], srcReg |
| 3873 | X64EmitMovSDToMem((X86Reg)(kXMM0 + srcRegIndex), SCRATCH_REGISTER_X86REG, dstOffset); |
| 3874 | } |
| 3875 | } |
| 3876 | else |
| 3877 | { |
| 3878 | // mov [rax + dst], srcReg |
| 3879 | X86EmitIndexRegStore (SCRATCH_REGISTER_X86REG, dstOffset, c_argRegs[srcRegIndex]); |
| 3880 | } |
| 3881 | } |
| 3882 | } |
| 3883 | else if (pEntry->dstofs & ShuffleEntry::REGMASK) |
| 3884 | { |
| 3885 | // Source on stack, destination in register |
| 3886 | _ASSERTE(!(pEntry->srcofs & ShuffleEntry::REGMASK)); |
| 3887 | |
| 3888 | int dstRegIndex = pEntry->dstofs & ShuffleEntry::OFSREGMASK; |
| 3889 | int srcOffset = (pEntry->srcofs + 1) * sizeof(void*); |
| 3890 | |
| 3891 | if (pEntry->dstofs & ShuffleEntry::FPREGMASK) |
| 3892 | { |
| 3893 | if (pEntry->dstofs & ShuffleEntry::FPSINGLEMASK) |
| 3894 | { |
| 3895 | // movss dstReg, [rax + src] |
| 3896 | X64EmitMovSSFromMem((X86Reg)(kXMM0 + dstRegIndex), SCRATCH_REGISTER_X86REG, srcOffset); |
| 3897 | } |
| 3898 | else |
| 3899 | { |
| 3900 | // movsd dstReg, [rax + src] |
| 3901 | X64EmitMovSDFromMem((X86Reg)(kXMM0 + dstRegIndex), SCRATCH_REGISTER_X86REG, srcOffset); |
| 3902 | } |
| 3903 | } |
| 3904 | else |
| 3905 | { |
| 3906 | // mov dstreg, [rax + src] |
| 3907 | X86EmitIndexRegLoad(c_argRegs[dstRegIndex], SCRATCH_REGISTER_X86REG, srcOffset); |
| 3908 | } |
| 3909 | } |
| 3910 | else |
| 3911 | { |
| 3912 | // Source on stack, destination on stack |
| 3913 | _ASSERTE(!(pEntry->srcofs & ShuffleEntry::REGMASK)); |
| 3914 | _ASSERTE(!(pEntry->dstofs & ShuffleEntry::REGMASK)); |
| 3915 | |
| 3916 | // mov r10, [rax + src] |
| 3917 | X86EmitIndexRegLoad (kR10, SCRATCH_REGISTER_X86REG, (pEntry->srcofs + 1) * sizeof(void*)); |
| 3918 | |
| 3919 | // mov [rax + dst], r10 |
| 3920 | X86EmitIndexRegStore (SCRATCH_REGISTER_X86REG, (pEntry->dstofs + 1) * sizeof(void*), kR10); |
| 3921 | } |
| 3922 | } |
| 3923 | #else // UNIX_AMD64_ABI |
| 3924 | UINT step = 1; |
| 3925 | |
| 3926 | if (pShuffleEntryArray->argtype == ELEMENT_TYPE_END) |
| 3927 | { |
| 3928 | // Special handling of open instance methods with return buffer. Move "this" |
| 3929 | // by two slots, and leave the "retbufptr" between the two slots intact. |
| 3930 | |
| 3931 | // mov rcx, r8 |
| 3932 | X86EmitMovRegReg(kRCX, kR8); |
| 3933 | |
| 3934 | // Skip this entry |
| 3935 | pShuffleEntryArray++; |
| 3936 | |
| 3937 | // Skip this entry and leave retbufptr intact |
| 3938 | step += 2; |
| 3939 | } |
| 3940 | |
| 3941 | // Now shuffle the args by one position: |
| 3942 | // steps 1-3 : reg args (rcx, rdx, r8) |
| 3943 | // step 4 : stack->reg arg (r9) |
| 3944 | // step >4 : stack args |
| 3945 | |
| 3946 | for(; |
| 3947 | pShuffleEntryArray->srcofs != ShuffleEntry::SENTINEL; |
| 3948 | step++, pShuffleEntryArray++) |
| 3949 | { |
| 3950 | switch (step) |
| 3951 | { |
| 3952 | case 1: |
| 3953 | case 2: |
| 3954 | case 3: |
| 3955 | switch (pShuffleEntryArray->argtype) |
| 3956 | { |
| 3957 | case ELEMENT_TYPE_R4: |
| 3958 | case ELEMENT_TYPE_R8: |
| 3959 | // mov xmm-1#, xmm# |
| 3960 | X64EmitMovXmmXmm((X86Reg)(step - 1), (X86Reg)(step)); |
| 3961 | break; |
| 3962 | default: |
| 3963 | // mov argRegs[step-1], argRegs[step] |
| 3964 | X86EmitMovRegReg(c_argRegs[step-1], c_argRegs[step]); |
| 3965 | break; |
| 3966 | } |
| 3967 | break; |
| 3968 | |
| 3969 | case 4: |
| 3970 | { |
| 3971 | switch (pShuffleEntryArray->argtype) |
| 3972 | { |
| 3973 | case ELEMENT_TYPE_R4: |
| 3974 | X64EmitMovSSFromMem(kXMM3, kRAX, 0x28); |
| 3975 | break; |
| 3976 | |
| 3977 | case ELEMENT_TYPE_R8: |
| 3978 | X64EmitMovSDFromMem(kXMM3, kRAX, 0x28); |
| 3979 | break; |
| 3980 | |
| 3981 | default: |
| 3982 | // mov r9, [rax + 28h] |
| 3983 | X86EmitIndexRegLoad (kR9, SCRATCH_REGISTER_X86REG, 5*sizeof(void*)); |
| 3984 | } |
| 3985 | break; |
| 3986 | } |
| 3987 | default: |
| 3988 | |
| 3989 | // mov r10, [rax + (step+1)*sizeof(void*)] |
| 3990 | X86EmitIndexRegLoad (kR10, SCRATCH_REGISTER_X86REG, (step+1)*sizeof(void*)); |
| 3991 | |
| 3992 | // mov [rax + step*sizeof(void*)], r10 |
| 3993 | X86EmitIndexRegStore (SCRATCH_REGISTER_X86REG, step*sizeof(void*), kR10); |
| 3994 | } |
| 3995 | } |
| 3996 | #endif // UNIX_AMD64_ABI |
| 3997 | |
| 3998 | // mov r10, [r11 + Delegate._methodptraux] |
| 3999 | X86EmitIndexRegLoad(kR10, kR11, DelegateObject::GetOffsetOfMethodPtrAux()); |
| 4000 | // add r11, DelegateObject::GetOffsetOfMethodPtrAux() - load the indirection cell into r11 |
| 4001 | X86EmitAddReg(kR11, DelegateObject::GetOffsetOfMethodPtrAux()); |
| 4002 | // Now jump to real target |
| 4003 | // jmp r10 |
| 4004 | X86EmitR2ROp(0xff, (X86Reg)4, kR10); |
| 4005 | |
| 4006 | #else // _TARGET_AMD64_ |
| 4007 | |
| 4008 | UINT espadjust = 0; |
| 4009 | BOOL haveMemMemMove = FALSE; |
| 4010 | |
| 4011 | ShuffleEntry *pWalk = NULL; |
| 4012 | for (pWalk = pShuffleEntryArray; pWalk->srcofs != ShuffleEntry::SENTINEL; pWalk++) |
| 4013 | { |
| 4014 | if (!(pWalk->dstofs & ShuffleEntry::REGMASK) && |
| 4015 | !(pWalk->srcofs & ShuffleEntry::REGMASK) && |
| 4016 | pWalk->srcofs != pWalk->dstofs) |
| 4017 | { |
| 4018 | haveMemMemMove = TRUE; |
| 4019 | espadjust = sizeof(void*); |
| 4020 | break; |
| 4021 | } |
| 4022 | } |
| 4023 | |
| 4024 | if (haveMemMemMove) |
| 4025 | { |
| 4026 | // push ecx |
| 4027 | X86EmitPushReg(THIS_kREG); |
| 4028 | } |
| 4029 | else |
| 4030 | { |
| 4031 | // mov eax, ecx |
| 4032 | Emit8(0x8b); |
| 4033 | Emit8(0300 | SCRATCH_REGISTER_X86REG << 3 | THIS_kREG); |
| 4034 | } |
| 4035 | |
| 4036 | UINT16 emptySpot = 0x4 | ShuffleEntry::REGMASK; |
| 4037 | |
| 4038 | while (true) |
| 4039 | { |
| 4040 | for (pWalk = pShuffleEntryArray; pWalk->srcofs != ShuffleEntry::SENTINEL; pWalk++) |
| 4041 | if (pWalk->dstofs == emptySpot) |
| 4042 | break; |
| 4043 | |
| 4044 | if (pWalk->srcofs == ShuffleEntry::SENTINEL) |
| 4045 | break; |
| 4046 | |
| 4047 | if ((pWalk->dstofs & ShuffleEntry::REGMASK)) |
| 4048 | { |
| 4049 | if (pWalk->srcofs & ShuffleEntry::REGMASK) |
| 4050 | { |
| 4051 | // mov <dstReg>,<srcReg> |
| 4052 | Emit8(0x8b); |
| 4053 | Emit8(static_cast<UINT8>(0300 | |
| 4054 | (GetX86ArgumentRegisterFromOffset( pWalk->dstofs & ShuffleEntry::OFSMASK ) << 3) | |
| 4055 | (GetX86ArgumentRegisterFromOffset( pWalk->srcofs & ShuffleEntry::OFSMASK )))); |
| 4056 | } |
| 4057 | else |
| 4058 | { |
| 4059 | X86EmitEspOffset(0x8b, GetX86ArgumentRegisterFromOffset( pWalk->dstofs & ShuffleEntry::OFSMASK ), pWalk->srcofs+espadjust); |
| 4060 | } |
| 4061 | } |
| 4062 | else |
| 4063 | { |
| 4064 | // if the destination is not a register, the source shouldn't be either. |
| 4065 | _ASSERTE(!(pWalk->srcofs & ShuffleEntry::REGMASK)); |
| 4066 | if (pWalk->srcofs != pWalk->dstofs) |
| 4067 | { |
| 4068 | X86EmitEspOffset(0x8b, kEAX, pWalk->srcofs+espadjust); |
| 4069 | X86EmitEspOffset(0x89, kEAX, pWalk->dstofs+espadjust); |
| 4070 | } |
| 4071 | } |
| 4072 | emptySpot = pWalk->srcofs; |
| 4073 | } |
| 4074 | |
| 4075 | // Capture the stacksizedelta while we're at the end of the list. |
| 4076 | _ASSERTE(pWalk->srcofs == ShuffleEntry::SENTINEL); |
| 4077 | |
| 4078 | if (haveMemMemMove) |
| 4079 | X86EmitPopReg(SCRATCH_REGISTER_X86REG); |
| 4080 | |
| 4081 | #ifdef UNIX_X86_ABI |
| 4082 | _ASSERTE(pWalk->stacksizedelta == 0); |
| 4083 | #endif |
| 4084 | |
| 4085 | if (pWalk->stacksizedelta) |
| 4086 | X86EmitAddEsp(pWalk->stacksizedelta); |
| 4087 | |
| 4088 | // Now jump to real target |
| 4089 | // JMP [SCRATCHREG] |
| 4090 | // we need to jump indirect so that for virtual delegates eax contains a pointer to the indirection cell |
| 4091 | X86EmitAddReg(SCRATCH_REGISTER_X86REG, DelegateObject::GetOffsetOfMethodPtrAux()); |
| 4092 | static const BYTE bjmpeax[] = { 0xff, 0x20 }; |
| 4093 | EmitBytes(bjmpeax, sizeof(bjmpeax)); |
| 4094 | |
| 4095 | #endif // _TARGET_AMD64_ |
| 4096 | } |
| 4097 | |
| 4098 | |
| 4099 | #if !defined(CROSSGEN_COMPILE) && !defined(FEATURE_STUBS_AS_IL) |
| 4100 | |
| 4101 | //=========================================================================== |
| 4102 | // Computes hash code for MulticastDelegate.Invoke() |
| 4103 | UINT_PTR StubLinkerCPU::HashMulticastInvoke(MetaSig* pSig) |
| 4104 | { |
| 4105 | CONTRACTL |
| 4106 | { |
| 4107 | THROWS; |
| 4108 | GC_TRIGGERS; |
| 4109 | } |
| 4110 | CONTRACTL_END; |
| 4111 | |
| 4112 | ArgIterator argit(pSig); |
| 4113 | |
| 4114 | UINT numStackBytes = argit.SizeOfArgStack(); |
| 4115 | |
| 4116 | if (numStackBytes > 0x7FFF) |
| 4117 | COMPlusThrow(kNotSupportedException, W("NotSupported_TooManyArgs" )); |
| 4118 | |
| 4119 | #ifdef _TARGET_AMD64_ |
| 4120 | // Generate a hash key as follows: |
| 4121 | // UINT Arg0Type:2; // R4 (1), R8 (2), other (3) |
| 4122 | // UINT Arg1Type:2; // R4 (1), R8 (2), other (3) |
| 4123 | // UINT Arg2Type:2; // R4 (1), R8 (2), other (3) |
| 4124 | // UINT Arg3Type:2; // R4 (1), R8 (2), other (3) |
| 4125 | // UINT NumArgs:24; // number of arguments |
| 4126 | // (This should cover all the prestub variations) |
| 4127 | |
| 4128 | _ASSERTE(!(numStackBytes & 7)); |
| 4129 | UINT hash = (numStackBytes / sizeof(void*)) << 8; |
| 4130 | |
| 4131 | UINT argNum = 0; |
| 4132 | |
| 4133 | // NextArg() doesn't take into account the "this" pointer. |
| 4134 | // That's why we have to special case it here. |
| 4135 | if (argit.HasThis()) |
| 4136 | { |
| 4137 | hash |= 3 << (2*argNum); |
| 4138 | argNum++; |
| 4139 | } |
| 4140 | |
| 4141 | if (argit.HasRetBuffArg()) |
| 4142 | { |
| 4143 | hash |= 3 << (2*argNum); |
| 4144 | argNum++; |
| 4145 | } |
| 4146 | |
| 4147 | for (; argNum < 4; argNum++) |
| 4148 | { |
| 4149 | switch (pSig->NextArgNormalized()) |
| 4150 | { |
| 4151 | case ELEMENT_TYPE_END: |
| 4152 | argNum = 4; |
| 4153 | break; |
| 4154 | case ELEMENT_TYPE_R4: |
| 4155 | hash |= 1 << (2*argNum); |
| 4156 | break; |
| 4157 | case ELEMENT_TYPE_R8: |
| 4158 | hash |= 2 << (2*argNum); |
| 4159 | break; |
| 4160 | default: |
| 4161 | hash |= 3 << (2*argNum); |
| 4162 | break; |
| 4163 | } |
| 4164 | } |
| 4165 | |
| 4166 | #else // _TARGET_AMD64_ |
| 4167 | |
| 4168 | // check if the function is returning a float, in which case the stub has to take |
| 4169 | // care of popping the floating point stack except for the last invocation |
| 4170 | |
| 4171 | _ASSERTE(!(numStackBytes & 3)); |
| 4172 | |
| 4173 | UINT hash = numStackBytes; |
| 4174 | |
| 4175 | if (CorTypeInfo::IsFloat(pSig->GetReturnType())) |
| 4176 | { |
| 4177 | hash |= 2; |
| 4178 | } |
| 4179 | #endif // _TARGET_AMD64_ |
| 4180 | |
| 4181 | return hash; |
| 4182 | } |
| 4183 | |
| 4184 | #ifdef _TARGET_X86_ |
| 4185 | //=========================================================================== |
| 4186 | // Emits code for MulticastDelegate.Invoke() |
| 4187 | VOID StubLinkerCPU::EmitDelegateInvoke() |
| 4188 | { |
| 4189 | STANDARD_VM_CONTRACT; |
| 4190 | |
| 4191 | CodeLabel *pNullLabel = NewCodeLabel(); |
| 4192 | |
| 4193 | // test THISREG, THISREG |
| 4194 | X86EmitR2ROp(0x85, THIS_kREG, THIS_kREG); |
| 4195 | |
| 4196 | // jz null |
| 4197 | X86EmitCondJump(pNullLabel, X86CondCode::kJZ); |
| 4198 | |
| 4199 | // mov SCRATCHREG, [THISREG + Delegate.FP] ; Save target stub in register |
| 4200 | X86EmitIndexRegLoad(SCRATCH_REGISTER_X86REG, THIS_kREG, DelegateObject::GetOffsetOfMethodPtr()); |
| 4201 | |
| 4202 | // mov THISREG, [THISREG + Delegate.OR] ; replace "this" pointer |
| 4203 | X86EmitIndexRegLoad(THIS_kREG, THIS_kREG, DelegateObject::GetOffsetOfTarget()); |
| 4204 | |
| 4205 | // jmp SCRATCHREG |
| 4206 | Emit16(0xe0ff | (SCRATCH_REGISTER_X86REG<<8)); |
| 4207 | |
| 4208 | // Do a null throw |
| 4209 | EmitLabel(pNullLabel); |
| 4210 | |
| 4211 | // mov ECX, CORINFO_NullReferenceException |
| 4212 | Emit8(0xb8+kECX); |
| 4213 | Emit32(CORINFO_NullReferenceException); |
| 4214 | |
| 4215 | X86EmitCall(NewExternalCodeLabel(GetEEFuncEntryPoint(JIT_InternalThrowFromHelper)), 0); |
| 4216 | |
| 4217 | X86EmitReturn(0); |
| 4218 | } |
| 4219 | #endif // _TARGET_X86_ |
| 4220 | |
| 4221 | VOID StubLinkerCPU::EmitMulticastInvoke(UINT_PTR hash) |
| 4222 | { |
| 4223 | STANDARD_VM_CONTRACT; |
| 4224 | |
| 4225 | int thisRegOffset = MulticastFrame::GetOffsetOfTransitionBlock() + |
| 4226 | TransitionBlock::GetOffsetOfArgumentRegisters() + offsetof(ArgumentRegisters, THIS_REG); |
| 4227 | |
| 4228 | // push the methoddesc on the stack |
| 4229 | // mov eax, [ecx + offsetof(_methodAuxPtr)] |
| 4230 | X86EmitIndexRegLoad(SCRATCH_REGISTER_X86REG, THIS_kREG, DelegateObject::GetOffsetOfMethodPtrAux()); |
| 4231 | |
| 4232 | // Push a MulticastFrame on the stack. |
| 4233 | EmitMethodStubProlog(MulticastFrame::GetMethodFrameVPtr(), MulticastFrame::GetOffsetOfTransitionBlock()); |
| 4234 | |
| 4235 | #ifdef _TARGET_X86_ |
| 4236 | // Frame is ready to be inspected by debugger for patch location |
| 4237 | EmitPatchLabel(); |
| 4238 | #else // _TARGET_AMD64_ |
| 4239 | |
| 4240 | // Save register arguments in their home locations. |
| 4241 | // Non-FP registers are already saved by EmitMethodStubProlog. |
| 4242 | // (Assumes Sig.NextArg() does not enum RetBuffArg or "this".) |
| 4243 | |
| 4244 | int argNum = 0; |
| 4245 | __int32 argOfs = MulticastFrame::GetOffsetOfTransitionBlock() + TransitionBlock::GetOffsetOfArgs(); |
| 4246 | CorElementType argTypes[4]; |
| 4247 | CorElementType argType; |
| 4248 | |
| 4249 | // 'this' |
| 4250 | argOfs += sizeof(void*); |
| 4251 | argTypes[argNum] = ELEMENT_TYPE_I8; |
| 4252 | argNum++; |
| 4253 | |
| 4254 | do |
| 4255 | { |
| 4256 | argType = ELEMENT_TYPE_END; |
| 4257 | |
| 4258 | switch ((hash >> (2 * argNum)) & 3) |
| 4259 | { |
| 4260 | case 0: |
| 4261 | argType = ELEMENT_TYPE_END; |
| 4262 | break; |
| 4263 | case 1: |
| 4264 | argType = ELEMENT_TYPE_R4; |
| 4265 | |
| 4266 | // movss dword ptr [rsp + argOfs], xmm? |
| 4267 | X64EmitMovSSToMem((X86Reg)argNum, kRSI, argOfs); |
| 4268 | break; |
| 4269 | case 2: |
| 4270 | argType = ELEMENT_TYPE_R8; |
| 4271 | |
| 4272 | // movsd qword ptr [rsp + argOfs], xmm? |
| 4273 | X64EmitMovSDToMem((X86Reg)argNum, kRSI, argOfs); |
| 4274 | break; |
| 4275 | default: |
| 4276 | argType = ELEMENT_TYPE_I; |
| 4277 | break; |
| 4278 | } |
| 4279 | |
| 4280 | argOfs += sizeof(void*); |
| 4281 | argTypes[argNum] = argType; |
| 4282 | argNum++; |
| 4283 | } |
| 4284 | while (argNum < 4 && ELEMENT_TYPE_END != argType); |
| 4285 | |
| 4286 | _ASSERTE(4 == argNum || ELEMENT_TYPE_END == argTypes[argNum-1]); |
| 4287 | |
| 4288 | #endif // _TARGET_AMD64_ |
| 4289 | |
| 4290 | // TODO: on AMD64, pick different regs for locals so don't need the pushes |
| 4291 | |
| 4292 | // push edi ;; Save EDI (want to use it as loop index) |
| 4293 | X86EmitPushReg(kEDI); |
| 4294 | |
| 4295 | // xor edi,edi ;; Loop counter: EDI=0,1,2... |
| 4296 | X86EmitZeroOutReg(kEDI); |
| 4297 | |
| 4298 | CodeLabel *pLoopLabel = NewCodeLabel(); |
| 4299 | CodeLabel *pEndLoopLabel = NewCodeLabel(); |
| 4300 | |
| 4301 | EmitLabel(pLoopLabel); |
| 4302 | |
| 4303 | // Entry: |
| 4304 | // EDI == iteration counter |
| 4305 | |
| 4306 | // mov ecx, [esi + this] ;; get delegate |
| 4307 | X86EmitIndexRegLoad(THIS_kREG, kESI, thisRegOffset); |
| 4308 | |
| 4309 | // cmp edi,[ecx]._invocationCount |
| 4310 | X86EmitOp(0x3b, kEDI, THIS_kREG, DelegateObject::GetOffsetOfInvocationCount()); |
| 4311 | |
| 4312 | // je ENDLOOP |
| 4313 | X86EmitCondJump(pEndLoopLabel, X86CondCode::kJZ); |
| 4314 | |
| 4315 | #ifdef _TARGET_AMD64_ |
| 4316 | |
| 4317 | INT32 numStackBytes = (INT32)((hash >> 8) * sizeof(void *)); |
| 4318 | |
| 4319 | INT32 stackUsed, numStackArgs, ofs; |
| 4320 | |
| 4321 | // Push any stack args, plus an extra location |
| 4322 | // for rsp alignment if needed |
| 4323 | |
| 4324 | numStackArgs = numStackBytes / sizeof(void*); |
| 4325 | |
| 4326 | // 1 push above, so stack is currently misaligned |
| 4327 | const unsigned STACK_ALIGN_ADJUST = 8; |
| 4328 | |
| 4329 | if (!numStackArgs) |
| 4330 | { |
| 4331 | // sub rsp, 28h ;; 4 reg arg home locs + rsp alignment |
| 4332 | stackUsed = 0x20 + STACK_ALIGN_ADJUST; |
| 4333 | X86EmitSubEsp(stackUsed); |
| 4334 | } |
| 4335 | else |
| 4336 | { |
| 4337 | stackUsed = numStackArgs * sizeof(void*); |
| 4338 | |
| 4339 | // If the stack is misaligned, then an odd number of arguments |
| 4340 | // will naturally align the stack. |
| 4341 | if ( ((numStackArgs & 1) == 0) |
| 4342 | != (STACK_ALIGN_ADJUST == 0)) |
| 4343 | { |
| 4344 | X86EmitPushReg(kRAX); |
| 4345 | stackUsed += sizeof(void*); |
| 4346 | } |
| 4347 | |
| 4348 | ofs = MulticastFrame::GetOffsetOfTransitionBlock() + |
| 4349 | TransitionBlock::GetOffsetOfArgs() + sizeof(ArgumentRegisters) + numStackBytes; |
| 4350 | |
| 4351 | while (numStackArgs--) |
| 4352 | { |
| 4353 | ofs -= sizeof(void*); |
| 4354 | |
| 4355 | // push [rsi + ofs] ;; Push stack args |
| 4356 | X86EmitIndexPush(kESI, ofs); |
| 4357 | } |
| 4358 | |
| 4359 | // sub rsp, 20h ;; Create 4 reg arg home locations |
| 4360 | X86EmitSubEsp(0x20); |
| 4361 | |
| 4362 | stackUsed += 0x20; |
| 4363 | } |
| 4364 | |
| 4365 | for( |
| 4366 | argNum = 0, argOfs = MulticastFrame::GetOffsetOfTransitionBlock() + TransitionBlock::GetOffsetOfArgs(); |
| 4367 | argNum < 4 && argTypes[argNum] != ELEMENT_TYPE_END; |
| 4368 | argNum++, argOfs += sizeof(void*) |
| 4369 | ) |
| 4370 | { |
| 4371 | switch (argTypes[argNum]) |
| 4372 | { |
| 4373 | case ELEMENT_TYPE_R4: |
| 4374 | // movss xmm?, dword ptr [rsi + argOfs] |
| 4375 | X64EmitMovSSFromMem((X86Reg)argNum, kRSI, argOfs); |
| 4376 | break; |
| 4377 | case ELEMENT_TYPE_R8: |
| 4378 | // movsd xmm?, qword ptr [rsi + argOfs] |
| 4379 | X64EmitMovSDFromMem((X86Reg)argNum, kRSI, argOfs); |
| 4380 | break; |
| 4381 | default: |
| 4382 | if (c_argRegs[argNum] != THIS_kREG) |
| 4383 | { |
| 4384 | // mov r*, [rsi + dstOfs] |
| 4385 | X86EmitIndexRegLoad(c_argRegs[argNum], kESI,argOfs); |
| 4386 | } |
| 4387 | break; |
| 4388 | } // switch |
| 4389 | } |
| 4390 | |
| 4391 | // mov SCRATCHREG, [rcx+Delegate._invocationList] ;;fetch invocation list |
| 4392 | X86EmitIndexRegLoad(SCRATCH_REGISTER_X86REG, THIS_kREG, DelegateObject::GetOffsetOfInvocationList()); |
| 4393 | |
| 4394 | // mov SCRATCHREG, [SCRATCHREG+m_Array+rdi*8] ;; index into invocation list |
| 4395 | X86EmitOp(0x8b, kEAX, SCRATCH_REGISTER_X86REG, static_cast<int>(PtrArray::GetDataOffset()), kEDI, sizeof(void*), k64BitOp); |
| 4396 | |
| 4397 | // mov THISREG, [SCRATCHREG+Delegate.object] ;;replace "this" pointer |
| 4398 | X86EmitIndexRegLoad(THIS_kREG, SCRATCH_REGISTER_X86REG, DelegateObject::GetOffsetOfTarget()); |
| 4399 | |
| 4400 | // call [SCRATCHREG+Delegate.target] ;; call current subscriber |
| 4401 | X86EmitOffsetModRM(0xff, (X86Reg)2, SCRATCH_REGISTER_X86REG, DelegateObject::GetOffsetOfMethodPtr()); |
| 4402 | |
| 4403 | // add rsp, stackUsed ;; Clean up stack |
| 4404 | X86EmitAddEsp(stackUsed); |
| 4405 | |
| 4406 | // inc edi |
| 4407 | Emit16(0xC7FF); |
| 4408 | |
| 4409 | #else // _TARGET_AMD64_ |
| 4410 | |
| 4411 | UINT16 numStackBytes = static_cast<UINT16>(hash & ~3); |
| 4412 | |
| 4413 | // ..repush & reenregister args.. |
| 4414 | INT32 ofs = numStackBytes + MulticastFrame::GetOffsetOfTransitionBlock() + TransitionBlock::GetOffsetOfArgs(); |
| 4415 | while (ofs != MulticastFrame::GetOffsetOfTransitionBlock() + TransitionBlock::GetOffsetOfArgs()) |
| 4416 | { |
| 4417 | ofs -= sizeof(void*); |
| 4418 | X86EmitIndexPush(kESI, ofs); |
| 4419 | } |
| 4420 | |
| 4421 | #define ARGUMENT_REGISTER(regname) if (k##regname != THIS_kREG) { X86EmitIndexRegLoad(k##regname, kESI, \ |
| 4422 | offsetof(ArgumentRegisters, regname) + MulticastFrame::GetOffsetOfTransitionBlock() + TransitionBlock::GetOffsetOfArgumentRegisters()); } |
| 4423 | |
| 4424 | ENUM_ARGUMENT_REGISTERS_BACKWARD(); |
| 4425 | |
| 4426 | #undef ARGUMENT_REGISTER |
| 4427 | |
| 4428 | // mov SCRATCHREG, [ecx+Delegate._invocationList] ;;fetch invocation list |
| 4429 | X86EmitIndexRegLoad(SCRATCH_REGISTER_X86REG, THIS_kREG, DelegateObject::GetOffsetOfInvocationList()); |
| 4430 | |
| 4431 | // mov SCRATCHREG, [SCRATCHREG+m_Array+edi*4] ;; index into invocation list |
| 4432 | X86EmitOp(0x8b, kEAX, SCRATCH_REGISTER_X86REG, PtrArray::GetDataOffset(), kEDI, sizeof(void*)); |
| 4433 | |
| 4434 | // mov THISREG, [SCRATCHREG+Delegate.object] ;;replace "this" pointer |
| 4435 | X86EmitIndexRegLoad(THIS_kREG, SCRATCH_REGISTER_X86REG, DelegateObject::GetOffsetOfTarget()); |
| 4436 | |
| 4437 | // call [SCRATCHREG+Delegate.target] ;; call current subscriber |
| 4438 | X86EmitOffsetModRM(0xff, (X86Reg)2, SCRATCH_REGISTER_X86REG, DelegateObject::GetOffsetOfMethodPtr()); |
| 4439 | INDEBUG(Emit8(0x90)); // Emit a nop after the call in debug so that |
| 4440 | // we know that this is a call that can directly call |
| 4441 | // managed code |
| 4442 | |
| 4443 | // inc edi |
| 4444 | Emit8(0x47); |
| 4445 | |
| 4446 | if (hash & 2) // CorTypeInfo::IsFloat(pSig->GetReturnType()) |
| 4447 | { |
| 4448 | // if the return value is a float/double check if we just did the last call - if not, |
| 4449 | // emit the pop of the float stack |
| 4450 | |
| 4451 | // mov SCRATCHREG, [esi + this] ;; get delegate |
| 4452 | X86EmitIndexRegLoad(SCRATCH_REGISTER_X86REG, kESI, thisRegOffset); |
| 4453 | |
| 4454 | // cmp edi,[SCRATCHREG]._invocationCount |
| 4455 | X86EmitOffsetModRM(0x3b, kEDI, SCRATCH_REGISTER_X86REG, DelegateObject::GetOffsetOfInvocationCount()); |
| 4456 | |
| 4457 | CodeLabel *pNoFloatStackPopLabel = NewCodeLabel(); |
| 4458 | |
| 4459 | // je NOFLOATSTACKPOP |
| 4460 | X86EmitCondJump(pNoFloatStackPopLabel, X86CondCode::kJZ); |
| 4461 | |
| 4462 | // fstp 0 |
| 4463 | Emit16(0xd8dd); |
| 4464 | |
| 4465 | // NoFloatStackPopLabel: |
| 4466 | EmitLabel(pNoFloatStackPopLabel); |
| 4467 | } |
| 4468 | |
| 4469 | #endif // _TARGET_AMD64_ |
| 4470 | |
| 4471 | // The debugger may need to stop here, so grab the offset of this code. |
| 4472 | EmitPatchLabel(); |
| 4473 | |
| 4474 | // jmp LOOP |
| 4475 | X86EmitNearJump(pLoopLabel); |
| 4476 | |
| 4477 | //ENDLOOP: |
| 4478 | EmitLabel(pEndLoopLabel); |
| 4479 | |
| 4480 | // pop edi ;; Restore edi |
| 4481 | X86EmitPopReg(kEDI); |
| 4482 | |
| 4483 | EmitCheckGSCookie(kESI, MulticastFrame::GetOffsetOfGSCookie()); |
| 4484 | |
| 4485 | // Epilog |
| 4486 | EmitMethodStubEpilog(numStackBytes, MulticastFrame::GetOffsetOfTransitionBlock()); |
| 4487 | } |
| 4488 | |
| 4489 | VOID StubLinkerCPU::EmitSecureDelegateInvoke(UINT_PTR hash) |
| 4490 | { |
| 4491 | STANDARD_VM_CONTRACT; |
| 4492 | |
| 4493 | int thisRegOffset = SecureDelegateFrame::GetOffsetOfTransitionBlock() + |
| 4494 | TransitionBlock::GetOffsetOfArgumentRegisters() + offsetof(ArgumentRegisters, THIS_REG); |
| 4495 | |
| 4496 | // push the methoddesc on the stack |
| 4497 | // mov eax, [ecx + offsetof(_invocationCount)] |
| 4498 | X86EmitIndexRegLoad(SCRATCH_REGISTER_X86REG, THIS_kREG, DelegateObject::GetOffsetOfInvocationCount()); |
| 4499 | |
| 4500 | // Push a SecureDelegateFrame on the stack. |
| 4501 | EmitMethodStubProlog(SecureDelegateFrame::GetMethodFrameVPtr(), SecureDelegateFrame::GetOffsetOfTransitionBlock()); |
| 4502 | |
| 4503 | #ifdef _TARGET_X86_ |
| 4504 | // Frame is ready to be inspected by debugger for patch location |
| 4505 | EmitPatchLabel(); |
| 4506 | #else // _TARGET_AMD64_ |
| 4507 | |
| 4508 | // Save register arguments in their home locations. |
| 4509 | // Non-FP registers are already saved by EmitMethodStubProlog. |
| 4510 | // (Assumes Sig.NextArg() does not enum RetBuffArg or "this".) |
| 4511 | |
| 4512 | int argNum = 0; |
| 4513 | __int32 argOfs = SecureDelegateFrame::GetOffsetOfTransitionBlock() + TransitionBlock::GetOffsetOfArgs(); |
| 4514 | CorElementType argTypes[4]; |
| 4515 | CorElementType argType; |
| 4516 | |
| 4517 | // 'this' |
| 4518 | argOfs += sizeof(void*); |
| 4519 | argTypes[argNum] = ELEMENT_TYPE_I8; |
| 4520 | argNum++; |
| 4521 | |
| 4522 | do |
| 4523 | { |
| 4524 | argType = ELEMENT_TYPE_END; |
| 4525 | |
| 4526 | switch ((hash >> (2 * argNum)) & 3) |
| 4527 | { |
| 4528 | case 0: |
| 4529 | argType = ELEMENT_TYPE_END; |
| 4530 | break; |
| 4531 | case 1: |
| 4532 | argType = ELEMENT_TYPE_R4; |
| 4533 | |
| 4534 | // movss dword ptr [rsp + argOfs], xmm? |
| 4535 | X64EmitMovSSToMem((X86Reg)argNum, kRSI, argOfs); |
| 4536 | break; |
| 4537 | case 2: |
| 4538 | argType = ELEMENT_TYPE_R8; |
| 4539 | |
| 4540 | // movsd qword ptr [rsp + argOfs], xmm? |
| 4541 | X64EmitMovSSToMem((X86Reg)argNum, kRSI, argOfs); |
| 4542 | break; |
| 4543 | default: |
| 4544 | argType = ELEMENT_TYPE_I; |
| 4545 | break; |
| 4546 | } |
| 4547 | |
| 4548 | argOfs += sizeof(void*); |
| 4549 | argTypes[argNum] = argType; |
| 4550 | argNum++; |
| 4551 | } |
| 4552 | while (argNum < 4 && ELEMENT_TYPE_END != argType); |
| 4553 | |
| 4554 | _ASSERTE(4 == argNum || ELEMENT_TYPE_END == argTypes[argNum-1]); |
| 4555 | |
| 4556 | #endif // _TARGET_AMD64_ |
| 4557 | |
| 4558 | // mov ecx, [esi + this] ;; get delegate |
| 4559 | X86EmitIndexRegLoad(THIS_kREG, kESI, thisRegOffset); |
| 4560 | |
| 4561 | #ifdef _TARGET_AMD64_ |
| 4562 | |
| 4563 | INT32 numStackBytes = (INT32)((hash >> 8) * sizeof(void *)); |
| 4564 | |
| 4565 | INT32 stackUsed, numStackArgs, ofs; |
| 4566 | |
| 4567 | // Push any stack args, plus an extra location |
| 4568 | // for rsp alignment if needed |
| 4569 | |
| 4570 | numStackArgs = numStackBytes / sizeof(void*); |
| 4571 | |
| 4572 | // 1 push above, so stack is currently misaligned |
| 4573 | const unsigned STACK_ALIGN_ADJUST = 0; |
| 4574 | |
| 4575 | if (!numStackArgs) |
| 4576 | { |
| 4577 | // sub rsp, 28h ;; 4 reg arg home locs + rsp alignment |
| 4578 | stackUsed = 0x20 + STACK_ALIGN_ADJUST; |
| 4579 | X86EmitSubEsp(stackUsed); |
| 4580 | } |
| 4581 | else |
| 4582 | { |
| 4583 | stackUsed = numStackArgs * sizeof(void*); |
| 4584 | |
| 4585 | // If the stack is misaligned, then an odd number of arguments |
| 4586 | // will naturally align the stack. |
| 4587 | if ( ((numStackArgs & 1) == 0) |
| 4588 | != (STACK_ALIGN_ADJUST == 0)) |
| 4589 | { |
| 4590 | X86EmitPushReg(kRAX); |
| 4591 | stackUsed += sizeof(void*); |
| 4592 | } |
| 4593 | |
| 4594 | ofs = SecureDelegateFrame::GetOffsetOfTransitionBlock() + |
| 4595 | TransitionBlock::GetOffsetOfArgs() + sizeof(ArgumentRegisters) + numStackBytes; |
| 4596 | |
| 4597 | while (numStackArgs--) |
| 4598 | { |
| 4599 | ofs -= sizeof(void*); |
| 4600 | |
| 4601 | // push [rsi + ofs] ;; Push stack args |
| 4602 | X86EmitIndexPush(kESI, ofs); |
| 4603 | } |
| 4604 | |
| 4605 | // sub rsp, 20h ;; Create 4 reg arg home locations |
| 4606 | X86EmitSubEsp(0x20); |
| 4607 | |
| 4608 | stackUsed += 0x20; |
| 4609 | } |
| 4610 | |
| 4611 | int thisArgNum = 0; |
| 4612 | |
| 4613 | for( |
| 4614 | argNum = 0, argOfs = SecureDelegateFrame::GetOffsetOfTransitionBlock() + TransitionBlock::GetOffsetOfArgs(); |
| 4615 | argNum < 4 && argTypes[argNum] != ELEMENT_TYPE_END; |
| 4616 | argNum++, argOfs += sizeof(void*) |
| 4617 | ) |
| 4618 | { |
| 4619 | switch (argTypes[argNum]) |
| 4620 | { |
| 4621 | case ELEMENT_TYPE_R4: |
| 4622 | // movss xmm?, dword ptr [rsi + argOfs] |
| 4623 | X64EmitMovSSFromMem((X86Reg)argNum, kRSI, argOfs); |
| 4624 | break; |
| 4625 | case ELEMENT_TYPE_R8: |
| 4626 | // movsd xmm?, qword ptr [rsi + argOfs] |
| 4627 | X64EmitMovSDFromMem((X86Reg)argNum, kRSI, argOfs); |
| 4628 | break; |
| 4629 | default: |
| 4630 | if (c_argRegs[argNum] != THIS_kREG) |
| 4631 | { |
| 4632 | // mov r*, [rsi + dstOfs] |
| 4633 | X86EmitIndexRegLoad(c_argRegs[argNum], kESI,argOfs); |
| 4634 | } |
| 4635 | break; |
| 4636 | } // switch |
| 4637 | } |
| 4638 | |
| 4639 | // mov SCRATCHREG, [rcx+Delegate._invocationList] ;;fetch the inner delegate |
| 4640 | X86EmitIndexRegLoad(SCRATCH_REGISTER_X86REG, THIS_kREG, DelegateObject::GetOffsetOfInvocationList()); |
| 4641 | |
| 4642 | // mov THISREG, [SCRATCHREG+Delegate.object] ;;replace "this" pointer |
| 4643 | X86EmitIndexRegLoad(c_argRegs[thisArgNum], SCRATCH_REGISTER_X86REG, DelegateObject::GetOffsetOfTarget()); |
| 4644 | |
| 4645 | // call [SCRATCHREG+Delegate.target] ;; call current subscriber |
| 4646 | X86EmitOffsetModRM(0xff, (X86Reg)2, SCRATCH_REGISTER_X86REG, DelegateObject::GetOffsetOfMethodPtr()); |
| 4647 | |
| 4648 | // add rsp, stackUsed ;; Clean up stack |
| 4649 | X86EmitAddEsp(stackUsed); |
| 4650 | |
| 4651 | #else // _TARGET_AMD64_ |
| 4652 | |
| 4653 | UINT16 numStackBytes = static_cast<UINT16>(hash & ~3); |
| 4654 | |
| 4655 | // ..repush & reenregister args.. |
| 4656 | INT32 ofs = numStackBytes + SecureDelegateFrame::GetOffsetOfTransitionBlock() + TransitionBlock::GetOffsetOfArgs(); |
| 4657 | while (ofs != SecureDelegateFrame::GetOffsetOfTransitionBlock() + TransitionBlock::GetOffsetOfArgs()) |
| 4658 | { |
| 4659 | ofs -= sizeof(void*); |
| 4660 | X86EmitIndexPush(kESI, ofs); |
| 4661 | } |
| 4662 | |
| 4663 | #define ARGUMENT_REGISTER(regname) if (k##regname != THIS_kREG) { X86EmitIndexRegLoad(k##regname, kESI, \ |
| 4664 | offsetof(ArgumentRegisters, regname) + SecureDelegateFrame::GetOffsetOfTransitionBlock() + TransitionBlock::GetOffsetOfArgumentRegisters()); } |
| 4665 | |
| 4666 | ENUM_ARGUMENT_REGISTERS_BACKWARD(); |
| 4667 | |
| 4668 | #undef ARGUMENT_REGISTER |
| 4669 | |
| 4670 | // mov SCRATCHREG, [ecx+Delegate._invocationList] ;;fetch the inner delegate |
| 4671 | X86EmitIndexRegLoad(SCRATCH_REGISTER_X86REG, THIS_kREG, DelegateObject::GetOffsetOfInvocationList()); |
| 4672 | |
| 4673 | // mov THISREG, [SCRATCHREG+Delegate.object] ;;replace "this" pointer |
| 4674 | X86EmitIndexRegLoad(THIS_kREG, SCRATCH_REGISTER_X86REG, DelegateObject::GetOffsetOfTarget()); |
| 4675 | |
| 4676 | // call [SCRATCHREG+Delegate.target] ;; call current subscriber |
| 4677 | X86EmitOffsetModRM(0xff, (X86Reg)2, SCRATCH_REGISTER_X86REG, DelegateObject::GetOffsetOfMethodPtr()); |
| 4678 | INDEBUG(Emit8(0x90)); // Emit a nop after the call in debug so that |
| 4679 | // we know that this is a call that can directly call |
| 4680 | // managed code |
| 4681 | |
| 4682 | #endif // _TARGET_AMD64_ |
| 4683 | |
| 4684 | // The debugger may need to stop here, so grab the offset of this code. |
| 4685 | EmitPatchLabel(); |
| 4686 | |
| 4687 | EmitCheckGSCookie(kESI, SecureDelegateFrame::GetOffsetOfGSCookie()); |
| 4688 | |
| 4689 | // Epilog |
| 4690 | EmitMethodStubEpilog(numStackBytes, SecureDelegateFrame::GetOffsetOfTransitionBlock()); |
| 4691 | } |
| 4692 | #endif // !CROSSGEN_COMPILE && !FEATURE_STUBS_AS_IL |
| 4693 | |
| 4694 | #if !defined(CROSSGEN_COMPILE) && !defined(FEATURE_ARRAYSTUB_AS_IL) |
| 4695 | |
| 4696 | // Little helper to generate code to move nbytes bytes of non Ref memory |
| 4697 | |
| 4698 | void generate_noref_copy (unsigned nbytes, StubLinkerCPU* sl) |
| 4699 | { |
| 4700 | CONTRACTL |
| 4701 | { |
| 4702 | THROWS; |
| 4703 | GC_NOTRIGGER; |
| 4704 | INJECT_FAULT(COMPlusThrowOM();); |
| 4705 | } |
| 4706 | CONTRACTL_END; |
| 4707 | |
| 4708 | // If the size is pointer-aligned, we'll use movsd |
| 4709 | if (IS_ALIGNED(nbytes, sizeof(void*))) |
| 4710 | { |
| 4711 | // If there are less than 4 pointers to copy, "unroll" the "rep movsd" |
| 4712 | if (nbytes <= 3*sizeof(void*)) |
| 4713 | { |
| 4714 | while (nbytes > 0) |
| 4715 | { |
| 4716 | // movsd |
| 4717 | sl->X86_64BitOperands(); |
| 4718 | sl->Emit8(0xa5); |
| 4719 | |
| 4720 | nbytes -= sizeof(void*); |
| 4721 | } |
| 4722 | } |
| 4723 | else |
| 4724 | { |
| 4725 | // mov ECX, size / 4 |
| 4726 | sl->Emit8(0xb8+kECX); |
| 4727 | sl->Emit32(nbytes / sizeof(void*)); |
| 4728 | |
| 4729 | // repe movsd |
| 4730 | sl->Emit8(0xf3); |
| 4731 | sl->X86_64BitOperands(); |
| 4732 | sl->Emit8(0xa5); |
| 4733 | } |
| 4734 | } |
| 4735 | else |
| 4736 | { |
| 4737 | // mov ECX, size |
| 4738 | sl->Emit8(0xb8+kECX); |
| 4739 | sl->Emit32(nbytes); |
| 4740 | |
| 4741 | // repe movsb |
| 4742 | sl->Emit16(0xa4f3); |
| 4743 | } |
| 4744 | } |
| 4745 | |
| 4746 | |
| 4747 | X86Reg LoadArrayOpArg ( |
| 4748 | UINT32 idxloc, |
| 4749 | StubLinkerCPU *psl, |
| 4750 | X86Reg kRegIfFromMem, |
| 4751 | UINT ofsadjust |
| 4752 | AMD64_ARG(StubLinkerCPU::X86OperandSize OperandSize = StubLinkerCPU::k64BitOp) |
| 4753 | ) |
| 4754 | { |
| 4755 | STANDARD_VM_CONTRACT; |
| 4756 | |
| 4757 | if (!TransitionBlock::IsStackArgumentOffset(idxloc)) |
| 4758 | return GetX86ArgumentRegisterFromOffset(idxloc - TransitionBlock::GetOffsetOfArgumentRegisters()); |
| 4759 | |
| 4760 | psl->X86EmitEspOffset(0x8b, kRegIfFromMem, idxloc + ofsadjust AMD64_ARG(OperandSize)); |
| 4761 | return kRegIfFromMem; |
| 4762 | } |
| 4763 | |
| 4764 | VOID StubLinkerCPU::EmitArrayOpStubThrow(unsigned exConst, unsigned cbRetArg) |
| 4765 | { |
| 4766 | STANDARD_VM_CONTRACT; |
| 4767 | |
| 4768 | //ArrayOpStub*Exception |
| 4769 | X86EmitPopReg(kESI); |
| 4770 | X86EmitPopReg(kEDI); |
| 4771 | |
| 4772 | //mov CORINFO_NullReferenceException_ASM, %ecx |
| 4773 | Emit8(0xb8 | kECX); |
| 4774 | Emit32(exConst); |
| 4775 | //InternalExceptionWorker |
| 4776 | |
| 4777 | X86EmitPopReg(kEDX); |
| 4778 | // add pArrayOpScript->m_cbretpop, %esp (was add %eax, %esp) |
| 4779 | Emit8(0x81); |
| 4780 | Emit8(0xc0 | 0x4); |
| 4781 | Emit32(cbRetArg); |
| 4782 | X86EmitPushReg(kEDX); |
| 4783 | X86EmitNearJump(NewExternalCodeLabel((PVOID)JIT_InternalThrow)); |
| 4784 | } |
| 4785 | |
| 4786 | //=========================================================================== |
| 4787 | // Emits code to do an array operation. |
| 4788 | #ifdef _PREFAST_ |
| 4789 | #pragma warning(push) |
| 4790 | #pragma warning(disable:21000) // Suppress PREFast warning about overly large function |
| 4791 | #endif |
| 4792 | VOID StubLinkerCPU::EmitArrayOpStub(const ArrayOpScript* pArrayOpScript) |
| 4793 | { |
| 4794 | STANDARD_VM_CONTRACT; |
| 4795 | |
| 4796 | // This is the offset to the parameters/what's already pushed on the stack: |
| 4797 | // return address. |
| 4798 | const INT locsize = sizeof(void*); |
| 4799 | |
| 4800 | // ArrayOpScript's stack offsets are built using ArgIterator, which |
| 4801 | // assumes a TransitionBlock has been pushed, which is not the case |
| 4802 | // here. rsp + ofsadjust should point at the first argument. Any further |
| 4803 | // stack modifications below need to adjust ofsadjust appropriately. |
| 4804 | // baseofsadjust needs to be the stack adjustment at the entry point - |
| 4805 | // this is used further below to compute how much stack space was used. |
| 4806 | |
| 4807 | INT ofsadjust = locsize - (INT)sizeof(TransitionBlock); |
| 4808 | |
| 4809 | // Register usage |
| 4810 | // |
| 4811 | // x86 AMD64 |
| 4812 | // Inputs: |
| 4813 | // managed array THIS_kREG (ecx) THIS_kREG (rcx) |
| 4814 | // index 0 edx rdx |
| 4815 | // index 1/value <stack> r8 |
| 4816 | // index 2/value <stack> r9 |
| 4817 | // expected element type for LOADADDR eax rax rdx |
| 4818 | // Working registers: |
| 4819 | // total (accumulates unscaled offset) edi r10 |
| 4820 | // factor (accumulates the slice factor) esi r11 |
| 4821 | X86Reg kArrayRefReg = THIS_kREG; |
| 4822 | #ifdef _TARGET_AMD64_ |
| 4823 | const X86Reg kArrayMTReg = kR10; |
| 4824 | const X86Reg kTotalReg = kR10; |
| 4825 | const X86Reg kFactorReg = kR11; |
| 4826 | #else |
| 4827 | const X86Reg kArrayMTReg = kESI; |
| 4828 | const X86Reg kTotalReg = kEDI; |
| 4829 | const X86Reg kFactorReg = kESI; |
| 4830 | #endif |
| 4831 | |
| 4832 | #ifdef _TARGET_AMD64_ |
| 4833 | // Simplifying assumption for fNeedPrologue. |
| 4834 | _ASSERTE(!pArrayOpScript->m_gcDesc || (pArrayOpScript->m_flags & ArrayOpScript::NEEDSWRITEBARRIER)); |
| 4835 | // Simplifying assumption for saving rsi and rdi. |
| 4836 | _ASSERTE(!(pArrayOpScript->m_flags & ArrayOpScript::HASRETVALBUFFER) || ArgIterator::IsArgPassedByRef(pArrayOpScript->m_elemsize)); |
| 4837 | |
| 4838 | // Cases where we need to make calls |
| 4839 | BOOL fNeedScratchArea = ( (pArrayOpScript->m_flags & (ArrayOpScript::NEEDSTYPECHECK | ArrayOpScript::NEEDSWRITEBARRIER)) |
| 4840 | && ( pArrayOpScript->m_op == ArrayOpScript::STORE |
| 4841 | || ( pArrayOpScript->m_op == ArrayOpScript::LOAD |
| 4842 | && (pArrayOpScript->m_flags & ArrayOpScript::HASRETVALBUFFER)))); |
| 4843 | |
| 4844 | // Cases where we need to copy large values |
| 4845 | BOOL fNeedRSIRDI = ( ArgIterator::IsArgPassedByRef(pArrayOpScript->m_elemsize) |
| 4846 | && ArrayOpScript::LOADADDR != pArrayOpScript->m_op); |
| 4847 | |
| 4848 | BOOL fNeedPrologue = ( fNeedScratchArea |
| 4849 | || fNeedRSIRDI); |
| 4850 | #endif |
| 4851 | |
| 4852 | X86Reg kValueReg; |
| 4853 | |
| 4854 | CodeLabel *Epilog = NewCodeLabel(); |
| 4855 | CodeLabel *Inner_nullexception = NewCodeLabel(); |
| 4856 | CodeLabel *Inner_rangeexception = NewCodeLabel(); |
| 4857 | CodeLabel *Inner_typeMismatchexception = NULL; |
| 4858 | |
| 4859 | // |
| 4860 | // Set up the stack frame. |
| 4861 | // |
| 4862 | // |
| 4863 | // x86: |
| 4864 | // value |
| 4865 | // <index n-1> |
| 4866 | // ... |
| 4867 | // <index 1> |
| 4868 | // return address |
| 4869 | // saved edi |
| 4870 | // esp -> saved esi |
| 4871 | // |
| 4872 | // |
| 4873 | // AMD64: |
| 4874 | // value, if rank > 2 |
| 4875 | // ... |
| 4876 | // + 0x48 more indices |
| 4877 | // + 0x40 r9 home |
| 4878 | // + 0x38 r8 home |
| 4879 | // + 0x30 rdx home |
| 4880 | // + 0x28 rcx home |
| 4881 | // + 0x20 return address |
| 4882 | // + 0x18 scratch area (callee's r9) |
| 4883 | // + 0x10 scratch area (callee's r8) |
| 4884 | // + 8 scratch area (callee's rdx) |
| 4885 | // rsp -> scratch area (callee's rcx) |
| 4886 | // |
| 4887 | // If the element type is a value class w/ object references, then rsi |
| 4888 | // and rdi will also be saved above the scratch area: |
| 4889 | // |
| 4890 | // ... |
| 4891 | // + 0x28 saved rsi |
| 4892 | // + 0x20 saved rdi |
| 4893 | // + 0x18 scratch area (callee's r9) |
| 4894 | // + 0x10 scratch area (callee's r8) |
| 4895 | // + 8 scratch area (callee's rdx) |
| 4896 | // rsp -> scratch area (callee's rcx) |
| 4897 | // |
| 4898 | // And if no call or movsb is necessary, then the scratch area sits |
| 4899 | // directly under the MethodDesc*. |
| 4900 | |
| 4901 | BOOL fSavedESI = FALSE; |
| 4902 | BOOL fSavedEDI = FALSE; |
| 4903 | |
| 4904 | #ifdef _TARGET_AMD64_ |
| 4905 | if (fNeedPrologue) |
| 4906 | { |
| 4907 | // Save argument registers if we'll be making a call before using |
| 4908 | // them. Note that in this case the element value will always be an |
| 4909 | // object type, and never be in an xmm register. |
| 4910 | |
| 4911 | if ( (pArrayOpScript->m_flags & ArrayOpScript::NEEDSTYPECHECK) |
| 4912 | && ArrayOpScript::STORE == pArrayOpScript->m_op) |
| 4913 | { |
| 4914 | // mov [rsp+0x08], rcx |
| 4915 | X86EmitEspOffset(0x89, kRCX, 0x08); |
| 4916 | X86EmitEspOffset(0x89, kRDX, 0x10); |
| 4917 | X86EmitEspOffset(0x89, kR8, 0x18); |
| 4918 | |
| 4919 | if (pArrayOpScript->m_rank >= 2) |
| 4920 | X86EmitEspOffset(0x89, kR9, 0x20); |
| 4921 | } |
| 4922 | |
| 4923 | if (fNeedRSIRDI) |
| 4924 | { |
| 4925 | X86EmitPushReg(kRSI); |
| 4926 | X86EmitPushReg(kRDI); |
| 4927 | |
| 4928 | fSavedESI = fSavedEDI = TRUE; |
| 4929 | |
| 4930 | ofsadjust += 0x10; |
| 4931 | } |
| 4932 | |
| 4933 | if (fNeedScratchArea) |
| 4934 | { |
| 4935 | // Callee scratch area (0x8 for aligned esp) |
| 4936 | X86EmitSubEsp(sizeof(ArgumentRegisters) + 0x8); |
| 4937 | ofsadjust += sizeof(ArgumentRegisters) + 0x8; |
| 4938 | } |
| 4939 | } |
| 4940 | #else |
| 4941 | // Preserve the callee-saved registers |
| 4942 | // NOTE: if you change the sequence of these pushes, you must also update: |
| 4943 | // ArrayOpStubNullException |
| 4944 | // ArrayOpStubRangeException |
| 4945 | // ArrayOpStubTypeMismatchException |
| 4946 | _ASSERTE( kTotalReg == kEDI); |
| 4947 | X86EmitPushReg(kTotalReg); |
| 4948 | _ASSERTE( kFactorReg == kESI); |
| 4949 | X86EmitPushReg(kFactorReg); |
| 4950 | |
| 4951 | fSavedESI = fSavedEDI = TRUE; |
| 4952 | |
| 4953 | ofsadjust += 2*sizeof(void*); |
| 4954 | #endif |
| 4955 | |
| 4956 | // Check for null. |
| 4957 | X86EmitR2ROp(0x85, kArrayRefReg, kArrayRefReg); // TEST ECX, ECX |
| 4958 | X86EmitCondJump(Inner_nullexception, X86CondCode::kJZ); // jz Inner_nullexception |
| 4959 | |
| 4960 | // Do Type Check if needed |
| 4961 | if (pArrayOpScript->m_flags & ArrayOpScript::NEEDSTYPECHECK) |
| 4962 | { |
| 4963 | if (pArrayOpScript->m_op == ArrayOpScript::STORE) |
| 4964 | { |
| 4965 | // Get the value to be stored. |
| 4966 | kValueReg = LoadArrayOpArg(pArrayOpScript->m_fValLoc, this, kEAX, ofsadjust); |
| 4967 | |
| 4968 | X86EmitR2ROp(0x85, kValueReg, kValueReg); // TEST kValueReg, kValueReg |
| 4969 | CodeLabel *CheckPassed = NewCodeLabel(); |
| 4970 | X86EmitCondJump(CheckPassed, X86CondCode::kJZ); // storing NULL is OK |
| 4971 | |
| 4972 | // mov EAX, element type ; possibly trashes kValueReg |
| 4973 | X86EmitOp(0x8b, kArrayMTReg, kArrayRefReg, 0 AMD64_ARG(k64BitOp)); // mov ESI/R10, [kArrayRefReg] |
| 4974 | |
| 4975 | X86EmitOp(0x8b, kEAX, kValueReg, 0 AMD64_ARG(k64BitOp)); // mov EAX, [kValueReg] ; possibly trashes kValueReg |
| 4976 | // cmp EAX, [ESI/R10+m_ElementType] |
| 4977 | |
| 4978 | X86EmitOp(0x3b, kEAX, kArrayMTReg, MethodTable::GetOffsetOfArrayElementTypeHandle() AMD64_ARG(k64BitOp)); |
| 4979 | X86EmitCondJump(CheckPassed, X86CondCode::kJZ); // Exact match is OK |
| 4980 | |
| 4981 | X86EmitRegLoad(kEAX, (UINT_PTR)g_pObjectClass); // mov EAX, g_pObjectMethodTable |
| 4982 | // cmp EAX, [ESI/R10+m_ElementType] |
| 4983 | |
| 4984 | X86EmitOp(0x3b, kEAX, kArrayMTReg, MethodTable::GetOffsetOfArrayElementTypeHandle() AMD64_ARG(k64BitOp)); |
| 4985 | X86EmitCondJump(CheckPassed, X86CondCode::kJZ); // Assigning to array of object is OK |
| 4986 | |
| 4987 | // Try to call the fast helper first ( ObjIsInstanceOfNoGC ). |
| 4988 | // If that fails we will fall back to calling the slow helper ( ArrayStoreCheck ) that erects a frame. |
| 4989 | // See also JitInterfaceX86::JIT_Stelem_Ref |
| 4990 | |
| 4991 | #ifdef _TARGET_AMD64_ |
| 4992 | // RCX contains pointer to object to check (Object*) |
| 4993 | // RDX contains array type handle |
| 4994 | |
| 4995 | // mov RCX, [rsp+offsetToObject] ; RCX = Object* |
| 4996 | X86EmitEspOffset(0x8b, kRCX, ofsadjust + pArrayOpScript->m_fValLoc); |
| 4997 | |
| 4998 | // get Array TypeHandle |
| 4999 | // mov RDX, [RSP+offsetOfTypeHandle] |
| 5000 | |
| 5001 | X86EmitEspOffset(0x8b, kRDX, ofsadjust |
| 5002 | + TransitionBlock::GetOffsetOfArgumentRegisters() |
| 5003 | + FIELD_OFFSET(ArgumentRegisters, THIS_REG)); |
| 5004 | |
| 5005 | // mov RDX, [kArrayMTReg+offsetof(MethodTable, m_ElementType)] |
| 5006 | X86EmitIndexRegLoad(kRDX, kArrayMTReg, MethodTable::GetOffsetOfArrayElementTypeHandle()); |
| 5007 | |
| 5008 | #else |
| 5009 | X86EmitPushReg(kEDX); // Save EDX |
| 5010 | X86EmitPushReg(kECX); // Pass array object |
| 5011 | |
| 5012 | X86EmitIndexPush(kArrayMTReg, MethodTable::GetOffsetOfArrayElementTypeHandle()); // push [kArrayMTReg + m_ElementType] ; Array element type handle |
| 5013 | |
| 5014 | // get address of value to store |
| 5015 | _ASSERTE(TransitionBlock::IsStackArgumentOffset(pArrayOpScript->m_fValLoc)); // on x86, value will never get a register |
| 5016 | X86EmitSPIndexPush(pArrayOpScript->m_fValLoc + ofsadjust + 3*sizeof(void*)); // push [ESP+offset] ; the object pointer |
| 5017 | |
| 5018 | #endif //_AMD64 |
| 5019 | |
| 5020 | |
| 5021 | // emit a call to the fast helper |
| 5022 | // One side effect of this is that we are going to generate a "jnz Epilog" and we DON'T need it |
| 5023 | // in the fast path, however there are no side effects in emitting |
| 5024 | // it in the fast path anyway. the reason for that is that it makes |
| 5025 | // the cleanup code much easier ( we have only 1 place to cleanup the stack and |
| 5026 | // restore it to the original state ) |
| 5027 | X86EmitCall(NewExternalCodeLabel((LPVOID)ObjIsInstanceOfNoGC), 0); |
| 5028 | X86EmitCmpRegImm32( kEAX, TypeHandle::CanCast); // CMP EAX, CanCast ; if ObjIsInstanceOfNoGC returns CanCast, we will go the fast path |
| 5029 | CodeLabel * Cleanup = NewCodeLabel(); |
| 5030 | X86EmitCondJump(Cleanup, X86CondCode::kJZ); |
| 5031 | |
| 5032 | #ifdef _TARGET_AMD64_ |
| 5033 | // get address of value to store |
| 5034 | // lea rcx, [rsp+offs] |
| 5035 | X86EmitEspOffset(0x8d, kRCX, ofsadjust + pArrayOpScript->m_fValLoc); |
| 5036 | |
| 5037 | // get address of 'this'/rcx |
| 5038 | // lea rdx, [rsp+offs] |
| 5039 | X86EmitEspOffset(0x8d, kRDX, ofsadjust |
| 5040 | + TransitionBlock::GetOffsetOfArgumentRegisters() |
| 5041 | + FIELD_OFFSET(ArgumentRegisters, THIS_REG)); |
| 5042 | |
| 5043 | #else |
| 5044 | // The stack is already setup correctly for the slow helper. |
| 5045 | _ASSERTE(TransitionBlock::IsStackArgumentOffset(pArrayOpScript->m_fValLoc)); // on x86, value will never get a register |
| 5046 | X86EmitEspOffset(0x8d, kECX, pArrayOpScript->m_fValLoc + ofsadjust + 2*sizeof(void*)); // lea ECX, [ESP+offset] |
| 5047 | |
| 5048 | // get address of 'this' |
| 5049 | X86EmitEspOffset(0x8d, kEDX, 0); // lea EDX, [ESP] ; (address of ECX) |
| 5050 | |
| 5051 | |
| 5052 | #endif |
| 5053 | AMD64_ONLY(_ASSERTE(fNeedScratchArea)); |
| 5054 | X86EmitCall(NewExternalCodeLabel((LPVOID)ArrayStoreCheck), 0); |
| 5055 | |
| 5056 | EmitLabel(Cleanup); |
| 5057 | #ifdef _TARGET_AMD64_ |
| 5058 | X86EmitEspOffset(0x8b, kRCX, 0x00 + ofsadjust + TransitionBlock::GetOffsetOfArgumentRegisters()); |
| 5059 | X86EmitEspOffset(0x8b, kRDX, 0x08 + ofsadjust + TransitionBlock::GetOffsetOfArgumentRegisters()); |
| 5060 | X86EmitEspOffset(0x8b, kR8, 0x10 + ofsadjust + TransitionBlock::GetOffsetOfArgumentRegisters()); |
| 5061 | |
| 5062 | if (pArrayOpScript->m_rank >= 2) |
| 5063 | X86EmitEspOffset(0x8b, kR9, 0x18 + ofsadjust + TransitionBlock::GetOffsetOfArgumentRegisters()); |
| 5064 | #else |
| 5065 | X86EmitPopReg(kECX); // restore regs |
| 5066 | X86EmitPopReg(kEDX); |
| 5067 | |
| 5068 | |
| 5069 | X86EmitR2ROp(0x3B, kEAX, kEAX); // CMP EAX, EAX |
| 5070 | X86EmitCondJump(Epilog, X86CondCode::kJNZ); // This branch never taken, but epilog walker uses it |
| 5071 | #endif |
| 5072 | |
| 5073 | EmitLabel(CheckPassed); |
| 5074 | } |
| 5075 | else |
| 5076 | { |
| 5077 | _ASSERTE(pArrayOpScript->m_op == ArrayOpScript::LOADADDR); |
| 5078 | |
| 5079 | // Load up the hidden type parameter into 'typeReg' |
| 5080 | X86Reg typeReg = LoadArrayOpArg(pArrayOpScript->m_typeParamOffs, this, kEAX, ofsadjust); |
| 5081 | |
| 5082 | // 'typeReg' holds the typeHandle for the ARRAY. This must be a ArrayTypeDesc*, so |
| 5083 | // mask off the low two bits to get the TypeDesc* |
| 5084 | X86EmitR2ROp(0x83, (X86Reg)4, typeReg); // AND typeReg, 0xFFFFFFFC |
| 5085 | Emit8(0xFC); |
| 5086 | |
| 5087 | // If 'typeReg' is NULL then we're executing the readonly ::Address and no type check is |
| 5088 | // needed. |
| 5089 | CodeLabel *Inner_passedTypeCheck = NewCodeLabel(); |
| 5090 | |
| 5091 | X86EmitCondJump(Inner_passedTypeCheck, X86CondCode::kJZ); |
| 5092 | |
| 5093 | // Get the parameter of the parameterize type |
| 5094 | // mov typeReg, [typeReg.m_Arg] |
| 5095 | X86EmitOp(0x8b, typeReg, typeReg, offsetof(ParamTypeDesc, m_Arg) AMD64_ARG(k64BitOp)); |
| 5096 | |
| 5097 | // Compare this against the element type of the array. |
| 5098 | // mov ESI/R10, [kArrayRefReg] |
| 5099 | X86EmitOp(0x8b, kArrayMTReg, kArrayRefReg, 0 AMD64_ARG(k64BitOp)); |
| 5100 | // cmp typeReg, [ESI/R10+m_ElementType]; |
| 5101 | X86EmitOp(0x3b, typeReg, kArrayMTReg, MethodTable::GetOffsetOfArrayElementTypeHandle() AMD64_ARG(k64BitOp)); |
| 5102 | |
| 5103 | // Throw error if not equal |
| 5104 | Inner_typeMismatchexception = NewCodeLabel(); |
| 5105 | X86EmitCondJump(Inner_typeMismatchexception, X86CondCode::kJNZ); |
| 5106 | EmitLabel(Inner_passedTypeCheck); |
| 5107 | } |
| 5108 | } |
| 5109 | |
| 5110 | CodeLabel* DoneCheckLabel = 0; |
| 5111 | if (pArrayOpScript->m_rank == 1 && pArrayOpScript->m_fHasLowerBounds) |
| 5112 | { |
| 5113 | DoneCheckLabel = NewCodeLabel(); |
| 5114 | CodeLabel* NotSZArrayLabel = NewCodeLabel(); |
| 5115 | |
| 5116 | // for rank1 arrays, we might actually have two different layouts depending on |
| 5117 | // if we are ELEMENT_TYPE_ARRAY or ELEMENT_TYPE_SZARRAY. |
| 5118 | |
| 5119 | // mov EAX, [ARRAY] // EAX holds the method table |
| 5120 | X86_64BitOperands(); |
| 5121 | X86EmitOp(0x8b, kEAX, kArrayRefReg); |
| 5122 | |
| 5123 | // test [EAX + m_dwFlags], enum_flag_Category_IfArrayThenSzArray |
| 5124 | X86_64BitOperands(); |
| 5125 | X86EmitOffsetModRM(0xf7, (X86Reg)0, kEAX, MethodTable::GetOffsetOfFlags()); |
| 5126 | Emit32(MethodTable::GetIfArrayThenSzArrayFlag()); |
| 5127 | |
| 5128 | // jz NotSZArrayLabel |
| 5129 | X86EmitCondJump(NotSZArrayLabel, X86CondCode::kJZ); |
| 5130 | |
| 5131 | //Load the passed-in index into the scratch register. |
| 5132 | const ArrayOpIndexSpec *pai = pArrayOpScript->GetArrayOpIndexSpecs(); |
| 5133 | X86Reg idxReg = LoadArrayOpArg(pai->m_idxloc, this, SCRATCH_REGISTER_X86REG, ofsadjust); |
| 5134 | |
| 5135 | // cmp idxReg, [kArrayRefReg + LENGTH] |
| 5136 | X86EmitOp(0x3b, idxReg, kArrayRefReg, ArrayBase::GetOffsetOfNumComponents()); |
| 5137 | |
| 5138 | // jae Inner_rangeexception |
| 5139 | X86EmitCondJump(Inner_rangeexception, X86CondCode::kJAE); |
| 5140 | |
| 5141 | // <TODO> if we cared efficiency of this, this move can be optimized</TODO> |
| 5142 | X86EmitR2ROp(0x8b, kTotalReg, idxReg AMD64_ARG(k32BitOp)); |
| 5143 | |
| 5144 | // sub ARRAY. 8 // 8 is accounts for the Lower bound and Dim count in the ARRAY |
| 5145 | X86EmitSubReg(kArrayRefReg, 8); // adjust this pointer so that indexing works out for SZARRAY |
| 5146 | |
| 5147 | X86EmitNearJump(DoneCheckLabel); |
| 5148 | EmitLabel(NotSZArrayLabel); |
| 5149 | } |
| 5150 | |
| 5151 | // For each index, range-check and mix into accumulated total. |
| 5152 | UINT idx = pArrayOpScript->m_rank; |
| 5153 | BOOL firstTime = TRUE; |
| 5154 | while (idx--) |
| 5155 | { |
| 5156 | const ArrayOpIndexSpec *pai = pArrayOpScript->GetArrayOpIndexSpecs() + idx; |
| 5157 | |
| 5158 | //Load the passed-in index into the scratch register. |
| 5159 | X86Reg srcreg = LoadArrayOpArg(pai->m_idxloc, this, SCRATCH_REGISTER_X86REG, ofsadjust AMD64_ARG(k32BitOp)); |
| 5160 | if (SCRATCH_REGISTER_X86REG != srcreg) |
| 5161 | X86EmitR2ROp(0x8b, SCRATCH_REGISTER_X86REG, srcreg AMD64_ARG(k32BitOp)); |
| 5162 | |
| 5163 | // sub SCRATCH, dword ptr [kArrayRefReg + LOWERBOUND] |
| 5164 | if (pArrayOpScript->m_fHasLowerBounds) |
| 5165 | { |
| 5166 | X86EmitOp(0x2b, SCRATCH_REGISTER_X86REG, kArrayRefReg, pai->m_lboundofs); |
| 5167 | } |
| 5168 | |
| 5169 | // cmp SCRATCH, dword ptr [kArrayRefReg + LENGTH] |
| 5170 | X86EmitOp(0x3b, SCRATCH_REGISTER_X86REG, kArrayRefReg, pai->m_lengthofs); |
| 5171 | |
| 5172 | // jae Inner_rangeexception |
| 5173 | X86EmitCondJump(Inner_rangeexception, X86CondCode::kJAE); |
| 5174 | |
| 5175 | |
| 5176 | // SCRATCH == idx - LOWERBOUND |
| 5177 | // |
| 5178 | // imul SCRATCH, FACTOR |
| 5179 | if (!firstTime) |
| 5180 | { |
| 5181 | //Can skip the first time since FACTOR==1 |
| 5182 | X86EmitR2ROp(0xaf0f, SCRATCH_REGISTER_X86REG, kFactorReg AMD64_ARG(k32BitOp)); |
| 5183 | } |
| 5184 | |
| 5185 | // TOTAL += SCRATCH |
| 5186 | if (firstTime) |
| 5187 | { |
| 5188 | // First time, we must zero-init TOTAL. Since |
| 5189 | // zero-initing and then adding is just equivalent to a |
| 5190 | // "mov", emit a "mov" |
| 5191 | // mov TOTAL, SCRATCH |
| 5192 | X86EmitR2ROp(0x8b, kTotalReg, SCRATCH_REGISTER_X86REG AMD64_ARG(k32BitOp)); |
| 5193 | } |
| 5194 | else |
| 5195 | { |
| 5196 | // add TOTAL, SCRATCH |
| 5197 | X86EmitR2ROp(0x03, kTotalReg, SCRATCH_REGISTER_X86REG AMD64_ARG(k32BitOp)); |
| 5198 | } |
| 5199 | |
| 5200 | // FACTOR *= [kArrayRefReg + LENGTH] |
| 5201 | if (idx != 0) |
| 5202 | { |
| 5203 | // No need to update FACTOR on the last iteration |
| 5204 | // since we won't use it again |
| 5205 | |
| 5206 | if (firstTime) |
| 5207 | { |
| 5208 | // must init FACTOR to 1 first: hence, |
| 5209 | // the "imul" becomes a "mov" |
| 5210 | // mov FACTOR, [kArrayRefReg + LENGTH] |
| 5211 | X86EmitOp(0x8b, kFactorReg, kArrayRefReg, pai->m_lengthofs); |
| 5212 | } |
| 5213 | else |
| 5214 | { |
| 5215 | // imul FACTOR, [kArrayRefReg + LENGTH] |
| 5216 | X86EmitOp(0xaf0f, kFactorReg, kArrayRefReg, pai->m_lengthofs); |
| 5217 | } |
| 5218 | } |
| 5219 | |
| 5220 | firstTime = FALSE; |
| 5221 | } |
| 5222 | |
| 5223 | if (DoneCheckLabel != 0) |
| 5224 | EmitLabel(DoneCheckLabel); |
| 5225 | |
| 5226 | // Pass these values to X86EmitArrayOp() to generate the element address. |
| 5227 | X86Reg elemBaseReg = kArrayRefReg; |
| 5228 | X86Reg elemScaledReg = kTotalReg; |
| 5229 | UINT32 elemSize = pArrayOpScript->m_elemsize; |
| 5230 | UINT32 elemOfs = pArrayOpScript->m_ofsoffirst; |
| 5231 | |
| 5232 | if (!(elemSize == 1 || elemSize == 2 || elemSize == 4 || elemSize == 8)) |
| 5233 | { |
| 5234 | switch (elemSize) |
| 5235 | { |
| 5236 | // No way to express this as a SIB byte. Fold the scale |
| 5237 | // into TOTAL. |
| 5238 | |
| 5239 | case 16: |
| 5240 | // shl TOTAL,4 |
| 5241 | X86EmitR2ROp(0xc1, (X86Reg)4, kTotalReg AMD64_ARG(k32BitOp)); |
| 5242 | Emit8(4); |
| 5243 | break; |
| 5244 | |
| 5245 | case 32: |
| 5246 | // shl TOTAL,5 |
| 5247 | X86EmitR2ROp(0xc1, (X86Reg)4, kTotalReg AMD64_ARG(k32BitOp)); |
| 5248 | Emit8(5); |
| 5249 | break; |
| 5250 | |
| 5251 | case 64: |
| 5252 | // shl TOTAL,6 |
| 5253 | X86EmitR2ROp(0xc1, (X86Reg)4, kTotalReg AMD64_ARG(k32BitOp)); |
| 5254 | Emit8(6); |
| 5255 | break; |
| 5256 | |
| 5257 | default: |
| 5258 | // imul TOTAL, elemScale |
| 5259 | X86EmitR2ROp(0x69, kTotalReg, kTotalReg AMD64_ARG(k32BitOp)); |
| 5260 | Emit32(elemSize); |
| 5261 | break; |
| 5262 | } |
| 5263 | elemSize = 1; |
| 5264 | } |
| 5265 | |
| 5266 | _ASSERTE(FitsInU1(elemSize)); |
| 5267 | BYTE elemScale = static_cast<BYTE>(elemSize); |
| 5268 | |
| 5269 | // Now, do the operation: |
| 5270 | |
| 5271 | switch (pArrayOpScript->m_op) |
| 5272 | { |
| 5273 | case ArrayOpScript::LOADADDR: |
| 5274 | // lea eax, ELEMADDR |
| 5275 | X86EmitOp(0x8d, kEAX, elemBaseReg, elemOfs, elemScaledReg, elemScale AMD64_ARG(k64BitOp)); |
| 5276 | break; |
| 5277 | |
| 5278 | case ArrayOpScript::LOAD: |
| 5279 | if (pArrayOpScript->m_flags & ArrayOpScript::HASRETVALBUFFER) |
| 5280 | { |
| 5281 | // Ensure that these registers have been saved! |
| 5282 | _ASSERTE(fSavedESI && fSavedEDI); |
| 5283 | |
| 5284 | //lea esi, ELEMADDR |
| 5285 | X86EmitOp(0x8d, kESI, elemBaseReg, elemOfs, elemScaledReg, elemScale AMD64_ARG(k64BitOp)); |
| 5286 | |
| 5287 | _ASSERTE(!TransitionBlock::IsStackArgumentOffset(pArrayOpScript->m_fRetBufLoc)); |
| 5288 | // mov edi, retbufptr |
| 5289 | X86EmitR2ROp(0x8b, kEDI, GetX86ArgumentRegisterFromOffset(pArrayOpScript->m_fRetBufLoc - TransitionBlock::GetOffsetOfArgumentRegisters())); |
| 5290 | |
| 5291 | COPY_VALUE_CLASS: |
| 5292 | { |
| 5293 | size_t size = pArrayOpScript->m_elemsize; |
| 5294 | size_t total = 0; |
| 5295 | if(pArrayOpScript->m_gcDesc) |
| 5296 | { |
| 5297 | CGCDescSeries* cur = pArrayOpScript->m_gcDesc->GetHighestSeries(); |
| 5298 | if ((cur->startoffset-elemOfs) > 0) |
| 5299 | generate_noref_copy ((unsigned) (cur->startoffset - elemOfs), this); |
| 5300 | total += cur->startoffset - elemOfs; |
| 5301 | |
| 5302 | SSIZE_T cnt = (SSIZE_T) pArrayOpScript->m_gcDesc->GetNumSeries(); |
| 5303 | // special array encoding |
| 5304 | _ASSERTE(cnt < 0); |
| 5305 | |
| 5306 | for (SSIZE_T __i = 0; __i > cnt; __i--) |
| 5307 | { |
| 5308 | HALF_SIZE_T skip = cur->val_serie[__i].skip; |
| 5309 | HALF_SIZE_T nptrs = cur->val_serie[__i].nptrs; |
| 5310 | total += nptrs*sizeof (DWORD*); |
| 5311 | do |
| 5312 | { |
| 5313 | AMD64_ONLY(_ASSERTE(fNeedScratchArea)); |
| 5314 | |
| 5315 | X86EmitCall(NewExternalCodeLabel((LPVOID) JIT_ByRefWriteBarrier), 0); |
| 5316 | } while (--nptrs); |
| 5317 | if (skip > 0) |
| 5318 | { |
| 5319 | //check if we are at the end of the series |
| 5320 | if (__i == (cnt + 1)) |
| 5321 | skip = skip - (HALF_SIZE_T)(cur->startoffset - elemOfs); |
| 5322 | if (skip > 0) |
| 5323 | generate_noref_copy (skip, this); |
| 5324 | } |
| 5325 | total += skip; |
| 5326 | } |
| 5327 | |
| 5328 | _ASSERTE (size == total); |
| 5329 | } |
| 5330 | else |
| 5331 | { |
| 5332 | // no ref anywhere, just copy the bytes. |
| 5333 | _ASSERTE (size); |
| 5334 | generate_noref_copy ((unsigned)size, this); |
| 5335 | } |
| 5336 | } |
| 5337 | } |
| 5338 | else |
| 5339 | { |
| 5340 | switch (pArrayOpScript->m_elemsize) |
| 5341 | { |
| 5342 | case 1: |
| 5343 | // mov[zs]x eax, byte ptr ELEMADDR |
| 5344 | X86EmitOp(pArrayOpScript->m_signed ? 0xbe0f : 0xb60f, kEAX, elemBaseReg, elemOfs, elemScaledReg, elemScale); |
| 5345 | break; |
| 5346 | |
| 5347 | case 2: |
| 5348 | // mov[zs]x eax, word ptr ELEMADDR |
| 5349 | X86EmitOp(pArrayOpScript->m_signed ? 0xbf0f : 0xb70f, kEAX, elemBaseReg, elemOfs, elemScaledReg, elemScale); |
| 5350 | break; |
| 5351 | |
| 5352 | case 4: |
| 5353 | if (pArrayOpScript->m_flags & ArrayOpScript::ISFPUTYPE) |
| 5354 | { |
| 5355 | #ifdef _TARGET_AMD64_ |
| 5356 | // movss xmm0, dword ptr ELEMADDR |
| 5357 | Emit8(0xf3); |
| 5358 | X86EmitOp(0x100f, (X86Reg)0, elemBaseReg, elemOfs, elemScaledReg, elemScale); |
| 5359 | #else // !_TARGET_AMD64_ |
| 5360 | // fld dword ptr ELEMADDR |
| 5361 | X86EmitOp(0xd9, (X86Reg)0, elemBaseReg, elemOfs, elemScaledReg, elemScale); |
| 5362 | #endif // !_TARGET_AMD64_ |
| 5363 | } |
| 5364 | else |
| 5365 | { |
| 5366 | // mov eax, ELEMADDR |
| 5367 | X86EmitOp(0x8b, kEAX, elemBaseReg, elemOfs, elemScaledReg, elemScale); |
| 5368 | } |
| 5369 | break; |
| 5370 | |
| 5371 | case 8: |
| 5372 | if (pArrayOpScript->m_flags & ArrayOpScript::ISFPUTYPE) |
| 5373 | { |
| 5374 | #ifdef _TARGET_AMD64_ |
| 5375 | // movsd xmm0, qword ptr ELEMADDR |
| 5376 | Emit8(0xf2); |
| 5377 | X86EmitOp(0x100f, (X86Reg)0, elemBaseReg, elemOfs, elemScaledReg, elemScale); |
| 5378 | #else // !_TARGET_AMD64_ |
| 5379 | // fld qword ptr ELEMADDR |
| 5380 | X86EmitOp(0xdd, (X86Reg)0, elemBaseReg, elemOfs, elemScaledReg, elemScale); |
| 5381 | #endif // !_TARGET_AMD64_ |
| 5382 | } |
| 5383 | else |
| 5384 | { |
| 5385 | // mov eax, ELEMADDR |
| 5386 | X86EmitOp(0x8b, kEAX, elemBaseReg, elemOfs, elemScaledReg, elemScale AMD64_ARG(k64BitOp)); |
| 5387 | #ifdef _TARGET_X86_ |
| 5388 | // mov edx, ELEMADDR + 4 |
| 5389 | X86EmitOp(0x8b, kEDX, elemBaseReg, elemOfs + 4, elemScaledReg, elemScale); |
| 5390 | #endif |
| 5391 | } |
| 5392 | break; |
| 5393 | |
| 5394 | default: |
| 5395 | _ASSERTE(0); |
| 5396 | } |
| 5397 | } |
| 5398 | |
| 5399 | break; |
| 5400 | |
| 5401 | case ArrayOpScript::STORE: |
| 5402 | |
| 5403 | switch (pArrayOpScript->m_elemsize) |
| 5404 | { |
| 5405 | case 1: |
| 5406 | // mov SCRATCH, [esp + valoffset] |
| 5407 | kValueReg = LoadArrayOpArg(pArrayOpScript->m_fValLoc, this, SCRATCH_REGISTER_X86REG, ofsadjust); |
| 5408 | // mov byte ptr ELEMADDR, SCRATCH.b |
| 5409 | X86EmitOp(0x88, kValueReg, elemBaseReg, elemOfs, elemScaledReg, elemScale); |
| 5410 | break; |
| 5411 | case 2: |
| 5412 | // mov SCRATCH, [esp + valoffset] |
| 5413 | kValueReg = LoadArrayOpArg(pArrayOpScript->m_fValLoc, this, SCRATCH_REGISTER_X86REG, ofsadjust); |
| 5414 | // mov word ptr ELEMADDR, SCRATCH.w |
| 5415 | Emit8(0x66); |
| 5416 | X86EmitOp(0x89, kValueReg, elemBaseReg, elemOfs, elemScaledReg, elemScale); |
| 5417 | break; |
| 5418 | case 4: |
| 5419 | #ifndef _TARGET_AMD64_ |
| 5420 | if (pArrayOpScript->m_flags & ArrayOpScript::NEEDSWRITEBARRIER) |
| 5421 | { |
| 5422 | // mov SCRATCH, [esp + valoffset] |
| 5423 | kValueReg = LoadArrayOpArg(pArrayOpScript->m_fValLoc, this, SCRATCH_REGISTER_X86REG, ofsadjust); |
| 5424 | |
| 5425 | _ASSERTE(SCRATCH_REGISTER_X86REG == kEAX); // value to store is already in EAX where we want it. |
| 5426 | // lea edx, ELEMADDR |
| 5427 | X86EmitOp(0x8d, kEDX, elemBaseReg, elemOfs, elemScaledReg, elemScale); |
| 5428 | |
| 5429 | // call JIT_Writeable_Thunks_Buf.WriteBarrierReg[0] (== EAX) |
| 5430 | X86EmitCall(NewExternalCodeLabel((LPVOID) &JIT_WriteBarrierEAX), 0); |
| 5431 | } |
| 5432 | else |
| 5433 | #else // _TARGET_AMD64_ |
| 5434 | if (pArrayOpScript->m_flags & ArrayOpScript::ISFPUTYPE) |
| 5435 | { |
| 5436 | if (!TransitionBlock::IsStackArgumentOffset(pArrayOpScript->m_fValLoc)) |
| 5437 | { |
| 5438 | kValueReg = (X86Reg)TransitionBlock::GetArgumentIndexFromOffset(pArrayOpScript->m_fValLoc); |
| 5439 | } |
| 5440 | else |
| 5441 | { |
| 5442 | kValueReg = (X86Reg)0; // xmm0 |
| 5443 | |
| 5444 | // movss xmm0, dword ptr [rsp+??] |
| 5445 | Emit8(0xf3); |
| 5446 | X86EmitOp(0x100f, kValueReg, (X86Reg)4 /*rsp*/, ofsadjust + pArrayOpScript->m_fValLoc); |
| 5447 | } |
| 5448 | |
| 5449 | // movss dword ptr ELEMADDR, xmm? |
| 5450 | Emit8(0xf3); |
| 5451 | X86EmitOp(0x110f, kValueReg, elemBaseReg, elemOfs, elemScaledReg, elemScale); |
| 5452 | } |
| 5453 | else |
| 5454 | #endif // _TARGET_AMD64_ |
| 5455 | { |
| 5456 | // mov SCRATCH, [esp + valoffset] |
| 5457 | kValueReg = LoadArrayOpArg(pArrayOpScript->m_fValLoc, this, SCRATCH_REGISTER_X86REG, ofsadjust AMD64_ARG(k32BitOp)); |
| 5458 | |
| 5459 | // mov ELEMADDR, SCRATCH |
| 5460 | X86EmitOp(0x89, kValueReg, elemBaseReg, elemOfs, elemScaledReg, elemScale); |
| 5461 | } |
| 5462 | break; |
| 5463 | |
| 5464 | case 8: |
| 5465 | |
| 5466 | if (!(pArrayOpScript->m_flags & ArrayOpScript::NEEDSWRITEBARRIER)) |
| 5467 | { |
| 5468 | #ifdef _TARGET_AMD64_ |
| 5469 | if (pArrayOpScript->m_flags & ArrayOpScript::ISFPUTYPE) |
| 5470 | { |
| 5471 | if (!TransitionBlock::IsStackArgumentOffset(pArrayOpScript->m_fValLoc)) |
| 5472 | { |
| 5473 | kValueReg = (X86Reg)TransitionBlock::GetArgumentIndexFromOffset(pArrayOpScript->m_fValLoc); |
| 5474 | } |
| 5475 | else |
| 5476 | { |
| 5477 | kValueReg = (X86Reg)0; // xmm0 |
| 5478 | |
| 5479 | // movsd xmm0, qword ptr [rsp+??] |
| 5480 | Emit8(0xf2); |
| 5481 | X86EmitOp(0x100f, kValueReg, (X86Reg)4 /*rsp*/, ofsadjust + pArrayOpScript->m_fValLoc); |
| 5482 | } |
| 5483 | |
| 5484 | // movsd qword ptr ELEMADDR, xmm? |
| 5485 | Emit8(0xf2); |
| 5486 | X86EmitOp(0x110f, kValueReg, elemBaseReg, elemOfs, elemScaledReg, elemScale); |
| 5487 | } |
| 5488 | else |
| 5489 | { |
| 5490 | // mov SCRATCH, [esp + valoffset] |
| 5491 | kValueReg = LoadArrayOpArg(pArrayOpScript->m_fValLoc, this, SCRATCH_REGISTER_X86REG, ofsadjust); |
| 5492 | |
| 5493 | // mov ELEMADDR, SCRATCH |
| 5494 | X86EmitOp(0x89, kValueReg, elemBaseReg, elemOfs, elemScaledReg, elemScale, k64BitOp); |
| 5495 | } |
| 5496 | #else // !_TARGET_AMD64_ |
| 5497 | _ASSERTE(TransitionBlock::IsStackArgumentOffset(pArrayOpScript->m_fValLoc)); // on x86, value will never get a register: so too lazy to implement that case |
| 5498 | // mov SCRATCH, [esp + valoffset] |
| 5499 | X86EmitEspOffset(0x8b, SCRATCH_REGISTER_X86REG, pArrayOpScript->m_fValLoc + ofsadjust); |
| 5500 | // mov ELEMADDR, SCRATCH |
| 5501 | X86EmitOp(0x89, SCRATCH_REGISTER_X86REG, elemBaseReg, elemOfs, elemScaledReg, elemScale); |
| 5502 | |
| 5503 | _ASSERTE(TransitionBlock::IsStackArgumentOffset(pArrayOpScript->m_fValLoc)); // on x86, value will never get a register: so too lazy to implement that case |
| 5504 | // mov SCRATCH, [esp + valoffset + 4] |
| 5505 | X86EmitEspOffset(0x8b, SCRATCH_REGISTER_X86REG, pArrayOpScript->m_fValLoc + ofsadjust + 4); |
| 5506 | // mov ELEMADDR+4, SCRATCH |
| 5507 | X86EmitOp(0x89, SCRATCH_REGISTER_X86REG, elemBaseReg, elemOfs+4, elemScaledReg, elemScale); |
| 5508 | #endif // !_TARGET_AMD64_ |
| 5509 | break; |
| 5510 | } |
| 5511 | #ifdef _TARGET_AMD64_ |
| 5512 | else |
| 5513 | { |
| 5514 | _ASSERTE(SCRATCH_REGISTER_X86REG == kEAX); // value to store is already in EAX where we want it. |
| 5515 | // lea rcx, ELEMADDR |
| 5516 | X86EmitOp(0x8d, kRCX, elemBaseReg, elemOfs, elemScaledReg, elemScale, k64BitOp); |
| 5517 | |
| 5518 | // mov rdx, [rsp + valoffset] |
| 5519 | kValueReg = LoadArrayOpArg(pArrayOpScript->m_fValLoc, this, kRDX, ofsadjust); |
| 5520 | _ASSERT(kRCX != kValueReg); |
| 5521 | if (kRDX != kValueReg) |
| 5522 | X86EmitR2ROp(0x8b, kRDX, kValueReg); |
| 5523 | |
| 5524 | _ASSERTE(fNeedScratchArea); |
| 5525 | X86EmitCall(NewExternalCodeLabel((PVOID)JIT_WriteBarrier), 0); |
| 5526 | break; |
| 5527 | } |
| 5528 | #endif // _TARGET_AMD64_ |
| 5529 | // FALL THROUGH (on x86) |
| 5530 | default: |
| 5531 | // Ensure that these registers have been saved! |
| 5532 | _ASSERTE(fSavedESI && fSavedEDI); |
| 5533 | |
| 5534 | #ifdef _TARGET_AMD64_ |
| 5535 | // mov rsi, [rsp + valoffset] |
| 5536 | kValueReg = LoadArrayOpArg(pArrayOpScript->m_fValLoc, this, kRSI, ofsadjust); |
| 5537 | if (kRSI != kValueReg) |
| 5538 | X86EmitR2ROp(0x8b, kRSI, kValueReg); |
| 5539 | #else // !_TARGET_AMD64_ |
| 5540 | _ASSERTE(TransitionBlock::IsStackArgumentOffset(pArrayOpScript->m_fValLoc)); |
| 5541 | // lea esi, [esp + valoffset] |
| 5542 | X86EmitEspOffset(0x8d, kESI, pArrayOpScript->m_fValLoc + ofsadjust); |
| 5543 | #endif // !_TARGET_AMD64_ |
| 5544 | |
| 5545 | // lea edi, ELEMADDR |
| 5546 | X86EmitOp(0x8d, kEDI, elemBaseReg, elemOfs, elemScaledReg, elemScale AMD64_ARG(k64BitOp)); |
| 5547 | goto COPY_VALUE_CLASS; |
| 5548 | } |
| 5549 | break; |
| 5550 | |
| 5551 | default: |
| 5552 | _ASSERTE(0); |
| 5553 | } |
| 5554 | |
| 5555 | EmitLabel(Epilog); |
| 5556 | |
| 5557 | #ifdef _TARGET_AMD64_ |
| 5558 | if (fNeedPrologue) |
| 5559 | { |
| 5560 | if (fNeedScratchArea) |
| 5561 | { |
| 5562 | // Throw away scratch area |
| 5563 | X86EmitAddEsp(sizeof(ArgumentRegisters) + 0x8); |
| 5564 | } |
| 5565 | |
| 5566 | if (fSavedEDI) |
| 5567 | X86EmitPopReg(kRDI); |
| 5568 | |
| 5569 | if (fSavedESI) |
| 5570 | X86EmitPopReg(kRSI); |
| 5571 | } |
| 5572 | |
| 5573 | X86EmitReturn(0); |
| 5574 | #else // !_TARGET_AMD64_ |
| 5575 | // Restore the callee-saved registers |
| 5576 | X86EmitPopReg(kFactorReg); |
| 5577 | X86EmitPopReg(kTotalReg); |
| 5578 | |
| 5579 | #ifndef UNIX_X86_ABI |
| 5580 | // ret N |
| 5581 | X86EmitReturn(pArrayOpScript->m_cbretpop); |
| 5582 | #else |
| 5583 | X86EmitReturn(0); |
| 5584 | #endif |
| 5585 | #endif // !_TARGET_AMD64_ |
| 5586 | |
| 5587 | // Exception points must clean up the stack for all those extra args. |
| 5588 | // kFactorReg and kTotalReg will be popped by the jump targets. |
| 5589 | |
| 5590 | void *pvExceptionThrowFn; |
| 5591 | |
| 5592 | #if defined(_TARGET_AMD64_) |
| 5593 | #define ARRAYOP_EXCEPTION_HELPERS(base) { (PVOID)base, (PVOID)base##_RSIRDI, (PVOID)base##_ScratchArea, (PVOID)base##_RSIRDI_ScratchArea } |
| 5594 | static void *rgNullExceptionHelpers[] = ARRAYOP_EXCEPTION_HELPERS(ArrayOpStubNullException); |
| 5595 | static void *rgRangeExceptionHelpers[] = ARRAYOP_EXCEPTION_HELPERS(ArrayOpStubRangeException); |
| 5596 | static void *rgTypeMismatchExceptionHelpers[] = ARRAYOP_EXCEPTION_HELPERS(ArrayOpStubTypeMismatchException); |
| 5597 | #undef ARRAYOP_EXCEPTION_HELPERS |
| 5598 | |
| 5599 | UINT iExceptionHelper = (fNeedRSIRDI ? 1 : 0) + (fNeedScratchArea ? 2 : 0); |
| 5600 | #endif // defined(_TARGET_AMD64_) |
| 5601 | |
| 5602 | EmitLabel(Inner_nullexception); |
| 5603 | |
| 5604 | #ifndef _TARGET_AMD64_ |
| 5605 | pvExceptionThrowFn = (LPVOID)ArrayOpStubNullException; |
| 5606 | |
| 5607 | Emit8(0xb8); // mov EAX, <stack cleanup> |
| 5608 | Emit32(pArrayOpScript->m_cbretpop); |
| 5609 | #else //_TARGET_AMD64_ |
| 5610 | pvExceptionThrowFn = rgNullExceptionHelpers[iExceptionHelper]; |
| 5611 | #endif //!_TARGET_AMD64_ |
| 5612 | X86EmitNearJump(NewExternalCodeLabel(pvExceptionThrowFn)); |
| 5613 | |
| 5614 | EmitLabel(Inner_rangeexception); |
| 5615 | #ifndef _TARGET_AMD64_ |
| 5616 | pvExceptionThrowFn = (LPVOID)ArrayOpStubRangeException; |
| 5617 | Emit8(0xb8); // mov EAX, <stack cleanup> |
| 5618 | Emit32(pArrayOpScript->m_cbretpop); |
| 5619 | #else //_TARGET_AMD64_ |
| 5620 | pvExceptionThrowFn = rgRangeExceptionHelpers[iExceptionHelper]; |
| 5621 | #endif //!_TARGET_AMD64_ |
| 5622 | X86EmitNearJump(NewExternalCodeLabel(pvExceptionThrowFn)); |
| 5623 | |
| 5624 | if (Inner_typeMismatchexception != NULL) |
| 5625 | { |
| 5626 | EmitLabel(Inner_typeMismatchexception); |
| 5627 | #ifndef _TARGET_AMD64_ |
| 5628 | pvExceptionThrowFn = (LPVOID)ArrayOpStubTypeMismatchException; |
| 5629 | Emit8(0xb8); // mov EAX, <stack cleanup> |
| 5630 | Emit32(pArrayOpScript->m_cbretpop); |
| 5631 | #else //_TARGET_AMD64_ |
| 5632 | pvExceptionThrowFn = rgTypeMismatchExceptionHelpers[iExceptionHelper]; |
| 5633 | #endif //!_TARGET_AMD64_ |
| 5634 | X86EmitNearJump(NewExternalCodeLabel(pvExceptionThrowFn)); |
| 5635 | } |
| 5636 | } |
| 5637 | #ifdef _PREFAST_ |
| 5638 | #pragma warning(pop) |
| 5639 | #endif |
| 5640 | |
| 5641 | #endif // !CROSSGEN_COMPILE && !FEATURE_ARRAYSTUB_AS_IL |
| 5642 | |
| 5643 | #if !defined(CROSSGEN_COMPILE) && !defined(FEATURE_STUBS_AS_IL) |
| 5644 | //=========================================================================== |
| 5645 | // Emits code to break into debugger |
| 5646 | VOID StubLinkerCPU::EmitDebugBreak() |
| 5647 | { |
| 5648 | STANDARD_VM_CONTRACT; |
| 5649 | |
| 5650 | // int3 |
| 5651 | Emit8(0xCC); |
| 5652 | } |
| 5653 | |
| 5654 | #if defined(FEATURE_COMINTEROP) && defined(_TARGET_X86_) |
| 5655 | |
| 5656 | #ifdef _MSC_VER |
| 5657 | #pragma warning(push) |
| 5658 | #pragma warning (disable : 4740) // There is inline asm code in this function, which disables |
| 5659 | // global optimizations. |
| 5660 | #pragma warning (disable : 4731) |
| 5661 | #endif // _MSC_VER |
| 5662 | Thread* __stdcall CreateThreadBlockReturnHr(ComMethodFrame *pFrame) |
| 5663 | { |
| 5664 | |
| 5665 | WRAPPER_NO_CONTRACT; |
| 5666 | |
| 5667 | Thread *pThread = NULL; |
| 5668 | |
| 5669 | HRESULT hr = S_OK; |
| 5670 | |
| 5671 | // This means that a thread is FIRST coming in from outside the EE. |
| 5672 | BEGIN_ENTRYPOINT_THROWS; |
| 5673 | pThread = SetupThreadNoThrow(&hr); |
| 5674 | END_ENTRYPOINT_THROWS; |
| 5675 | |
| 5676 | if (pThread == NULL) { |
| 5677 | // Unwind stack, and return hr |
| 5678 | // NOTE: assumes __stdcall |
| 5679 | // Note that this code does not handle the rare COM signatures that do not return HRESULT |
| 5680 | // compute the callee pop stack bytes |
| 5681 | UINT numArgStackBytes = pFrame->GetNumCallerStackBytes(); |
| 5682 | unsigned frameSize = sizeof(Frame) + sizeof(LPVOID); |
| 5683 | LPBYTE iEsp = ((LPBYTE)pFrame) + ComMethodFrame::GetOffsetOfCalleeSavedRegisters(); |
| 5684 | __asm |
| 5685 | { |
| 5686 | mov eax, hr |
| 5687 | mov edx, numArgStackBytes |
| 5688 | //***************************************** |
| 5689 | // reset the stack pointer |
| 5690 | // none of the locals above can be used in the asm below |
| 5691 | // if we wack the stack pointer |
| 5692 | mov esp, iEsp |
| 5693 | // pop callee saved registers |
| 5694 | pop edi |
| 5695 | pop esi |
| 5696 | pop ebx |
| 5697 | pop ebp |
| 5698 | pop ecx ; //return address |
| 5699 | // pop the callee cleanup stack args |
| 5700 | add esp, edx ;// callee cleanup of args |
| 5701 | jmp ecx; // jump to the address to continue execution |
| 5702 | |
| 5703 | // We will never get here. This "ret" is just so that code-disassembling |
| 5704 | // profilers know to stop disassembling any further |
| 5705 | ret |
| 5706 | } |
| 5707 | } |
| 5708 | |
| 5709 | return pThread; |
| 5710 | } |
| 5711 | #if defined(_MSC_VER) |
| 5712 | #pragma warning(pop) |
| 5713 | #endif |
| 5714 | |
| 5715 | #endif // FEATURE_COMINTEROP && _TARGET_X86_ |
| 5716 | |
| 5717 | #endif // !CROSSGEN_COMPILE && !FEATURE_STUBS_AS_IL |
| 5718 | |
| 5719 | #endif // !DACCESS_COMPILE |
| 5720 | |
| 5721 | |
| 5722 | #ifdef _TARGET_AMD64_ |
| 5723 | |
| 5724 | // |
| 5725 | // TailCallFrame Object Scanning |
| 5726 | // |
| 5727 | // This handles scanning/promotion of GC objects that were |
| 5728 | // protected by the TailCallHelper routine. Note that the objects |
| 5729 | // being protected is somewhat dynamic and is dependent upon the |
| 5730 | // the callee... |
| 5731 | // |
| 5732 | |
| 5733 | void TailCallFrame::GcScanRoots(promote_func *fn, ScanContext* sc) |
| 5734 | { |
| 5735 | WRAPPER_NO_CONTRACT; |
| 5736 | |
| 5737 | if (m_pGCLayout != NULL) |
| 5738 | { |
| 5739 | struct FrameOffsetDecoder { |
| 5740 | private: |
| 5741 | TADDR prevOffset; |
| 5742 | TADDR rangeEnd; |
| 5743 | BOOL maybeInterior; |
| 5744 | BOOL atEnd; |
| 5745 | PTR_SBYTE pbOffsets; |
| 5746 | |
| 5747 | DWORD ReadNumber() { |
| 5748 | signed char i; |
| 5749 | DWORD offset = 0; |
| 5750 | while ((i = *pbOffsets++) >= 0) |
| 5751 | { |
| 5752 | offset = (offset << 7) | i; |
| 5753 | } |
| 5754 | offset = (offset << 7) | (i & 0x7F); |
| 5755 | return offset; |
| 5756 | } |
| 5757 | |
| 5758 | public: |
| 5759 | FrameOffsetDecoder(PTR_GSCookie _base, TADDR offsets) |
| 5760 | : prevOffset(dac_cast<TADDR>(_base)), rangeEnd(~0LL), atEnd(FALSE), pbOffsets(dac_cast<PTR_SBYTE>(offsets)) { maybeInterior = FALSE;} |
| 5761 | |
| 5762 | bool MoveNext() { |
| 5763 | LIMITED_METHOD_CONTRACT; |
| 5764 | |
| 5765 | if (rangeEnd < prevOffset) |
| 5766 | { |
| 5767 | prevOffset -= sizeof(void*); |
| 5768 | return true; |
| 5769 | } |
| 5770 | if (atEnd) return false; |
| 5771 | DWORD offset = ReadNumber(); |
| 5772 | atEnd = (offset & 1); |
| 5773 | BOOL range = (offset & 2); |
| 5774 | maybeInterior = (offset & 0x80000000); |
| 5775 | |
| 5776 | offset &= 0x7FFFFFFC; |
| 5777 | |
| 5778 | #ifdef _WIN64 |
| 5779 | offset <<= 1; |
| 5780 | #endif |
| 5781 | offset += sizeof(void*); |
| 5782 | _ASSERTE(prevOffset > offset); |
| 5783 | prevOffset -= offset; |
| 5784 | |
| 5785 | if (range) |
| 5786 | { |
| 5787 | _ASSERTE(!atEnd); |
| 5788 | _ASSERTE(!maybeInterior); |
| 5789 | DWORD offsetEnd = ReadNumber(); |
| 5790 | atEnd = (offsetEnd & 1); |
| 5791 | offsetEnd = (offsetEnd & ~1) << 1; |
| 5792 | // range encoding starts with a range of 3 (2 is better to encode as |
| 5793 | // 2 offsets), so 0 == 2 (the last offset in the range) |
| 5794 | offsetEnd += sizeof(void*) * 2; |
| 5795 | rangeEnd = prevOffset - offsetEnd; |
| 5796 | } |
| 5797 | |
| 5798 | return true; |
| 5799 | } |
| 5800 | |
| 5801 | BOOL MaybeInterior() const { return maybeInterior; } |
| 5802 | |
| 5803 | PTR_PTR_Object Current() const { return PTR_PTR_Object(prevOffset); } |
| 5804 | |
| 5805 | } decoder(GetGSCookiePtr(), m_pGCLayout); |
| 5806 | |
| 5807 | while (decoder.MoveNext()) |
| 5808 | { |
| 5809 | PTR_PTR_Object ppRef = decoder.Current(); |
| 5810 | |
| 5811 | LOG((LF_GC, INFO3, "Tail Call Frame Promoting" FMT_ADDR "to" , |
| 5812 | DBG_ADDR(OBJECTREF_TO_UNCHECKED_OBJECTREF(*ppRef)) )); |
| 5813 | if (decoder.MaybeInterior()) |
| 5814 | PromoteCarefully(fn, ppRef, sc, GC_CALL_INTERIOR|CHECK_APP_DOMAIN); |
| 5815 | else |
| 5816 | (*fn)(ppRef, sc, 0); |
| 5817 | LOG((LF_GC, INFO3, FMT_ADDR "\n" , DBG_ADDR(OBJECTREF_TO_UNCHECKED_OBJECTREF(*ppRef)) )); |
| 5818 | } |
| 5819 | } |
| 5820 | } |
| 5821 | |
| 5822 | #ifndef DACCESS_COMPILE |
| 5823 | static void EncodeOneGCOffset(CPUSTUBLINKER *pSl, ULONG delta, BOOL maybeInterior, BOOL range, BOOL last) |
| 5824 | { |
| 5825 | CONTRACTL |
| 5826 | { |
| 5827 | THROWS; // From the stublinker |
| 5828 | MODE_ANY; |
| 5829 | GC_NOTRIGGER; |
| 5830 | } |
| 5831 | CONTRACTL_END; |
| 5832 | |
| 5833 | // Everything should be pointer aligned |
| 5834 | // but we use a high bit for interior, and the 0 bit to denote the end of the list |
| 5835 | // we use the 1 bit to denote a range |
| 5836 | _ASSERTE((delta % sizeof(void*)) == 0); |
| 5837 | |
| 5838 | #if defined(_WIN64) |
| 5839 | // For 64-bit, we have 3 bits of alignment, so we allow larger frames |
| 5840 | // by shifting and gaining a free high-bit. |
| 5841 | ULONG encodedDelta = delta >> 1; |
| 5842 | #else |
| 5843 | // For 32-bit, we just limit our frame size to <2GB. (I know, such a bummer!) |
| 5844 | ULONG encodedDelta = delta; |
| 5845 | #endif |
| 5846 | _ASSERTE((encodedDelta & 0x80000003) == 0); |
| 5847 | if (last) |
| 5848 | { |
| 5849 | encodedDelta |= 1; |
| 5850 | } |
| 5851 | |
| 5852 | if (range) |
| 5853 | { |
| 5854 | encodedDelta |= 2; |
| 5855 | } |
| 5856 | else if (maybeInterior) |
| 5857 | { |
| 5858 | _ASSERTE(!range); |
| 5859 | encodedDelta |= 0x80000000; |
| 5860 | } |
| 5861 | |
| 5862 | BYTE bytes[5]; |
| 5863 | UINT index = 5; |
| 5864 | bytes[--index] = (BYTE)((encodedDelta & 0x7F) | 0x80); |
| 5865 | encodedDelta >>= 7; |
| 5866 | while (encodedDelta > 0) |
| 5867 | { |
| 5868 | bytes[--index] = (BYTE)(encodedDelta & 0x7F); |
| 5869 | encodedDelta >>= 7; |
| 5870 | } |
| 5871 | pSl->EmitBytes(&bytes[index], 5 - index); |
| 5872 | } |
| 5873 | |
| 5874 | static void EncodeGCOffsets(CPUSTUBLINKER *pSl, /* const */ ULONGARRAY & gcOffsets) |
| 5875 | { |
| 5876 | CONTRACTL |
| 5877 | { |
| 5878 | THROWS; |
| 5879 | MODE_ANY; |
| 5880 | GC_NOTRIGGER; |
| 5881 | } |
| 5882 | CONTRACTL_END; |
| 5883 | |
| 5884 | _ASSERTE(gcOffsets.Count() > 0); |
| 5885 | |
| 5886 | ULONG prevOffset = 0; |
| 5887 | int i = 0; |
| 5888 | BOOL last = FALSE; |
| 5889 | do { |
| 5890 | ULONG offset = gcOffsets[i]; |
| 5891 | // Everything should be pointer aligned |
| 5892 | // but we use the 0-bit to mean maybeInterior, for byrefs. |
| 5893 | _ASSERTE(((offset % sizeof(void*)) == 0) || ((offset % sizeof(void*)) == 1)); |
| 5894 | BOOL maybeInterior = (offset & 1); |
| 5895 | offset &= ~1; |
| 5896 | |
| 5897 | // Encode just deltas because they're smaller (and the list should be sorted) |
| 5898 | _ASSERTE(offset >= (prevOffset + sizeof(void*))); |
| 5899 | ULONG delta = offset - (prevOffset + sizeof(void*)); |
| 5900 | if (!maybeInterior && gcOffsets.Count() > i + 2) |
| 5901 | { |
| 5902 | // Check for a potential range. |
| 5903 | // Only do it if we have 3 or more pointers in a row |
| 5904 | ULONG rangeOffset = offset; |
| 5905 | int j = i + 1; |
| 5906 | do { |
| 5907 | ULONG nextOffset = gcOffsets[j]; |
| 5908 | // interior pointers can't be in ranges |
| 5909 | if (nextOffset & 1) |
| 5910 | break; |
| 5911 | // ranges must be saturated |
| 5912 | if (nextOffset != (rangeOffset + sizeof(void*))) |
| 5913 | break; |
| 5914 | j++; |
| 5915 | rangeOffset = nextOffset; |
| 5916 | } while(j < gcOffsets.Count()); |
| 5917 | |
| 5918 | if (j > (i + 2)) |
| 5919 | { |
| 5920 | EncodeOneGCOffset(pSl, delta, FALSE, TRUE, last); |
| 5921 | i = j - 1; |
| 5922 | _ASSERTE(rangeOffset >= (offset + (sizeof(void*) * 2))); |
| 5923 | delta = rangeOffset - (offset + (sizeof(void*) * 2)); |
| 5924 | offset = rangeOffset; |
| 5925 | } |
| 5926 | } |
| 5927 | last = (++i == gcOffsets.Count()); |
| 5928 | |
| 5929 | |
| 5930 | EncodeOneGCOffset(pSl, delta, maybeInterior, FALSE, last); |
| 5931 | |
| 5932 | prevOffset = offset; |
| 5933 | } while (!last); |
| 5934 | } |
| 5935 | |
| 5936 | static void AppendGCLayout(ULONGARRAY &gcLayout, size_t baseOffset, BOOL fIsTypedRef, TypeHandle VMClsHnd) |
| 5937 | { |
| 5938 | STANDARD_VM_CONTRACT; |
| 5939 | |
| 5940 | _ASSERTE((baseOffset % 16) == 0); |
| 5941 | _ASSERTE(FitsInU4(baseOffset)); |
| 5942 | |
| 5943 | if (fIsTypedRef) |
| 5944 | { |
| 5945 | *gcLayout.AppendThrowing() = (ULONG)(baseOffset | 1); // "| 1" to mark it as an interior pointer |
| 5946 | } |
| 5947 | else if (!VMClsHnd.IsNativeValueType()) |
| 5948 | { |
| 5949 | MethodTable* pMT = VMClsHnd.GetMethodTable(); |
| 5950 | _ASSERTE(pMT); |
| 5951 | _ASSERTE(pMT->IsValueType()); |
| 5952 | |
| 5953 | BOOL isByRefLike = pMT->IsByRefLike(); |
| 5954 | if (isByRefLike) |
| 5955 | { |
| 5956 | FindByRefPointerOffsetsInByRefLikeObject( |
| 5957 | pMT, |
| 5958 | 0 /* baseOffset */, |
| 5959 | [&](size_t pointerOffset) |
| 5960 | { |
| 5961 | // 'gcLayout' requires stack offsets relative to the top of the stack to be recorded, such that subtracting |
| 5962 | // the offset from the stack top yields the address of the field, given that subtracting 'baseOffset' from |
| 5963 | // the stack top yields the address of the first field in this struct. See TailCallFrame::GcScanRoots() for |
| 5964 | // how these offsets are used to calculate stack addresses for fields. |
| 5965 | _ASSERTE(pointerOffset < baseOffset); |
| 5966 | size_t stackOffsetFromTop = baseOffset - pointerOffset; |
| 5967 | _ASSERTE(FitsInU4(stackOffsetFromTop)); |
| 5968 | |
| 5969 | // Offsets in 'gcLayout' are expected to be in increasing order |
| 5970 | int gcLayoutInsertIndex = gcLayout.Count(); |
| 5971 | _ASSERTE(gcLayoutInsertIndex >= 0); |
| 5972 | for (; gcLayoutInsertIndex != 0; --gcLayoutInsertIndex) |
| 5973 | { |
| 5974 | ULONG prevStackOffsetFromTop = gcLayout[gcLayoutInsertIndex - 1] & ~(ULONG)1; |
| 5975 | if (stackOffsetFromTop > prevStackOffsetFromTop) |
| 5976 | { |
| 5977 | break; |
| 5978 | } |
| 5979 | if (stackOffsetFromTop == prevStackOffsetFromTop) |
| 5980 | { |
| 5981 | return; |
| 5982 | } |
| 5983 | } |
| 5984 | |
| 5985 | _ASSERTE(gcLayout.Count() == 0 || stackOffsetFromTop > (gcLayout[gcLayout.Count() - 1] & ~(ULONG)1)); |
| 5986 | *gcLayout.InsertThrowing(gcLayoutInsertIndex) = (ULONG)(stackOffsetFromTop | 1); // "| 1" to mark it as an interior pointer |
| 5987 | }); |
| 5988 | } |
| 5989 | |
| 5990 | // walk the GC descriptors, reporting the correct offsets |
| 5991 | if (pMT->ContainsPointers()) |
| 5992 | { |
| 5993 | // size of instance when unboxed must be adjusted for the syncblock |
| 5994 | // index and the VTable pointer. |
| 5995 | DWORD size = pMT->GetBaseSize(); |
| 5996 | |
| 5997 | // we don't include this term in our 'ppstop' calculation below. |
| 5998 | _ASSERTE(pMT->GetComponentSize() == 0); |
| 5999 | |
| 6000 | CGCDesc* map = CGCDesc::GetCGCDescFromMT(pMT); |
| 6001 | CGCDescSeries* cur = map->GetLowestSeries(); |
| 6002 | CGCDescSeries* last = map->GetHighestSeries(); |
| 6003 | |
| 6004 | _ASSERTE(cur <= last); |
| 6005 | do |
| 6006 | { |
| 6007 | // offset to embedded references in this series must be |
| 6008 | // adjusted by the VTable pointer, when in the unboxed state. |
| 6009 | size_t adjustOffset = cur->GetSeriesOffset() - sizeof(void *); |
| 6010 | |
| 6011 | _ASSERTE(baseOffset >= adjustOffset); |
| 6012 | size_t start = baseOffset - adjustOffset; |
| 6013 | size_t stop = start - (cur->GetSeriesSize() + size); |
| 6014 | for (size_t off = stop + sizeof(void*); off <= start; off += sizeof(void*)) |
| 6015 | { |
| 6016 | _ASSERTE(FitsInU4(off)); |
| 6017 | |
| 6018 | int gcLayoutInsertIndex = gcLayout.Count(); |
| 6019 | _ASSERTE(gcLayoutInsertIndex >= 0); |
| 6020 | if (isByRefLike) |
| 6021 | { |
| 6022 | // Offsets in 'gcLayout' are expected to be in increasing order and for by-ref-like types the by-refs would |
| 6023 | // have already been inserted into 'gcLayout' above. Find the appropriate index at which to insert this |
| 6024 | // offset. |
| 6025 | while (gcLayoutInsertIndex != 0 && off < gcLayout[gcLayoutInsertIndex - 1]) |
| 6026 | { |
| 6027 | --gcLayoutInsertIndex; |
| 6028 | _ASSERTE(off != (gcLayout[gcLayoutInsertIndex] & ~(ULONG)1)); |
| 6029 | } |
| 6030 | } |
| 6031 | |
| 6032 | _ASSERTE(gcLayoutInsertIndex == 0 || off > (gcLayout[gcLayoutInsertIndex - 1] & ~(ULONG)1)); |
| 6033 | *gcLayout.InsertThrowing(gcLayoutInsertIndex) = (ULONG)off; |
| 6034 | } |
| 6035 | cur++; |
| 6036 | |
| 6037 | } while (cur <= last); |
| 6038 | } |
| 6039 | } |
| 6040 | } |
| 6041 | |
| 6042 | Stub * StubLinkerCPU::CreateTailCallCopyArgsThunk(CORINFO_SIG_INFO * pSig, |
| 6043 | MethodDesc* pMD, |
| 6044 | CorInfoHelperTailCallSpecialHandling flags) |
| 6045 | { |
| 6046 | STANDARD_VM_CONTRACT; |
| 6047 | |
| 6048 | CPUSTUBLINKER sl; |
| 6049 | CPUSTUBLINKER* pSl = &sl; |
| 6050 | |
| 6051 | // Generates a function that looks like this: |
| 6052 | // size_t CopyArguments(va_list args, (RCX) |
| 6053 | // CONTEXT *pCtx, (RDX) |
| 6054 | // DWORD64 *pvStack, (R8) |
| 6055 | // size_t cbStack) (R9) |
| 6056 | // { |
| 6057 | // if (pCtx != NULL) { |
| 6058 | // foreach (arg in args) { |
| 6059 | // copy into pCtx or pvStack |
| 6060 | // } |
| 6061 | // } |
| 6062 | // return <size of stack needed>; |
| 6063 | // } |
| 6064 | // |
| 6065 | |
| 6066 | CodeLabel *pNullLabel = pSl->NewCodeLabel(); |
| 6067 | |
| 6068 | // test rdx, rdx |
| 6069 | pSl->X86EmitR2ROp(0x85, kRDX, kRDX); |
| 6070 | |
| 6071 | // jz NullLabel |
| 6072 | pSl->X86EmitCondJump(pNullLabel, X86CondCode::kJZ); |
| 6073 | |
| 6074 | UINT nArgSlot = 0; |
| 6075 | UINT totalArgs = pSig->totalILArgs() + ((pSig->isVarArg() || pSig->hasTypeArg()) ? 1 : 0); |
| 6076 | bool fR10Loaded = false; |
| 6077 | UINT cbArg; |
| 6078 | static const UINT rgcbArgRegCtxtOffsets[4] = { offsetof(CONTEXT, Rcx), offsetof(CONTEXT, Rdx), |
| 6079 | offsetof(CONTEXT, R8), offsetof(CONTEXT, R9) }; |
| 6080 | static const UINT rgcbFpArgRegCtxtOffsets[4] = { offsetof(CONTEXT, Xmm0.Low), offsetof(CONTEXT, Xmm1.Low), |
| 6081 | offsetof(CONTEXT, Xmm2.Low), offsetof(CONTEXT, Xmm3.Low) }; |
| 6082 | |
| 6083 | ULONGARRAY gcLayout; |
| 6084 | |
| 6085 | // On input to the function R9 contains the size of the buffer |
| 6086 | // The first time this macro runs, R10 is loaded with the 'top' of the Frame |
| 6087 | // and R9 is changed to point to the 'top' of the copy buffer. |
| 6088 | // Then both R9 and R10 are decremented by the size of the struct we're copying |
| 6089 | // So R10 is the value to put in the argument slot, and R9 is where the data |
| 6090 | // should be copied to (or zeroed out in the case of the return buffer). |
| 6091 | #define LOAD_STRUCT_OFFSET_IF_NEEDED(cbSize) \ |
| 6092 | { \ |
| 6093 | _ASSERTE(cbSize > 0); \ |
| 6094 | _ASSERTE(FitsInI4(cbSize)); \ |
| 6095 | __int32 offset = (__int32)cbSize; \ |
| 6096 | if (!fR10Loaded) { \ |
| 6097 | /* mov r10, [rdx + offset of RSP] */ \ |
| 6098 | pSl->X86EmitIndexRegLoad(kR10, kRDX, offsetof(CONTEXT, Rsp)); \ |
| 6099 | /* add an extra 8 because RSP is pointing at the return address */ \ |
| 6100 | offset -= 8; \ |
| 6101 | /* add r10, r9 */ \ |
| 6102 | pSl->X86EmitAddRegReg(kR10, kR9); \ |
| 6103 | /* add r9, r8 */ \ |
| 6104 | pSl->X86EmitAddRegReg(kR9, kR8); \ |
| 6105 | fR10Loaded = true; \ |
| 6106 | } \ |
| 6107 | /* sub r10, offset */ \ |
| 6108 | pSl->X86EmitSubReg(kR10, offset); \ |
| 6109 | /* sub r9, cbSize */ \ |
| 6110 | pSl->X86EmitSubReg(kR9, cbSize); \ |
| 6111 | } |
| 6112 | |
| 6113 | |
| 6114 | if (flags & CORINFO_TAILCALL_STUB_DISPATCH_ARG) { |
| 6115 | // This is set for stub dispatch |
| 6116 | // The JIT placed an extra argument in the list that needs to |
| 6117 | // get shoved into R11, and not counted. |
| 6118 | // pCtx->R11 = va_arg(args, DWORD64); |
| 6119 | |
| 6120 | // mov rax, [rcx] |
| 6121 | pSl->X86EmitIndexRegLoad(kRAX, kRCX, 0); |
| 6122 | // add rcx, 8 |
| 6123 | pSl->X86EmitAddReg(kRCX, 8); |
| 6124 | // mov [rdx + offset of R11], rax |
| 6125 | pSl->X86EmitIndexRegStore(kRDX, offsetof(CONTEXT, R11), kRAX); |
| 6126 | } |
| 6127 | |
| 6128 | ULONG cbStructOffset = 0; |
| 6129 | |
| 6130 | // First comes the 'this' pointer |
| 6131 | if (pSig->hasThis()) { |
| 6132 | // mov rax, [rcx] |
| 6133 | pSl->X86EmitIndexRegLoad(kRAX, kRCX, 0); |
| 6134 | // add rcx, 8 |
| 6135 | pSl->X86EmitAddReg(kRCX, 8); |
| 6136 | // mov [rdx + offset of RCX/RDX], rax |
| 6137 | pSl->X86EmitIndexRegStore(kRDX, rgcbArgRegCtxtOffsets[nArgSlot++], kRAX); |
| 6138 | } |
| 6139 | |
| 6140 | // Next the return buffer |
| 6141 | cbArg = 0; |
| 6142 | TypeHandle th(pSig->retTypeClass); |
| 6143 | if ((pSig->retType == CORINFO_TYPE_REFANY) || (pSig->retType == CORINFO_TYPE_VALUECLASS)) { |
| 6144 | cbArg = th.GetSize(); |
| 6145 | } |
| 6146 | |
| 6147 | if (ArgIterator::IsArgPassedByRef(cbArg)) { |
| 6148 | totalArgs++; |
| 6149 | |
| 6150 | // We always reserve space for the return buffer, and we always zero it out, |
| 6151 | // so the GC won't complain, but if it's already pointing above the frame, |
| 6152 | // then we need to pass it in (so it will get passed out). |
| 6153 | // Otherwise we assume the caller is returning void, so we just pass in |
| 6154 | // dummy space to be overwritten. |
| 6155 | UINT cbUsed = (cbArg + 0xF) & ~0xF; |
| 6156 | LOAD_STRUCT_OFFSET_IF_NEEDED(cbUsed); |
| 6157 | // now emit a 'memset(r9, 0, cbUsed)' |
| 6158 | { |
| 6159 | // xorps xmm0, xmm0 |
| 6160 | pSl->X86EmitR2ROp(X86_INSTR_XORPS, kXMM0, kXMM0); |
| 6161 | if (cbUsed <= 4 * 16) { |
| 6162 | // movaps [r9], xmm0 |
| 6163 | pSl->X86EmitOp(X86_INSTR_MOVAPS_RM_R, kXMM0, kR9, 0); |
| 6164 | if (16 < cbUsed) { |
| 6165 | // movaps [r9 + 16], xmm0 |
| 6166 | pSl->X86EmitOp(X86_INSTR_MOVAPS_RM_R, kXMM0, kR9, 16); |
| 6167 | if (32 < cbUsed) { |
| 6168 | // movaps [r9 + 32], xmm0 |
| 6169 | pSl->X86EmitOp(X86_INSTR_MOVAPS_RM_R, kXMM0, kR9, 32); |
| 6170 | if (48 < cbUsed) { |
| 6171 | // movaps [r9 + 48], xmm0 |
| 6172 | pSl->X86EmitOp(X86_INSTR_MOVAPS_RM_R, kXMM0, kR9, 48); |
| 6173 | } |
| 6174 | } |
| 6175 | } |
| 6176 | } |
| 6177 | else { |
| 6178 | // a loop (one double-quadword at a time) |
| 6179 | pSl->X86EmitZeroOutReg(kR11); |
| 6180 | // LoopLabel: |
| 6181 | CodeLabel *pLoopLabel = pSl->NewCodeLabel(); |
| 6182 | pSl->EmitLabel(pLoopLabel); |
| 6183 | // movaps [r9 + r11], xmm0 |
| 6184 | pSl->X86EmitOp(X86_INSTR_MOVAPS_RM_R, kXMM0, kR9, 0, kR11, 1); |
| 6185 | // add r11, 16 |
| 6186 | pSl->X86EmitAddReg(kR11, 16); |
| 6187 | // cmp r11, cbUsed |
| 6188 | pSl->X86EmitCmpRegImm32(kR11, cbUsed); |
| 6189 | // jl LoopLabel |
| 6190 | pSl->X86EmitCondJump(pLoopLabel, X86CondCode::kJL); |
| 6191 | } |
| 6192 | } |
| 6193 | cbStructOffset += cbUsed; |
| 6194 | AppendGCLayout(gcLayout, cbStructOffset, pSig->retType == CORINFO_TYPE_REFANY, th); |
| 6195 | |
| 6196 | // mov rax, [rcx] |
| 6197 | pSl->X86EmitIndexRegLoad(kRAX, kRCX, 0); |
| 6198 | // add rcx, 8 |
| 6199 | pSl->X86EmitAddReg(kRCX, 8); |
| 6200 | // cmp rax, [rdx + offset of R12] |
| 6201 | pSl->X86EmitOffsetModRM(0x3B, kRAX, kRDX, offsetof(CONTEXT, R12)); |
| 6202 | |
| 6203 | CodeLabel *pSkipLabel = pSl->NewCodeLabel(); |
| 6204 | // jnb SkipLabel |
| 6205 | pSl->X86EmitCondJump(pSkipLabel, X86CondCode::kJNB); |
| 6206 | |
| 6207 | // Also check the lower bound of the stack in case the return buffer is on the GC heap |
| 6208 | // and the GC heap is below the stack |
| 6209 | // cmp rax, rsp |
| 6210 | pSl->X86EmitR2ROp(0x3B, kRAX, (X86Reg)4 /*kRSP*/); |
| 6211 | // jna SkipLabel |
| 6212 | pSl->X86EmitCondJump(pSkipLabel, X86CondCode::kJB); |
| 6213 | // mov rax, r10 |
| 6214 | pSl->X86EmitMovRegReg(kRAX, kR10); |
| 6215 | // SkipLabel: |
| 6216 | pSl->EmitLabel(pSkipLabel); |
| 6217 | // mov [rdx + offset of RCX], rax |
| 6218 | pSl->X86EmitIndexRegStore(kRDX, rgcbArgRegCtxtOffsets[nArgSlot++], kRAX); |
| 6219 | } |
| 6220 | |
| 6221 | // VarArgs Cookie *or* Generics Instantiation Parameter |
| 6222 | if (pSig->hasTypeArg() || pSig->isVarArg()) { |
| 6223 | // mov rax, [rcx] |
| 6224 | pSl->X86EmitIndexRegLoad(kRAX, kRCX, 0); |
| 6225 | // add rcx, 8 |
| 6226 | pSl->X86EmitAddReg(kRCX, 8); |
| 6227 | // mov [rdx + offset of RCX/RDX], rax |
| 6228 | pSl->X86EmitIndexRegStore(kRDX, rgcbArgRegCtxtOffsets[nArgSlot++], kRAX); |
| 6229 | } |
| 6230 | |
| 6231 | _ASSERTE(nArgSlot <= 4); |
| 6232 | |
| 6233 | // Now for *all* the 'real' arguments |
| 6234 | SigPointer ptr((PCCOR_SIGNATURE)pSig->args); |
| 6235 | Module * module = GetModule(pSig->scope); |
| 6236 | Instantiation classInst((TypeHandle*)pSig->sigInst.classInst, pSig->sigInst.classInstCount); |
| 6237 | Instantiation methodInst((TypeHandle*)pSig->sigInst.methInst, pSig->sigInst.methInstCount); |
| 6238 | SigTypeContext typeCtxt(classInst, methodInst); |
| 6239 | |
| 6240 | for( ;nArgSlot < totalArgs; ptr.SkipExactlyOne()) { |
| 6241 | CorElementType et = ptr.PeekElemTypeNormalized(module, &typeCtxt); |
| 6242 | if (et == ELEMENT_TYPE_SENTINEL) |
| 6243 | continue; |
| 6244 | |
| 6245 | // mov rax, [rcx] |
| 6246 | pSl->X86EmitIndexRegLoad(kRAX, kRCX, 0); |
| 6247 | // add rcx, 8 |
| 6248 | pSl->X86EmitAddReg(kRCX, 8); |
| 6249 | switch (et) { |
| 6250 | case ELEMENT_TYPE_INTERNAL: |
| 6251 | // TODO |
| 6252 | _ASSERTE(!"Shouldn't see ELEMENT_TYPE_INTERNAL" ); |
| 6253 | break; |
| 6254 | case ELEMENT_TYPE_TYPEDBYREF: |
| 6255 | case ELEMENT_TYPE_VALUETYPE: |
| 6256 | th = ptr.GetTypeHandleThrowing(module, &typeCtxt, ClassLoader::LoadTypes, CLASS_LOAD_UNRESTOREDTYPEKEY); |
| 6257 | _ASSERTE(!th.IsNull()); |
| 6258 | g_IBCLogger.LogEEClassAndMethodTableAccess(th.GetMethodTable()); |
| 6259 | cbArg = (UINT)th.GetSize(); |
| 6260 | if (ArgIterator::IsArgPassedByRef(cbArg)) { |
| 6261 | UINT cbUsed = (cbArg + 0xF) & ~0xF; |
| 6262 | LOAD_STRUCT_OFFSET_IF_NEEDED(cbUsed); |
| 6263 | // rax has the source pointer |
| 6264 | // r9 has the intermediate copy location |
| 6265 | // r10 has the final destination |
| 6266 | if (nArgSlot < 4) { |
| 6267 | pSl->X86EmitIndexRegStore(kRDX, rgcbArgRegCtxtOffsets[nArgSlot++], kR10); |
| 6268 | } |
| 6269 | else { |
| 6270 | pSl->X86EmitIndexRegStore(kR8, 8 * nArgSlot++, kR10); |
| 6271 | } |
| 6272 | // now emit a 'memcpy(rax, r9, cbUsed)' |
| 6273 | // These structs are supposed to be 16-byte aligned, but |
| 6274 | // Reflection puts them on the GC heap, which is only 8-byte |
| 6275 | // aligned. It also means we have to be careful about not |
| 6276 | // copying too much (because we might cross a page boundary) |
| 6277 | UINT cbUsed16 = (cbArg + 7) & ~0xF; |
| 6278 | _ASSERTE((cbUsed16 == cbUsed) || ((cbUsed16 + 16) == cbUsed)); |
| 6279 | |
| 6280 | if (cbArg <= 192) { |
| 6281 | // Unrolled version (6 x 16 bytes in parallel) |
| 6282 | UINT offset = 0; |
| 6283 | while (offset < cbUsed16) { |
| 6284 | // movups xmm0, [rax + offset] |
| 6285 | pSl->X86EmitOp(X86_INSTR_MOVUPS_R_RM, kXMM0, kRAX, offset); |
| 6286 | if (offset + 16 < cbUsed16) { |
| 6287 | // movups xmm1, [rax + offset + 16] |
| 6288 | pSl->X86EmitOp(X86_INSTR_MOVUPS_R_RM, kXMM1, kRAX, offset + 16); |
| 6289 | if (offset + 32 < cbUsed16) { |
| 6290 | // movups xmm2, [rax + offset + 32] |
| 6291 | pSl->X86EmitOp(X86_INSTR_MOVUPS_R_RM, kXMM2, kRAX, offset + 32); |
| 6292 | if (offset + 48 < cbUsed16) { |
| 6293 | // movups xmm3, [rax + offset + 48] |
| 6294 | pSl->X86EmitOp(X86_INSTR_MOVUPS_R_RM, kXMM3, kRAX, offset + 48); |
| 6295 | if (offset + 64 < cbUsed16) { |
| 6296 | // movups xmm4, [rax + offset + 64] |
| 6297 | pSl->X86EmitOp(X86_INSTR_MOVUPS_R_RM, kXMM4, kRAX, offset + 64); |
| 6298 | if (offset + 80 < cbUsed16) { |
| 6299 | // movups xmm5, [rax + offset + 80] |
| 6300 | pSl->X86EmitOp(X86_INSTR_MOVUPS_R_RM, kXMM5, kRAX, offset + 80); |
| 6301 | } |
| 6302 | } |
| 6303 | } |
| 6304 | } |
| 6305 | } |
| 6306 | // movaps [r9 + offset], xmm0 |
| 6307 | pSl->X86EmitOp(X86_INSTR_MOVAPS_RM_R, kXMM0, kR9, offset); |
| 6308 | offset += 16; |
| 6309 | if (offset < cbUsed16) { |
| 6310 | // movaps [r9 + 16], xmm1 |
| 6311 | pSl->X86EmitOp(X86_INSTR_MOVAPS_RM_R, kXMM1, kR9, offset); |
| 6312 | offset += 16; |
| 6313 | if (offset < cbUsed16) { |
| 6314 | // movaps [r9 + 32], xmm2 |
| 6315 | pSl->X86EmitOp(X86_INSTR_MOVAPS_RM_R, kXMM2, kR9, offset); |
| 6316 | offset += 16; |
| 6317 | if (offset < cbUsed16) { |
| 6318 | // movaps [r9 + 48], xmm3 |
| 6319 | pSl->X86EmitOp(X86_INSTR_MOVAPS_RM_R, kXMM3, kR9, offset); |
| 6320 | offset += 16; |
| 6321 | if (offset < cbUsed16) { |
| 6322 | // movaps [r9 + 64], xmm4 |
| 6323 | pSl->X86EmitOp(X86_INSTR_MOVAPS_RM_R, kXMM4, kR9, offset); |
| 6324 | offset += 16; |
| 6325 | if (offset < cbUsed16) { |
| 6326 | // movaps [r9 + 80], xmm5 |
| 6327 | pSl->X86EmitOp(X86_INSTR_MOVAPS_RM_R, kXMM5, kR9, offset); |
| 6328 | offset += 16; |
| 6329 | } |
| 6330 | } |
| 6331 | } |
| 6332 | } |
| 6333 | } |
| 6334 | } |
| 6335 | // Copy the last 8 bytes if needed |
| 6336 | if (cbUsed > cbUsed16) { |
| 6337 | _ASSERTE(cbUsed16 < cbArg); |
| 6338 | // movlps xmm0, [rax + offset] |
| 6339 | pSl->X86EmitOp(X86_INSTR_MOVLPS_R_RM, kXMM0, kRAX, offset); |
| 6340 | // movlps [r9 + offset], xmm0 |
| 6341 | pSl->X86EmitOp(X86_INSTR_MOVLPS_RM_R, kXMM0, kR9, offset); |
| 6342 | } |
| 6343 | } |
| 6344 | else { |
| 6345 | // a loop (one double-quadword at a time) |
| 6346 | pSl->X86EmitZeroOutReg(kR11); |
| 6347 | // LoopLabel: |
| 6348 | CodeLabel *pLoopLabel = pSl->NewCodeLabel(); |
| 6349 | pSl->EmitLabel(pLoopLabel); |
| 6350 | // movups xmm0, [rax + r11] |
| 6351 | pSl->X86EmitOp(X86_INSTR_MOVUPS_R_RM, kXMM0, kRAX, 0, kR11, 1); |
| 6352 | // movaps [r9 + r11], xmm0 |
| 6353 | pSl->X86EmitOp(X86_INSTR_MOVAPS_RM_R, kXMM0, kR9, 0, kR11, 1); |
| 6354 | // add r11, 16 |
| 6355 | pSl->X86EmitAddReg(kR11, 16); |
| 6356 | // cmp r11, cbUsed16 |
| 6357 | pSl->X86EmitCmpRegImm32(kR11, cbUsed16); |
| 6358 | // jl LoopLabel |
| 6359 | pSl->X86EmitCondJump(pLoopLabel, X86CondCode::kJL); |
| 6360 | if (cbArg > cbUsed16) { |
| 6361 | _ASSERTE(cbUsed16 + 8 >= cbArg); |
| 6362 | // movlps xmm0, [rax + r11] |
| 6363 | pSl->X86EmitOp(X86_INSTR_MOVLPS_R_RM, kXMM0, kRAX, 0, kR11, 1); |
| 6364 | // movlps [r9 + r11], xmm0 |
| 6365 | pSl->X86EmitOp(X86_INSTR_MOVLPS_RM_R, kXMM0, kR9, 0, kR11, 1); |
| 6366 | } |
| 6367 | } |
| 6368 | cbStructOffset += cbUsed; |
| 6369 | AppendGCLayout(gcLayout, cbStructOffset, et == ELEMENT_TYPE_TYPEDBYREF, th); |
| 6370 | break; |
| 6371 | } |
| 6372 | |
| 6373 | // |
| 6374 | // Explicit Fall-Through for non-IsArgPassedByRef |
| 6375 | // |
| 6376 | |
| 6377 | default: |
| 6378 | if (nArgSlot < 4) { |
| 6379 | pSl->X86EmitIndexRegStore(kRDX, rgcbArgRegCtxtOffsets[nArgSlot], kRAX); |
| 6380 | if ((et == ELEMENT_TYPE_R4) || (et == ELEMENT_TYPE_R8)) { |
| 6381 | pSl->X86EmitIndexRegStore(kRDX, rgcbFpArgRegCtxtOffsets[nArgSlot], kRAX); |
| 6382 | } |
| 6383 | } |
| 6384 | else { |
| 6385 | pSl->X86EmitIndexRegStore(kR8, 8 * nArgSlot, kRAX); |
| 6386 | } |
| 6387 | nArgSlot++; |
| 6388 | break; |
| 6389 | } |
| 6390 | } |
| 6391 | |
| 6392 | #undef LOAD_STRUCT_OFFSET_IF_NEEDED |
| 6393 | |
| 6394 | // Keep our 4 shadow slots and even number of slots (to keep 16-byte aligned) |
| 6395 | if (nArgSlot < 4) |
| 6396 | nArgSlot = 4; |
| 6397 | else if (nArgSlot & 1) |
| 6398 | nArgSlot++; |
| 6399 | |
| 6400 | _ASSERTE((cbStructOffset % 16) == 0); |
| 6401 | |
| 6402 | // xor eax, eax |
| 6403 | pSl->X86EmitZeroOutReg(kRAX); |
| 6404 | // ret |
| 6405 | pSl->X86EmitReturn(0); |
| 6406 | |
| 6407 | // NullLabel: |
| 6408 | pSl->EmitLabel(pNullLabel); |
| 6409 | |
| 6410 | CodeLabel *pGCLayoutLabel = NULL; |
| 6411 | if (gcLayout.Count() == 0) { |
| 6412 | // xor eax, eax |
| 6413 | pSl->X86EmitZeroOutReg(kRAX); |
| 6414 | } |
| 6415 | else { |
| 6416 | // lea rax, [rip + offset to gclayout] |
| 6417 | pGCLayoutLabel = pSl->NewCodeLabel(); |
| 6418 | pSl->X86EmitLeaRIP(pGCLayoutLabel, kRAX); |
| 6419 | } |
| 6420 | // mov [r9], rax |
| 6421 | pSl->X86EmitIndexRegStore(kR9, 0, kRAX); |
| 6422 | // mov rax, cbStackNeeded |
| 6423 | pSl->X86EmitRegLoad(kRAX, cbStructOffset + nArgSlot * 8); |
| 6424 | // ret |
| 6425 | pSl->X86EmitReturn(0); |
| 6426 | |
| 6427 | if (gcLayout.Count() > 0) { |
| 6428 | // GCLayout: |
| 6429 | pSl->EmitLabel(pGCLayoutLabel); |
| 6430 | EncodeGCOffsets(pSl, gcLayout); |
| 6431 | } |
| 6432 | |
| 6433 | LoaderHeap* pHeap = pMD->GetLoaderAllocatorForCode()->GetStubHeap(); |
| 6434 | return pSl->Link(pHeap); |
| 6435 | } |
| 6436 | #endif // DACCESS_COMPILE |
| 6437 | |
| 6438 | #endif // _TARGET_AMD64_ |
| 6439 | |
| 6440 | |
| 6441 | #ifdef HAS_FIXUP_PRECODE |
| 6442 | |
| 6443 | #ifdef HAS_FIXUP_PRECODE_CHUNKS |
| 6444 | TADDR FixupPrecode::GetMethodDesc() |
| 6445 | { |
| 6446 | LIMITED_METHOD_CONTRACT; |
| 6447 | SUPPORTS_DAC; |
| 6448 | |
| 6449 | // This lookup is also manually inlined in PrecodeFixupThunk assembly code |
| 6450 | TADDR base = *PTR_TADDR(GetBase()); |
| 6451 | if (base == NULL) |
| 6452 | return NULL; |
| 6453 | return base + (m_MethodDescChunkIndex * MethodDesc::ALIGNMENT); |
| 6454 | } |
| 6455 | #endif |
| 6456 | |
| 6457 | #ifdef FIXUP_PRECODE_PREALLOCATE_DYNAMIC_METHOD_JUMP_STUBS |
| 6458 | PCODE FixupPrecode::GetDynamicMethodPrecodeFixupJumpStub() |
| 6459 | { |
| 6460 | WRAPPER_NO_CONTRACT; |
| 6461 | _ASSERTE(((PTR_MethodDesc)GetMethodDesc())->IsLCGMethod()); |
| 6462 | |
| 6463 | // The precode fixup jump stub is shared by all fixup precodes in a chunk, and immediately follows the MethodDesc. Jump |
| 6464 | // stubs cannot be reused currently for the same method: |
| 6465 | // - The jump stub's target would change separately from the precode being updated from "call Func" to "jmp Func", both |
| 6466 | // changes would have to be done atomically with runtime suspension, which is not done currently |
| 6467 | // - When changing the entry point from one version of jitted code to another, the jump stub's target pointer is not |
| 6468 | // aligned to 8 bytes in order to be able to do an interlocked update of the target address |
| 6469 | // So, when initially the precode intends to be of the form "call PrecodeFixupThunk", if the target address happens to be |
| 6470 | // too far for a relative 32-bit jump, it will use the shared precode fixup jump stub. When changing the entry point to |
| 6471 | // jitted code, the jump stub associated with the precode is patched, and the precode is updated to use that jump stub. |
| 6472 | // |
| 6473 | // Notes: |
| 6474 | // - Dynamic method descs, and hence their precodes and preallocated jump stubs, may be reused for a different method |
| 6475 | // (along with reinitializing the precode), but only with a transition where the original method is no longer accessible |
| 6476 | // to user code |
| 6477 | // - Concurrent calls to a dynamic method that has not yet been jitted may trigger multiple writes to the jump stub |
| 6478 | // associated with the precode, but only to the same target address (and while the precode is still pointing to |
| 6479 | // PrecodeFixupThunk) |
| 6480 | return GetBase() + sizeof(PTR_MethodDesc); |
| 6481 | } |
| 6482 | |
| 6483 | PCODE FixupPrecode::GetDynamicMethodEntryJumpStub() |
| 6484 | { |
| 6485 | WRAPPER_NO_CONTRACT; |
| 6486 | _ASSERTE(((PTR_MethodDesc)GetMethodDesc())->IsLCGMethod()); |
| 6487 | |
| 6488 | // m_PrecodeChunkIndex has a value inverted to the order of precodes in memory (the precode at the lowest address has the |
| 6489 | // highest index, and the precode at the highest address has the lowest index). To map a precode to its jump stub by memory |
| 6490 | // order, invert the precode index to get the jump stub index. Also skip the precode fixup jump stub (see |
| 6491 | // GetDynamicMethodPrecodeFixupJumpStub()). |
| 6492 | UINT32 count = ((PTR_MethodDesc)GetMethodDesc())->GetMethodDescChunk()->GetCount(); |
| 6493 | _ASSERTE(m_PrecodeChunkIndex < count); |
| 6494 | SIZE_T jumpStubIndex = count - m_PrecodeChunkIndex; |
| 6495 | |
| 6496 | return GetBase() + sizeof(PTR_MethodDesc) + jumpStubIndex * BACK_TO_BACK_JUMP_ALLOCATE_SIZE; |
| 6497 | } |
| 6498 | #endif // FIXUP_PRECODE_PREALLOCATE_DYNAMIC_METHOD_JUMP_STUBS |
| 6499 | |
| 6500 | #ifdef DACCESS_COMPILE |
| 6501 | void FixupPrecode::EnumMemoryRegions(CLRDataEnumMemoryFlags flags) |
| 6502 | { |
| 6503 | SUPPORTS_DAC; |
| 6504 | DacEnumMemoryRegion(dac_cast<TADDR>(this), sizeof(FixupPrecode)); |
| 6505 | |
| 6506 | DacEnumMemoryRegion(GetBase(), sizeof(TADDR)); |
| 6507 | } |
| 6508 | #endif // DACCESS_COMPILE |
| 6509 | |
| 6510 | #endif // HAS_FIXUP_PRECODE |
| 6511 | |
| 6512 | #ifndef DACCESS_COMPILE |
| 6513 | |
| 6514 | void rel32SetInterlocked(/*PINT32*/ PVOID pRel32, TADDR target, MethodDesc* pMD) |
| 6515 | { |
| 6516 | CONTRACTL |
| 6517 | { |
| 6518 | THROWS; // Creating a JumpStub could throw OutOfMemory |
| 6519 | GC_TRIGGERS; |
| 6520 | } |
| 6521 | CONTRACTL_END; |
| 6522 | |
| 6523 | INT32 targetRel32 = rel32UsingJumpStub((INT32*)pRel32, target, pMD); |
| 6524 | |
| 6525 | _ASSERTE(IS_ALIGNED(pRel32, sizeof(INT32))); |
| 6526 | FastInterlockExchange((LONG*)pRel32, (LONG)targetRel32); |
| 6527 | } |
| 6528 | |
| 6529 | BOOL rel32SetInterlocked(/*PINT32*/ PVOID pRel32, TADDR target, TADDR expected, MethodDesc* pMD) |
| 6530 | { |
| 6531 | CONTRACTL |
| 6532 | { |
| 6533 | THROWS; // Creating a JumpStub could throw OutOfMemory |
| 6534 | GC_TRIGGERS; |
| 6535 | } |
| 6536 | CONTRACTL_END; |
| 6537 | |
| 6538 | BYTE* callAddrAdj = (BYTE*)pRel32 + 4; |
| 6539 | INT32 expectedRel32 = static_cast<INT32>((BYTE*)expected - callAddrAdj); |
| 6540 | |
| 6541 | INT32 targetRel32 = rel32UsingJumpStub((INT32*)pRel32, target, pMD); |
| 6542 | |
| 6543 | _ASSERTE(IS_ALIGNED(pRel32, sizeof(INT32))); |
| 6544 | return FastInterlockCompareExchange((LONG*)pRel32, (LONG)targetRel32, (LONG)expectedRel32) == (LONG)expectedRel32; |
| 6545 | } |
| 6546 | |
| 6547 | void StubPrecode::Init(MethodDesc* pMD, LoaderAllocator *pLoaderAllocator /* = NULL */, |
| 6548 | BYTE type /* = StubPrecode::Type */, TADDR target /* = NULL */) |
| 6549 | { |
| 6550 | WRAPPER_NO_CONTRACT; |
| 6551 | |
| 6552 | IN_WIN64(m_movR10 = X86_INSTR_MOV_R10_IMM64); // mov r10, pMethodDesc |
| 6553 | IN_WIN32(m_movEAX = X86_INSTR_MOV_EAX_IMM32); // mov eax, pMethodDesc |
| 6554 | m_pMethodDesc = (TADDR)pMD; |
| 6555 | IN_WIN32(m_mov_rm_r = X86_INSTR_MOV_RM_R); // mov reg,reg |
| 6556 | m_type = type; |
| 6557 | m_jmp = X86_INSTR_JMP_REL32; // jmp rel32 |
| 6558 | |
| 6559 | if (pLoaderAllocator != NULL) |
| 6560 | { |
| 6561 | // Use pMD == NULL in all precode initialization methods to allocate the initial jump stub in non-dynamic heap |
| 6562 | // that has the same lifetime like as the precode itself |
| 6563 | if (target == NULL) |
| 6564 | target = GetPreStubEntryPoint(); |
| 6565 | m_rel32 = rel32UsingJumpStub(&m_rel32, target, NULL /* pMD */, pLoaderAllocator); |
| 6566 | } |
| 6567 | } |
| 6568 | |
| 6569 | #ifdef HAS_NDIRECT_IMPORT_PRECODE |
| 6570 | |
| 6571 | void NDirectImportPrecode::Init(MethodDesc* pMD, LoaderAllocator *pLoaderAllocator) |
| 6572 | { |
| 6573 | WRAPPER_NO_CONTRACT; |
| 6574 | StubPrecode::Init(pMD, pLoaderAllocator, NDirectImportPrecode::Type, GetEEFuncEntryPoint(NDirectImportThunk)); |
| 6575 | } |
| 6576 | |
| 6577 | #endif // HAS_NDIRECT_IMPORT_PRECODE |
| 6578 | |
| 6579 | |
| 6580 | #ifdef HAS_FIXUP_PRECODE |
| 6581 | void FixupPrecode::Init(MethodDesc* pMD, LoaderAllocator *pLoaderAllocator, int iMethodDescChunkIndex /*=0*/, int iPrecodeChunkIndex /*=0*/) |
| 6582 | { |
| 6583 | WRAPPER_NO_CONTRACT; |
| 6584 | |
| 6585 | m_op = X86_INSTR_CALL_REL32; // call PrecodeFixupThunk |
| 6586 | m_type = FixupPrecode::TypePrestub; |
| 6587 | |
| 6588 | // Initialize chunk indices only if they are not initialized yet. This is necessary to make MethodDesc::Reset work. |
| 6589 | if (m_PrecodeChunkIndex == 0) |
| 6590 | { |
| 6591 | _ASSERTE(FitsInU1(iPrecodeChunkIndex)); |
| 6592 | m_PrecodeChunkIndex = static_cast<BYTE>(iPrecodeChunkIndex); |
| 6593 | } |
| 6594 | |
| 6595 | if (iMethodDescChunkIndex != -1) |
| 6596 | { |
| 6597 | if (m_MethodDescChunkIndex == 0) |
| 6598 | { |
| 6599 | _ASSERTE(FitsInU1(iMethodDescChunkIndex)); |
| 6600 | m_MethodDescChunkIndex = static_cast<BYTE>(iMethodDescChunkIndex); |
| 6601 | } |
| 6602 | |
| 6603 | if (*(void**)GetBase() == NULL) |
| 6604 | *(void**)GetBase() = (BYTE*)pMD - (iMethodDescChunkIndex * MethodDesc::ALIGNMENT); |
| 6605 | } |
| 6606 | |
| 6607 | _ASSERTE(GetMethodDesc() == (TADDR)pMD); |
| 6608 | |
| 6609 | PCODE target = (PCODE)GetEEFuncEntryPoint(PrecodeFixupThunk); |
| 6610 | #ifdef FIXUP_PRECODE_PREALLOCATE_DYNAMIC_METHOD_JUMP_STUBS |
| 6611 | if (pMD->IsLCGMethod()) |
| 6612 | { |
| 6613 | m_rel32 = rel32UsingPreallocatedJumpStub(&m_rel32, target, GetDynamicMethodPrecodeFixupJumpStub(), false /* emitJump */); |
| 6614 | return; |
| 6615 | } |
| 6616 | #endif // FIXUP_PRECODE_PREALLOCATE_DYNAMIC_METHOD_JUMP_STUBS |
| 6617 | if (pLoaderAllocator != NULL) |
| 6618 | { |
| 6619 | m_rel32 = rel32UsingJumpStub(&m_rel32, target, NULL /* pMD */, pLoaderAllocator); |
| 6620 | } |
| 6621 | } |
| 6622 | |
| 6623 | void FixupPrecode::ResetTargetInterlocked() |
| 6624 | { |
| 6625 | CONTRACTL |
| 6626 | { |
| 6627 | THROWS; // Creating a JumpStub could throw OutOfMemory |
| 6628 | GC_NOTRIGGER; |
| 6629 | } |
| 6630 | CONTRACTL_END; |
| 6631 | |
| 6632 | FixupPrecode newValue = *this; |
| 6633 | newValue.m_op = X86_INSTR_CALL_REL32; // call PrecodeFixupThunk |
| 6634 | newValue.m_type = FixupPrecode::TypePrestub; |
| 6635 | |
| 6636 | PCODE target = (PCODE)GetEEFuncEntryPoint(PrecodeFixupThunk); |
| 6637 | MethodDesc* pMD = (MethodDesc*)GetMethodDesc(); |
| 6638 | #ifdef FIXUP_PRECODE_PREALLOCATE_DYNAMIC_METHOD_JUMP_STUBS |
| 6639 | // The entry point of LCG methods cannot revert back to the original entry point, as their jump stubs would have to be |
| 6640 | // reused, which is currently not supported. This method is intended for resetting the entry point while the method is |
| 6641 | // callable, which implies that the entry point may later be changed again to something else. Currently, this is not done |
| 6642 | // for LCG methods. See GetDynamicMethodPrecodeFixupJumpStub() for more. |
| 6643 | _ASSERTE(!pMD->IsLCGMethod()); |
| 6644 | #endif // FIXUP_PRECODE_PREALLOCATE_DYNAMIC_METHOD_JUMP_STUBS |
| 6645 | |
| 6646 | newValue.m_rel32 = rel32UsingJumpStub(&m_rel32, target, pMD); |
| 6647 | |
| 6648 | _ASSERTE(IS_ALIGNED(this, sizeof(INT64))); |
| 6649 | EnsureWritableExecutablePages(this, sizeof(INT64)); |
| 6650 | FastInterlockExchangeLong((INT64*)this, *(INT64*)&newValue); |
| 6651 | } |
| 6652 | |
| 6653 | BOOL FixupPrecode::SetTargetInterlocked(TADDR target, TADDR expected) |
| 6654 | { |
| 6655 | CONTRACTL |
| 6656 | { |
| 6657 | THROWS; // Creating a JumpStub could throw OutOfMemory |
| 6658 | GC_NOTRIGGER; |
| 6659 | } |
| 6660 | CONTRACTL_END; |
| 6661 | |
| 6662 | INT64 oldValue = *(INT64*)this; |
| 6663 | BYTE* pOldValue = (BYTE*)&oldValue; |
| 6664 | |
| 6665 | MethodDesc * pMD = (MethodDesc*)GetMethodDesc(); |
| 6666 | g_IBCLogger.LogMethodPrecodeWriteAccess(pMD); |
| 6667 | |
| 6668 | #ifdef FIXUP_PRECODE_PREALLOCATE_DYNAMIC_METHOD_JUMP_STUBS |
| 6669 | // A different jump stub is used for this case, see Init(). This call is unexpected for resetting the entry point. |
| 6670 | _ASSERTE(!pMD->IsLCGMethod() || target != (TADDR)GetEEFuncEntryPoint(PrecodeFixupThunk)); |
| 6671 | #endif // FIXUP_PRECODE_PREALLOCATE_DYNAMIC_METHOD_JUMP_STUBS |
| 6672 | |
| 6673 | INT64 newValue = oldValue; |
| 6674 | BYTE* pNewValue = (BYTE*)&newValue; |
| 6675 | |
| 6676 | if (pOldValue[OFFSETOF_PRECODE_TYPE_CALL_OR_JMP] == FixupPrecode::TypePrestub) |
| 6677 | { |
| 6678 | pNewValue[OFFSETOF_PRECODE_TYPE_CALL_OR_JMP] = FixupPrecode::Type; |
| 6679 | |
| 6680 | pOldValue[offsetof(FixupPrecode, m_op)] = X86_INSTR_CALL_REL32; |
| 6681 | pNewValue[offsetof(FixupPrecode, m_op)] = X86_INSTR_JMP_REL32; |
| 6682 | } |
| 6683 | else if (pOldValue[OFFSETOF_PRECODE_TYPE_CALL_OR_JMP] == FixupPrecode::Type) |
| 6684 | { |
| 6685 | #ifdef FEATURE_CODE_VERSIONING |
| 6686 | // No change needed, jmp is already in place |
| 6687 | #else |
| 6688 | // Setting the target more than once is unexpected |
| 6689 | return FALSE; |
| 6690 | #endif |
| 6691 | } |
| 6692 | else |
| 6693 | { |
| 6694 | // Pre-existing code doesn't conform to the expectations for a FixupPrecode |
| 6695 | return FALSE; |
| 6696 | } |
| 6697 | |
| 6698 | *(INT32*)(&pNewValue[offsetof(FixupPrecode, m_rel32)]) = |
| 6699 | #ifdef FIXUP_PRECODE_PREALLOCATE_DYNAMIC_METHOD_JUMP_STUBS |
| 6700 | pMD->IsLCGMethod() ? |
| 6701 | rel32UsingPreallocatedJumpStub(&m_rel32, target, GetDynamicMethodEntryJumpStub(), true /* emitJump */) : |
| 6702 | #endif // FIXUP_PRECODE_PREALLOCATE_DYNAMIC_METHOD_JUMP_STUBS |
| 6703 | rel32UsingJumpStub(&m_rel32, target, pMD); |
| 6704 | |
| 6705 | _ASSERTE(IS_ALIGNED(this, sizeof(INT64))); |
| 6706 | EnsureWritableExecutablePages(this, sizeof(INT64)); |
| 6707 | return FastInterlockCompareExchangeLong((INT64*) this, newValue, oldValue) == oldValue; |
| 6708 | } |
| 6709 | |
| 6710 | #ifdef FEATURE_NATIVE_IMAGE_GENERATION |
| 6711 | // Partial initialization. Used to save regrouped chunks. |
| 6712 | void FixupPrecode::InitForSave(int iPrecodeChunkIndex) |
| 6713 | { |
| 6714 | m_op = X86_INSTR_CALL_REL32; // call PrecodeFixupThunk |
| 6715 | m_type = FixupPrecode::TypePrestub; |
| 6716 | |
| 6717 | _ASSERTE(FitsInU1(iPrecodeChunkIndex)); |
| 6718 | m_PrecodeChunkIndex = static_cast<BYTE>(iPrecodeChunkIndex); |
| 6719 | |
| 6720 | // The rest is initialized in code:FixupPrecode::Fixup |
| 6721 | } |
| 6722 | |
| 6723 | void FixupPrecode::Fixup(DataImage *image, MethodDesc * pMD) |
| 6724 | { |
| 6725 | STANDARD_VM_CONTRACT; |
| 6726 | |
| 6727 | // Note that GetMethodDesc() does not return the correct value because of |
| 6728 | // regrouping of MethodDescs into hot and cold blocks. That's why the caller |
| 6729 | // has to supply the actual MethodDesc |
| 6730 | |
| 6731 | SSIZE_T mdChunkOffset; |
| 6732 | ZapNode * pMDChunkNode = image->GetNodeForStructure(pMD, &mdChunkOffset); |
| 6733 | ZapNode * pHelperThunk = image->GetHelperThunk(CORINFO_HELP_EE_PRECODE_FIXUP); |
| 6734 | |
| 6735 | image->FixupFieldToNode(this, offsetof(FixupPrecode, m_rel32), |
| 6736 | pHelperThunk, 0, IMAGE_REL_BASED_REL32); |
| 6737 | |
| 6738 | // Set the actual chunk index |
| 6739 | FixupPrecode * pNewPrecode = (FixupPrecode *)image->GetImagePointer(this); |
| 6740 | |
| 6741 | size_t mdOffset = mdChunkOffset - sizeof(MethodDescChunk); |
| 6742 | size_t chunkIndex = mdOffset / MethodDesc::ALIGNMENT; |
| 6743 | _ASSERTE(FitsInU1(chunkIndex)); |
| 6744 | pNewPrecode->m_MethodDescChunkIndex = (BYTE) chunkIndex; |
| 6745 | |
| 6746 | // Fixup the base of MethodDescChunk |
| 6747 | if (m_PrecodeChunkIndex == 0) |
| 6748 | { |
| 6749 | image->FixupFieldToNode(this, (BYTE *)GetBase() - (BYTE *)this, |
| 6750 | pMDChunkNode, sizeof(MethodDescChunk)); |
| 6751 | } |
| 6752 | } |
| 6753 | #endif // FEATURE_NATIVE_IMAGE_GENERATION |
| 6754 | |
| 6755 | #endif // HAS_FIXUP_PRECODE |
| 6756 | |
| 6757 | #endif // !DACCESS_COMPILE |
| 6758 | |
| 6759 | |
| 6760 | #ifdef HAS_THISPTR_RETBUF_PRECODE |
| 6761 | |
| 6762 | // rel32 jmp target that points back to the jump (infinite loop). |
| 6763 | // Used to mark uninitialized ThisPtrRetBufPrecode target |
| 6764 | #define REL32_JMP_SELF (-5) |
| 6765 | |
| 6766 | #ifndef DACCESS_COMPILE |
| 6767 | void ThisPtrRetBufPrecode::Init(MethodDesc* pMD, LoaderAllocator *pLoaderAllocator) |
| 6768 | { |
| 6769 | WRAPPER_NO_CONTRACT; |
| 6770 | |
| 6771 | IN_WIN64(m_nop1 = X86_INSTR_NOP;) // nop |
| 6772 | #ifdef UNIX_AMD64_ABI |
| 6773 | m_prefix1 = 0x48; |
| 6774 | m_movScratchArg0 = 0xC78B; // mov rax,rdi |
| 6775 | m_prefix2 = 0x48; |
| 6776 | m_movArg0Arg1 = 0xFE8B; // mov rdi,rsi |
| 6777 | m_prefix3 = 0x48; |
| 6778 | m_movArg1Scratch = 0xF08B; // mov rsi,rax |
| 6779 | #else |
| 6780 | IN_WIN64(m_prefix1 = 0x48;) |
| 6781 | m_movScratchArg0 = 0xC889; // mov r/eax,r/ecx |
| 6782 | IN_WIN64(m_prefix2 = 0x48;) |
| 6783 | m_movArg0Arg1 = 0xD189; // mov r/ecx,r/edx |
| 6784 | IN_WIN64(m_prefix3 = 0x48;) |
| 6785 | m_movArg1Scratch = 0xC289; // mov r/edx,r/eax |
| 6786 | #endif |
| 6787 | m_nop2 = X86_INSTR_NOP; // nop |
| 6788 | m_jmp = X86_INSTR_JMP_REL32; // jmp rel32 |
| 6789 | m_pMethodDesc = (TADDR)pMD; |
| 6790 | |
| 6791 | // This precode is never patched lazily - avoid unnecessary jump stub allocation |
| 6792 | m_rel32 = REL32_JMP_SELF; |
| 6793 | } |
| 6794 | |
| 6795 | BOOL ThisPtrRetBufPrecode::SetTargetInterlocked(TADDR target, TADDR expected) |
| 6796 | { |
| 6797 | CONTRACTL |
| 6798 | { |
| 6799 | THROWS; |
| 6800 | GC_TRIGGERS; |
| 6801 | } |
| 6802 | CONTRACTL_END; |
| 6803 | |
| 6804 | // This precode is never patched lazily - the interlocked semantics is not required. |
| 6805 | _ASSERTE(m_rel32 == REL32_JMP_SELF); |
| 6806 | |
| 6807 | // Use pMD == NULL to allocate the jump stub in non-dynamic heap that has the same lifetime as the precode itself |
| 6808 | INT32 newRel32 = rel32UsingJumpStub(&m_rel32, target, NULL /* pMD */, ((MethodDesc *)GetMethodDesc())->GetLoaderAllocatorForCode()); |
| 6809 | |
| 6810 | _ASSERTE(IS_ALIGNED(&m_rel32, sizeof(INT32))); |
| 6811 | FastInterlockExchange((LONG *)&m_rel32, (LONG)newRel32); |
| 6812 | return TRUE; |
| 6813 | } |
| 6814 | #endif // !DACCESS_COMPILE |
| 6815 | |
| 6816 | PCODE ThisPtrRetBufPrecode::GetTarget() |
| 6817 | { |
| 6818 | LIMITED_METHOD_DAC_CONTRACT; |
| 6819 | |
| 6820 | // This precode is never patched lazily - pretend that the uninitialized m_rel32 points to prestub |
| 6821 | if (m_rel32 == REL32_JMP_SELF) |
| 6822 | return GetPreStubEntryPoint(); |
| 6823 | |
| 6824 | return rel32Decode(PTR_HOST_MEMBER_TADDR(ThisPtrRetBufPrecode, this, m_rel32)); |
| 6825 | } |
| 6826 | |
| 6827 | #endif // HAS_THISPTR_RETBUF_PRECODE |
| 6828 | |