| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | // |
| 5 | // THREADS.CPP |
| 6 | // |
| 7 | |
| 8 | // |
| 9 | // |
| 10 | |
| 11 | |
| 12 | #include "common.h" |
| 13 | |
| 14 | #include "frames.h" |
| 15 | #include "threads.h" |
| 16 | #include "stackwalk.h" |
| 17 | #include "excep.h" |
| 18 | #include "comsynchronizable.h" |
| 19 | #include "log.h" |
| 20 | #include "gcheaputilities.h" |
| 21 | #include "mscoree.h" |
| 22 | #include "dbginterface.h" |
| 23 | #include "corprof.h" // profiling |
| 24 | #include "eeprofinterfaces.h" |
| 25 | #include "eeconfig.h" |
| 26 | #include "perfcounters.h" |
| 27 | #include "corhost.h" |
| 28 | #include "win32threadpool.h" |
| 29 | #include "jitinterface.h" |
| 30 | #include "eventtrace.h" |
| 31 | #include "comutilnative.h" |
| 32 | #include "finalizerthread.h" |
| 33 | #include "threadsuspend.h" |
| 34 | |
| 35 | #include "wrappers.h" |
| 36 | |
| 37 | #include "nativeoverlapped.h" |
| 38 | |
| 39 | #include "mdaassistants.h" |
| 40 | #include "appdomain.inl" |
| 41 | #include "vmholder.h" |
| 42 | #include "exceptmacros.h" |
| 43 | #include "win32threadpool.h" |
| 44 | |
| 45 | #ifdef FEATURE_COMINTEROP |
| 46 | #include "runtimecallablewrapper.h" |
| 47 | #include "interoputil.h" |
| 48 | #include "interoputil.inl" |
| 49 | #endif // FEATURE_COMINTEROP |
| 50 | |
| 51 | #ifdef FEATURE_COMINTEROP_APARTMENT_SUPPORT |
| 52 | #include "olecontexthelpers.h" |
| 53 | #endif // FEATURE_COMINTEROP_APARTMENT_SUPPORT |
| 54 | |
| 55 | #ifdef FEATURE_PERFTRACING |
| 56 | #include "eventpipebuffermanager.h" |
| 57 | #endif // FEATURE_PERFTRACING |
| 58 | |
| 59 | |
| 60 | |
| 61 | SPTR_IMPL(ThreadStore, ThreadStore, s_pThreadStore); |
| 62 | CONTEXT *ThreadStore::s_pOSContext = NULL; |
| 63 | CLREvent *ThreadStore::s_pWaitForStackCrawlEvent; |
| 64 | |
| 65 | PTR_ThreadLocalModule ThreadLocalBlock::GetTLMIfExists(ModuleIndex index) |
| 66 | { |
| 67 | WRAPPER_NO_CONTRACT; |
| 68 | SUPPORTS_DAC; |
| 69 | |
| 70 | if (index.m_dwIndex >= m_TLMTableSize) |
| 71 | return NULL; |
| 72 | |
| 73 | return m_pTLMTable[index.m_dwIndex].pTLM; |
| 74 | } |
| 75 | |
| 76 | PTR_ThreadLocalModule ThreadLocalBlock::GetTLMIfExists(MethodTable* pMT) |
| 77 | { |
| 78 | WRAPPER_NO_CONTRACT; |
| 79 | ModuleIndex index = pMT->GetModuleForStatics()->GetModuleIndex(); |
| 80 | return GetTLMIfExists(index); |
| 81 | } |
| 82 | |
| 83 | #ifndef DACCESS_COMPILE |
| 84 | |
| 85 | BOOL Thread::s_fCleanFinalizedThread = FALSE; |
| 86 | |
| 87 | Volatile<LONG> Thread::s_threadPoolCompletionCountOverflow = 0; |
| 88 | |
| 89 | CrstStatic g_DeadlockAwareCrst; |
| 90 | |
| 91 | |
| 92 | #if defined(_DEBUG) |
| 93 | BOOL MatchThreadHandleToOsId ( HANDLE h, DWORD osId ) |
| 94 | { |
| 95 | #ifndef FEATURE_PAL |
| 96 | LIMITED_METHOD_CONTRACT; |
| 97 | |
| 98 | DWORD id = GetThreadId(h); |
| 99 | |
| 100 | // OS call GetThreadId may fail, and return 0. In this case we can not |
| 101 | // make a decision if the two match or not. Instead, we ignore this check. |
| 102 | return id == 0 || id == osId; |
| 103 | #else // !FEATURE_PAL |
| 104 | return TRUE; |
| 105 | #endif // !FEATURE_PAL |
| 106 | } |
| 107 | #endif // _DEBUG |
| 108 | |
| 109 | |
| 110 | #ifdef _DEBUG_IMPL |
| 111 | template<> AutoCleanupGCAssert<TRUE>::AutoCleanupGCAssert() |
| 112 | { |
| 113 | SCAN_SCOPE_BEGIN; |
| 114 | STATIC_CONTRACT_MODE_COOPERATIVE; |
| 115 | } |
| 116 | |
| 117 | template<> AutoCleanupGCAssert<FALSE>::AutoCleanupGCAssert() |
| 118 | { |
| 119 | SCAN_SCOPE_BEGIN; |
| 120 | STATIC_CONTRACT_MODE_PREEMPTIVE; |
| 121 | } |
| 122 | |
| 123 | template<> void GCAssert<TRUE>::BeginGCAssert() |
| 124 | { |
| 125 | SCAN_SCOPE_BEGIN; |
| 126 | STATIC_CONTRACT_MODE_COOPERATIVE; |
| 127 | } |
| 128 | |
| 129 | template<> void GCAssert<FALSE>::BeginGCAssert() |
| 130 | { |
| 131 | SCAN_SCOPE_BEGIN; |
| 132 | STATIC_CONTRACT_MODE_PREEMPTIVE; |
| 133 | } |
| 134 | #endif |
| 135 | |
| 136 | // #define NEW_TLS 1 |
| 137 | |
| 138 | #ifdef _DEBUG |
| 139 | void Thread::SetFrame(Frame *pFrame) |
| 140 | { |
| 141 | CONTRACTL { |
| 142 | NOTHROW; |
| 143 | GC_NOTRIGGER; |
| 144 | DEBUG_ONLY; |
| 145 | MODE_COOPERATIVE; |
| 146 | // It only makes sense for a Thread to call SetFrame on itself. |
| 147 | PRECONDITION(this == GetThread()); |
| 148 | PRECONDITION(CheckPointer(pFrame)); |
| 149 | } |
| 150 | CONTRACTL_END; |
| 151 | |
| 152 | if (g_pConfig->fAssertOnFailFast()) |
| 153 | { |
| 154 | Frame *pWalk = m_pFrame; |
| 155 | BOOL fExist = FALSE; |
| 156 | while (pWalk != (Frame*) -1) |
| 157 | { |
| 158 | if (pWalk == pFrame) |
| 159 | { |
| 160 | fExist = TRUE; |
| 161 | break; |
| 162 | } |
| 163 | pWalk = pWalk->m_Next; |
| 164 | } |
| 165 | pWalk = m_pFrame; |
| 166 | while (fExist && pWalk != pFrame && pWalk != (Frame*)-1) |
| 167 | { |
| 168 | if (pWalk->GetVTablePtr() == ContextTransitionFrame::GetMethodFrameVPtr()) |
| 169 | { |
| 170 | _ASSERTE (((ContextTransitionFrame *)pWalk)->GetReturnDomain() == m_pDomain); |
| 171 | } |
| 172 | pWalk = pWalk->m_Next; |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | m_pFrame = pFrame; |
| 177 | |
| 178 | // If stack overrun corruptions are expected, then skip this check |
| 179 | // as the Frame chain may have been corrupted. |
| 180 | if (g_pConfig->fAssertOnFailFast() == false) |
| 181 | return; |
| 182 | |
| 183 | Frame* espVal = (Frame*)GetCurrentSP(); |
| 184 | |
| 185 | while (pFrame != (Frame*) -1) |
| 186 | { |
| 187 | static Frame* stopFrame = 0; |
| 188 | if (pFrame == stopFrame) |
| 189 | _ASSERTE(!"SetFrame frame == stopFrame" ); |
| 190 | |
| 191 | _ASSERTE(espVal < pFrame); |
| 192 | _ASSERTE(pFrame < m_CacheStackBase); |
| 193 | _ASSERTE(pFrame->GetFrameType() < Frame::TYPE_COUNT); |
| 194 | |
| 195 | pFrame = pFrame->m_Next; |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | #endif // _DEBUG |
| 200 | |
| 201 | //************************************************************************ |
| 202 | // PRIVATE GLOBALS |
| 203 | //************************************************************************ |
| 204 | |
| 205 | extern unsigned __int64 getTimeStamp(); |
| 206 | |
| 207 | extern unsigned __int64 getTickFrequency(); |
| 208 | |
| 209 | unsigned __int64 tgetFrequency() { |
| 210 | static unsigned __int64 cachedFreq = (unsigned __int64) -1; |
| 211 | |
| 212 | if (cachedFreq != (unsigned __int64) -1) |
| 213 | return cachedFreq; |
| 214 | else { |
| 215 | cachedFreq = getTickFrequency(); |
| 216 | return cachedFreq; |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | #endif // #ifndef DACCESS_COMPILE |
| 221 | |
| 222 | static StackWalkAction DetectHandleILStubsForDebugger_StackWalkCallback(CrawlFrame *pCF, VOID *pData) |
| 223 | { |
| 224 | WRAPPER_NO_CONTRACT; |
| 225 | // It suffices to wait for the first CrawlFrame with non-NULL function |
| 226 | MethodDesc *pMD = pCF->GetFunction(); |
| 227 | if (pMD != NULL) |
| 228 | { |
| 229 | *(bool *)pData = pMD->IsILStub(); |
| 230 | return SWA_ABORT; |
| 231 | } |
| 232 | |
| 233 | return SWA_CONTINUE; |
| 234 | } |
| 235 | |
| 236 | // This is really just a heuristic to detect if we are executing in an M2U IL stub or |
| 237 | // one of the marshaling methods it calls. It doesn't deal with U2M IL stubs. |
| 238 | // We loop through the frame chain looking for an uninitialized TransitionFrame. |
| 239 | // If there is one, then we are executing in an M2U IL stub or one of the methods it calls. |
| 240 | // On the other hand, if there is an initialized TransitionFrame, then we are not. |
| 241 | // Also, if there is an HMF on the stack, then we stop. This could be the case where |
| 242 | // an IL stub calls an FCALL which ends up in a managed method, and the debugger wants to |
| 243 | // stop in those cases. Some examples are COMException..ctor and custom marshalers. |
| 244 | // |
| 245 | // X86 IL stubs use InlinedCallFrame and are indistinguishable from ordinary methods with |
| 246 | // inlined P/Invoke when judging just from the frame chain. We use stack walk to decide |
| 247 | // this case. |
| 248 | bool Thread::DetectHandleILStubsForDebugger() |
| 249 | { |
| 250 | CONTRACTL { |
| 251 | NOTHROW; |
| 252 | GC_NOTRIGGER; |
| 253 | } |
| 254 | CONTRACTL_END; |
| 255 | |
| 256 | Frame* pFrame = GetFrame(); |
| 257 | |
| 258 | if (pFrame != NULL) |
| 259 | { |
| 260 | while (pFrame != FRAME_TOP) |
| 261 | { |
| 262 | // Check for HMF's. See the comment at the beginning of this function. |
| 263 | if (pFrame->GetVTablePtr() == HelperMethodFrame::GetMethodFrameVPtr()) |
| 264 | { |
| 265 | break; |
| 266 | } |
| 267 | // If there is an entry frame (i.e. U2M managed), we should break. |
| 268 | else if (pFrame->GetFrameType() == Frame::TYPE_ENTRY) |
| 269 | { |
| 270 | break; |
| 271 | } |
| 272 | // Check for M2U transition frames. See the comment at the beginning of this function. |
| 273 | else if (pFrame->GetFrameType() == Frame::TYPE_EXIT) |
| 274 | { |
| 275 | if (pFrame->GetReturnAddress() == NULL) |
| 276 | { |
| 277 | // If the return address is NULL, then the frame has not been initialized yet. |
| 278 | // We may see InlinedCallFrame in ordinary methods as well. Have to do |
| 279 | // stack walk to find out if this is really an IL stub. |
| 280 | bool fInILStub = false; |
| 281 | |
| 282 | StackWalkFrames(&DetectHandleILStubsForDebugger_StackWalkCallback, |
| 283 | &fInILStub, |
| 284 | QUICKUNWIND, |
| 285 | dac_cast<PTR_Frame>(pFrame)); |
| 286 | |
| 287 | if (fInILStub) return true; |
| 288 | } |
| 289 | else |
| 290 | { |
| 291 | // The frame is fully initialized. |
| 292 | return false; |
| 293 | } |
| 294 | } |
| 295 | pFrame = pFrame->Next(); |
| 296 | } |
| 297 | } |
| 298 | return false; |
| 299 | } |
| 300 | |
| 301 | extern "C" { |
| 302 | #ifndef __llvm__ |
| 303 | __declspec(thread) |
| 304 | #else // !__llvm__ |
| 305 | __thread |
| 306 | #endif // !__llvm__ |
| 307 | ThreadLocalInfo gCurrentThreadInfo = |
| 308 | { |
| 309 | NULL, // m_pThread |
| 310 | NULL, // m_pAppDomain |
| 311 | NULL, // m_EETlsData |
| 312 | }; |
| 313 | } // extern "C" |
| 314 | |
| 315 | // index into TLS Array. Definition added by compiler |
| 316 | EXTERN_C UINT32 _tls_index; |
| 317 | |
| 318 | #ifndef DACCESS_COMPILE |
| 319 | |
| 320 | BOOL SetThread(Thread* t) |
| 321 | { |
| 322 | LIMITED_METHOD_CONTRACT |
| 323 | |
| 324 | gCurrentThreadInfo.m_pThread = t; |
| 325 | return TRUE; |
| 326 | } |
| 327 | |
| 328 | BOOL SetAppDomain(AppDomain* ad) |
| 329 | { |
| 330 | LIMITED_METHOD_CONTRACT |
| 331 | |
| 332 | gCurrentThreadInfo.m_pAppDomain = ad; |
| 333 | return TRUE; |
| 334 | } |
| 335 | |
| 336 | BOOL Thread::Alert () |
| 337 | { |
| 338 | CONTRACTL { |
| 339 | NOTHROW; |
| 340 | GC_NOTRIGGER; |
| 341 | } |
| 342 | CONTRACTL_END; |
| 343 | |
| 344 | BOOL fRetVal = FALSE; |
| 345 | { |
| 346 | HANDLE handle = GetThreadHandle(); |
| 347 | if (handle != INVALID_HANDLE_VALUE && handle != SWITCHOUT_HANDLE_VALUE) |
| 348 | { |
| 349 | fRetVal = ::QueueUserAPC(UserInterruptAPC, handle, APC_Code); |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | return fRetVal; |
| 354 | } |
| 355 | |
| 356 | |
| 357 | DWORD Thread::Join(DWORD timeout, BOOL alertable) |
| 358 | { |
| 359 | WRAPPER_NO_CONTRACT; |
| 360 | return JoinEx(timeout,alertable?WaitMode_Alertable:WaitMode_None); |
| 361 | } |
| 362 | DWORD Thread::JoinEx(DWORD timeout, WaitMode mode) |
| 363 | { |
| 364 | CONTRACTL { |
| 365 | THROWS; |
| 366 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 367 | } |
| 368 | CONTRACTL_END; |
| 369 | |
| 370 | BOOL alertable = (mode & WaitMode_Alertable)?TRUE:FALSE; |
| 371 | |
| 372 | Thread *pCurThread = GetThread(); |
| 373 | _ASSERTE(pCurThread || dbgOnly_IsSpecialEEThread()); |
| 374 | |
| 375 | { |
| 376 | // We're not hosted, so WaitMode_InDeadlock is irrelevant. Clear it, so that this wait can be |
| 377 | // forwarded to a SynchronizationContext if needed. |
| 378 | mode = (WaitMode)(mode & ~WaitMode_InDeadlock); |
| 379 | |
| 380 | HANDLE handle = GetThreadHandle(); |
| 381 | if (handle == INVALID_HANDLE_VALUE || handle == SWITCHOUT_HANDLE_VALUE) { |
| 382 | return WAIT_FAILED; |
| 383 | } |
| 384 | if (pCurThread) { |
| 385 | return pCurThread->DoAppropriateWait(1, &handle, FALSE, timeout, mode); |
| 386 | } |
| 387 | else { |
| 388 | return WaitForSingleObjectEx(handle,timeout,alertable); |
| 389 | } |
| 390 | } |
| 391 | } |
| 392 | |
| 393 | extern INT32 MapFromNTPriority(INT32 NTPriority); |
| 394 | |
| 395 | BOOL Thread::SetThreadPriority( |
| 396 | int nPriority // thread priority level |
| 397 | ) |
| 398 | { |
| 399 | CONTRACTL |
| 400 | { |
| 401 | NOTHROW; |
| 402 | GC_NOTRIGGER; |
| 403 | } |
| 404 | CONTRACTL_END; |
| 405 | |
| 406 | BOOL fRet; |
| 407 | { |
| 408 | if (GetThreadHandle() == INVALID_HANDLE_VALUE) { |
| 409 | // When the thread starts running, we will set the thread priority. |
| 410 | fRet = TRUE; |
| 411 | } |
| 412 | else |
| 413 | fRet = ::SetThreadPriority(GetThreadHandle(), nPriority); |
| 414 | } |
| 415 | |
| 416 | if (fRet) |
| 417 | { |
| 418 | GCX_COOP(); |
| 419 | THREADBASEREF pObject = (THREADBASEREF)ObjectFromHandle(m_ExposedObject); |
| 420 | if (pObject != NULL) |
| 421 | { |
| 422 | // TODO: managed ThreadPriority only supports up to 4. |
| 423 | pObject->SetPriority (MapFromNTPriority(nPriority)); |
| 424 | } |
| 425 | } |
| 426 | return fRet; |
| 427 | } |
| 428 | |
| 429 | int Thread::GetThreadPriority() |
| 430 | { |
| 431 | CONTRACTL { |
| 432 | NOTHROW; |
| 433 | GC_NOTRIGGER; |
| 434 | } |
| 435 | CONTRACTL_END; |
| 436 | |
| 437 | int nRetVal = -1; |
| 438 | if (GetThreadHandle() == INVALID_HANDLE_VALUE) { |
| 439 | nRetVal = FALSE; |
| 440 | } |
| 441 | else |
| 442 | nRetVal = ::GetThreadPriority(GetThreadHandle()); |
| 443 | |
| 444 | return nRetVal; |
| 445 | } |
| 446 | |
| 447 | void Thread::ChooseThreadCPUGroupAffinity() |
| 448 | { |
| 449 | CONTRACTL |
| 450 | { |
| 451 | NOTHROW; |
| 452 | GC_TRIGGERS; |
| 453 | } |
| 454 | CONTRACTL_END; |
| 455 | |
| 456 | if (!CPUGroupInfo::CanEnableGCCPUGroups() || !CPUGroupInfo::CanEnableThreadUseAllCpuGroups()) |
| 457 | return; |
| 458 | |
| 459 | |
| 460 | //Borrow the ThreadStore Lock here: Lock ThreadStore before distributing threads |
| 461 | ThreadStoreLockHolder TSLockHolder(TRUE); |
| 462 | |
| 463 | // this thread already has CPU group affinity set |
| 464 | if (m_pAffinityMask != 0) |
| 465 | return; |
| 466 | |
| 467 | if (GetThreadHandle() == INVALID_HANDLE_VALUE) |
| 468 | return; |
| 469 | |
| 470 | GROUP_AFFINITY groupAffinity; |
| 471 | CPUGroupInfo::ChooseCPUGroupAffinity(&groupAffinity); |
| 472 | CPUGroupInfo::SetThreadGroupAffinity(GetThreadHandle(), &groupAffinity, NULL); |
| 473 | m_wCPUGroup = groupAffinity.Group; |
| 474 | m_pAffinityMask = groupAffinity.Mask; |
| 475 | } |
| 476 | |
| 477 | void Thread::ClearThreadCPUGroupAffinity() |
| 478 | { |
| 479 | CONTRACTL |
| 480 | { |
| 481 | NOTHROW; |
| 482 | GC_NOTRIGGER; |
| 483 | } |
| 484 | CONTRACTL_END; |
| 485 | |
| 486 | if (!CPUGroupInfo::CanEnableGCCPUGroups() || !CPUGroupInfo::CanEnableThreadUseAllCpuGroups()) |
| 487 | return; |
| 488 | |
| 489 | |
| 490 | ThreadStoreLockHolder TSLockHolder(TRUE); |
| 491 | |
| 492 | // this thread does not have CPU group affinity set |
| 493 | if (m_pAffinityMask == 0) |
| 494 | return; |
| 495 | |
| 496 | GROUP_AFFINITY groupAffinity; |
| 497 | groupAffinity.Group = m_wCPUGroup; |
| 498 | groupAffinity.Mask = m_pAffinityMask; |
| 499 | CPUGroupInfo::ClearCPUGroupAffinity(&groupAffinity); |
| 500 | |
| 501 | m_wCPUGroup = 0; |
| 502 | m_pAffinityMask = 0; |
| 503 | } |
| 504 | |
| 505 | DWORD Thread::StartThread() |
| 506 | { |
| 507 | CONTRACTL |
| 508 | { |
| 509 | NOTHROW; |
| 510 | GC_NOTRIGGER; |
| 511 | MODE_ANY; |
| 512 | } |
| 513 | CONTRACTL_END; |
| 514 | |
| 515 | DWORD dwRetVal = (DWORD) -1; |
| 516 | #ifdef _DEBUG |
| 517 | _ASSERTE (m_Creater.IsCurrentThread()); |
| 518 | m_Creater.Clear(); |
| 519 | #endif |
| 520 | |
| 521 | _ASSERTE (GetThreadHandle() != INVALID_HANDLE_VALUE && |
| 522 | GetThreadHandle() != SWITCHOUT_HANDLE_VALUE); |
| 523 | dwRetVal = ::ResumeThread(GetThreadHandle()); |
| 524 | |
| 525 | |
| 526 | return dwRetVal; |
| 527 | } |
| 528 | |
| 529 | |
| 530 | // Class static data: |
| 531 | LONG Thread::m_DebugWillSyncCount = -1; |
| 532 | LONG Thread::m_DetachCount = 0; |
| 533 | LONG Thread::m_ActiveDetachCount = 0; |
| 534 | int Thread::m_offset_counter = 0; |
| 535 | Volatile<LONG> Thread::m_threadsAtUnsafePlaces = 0; |
| 536 | |
| 537 | //------------------------------------------------------------------------- |
| 538 | // Public function: SetupThreadNoThrow() |
| 539 | // Creates Thread for current thread if not previously created. |
| 540 | // Returns NULL for failure (usually due to out-of-memory.) |
| 541 | //------------------------------------------------------------------------- |
| 542 | Thread* SetupThreadNoThrow(HRESULT *pHR) |
| 543 | { |
| 544 | CONTRACTL { |
| 545 | NOTHROW; |
| 546 | SO_TOLERANT; |
| 547 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 548 | } |
| 549 | CONTRACTL_END; |
| 550 | |
| 551 | HRESULT hr = S_OK; |
| 552 | |
| 553 | Thread *pThread = GetThread(); |
| 554 | if (pThread != NULL) |
| 555 | { |
| 556 | return pThread; |
| 557 | } |
| 558 | |
| 559 | EX_TRY |
| 560 | { |
| 561 | pThread = SetupThread(); |
| 562 | } |
| 563 | EX_CATCH |
| 564 | { |
| 565 | // We failed SetupThread. GET_EXCEPTION() may depend on Thread object. |
| 566 | if (__pException == NULL) |
| 567 | { |
| 568 | hr = E_OUTOFMEMORY; |
| 569 | } |
| 570 | else |
| 571 | { |
| 572 | hr = GET_EXCEPTION()->GetHR(); |
| 573 | } |
| 574 | } |
| 575 | EX_END_CATCH(SwallowAllExceptions); |
| 576 | |
| 577 | if (pHR) |
| 578 | { |
| 579 | *pHR = hr; |
| 580 | } |
| 581 | |
| 582 | return pThread; |
| 583 | } |
| 584 | |
| 585 | void DeleteThread(Thread* pThread) |
| 586 | { |
| 587 | CONTRACTL { |
| 588 | NOTHROW; |
| 589 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 590 | } |
| 591 | CONTRACTL_END; |
| 592 | |
| 593 | //_ASSERTE (pThread == GetThread()); |
| 594 | SetThread(NULL); |
| 595 | SetAppDomain(NULL); |
| 596 | |
| 597 | if (pThread->HasThreadStateNC(Thread::TSNC_ExistInThreadStore)) |
| 598 | { |
| 599 | pThread->DetachThread(FALSE); |
| 600 | } |
| 601 | else |
| 602 | { |
| 603 | #ifdef FEATURE_COMINTEROP |
| 604 | pThread->RevokeApartmentSpy(); |
| 605 | #endif // FEATURE_COMINTEROP |
| 606 | |
| 607 | FastInterlockOr((ULONG *)&pThread->m_State, Thread::TS_Dead); |
| 608 | |
| 609 | // ~Thread() calls SafeSetThrowables which has a conditional contract |
| 610 | // which says that if you call it with a NULL throwable then it is |
| 611 | // MODE_ANY, otherwise MODE_COOPERATIVE. Scan doesn't understand that |
| 612 | // and assumes that we're violating the MODE_COOPERATIVE. |
| 613 | CONTRACT_VIOLATION(ModeViolation); |
| 614 | |
| 615 | delete pThread; |
| 616 | } |
| 617 | } |
| 618 | |
| 619 | void EnsurePreemptive() |
| 620 | { |
| 621 | WRAPPER_NO_CONTRACT; |
| 622 | Thread *pThread = GetThread(); |
| 623 | if (pThread && pThread->PreemptiveGCDisabled()) |
| 624 | { |
| 625 | pThread->EnablePreemptiveGC(); |
| 626 | } |
| 627 | } |
| 628 | |
| 629 | typedef StateHolder<DoNothing, EnsurePreemptive> EnsurePreemptiveModeIfException; |
| 630 | |
| 631 | Thread* SetupThread(BOOL fInternal) |
| 632 | { |
| 633 | CONTRACTL { |
| 634 | THROWS; |
| 635 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 636 | SO_TOLERANT; |
| 637 | } |
| 638 | CONTRACTL_END; |
| 639 | |
| 640 | Thread* pThread; |
| 641 | if ((pThread = GetThread()) != NULL) |
| 642 | return pThread; |
| 643 | |
| 644 | #ifdef FEATURE_STACK_PROBE |
| 645 | RetailStackProbe(ADJUST_PROBE(DEFAULT_ENTRY_PROBE_AMOUNT), NULL); |
| 646 | #endif //FEATURE_STACK_PROBE |
| 647 | |
| 648 | CONTRACT_VIOLATION(SOToleranceViolation); |
| 649 | |
| 650 | // For interop debugging, we must mark that we're in a can't-stop region |
| 651 | // b.c we may take Crsts here that may block the helper thread. |
| 652 | // We're especially fragile here b/c we don't have a Thread object yet |
| 653 | CantStopHolder hCantStop; |
| 654 | |
| 655 | EnsurePreemptiveModeIfException ensurePreemptive; |
| 656 | |
| 657 | #ifdef _DEBUG |
| 658 | CHECK chk; |
| 659 | if (g_pConfig->SuppressChecks()) |
| 660 | { |
| 661 | // EnterAssert will suppress any checks |
| 662 | chk.EnterAssert(); |
| 663 | } |
| 664 | #endif |
| 665 | |
| 666 | // Normally, HasStarted is called from the thread's entrypoint to introduce it to |
| 667 | // the runtime. But sometimes that thread is used for DLL_THREAD_ATTACH notifications |
| 668 | // that call into managed code. In that case, a call to SetupThread here must |
| 669 | // find the correct Thread object and install it into TLS. |
| 670 | |
| 671 | if (ThreadStore::s_pThreadStore->m_PendingThreadCount != 0) |
| 672 | { |
| 673 | DWORD ourOSThreadId = ::GetCurrentThreadId(); |
| 674 | { |
| 675 | ThreadStoreLockHolder TSLockHolder; |
| 676 | _ASSERTE(pThread == NULL); |
| 677 | while ((pThread = ThreadStore::s_pThreadStore->GetAllThreadList(pThread, Thread::TS_Unstarted | Thread::TS_FailStarted, Thread::TS_Unstarted)) != NULL) |
| 678 | { |
| 679 | if (pThread->GetOSThreadId() == ourOSThreadId) |
| 680 | { |
| 681 | break; |
| 682 | } |
| 683 | } |
| 684 | |
| 685 | if (pThread != NULL) |
| 686 | { |
| 687 | STRESS_LOG2(LF_SYNC, LL_INFO1000, "T::ST - recycling thread 0x%p (state: 0x%x)\n" , pThread, pThread->m_State.Load()); |
| 688 | } |
| 689 | } |
| 690 | |
| 691 | // It's perfectly reasonable to not find this guy. It's just an unrelated |
| 692 | // thread spinning up. |
| 693 | if (pThread) |
| 694 | { |
| 695 | if (IsThreadPoolWorkerSpecialThread()) |
| 696 | { |
| 697 | FastInterlockOr((ULONG *) &pThread->m_State, Thread::TS_TPWorkerThread); |
| 698 | pThread->SetBackground(TRUE); |
| 699 | } |
| 700 | else if (IsThreadPoolIOCompletionSpecialThread()) |
| 701 | { |
| 702 | FastInterlockOr ((ULONG *) &pThread->m_State, Thread::TS_CompletionPortThread); |
| 703 | pThread->SetBackground(TRUE); |
| 704 | } |
| 705 | else if (IsTimerSpecialThread() || IsWaitSpecialThread()) |
| 706 | { |
| 707 | FastInterlockOr((ULONG *) &pThread->m_State, Thread::TS_TPWorkerThread); |
| 708 | pThread->SetBackground(TRUE); |
| 709 | } |
| 710 | |
| 711 | BOOL fStatus = pThread->HasStarted(); |
| 712 | ensurePreemptive.SuppressRelease(); |
| 713 | return fStatus ? pThread : NULL; |
| 714 | } |
| 715 | } |
| 716 | |
| 717 | // First time we've seen this thread in the runtime: |
| 718 | pThread = new Thread(); |
| 719 | |
| 720 | // What state are we in here? COOP??? |
| 721 | |
| 722 | Holder<Thread*,DoNothing<Thread*>,DeleteThread> threadHolder(pThread); |
| 723 | |
| 724 | CExecutionEngine::SetupTLSForThread(pThread); |
| 725 | |
| 726 | // A host can deny a thread entering runtime by returning a NULL IHostTask. |
| 727 | // But we do want threads used by threadpool. |
| 728 | if (IsThreadPoolWorkerSpecialThread() || |
| 729 | IsThreadPoolIOCompletionSpecialThread() || |
| 730 | IsTimerSpecialThread() || |
| 731 | IsWaitSpecialThread()) |
| 732 | { |
| 733 | fInternal = TRUE; |
| 734 | } |
| 735 | |
| 736 | if (!pThread->InitThread(fInternal) || |
| 737 | !pThread->PrepareApartmentAndContext()) |
| 738 | ThrowOutOfMemory(); |
| 739 | |
| 740 | // reset any unstarted bits on the thread object |
| 741 | FastInterlockAnd((ULONG *) &pThread->m_State, ~Thread::TS_Unstarted); |
| 742 | FastInterlockOr((ULONG *) &pThread->m_State, Thread::TS_LegalToJoin); |
| 743 | |
| 744 | ThreadStore::AddThread(pThread); |
| 745 | |
| 746 | BOOL fOK = SetThread(pThread); |
| 747 | _ASSERTE (fOK); |
| 748 | fOK = SetAppDomain(pThread->GetDomain()); |
| 749 | _ASSERTE (fOK); |
| 750 | |
| 751 | #ifdef FEATURE_INTEROP_DEBUGGING |
| 752 | // Ensure that debugger word slot is allocated |
| 753 | UnsafeTlsSetValue(g_debuggerWordTLSIndex, 0); |
| 754 | #endif |
| 755 | |
| 756 | // We now have a Thread object visable to the RS. unmark special status. |
| 757 | hCantStop.Release(); |
| 758 | |
| 759 | pThread->SetupThreadForHost(); |
| 760 | |
| 761 | threadHolder.SuppressRelease(); |
| 762 | |
| 763 | FastInterlockOr((ULONG *) &pThread->m_State, Thread::TS_FullyInitialized); |
| 764 | |
| 765 | #ifdef DEBUGGING_SUPPORTED |
| 766 | // |
| 767 | // If we're debugging, let the debugger know that this |
| 768 | // thread is up and running now. |
| 769 | // |
| 770 | if (CORDebuggerAttached()) |
| 771 | { |
| 772 | g_pDebugInterface->ThreadCreated(pThread); |
| 773 | } |
| 774 | else |
| 775 | { |
| 776 | LOG((LF_CORDB, LL_INFO10000, "ThreadCreated() not called due to CORDebuggerAttached() being FALSE for thread 0x%x\n" , pThread->GetThreadId())); |
| 777 | } |
| 778 | #endif // DEBUGGING_SUPPORTED |
| 779 | |
| 780 | #ifdef PROFILING_SUPPORTED |
| 781 | // If a profiler is present, then notify the profiler that a |
| 782 | // thread has been created. |
| 783 | if (!IsGCSpecialThread()) |
| 784 | { |
| 785 | BEGIN_PIN_PROFILER(CORProfilerTrackThreads()); |
| 786 | { |
| 787 | GCX_PREEMP(); |
| 788 | g_profControlBlock.pProfInterface->ThreadCreated( |
| 789 | (ThreadID)pThread); |
| 790 | } |
| 791 | |
| 792 | DWORD osThreadId = ::GetCurrentThreadId(); |
| 793 | g_profControlBlock.pProfInterface->ThreadAssignedToOSThread( |
| 794 | (ThreadID)pThread, osThreadId); |
| 795 | END_PIN_PROFILER(); |
| 796 | } |
| 797 | #endif // PROFILING_SUPPORTED |
| 798 | |
| 799 | _ASSERTE(!pThread->IsBackground()); // doesn't matter, but worth checking |
| 800 | pThread->SetBackground(TRUE); |
| 801 | |
| 802 | ensurePreemptive.SuppressRelease(); |
| 803 | |
| 804 | if (IsThreadPoolWorkerSpecialThread()) |
| 805 | { |
| 806 | FastInterlockOr((ULONG *) &pThread->m_State, Thread::TS_TPWorkerThread); |
| 807 | } |
| 808 | else if (IsThreadPoolIOCompletionSpecialThread()) |
| 809 | { |
| 810 | FastInterlockOr ((ULONG *) &pThread->m_State, Thread::TS_CompletionPortThread); |
| 811 | } |
| 812 | else if (IsTimerSpecialThread() || IsWaitSpecialThread()) |
| 813 | { |
| 814 | FastInterlockOr((ULONG *) &pThread->m_State, Thread::TS_TPWorkerThread); |
| 815 | } |
| 816 | |
| 817 | #ifdef FEATURE_APPDOMAIN_RESOURCE_MONITORING |
| 818 | if (g_fEnableARM) |
| 819 | { |
| 820 | pThread->QueryThreadProcessorUsage(); |
| 821 | } |
| 822 | #endif // FEATURE_APPDOMAIN_RESOURCE_MONITORING |
| 823 | |
| 824 | #ifdef FEATURE_EVENT_TRACE |
| 825 | ETW::ThreadLog::FireThreadCreated(pThread); |
| 826 | #endif // FEATURE_EVENT_TRACE |
| 827 | |
| 828 | return pThread; |
| 829 | } |
| 830 | |
| 831 | //------------------------------------------------------------------------- |
| 832 | // Public function: SetupUnstartedThread() |
| 833 | // This sets up a Thread object for an exposed System.Thread that |
| 834 | // has not been started yet. This allows us to properly enumerate all threads |
| 835 | // in the ThreadStore, so we can report on even unstarted threads. Clearly |
| 836 | // there is no physical thread to match, yet. |
| 837 | // |
| 838 | // When there is, complete the setup with code:Thread::HasStarted() |
| 839 | //------------------------------------------------------------------------- |
| 840 | Thread* SetupUnstartedThread(BOOL bRequiresTSL) |
| 841 | { |
| 842 | CONTRACTL { |
| 843 | THROWS; |
| 844 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 845 | } |
| 846 | CONTRACTL_END; |
| 847 | |
| 848 | Thread* pThread = new Thread(); |
| 849 | |
| 850 | FastInterlockOr((ULONG *) &pThread->m_State, |
| 851 | (Thread::TS_Unstarted | Thread::TS_WeOwn)); |
| 852 | |
| 853 | ThreadStore::AddThread(pThread, bRequiresTSL); |
| 854 | |
| 855 | return pThread; |
| 856 | } |
| 857 | |
| 858 | //------------------------------------------------------------------------- |
| 859 | // Public function: DestroyThread() |
| 860 | // Destroys the specified Thread object, for a thread which is about to die. |
| 861 | //------------------------------------------------------------------------- |
| 862 | void DestroyThread(Thread *th) |
| 863 | { |
| 864 | CONTRACTL { |
| 865 | NOTHROW; |
| 866 | GC_TRIGGERS; |
| 867 | } |
| 868 | CONTRACTL_END; |
| 869 | |
| 870 | _ASSERTE (th == GetThread()); |
| 871 | |
| 872 | _ASSERTE(g_fEEShutDown || th->m_dwLockCount == 0 || th->m_fRudeAborted); |
| 873 | |
| 874 | #ifdef FEATURE_APPDOMAIN_RESOURCE_MONITORING |
| 875 | if (g_fEnableARM) |
| 876 | { |
| 877 | AppDomain* pDomain = th->GetDomain(); |
| 878 | pDomain->UpdateProcessorUsage(th->QueryThreadProcessorUsage()); |
| 879 | FireEtwThreadTerminated((ULONGLONG)th, (ULONGLONG)pDomain, GetClrInstanceId()); |
| 880 | } |
| 881 | #endif // FEATURE_APPDOMAIN_RESOURCE_MONITORING |
| 882 | |
| 883 | th->FinishSOWork(); |
| 884 | |
| 885 | GCX_PREEMP_NO_DTOR(); |
| 886 | |
| 887 | if (th->IsAbortRequested()) { |
| 888 | // Reset trapping count. |
| 889 | th->UnmarkThreadForAbort(Thread::TAR_ALL); |
| 890 | } |
| 891 | |
| 892 | // Clear any outstanding stale EH state that maybe still active on the thread. |
| 893 | #ifdef WIN64EXCEPTIONS |
| 894 | ExceptionTracker::PopTrackers((void*)-1); |
| 895 | #else // !WIN64EXCEPTIONS |
| 896 | #ifdef _TARGET_X86_ |
| 897 | PTR_ThreadExceptionState pExState = th->GetExceptionState(); |
| 898 | if (pExState->IsExceptionInProgress()) |
| 899 | { |
| 900 | GCX_COOP(); |
| 901 | pExState->GetCurrentExceptionTracker()->UnwindExInfo((void *)-1); |
| 902 | } |
| 903 | #else // !_TARGET_X86_ |
| 904 | #error Unsupported platform |
| 905 | #endif // _TARGET_X86_ |
| 906 | #endif // WIN64EXCEPTIONS |
| 907 | |
| 908 | #ifdef FEATURE_PERFTRACING |
| 909 | // Before the thread dies, mark its buffers as no longer owned |
| 910 | // so that they can be cleaned up after the thread dies. |
| 911 | EventPipeBufferList *pBufferList = th->GetEventPipeBufferList(); |
| 912 | if(pBufferList != NULL) |
| 913 | { |
| 914 | pBufferList->SetOwnedByThread(false); |
| 915 | } |
| 916 | #endif // FEATURE_PERFTRACING |
| 917 | |
| 918 | if (g_fEEShutDown == 0) |
| 919 | { |
| 920 | th->SetThreadState(Thread::TS_ReportDead); |
| 921 | th->OnThreadTerminate(FALSE); |
| 922 | } |
| 923 | } |
| 924 | |
| 925 | //------------------------------------------------------------------------- |
| 926 | // Public function: DetachThread() |
| 927 | // Marks the thread as needing to be destroyed, but doesn't destroy it yet. |
| 928 | //------------------------------------------------------------------------- |
| 929 | HRESULT Thread::DetachThread(BOOL fDLLThreadDetach) |
| 930 | { |
| 931 | // !!! Can not use contract here. |
| 932 | // !!! Contract depends on Thread object for GC_TRIGGERS. |
| 933 | // !!! At the end of this function, we call InternalSwitchOut, |
| 934 | // !!! and then GetThread()=NULL, and dtor of contract does not work any more. |
| 935 | STATIC_CONTRACT_NOTHROW; |
| 936 | STATIC_CONTRACT_GC_NOTRIGGER; |
| 937 | |
| 938 | // @todo . We need to probe here, but can't introduce destructors etc. |
| 939 | BEGIN_CONTRACT_VIOLATION(SOToleranceViolation); |
| 940 | |
| 941 | // Clear any outstanding stale EH state that maybe still active on the thread. |
| 942 | #ifdef WIN64EXCEPTIONS |
| 943 | ExceptionTracker::PopTrackers((void*)-1); |
| 944 | #else // !WIN64EXCEPTIONS |
| 945 | #ifdef _TARGET_X86_ |
| 946 | PTR_ThreadExceptionState pExState = GetExceptionState(); |
| 947 | if (pExState->IsExceptionInProgress()) |
| 948 | { |
| 949 | GCX_COOP(); |
| 950 | pExState->GetCurrentExceptionTracker()->UnwindExInfo((void *)-1); |
| 951 | } |
| 952 | #else // !_TARGET_X86_ |
| 953 | #error Unsupported platform |
| 954 | #endif // _TARGET_X86_ |
| 955 | #endif // WIN64EXCEPTIONS |
| 956 | |
| 957 | #ifdef FEATURE_COMINTEROP |
| 958 | IErrorInfo *pErrorInfo; |
| 959 | // Avoid calling GetErrorInfo() if ole32 has already executed the DLL_THREAD_DETACH, |
| 960 | // otherwise we'll cause ole32 to re-allocate and leak its TLS data (SOleTlsData). |
| 961 | if (ClrTeb::GetOleReservedPtr() != NULL && GetErrorInfo(0, &pErrorInfo) == S_OK) |
| 962 | { |
| 963 | // if this is our IErrorInfo, release it now - we don't want ole32 to do it later as |
| 964 | // part of its DLL_THREAD_DETACH as we won't be able to handle the call at that point |
| 965 | if (!ComInterfaceSlotIs(pErrorInfo, 2, Unknown_ReleaseSpecial_IErrorInfo)) |
| 966 | { |
| 967 | // if it's not our IErrorInfo, put it back |
| 968 | SetErrorInfo(0, pErrorInfo); |
| 969 | } |
| 970 | pErrorInfo->Release(); |
| 971 | } |
| 972 | |
| 973 | // Revoke our IInitializeSpy registration only if we are not in DLL_THREAD_DETACH |
| 974 | // (COM will do it or may have already done it automatically in that case). |
| 975 | if (!fDLLThreadDetach) |
| 976 | { |
| 977 | RevokeApartmentSpy(); |
| 978 | } |
| 979 | #endif // FEATURE_COMINTEROP |
| 980 | |
| 981 | _ASSERTE(!PreemptiveGCDisabled()); |
| 982 | _ASSERTE(g_fEEShutDown || m_dwLockCount == 0 || m_fRudeAborted); |
| 983 | |
| 984 | _ASSERTE ((m_State & Thread::TS_Detached) == 0); |
| 985 | |
| 986 | _ASSERTE (this == GetThread()); |
| 987 | |
| 988 | #ifdef FEATURE_APPDOMAIN_RESOURCE_MONITORING |
| 989 | if (g_fEnableARM && m_pDomain) |
| 990 | { |
| 991 | m_pDomain->UpdateProcessorUsage(QueryThreadProcessorUsage()); |
| 992 | FireEtwThreadTerminated((ULONGLONG)this, (ULONGLONG)m_pDomain, GetClrInstanceId()); |
| 993 | } |
| 994 | #endif // FEATURE_APPDOMAIN_RESOURCE_MONITORING |
| 995 | |
| 996 | FinishSOWork(); |
| 997 | |
| 998 | FastInterlockIncrement(&Thread::m_DetachCount); |
| 999 | |
| 1000 | if (IsAbortRequested()) { |
| 1001 | // Reset trapping count. |
| 1002 | UnmarkThreadForAbort(Thread::TAR_ALL); |
| 1003 | } |
| 1004 | |
| 1005 | if (!IsBackground()) |
| 1006 | { |
| 1007 | FastInterlockIncrement(&Thread::m_ActiveDetachCount); |
| 1008 | ThreadStore::CheckForEEShutdown(); |
| 1009 | } |
| 1010 | |
| 1011 | END_CONTRACT_VIOLATION; |
| 1012 | |
| 1013 | HANDLE hThread = GetThreadHandle(); |
| 1014 | SetThreadHandle (SWITCHOUT_HANDLE_VALUE); |
| 1015 | while (m_dwThreadHandleBeingUsed > 0) |
| 1016 | { |
| 1017 | // Another thread is using the handle now. |
| 1018 | #undef Sleep |
| 1019 | // We can not call __SwitchToThread since we can not go back to host. |
| 1020 | ::Sleep(10); |
| 1021 | #define Sleep(a) Dont_Use_Sleep(a) |
| 1022 | } |
| 1023 | if (m_WeOwnThreadHandle && m_ThreadHandleForClose == INVALID_HANDLE_VALUE) |
| 1024 | { |
| 1025 | m_ThreadHandleForClose = hThread; |
| 1026 | } |
| 1027 | |
| 1028 | // We need to make sure that TLS are touched last here. |
| 1029 | SetThread(NULL); |
| 1030 | SetAppDomain(NULL); |
| 1031 | |
| 1032 | #ifdef ENABLE_CONTRACTS_DATA |
| 1033 | m_pClrDebugState = NULL; |
| 1034 | #endif //ENABLE_CONTRACTS_DATA |
| 1035 | |
| 1036 | #ifdef FEATURE_PERFTRACING |
| 1037 | // Before the thread dies, mark its buffers as no longer owned |
| 1038 | // so that they can be cleaned up after the thread dies. |
| 1039 | EventPipeBufferList *pBufferList = m_pEventPipeBufferList.Load(); |
| 1040 | if(pBufferList != NULL) |
| 1041 | { |
| 1042 | pBufferList->SetOwnedByThread(false); |
| 1043 | } |
| 1044 | #endif // FEATURE_PERFTRACING |
| 1045 | |
| 1046 | FastInterlockOr((ULONG*)&m_State, (int) (Thread::TS_Detached | Thread::TS_ReportDead)); |
| 1047 | // Do not touch Thread object any more. It may be destroyed. |
| 1048 | |
| 1049 | // These detached threads will be cleaned up by finalizer thread. But if the process uses |
| 1050 | // little managed heap, it will be a while before GC happens, and finalizer thread starts |
| 1051 | // working on detached thread. So we wake up finalizer thread to clean up resources. |
| 1052 | // |
| 1053 | // (It's possible that this is the startup thread, and startup failed, and so the finalization |
| 1054 | // machinery isn't fully initialized. Hence this check.) |
| 1055 | if (g_fEEStarted) |
| 1056 | FinalizerThread::EnableFinalization(); |
| 1057 | |
| 1058 | return S_OK; |
| 1059 | } |
| 1060 | |
| 1061 | DWORD GetRuntimeId() |
| 1062 | { |
| 1063 | LIMITED_METHOD_CONTRACT; |
| 1064 | |
| 1065 | return _tls_index; |
| 1066 | } |
| 1067 | |
| 1068 | //--------------------------------------------------------------------------- |
| 1069 | // Creates new Thread for reverse p-invoke calls. |
| 1070 | //--------------------------------------------------------------------------- |
| 1071 | Thread* WINAPI CreateThreadBlockThrow() |
| 1072 | { |
| 1073 | |
| 1074 | WRAPPER_NO_CONTRACT; |
| 1075 | |
| 1076 | // This is a workaround to disable our check for throwing exception in SetupThread. |
| 1077 | // We want to throw an exception for reverse p-invoke, and our assertion may fire if |
| 1078 | // a unmanaged caller does not setup an exception handler. |
| 1079 | CONTRACT_VIOLATION(ThrowsViolation); // WON'T FIX - This enables catastrophic failure exception in reverse P/Invoke - the only way we can communicate an error to legacy code. |
| 1080 | Thread* pThread = NULL; |
| 1081 | BEGIN_ENTRYPOINT_THROWS; |
| 1082 | |
| 1083 | if (!CanRunManagedCode()) |
| 1084 | { |
| 1085 | // CLR is shutting down - someone's DllMain detach event may be calling back into managed code. |
| 1086 | // It is misleading to use our COM+ exception code, since this is not a managed exception. |
| 1087 | ULONG_PTR arg = E_PROCESS_SHUTDOWN_REENTRY; |
| 1088 | RaiseException(EXCEPTION_EXX, 0, 1, &arg); |
| 1089 | } |
| 1090 | |
| 1091 | HRESULT hr = S_OK; |
| 1092 | pThread = SetupThreadNoThrow(&hr); |
| 1093 | if (pThread == NULL) |
| 1094 | { |
| 1095 | // Creating Thread failed, and we need to throw an exception to report status. |
| 1096 | // It is misleading to use our COM+ exception code, since this is not a managed exception. |
| 1097 | ULONG_PTR arg = hr; |
| 1098 | RaiseException(EXCEPTION_EXX, 0, 1, &arg); |
| 1099 | } |
| 1100 | END_ENTRYPOINT_THROWS; |
| 1101 | |
| 1102 | return pThread; |
| 1103 | } |
| 1104 | |
| 1105 | #ifdef _DEBUG |
| 1106 | DWORD_PTR Thread::OBJREF_HASH = OBJREF_TABSIZE; |
| 1107 | #endif |
| 1108 | |
| 1109 | extern "C" void STDCALL JIT_PatchedCodeStart(); |
| 1110 | extern "C" void STDCALL JIT_PatchedCodeLast(); |
| 1111 | |
| 1112 | //--------------------------------------------------------------------------- |
| 1113 | // One-time initialization. Called during Dll initialization. So |
| 1114 | // be careful what you do in here! |
| 1115 | //--------------------------------------------------------------------------- |
| 1116 | void InitThreadManager() |
| 1117 | { |
| 1118 | CONTRACTL { |
| 1119 | THROWS; |
| 1120 | GC_TRIGGERS; |
| 1121 | } |
| 1122 | CONTRACTL_END; |
| 1123 | |
| 1124 | InitializeYieldProcessorNormalizedCrst(); |
| 1125 | |
| 1126 | // All patched helpers should fit into one page. |
| 1127 | // If you hit this assert on retail build, there is most likely problem with BBT script. |
| 1128 | _ASSERTE_ALL_BUILDS("clr/src/VM/threads.cpp" , (BYTE*)JIT_PatchedCodeLast - (BYTE*)JIT_PatchedCodeStart < (ptrdiff_t)GetOsPageSize()); |
| 1129 | |
| 1130 | // I am using virtual protect to cover the entire range that this code falls in. |
| 1131 | // |
| 1132 | |
| 1133 | // We could reset it to non-writeable inbetween GCs and such, but then we'd have to keep on re-writing back and forth, |
| 1134 | // so instead we'll leave it writable from here forward. |
| 1135 | |
| 1136 | DWORD oldProt; |
| 1137 | if (!ClrVirtualProtect((void *)JIT_PatchedCodeStart, (BYTE*)JIT_PatchedCodeLast - (BYTE*)JIT_PatchedCodeStart, |
| 1138 | PAGE_EXECUTE_READWRITE, &oldProt)) |
| 1139 | { |
| 1140 | _ASSERTE(!"ClrVirtualProtect of code page failed" ); |
| 1141 | COMPlusThrowWin32(); |
| 1142 | } |
| 1143 | |
| 1144 | #ifndef FEATURE_PAL |
| 1145 | _ASSERTE(GetThread() == NULL); |
| 1146 | |
| 1147 | PTEB Teb = NtCurrentTeb(); |
| 1148 | BYTE** tlsArray = (BYTE**)Teb->ThreadLocalStoragePointer; |
| 1149 | BYTE* tlsData = (BYTE*)tlsArray[_tls_index]; |
| 1150 | |
| 1151 | size_t offsetOfCurrentThreadInfo = (BYTE*)&gCurrentThreadInfo - tlsData; |
| 1152 | |
| 1153 | _ASSERTE(offsetOfCurrentThreadInfo < 0x8000); |
| 1154 | _ASSERTE(_tls_index < 0x10000); |
| 1155 | |
| 1156 | // Save gCurrentThreadInfo location for debugger |
| 1157 | g_TlsIndex = (DWORD)(_tls_index + (offsetOfCurrentThreadInfo << 16) + 0x80000000); |
| 1158 | |
| 1159 | _ASSERTE(g_TrapReturningThreads == 0); |
| 1160 | #endif // !FEATURE_PAL |
| 1161 | |
| 1162 | #ifdef FEATURE_INTEROP_DEBUGGING |
| 1163 | g_debuggerWordTLSIndex = UnsafeTlsAlloc(); |
| 1164 | if (g_debuggerWordTLSIndex == TLS_OUT_OF_INDEXES) |
| 1165 | COMPlusThrowWin32(); |
| 1166 | #endif |
| 1167 | |
| 1168 | __ClrFlsGetBlock = CExecutionEngine::GetTlsData; |
| 1169 | |
| 1170 | IfFailThrow(Thread::CLRSetThreadStackGuarantee(Thread::STSGuarantee_Force)); |
| 1171 | |
| 1172 | ThreadStore::InitThreadStore(); |
| 1173 | |
| 1174 | // NOTE: CRST_UNSAFE_ANYMODE prevents a GC mode switch when entering this crst. |
| 1175 | // If you remove this flag, we will switch to preemptive mode when entering |
| 1176 | // g_DeadlockAwareCrst, which means all functions that enter it will become |
| 1177 | // GC_TRIGGERS. (This includes all uses of CrstHolder.) So be sure |
| 1178 | // to update the contracts if you remove this flag. |
| 1179 | g_DeadlockAwareCrst.Init(CrstDeadlockDetection, CRST_UNSAFE_ANYMODE); |
| 1180 | |
| 1181 | #ifdef _DEBUG |
| 1182 | // Randomize OBJREF_HASH to handle hash collision. |
| 1183 | Thread::OBJREF_HASH = OBJREF_TABSIZE - (DbgGetEXETimeStamp()%10); |
| 1184 | #endif // _DEBUG |
| 1185 | |
| 1186 | ThreadSuspend::Initialize(); |
| 1187 | } |
| 1188 | |
| 1189 | |
| 1190 | //************************************************************************ |
| 1191 | // Thread members |
| 1192 | //************************************************************************ |
| 1193 | |
| 1194 | |
| 1195 | #if defined(_DEBUG) && defined(TRACK_SYNC) |
| 1196 | |
| 1197 | // One outstanding synchronization held by this thread: |
| 1198 | struct Dbg_TrackSyncEntry |
| 1199 | { |
| 1200 | UINT_PTR m_caller; |
| 1201 | AwareLock *m_pAwareLock; |
| 1202 | |
| 1203 | BOOL Equiv (UINT_PTR caller, void *pAwareLock) |
| 1204 | { |
| 1205 | LIMITED_METHOD_CONTRACT; |
| 1206 | |
| 1207 | return (m_caller == caller) && (m_pAwareLock == pAwareLock); |
| 1208 | } |
| 1209 | |
| 1210 | BOOL Equiv (void *pAwareLock) |
| 1211 | { |
| 1212 | LIMITED_METHOD_CONTRACT; |
| 1213 | |
| 1214 | return (m_pAwareLock == pAwareLock); |
| 1215 | } |
| 1216 | }; |
| 1217 | |
| 1218 | // Each thread has a stack that tracks all enter and leave requests |
| 1219 | struct Dbg_TrackSyncStack : public Dbg_TrackSync |
| 1220 | { |
| 1221 | enum |
| 1222 | { |
| 1223 | MAX_TRACK_SYNC = 20, // adjust stack depth as necessary |
| 1224 | }; |
| 1225 | |
| 1226 | void EnterSync (UINT_PTR caller, void *pAwareLock); |
| 1227 | void LeaveSync (UINT_PTR caller, void *pAwareLock); |
| 1228 | |
| 1229 | Dbg_TrackSyncEntry m_Stack [MAX_TRACK_SYNC]; |
| 1230 | UINT_PTR m_StackPointer; |
| 1231 | BOOL m_Active; |
| 1232 | |
| 1233 | Dbg_TrackSyncStack() : m_StackPointer(0), |
| 1234 | m_Active(TRUE) |
| 1235 | { |
| 1236 | LIMITED_METHOD_CONTRACT; |
| 1237 | } |
| 1238 | }; |
| 1239 | |
| 1240 | // ensure that registers are preserved across this call |
| 1241 | #ifdef _MSC_VER |
| 1242 | #pragma optimize("", off) |
| 1243 | #endif |
| 1244 | // A pain to do all this from ASM, but watch out for trashed registers |
| 1245 | EXTERN_C void EnterSyncHelper (UINT_PTR caller, void *pAwareLock) |
| 1246 | { |
| 1247 | BEGIN_ENTRYPOINT_THROWS; |
| 1248 | WRAPPER_NO_CONTRACT; |
| 1249 | GetThread()->m_pTrackSync->EnterSync(caller, pAwareLock); |
| 1250 | END_ENTRYPOINT_THROWS; |
| 1251 | |
| 1252 | } |
| 1253 | EXTERN_C void LeaveSyncHelper (UINT_PTR caller, void *pAwareLock) |
| 1254 | { |
| 1255 | BEGIN_ENTRYPOINT_THROWS; |
| 1256 | WRAPPER_NO_CONTRACT; |
| 1257 | GetThread()->m_pTrackSync->LeaveSync(caller, pAwareLock); |
| 1258 | END_ENTRYPOINT_THROWS; |
| 1259 | |
| 1260 | } |
| 1261 | #ifdef _MSC_VER |
| 1262 | #pragma optimize("", on) |
| 1263 | #endif |
| 1264 | |
| 1265 | void Dbg_TrackSyncStack::EnterSync(UINT_PTR caller, void *pAwareLock) |
| 1266 | { |
| 1267 | LIMITED_METHOD_CONTRACT; |
| 1268 | |
| 1269 | STRESS_LOG4(LF_SYNC, LL_INFO100, "Dbg_TrackSyncStack::EnterSync, IP=%p, Recursion=%u, LockState=%x, HoldingThread=%p.\n" , |
| 1270 | caller, |
| 1271 | ((AwareLock*)pAwareLock)->GetRecursionLevel(), |
| 1272 | ((AwareLock*)pAwareLock)->GetLockState(), |
| 1273 | ((AwareLock*)pAwareLock)->GetHoldingThread()); |
| 1274 | |
| 1275 | if (m_Active) |
| 1276 | { |
| 1277 | if (m_StackPointer >= MAX_TRACK_SYNC) |
| 1278 | { |
| 1279 | _ASSERTE(!"Overflowed synchronization stack checking. Disabling" ); |
| 1280 | m_Active = FALSE; |
| 1281 | return; |
| 1282 | } |
| 1283 | } |
| 1284 | m_Stack[m_StackPointer].m_caller = caller; |
| 1285 | m_Stack[m_StackPointer].m_pAwareLock = (AwareLock *) pAwareLock; |
| 1286 | |
| 1287 | m_StackPointer++; |
| 1288 | |
| 1289 | } |
| 1290 | |
| 1291 | void Dbg_TrackSyncStack::LeaveSync(UINT_PTR caller, void *pAwareLock) |
| 1292 | { |
| 1293 | WRAPPER_NO_CONTRACT; |
| 1294 | |
| 1295 | STRESS_LOG4(LF_SYNC, LL_INFO100, "Dbg_TrackSyncStack::LeaveSync, IP=%p, Recursion=%u, LockState=%x, HoldingThread=%p.\n" , |
| 1296 | caller, |
| 1297 | ((AwareLock*)pAwareLock)->GetRecursionLevel(), |
| 1298 | ((AwareLock*)pAwareLock)->GetLockState(), |
| 1299 | ((AwareLock*)pAwareLock)->GetHoldingThread()); |
| 1300 | |
| 1301 | if (m_Active) |
| 1302 | { |
| 1303 | if (m_StackPointer == 0) |
| 1304 | _ASSERTE(!"Underflow in leaving synchronization" ); |
| 1305 | else |
| 1306 | if (m_Stack[m_StackPointer - 1].Equiv(pAwareLock)) |
| 1307 | { |
| 1308 | m_StackPointer--; |
| 1309 | } |
| 1310 | else |
| 1311 | { |
| 1312 | for (int i=m_StackPointer - 2; i>=0; i--) |
| 1313 | { |
| 1314 | if (m_Stack[i].Equiv(pAwareLock)) |
| 1315 | { |
| 1316 | _ASSERTE(!"Locks are released out of order. This might be okay..." ); |
| 1317 | memcpy(&m_Stack[i], &m_Stack[i+1], |
| 1318 | sizeof(m_Stack[0]) * (m_StackPointer - i - 1)); |
| 1319 | |
| 1320 | return; |
| 1321 | } |
| 1322 | } |
| 1323 | _ASSERTE(!"Trying to release a synchronization lock which isn't held" ); |
| 1324 | } |
| 1325 | } |
| 1326 | } |
| 1327 | |
| 1328 | #endif // TRACK_SYNC |
| 1329 | |
| 1330 | |
| 1331 | static DWORD dwHashCodeSeed = 123456789; |
| 1332 | |
| 1333 | #ifdef _DEBUG |
| 1334 | void CheckADValidity(AppDomain* pDomain, DWORD ADValidityKind) |
| 1335 | { |
| 1336 | CONTRACTL |
| 1337 | { |
| 1338 | NOTHROW; |
| 1339 | FORBID_FAULT; |
| 1340 | GC_NOTRIGGER; |
| 1341 | MODE_ANY; |
| 1342 | } |
| 1343 | CONTRACTL_END; |
| 1344 | |
| 1345 | // |
| 1346 | // Note: this apparently checks if any one of the supplied conditions is satisified, rather |
| 1347 | // than checking that *all* of them are satisfied. One would have expected it to assert all of the |
| 1348 | // conditions but it does not. |
| 1349 | // |
| 1350 | |
| 1351 | CONTRACT_VIOLATION(FaultViolation); |
| 1352 | if (::GetAppDomain()==pDomain) |
| 1353 | return; |
| 1354 | if ((ADValidityKind & ADV_DEFAULTAD) && |
| 1355 | pDomain->IsDefaultDomain()) |
| 1356 | return; |
| 1357 | if ((ADValidityKind & ADV_ITERATOR) && |
| 1358 | pDomain->IsHeldByIterator()) |
| 1359 | return; |
| 1360 | if ((ADValidityKind & ADV_CREATING) && |
| 1361 | pDomain->IsBeingCreated()) |
| 1362 | return; |
| 1363 | if ((ADValidityKind & ADV_COMPILATION) && |
| 1364 | pDomain->IsCompilationDomain()) |
| 1365 | return; |
| 1366 | if ((ADValidityKind & ADV_FINALIZER) && |
| 1367 | IsFinalizerThread()) |
| 1368 | return; |
| 1369 | if ((ADValidityKind & ADV_RUNNINGIN) && |
| 1370 | pDomain->IsRunningIn(GetThread())) |
| 1371 | return; |
| 1372 | if ((ADValidityKind & ADV_REFTAKER) && |
| 1373 | pDomain->IsHeldByRefTaker()) |
| 1374 | return; |
| 1375 | |
| 1376 | _ASSERTE(!"Appdomain* can be invalid" ); |
| 1377 | } |
| 1378 | #endif |
| 1379 | |
| 1380 | |
| 1381 | //-------------------------------------------------------------------- |
| 1382 | // Thread construction |
| 1383 | //-------------------------------------------------------------------- |
| 1384 | Thread::Thread() |
| 1385 | { |
| 1386 | CONTRACTL { |
| 1387 | THROWS; |
| 1388 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 1389 | } |
| 1390 | CONTRACTL_END; |
| 1391 | |
| 1392 | m_pFrame = FRAME_TOP; |
| 1393 | |
| 1394 | m_fPreemptiveGCDisabled = 0; |
| 1395 | |
| 1396 | #ifdef _DEBUG |
| 1397 | m_ulForbidTypeLoad = 0; |
| 1398 | m_GCOnTransitionsOK = TRUE; |
| 1399 | #endif |
| 1400 | |
| 1401 | #ifdef ENABLE_CONTRACTS |
| 1402 | m_pClrDebugState = NULL; |
| 1403 | m_ulEnablePreemptiveGCCount = 0; |
| 1404 | #endif |
| 1405 | |
| 1406 | m_dwLockCount = 0; |
| 1407 | m_dwBeginLockCount = 0; |
| 1408 | |
| 1409 | #ifdef _DEBUG |
| 1410 | dbg_m_cSuspendedThreads = 0; |
| 1411 | dbg_m_cSuspendedThreadsWithoutOSLock = 0; |
| 1412 | m_Creater.Clear(); |
| 1413 | m_dwUnbreakableLockCount = 0; |
| 1414 | #endif |
| 1415 | |
| 1416 | m_dwForbidSuspendThread = 0; |
| 1417 | |
| 1418 | // Initialize lock state |
| 1419 | m_pHead = &m_embeddedEntry; |
| 1420 | m_embeddedEntry.pNext = m_pHead; |
| 1421 | m_embeddedEntry.pPrev = m_pHead; |
| 1422 | m_embeddedEntry.dwLLockID = 0; |
| 1423 | m_embeddedEntry.dwULockID = 0; |
| 1424 | m_embeddedEntry.wReaderLevel = 0; |
| 1425 | |
| 1426 | m_pBlockingLock = NULL; |
| 1427 | |
| 1428 | m_alloc_context.init(); |
| 1429 | m_thAllocContextObj = 0; |
| 1430 | |
| 1431 | m_UserInterrupt = 0; |
| 1432 | m_WaitEventLink.m_Next = NULL; |
| 1433 | m_WaitEventLink.m_LinkSB.m_pNext = NULL; |
| 1434 | m_ThreadHandle = INVALID_HANDLE_VALUE; |
| 1435 | m_ThreadHandleForClose = INVALID_HANDLE_VALUE; |
| 1436 | m_ThreadHandleForResume = INVALID_HANDLE_VALUE; |
| 1437 | m_WeOwnThreadHandle = FALSE; |
| 1438 | |
| 1439 | #ifdef _DEBUG |
| 1440 | m_ThreadId = UNINITIALIZED_THREADID; |
| 1441 | #endif //_DEBUG |
| 1442 | |
| 1443 | // Initialize this variable to a very different start value for each thread |
| 1444 | // Using linear congruential generator from Knuth Vol. 2, p. 102, line 24 |
| 1445 | dwHashCodeSeed = dwHashCodeSeed * 1566083941 + 1; |
| 1446 | m_dwHashCodeSeed = dwHashCodeSeed; |
| 1447 | |
| 1448 | m_hijackLock = FALSE; |
| 1449 | |
| 1450 | m_OSThreadId = 0; |
| 1451 | m_Priority = INVALID_THREAD_PRIORITY; |
| 1452 | m_ExternalRefCount = 1; |
| 1453 | m_UnmanagedRefCount = 0; |
| 1454 | m_State = TS_Unstarted; |
| 1455 | m_StateNC = TSNC_Unknown; |
| 1456 | |
| 1457 | // It can't be a LongWeakHandle because we zero stuff out of the exposed |
| 1458 | // object as it is finalized. At that point, calls to GetCurrentThread() |
| 1459 | // had better get a new one,! |
| 1460 | m_ExposedObject = CreateGlobalShortWeakHandle(NULL); |
| 1461 | |
| 1462 | GlobalShortWeakHandleHolder exposedObjectHolder(m_ExposedObject); |
| 1463 | |
| 1464 | m_StrongHndToExposedObject = CreateGlobalStrongHandle(NULL); |
| 1465 | GlobalStrongHandleHolder strongHndToExposedObjectHolder(m_StrongHndToExposedObject); |
| 1466 | |
| 1467 | m_LastThrownObjectHandle = NULL; |
| 1468 | m_ltoIsUnhandled = FALSE; |
| 1469 | |
| 1470 | m_AbortReason = NULL; |
| 1471 | |
| 1472 | m_debuggerFilterContext = NULL; |
| 1473 | m_debuggerCantStop = 0; |
| 1474 | m_fInteropDebuggingHijacked = FALSE; |
| 1475 | m_profilerCallbackState = 0; |
| 1476 | #ifdef FEATURE_PROFAPI_ATTACH_DETACH |
| 1477 | m_dwProfilerEvacuationCounter = 0; |
| 1478 | #endif // FEATURE_PROFAPI_ATTACH_DETACH |
| 1479 | |
| 1480 | m_pProfilerFilterContext = NULL; |
| 1481 | |
| 1482 | m_CacheStackBase = 0; |
| 1483 | m_CacheStackLimit = 0; |
| 1484 | m_CacheStackSufficientExecutionLimit = 0; |
| 1485 | |
| 1486 | m_LastAllowableStackAddress= 0; |
| 1487 | m_ProbeLimit = 0; |
| 1488 | |
| 1489 | #ifdef _DEBUG |
| 1490 | m_pCleanedStackBase = NULL; |
| 1491 | #endif |
| 1492 | |
| 1493 | #ifdef STACK_GUARDS_DEBUG |
| 1494 | m_pCurrentStackGuard = NULL; |
| 1495 | #endif |
| 1496 | |
| 1497 | #ifdef FEATURE_HIJACK |
| 1498 | m_ppvHJRetAddrPtr = (VOID**) 0xCCCCCCCCCCCCCCCC; |
| 1499 | m_pvHJRetAddr = (VOID*) 0xCCCCCCCCCCCCCCCC; |
| 1500 | |
| 1501 | #ifndef PLATFORM_UNIX |
| 1502 | X86_ONLY(m_LastRedirectIP = 0); |
| 1503 | X86_ONLY(m_SpinCount = 0); |
| 1504 | #endif // PLATFORM_UNIX |
| 1505 | #endif // FEATURE_HIJACK |
| 1506 | |
| 1507 | #if defined(_DEBUG) && defined(TRACK_SYNC) |
| 1508 | m_pTrackSync = new Dbg_TrackSyncStack; |
| 1509 | NewHolder<Dbg_TrackSyncStack> trackSyncHolder(static_cast<Dbg_TrackSyncStack*>(m_pTrackSync)); |
| 1510 | #endif // TRACK_SYNC |
| 1511 | |
| 1512 | m_RequestedStackSize = 0; |
| 1513 | m_PreventAsync = 0; |
| 1514 | m_PreventAbort = 0; |
| 1515 | m_nNestedMarshalingExceptions = 0; |
| 1516 | m_pDomain = NULL; |
| 1517 | #ifdef FEATURE_COMINTEROP |
| 1518 | m_fDisableComObjectEagerCleanup = false; |
| 1519 | #endif //FEATURE_COMINTEROP |
| 1520 | m_fHasDeadThreadBeenConsideredForGCTrigger = false; |
| 1521 | m_TraceCallCount = 0; |
| 1522 | m_ThrewControlForThread = 0; |
| 1523 | m_OSContext = NULL; |
| 1524 | m_ThreadTasks = (ThreadTasks)0; |
| 1525 | m_pLoadLimiter= NULL; |
| 1526 | m_pLoadingFile = NULL; |
| 1527 | |
| 1528 | // The state and the tasks must be 32-bit aligned for atomicity to be guaranteed. |
| 1529 | _ASSERTE((((size_t) &m_State) & 3) == 0); |
| 1530 | _ASSERTE((((size_t) &m_ThreadTasks) & 3) == 0); |
| 1531 | |
| 1532 | // Track perf counter for the logical thread object. |
| 1533 | COUNTER_ONLY(GetPerfCounters().m_LocksAndThreads.cCurrentThreadsLogical++); |
| 1534 | |
| 1535 | // On all callbacks, call the trap code, which we now have |
| 1536 | // wired to cause a GC. Thus we will do a GC on all Transition Frame Transitions (and more). |
| 1537 | if (GCStress<cfg_transition>::IsEnabled()) |
| 1538 | { |
| 1539 | m_State = (ThreadState) (m_State | TS_GCOnTransitions); |
| 1540 | } |
| 1541 | |
| 1542 | m_AbortType = EEPolicy::TA_None; |
| 1543 | m_AbortInfo = 0; |
| 1544 | m_AbortEndTime = MAXULONGLONG; |
| 1545 | m_RudeAbortEndTime = MAXULONGLONG; |
| 1546 | m_AbortController = 0; |
| 1547 | m_AbortRequestLock = 0; |
| 1548 | m_fRudeAbortInitiated = FALSE; |
| 1549 | |
| 1550 | m_pIOCompletionContext = NULL; |
| 1551 | |
| 1552 | #ifdef _DEBUG |
| 1553 | m_fRudeAborted = FALSE; |
| 1554 | m_dwAbortPoint = 0; |
| 1555 | #endif |
| 1556 | |
| 1557 | m_OSContext = new CONTEXT(); |
| 1558 | NewHolder<CONTEXT> contextHolder(m_OSContext); |
| 1559 | |
| 1560 | m_pSavedRedirectContext = NULL; |
| 1561 | NewHolder<CONTEXT> savedRedirectContextHolder(m_pSavedRedirectContext); |
| 1562 | |
| 1563 | #ifdef FEATURE_COMINTEROP |
| 1564 | m_pRCWStack = new RCWStackHeader(); |
| 1565 | #endif |
| 1566 | |
| 1567 | #ifdef _DEBUG |
| 1568 | m_bGCStressing = FALSE; |
| 1569 | m_bUniqueStacking = FALSE; |
| 1570 | #endif |
| 1571 | |
| 1572 | m_pPendingTypeLoad = NULL; |
| 1573 | |
| 1574 | #ifdef FEATURE_PREJIT |
| 1575 | m_pIBCInfo = NULL; |
| 1576 | #endif |
| 1577 | |
| 1578 | m_dwAVInRuntimeImplOkayCount = 0; |
| 1579 | |
| 1580 | #if defined(HAVE_GCCOVER) && defined(USE_REDIRECT_FOR_GCSTRESS) && !defined(PLATFORM_UNIX) // GCCOVER |
| 1581 | m_fPreemptiveGCDisabledForGCStress = false; |
| 1582 | #endif |
| 1583 | |
| 1584 | #ifdef _DEBUG |
| 1585 | m_pHelperMethodFrameCallerList = (HelperMethodFrameCallerList*)-1; |
| 1586 | #endif |
| 1587 | |
| 1588 | m_dwHostTaskRefCount = 0; |
| 1589 | |
| 1590 | m_pExceptionDuringStartup = NULL; |
| 1591 | |
| 1592 | #ifdef HAVE_GCCOVER |
| 1593 | m_pbDestCode = NULL; |
| 1594 | m_pbSrcCode = NULL; |
| 1595 | #if defined(GCCOVER_TOLERATE_SPURIOUS_AV) |
| 1596 | m_pLastAVAddress = NULL; |
| 1597 | #endif // defined(GCCOVER_TOLERATE_SPURIOUS_AV) |
| 1598 | #endif // HAVE_GCCOVER |
| 1599 | |
| 1600 | m_fCompletionPortDrained = FALSE; |
| 1601 | |
| 1602 | m_debuggerActivePatchSkipper = NULL; |
| 1603 | m_dwThreadHandleBeingUsed = 0; |
| 1604 | SetProfilerCallbacksAllowed(TRUE); |
| 1605 | |
| 1606 | m_pCreatingThrowableForException = NULL; |
| 1607 | #ifdef _DEBUG |
| 1608 | m_dwDisableAbortCheckCount = 0; |
| 1609 | #endif // _DEBUG |
| 1610 | |
| 1611 | #ifdef WIN64EXCEPTIONS |
| 1612 | m_dwIndexClauseForCatch = 0; |
| 1613 | m_sfEstablisherOfActualHandlerFrame.Clear(); |
| 1614 | #endif // WIN64EXCEPTIONS |
| 1615 | |
| 1616 | m_threadPoolCompletionCount = 0; |
| 1617 | |
| 1618 | Thread *pThread = GetThread(); |
| 1619 | InitContext(); |
| 1620 | if (pThread) |
| 1621 | { |
| 1622 | _ASSERTE(pThread->GetDomain()); |
| 1623 | // Start off the new thread in the default context of |
| 1624 | // the creating thread's appDomain. This could be changed by SetDelegate |
| 1625 | SetKickOffDomainId(pThread->GetDomain()->GetId()); |
| 1626 | } else |
| 1627 | SetKickOffDomainId((ADID)DefaultADID); |
| 1628 | |
| 1629 | // Do not expose thread until it is fully constructed |
| 1630 | g_pThinLockThreadIdDispenser->NewId(this, this->m_ThreadId); |
| 1631 | |
| 1632 | // |
| 1633 | // DO NOT ADD ADDITIONAL CONSTRUCTION AFTER THIS POINT. |
| 1634 | // NewId() allows this Thread instance to be accessed via a Thread Id. Do not |
| 1635 | // add additional construction after this point to prevent the race condition |
| 1636 | // of accessing a partially constructed Thread via Thread Id lookup. |
| 1637 | // |
| 1638 | |
| 1639 | exposedObjectHolder.SuppressRelease(); |
| 1640 | strongHndToExposedObjectHolder.SuppressRelease(); |
| 1641 | #if defined(_DEBUG) && defined(TRACK_SYNC) |
| 1642 | trackSyncHolder.SuppressRelease(); |
| 1643 | #endif |
| 1644 | contextHolder.SuppressRelease(); |
| 1645 | savedRedirectContextHolder.SuppressRelease(); |
| 1646 | |
| 1647 | #ifdef FEATURE_APPDOMAIN_RESOURCE_MONITORING |
| 1648 | m_ullProcessorUsageBaseline = 0; |
| 1649 | #endif // FEATURE_APPDOMAIN_RESOURCE_MONITORING |
| 1650 | |
| 1651 | #ifdef FEATURE_COMINTEROP |
| 1652 | m_uliInitializeSpyCookie.QuadPart = 0ul; |
| 1653 | m_fInitializeSpyRegistered = false; |
| 1654 | m_pLastSTACtxCookie = NULL; |
| 1655 | #endif // FEATURE_COMINTEROP |
| 1656 | |
| 1657 | m_fGCSpecial = FALSE; |
| 1658 | |
| 1659 | m_wCPUGroup = 0; |
| 1660 | m_pAffinityMask = 0; |
| 1661 | |
| 1662 | m_pAllLoggedTypes = NULL; |
| 1663 | |
| 1664 | #ifdef FEATURE_PERFTRACING |
| 1665 | m_pEventPipeBufferList = NULL; |
| 1666 | m_eventWriteInProgress = false; |
| 1667 | memset(&m_activityId, 0, sizeof(m_activityId)); |
| 1668 | #endif // FEATURE_PERFTRACING |
| 1669 | m_HijackReturnKind = RT_Illegal; |
| 1670 | } |
| 1671 | |
| 1672 | //-------------------------------------------------------------------- |
| 1673 | // Failable initialization occurs here. |
| 1674 | //-------------------------------------------------------------------- |
| 1675 | BOOL Thread::InitThread(BOOL fInternal) |
| 1676 | { |
| 1677 | CONTRACTL { |
| 1678 | THROWS; |
| 1679 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 1680 | } |
| 1681 | CONTRACTL_END; |
| 1682 | |
| 1683 | |
| 1684 | HANDLE hDup = INVALID_HANDLE_VALUE; |
| 1685 | BOOL ret = TRUE; |
| 1686 | |
| 1687 | // This message actually serves a purpose (which is why it is always run) |
| 1688 | // The Stress log is run during hijacking, when other threads can be suspended |
| 1689 | // at arbitrary locations (including when holding a lock that NT uses to serialize |
| 1690 | // all memory allocations). By sending a message now, we insure that the stress |
| 1691 | // log will not allocate memory at these critical times an avoid deadlock. |
| 1692 | STRESS_LOG2(LF_ALWAYS, LL_ALWAYS, "SetupThread managed Thread %p Thread Id = %x\n" , this, GetThreadId()); |
| 1693 | |
| 1694 | if ((m_State & TS_WeOwn) == 0) |
| 1695 | { |
| 1696 | COUNTER_ONLY(GetPerfCounters().m_LocksAndThreads.cRecognizedThreads++); |
| 1697 | } |
| 1698 | else |
| 1699 | { |
| 1700 | COUNTER_ONLY(GetPerfCounters().m_LocksAndThreads.cCurrentThreadsPhysical++); |
| 1701 | } |
| 1702 | |
| 1703 | #ifndef FEATURE_PAL |
| 1704 | // workaround: Remove this when we flow impersonation token to host. |
| 1705 | BOOL reverted = FALSE; |
| 1706 | HANDLE threadToken = INVALID_HANDLE_VALUE; |
| 1707 | #endif // !FEATURE_PAL |
| 1708 | |
| 1709 | if (m_ThreadHandle == INVALID_HANDLE_VALUE) |
| 1710 | { |
| 1711 | // For WinCE, all clients have the same handle for a thread. Duplication is |
| 1712 | // not possible. We make sure we never close this handle unless we created |
| 1713 | // the thread (TS_WeOwn). |
| 1714 | // |
| 1715 | // For Win32, each client has its own handle. This is achieved by duplicating |
| 1716 | // the pseudo-handle from ::GetCurrentThread(). Unlike WinCE, this service |
| 1717 | // returns a pseudo-handle which is only useful for duplication. In this case |
| 1718 | // each client is responsible for closing its own (duplicated) handle. |
| 1719 | // |
| 1720 | // We don't bother duplicating if WeOwn, because we created the handle in the |
| 1721 | // first place. |
| 1722 | // Thread is created when or after the physical thread started running |
| 1723 | HANDLE curProcess = ::GetCurrentProcess(); |
| 1724 | |
| 1725 | #ifndef FEATURE_PAL |
| 1726 | |
| 1727 | // If we're impersonating on NT, then DuplicateHandle(GetCurrentThread()) is going to give us a handle with only |
| 1728 | // THREAD_TERMINATE, THREAD_QUERY_INFORMATION, and THREAD_SET_INFORMATION. This doesn't include |
| 1729 | // THREAD_SUSPEND_RESUME nor THREAD_GET_CONTEXT. We need to be able to suspend the thread, and we need to be |
| 1730 | // able to get its context. Therefore, if we're impersonating, we revert to self, dup the handle, then |
| 1731 | // re-impersonate before we leave this routine. |
| 1732 | if (!RevertIfImpersonated(&reverted, &threadToken)) |
| 1733 | { |
| 1734 | COMPlusThrowWin32(); |
| 1735 | } |
| 1736 | |
| 1737 | class EnsureResetThreadToken |
| 1738 | { |
| 1739 | private: |
| 1740 | BOOL m_NeedReset; |
| 1741 | HANDLE m_threadToken; |
| 1742 | public: |
| 1743 | EnsureResetThreadToken(HANDLE threadToken, BOOL reverted) |
| 1744 | { |
| 1745 | m_threadToken = threadToken; |
| 1746 | m_NeedReset = reverted; |
| 1747 | } |
| 1748 | ~EnsureResetThreadToken() |
| 1749 | { |
| 1750 | UndoRevert(m_NeedReset, m_threadToken); |
| 1751 | if (m_threadToken != INVALID_HANDLE_VALUE) |
| 1752 | { |
| 1753 | CloseHandle(m_threadToken); |
| 1754 | } |
| 1755 | } |
| 1756 | }; |
| 1757 | |
| 1758 | EnsureResetThreadToken resetToken(threadToken, reverted); |
| 1759 | |
| 1760 | #endif // !FEATURE_PAL |
| 1761 | |
| 1762 | if (::DuplicateHandle(curProcess, ::GetCurrentThread(), curProcess, &hDup, |
| 1763 | 0 /*ignored*/, FALSE /*inherit*/, DUPLICATE_SAME_ACCESS)) |
| 1764 | { |
| 1765 | _ASSERTE(hDup != INVALID_HANDLE_VALUE); |
| 1766 | |
| 1767 | SetThreadHandle(hDup); |
| 1768 | m_WeOwnThreadHandle = TRUE; |
| 1769 | } |
| 1770 | else |
| 1771 | { |
| 1772 | COMPlusThrowWin32(); |
| 1773 | } |
| 1774 | } |
| 1775 | |
| 1776 | if ((m_State & TS_WeOwn) == 0) |
| 1777 | { |
| 1778 | if (!AllocHandles()) |
| 1779 | { |
| 1780 | ThrowOutOfMemory(); |
| 1781 | } |
| 1782 | } |
| 1783 | |
| 1784 | _ASSERTE(HasValidThreadHandle()); |
| 1785 | |
| 1786 | m_random.Init(); |
| 1787 | |
| 1788 | // Set floating point mode to round to nearest |
| 1789 | #ifndef FEATURE_PAL |
| 1790 | (void) _controlfp_s( NULL, _RC_NEAR, _RC_CHOP|_RC_UP|_RC_DOWN|_RC_NEAR ); |
| 1791 | |
| 1792 | m_pTEB = (struct _NT_TIB*)NtCurrentTeb(); |
| 1793 | |
| 1794 | #endif // !FEATURE_PAL |
| 1795 | |
| 1796 | if (m_CacheStackBase == 0) |
| 1797 | { |
| 1798 | _ASSERTE(m_CacheStackLimit == 0); |
| 1799 | _ASSERTE(m_LastAllowableStackAddress == 0); |
| 1800 | _ASSERTE(m_ProbeLimit == 0); |
| 1801 | ret = SetStackLimits(fAll); |
| 1802 | if (ret == FALSE) |
| 1803 | { |
| 1804 | ThrowOutOfMemory(); |
| 1805 | } |
| 1806 | } |
| 1807 | |
| 1808 | ret = Thread::AllocateIOCompletionContext(); |
| 1809 | if (!ret) |
| 1810 | { |
| 1811 | ThrowOutOfMemory(); |
| 1812 | } |
| 1813 | |
| 1814 | _ASSERTE(ret); // every failure case for ret should throw. |
| 1815 | return ret; |
| 1816 | } |
| 1817 | |
| 1818 | // Allocate all the handles. When we are kicking of a new thread, we can call |
| 1819 | // here before the thread starts running. |
| 1820 | BOOL Thread::AllocHandles() |
| 1821 | { |
| 1822 | WRAPPER_NO_CONTRACT; |
| 1823 | |
| 1824 | _ASSERTE(!m_DebugSuspendEvent.IsValid()); |
| 1825 | _ASSERTE(!m_EventWait.IsValid()); |
| 1826 | |
| 1827 | BOOL fOK = TRUE; |
| 1828 | EX_TRY { |
| 1829 | // create a manual reset event for getting the thread to a safe point |
| 1830 | m_DebugSuspendEvent.CreateManualEvent(FALSE); |
| 1831 | m_EventWait.CreateManualEvent(TRUE); |
| 1832 | } |
| 1833 | EX_CATCH { |
| 1834 | fOK = FALSE; |
| 1835 | |
| 1836 | if (!m_DebugSuspendEvent.IsValid()) { |
| 1837 | m_DebugSuspendEvent.CloseEvent(); |
| 1838 | } |
| 1839 | |
| 1840 | if (!m_EventWait.IsValid()) { |
| 1841 | m_EventWait.CloseEvent(); |
| 1842 | } |
| 1843 | } |
| 1844 | EX_END_CATCH(RethrowTerminalExceptions); |
| 1845 | |
| 1846 | return fOK; |
| 1847 | } |
| 1848 | |
| 1849 | |
| 1850 | //-------------------------------------------------------------------- |
| 1851 | // This is the alternate path to SetupThread/InitThread. If we created |
| 1852 | // an unstarted thread, we have SetupUnstartedThread/HasStarted. |
| 1853 | //-------------------------------------------------------------------- |
| 1854 | BOOL Thread::HasStarted(BOOL bRequiresTSL) |
| 1855 | { |
| 1856 | CONTRACTL { |
| 1857 | NOTHROW; |
| 1858 | DISABLED(GC_NOTRIGGER); |
| 1859 | SO_TOLERANT; |
| 1860 | } |
| 1861 | CONTRACTL_END; |
| 1862 | |
| 1863 | // @todo need a probe that tolerates not having a thread setup at all |
| 1864 | CONTRACT_VIOLATION(SOToleranceViolation); |
| 1865 | |
| 1866 | _ASSERTE(!m_fPreemptiveGCDisabled); // can't use PreemptiveGCDisabled() here |
| 1867 | |
| 1868 | // This is cheating a little. There is a pathway here from SetupThread, but only |
| 1869 | // via IJW SystemDomain::RunDllMain. Normally SetupThread returns a thread in |
| 1870 | // preemptive mode, ready for a transition. But in the IJW case, it can return a |
| 1871 | // cooperative mode thread. RunDllMain handles this "surprise" correctly. |
| 1872 | m_fPreemptiveGCDisabled = TRUE; |
| 1873 | |
| 1874 | // Normally, HasStarted is called from the thread's entrypoint to introduce it to |
| 1875 | // the runtime. But sometimes that thread is used for DLL_THREAD_ATTACH notifications |
| 1876 | // that call into managed code. In that case, the second HasStarted call is |
| 1877 | // redundant and should be ignored. |
| 1878 | if (GetThread() == this) |
| 1879 | return TRUE; |
| 1880 | |
| 1881 | |
| 1882 | _ASSERTE(GetThread() == 0); |
| 1883 | _ASSERTE(HasValidThreadHandle()); |
| 1884 | |
| 1885 | BOOL fKeepTLS = FALSE; |
| 1886 | BOOL fCanCleanupCOMState = FALSE; |
| 1887 | BOOL res = TRUE; |
| 1888 | |
| 1889 | res = SetStackLimits(fAll); |
| 1890 | if (res == FALSE) |
| 1891 | { |
| 1892 | m_pExceptionDuringStartup = Exception::GetOOMException(); |
| 1893 | goto FAILURE; |
| 1894 | } |
| 1895 | |
| 1896 | // If any exception happens during HasStarted, we will cache the exception in Thread::m_pExceptionDuringStartup |
| 1897 | // which will be thrown in Thread.Start as an internal exception |
| 1898 | EX_TRY |
| 1899 | { |
| 1900 | // |
| 1901 | // Initialization must happen in the following order - hosts like SQL Server depend on this. |
| 1902 | // |
| 1903 | CExecutionEngine::SetupTLSForThread(this); |
| 1904 | |
| 1905 | fCanCleanupCOMState = TRUE; |
| 1906 | res = PrepareApartmentAndContext(); |
| 1907 | if (!res) |
| 1908 | { |
| 1909 | ThrowOutOfMemory(); |
| 1910 | } |
| 1911 | |
| 1912 | InitThread(FALSE); |
| 1913 | |
| 1914 | if (SetThread(this) == FALSE) |
| 1915 | { |
| 1916 | ThrowOutOfMemory(); |
| 1917 | } |
| 1918 | |
| 1919 | if (SetAppDomain(m_pDomain) == FALSE) |
| 1920 | { |
| 1921 | ThrowOutOfMemory(); |
| 1922 | } |
| 1923 | |
| 1924 | SetupThreadForHost(); |
| 1925 | |
| 1926 | |
| 1927 | ThreadStore::TransferStartedThread(this, bRequiresTSL); |
| 1928 | |
| 1929 | #ifdef FEATURE_APPDOMAIN_RESOURCE_MONITORING |
| 1930 | if (g_fEnableARM) |
| 1931 | { |
| 1932 | QueryThreadProcessorUsage(); |
| 1933 | } |
| 1934 | #endif // FEATURE_APPDOMAIN_RESOURCE_MONITORING |
| 1935 | #ifdef FEATURE_EVENT_TRACE |
| 1936 | ETW::ThreadLog::FireThreadCreated(this); |
| 1937 | #endif // FEATURE_EVENT_TRACE |
| 1938 | } |
| 1939 | EX_CATCH |
| 1940 | { |
| 1941 | if (__pException != NULL) |
| 1942 | { |
| 1943 | __pException.SuppressRelease(); |
| 1944 | m_pExceptionDuringStartup = __pException; |
| 1945 | } |
| 1946 | res = FALSE; |
| 1947 | } |
| 1948 | EX_END_CATCH(SwallowAllExceptions); |
| 1949 | |
| 1950 | FAILURE: |
| 1951 | if (res == FALSE) |
| 1952 | { |
| 1953 | if (m_fPreemptiveGCDisabled) |
| 1954 | { |
| 1955 | m_fPreemptiveGCDisabled = FALSE; |
| 1956 | } |
| 1957 | _ASSERTE (HasThreadState(TS_Unstarted)); |
| 1958 | |
| 1959 | SetThreadState(TS_FailStarted); |
| 1960 | |
| 1961 | if (GetThread() != NULL && IsAbortRequested()) |
| 1962 | UnmarkThreadForAbort(TAR_ALL); |
| 1963 | |
| 1964 | if (!fKeepTLS) |
| 1965 | { |
| 1966 | #ifdef FEATURE_COMINTEROP_APARTMENT_SUPPORT |
| 1967 | // |
| 1968 | // Undo our call to PrepareApartmentAndContext above, so we don't leak a CoInitialize |
| 1969 | // If we're keeping TLS, then the host's call to ExitTask will clean this up instead. |
| 1970 | // |
| 1971 | if (fCanCleanupCOMState) |
| 1972 | { |
| 1973 | // The thread pointer in TLS may not be set yet, if we had a failure before we set it. |
| 1974 | // So we'll set it up here (we'll unset it a few lines down). |
| 1975 | if (SetThread(this) != FALSE) |
| 1976 | { |
| 1977 | CleanupCOMState(); |
| 1978 | } |
| 1979 | } |
| 1980 | #endif |
| 1981 | FastInterlockDecrement(&ThreadStore::s_pThreadStore->m_PendingThreadCount); |
| 1982 | // One of the components of OtherThreadsComplete() has changed, so check whether |
| 1983 | // we should now exit the EE. |
| 1984 | ThreadStore::CheckForEEShutdown(); |
| 1985 | DecExternalCount(/*holdingLock*/ !bRequiresTSL); |
| 1986 | SetThread(NULL); |
| 1987 | SetAppDomain(NULL); |
| 1988 | } |
| 1989 | } |
| 1990 | else |
| 1991 | { |
| 1992 | FastInterlockOr((ULONG *) &m_State, TS_FullyInitialized); |
| 1993 | |
| 1994 | #ifdef DEBUGGING_SUPPORTED |
| 1995 | // |
| 1996 | // If we're debugging, let the debugger know that this |
| 1997 | // thread is up and running now. |
| 1998 | // |
| 1999 | if (CORDebuggerAttached()) |
| 2000 | { |
| 2001 | g_pDebugInterface->ThreadCreated(this); |
| 2002 | } |
| 2003 | else |
| 2004 | { |
| 2005 | LOG((LF_CORDB, LL_INFO10000, "ThreadCreated() not called due to CORDebuggerAttached() being FALSE for thread 0x%x\n" , GetThreadId())); |
| 2006 | } |
| 2007 | |
| 2008 | #endif // DEBUGGING_SUPPORTED |
| 2009 | |
| 2010 | #ifdef PROFILING_SUPPORTED |
| 2011 | // If a profiler is running, let them know about the new thread. |
| 2012 | // |
| 2013 | // The call to IsGCSpecial is crucial to avoid a deadlock. See code:Thread::m_fGCSpecial for more |
| 2014 | // information |
| 2015 | if (!IsGCSpecial()) |
| 2016 | { |
| 2017 | BEGIN_PIN_PROFILER(CORProfilerTrackThreads()); |
| 2018 | BOOL gcOnTransition = GC_ON_TRANSITIONS(FALSE); // disable GCStress 2 to avoid the profiler receiving a RuntimeThreadSuspended notification even before the ThreadCreated notification |
| 2019 | |
| 2020 | { |
| 2021 | GCX_PREEMP(); |
| 2022 | g_profControlBlock.pProfInterface->ThreadCreated((ThreadID) this); |
| 2023 | } |
| 2024 | |
| 2025 | GC_ON_TRANSITIONS(gcOnTransition); |
| 2026 | |
| 2027 | DWORD osThreadId = ::GetCurrentThreadId(); |
| 2028 | g_profControlBlock.pProfInterface->ThreadAssignedToOSThread( |
| 2029 | (ThreadID) this, osThreadId); |
| 2030 | END_PIN_PROFILER(); |
| 2031 | } |
| 2032 | #endif // PROFILING_SUPPORTED |
| 2033 | |
| 2034 | // CoreCLR does not support user-requested thread suspension |
| 2035 | _ASSERTE(!(m_State & TS_SuspendUnstarted)); |
| 2036 | } |
| 2037 | |
| 2038 | return res; |
| 2039 | } |
| 2040 | |
| 2041 | BOOL Thread::AllocateIOCompletionContext() |
| 2042 | { |
| 2043 | WRAPPER_NO_CONTRACT; |
| 2044 | PIOCompletionContext pIOC = new (nothrow) IOCompletionContext; |
| 2045 | |
| 2046 | if(pIOC != NULL) |
| 2047 | { |
| 2048 | pIOC->lpOverlapped = NULL; |
| 2049 | m_pIOCompletionContext = pIOC; |
| 2050 | return TRUE; |
| 2051 | } |
| 2052 | else |
| 2053 | { |
| 2054 | return FALSE; |
| 2055 | } |
| 2056 | } |
| 2057 | |
| 2058 | VOID Thread::FreeIOCompletionContext() |
| 2059 | { |
| 2060 | WRAPPER_NO_CONTRACT; |
| 2061 | if (m_pIOCompletionContext != NULL) |
| 2062 | { |
| 2063 | PIOCompletionContext pIOC = (PIOCompletionContext) m_pIOCompletionContext; |
| 2064 | delete pIOC; |
| 2065 | m_pIOCompletionContext = NULL; |
| 2066 | } |
| 2067 | } |
| 2068 | |
| 2069 | void Thread::HandleThreadStartupFailure() |
| 2070 | { |
| 2071 | CONTRACTL |
| 2072 | { |
| 2073 | THROWS; |
| 2074 | GC_TRIGGERS; |
| 2075 | MODE_COOPERATIVE; |
| 2076 | } |
| 2077 | CONTRACTL_END; |
| 2078 | |
| 2079 | _ASSERTE(GetThread() != NULL); |
| 2080 | |
| 2081 | struct ProtectArgs |
| 2082 | { |
| 2083 | OBJECTREF pThrowable; |
| 2084 | OBJECTREF pReason; |
| 2085 | } args; |
| 2086 | memset(&args, 0, sizeof(ProtectArgs)); |
| 2087 | |
| 2088 | GCPROTECT_BEGIN(args); |
| 2089 | |
| 2090 | MethodTable *pMT = MscorlibBinder::GetException(kThreadStartException); |
| 2091 | args.pThrowable = AllocateObject(pMT); |
| 2092 | |
| 2093 | MethodDescCallSite exceptionCtor(METHOD__THREAD_START_EXCEPTION__EX_CTOR); |
| 2094 | |
| 2095 | if (m_pExceptionDuringStartup) |
| 2096 | { |
| 2097 | args.pReason = CLRException::GetThrowableFromException(m_pExceptionDuringStartup); |
| 2098 | Exception::Delete(m_pExceptionDuringStartup); |
| 2099 | m_pExceptionDuringStartup = NULL; |
| 2100 | } |
| 2101 | |
| 2102 | ARG_SLOT args1[] = { |
| 2103 | ObjToArgSlot(args.pThrowable), |
| 2104 | ObjToArgSlot(args.pReason), |
| 2105 | }; |
| 2106 | exceptionCtor.Call(args1); |
| 2107 | |
| 2108 | GCPROTECT_END(); //Prot |
| 2109 | |
| 2110 | RaiseTheExceptionInternalOnly(args.pThrowable, FALSE); |
| 2111 | } |
| 2112 | |
| 2113 | #ifndef FEATURE_PAL |
| 2114 | BOOL RevertIfImpersonated(BOOL *bReverted, HANDLE *phToken) |
| 2115 | { |
| 2116 | WRAPPER_NO_CONTRACT; |
| 2117 | |
| 2118 | BOOL bImpersonated = OpenThreadToken(GetCurrentThread(), // we are assuming that if this call fails, |
| 2119 | TOKEN_IMPERSONATE, // we are not impersonating. There is no win32 |
| 2120 | TRUE, // api to figure this out. The only alternative |
| 2121 | phToken); // is to use NtCurrentTeb->IsImpersonating(). |
| 2122 | if (bImpersonated) |
| 2123 | { |
| 2124 | *bReverted = RevertToSelf(); |
| 2125 | return *bReverted; |
| 2126 | |
| 2127 | } |
| 2128 | return TRUE; |
| 2129 | } |
| 2130 | |
| 2131 | void UndoRevert(BOOL bReverted, HANDLE hToken) |
| 2132 | { |
| 2133 | if (bReverted) |
| 2134 | { |
| 2135 | if (!SetThreadToken(NULL, hToken)) |
| 2136 | { |
| 2137 | _ASSERT("Undo Revert -> SetThreadToken failed" ); |
| 2138 | STRESS_LOG1(LF_EH, LL_INFO100, "UndoRevert/SetThreadToken failed for hToken = %d\n" ,hToken); |
| 2139 | EEPOLICY_HANDLE_FATAL_ERROR(COR_E_SECURITY); |
| 2140 | } |
| 2141 | } |
| 2142 | return; |
| 2143 | } |
| 2144 | #endif // !FEATURE_PAL |
| 2145 | |
| 2146 | |
| 2147 | // We don't want ::CreateThread() calls scattered throughout the source. So gather |
| 2148 | // them all here. |
| 2149 | |
| 2150 | BOOL Thread::CreateNewThread(SIZE_T stackSize, LPTHREAD_START_ROUTINE start, void *args, LPCWSTR pName) |
| 2151 | { |
| 2152 | CONTRACTL { |
| 2153 | NOTHROW; |
| 2154 | GC_TRIGGERS; |
| 2155 | } |
| 2156 | CONTRACTL_END; |
| 2157 | BOOL bRet; |
| 2158 | |
| 2159 | //This assert is here to prevent a bug in the future |
| 2160 | // CreateTask currently takes a DWORD and we will downcast |
| 2161 | // if that interface changes to take a SIZE_T this Assert needs to be removed. |
| 2162 | // |
| 2163 | _ASSERTE(stackSize <= 0xFFFFFFFF); |
| 2164 | |
| 2165 | #ifndef FEATURE_PAL |
| 2166 | HandleHolder token; |
| 2167 | BOOL bReverted = FALSE; |
| 2168 | bRet = RevertIfImpersonated(&bReverted, &token); |
| 2169 | if (bRet != TRUE) |
| 2170 | return bRet; |
| 2171 | #endif // !FEATURE_PAL |
| 2172 | |
| 2173 | m_StateNC = (ThreadStateNoConcurrency)((ULONG)m_StateNC | TSNC_CLRCreatedThread); |
| 2174 | bRet = CreateNewOSThread(stackSize, start, args); |
| 2175 | #ifndef FEATURE_PAL |
| 2176 | UndoRevert(bReverted, token); |
| 2177 | if (pName != NULL) |
| 2178 | SetThreadName(m_ThreadHandle, pName); |
| 2179 | #endif // !FEATURE_PAL |
| 2180 | |
| 2181 | return bRet; |
| 2182 | } |
| 2183 | |
| 2184 | |
| 2185 | // This is to avoid the 64KB/1MB aliasing problem present on Pentium 4 processors, |
| 2186 | // which can significantly impact performance with HyperThreading enabled |
| 2187 | DWORD WINAPI Thread::intermediateThreadProc(PVOID arg) |
| 2188 | { |
| 2189 | WRAPPER_NO_CONTRACT; |
| 2190 | |
| 2191 | m_offset_counter++; |
| 2192 | if (m_offset_counter * offset_multiplier > (int) GetOsPageSize()) |
| 2193 | m_offset_counter = 0; |
| 2194 | |
| 2195 | (void)_alloca(m_offset_counter * offset_multiplier); |
| 2196 | |
| 2197 | intermediateThreadParam* param = (intermediateThreadParam*)arg; |
| 2198 | |
| 2199 | LPTHREAD_START_ROUTINE ThreadFcnPtr = param->lpThreadFunction; |
| 2200 | PVOID args = param->lpArg; |
| 2201 | delete param; |
| 2202 | |
| 2203 | return ThreadFcnPtr(args); |
| 2204 | } |
| 2205 | |
| 2206 | HANDLE Thread::CreateUtilityThread(Thread::StackSizeBucket stackSizeBucket, LPTHREAD_START_ROUTINE start, void *args, LPCWSTR pName, DWORD flags, DWORD* pThreadId) |
| 2207 | { |
| 2208 | LIMITED_METHOD_CONTRACT; |
| 2209 | |
| 2210 | // TODO: we should always use small stacks for most of these threads. For CLR 4, we're being conservative |
| 2211 | // here because this is a last-minute fix. |
| 2212 | |
| 2213 | SIZE_T stackSize; |
| 2214 | |
| 2215 | switch (stackSizeBucket) |
| 2216 | { |
| 2217 | case StackSize_Small: |
| 2218 | stackSize = 256 * 1024; |
| 2219 | break; |
| 2220 | |
| 2221 | case StackSize_Medium: |
| 2222 | stackSize = 512 * 1024; |
| 2223 | break; |
| 2224 | |
| 2225 | default: |
| 2226 | _ASSERTE(!"Bad stack size bucket" ); |
| 2227 | case StackSize_Large: |
| 2228 | stackSize = 1024 * 1024; |
| 2229 | break; |
| 2230 | } |
| 2231 | |
| 2232 | flags |= STACK_SIZE_PARAM_IS_A_RESERVATION; |
| 2233 | |
| 2234 | DWORD threadId; |
| 2235 | HANDLE hThread = CreateThread(NULL, stackSize, start, args, flags, &threadId); |
| 2236 | #ifndef FEATURE_PAL |
| 2237 | SetThreadName(hThread, pName); |
| 2238 | #endif // !FEATURE_PAL |
| 2239 | |
| 2240 | |
| 2241 | if (pThreadId) |
| 2242 | *pThreadId = threadId; |
| 2243 | |
| 2244 | return hThread; |
| 2245 | } |
| 2246 | |
| 2247 | |
| 2248 | BOOL Thread::GetProcessDefaultStackSize(SIZE_T* reserveSize, SIZE_T* commitSize) |
| 2249 | { |
| 2250 | CONTRACTL |
| 2251 | { |
| 2252 | NOTHROW; |
| 2253 | GC_NOTRIGGER; |
| 2254 | } |
| 2255 | CONTRACTL_END; |
| 2256 | |
| 2257 | // |
| 2258 | // Let's get the stack sizes from the PE file that started process. |
| 2259 | // |
| 2260 | static SIZE_T ExeSizeOfStackReserve = 0; |
| 2261 | static SIZE_T ExeSizeOfStackCommit = 0; |
| 2262 | |
| 2263 | static BOOL fSizesGot = FALSE; |
| 2264 | |
| 2265 | #ifndef FEATURE_PAL |
| 2266 | if (!fSizesGot) |
| 2267 | { |
| 2268 | HINSTANCE hInst = WszGetModuleHandle(NULL); |
| 2269 | _ASSERTE(hInst); // WszGetModuleHandle should never fail on the module that started the process. |
| 2270 | EX_TRY |
| 2271 | { |
| 2272 | PEDecoder pe(hInst); |
| 2273 | pe.GetEXEStackSizes(&ExeSizeOfStackReserve, &ExeSizeOfStackCommit); |
| 2274 | fSizesGot = TRUE; |
| 2275 | } |
| 2276 | EX_CATCH |
| 2277 | { |
| 2278 | fSizesGot = FALSE; |
| 2279 | } |
| 2280 | EX_END_CATCH(SwallowAllExceptions); |
| 2281 | } |
| 2282 | #endif // !FEATURE_PAL |
| 2283 | |
| 2284 | if (!fSizesGot) { |
| 2285 | //return some somewhat-reasonable numbers |
| 2286 | if (NULL != reserveSize) *reserveSize = 256*1024; |
| 2287 | if (NULL != commitSize) *commitSize = 256*1024; |
| 2288 | return FALSE; |
| 2289 | } |
| 2290 | |
| 2291 | if (NULL != reserveSize) *reserveSize = ExeSizeOfStackReserve; |
| 2292 | if (NULL != commitSize) *commitSize = ExeSizeOfStackCommit; |
| 2293 | return TRUE; |
| 2294 | } |
| 2295 | |
| 2296 | BOOL Thread::CreateNewOSThread(SIZE_T sizeToCommitOrReserve, LPTHREAD_START_ROUTINE start, void *args) |
| 2297 | { |
| 2298 | CONTRACTL { |
| 2299 | NOTHROW; |
| 2300 | GC_TRIGGERS; |
| 2301 | } |
| 2302 | CONTRACTL_END; |
| 2303 | |
| 2304 | DWORD ourId = 0; |
| 2305 | HANDLE h = NULL; |
| 2306 | DWORD dwCreationFlags = CREATE_SUSPENDED; |
| 2307 | |
| 2308 | dwCreationFlags |= STACK_SIZE_PARAM_IS_A_RESERVATION; |
| 2309 | |
| 2310 | #ifndef FEATURE_PAL // the PAL does its own adjustments as necessary |
| 2311 | if (sizeToCommitOrReserve != 0 && sizeToCommitOrReserve <= GetOsPageSize()) |
| 2312 | { |
| 2313 | // On Windows, passing a value that is <= one page size bizarrely causes the OS to use the default stack size instead of |
| 2314 | // a minimum, which is undesirable. This adjustment fixes that issue to use a minimum stack size (typically 64 KB). |
| 2315 | sizeToCommitOrReserve = GetOsPageSize() + 1; |
| 2316 | } |
| 2317 | #endif // !FEATURE_PAL |
| 2318 | |
| 2319 | intermediateThreadParam* lpThreadArgs = new (nothrow) intermediateThreadParam; |
| 2320 | if (lpThreadArgs == NULL) |
| 2321 | { |
| 2322 | return FALSE; |
| 2323 | } |
| 2324 | NewHolder<intermediateThreadParam> argHolder(lpThreadArgs); |
| 2325 | |
| 2326 | // Make sure we have all our handles, in case someone tries to suspend us |
| 2327 | // as we are starting up. |
| 2328 | if (!AllocHandles()) |
| 2329 | { |
| 2330 | // OS is out of handles/memory? |
| 2331 | return FALSE; |
| 2332 | } |
| 2333 | |
| 2334 | lpThreadArgs->lpThreadFunction = start; |
| 2335 | lpThreadArgs->lpArg = args; |
| 2336 | |
| 2337 | h = ::CreateThread(NULL /*=SECURITY_ATTRIBUTES*/, |
| 2338 | sizeToCommitOrReserve, |
| 2339 | intermediateThreadProc, |
| 2340 | lpThreadArgs, |
| 2341 | dwCreationFlags, |
| 2342 | &ourId); |
| 2343 | |
| 2344 | if (h == NULL) |
| 2345 | return FALSE; |
| 2346 | |
| 2347 | argHolder.SuppressRelease(); |
| 2348 | |
| 2349 | _ASSERTE(!m_fPreemptiveGCDisabled); // leave in preemptive until HasStarted. |
| 2350 | |
| 2351 | SetThreadHandle(h); |
| 2352 | m_WeOwnThreadHandle = TRUE; |
| 2353 | |
| 2354 | // Before we do the resume, we need to take note of the new ThreadId. This |
| 2355 | // is necessary because -- before the thread starts executing at KickofThread -- |
| 2356 | // it may perform some DllMain DLL_THREAD_ATTACH notifications. These could |
| 2357 | // call into managed code. During the consequent SetupThread, we need to |
| 2358 | // perform the Thread::HasStarted call instead of going through the normal |
| 2359 | // 'new thread' pathway. |
| 2360 | _ASSERTE(GetOSThreadId() == 0); |
| 2361 | _ASSERTE(ourId != 0); |
| 2362 | |
| 2363 | m_OSThreadId = ourId; |
| 2364 | |
| 2365 | FastInterlockIncrement(&ThreadStore::s_pThreadStore->m_PendingThreadCount); |
| 2366 | |
| 2367 | #ifdef _DEBUG |
| 2368 | m_Creater.SetToCurrentThread(); |
| 2369 | #endif |
| 2370 | |
| 2371 | return TRUE; |
| 2372 | } |
| 2373 | |
| 2374 | // |
| 2375 | // #threadDestruction |
| 2376 | // |
| 2377 | // General comments on thread destruction. |
| 2378 | // |
| 2379 | // The C++ Thread object can survive beyond the time when the Win32 thread has died. |
| 2380 | // This is important if an exposed object has been created for this thread. The |
| 2381 | // exposed object will survive until it is GC'ed. |
| 2382 | // |
| 2383 | // A client like an exposed object can place an external reference count on that |
| 2384 | // object. We also place a reference count on it when we construct it, and we lose |
| 2385 | // that count when the thread finishes doing useful work (OnThreadTerminate). |
| 2386 | // |
| 2387 | // One way OnThreadTerminate() is called is when the thread finishes doing useful |
| 2388 | // work. This case always happens on the correct thread. |
| 2389 | // |
| 2390 | // The other way OnThreadTerminate() is called is during product shutdown. We do |
| 2391 | // a "best effort" to eliminate all threads except the Main thread before shutdown |
| 2392 | // happens. But there may be some background threads or external threads still |
| 2393 | // running. |
| 2394 | // |
| 2395 | // When the final reference count disappears, we destruct. Until then, the thread |
| 2396 | // remains in the ThreadStore, but is marked as "Dead". |
| 2397 | //<TODO> |
| 2398 | // @TODO cwb: for a typical shutdown, only background threads are still around. |
| 2399 | // Should we interrupt them? What about the non-typical shutdown?</TODO> |
| 2400 | |
| 2401 | int Thread::IncExternalCount() |
| 2402 | { |
| 2403 | CONTRACTL { |
| 2404 | NOTHROW; |
| 2405 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 2406 | } |
| 2407 | CONTRACTL_END; |
| 2408 | |
| 2409 | Thread *pCurThread = GetThread(); |
| 2410 | |
| 2411 | _ASSERTE(m_ExternalRefCount > 0); |
| 2412 | int retVal = FastInterlockIncrement((LONG*)&m_ExternalRefCount); |
| 2413 | // If we have an exposed object and the refcount is greater than one |
| 2414 | // we must make sure to keep a strong handle to the exposed object |
| 2415 | // so that we keep it alive even if nobody has a reference to it. |
| 2416 | if (pCurThread && ((*((void**)m_ExposedObject)) != NULL)) |
| 2417 | { |
| 2418 | // The exposed object exists and needs a strong handle so check |
| 2419 | // to see if it has one. |
| 2420 | // Only a managed thread can setup StrongHnd. |
| 2421 | if ((*((void**)m_StrongHndToExposedObject)) == NULL) |
| 2422 | { |
| 2423 | GCX_COOP(); |
| 2424 | // Store the object in the strong handle. |
| 2425 | StoreObjectInHandle(m_StrongHndToExposedObject, ObjectFromHandle(m_ExposedObject)); |
| 2426 | } |
| 2427 | } |
| 2428 | |
| 2429 | return retVal; |
| 2430 | } |
| 2431 | |
| 2432 | int Thread::DecExternalCount(BOOL holdingLock) |
| 2433 | { |
| 2434 | CONTRACTL { |
| 2435 | NOTHROW; |
| 2436 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 2437 | } |
| 2438 | CONTRACTL_END; |
| 2439 | |
| 2440 | // Note that it's possible to get here with a NULL current thread (during |
| 2441 | // shutdown of the thread manager). |
| 2442 | Thread *pCurThread = GetThread(); |
| 2443 | _ASSERTE (pCurThread == NULL || IsAtProcessExit() |
| 2444 | || (!holdingLock && !ThreadStore::HoldingThreadStore(pCurThread)) |
| 2445 | || (holdingLock && ThreadStore::HoldingThreadStore(pCurThread))); |
| 2446 | |
| 2447 | BOOL ToggleGC = FALSE; |
| 2448 | BOOL SelfDelete = FALSE; |
| 2449 | |
| 2450 | int retVal; |
| 2451 | |
| 2452 | // Must synchronize count and exposed object handle manipulation. We use the |
| 2453 | // thread lock for this, which implies that we must be in pre-emptive mode |
| 2454 | // to begin with and avoid any activity that would invoke a GC (this |
| 2455 | // acquires the thread store lock). |
| 2456 | if (pCurThread) |
| 2457 | { |
| 2458 | // TODO: we would prefer to use a GC Holder here, however it is hard |
| 2459 | // to get the case where we're deleting this thread correct given |
| 2460 | // the current macros. We want to supress the release of the holder |
| 2461 | // here which puts us in Preemptive mode, and also the switch to |
| 2462 | // Cooperative mode below, but since both holders will be named |
| 2463 | // the same thing (due to the generic nature of the macro) we can |
| 2464 | // not use GCX_*_SUPRESS_RELEASE() for 2 holders in the same scope |
| 2465 | // b/c they will both apply simply to the most narrowly scoped |
| 2466 | // holder. |
| 2467 | |
| 2468 | ToggleGC = pCurThread->PreemptiveGCDisabled(); |
| 2469 | if (ToggleGC) |
| 2470 | { |
| 2471 | pCurThread->EnablePreemptiveGC(); |
| 2472 | } |
| 2473 | } |
| 2474 | |
| 2475 | GCX_ASSERT_PREEMP(); |
| 2476 | |
| 2477 | ThreadStoreLockHolder tsLock(!holdingLock); |
| 2478 | |
| 2479 | _ASSERTE(m_ExternalRefCount >= 1); |
| 2480 | _ASSERTE(!holdingLock || |
| 2481 | ThreadStore::s_pThreadStore->m_Crst.GetEnterCount() > 0 || |
| 2482 | IsAtProcessExit()); |
| 2483 | |
| 2484 | retVal = FastInterlockDecrement((LONG*)&m_ExternalRefCount); |
| 2485 | |
| 2486 | if (retVal == 0) |
| 2487 | { |
| 2488 | HANDLE h = GetThreadHandle(); |
| 2489 | if (h == INVALID_HANDLE_VALUE) |
| 2490 | { |
| 2491 | h = m_ThreadHandleForClose; |
| 2492 | m_ThreadHandleForClose = INVALID_HANDLE_VALUE; |
| 2493 | } |
| 2494 | // Can not assert like this. We have already removed the Unstarted bit. |
| 2495 | //_ASSERTE (IsUnstarted() || h != INVALID_HANDLE_VALUE); |
| 2496 | if (h != INVALID_HANDLE_VALUE && m_WeOwnThreadHandle) |
| 2497 | { |
| 2498 | ::CloseHandle(h); |
| 2499 | SetThreadHandle(INVALID_HANDLE_VALUE); |
| 2500 | } |
| 2501 | // Switch back to cooperative mode to manipulate the thread. |
| 2502 | if (pCurThread) |
| 2503 | { |
| 2504 | // TODO: we would prefer to use GCX_COOP here, see comment above. |
| 2505 | pCurThread->DisablePreemptiveGC(); |
| 2506 | } |
| 2507 | |
| 2508 | GCX_ASSERT_COOP(); |
| 2509 | |
| 2510 | // during process detach the thread might still be in the thread list |
| 2511 | // if it hasn't seen its DLL_THREAD_DETACH yet. Use the following |
| 2512 | // tweak to decide if the thread has terminated yet. |
| 2513 | if (!HasValidThreadHandle()) |
| 2514 | { |
| 2515 | SelfDelete = this == pCurThread; |
| 2516 | m_ExceptionState.FreeAllStackTraces(); |
| 2517 | if (SelfDelete) { |
| 2518 | SetThread(NULL); |
| 2519 | } |
| 2520 | delete this; |
| 2521 | } |
| 2522 | |
| 2523 | tsLock.Release(); |
| 2524 | |
| 2525 | // It only makes sense to restore the GC mode if we didn't just destroy |
| 2526 | // our own thread object. |
| 2527 | if (pCurThread && !SelfDelete && !ToggleGC) |
| 2528 | { |
| 2529 | pCurThread->EnablePreemptiveGC(); |
| 2530 | } |
| 2531 | |
| 2532 | // Cannot use this here b/c it creates a holder named the same as GCX_ASSERT_COOP |
| 2533 | // in the same scope above... |
| 2534 | // |
| 2535 | // GCX_ASSERT_PREEMP() |
| 2536 | |
| 2537 | return retVal; |
| 2538 | } |
| 2539 | else if (pCurThread == NULL) |
| 2540 | { |
| 2541 | // We're in shutdown, too late to be worrying about having a strong |
| 2542 | // handle to the exposed thread object, we've already performed our |
| 2543 | // final GC. |
| 2544 | tsLock.Release(); |
| 2545 | |
| 2546 | return retVal; |
| 2547 | } |
| 2548 | else |
| 2549 | { |
| 2550 | // Check to see if the external ref count reaches exactly one. If this |
| 2551 | // is the case and we have an exposed object then it is that exposed object |
| 2552 | // that is holding a reference to us. To make sure that we are not the |
| 2553 | // ones keeping the exposed object alive we need to remove the strong |
| 2554 | // reference we have to it. |
| 2555 | if ((retVal == 1) && ((*((void**)m_StrongHndToExposedObject)) != NULL)) |
| 2556 | { |
| 2557 | // Switch back to cooperative mode to manipulate the object. |
| 2558 | |
| 2559 | // Don't want to switch back to COOP until we let go of the lock |
| 2560 | // however we are allowed to call StoreObjectInHandle here in preemptive |
| 2561 | // mode because we are setting the value to NULL. |
| 2562 | CONTRACT_VIOLATION(ModeViolation); |
| 2563 | |
| 2564 | // Clear the handle and leave the lock. |
| 2565 | // We do not have to to DisablePreemptiveGC here, because |
| 2566 | // we just want to put NULL into a handle. |
| 2567 | StoreObjectInHandle(m_StrongHndToExposedObject, NULL); |
| 2568 | |
| 2569 | tsLock.Release(); |
| 2570 | |
| 2571 | // Switch back to the initial GC mode. |
| 2572 | if (ToggleGC) |
| 2573 | { |
| 2574 | pCurThread->DisablePreemptiveGC(); |
| 2575 | } |
| 2576 | |
| 2577 | GCX_ASSERT_COOP(); |
| 2578 | |
| 2579 | return retVal; |
| 2580 | } |
| 2581 | } |
| 2582 | |
| 2583 | tsLock.Release(); |
| 2584 | |
| 2585 | // Switch back to the initial GC mode. |
| 2586 | if (ToggleGC) |
| 2587 | { |
| 2588 | pCurThread->DisablePreemptiveGC(); |
| 2589 | } |
| 2590 | |
| 2591 | return retVal; |
| 2592 | } |
| 2593 | |
| 2594 | |
| 2595 | |
| 2596 | //-------------------------------------------------------------------- |
| 2597 | // Destruction. This occurs after the associated native thread |
| 2598 | // has died. |
| 2599 | //-------------------------------------------------------------------- |
| 2600 | Thread::~Thread() |
| 2601 | { |
| 2602 | CONTRACTL { |
| 2603 | NOTHROW; |
| 2604 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 2605 | } |
| 2606 | CONTRACTL_END; |
| 2607 | |
| 2608 | // TODO: enable this |
| 2609 | //_ASSERTE(GetThread() != this); |
| 2610 | _ASSERTE(m_ThrewControlForThread == 0); |
| 2611 | |
| 2612 | // AbortRequest is coupled with TrapReturningThread. |
| 2613 | // We should have unmarked the thread for abort. |
| 2614 | // !!! Can not assert here. If a thread has no managed code on stack |
| 2615 | // !!! we leave the g_TrapReturningThread set so that the thread will be |
| 2616 | // !!! aborted if it enters managed code. |
| 2617 | //_ASSERTE(!IsAbortRequested()); |
| 2618 | |
| 2619 | // We should not have the Thread marked for abort. But if we have |
| 2620 | // we need to unmark it so that g_TrapReturningThreads is decremented. |
| 2621 | if (IsAbortRequested()) |
| 2622 | { |
| 2623 | UnmarkThreadForAbort(TAR_ALL); |
| 2624 | } |
| 2625 | |
| 2626 | #if defined(_DEBUG) && defined(TRACK_SYNC) |
| 2627 | _ASSERTE(IsAtProcessExit() || ((Dbg_TrackSyncStack *) m_pTrackSync)->m_StackPointer == 0); |
| 2628 | delete m_pTrackSync; |
| 2629 | #endif // TRACK_SYNC |
| 2630 | |
| 2631 | _ASSERTE(IsDead() || IsUnstarted() || IsAtProcessExit()); |
| 2632 | |
| 2633 | if (m_WaitEventLink.m_Next != NULL && !IsAtProcessExit()) |
| 2634 | { |
| 2635 | WaitEventLink *walk = &m_WaitEventLink; |
| 2636 | while (walk->m_Next) { |
| 2637 | ThreadQueue::RemoveThread(this, (SyncBlock*)((DWORD_PTR)walk->m_Next->m_WaitSB & ~1)); |
| 2638 | StoreEventToEventStore (walk->m_Next->m_EventWait); |
| 2639 | } |
| 2640 | m_WaitEventLink.m_Next = NULL; |
| 2641 | } |
| 2642 | |
| 2643 | if (m_StateNC & TSNC_ExistInThreadStore) { |
| 2644 | BOOL ret; |
| 2645 | ret = ThreadStore::RemoveThread(this); |
| 2646 | _ASSERTE(ret); |
| 2647 | } |
| 2648 | |
| 2649 | #ifdef _DEBUG |
| 2650 | m_pFrame = (Frame *)POISONC; |
| 2651 | #endif |
| 2652 | |
| 2653 | // Update Perfmon counters. |
| 2654 | COUNTER_ONLY(GetPerfCounters().m_LocksAndThreads.cCurrentThreadsLogical--); |
| 2655 | |
| 2656 | // Current recognized threads are non-runtime threads that are alive and ran under the |
| 2657 | // runtime. Check whether this Thread was one of them. |
| 2658 | if ((m_State & TS_WeOwn) == 0) |
| 2659 | { |
| 2660 | COUNTER_ONLY(GetPerfCounters().m_LocksAndThreads.cRecognizedThreads--); |
| 2661 | } |
| 2662 | else |
| 2663 | { |
| 2664 | COUNTER_ONLY(GetPerfCounters().m_LocksAndThreads.cCurrentThreadsPhysical--); |
| 2665 | } |
| 2666 | |
| 2667 | // Normally we shouldn't get here with a valid thread handle; however if SetupThread |
| 2668 | // failed (due to an OOM for example) then we need to CloseHandle the thread |
| 2669 | // handle if we own it. |
| 2670 | if (m_WeOwnThreadHandle && (GetThreadHandle() != INVALID_HANDLE_VALUE)) |
| 2671 | { |
| 2672 | CloseHandle(GetThreadHandle()); |
| 2673 | } |
| 2674 | |
| 2675 | if (m_DebugSuspendEvent.IsValid()) |
| 2676 | { |
| 2677 | m_DebugSuspendEvent.CloseEvent(); |
| 2678 | } |
| 2679 | if (m_EventWait.IsValid()) |
| 2680 | { |
| 2681 | m_EventWait.CloseEvent(); |
| 2682 | } |
| 2683 | |
| 2684 | FreeIOCompletionContext(); |
| 2685 | |
| 2686 | if (m_OSContext) |
| 2687 | delete m_OSContext; |
| 2688 | |
| 2689 | if (GetSavedRedirectContext()) |
| 2690 | { |
| 2691 | delete GetSavedRedirectContext(); |
| 2692 | SetSavedRedirectContext(NULL); |
| 2693 | } |
| 2694 | |
| 2695 | #ifdef FEATURE_COMINTEROP |
| 2696 | if (m_pRCWStack) |
| 2697 | delete m_pRCWStack; |
| 2698 | #endif |
| 2699 | |
| 2700 | if (m_pExceptionDuringStartup) |
| 2701 | { |
| 2702 | Exception::Delete (m_pExceptionDuringStartup); |
| 2703 | } |
| 2704 | |
| 2705 | ClearContext(); |
| 2706 | |
| 2707 | if (!IsAtProcessExit()) |
| 2708 | { |
| 2709 | // Destroy any handles that we're using to hold onto exception objects |
| 2710 | SafeSetThrowables(NULL); |
| 2711 | |
| 2712 | DestroyShortWeakHandle(m_ExposedObject); |
| 2713 | DestroyStrongHandle(m_StrongHndToExposedObject); |
| 2714 | } |
| 2715 | |
| 2716 | g_pThinLockThreadIdDispenser->DisposeId(GetThreadId()); |
| 2717 | |
| 2718 | #ifdef FEATURE_PREJIT |
| 2719 | if (m_pIBCInfo) { |
| 2720 | delete m_pIBCInfo; |
| 2721 | } |
| 2722 | #endif |
| 2723 | |
| 2724 | #ifdef FEATURE_EVENT_TRACE |
| 2725 | // Destruct the thread local type cache for allocation sampling |
| 2726 | if(m_pAllLoggedTypes) { |
| 2727 | ETW::TypeSystemLog::DeleteTypeHashNoLock(&m_pAllLoggedTypes); |
| 2728 | } |
| 2729 | #endif // FEATURE_EVENT_TRACE |
| 2730 | |
| 2731 | // Wait for another thread to leave its loop in DeadlockAwareLock::TryBeginEnterLock |
| 2732 | CrstHolder lock(&g_DeadlockAwareCrst); |
| 2733 | } |
| 2734 | |
| 2735 | #ifdef FEATURE_COMINTEROP_APARTMENT_SUPPORT |
| 2736 | |
| 2737 | void Thread::BaseCoUninitialize() |
| 2738 | { |
| 2739 | STATIC_CONTRACT_THROWS; |
| 2740 | STATIC_CONTRACT_GC_TRIGGERS; |
| 2741 | STATIC_CONTRACT_SO_INTOLERANT; |
| 2742 | STATIC_CONTRACT_MODE_PREEMPTIVE; |
| 2743 | |
| 2744 | _ASSERTE(GetThread() == this); |
| 2745 | |
| 2746 | BEGIN_SO_TOLERANT_CODE(this); |
| 2747 | // BEGIN_SO_TOLERANT_CODE wraps a __try/__except around this call, so if the OS were to allow |
| 2748 | // an exception to leak through to us, we'll catch it. |
| 2749 | ::CoUninitialize(); |
| 2750 | END_SO_TOLERANT_CODE; |
| 2751 | |
| 2752 | }// BaseCoUninitialize |
| 2753 | |
| 2754 | #ifdef FEATURE_COMINTEROP |
| 2755 | void Thread::BaseWinRTUninitialize() |
| 2756 | { |
| 2757 | STATIC_CONTRACT_THROWS; |
| 2758 | STATIC_CONTRACT_GC_TRIGGERS; |
| 2759 | STATIC_CONTRACT_SO_INTOLERANT; |
| 2760 | STATIC_CONTRACT_MODE_PREEMPTIVE; |
| 2761 | |
| 2762 | _ASSERTE(WinRTSupported()); |
| 2763 | _ASSERTE(GetThread() == this); |
| 2764 | _ASSERTE(IsWinRTInitialized()); |
| 2765 | |
| 2766 | BEGIN_SO_TOLERANT_CODE(this); |
| 2767 | RoUninitialize(); |
| 2768 | END_SO_TOLERANT_CODE; |
| 2769 | } |
| 2770 | #endif // FEATURE_COMINTEROP |
| 2771 | |
| 2772 | void Thread::CoUninitialize() |
| 2773 | { |
| 2774 | CONTRACTL { |
| 2775 | NOTHROW; |
| 2776 | GC_TRIGGERS; |
| 2777 | } |
| 2778 | CONTRACTL_END; |
| 2779 | |
| 2780 | // Running threads might have performed a CoInitialize which must |
| 2781 | // now be balanced. |
| 2782 | BOOL needsUninitialize = IsCoInitialized() |
| 2783 | #ifdef FEATURE_COMINTEROP |
| 2784 | || IsWinRTInitialized() |
| 2785 | #endif // FEATURE_COMINTEROP |
| 2786 | ; |
| 2787 | |
| 2788 | if (!IsAtProcessExit() && needsUninitialize) |
| 2789 | { |
| 2790 | GCX_PREEMP(); |
| 2791 | CONTRACT_VIOLATION(ThrowsViolation); |
| 2792 | |
| 2793 | if (IsCoInitialized()) |
| 2794 | { |
| 2795 | BaseCoUninitialize(); |
| 2796 | FastInterlockAnd((ULONG *)&m_State, ~TS_CoInitialized); |
| 2797 | } |
| 2798 | |
| 2799 | #ifdef FEATURE_COMINTEROP |
| 2800 | if (IsWinRTInitialized()) |
| 2801 | { |
| 2802 | _ASSERTE(WinRTSupported()); |
| 2803 | BaseWinRTUninitialize(); |
| 2804 | ResetWinRTInitialized(); |
| 2805 | } |
| 2806 | #endif // FEATURE_COMNITEROP |
| 2807 | } |
| 2808 | } |
| 2809 | #endif // FEATURE_COMINTEROP_APARTMENT_SUPPORT |
| 2810 | |
| 2811 | void Thread::CleanupDetachedThreads() |
| 2812 | { |
| 2813 | CONTRACTL { |
| 2814 | NOTHROW; |
| 2815 | GC_TRIGGERS; |
| 2816 | } |
| 2817 | CONTRACTL_END; |
| 2818 | |
| 2819 | _ASSERTE(!ThreadStore::HoldingThreadStore()); |
| 2820 | |
| 2821 | ThreadStoreLockHolder threadStoreLockHolder; |
| 2822 | |
| 2823 | Thread *thread = ThreadStore::GetAllThreadList(NULL, 0, 0); |
| 2824 | |
| 2825 | STRESS_LOG0(LF_SYNC, LL_INFO1000, "T::CDT called\n" ); |
| 2826 | |
| 2827 | while (thread != NULL) |
| 2828 | { |
| 2829 | Thread *next = ThreadStore::GetAllThreadList(thread, 0, 0); |
| 2830 | |
| 2831 | if (thread->IsDetached() && thread->m_UnmanagedRefCount == 0) |
| 2832 | { |
| 2833 | STRESS_LOG1(LF_SYNC, LL_INFO1000, "T::CDT - detaching thread 0x%p\n" , thread); |
| 2834 | |
| 2835 | // Unmark that the thread is detached while we have the |
| 2836 | // thread store lock. This will ensure that no other |
| 2837 | // thread will race in here and try to delete it, too. |
| 2838 | FastInterlockAnd((ULONG*)&(thread->m_State), ~TS_Detached); |
| 2839 | FastInterlockDecrement(&m_DetachCount); |
| 2840 | if (!thread->IsBackground()) |
| 2841 | FastInterlockDecrement(&m_ActiveDetachCount); |
| 2842 | |
| 2843 | // If the debugger is attached, then we need to unlock the |
| 2844 | // thread store before calling OnThreadTerminate. That |
| 2845 | // way, we won't be holding the thread store lock if we |
| 2846 | // need to block sending a detach thread event. |
| 2847 | BOOL debuggerAttached = |
| 2848 | #ifdef DEBUGGING_SUPPORTED |
| 2849 | CORDebuggerAttached(); |
| 2850 | #else // !DEBUGGING_SUPPORTED |
| 2851 | FALSE; |
| 2852 | #endif // !DEBUGGING_SUPPORTED |
| 2853 | |
| 2854 | if (debuggerAttached) |
| 2855 | ThreadStore::UnlockThreadStore(); |
| 2856 | |
| 2857 | thread->OnThreadTerminate(debuggerAttached ? FALSE : TRUE); |
| 2858 | |
| 2859 | #ifdef DEBUGGING_SUPPORTED |
| 2860 | if (debuggerAttached) |
| 2861 | { |
| 2862 | ThreadSuspend::LockThreadStore(ThreadSuspend::SUSPEND_OTHER); |
| 2863 | |
| 2864 | // We remember the next Thread in the thread store |
| 2865 | // list before deleting the current one. But we can't |
| 2866 | // use that Thread pointer now that we release the |
| 2867 | // thread store lock in the middle of the loop. We |
| 2868 | // have to start from the beginning of the list every |
| 2869 | // time. If two threads T1 and T2 race into |
| 2870 | // CleanupDetachedThreads, then T1 will grab the first |
| 2871 | // Thread on the list marked for deletion and release |
| 2872 | // the lock. T2 will grab the second one on the |
| 2873 | // list. T2 may complete destruction of its Thread, |
| 2874 | // then T1 might re-acquire the thread store lock and |
| 2875 | // try to use the next Thread in the thread store. But |
| 2876 | // T2 just deleted that next Thread. |
| 2877 | thread = ThreadStore::GetAllThreadList(NULL, 0, 0); |
| 2878 | } |
| 2879 | else |
| 2880 | #endif // DEBUGGING_SUPPORTED |
| 2881 | { |
| 2882 | thread = next; |
| 2883 | } |
| 2884 | } |
| 2885 | else if (thread->HasThreadState(TS_Finalized)) |
| 2886 | { |
| 2887 | STRESS_LOG1(LF_SYNC, LL_INFO1000, "T::CDT - finalized thread 0x%p\n" , thread); |
| 2888 | |
| 2889 | thread->ResetThreadState(TS_Finalized); |
| 2890 | // We have finalized the managed Thread object. Now it is time to clean up the unmanaged part |
| 2891 | thread->DecExternalCount(TRUE); |
| 2892 | thread = next; |
| 2893 | } |
| 2894 | else |
| 2895 | { |
| 2896 | thread = next; |
| 2897 | } |
| 2898 | } |
| 2899 | |
| 2900 | s_fCleanFinalizedThread = FALSE; |
| 2901 | } |
| 2902 | |
| 2903 | #ifdef FEATURE_COMINTEROP_APARTMENT_SUPPORT |
| 2904 | |
| 2905 | void Thread::CleanupCOMState() |
| 2906 | { |
| 2907 | CONTRACTL { |
| 2908 | NOTHROW; |
| 2909 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 2910 | } |
| 2911 | CONTRACTL_END; |
| 2912 | |
| 2913 | #ifdef FEATURE_COMINTEROP |
| 2914 | if (GetFinalApartment() == Thread::AS_InSTA) |
| 2915 | ReleaseRCWsInCachesNoThrow(GetCurrentCtxCookie()); |
| 2916 | #endif // FEATURE_COMINTEROP |
| 2917 | |
| 2918 | // Running threads might have performed a CoInitialize which must |
| 2919 | // now be balanced. However only the thread that called COInitialize can |
| 2920 | // call CoUninitialize. |
| 2921 | |
| 2922 | BOOL needsUninitialize = IsCoInitialized() |
| 2923 | #ifdef FEATURE_COMINTEROP |
| 2924 | || IsWinRTInitialized() |
| 2925 | #endif // FEATURE_COMINTEROP |
| 2926 | ; |
| 2927 | |
| 2928 | if (needsUninitialize) |
| 2929 | { |
| 2930 | GCX_PREEMP(); |
| 2931 | CONTRACT_VIOLATION(ThrowsViolation); |
| 2932 | |
| 2933 | if (IsCoInitialized()) |
| 2934 | { |
| 2935 | BaseCoUninitialize(); |
| 2936 | ResetCoInitialized(); |
| 2937 | } |
| 2938 | |
| 2939 | #ifdef FEATURE_COMINTEROP |
| 2940 | if (IsWinRTInitialized()) |
| 2941 | { |
| 2942 | _ASSERTE(WinRTSupported()); |
| 2943 | BaseWinRTUninitialize(); |
| 2944 | ResetWinRTInitialized(); |
| 2945 | } |
| 2946 | #endif // FEATURE_COMINTEROP |
| 2947 | } |
| 2948 | } |
| 2949 | #endif // FEATURE_COMINTEROP_APARTMENT_SUPPORT |
| 2950 | |
| 2951 | // See general comments on thread destruction (code:#threadDestruction) above. |
| 2952 | void Thread::OnThreadTerminate(BOOL holdingLock) |
| 2953 | { |
| 2954 | CONTRACTL { |
| 2955 | NOTHROW; |
| 2956 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 2957 | } |
| 2958 | CONTRACTL_END; |
| 2959 | |
| 2960 | // #ReportDeadOnThreadTerminate |
| 2961 | // Caller should have put the TS_ReportDead bit on by now. |
| 2962 | // We don't want any windows after the exit event but before the thread is marked dead. |
| 2963 | // If a debugger attached during such a window (or even took a dump at the exit event), |
| 2964 | // then it may not realize the thread is dead. |
| 2965 | // So ensure we mark the thread as dead before we send the tool notifications. |
| 2966 | // The TS_ReportDead bit will cause the debugger to view this as TS_Dead. |
| 2967 | _ASSERTE(HasThreadState(TS_ReportDead)); |
| 2968 | |
| 2969 | // Should not use OSThreadId: |
| 2970 | // OSThreadId may change for the current thread is the thread is blocked and rescheduled |
| 2971 | // by host. |
| 2972 | Thread *pCurrentThread = GetThread(); |
| 2973 | DWORD CurrentThreadID = pCurrentThread?pCurrentThread->GetThreadId():0; |
| 2974 | DWORD ThisThreadID = GetThreadId(); |
| 2975 | |
| 2976 | #ifdef FEATURE_COMINTEROP_APARTMENT_SUPPORT |
| 2977 | // If the currently running thread is the thread that died and it is an STA thread, then we |
| 2978 | // need to release all the RCW's in the current context. However, we cannot do this if we |
| 2979 | // are in the middle of process detach. |
| 2980 | if (!IsAtProcessExit() && this == GetThread()) |
| 2981 | { |
| 2982 | CleanupCOMState(); |
| 2983 | } |
| 2984 | #endif // FEATURE_COMINTEROP_APARTMENT_SUPPORT |
| 2985 | |
| 2986 | if (g_fEEShutDown != 0) |
| 2987 | { |
| 2988 | // We have started shutdown. Not safe to touch CLR state. |
| 2989 | return; |
| 2990 | } |
| 2991 | |
| 2992 | // We took a count during construction, and we rely on the count being |
| 2993 | // non-zero as we terminate the thread here. |
| 2994 | _ASSERTE(m_ExternalRefCount > 0); |
| 2995 | |
| 2996 | // The thread is no longer running. It's important that we zero any general OBJECTHANDLE's |
| 2997 | // on this Thread object. That's because we need the managed Thread object to be subject to |
| 2998 | // GC and yet any HANDLE is opaque to the GC when it comes to collecting cycles. If e.g. the |
| 2999 | // Thread's AbortReason (which is an arbitrary object) contains transitively a reference back |
| 3000 | // to the Thread, then we have an uncollectible cycle. When the thread is executing, nothing |
| 3001 | // can be collected anyway. But now that we stop running the cycle concerns us. |
| 3002 | // |
| 3003 | // It's important that we only use OBJECTHANDLE's that are retrievable while the thread is |
| 3004 | // still running. That's what allows us to zero them here with impunity: |
| 3005 | { |
| 3006 | // No handles to clean up in the m_ExceptionState |
| 3007 | _ASSERTE(!m_ExceptionState.IsExceptionInProgress()); |
| 3008 | |
| 3009 | GCX_COOP(); |
| 3010 | |
| 3011 | // Destroy the LastThrown handle (and anything that violates the above assert). |
| 3012 | SafeSetThrowables(NULL); |
| 3013 | |
| 3014 | // Cleaning up the AbortReason is tricky, since the handle is only valid if the ADID is valid |
| 3015 | // ...and we can only perform this operation if other threads aren't racing to update these |
| 3016 | // values on our thread asynchronously. |
| 3017 | ClearAbortReason(); |
| 3018 | |
| 3019 | // Free all structures related to thread statics for this thread |
| 3020 | DeleteThreadStaticData(); |
| 3021 | |
| 3022 | } |
| 3023 | |
| 3024 | if (GCHeapUtilities::IsGCHeapInitialized()) |
| 3025 | { |
| 3026 | // Guaranteed to NOT be a shutdown case, because we tear down the heap before |
| 3027 | // we tear down any threads during shutdown. |
| 3028 | if (ThisThreadID == CurrentThreadID) |
| 3029 | { |
| 3030 | GCX_COOP(); |
| 3031 | GCHeapUtilities::GetGCHeap()->FixAllocContext(&m_alloc_context, NULL, NULL); |
| 3032 | m_alloc_context.init(); |
| 3033 | } |
| 3034 | } |
| 3035 | |
| 3036 | // We switch a thread to dead when it has finished doing useful work. But it |
| 3037 | // remains in the thread store so long as someone keeps it alive. An exposed |
| 3038 | // object will do this (it releases the refcount in its finalizer). If the |
| 3039 | // thread is never released, we have another look during product shutdown and |
| 3040 | // account for the unreleased refcount of the uncollected exposed object: |
| 3041 | if (IsDead()) |
| 3042 | { |
| 3043 | GCX_COOP(); |
| 3044 | |
| 3045 | _ASSERTE(IsAtProcessExit()); |
| 3046 | ClearContext(); |
| 3047 | if (m_ExposedObject != NULL) |
| 3048 | DecExternalCount(holdingLock); // may destruct now |
| 3049 | } |
| 3050 | else |
| 3051 | { |
| 3052 | #ifdef DEBUGGING_SUPPORTED |
| 3053 | // |
| 3054 | // If we're debugging, let the debugger know that this thread is |
| 3055 | // gone. |
| 3056 | // |
| 3057 | // There is a race here where the debugger could have attached after |
| 3058 | // we checked (and thus didn't release the lock). In this case, |
| 3059 | // we can't call out to the debugger or we risk a deadlock. |
| 3060 | // |
| 3061 | if (!holdingLock && CORDebuggerAttached()) |
| 3062 | { |
| 3063 | g_pDebugInterface->DetachThread(this); |
| 3064 | } |
| 3065 | #endif // DEBUGGING_SUPPORTED |
| 3066 | |
| 3067 | #ifdef PROFILING_SUPPORTED |
| 3068 | // If a profiler is present, then notify the profiler of thread destroy |
| 3069 | { |
| 3070 | BEGIN_PIN_PROFILER(CORProfilerTrackThreads()); |
| 3071 | GCX_PREEMP(); |
| 3072 | g_profControlBlock.pProfInterface->ThreadDestroyed((ThreadID) this); |
| 3073 | END_PIN_PROFILER(); |
| 3074 | } |
| 3075 | #endif // PROFILING_SUPPORTED |
| 3076 | |
| 3077 | if (!holdingLock) |
| 3078 | { |
| 3079 | LOG((LF_SYNC, INFO3, "OnThreadTerminate obtain lock\n" )); |
| 3080 | ThreadSuspend::LockThreadStore(ThreadSuspend::SUSPEND_OTHER); |
| 3081 | |
| 3082 | } |
| 3083 | |
| 3084 | if (GCHeapUtilities::IsGCHeapInitialized() && ThisThreadID != CurrentThreadID) |
| 3085 | { |
| 3086 | // We must be holding the ThreadStore lock in order to clean up alloc context. |
| 3087 | // We should never call FixAllocContext during GC. |
| 3088 | GCHeapUtilities::GetGCHeap()->FixAllocContext(&m_alloc_context, NULL, NULL); |
| 3089 | m_alloc_context.init(); |
| 3090 | } |
| 3091 | |
| 3092 | FastInterlockOr((ULONG *) &m_State, TS_Dead); |
| 3093 | ThreadStore::s_pThreadStore->m_DeadThreadCount++; |
| 3094 | ThreadStore::s_pThreadStore->IncrementDeadThreadCountForGCTrigger(); |
| 3095 | |
| 3096 | if (IsUnstarted()) |
| 3097 | ThreadStore::s_pThreadStore->m_UnstartedThreadCount--; |
| 3098 | else |
| 3099 | { |
| 3100 | if (IsBackground()) |
| 3101 | ThreadStore::s_pThreadStore->m_BackgroundThreadCount--; |
| 3102 | } |
| 3103 | |
| 3104 | FastInterlockAnd((ULONG *) &m_State, ~(TS_Unstarted | TS_Background)); |
| 3105 | |
| 3106 | // |
| 3107 | // If this thread was told to trip for debugging between the |
| 3108 | // sending of the detach event above and the locking of the |
| 3109 | // thread store lock, then remove the flag and decrement the |
| 3110 | // global trap returning threads count. |
| 3111 | // |
| 3112 | if (!IsAtProcessExit()) |
| 3113 | { |
| 3114 | // A thread can't die during a GCPending, because the thread store's |
| 3115 | // lock is held by the GC thread. |
| 3116 | if (m_State & TS_DebugSuspendPending) |
| 3117 | UnmarkForSuspension(~TS_DebugSuspendPending); |
| 3118 | |
| 3119 | // CoreCLR does not support user-requested thread suspension |
| 3120 | _ASSERTE(!(m_State & TS_UserSuspendPending)); |
| 3121 | |
| 3122 | if (CurrentThreadID == ThisThreadID && IsAbortRequested()) |
| 3123 | { |
| 3124 | UnmarkThreadForAbort(Thread::TAR_ALL); |
| 3125 | } |
| 3126 | } |
| 3127 | |
| 3128 | if (GetThreadHandle() != INVALID_HANDLE_VALUE) |
| 3129 | { |
| 3130 | if (m_ThreadHandleForClose == INVALID_HANDLE_VALUE) |
| 3131 | { |
| 3132 | m_ThreadHandleForClose = GetThreadHandle(); |
| 3133 | } |
| 3134 | SetThreadHandle (INVALID_HANDLE_VALUE); |
| 3135 | } |
| 3136 | |
| 3137 | m_OSThreadId = 0; |
| 3138 | |
| 3139 | // If nobody else is holding onto the thread, we may destruct it here: |
| 3140 | ULONG oldCount = DecExternalCount(TRUE); |
| 3141 | // If we are shutting down the process, we only have one thread active in the |
| 3142 | // system. So we can disregard all the reasons that hold this thread alive -- |
| 3143 | // TLS is about to be reclaimed anyway. |
| 3144 | if (IsAtProcessExit()) |
| 3145 | while (oldCount > 0) |
| 3146 | { |
| 3147 | oldCount = DecExternalCount(TRUE); |
| 3148 | } |
| 3149 | |
| 3150 | // ASSUME THAT THE THREAD IS DELETED, FROM HERE ON |
| 3151 | |
| 3152 | _ASSERTE(ThreadStore::s_pThreadStore->m_ThreadCount >= 0); |
| 3153 | _ASSERTE(ThreadStore::s_pThreadStore->m_BackgroundThreadCount >= 0); |
| 3154 | _ASSERTE(ThreadStore::s_pThreadStore->m_ThreadCount >= |
| 3155 | ThreadStore::s_pThreadStore->m_BackgroundThreadCount); |
| 3156 | _ASSERTE(ThreadStore::s_pThreadStore->m_ThreadCount >= |
| 3157 | ThreadStore::s_pThreadStore->m_UnstartedThreadCount); |
| 3158 | _ASSERTE(ThreadStore::s_pThreadStore->m_ThreadCount >= |
| 3159 | ThreadStore::s_pThreadStore->m_DeadThreadCount); |
| 3160 | |
| 3161 | // One of the components of OtherThreadsComplete() has changed, so check whether |
| 3162 | // we should now exit the EE. |
| 3163 | ThreadStore::CheckForEEShutdown(); |
| 3164 | |
| 3165 | if (ThisThreadID == CurrentThreadID) |
| 3166 | { |
| 3167 | // NULL out the thread block in the tls. We can't do this if we aren't on the |
| 3168 | // right thread. But this will only happen during a shutdown. And we've made |
| 3169 | // a "best effort" to reduce to a single thread before we begin the shutdown. |
| 3170 | SetThread(NULL); |
| 3171 | SetAppDomain(NULL); |
| 3172 | } |
| 3173 | |
| 3174 | if (!holdingLock) |
| 3175 | { |
| 3176 | LOG((LF_SYNC, INFO3, "OnThreadTerminate releasing lock\n" )); |
| 3177 | ThreadSuspend::UnlockThreadStore(ThisThreadID == CurrentThreadID); |
| 3178 | } |
| 3179 | } |
| 3180 | } |
| 3181 | |
| 3182 | // Helper functions to check for duplicate handles. we only do this check if |
| 3183 | // a waitfor multiple fails. |
| 3184 | int __cdecl compareHandles( const void *arg1, const void *arg2 ) |
| 3185 | { |
| 3186 | CONTRACTL { |
| 3187 | NOTHROW; |
| 3188 | GC_NOTRIGGER; |
| 3189 | } |
| 3190 | CONTRACTL_END; |
| 3191 | |
| 3192 | HANDLE h1 = *(HANDLE*)arg1; |
| 3193 | HANDLE h2 = *(HANDLE*)arg2; |
| 3194 | return (h1 == h2) ? 0 : ((h1 < h2) ? -1 : 1); |
| 3195 | } |
| 3196 | |
| 3197 | BOOL CheckForDuplicateHandles(int countHandles, HANDLE *handles) |
| 3198 | { |
| 3199 | CONTRACTL { |
| 3200 | NOTHROW; |
| 3201 | GC_NOTRIGGER; |
| 3202 | } |
| 3203 | CONTRACTL_END; |
| 3204 | |
| 3205 | qsort(handles,countHandles,sizeof(HANDLE),compareHandles); |
| 3206 | for (int i=1; i < countHandles; i++) |
| 3207 | { |
| 3208 | if (handles[i-1] == handles[i]) |
| 3209 | return TRUE; |
| 3210 | } |
| 3211 | return FALSE; |
| 3212 | } |
| 3213 | //-------------------------------------------------------------------- |
| 3214 | // Based on whether this thread has a message pump, do the appropriate |
| 3215 | // style of Wait. |
| 3216 | //-------------------------------------------------------------------- |
| 3217 | DWORD Thread::DoAppropriateWait(int countHandles, HANDLE *handles, BOOL waitAll, |
| 3218 | DWORD millis, WaitMode mode, PendingSync *syncState) |
| 3219 | { |
| 3220 | STATIC_CONTRACT_THROWS; |
| 3221 | STATIC_CONTRACT_GC_TRIGGERS; |
| 3222 | |
| 3223 | INDEBUG(BOOL alertable = (mode & WaitMode_Alertable) != 0;); |
| 3224 | _ASSERTE(alertable || syncState == 0); |
| 3225 | |
| 3226 | struct Param |
| 3227 | { |
| 3228 | Thread *pThis; |
| 3229 | int countHandles; |
| 3230 | HANDLE *handles; |
| 3231 | BOOL waitAll; |
| 3232 | DWORD millis; |
| 3233 | WaitMode mode; |
| 3234 | DWORD dwRet; |
| 3235 | } param; |
| 3236 | param.pThis = this; |
| 3237 | param.countHandles = countHandles; |
| 3238 | param.handles = handles; |
| 3239 | param.waitAll = waitAll; |
| 3240 | param.millis = millis; |
| 3241 | param.mode = mode; |
| 3242 | param.dwRet = (DWORD) -1; |
| 3243 | |
| 3244 | EE_TRY_FOR_FINALLY(Param *, pParam, ¶m) { |
| 3245 | pParam->dwRet = pParam->pThis->DoAppropriateWaitWorker(pParam->countHandles, pParam->handles, pParam->waitAll, pParam->millis, pParam->mode); |
| 3246 | } |
| 3247 | EE_FINALLY { |
| 3248 | if (syncState) { |
| 3249 | if (!GOT_EXCEPTION() && |
| 3250 | param.dwRet >= WAIT_OBJECT_0 && param.dwRet < (DWORD)(WAIT_OBJECT_0 + countHandles)) { |
| 3251 | // This thread has been removed from syncblk waiting list by the signalling thread |
| 3252 | syncState->Restore(FALSE); |
| 3253 | } |
| 3254 | else |
| 3255 | syncState->Restore(TRUE); |
| 3256 | } |
| 3257 | |
| 3258 | _ASSERTE (param.dwRet != WAIT_IO_COMPLETION); |
| 3259 | } |
| 3260 | EE_END_FINALLY; |
| 3261 | |
| 3262 | return(param.dwRet); |
| 3263 | } |
| 3264 | |
| 3265 | DWORD Thread::DoAppropriateWait(AppropriateWaitFunc func, void *args, |
| 3266 | DWORD millis, WaitMode mode, |
| 3267 | PendingSync *syncState) |
| 3268 | { |
| 3269 | STATIC_CONTRACT_THROWS; |
| 3270 | STATIC_CONTRACT_GC_TRIGGERS; |
| 3271 | |
| 3272 | INDEBUG(BOOL alertable = (mode & WaitMode_Alertable) != 0;); |
| 3273 | _ASSERTE(alertable || syncState == 0); |
| 3274 | |
| 3275 | struct Param |
| 3276 | { |
| 3277 | Thread *pThis; |
| 3278 | AppropriateWaitFunc func; |
| 3279 | void *args; |
| 3280 | DWORD millis; |
| 3281 | WaitMode mode; |
| 3282 | DWORD dwRet; |
| 3283 | } param; |
| 3284 | param.pThis = this; |
| 3285 | param.func = func; |
| 3286 | param.args = args; |
| 3287 | param.millis = millis; |
| 3288 | param.mode = mode; |
| 3289 | param.dwRet = (DWORD) -1; |
| 3290 | |
| 3291 | EE_TRY_FOR_FINALLY(Param *, pParam, ¶m) { |
| 3292 | pParam->dwRet = pParam->pThis->DoAppropriateWaitWorker(pParam->func, pParam->args, pParam->millis, pParam->mode); |
| 3293 | } |
| 3294 | EE_FINALLY { |
| 3295 | if (syncState) { |
| 3296 | if (!GOT_EXCEPTION() && WAIT_OBJECT_0 == param.dwRet) { |
| 3297 | // This thread has been removed from syncblk waiting list by the signalling thread |
| 3298 | syncState->Restore(FALSE); |
| 3299 | } |
| 3300 | else |
| 3301 | syncState->Restore(TRUE); |
| 3302 | } |
| 3303 | |
| 3304 | _ASSERTE (WAIT_IO_COMPLETION != param.dwRet); |
| 3305 | } |
| 3306 | EE_END_FINALLY; |
| 3307 | |
| 3308 | return(param.dwRet); |
| 3309 | } |
| 3310 | |
| 3311 | #ifdef FEATURE_COMINTEROP_APARTMENT_SUPPORT |
| 3312 | |
| 3313 | //-------------------------------------------------------------------- |
| 3314 | // helper to do message wait |
| 3315 | //-------------------------------------------------------------------- |
| 3316 | DWORD MsgWaitHelper(int numWaiters, HANDLE* phEvent, BOOL bWaitAll, DWORD millis, BOOL bAlertable) |
| 3317 | { |
| 3318 | STATIC_CONTRACT_THROWS; |
| 3319 | // The true contract for GC trigger should be the following. But this puts a very strong restriction |
| 3320 | // on contract for functions that call EnablePreemptiveGC. |
| 3321 | //if (GetThread() && !ThreadStore::HoldingThreadStore(GetThread())) {GC_TRIGGERS;} else {GC_NOTRIGGER;} |
| 3322 | STATIC_CONTRACT_SO_INTOLERANT; |
| 3323 | STATIC_CONTRACT_GC_TRIGGERS; |
| 3324 | |
| 3325 | DWORD flags = 0; |
| 3326 | DWORD dwReturn=WAIT_ABANDONED; |
| 3327 | |
| 3328 | Thread* pThread = GetThread(); |
| 3329 | // If pThread is NULL, we'd better shut down. |
| 3330 | if (pThread == NULL) |
| 3331 | _ASSERTE (g_fEEShutDown); |
| 3332 | |
| 3333 | DWORD lastError = 0; |
| 3334 | BEGIN_SO_TOLERANT_CODE(pThread); |
| 3335 | |
| 3336 | // If we're going to pump, we cannot use WAIT_ALL. That's because the wait would |
| 3337 | // only be satisfied if a message arrives while the handles are signalled. If we |
| 3338 | // want true WAIT_ALL, we need to fire up a different thread in the MTA and wait |
| 3339 | // on his result. This isn't implemented yet. |
| 3340 | // |
| 3341 | // A change was added to WaitHandleNative::CorWaitMultipleNative to disable WaitAll |
| 3342 | // in an STA with more than one handle. |
| 3343 | if (bWaitAll) |
| 3344 | { |
| 3345 | if (numWaiters == 1) |
| 3346 | bWaitAll = FALSE; |
| 3347 | |
| 3348 | // The check that's supposed to prevent this condition from occuring, in WaitHandleNative::CorWaitMultipleNative, |
| 3349 | // is unfortunately behind FEATURE_COMINTEROP instead of FEATURE_COMINTEROP_APARTMENT_SUPPORT. |
| 3350 | // So on CoreCLR (where FEATURE_COMINTEROP is not currently defined) we can actually reach this point. |
| 3351 | // We can't fix this, because it's a breaking change, so we just won't assert here. |
| 3352 | // The result is that WaitAll on an STA thread in CoreCLR will behave stragely, as described above. |
| 3353 | } |
| 3354 | |
| 3355 | if (bWaitAll) |
| 3356 | flags |= COWAIT_WAITALL; |
| 3357 | |
| 3358 | if (bAlertable) |
| 3359 | flags |= COWAIT_ALERTABLE; |
| 3360 | |
| 3361 | HRESULT hr = S_OK; |
| 3362 | hr = CoWaitForMultipleHandles(flags, millis, numWaiters, phEvent, &dwReturn); |
| 3363 | |
| 3364 | if (hr == RPC_S_CALLPENDING) |
| 3365 | { |
| 3366 | dwReturn = WAIT_TIMEOUT; |
| 3367 | } |
| 3368 | else if (FAILED(hr)) |
| 3369 | { |
| 3370 | // The service behaves differently on an STA vs. MTA in how much |
| 3371 | // error information it propagates back, and in which form. We currently |
| 3372 | // only get here in the STA case, so bias this logic that way. |
| 3373 | dwReturn = WAIT_FAILED; |
| 3374 | } |
| 3375 | else |
| 3376 | { |
| 3377 | dwReturn += WAIT_OBJECT_0; // success -- bias back |
| 3378 | } |
| 3379 | |
| 3380 | lastError = ::GetLastError(); |
| 3381 | |
| 3382 | END_SO_TOLERANT_CODE; |
| 3383 | |
| 3384 | // END_SO_TOLERANT_CODE overwrites lasterror. Let's reset it. |
| 3385 | ::SetLastError(lastError); |
| 3386 | |
| 3387 | return dwReturn; |
| 3388 | } |
| 3389 | |
| 3390 | #endif // FEATURE_COMINTEROP_APARTMENT_SUPPORT |
| 3391 | |
| 3392 | DWORD WaitForMultipleObjectsEx_SO_TOLERANT (DWORD nCount, HANDLE *lpHandles, BOOL bWaitAll,DWORD dwMilliseconds, BOOL bAlertable) |
| 3393 | { |
| 3394 | STATIC_CONTRACT_SO_INTOLERANT; |
| 3395 | |
| 3396 | DWORD dwRet = WAIT_FAILED; |
| 3397 | DWORD lastError = 0; |
| 3398 | |
| 3399 | BEGIN_SO_TOLERANT_CODE (GetThread ()); |
| 3400 | dwRet = ::WaitForMultipleObjectsEx (nCount, lpHandles, bWaitAll, dwMilliseconds, bAlertable); |
| 3401 | lastError = ::GetLastError(); |
| 3402 | END_SO_TOLERANT_CODE; |
| 3403 | |
| 3404 | // END_SO_TOLERANT_CODE overwrites lasterror. Let's reset it. |
| 3405 | ::SetLastError(lastError); |
| 3406 | return dwRet; |
| 3407 | } |
| 3408 | |
| 3409 | //-------------------------------------------------------------------- |
| 3410 | // Do appropriate wait based on apartment state (STA or MTA) |
| 3411 | DWORD Thread::DoAppropriateAptStateWait(int numWaiters, HANDLE* pHandles, BOOL bWaitAll, |
| 3412 | DWORD timeout, WaitMode mode) |
| 3413 | { |
| 3414 | CONTRACTL { |
| 3415 | THROWS; |
| 3416 | GC_TRIGGERS; |
| 3417 | SO_INTOLERANT; |
| 3418 | } |
| 3419 | CONTRACTL_END; |
| 3420 | |
| 3421 | BOOL alertable = (mode & WaitMode_Alertable) != 0; |
| 3422 | |
| 3423 | #ifdef FEATURE_COMINTEROP_APARTMENT_SUPPORT |
| 3424 | if (alertable && !GetDomain()->MustForceTrivialWaitOperations()) |
| 3425 | { |
| 3426 | ApartmentState as = GetFinalApartment(); |
| 3427 | if (AS_InMTA != as) |
| 3428 | { |
| 3429 | return MsgWaitHelper(numWaiters, pHandles, bWaitAll, timeout, alertable); |
| 3430 | } |
| 3431 | } |
| 3432 | #endif // FEATURE_COMINTEROP_APARTMENT_SUPPORT |
| 3433 | |
| 3434 | return WaitForMultipleObjectsEx_SO_TOLERANT(numWaiters, pHandles, bWaitAll, timeout, alertable); |
| 3435 | } |
| 3436 | |
| 3437 | // A helper called by our two flavors of DoAppropriateWaitWorker |
| 3438 | void Thread::DoAppropriateWaitWorkerAlertableHelper(WaitMode mode) |
| 3439 | { |
| 3440 | CONTRACTL { |
| 3441 | THROWS; |
| 3442 | GC_TRIGGERS; |
| 3443 | } |
| 3444 | CONTRACTL_END; |
| 3445 | |
| 3446 | // If thread abort is prevented, we do not want this thread to see thread abort and thread interrupt exception. |
| 3447 | if (IsAbortPrevented()) |
| 3448 | { |
| 3449 | return; |
| 3450 | } |
| 3451 | |
| 3452 | // A word about ordering for Interrupt. If someone tries to interrupt a thread |
| 3453 | // that's in the interruptible state, we queue an APC. But if they try to interrupt |
| 3454 | // a thread that's not in the interruptible state, we just record that fact. So |
| 3455 | // we have to set TS_Interruptible before we test to see whether someone wants to |
| 3456 | // interrupt us or else we have a race condition that causes us to skip the APC. |
| 3457 | FastInterlockOr((ULONG *) &m_State, TS_Interruptible); |
| 3458 | |
| 3459 | if (HasThreadStateNC(TSNC_InRestoringSyncBlock)) |
| 3460 | { |
| 3461 | // The thread is restoring SyncBlock for Object.Wait. |
| 3462 | ResetThreadStateNC(TSNC_InRestoringSyncBlock); |
| 3463 | } |
| 3464 | else |
| 3465 | { |
| 3466 | HandleThreadInterrupt((mode & WaitMode_ADUnload) != 0); |
| 3467 | |
| 3468 | // Safe to clear the interrupted state, no APC could have fired since we |
| 3469 | // reset m_UserInterrupt (which inhibits our APC callback from doing |
| 3470 | // anything). |
| 3471 | FastInterlockAnd((ULONG *) &m_State, ~TS_Interrupted); |
| 3472 | } |
| 3473 | } |
| 3474 | |
| 3475 | void MarkOSAlertableWait() |
| 3476 | { |
| 3477 | LIMITED_METHOD_CONTRACT; |
| 3478 | GetThread()->SetThreadStateNC (Thread::TSNC_OSAlertableWait); |
| 3479 | } |
| 3480 | |
| 3481 | void UnMarkOSAlertableWait() |
| 3482 | { |
| 3483 | LIMITED_METHOD_CONTRACT; |
| 3484 | GetThread()->ResetThreadStateNC (Thread::TSNC_OSAlertableWait); |
| 3485 | } |
| 3486 | |
| 3487 | //-------------------------------------------------------------------- |
| 3488 | // Based on whether this thread has a message pump, do the appropriate |
| 3489 | // style of Wait. |
| 3490 | //-------------------------------------------------------------------- |
| 3491 | DWORD Thread::DoAppropriateWaitWorker(int countHandles, HANDLE *handles, BOOL waitAll, |
| 3492 | DWORD millis, WaitMode mode) |
| 3493 | { |
| 3494 | CONTRACTL { |
| 3495 | THROWS; |
| 3496 | GC_TRIGGERS; |
| 3497 | } |
| 3498 | CONTRACTL_END; |
| 3499 | |
| 3500 | DWORD ret = 0; |
| 3501 | |
| 3502 | BOOL alertable = (mode & WaitMode_Alertable) != 0; |
| 3503 | // Waits from SynchronizationContext.WaitHelper are always just WaitMode_IgnoreSyncCtx. |
| 3504 | // So if we defer to a sync ctx, we will lose any extra bits. We must therefore not |
| 3505 | // defer to a sync ctx if doing any non-default wait. |
| 3506 | // If you're doing a default wait, but want to ignore sync ctx, specify WaitMode_IgnoreSyncCtx |
| 3507 | // which will make mode != WaitMode_Alertable. |
| 3508 | BOOL ignoreSyncCtx = (mode != WaitMode_Alertable); |
| 3509 | |
| 3510 | if (GetDomain()->MustForceTrivialWaitOperations()) |
| 3511 | ignoreSyncCtx = TRUE; |
| 3512 | |
| 3513 | // Unless the ignoreSyncCtx flag is set, first check to see if there is a synchronization |
| 3514 | // context on the current thread and if there is, dispatch to it to do the wait. |
| 3515 | // If the wait is non alertable we cannot forward the call to the sync context |
| 3516 | // since fundamental parts of the system (such as the GC) rely on non alertable |
| 3517 | // waits not running any managed code. Also if we are past the point in shutdown were we |
| 3518 | // are allowed to run managed code then we can't forward the call to the sync context. |
| 3519 | if (!ignoreSyncCtx && alertable && CanRunManagedCode(LoaderLockCheck::None) |
| 3520 | && !HasThreadStateNC(Thread::TSNC_BlockedForShutdown)) |
| 3521 | { |
| 3522 | GCX_COOP(); |
| 3523 | |
| 3524 | BOOL fSyncCtxPresent = FALSE; |
| 3525 | OBJECTREF SyncCtxObj = NULL; |
| 3526 | GCPROTECT_BEGIN(SyncCtxObj) |
| 3527 | { |
| 3528 | GetSynchronizationContext(&SyncCtxObj); |
| 3529 | if (SyncCtxObj != NULL) |
| 3530 | { |
| 3531 | SYNCHRONIZATIONCONTEXTREF syncRef = (SYNCHRONIZATIONCONTEXTREF)SyncCtxObj; |
| 3532 | if (syncRef->IsWaitNotificationRequired()) |
| 3533 | { |
| 3534 | fSyncCtxPresent = TRUE; |
| 3535 | ret = DoSyncContextWait(&SyncCtxObj, countHandles, handles, waitAll, millis); |
| 3536 | } |
| 3537 | } |
| 3538 | } |
| 3539 | GCPROTECT_END(); |
| 3540 | |
| 3541 | if (fSyncCtxPresent) |
| 3542 | return ret; |
| 3543 | } |
| 3544 | |
| 3545 | // Before going to pre-emptive mode the thread needs to be flagged as waiting for |
| 3546 | // the debugger. This used to be accomplished by the TS_Interruptible flag but that |
| 3547 | // doesn't work reliably, see DevDiv Bugs 699245. Some methods call in here already in |
| 3548 | // COOP mode so we set the bit before the transition. For the calls that are already |
| 3549 | // in pre-emptive mode those are still buggy. This is only a partial fix. |
| 3550 | BOOL isCoop = PreemptiveGCDisabled(); |
| 3551 | ThreadStateNCStackHolder tsNC(isCoop && alertable, TSNC_DebuggerSleepWaitJoin); |
| 3552 | |
| 3553 | GCX_PREEMP(); |
| 3554 | |
| 3555 | if (alertable) |
| 3556 | { |
| 3557 | DoAppropriateWaitWorkerAlertableHelper(mode); |
| 3558 | } |
| 3559 | |
| 3560 | StateHolder<MarkOSAlertableWait,UnMarkOSAlertableWait> OSAlertableWait(alertable); |
| 3561 | |
| 3562 | ThreadStateHolder tsh(alertable, TS_Interruptible | TS_Interrupted); |
| 3563 | |
| 3564 | ULONGLONG dwStart = 0, dwEnd; |
| 3565 | retry: |
| 3566 | if (millis != INFINITE) |
| 3567 | { |
| 3568 | dwStart = CLRGetTickCount64(); |
| 3569 | } |
| 3570 | |
| 3571 | ret = DoAppropriateAptStateWait(countHandles, handles, waitAll, millis, mode); |
| 3572 | |
| 3573 | if (ret == WAIT_IO_COMPLETION) |
| 3574 | { |
| 3575 | _ASSERTE (alertable); |
| 3576 | |
| 3577 | if (m_State & TS_Interrupted) |
| 3578 | { |
| 3579 | HandleThreadInterrupt(mode & WaitMode_ADUnload); |
| 3580 | } |
| 3581 | // We could be woken by some spurious APC or an EE APC queued to |
| 3582 | // interrupt us. In the latter case the TS_Interrupted bit will be set |
| 3583 | // in the thread state bits. Otherwise we just go back to sleep again. |
| 3584 | if (millis != INFINITE) |
| 3585 | { |
| 3586 | dwEnd = CLRGetTickCount64(); |
| 3587 | if (dwEnd >= dwStart + millis) |
| 3588 | { |
| 3589 | ret = WAIT_TIMEOUT; |
| 3590 | goto WaitCompleted; |
| 3591 | } |
| 3592 | else |
| 3593 | { |
| 3594 | millis -= (DWORD)(dwEnd - dwStart); |
| 3595 | } |
| 3596 | } |
| 3597 | goto retry; |
| 3598 | } |
| 3599 | _ASSERTE((ret >= WAIT_OBJECT_0 && ret < (WAIT_OBJECT_0 + (DWORD)countHandles)) || |
| 3600 | (ret >= WAIT_ABANDONED && ret < (WAIT_ABANDONED + (DWORD)countHandles)) || |
| 3601 | (ret == WAIT_TIMEOUT) || (ret == WAIT_FAILED)); |
| 3602 | // countHandles is used as an unsigned -- it should never be negative. |
| 3603 | _ASSERTE(countHandles >= 0); |
| 3604 | |
| 3605 | // We support precisely one WAIT_FAILED case, where we attempt to wait on a |
| 3606 | // thread handle and the thread is in the process of dying we might get a |
| 3607 | // invalid handle substatus. Turn this into a successful wait. |
| 3608 | // There are three cases to consider: |
| 3609 | // 1) Only waiting on one handle: return success right away. |
| 3610 | // 2) Waiting for all handles to be signalled: retry the wait without the |
| 3611 | // affected handle. |
| 3612 | // 3) Waiting for one of multiple handles to be signalled: return with the |
| 3613 | // first handle that is either signalled or has become invalid. |
| 3614 | if (ret == WAIT_FAILED) |
| 3615 | { |
| 3616 | DWORD errorCode = ::GetLastError(); |
| 3617 | if (errorCode == ERROR_INVALID_PARAMETER) |
| 3618 | { |
| 3619 | if (CheckForDuplicateHandles(countHandles, handles)) |
| 3620 | COMPlusThrow(kDuplicateWaitObjectException); |
| 3621 | else |
| 3622 | COMPlusThrowHR(HRESULT_FROM_WIN32(errorCode)); |
| 3623 | } |
| 3624 | else if (errorCode == ERROR_ACCESS_DENIED) |
| 3625 | { |
| 3626 | // A Win32 ACL could prevent us from waiting on the handle. |
| 3627 | COMPlusThrow(kUnauthorizedAccessException); |
| 3628 | } |
| 3629 | else if (errorCode == ERROR_NOT_ENOUGH_MEMORY) |
| 3630 | { |
| 3631 | ThrowOutOfMemory(); |
| 3632 | } |
| 3633 | #ifdef FEATURE_PAL |
| 3634 | else if (errorCode == ERROR_NOT_SUPPORTED) |
| 3635 | { |
| 3636 | // "Wait for any" and "wait for all" operations on multiple wait handles are not supported when a cross-process sync |
| 3637 | // object is included in the array |
| 3638 | COMPlusThrow(kPlatformNotSupportedException, W("PlatformNotSupported_NamedSyncObjectWaitAnyWaitAll" )); |
| 3639 | } |
| 3640 | #endif |
| 3641 | else if (errorCode != ERROR_INVALID_HANDLE) |
| 3642 | { |
| 3643 | ThrowWin32(errorCode); |
| 3644 | } |
| 3645 | |
| 3646 | if (countHandles == 1) |
| 3647 | ret = WAIT_OBJECT_0; |
| 3648 | else if (waitAll) |
| 3649 | { |
| 3650 | // Probe all handles with a timeout of zero. When we find one that's |
| 3651 | // invalid, move it out of the list and retry the wait. |
| 3652 | for (int i = 0; i < countHandles; i++) |
| 3653 | { |
| 3654 | // WaitForSingleObject won't pump memssage; we already probe enough space |
| 3655 | // before calling this function and we don't want to fail here, so we don't |
| 3656 | // do a transition to tolerant code here |
| 3657 | DWORD subRet = WaitForSingleObject (handles[i], 0); |
| 3658 | if (subRet != WAIT_FAILED) |
| 3659 | continue; |
| 3660 | _ASSERTE(::GetLastError() == ERROR_INVALID_HANDLE); |
| 3661 | if ((countHandles - i - 1) > 0) |
| 3662 | memmove(&handles[i], &handles[i+1], (countHandles - i - 1) * sizeof(HANDLE)); |
| 3663 | countHandles--; |
| 3664 | break; |
| 3665 | } |
| 3666 | |
| 3667 | // Compute the new timeout value by assume that the timeout |
| 3668 | // is not large enough for more than one wrap |
| 3669 | dwEnd = CLRGetTickCount64(); |
| 3670 | if (millis != INFINITE) |
| 3671 | { |
| 3672 | if (dwEnd >= dwStart + millis) |
| 3673 | { |
| 3674 | ret = WAIT_TIMEOUT; |
| 3675 | goto WaitCompleted; |
| 3676 | } |
| 3677 | else |
| 3678 | { |
| 3679 | millis -= (DWORD)(dwEnd - dwStart); |
| 3680 | } |
| 3681 | } |
| 3682 | goto retry; |
| 3683 | } |
| 3684 | else |
| 3685 | { |
| 3686 | // Probe all handles with a timeout as zero, succeed with the first |
| 3687 | // handle that doesn't timeout. |
| 3688 | ret = WAIT_OBJECT_0; |
| 3689 | int i; |
| 3690 | for (i = 0; i < countHandles; i++) |
| 3691 | { |
| 3692 | TryAgain: |
| 3693 | // WaitForSingleObject won't pump memssage; we already probe enough space |
| 3694 | // before calling this function and we don't want to fail here, so we don't |
| 3695 | // do a transition to tolerant code here |
| 3696 | DWORD subRet = WaitForSingleObject (handles[i], 0); |
| 3697 | if ((subRet == WAIT_OBJECT_0) || (subRet == WAIT_FAILED)) |
| 3698 | break; |
| 3699 | if (subRet == WAIT_ABANDONED) |
| 3700 | { |
| 3701 | ret = (ret - WAIT_OBJECT_0) + WAIT_ABANDONED; |
| 3702 | break; |
| 3703 | } |
| 3704 | // If we get alerted it just masks the real state of the current |
| 3705 | // handle, so retry the wait. |
| 3706 | if (subRet == WAIT_IO_COMPLETION) |
| 3707 | goto TryAgain; |
| 3708 | _ASSERTE(subRet == WAIT_TIMEOUT); |
| 3709 | ret++; |
| 3710 | } |
| 3711 | } |
| 3712 | } |
| 3713 | |
| 3714 | WaitCompleted: |
| 3715 | |
| 3716 | _ASSERTE((ret != WAIT_TIMEOUT) || (millis != INFINITE)); |
| 3717 | |
| 3718 | return ret; |
| 3719 | } |
| 3720 | |
| 3721 | |
| 3722 | DWORD Thread::DoAppropriateWaitWorker(AppropriateWaitFunc func, void *args, |
| 3723 | DWORD millis, WaitMode mode) |
| 3724 | { |
| 3725 | CONTRACTL { |
| 3726 | THROWS; |
| 3727 | GC_TRIGGERS; |
| 3728 | } |
| 3729 | CONTRACTL_END; |
| 3730 | |
| 3731 | BOOL alertable = (mode & WaitMode_Alertable)!=0; |
| 3732 | |
| 3733 | // Before going to pre-emptive mode the thread needs to be flagged as waiting for |
| 3734 | // the debugger. This used to be accomplished by the TS_Interruptible flag but that |
| 3735 | // doesn't work reliably, see DevDiv Bugs 699245. Some methods call in here already in |
| 3736 | // COOP mode so we set the bit before the transition. For the calls that are already |
| 3737 | // in pre-emptive mode those are still buggy. This is only a partial fix. |
| 3738 | BOOL isCoop = PreemptiveGCDisabled(); |
| 3739 | ThreadStateNCStackHolder tsNC(isCoop && alertable, TSNC_DebuggerSleepWaitJoin); |
| 3740 | GCX_PREEMP(); |
| 3741 | |
| 3742 | // <TODO> |
| 3743 | // @TODO cwb: we don't know whether a thread has a message pump or |
| 3744 | // how to pump its messages, currently. |
| 3745 | // @TODO cwb: WinCE isn't going to support Thread.Interrupt() correctly until |
| 3746 | // we get alertable waits on that platform.</TODO> |
| 3747 | DWORD ret; |
| 3748 | if(alertable) |
| 3749 | { |
| 3750 | DoAppropriateWaitWorkerAlertableHelper(mode); |
| 3751 | } |
| 3752 | |
| 3753 | DWORD option; |
| 3754 | if (alertable) |
| 3755 | { |
| 3756 | option = WAIT_ALERTABLE; |
| 3757 | #ifdef FEATURE_COMINTEROP_APARTMENT_SUPPORT |
| 3758 | ApartmentState as = GetFinalApartment(); |
| 3759 | if ((AS_InMTA != as) && !GetDomain()->MustForceTrivialWaitOperations()) |
| 3760 | { |
| 3761 | option |= WAIT_MSGPUMP; |
| 3762 | } |
| 3763 | #endif // FEATURE_COMINTEROP_APARTMENT_SUPPORT |
| 3764 | } |
| 3765 | else |
| 3766 | { |
| 3767 | option = 0; |
| 3768 | } |
| 3769 | |
| 3770 | ThreadStateHolder tsh(alertable, TS_Interruptible | TS_Interrupted); |
| 3771 | |
| 3772 | ULONGLONG dwStart = 0; |
| 3773 | ULONGLONG dwEnd; |
| 3774 | |
| 3775 | retry: |
| 3776 | if (millis != INFINITE) |
| 3777 | { |
| 3778 | dwStart = CLRGetTickCount64(); |
| 3779 | } |
| 3780 | ret = func(args, millis, option); |
| 3781 | |
| 3782 | if (ret == WAIT_IO_COMPLETION) |
| 3783 | { |
| 3784 | _ASSERTE (alertable); |
| 3785 | |
| 3786 | if ((m_State & TS_Interrupted)) |
| 3787 | { |
| 3788 | HandleThreadInterrupt(mode & WaitMode_ADUnload); |
| 3789 | } |
| 3790 | if (millis != INFINITE) |
| 3791 | { |
| 3792 | dwEnd = CLRGetTickCount64(); |
| 3793 | if (dwEnd >= dwStart + millis) |
| 3794 | { |
| 3795 | ret = WAIT_TIMEOUT; |
| 3796 | goto WaitCompleted; |
| 3797 | } |
| 3798 | else |
| 3799 | { |
| 3800 | millis -= (DWORD)(dwEnd - dwStart); |
| 3801 | } |
| 3802 | } |
| 3803 | goto retry; |
| 3804 | } |
| 3805 | |
| 3806 | WaitCompleted: |
| 3807 | _ASSERTE(ret == WAIT_OBJECT_0 || |
| 3808 | ret == WAIT_ABANDONED || |
| 3809 | ret == WAIT_TIMEOUT || |
| 3810 | ret == WAIT_FAILED); |
| 3811 | |
| 3812 | _ASSERTE((ret != WAIT_TIMEOUT) || (millis != INFINITE)); |
| 3813 | |
| 3814 | return ret; |
| 3815 | } |
| 3816 | |
| 3817 | //-------------------------------------------------------------------- |
| 3818 | // Only one style of wait for DoSignalAndWait since we don't support this on STA Threads |
| 3819 | //-------------------------------------------------------------------- |
| 3820 | DWORD Thread::DoSignalAndWait(HANDLE *handles, DWORD millis, BOOL alertable, PendingSync *syncState) |
| 3821 | { |
| 3822 | STATIC_CONTRACT_THROWS; |
| 3823 | STATIC_CONTRACT_GC_TRIGGERS; |
| 3824 | |
| 3825 | _ASSERTE(alertable || syncState == 0); |
| 3826 | |
| 3827 | struct Param |
| 3828 | { |
| 3829 | Thread *pThis; |
| 3830 | HANDLE *handles; |
| 3831 | DWORD millis; |
| 3832 | BOOL alertable; |
| 3833 | DWORD dwRet; |
| 3834 | } param; |
| 3835 | param.pThis = this; |
| 3836 | param.handles = handles; |
| 3837 | param.millis = millis; |
| 3838 | param.alertable = alertable; |
| 3839 | param.dwRet = (DWORD) -1; |
| 3840 | |
| 3841 | EE_TRY_FOR_FINALLY(Param *, pParam, ¶m) { |
| 3842 | pParam->dwRet = pParam->pThis->DoSignalAndWaitWorker(pParam->handles, pParam->millis, pParam->alertable); |
| 3843 | } |
| 3844 | EE_FINALLY { |
| 3845 | if (syncState) { |
| 3846 | if (!GOT_EXCEPTION() && WAIT_OBJECT_0 == param.dwRet) { |
| 3847 | // This thread has been removed from syncblk waiting list by the signalling thread |
| 3848 | syncState->Restore(FALSE); |
| 3849 | } |
| 3850 | else |
| 3851 | syncState->Restore(TRUE); |
| 3852 | } |
| 3853 | |
| 3854 | _ASSERTE (WAIT_IO_COMPLETION != param.dwRet); |
| 3855 | } |
| 3856 | EE_END_FINALLY; |
| 3857 | |
| 3858 | return(param.dwRet); |
| 3859 | } |
| 3860 | |
| 3861 | |
| 3862 | DWORD Thread::DoSignalAndWaitWorker(HANDLE* pHandles, DWORD millis,BOOL alertable) |
| 3863 | { |
| 3864 | CONTRACTL { |
| 3865 | THROWS; |
| 3866 | GC_TRIGGERS; |
| 3867 | } |
| 3868 | CONTRACTL_END; |
| 3869 | |
| 3870 | DWORD ret = 0; |
| 3871 | |
| 3872 | GCX_PREEMP(); |
| 3873 | |
| 3874 | if(alertable) |
| 3875 | { |
| 3876 | DoAppropriateWaitWorkerAlertableHelper(WaitMode_None); |
| 3877 | } |
| 3878 | |
| 3879 | StateHolder<MarkOSAlertableWait,UnMarkOSAlertableWait> OSAlertableWait(alertable); |
| 3880 | |
| 3881 | ThreadStateHolder tsh(alertable, TS_Interruptible | TS_Interrupted); |
| 3882 | |
| 3883 | ULONGLONG dwStart = 0, dwEnd; |
| 3884 | |
| 3885 | if (INFINITE != millis) |
| 3886 | { |
| 3887 | dwStart = CLRGetTickCount64(); |
| 3888 | } |
| 3889 | |
| 3890 | ret = SignalObjectAndWait(pHandles[0], pHandles[1], millis, alertable); |
| 3891 | |
| 3892 | retry: |
| 3893 | |
| 3894 | if (WAIT_IO_COMPLETION == ret) |
| 3895 | { |
| 3896 | _ASSERTE (alertable); |
| 3897 | // We could be woken by some spurious APC or an EE APC queued to |
| 3898 | // interrupt us. In the latter case the TS_Interrupted bit will be set |
| 3899 | // in the thread state bits. Otherwise we just go back to sleep again. |
| 3900 | if ((m_State & TS_Interrupted)) |
| 3901 | { |
| 3902 | HandleThreadInterrupt(FALSE); |
| 3903 | } |
| 3904 | if (INFINITE != millis) |
| 3905 | { |
| 3906 | dwEnd = CLRGetTickCount64(); |
| 3907 | if (dwStart + millis <= dwEnd) |
| 3908 | { |
| 3909 | ret = WAIT_TIMEOUT; |
| 3910 | goto WaitCompleted; |
| 3911 | } |
| 3912 | else |
| 3913 | { |
| 3914 | millis -= (DWORD)(dwEnd - dwStart); |
| 3915 | } |
| 3916 | dwStart = CLRGetTickCount64(); |
| 3917 | } |
| 3918 | //Retry case we don't want to signal again so only do the wait... |
| 3919 | ret = WaitForSingleObjectEx(pHandles[1],millis,TRUE); |
| 3920 | goto retry; |
| 3921 | } |
| 3922 | |
| 3923 | if (WAIT_FAILED == ret) |
| 3924 | { |
| 3925 | DWORD errorCode = ::GetLastError(); |
| 3926 | //If the handle to signal is a mutex and |
| 3927 | // the calling thread is not the owner, errorCode is ERROR_NOT_OWNER |
| 3928 | |
| 3929 | switch(errorCode) |
| 3930 | { |
| 3931 | case ERROR_INVALID_HANDLE: |
| 3932 | case ERROR_NOT_OWNER: |
| 3933 | case ERROR_ACCESS_DENIED: |
| 3934 | COMPlusThrowWin32(); |
| 3935 | break; |
| 3936 | |
| 3937 | case ERROR_TOO_MANY_POSTS: |
| 3938 | ret = ERROR_TOO_MANY_POSTS; |
| 3939 | break; |
| 3940 | |
| 3941 | default: |
| 3942 | CONSISTENCY_CHECK_MSGF(0, ("This errorCode is not understood '(%d)''\n" , errorCode)); |
| 3943 | COMPlusThrowWin32(); |
| 3944 | break; |
| 3945 | } |
| 3946 | } |
| 3947 | |
| 3948 | WaitCompleted: |
| 3949 | |
| 3950 | //Check that the return state is valid |
| 3951 | _ASSERTE(WAIT_OBJECT_0 == ret || |
| 3952 | WAIT_ABANDONED == ret || |
| 3953 | WAIT_TIMEOUT == ret || |
| 3954 | WAIT_FAILED == ret || |
| 3955 | ERROR_TOO_MANY_POSTS == ret); |
| 3956 | |
| 3957 | //Wrong to time out if the wait was infinite |
| 3958 | _ASSERTE((WAIT_TIMEOUT != ret) || (INFINITE != millis)); |
| 3959 | |
| 3960 | return ret; |
| 3961 | } |
| 3962 | |
| 3963 | DWORD Thread::DoSyncContextWait(OBJECTREF *pSyncCtxObj, int countHandles, HANDLE *handles, BOOL waitAll, DWORD millis) |
| 3964 | { |
| 3965 | CONTRACTL |
| 3966 | { |
| 3967 | THROWS; |
| 3968 | GC_TRIGGERS; |
| 3969 | MODE_COOPERATIVE; |
| 3970 | PRECONDITION(CheckPointer(handles)); |
| 3971 | PRECONDITION(IsProtectedByGCFrame (pSyncCtxObj)); |
| 3972 | } |
| 3973 | CONTRACTL_END; |
| 3974 | MethodDescCallSite invokeWaitMethodHelper(METHOD__SYNCHRONIZATION_CONTEXT__INVOKE_WAIT_METHOD_HELPER); |
| 3975 | |
| 3976 | BASEARRAYREF handleArrayObj = (BASEARRAYREF)AllocatePrimitiveArray(ELEMENT_TYPE_I, countHandles); |
| 3977 | memcpyNoGCRefs(handleArrayObj->GetDataPtr(), handles, countHandles * sizeof(HANDLE)); |
| 3978 | |
| 3979 | ARG_SLOT args[6] = |
| 3980 | { |
| 3981 | ObjToArgSlot(*pSyncCtxObj), |
| 3982 | ObjToArgSlot(handleArrayObj), |
| 3983 | BoolToArgSlot(waitAll), |
| 3984 | (ARG_SLOT)millis, |
| 3985 | }; |
| 3986 | |
| 3987 | // Needed by TriggerGCForMDAInternal to avoid infinite recursion |
| 3988 | ThreadStateNCStackHolder holder(TRUE, TSNC_InsideSyncContextWait); |
| 3989 | |
| 3990 | return invokeWaitMethodHelper.Call_RetI4(args); |
| 3991 | } |
| 3992 | |
| 3993 | // Called out of SyncBlock::Wait() to block this thread until the Notify occurs. |
| 3994 | BOOL Thread::Block(INT32 timeOut, PendingSync *syncState) |
| 3995 | { |
| 3996 | WRAPPER_NO_CONTRACT; |
| 3997 | |
| 3998 | _ASSERTE(this == GetThread()); |
| 3999 | |
| 4000 | // Before calling Block, the SyncBlock queued us onto it's list of waiting threads. |
| 4001 | // However, before calling Block the SyncBlock temporarily left the synchronized |
| 4002 | // region. This allowed threads to enter the region and call Notify, in which |
| 4003 | // case we may have been signalled before we entered the Wait. So we aren't in the |
| 4004 | // m_WaitSB list any longer. Not a problem: the following Wait will return |
| 4005 | // immediately. But it means we cannot enforce the following assertion: |
| 4006 | // _ASSERTE(m_WaitSB != NULL); |
| 4007 | |
| 4008 | return (Wait(syncState->m_WaitEventLink->m_Next->m_EventWait, timeOut, syncState) != WAIT_OBJECT_0); |
| 4009 | } |
| 4010 | |
| 4011 | |
| 4012 | // Return whether or not a timeout occurred. TRUE=>we waited successfully |
| 4013 | DWORD Thread::Wait(HANDLE *objs, int cntObjs, INT32 timeOut, PendingSync *syncInfo) |
| 4014 | { |
| 4015 | WRAPPER_NO_CONTRACT; |
| 4016 | |
| 4017 | DWORD dwResult; |
| 4018 | DWORD dwTimeOut32; |
| 4019 | |
| 4020 | _ASSERTE(timeOut >= 0 || timeOut == INFINITE_TIMEOUT); |
| 4021 | |
| 4022 | dwTimeOut32 = (timeOut == INFINITE_TIMEOUT |
| 4023 | ? INFINITE |
| 4024 | : (DWORD) timeOut); |
| 4025 | |
| 4026 | dwResult = DoAppropriateWait(cntObjs, objs, FALSE /*=waitAll*/, dwTimeOut32, |
| 4027 | WaitMode_Alertable /*alertable*/, |
| 4028 | syncInfo); |
| 4029 | |
| 4030 | // Either we succeeded in the wait, or we timed out |
| 4031 | _ASSERTE((dwResult >= WAIT_OBJECT_0 && dwResult < (DWORD)(WAIT_OBJECT_0 + cntObjs)) || |
| 4032 | (dwResult == WAIT_TIMEOUT)); |
| 4033 | |
| 4034 | return dwResult; |
| 4035 | } |
| 4036 | |
| 4037 | // Return whether or not a timeout occurred. TRUE=>we waited successfully |
| 4038 | DWORD Thread::Wait(CLREvent *pEvent, INT32 timeOut, PendingSync *syncInfo) |
| 4039 | { |
| 4040 | WRAPPER_NO_CONTRACT; |
| 4041 | |
| 4042 | DWORD dwResult; |
| 4043 | DWORD dwTimeOut32; |
| 4044 | |
| 4045 | _ASSERTE(timeOut >= 0 || timeOut == INFINITE_TIMEOUT); |
| 4046 | |
| 4047 | dwTimeOut32 = (timeOut == INFINITE_TIMEOUT |
| 4048 | ? INFINITE |
| 4049 | : (DWORD) timeOut); |
| 4050 | |
| 4051 | dwResult = pEvent->Wait(dwTimeOut32, TRUE /*alertable*/, syncInfo); |
| 4052 | |
| 4053 | // Either we succeeded in the wait, or we timed out |
| 4054 | _ASSERTE((dwResult == WAIT_OBJECT_0) || |
| 4055 | (dwResult == WAIT_TIMEOUT)); |
| 4056 | |
| 4057 | return dwResult; |
| 4058 | } |
| 4059 | |
| 4060 | void Thread::Wake(SyncBlock *psb) |
| 4061 | { |
| 4062 | WRAPPER_NO_CONTRACT; |
| 4063 | |
| 4064 | CLREvent* hEvent = NULL; |
| 4065 | WaitEventLink *walk = &m_WaitEventLink; |
| 4066 | while (walk->m_Next) { |
| 4067 | if (walk->m_Next->m_WaitSB == psb) { |
| 4068 | hEvent = walk->m_Next->m_EventWait; |
| 4069 | // We are guaranteed that only one thread can change walk->m_Next->m_WaitSB |
| 4070 | // since the thread is helding the syncblock. |
| 4071 | walk->m_Next->m_WaitSB = (SyncBlock*)((DWORD_PTR)walk->m_Next->m_WaitSB | 1); |
| 4072 | break; |
| 4073 | } |
| 4074 | #ifdef _DEBUG |
| 4075 | else if ((SyncBlock*)((DWORD_PTR)walk->m_Next & ~1) == psb) { |
| 4076 | _ASSERTE (!"Can not wake a thread on the same SyncBlock more than once" ); |
| 4077 | } |
| 4078 | #endif |
| 4079 | } |
| 4080 | PREFIX_ASSUME (hEvent != NULL); |
| 4081 | hEvent->Set(); |
| 4082 | } |
| 4083 | |
| 4084 | #define WAIT_INTERRUPT_THREADABORT 0x1 |
| 4085 | #define WAIT_INTERRUPT_INTERRUPT 0x2 |
| 4086 | #define WAIT_INTERRUPT_OTHEREXCEPTION 0x4 |
| 4087 | |
| 4088 | // When we restore |
| 4089 | DWORD EnterMonitorForRestore(SyncBlock *pSB) |
| 4090 | { |
| 4091 | CONTRACTL |
| 4092 | { |
| 4093 | THROWS; |
| 4094 | GC_TRIGGERS; |
| 4095 | MODE_COOPERATIVE; |
| 4096 | } |
| 4097 | CONTRACTL_END; |
| 4098 | |
| 4099 | DWORD state = 0; |
| 4100 | EX_TRY |
| 4101 | { |
| 4102 | pSB->EnterMonitor(); |
| 4103 | } |
| 4104 | EX_CATCH |
| 4105 | { |
| 4106 | // Assume it is a normal exception unless proven. |
| 4107 | state = WAIT_INTERRUPT_OTHEREXCEPTION; |
| 4108 | Thread *pThread = GetThread(); |
| 4109 | if (pThread->IsAbortInitiated()) |
| 4110 | { |
| 4111 | state = WAIT_INTERRUPT_THREADABORT; |
| 4112 | } |
| 4113 | else if (__pException != NULL) |
| 4114 | { |
| 4115 | if (__pException->GetHR() == COR_E_THREADINTERRUPTED) |
| 4116 | { |
| 4117 | state = WAIT_INTERRUPT_INTERRUPT; |
| 4118 | } |
| 4119 | } |
| 4120 | } |
| 4121 | EX_END_CATCH(SwallowAllExceptions); |
| 4122 | |
| 4123 | return state; |
| 4124 | } |
| 4125 | |
| 4126 | // This is the service that backs us out of a wait that we interrupted. We must |
| 4127 | // re-enter the monitor to the same extent the SyncBlock would, if we returned |
| 4128 | // through it (instead of throwing through it). And we need to cancel the wait, |
| 4129 | // if it didn't get notified away while we are processing the interrupt. |
| 4130 | void PendingSync::Restore(BOOL bRemoveFromSB) |
| 4131 | { |
| 4132 | CONTRACTL { |
| 4133 | THROWS; |
| 4134 | GC_TRIGGERS; |
| 4135 | } |
| 4136 | CONTRACTL_END; |
| 4137 | |
| 4138 | _ASSERTE(m_EnterCount); |
| 4139 | |
| 4140 | Thread *pCurThread = GetThread(); |
| 4141 | |
| 4142 | _ASSERTE (pCurThread == m_OwnerThread); |
| 4143 | |
| 4144 | WaitEventLink *pRealWaitEventLink = m_WaitEventLink->m_Next; |
| 4145 | |
| 4146 | pRealWaitEventLink->m_RefCount --; |
| 4147 | if (pRealWaitEventLink->m_RefCount == 0) |
| 4148 | { |
| 4149 | if (bRemoveFromSB) { |
| 4150 | ThreadQueue::RemoveThread(pCurThread, pRealWaitEventLink->m_WaitSB); |
| 4151 | } |
| 4152 | if (pRealWaitEventLink->m_EventWait != &pCurThread->m_EventWait) { |
| 4153 | // Put the event back to the pool. |
| 4154 | StoreEventToEventStore(pRealWaitEventLink->m_EventWait); |
| 4155 | } |
| 4156 | // Remove from the link. |
| 4157 | m_WaitEventLink->m_Next = m_WaitEventLink->m_Next->m_Next; |
| 4158 | } |
| 4159 | |
| 4160 | // Someone up the stack is responsible for keeping the syncblock alive by protecting |
| 4161 | // the object that owns it. But this relies on assertions that EnterMonitor is only |
| 4162 | // called in cooperative mode. Even though we are safe in preemptive, do the |
| 4163 | // switch. |
| 4164 | GCX_COOP_THREAD_EXISTS(pCurThread); |
| 4165 | // We need to make sure that EnterMonitor succeeds. We may have code like |
| 4166 | // lock (a) |
| 4167 | // { |
| 4168 | // a.Wait |
| 4169 | // } |
| 4170 | // We need to make sure that the finally from lock is excuted with the lock owned. |
| 4171 | DWORD state = 0; |
| 4172 | SyncBlock *psb = (SyncBlock*)((DWORD_PTR)pRealWaitEventLink->m_WaitSB & ~1); |
| 4173 | for (LONG i=0; i < m_EnterCount;) |
| 4174 | { |
| 4175 | if ((state & (WAIT_INTERRUPT_THREADABORT | WAIT_INTERRUPT_INTERRUPT)) != 0) |
| 4176 | { |
| 4177 | // If the thread has been interrupted by Thread.Interrupt or Thread.Abort, |
| 4178 | // disable the check at the beginning of DoAppropriateWait |
| 4179 | pCurThread->SetThreadStateNC(Thread::TSNC_InRestoringSyncBlock); |
| 4180 | } |
| 4181 | DWORD result = EnterMonitorForRestore(psb); |
| 4182 | if (result == 0) |
| 4183 | { |
| 4184 | i++; |
| 4185 | } |
| 4186 | else |
| 4187 | { |
| 4188 | // We block the thread until the thread acquires the lock. |
| 4189 | // This is to make sure that when catch/finally is executed, the thread has the lock. |
| 4190 | // We do not want thread to run its catch/finally if the lock is not taken. |
| 4191 | state |= result; |
| 4192 | |
| 4193 | // If the thread is being rudely aborted, and the thread has |
| 4194 | // no Cer on stack, we will not run managed code to release the |
| 4195 | // lock, so we can terminate the loop. |
| 4196 | if (pCurThread->IsRudeAbortInitiated() && |
| 4197 | !pCurThread->IsExecutingWithinCer()) |
| 4198 | { |
| 4199 | break; |
| 4200 | } |
| 4201 | } |
| 4202 | } |
| 4203 | |
| 4204 | pCurThread->ResetThreadStateNC(Thread::TSNC_InRestoringSyncBlock); |
| 4205 | |
| 4206 | if ((state & WAIT_INTERRUPT_THREADABORT) != 0) |
| 4207 | { |
| 4208 | pCurThread->HandleThreadAbort(); |
| 4209 | } |
| 4210 | else if ((state & WAIT_INTERRUPT_INTERRUPT) != 0) |
| 4211 | { |
| 4212 | COMPlusThrow(kThreadInterruptedException); |
| 4213 | } |
| 4214 | } |
| 4215 | |
| 4216 | |
| 4217 | |
| 4218 | // This is the callback from the OS, when we queue an APC to interrupt a waiting thread. |
| 4219 | // The callback occurs on the thread we wish to interrupt. It is a STATIC method. |
| 4220 | void WINAPI Thread::UserInterruptAPC(ULONG_PTR data) |
| 4221 | { |
| 4222 | CONTRACTL { |
| 4223 | NOTHROW; |
| 4224 | GC_NOTRIGGER; |
| 4225 | SO_TOLERANT; |
| 4226 | } |
| 4227 | CONTRACTL_END; |
| 4228 | |
| 4229 | _ASSERTE(data == APC_Code); |
| 4230 | |
| 4231 | Thread *pCurThread = GetThread(); |
| 4232 | if (pCurThread) |
| 4233 | { |
| 4234 | // We should only take action if an interrupt is currently being |
| 4235 | // requested (our synchronization does not guarantee that we won't fire |
| 4236 | // spuriously). It's safe to check the m_UserInterrupt field and then |
| 4237 | // set TS_Interrupted in a non-atomic fashion because m_UserInterrupt is |
| 4238 | // only cleared in this thread's context (though it may be set from any |
| 4239 | // context). |
| 4240 | if (pCurThread->IsUserInterrupted()) |
| 4241 | { |
| 4242 | // Set bit to indicate this routine was called (as opposed to other |
| 4243 | // generic APCs). |
| 4244 | FastInterlockOr((ULONG *) &pCurThread->m_State, TS_Interrupted); |
| 4245 | } |
| 4246 | } |
| 4247 | } |
| 4248 | |
| 4249 | // This is the workhorse for Thread.Interrupt(). |
| 4250 | void Thread::UserInterrupt(ThreadInterruptMode mode) |
| 4251 | { |
| 4252 | CONTRACTL { |
| 4253 | NOTHROW; |
| 4254 | GC_NOTRIGGER; |
| 4255 | } |
| 4256 | CONTRACTL_END; |
| 4257 | |
| 4258 | FastInterlockOr((DWORD*)&m_UserInterrupt, mode); |
| 4259 | |
| 4260 | if (HasValidThreadHandle() && |
| 4261 | HasThreadState (TS_Interruptible)) |
| 4262 | { |
| 4263 | Alert(); |
| 4264 | } |
| 4265 | } |
| 4266 | |
| 4267 | // Implementation of Thread.Sleep(). |
| 4268 | void Thread::UserSleep(INT32 time) |
| 4269 | { |
| 4270 | CONTRACTL { |
| 4271 | THROWS; |
| 4272 | GC_TRIGGERS; |
| 4273 | } |
| 4274 | CONTRACTL_END; |
| 4275 | |
| 4276 | INCONTRACT(_ASSERTE(!GetThread()->GCNoTrigger())); |
| 4277 | |
| 4278 | DWORD res; |
| 4279 | |
| 4280 | // Before going to pre-emptive mode the thread needs to be flagged as waiting for |
| 4281 | // the debugger. This used to be accomplished by the TS_Interruptible flag but that |
| 4282 | // doesn't work reliably, see DevDiv Bugs 699245. |
| 4283 | ThreadStateNCStackHolder tsNC(TRUE, TSNC_DebuggerSleepWaitJoin); |
| 4284 | GCX_PREEMP(); |
| 4285 | |
| 4286 | // A word about ordering for Interrupt. If someone tries to interrupt a thread |
| 4287 | // that's in the interruptible state, we queue an APC. But if they try to interrupt |
| 4288 | // a thread that's not in the interruptible state, we just record that fact. So |
| 4289 | // we have to set TS_Interruptible before we test to see whether someone wants to |
| 4290 | // interrupt us or else we have a race condition that causes us to skip the APC. |
| 4291 | FastInterlockOr((ULONG *) &m_State, TS_Interruptible); |
| 4292 | |
| 4293 | // If someone has interrupted us, we should not enter the wait. |
| 4294 | if (IsUserInterrupted()) |
| 4295 | { |
| 4296 | HandleThreadInterrupt(FALSE); |
| 4297 | } |
| 4298 | |
| 4299 | ThreadStateHolder tsh(TRUE, TS_Interruptible | TS_Interrupted); |
| 4300 | |
| 4301 | FastInterlockAnd((ULONG *) &m_State, ~TS_Interrupted); |
| 4302 | |
| 4303 | DWORD dwTime = (DWORD)time; |
| 4304 | retry: |
| 4305 | |
| 4306 | ULONGLONG start = CLRGetTickCount64(); |
| 4307 | |
| 4308 | res = ClrSleepEx (dwTime, TRUE); |
| 4309 | |
| 4310 | if (res == WAIT_IO_COMPLETION) |
| 4311 | { |
| 4312 | // We could be woken by some spurious APC or an EE APC queued to |
| 4313 | // interrupt us. In the latter case the TS_Interrupted bit will be set |
| 4314 | // in the thread state bits. Otherwise we just go back to sleep again. |
| 4315 | if ((m_State & TS_Interrupted)) |
| 4316 | { |
| 4317 | HandleThreadInterrupt(FALSE); |
| 4318 | } |
| 4319 | |
| 4320 | if (dwTime == INFINITE) |
| 4321 | { |
| 4322 | goto retry; |
| 4323 | } |
| 4324 | else |
| 4325 | { |
| 4326 | ULONGLONG actDuration = CLRGetTickCount64() - start; |
| 4327 | |
| 4328 | if (dwTime > actDuration) |
| 4329 | { |
| 4330 | dwTime -= (DWORD)actDuration; |
| 4331 | goto retry; |
| 4332 | } |
| 4333 | else |
| 4334 | { |
| 4335 | res = WAIT_TIMEOUT; |
| 4336 | } |
| 4337 | } |
| 4338 | } |
| 4339 | _ASSERTE(res == WAIT_TIMEOUT || res == WAIT_OBJECT_0); |
| 4340 | } |
| 4341 | |
| 4342 | |
| 4343 | // Correspondence between an EE Thread and an exposed System.Thread: |
| 4344 | OBJECTREF Thread::GetExposedObject() |
| 4345 | { |
| 4346 | CONTRACTL { |
| 4347 | THROWS; |
| 4348 | GC_TRIGGERS; |
| 4349 | } |
| 4350 | CONTRACTL_END; |
| 4351 | |
| 4352 | TRIGGERSGC(); |
| 4353 | |
| 4354 | Thread *pCurThread = GetThread(); |
| 4355 | _ASSERTE (!(pCurThread == NULL || IsAtProcessExit())); |
| 4356 | |
| 4357 | _ASSERTE(pCurThread->PreemptiveGCDisabled()); |
| 4358 | |
| 4359 | if (ObjectFromHandle(m_ExposedObject) == NULL) |
| 4360 | { |
| 4361 | // Allocate the exposed thread object. |
| 4362 | THREADBASEREF attempt = (THREADBASEREF) AllocateObject(g_pThreadClass); |
| 4363 | GCPROTECT_BEGIN(attempt); |
| 4364 | |
| 4365 | // The exposed object keeps us alive until it is GC'ed. This |
| 4366 | // doesn't mean the physical thread continues to run, of course. |
| 4367 | // We have to set this outside of the ThreadStore lock, because this might trigger a GC. |
| 4368 | attempt->SetInternal(this); |
| 4369 | |
| 4370 | BOOL fNeedThreadStore = (! ThreadStore::HoldingThreadStore(pCurThread)); |
| 4371 | // Take a lock to make sure that only one thread creates the object. |
| 4372 | ThreadStoreLockHolder tsHolder(fNeedThreadStore); |
| 4373 | |
| 4374 | // Check to see if another thread has not already created the exposed object. |
| 4375 | if (ObjectFromHandle(m_ExposedObject) == NULL) |
| 4376 | { |
| 4377 | // Keep a weak reference to the exposed object. |
| 4378 | StoreObjectInHandle(m_ExposedObject, (OBJECTREF) attempt); |
| 4379 | |
| 4380 | ObjectInHandleHolder exposedHolder(m_ExposedObject); |
| 4381 | |
| 4382 | // Increase the external ref count. We can't call IncExternalCount because we |
| 4383 | // already hold the thread lock and IncExternalCount won't be able to take it. |
| 4384 | ULONG retVal = FastInterlockIncrement ((LONG*)&m_ExternalRefCount); |
| 4385 | |
| 4386 | // Check to see if we need to store a strong pointer to the object. |
| 4387 | if (retVal > 1) |
| 4388 | StoreObjectInHandle(m_StrongHndToExposedObject, (OBJECTREF) attempt); |
| 4389 | |
| 4390 | ObjectInHandleHolder strongHolder(m_StrongHndToExposedObject); |
| 4391 | |
| 4392 | |
| 4393 | attempt->SetManagedThreadId(GetThreadId()); |
| 4394 | |
| 4395 | |
| 4396 | // Note that we are NOT calling the constructor on the Thread. That's |
| 4397 | // because this is an internal create where we don't want a Start |
| 4398 | // address. And we don't want to expose such a constructor for our |
| 4399 | // customers to accidentally call. The following is in lieu of a true |
| 4400 | // constructor: |
| 4401 | attempt->InitExisting(); |
| 4402 | |
| 4403 | exposedHolder.SuppressRelease(); |
| 4404 | strongHolder.SuppressRelease(); |
| 4405 | } |
| 4406 | else |
| 4407 | { |
| 4408 | attempt->ClearInternal(); |
| 4409 | } |
| 4410 | |
| 4411 | GCPROTECT_END(); |
| 4412 | } |
| 4413 | return ObjectFromHandle(m_ExposedObject); |
| 4414 | } |
| 4415 | |
| 4416 | |
| 4417 | // We only set non NULL exposed objects for unstarted threads that haven't exited |
| 4418 | // their constructor yet. So there are no race conditions. |
| 4419 | void Thread::SetExposedObject(OBJECTREF exposed) |
| 4420 | { |
| 4421 | CONTRACTL { |
| 4422 | NOTHROW; |
| 4423 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 4424 | } |
| 4425 | CONTRACTL_END; |
| 4426 | |
| 4427 | if (exposed != NULL) |
| 4428 | { |
| 4429 | _ASSERTE (GetThread() != this); |
| 4430 | _ASSERTE(IsUnstarted()); |
| 4431 | _ASSERTE(ObjectFromHandle(m_ExposedObject) == NULL); |
| 4432 | // The exposed object keeps us alive until it is GC'ed. This doesn't mean the |
| 4433 | // physical thread continues to run, of course. |
| 4434 | StoreObjectInHandle(m_ExposedObject, exposed); |
| 4435 | // This makes sure the contexts on the backing thread |
| 4436 | // and the managed thread start off in sync with each other. |
| 4437 | // BEWARE: the IncExternalCount call below may cause GC to happen. |
| 4438 | |
| 4439 | // IncExternalCount will store exposed in m_StrongHndToExposedObject which is in default domain. |
| 4440 | // If the creating thread is killed before the target thread is killed in Thread.Start, Thread object |
| 4441 | // will be kept alive forever. |
| 4442 | // Instead, IncExternalCount should be called after the target thread has been started in Thread.Start. |
| 4443 | // IncExternalCount(); |
| 4444 | } |
| 4445 | else |
| 4446 | { |
| 4447 | // Simply set both of the handles to NULL. The GC of the old exposed thread |
| 4448 | // object will take care of decrementing the external ref count. |
| 4449 | StoreObjectInHandle(m_ExposedObject, NULL); |
| 4450 | StoreObjectInHandle(m_StrongHndToExposedObject, NULL); |
| 4451 | } |
| 4452 | } |
| 4453 | |
| 4454 | void Thread::SetLastThrownObject(OBJECTREF throwable, BOOL isUnhandled) |
| 4455 | { |
| 4456 | CONTRACTL |
| 4457 | { |
| 4458 | if ((throwable == NULL) || CLRException::IsPreallocatedExceptionObject(throwable)) NOTHROW; else THROWS; // From CreateHandle |
| 4459 | GC_NOTRIGGER; |
| 4460 | if (throwable == NULL) MODE_ANY; else MODE_COOPERATIVE; |
| 4461 | SO_TOLERANT; |
| 4462 | } |
| 4463 | CONTRACTL_END; |
| 4464 | |
| 4465 | STRESS_LOG_COND1(LF_EH, LL_INFO100, OBJECTREFToObject(throwable) != NULL, "in Thread::SetLastThrownObject: obj = %p\n" , OBJECTREFToObject(throwable)); |
| 4466 | |
| 4467 | // you can't have a NULL unhandled exception |
| 4468 | _ASSERTE(!(throwable == NULL && isUnhandled)); |
| 4469 | |
| 4470 | if (m_LastThrownObjectHandle != NULL) |
| 4471 | { |
| 4472 | // We'll somtimes use a handle for a preallocated exception object. We should never, ever destroy one of |
| 4473 | // these handles... they'll be destroyed when the Runtime shuts down. |
| 4474 | if (!CLRException::IsPreallocatedExceptionHandle(m_LastThrownObjectHandle)) |
| 4475 | { |
| 4476 | DestroyHandle(m_LastThrownObjectHandle); |
| 4477 | } |
| 4478 | |
| 4479 | m_LastThrownObjectHandle = NULL; // Make sure to set this to NULL here just in case we throw trying to make |
| 4480 | // a new handle below. |
| 4481 | } |
| 4482 | |
| 4483 | if (throwable != NULL) |
| 4484 | { |
| 4485 | _ASSERTE(this == GetThread()); |
| 4486 | |
| 4487 | // Non-compliant exceptions are always wrapped. |
| 4488 | // The use of the ExceptionNative:: helper here (rather than the global ::IsException helper) |
| 4489 | // is hokey, but we need a GC_NOTRIGGER version and it's only for an ASSERT. |
| 4490 | _ASSERTE(IsException(throwable->GetMethodTable())); |
| 4491 | |
| 4492 | // If we're tracking one of the preallocated exception objects, then just use the global handle that |
| 4493 | // matches it rather than creating a new one. |
| 4494 | if (CLRException::IsPreallocatedExceptionObject(throwable)) |
| 4495 | { |
| 4496 | m_LastThrownObjectHandle = CLRException::GetPreallocatedHandleForObject(throwable); |
| 4497 | } |
| 4498 | else |
| 4499 | { |
| 4500 | BEGIN_SO_INTOLERANT_CODE(GetThread()); |
| 4501 | { |
| 4502 | m_LastThrownObjectHandle = GetDomain()->CreateHandle(throwable); |
| 4503 | } |
| 4504 | END_SO_INTOLERANT_CODE; |
| 4505 | } |
| 4506 | |
| 4507 | _ASSERTE(m_LastThrownObjectHandle != NULL); |
| 4508 | m_ltoIsUnhandled = isUnhandled; |
| 4509 | } |
| 4510 | else |
| 4511 | { |
| 4512 | m_ltoIsUnhandled = FALSE; |
| 4513 | } |
| 4514 | } |
| 4515 | |
| 4516 | void Thread::SetSOForLastThrownObject() |
| 4517 | { |
| 4518 | CONTRACTL |
| 4519 | { |
| 4520 | NOTHROW; |
| 4521 | GC_NOTRIGGER; |
| 4522 | MODE_COOPERATIVE; |
| 4523 | SO_TOLERANT; |
| 4524 | CANNOT_TAKE_LOCK; |
| 4525 | } |
| 4526 | CONTRACTL_END; |
| 4527 | |
| 4528 | |
| 4529 | // If we are saving stack overflow exception, we can just null out the current handle. |
| 4530 | // The current domain is going to be unloaded or the process is going to be killed, so |
| 4531 | // we will not leak a handle. |
| 4532 | m_LastThrownObjectHandle = CLRException::GetPreallocatedStackOverflowExceptionHandle(); |
| 4533 | } |
| 4534 | |
| 4535 | // |
| 4536 | // This is a nice wrapper for SetLastThrownObject which catches any exceptions caused by not being able to create |
| 4537 | // the handle for the throwable, and setting the last thrown object to the preallocated out of memory exception |
| 4538 | // instead. |
| 4539 | // |
| 4540 | OBJECTREF Thread::SafeSetLastThrownObject(OBJECTREF throwable) |
| 4541 | { |
| 4542 | CONTRACTL |
| 4543 | { |
| 4544 | NOTHROW; |
| 4545 | GC_NOTRIGGER; |
| 4546 | if (throwable == NULL) MODE_ANY; else MODE_COOPERATIVE; |
| 4547 | SO_TOLERANT; |
| 4548 | } |
| 4549 | CONTRACTL_END; |
| 4550 | |
| 4551 | // We return the original throwable if nothing goes wrong. |
| 4552 | OBJECTREF ret = throwable; |
| 4553 | |
| 4554 | EX_TRY |
| 4555 | { |
| 4556 | // Try to set the throwable. |
| 4557 | SetLastThrownObject(throwable); |
| 4558 | } |
| 4559 | EX_CATCH |
| 4560 | { |
| 4561 | // If it didn't work, then set the last thrown object to the preallocated OOM exception, and return that |
| 4562 | // object instead of the original throwable. |
| 4563 | ret = CLRException::GetPreallocatedOutOfMemoryException(); |
| 4564 | SetLastThrownObject(ret); |
| 4565 | } |
| 4566 | EX_END_CATCH(SwallowAllExceptions); |
| 4567 | |
| 4568 | return ret; |
| 4569 | } |
| 4570 | |
| 4571 | // |
| 4572 | // This is a nice wrapper for SetThrowable and SetLastThrownObject, which catches any exceptions caused by not |
| 4573 | // being able to create the handle for the throwable, and sets the throwable to the preallocated out of memory |
| 4574 | // exception instead. It also updates the last thrown object, which is always updated when the throwable is |
| 4575 | // updated. |
| 4576 | // |
| 4577 | OBJECTREF Thread::SafeSetThrowables(OBJECTREF throwable DEBUG_ARG(ThreadExceptionState::SetThrowableErrorChecking stecFlags), |
| 4578 | BOOL isUnhandled) |
| 4579 | { |
| 4580 | CONTRACTL |
| 4581 | { |
| 4582 | NOTHROW; |
| 4583 | GC_NOTRIGGER; |
| 4584 | if (throwable == NULL) MODE_ANY; else MODE_COOPERATIVE; |
| 4585 | SO_TOLERANT; |
| 4586 | } |
| 4587 | CONTRACTL_END; |
| 4588 | |
| 4589 | // We return the original throwable if nothing goes wrong. |
| 4590 | OBJECTREF ret = throwable; |
| 4591 | |
| 4592 | EX_TRY |
| 4593 | { |
| 4594 | // Try to set the throwable. |
| 4595 | SetThrowable(throwable DEBUG_ARG(stecFlags)); |
| 4596 | |
| 4597 | // Now, if the last thrown object is different, go ahead and update it. This makes sure that we re-throw |
| 4598 | // the right object when we rethrow. |
| 4599 | if (LastThrownObject() != throwable) |
| 4600 | { |
| 4601 | SetLastThrownObject(throwable); |
| 4602 | } |
| 4603 | |
| 4604 | if (isUnhandled) |
| 4605 | { |
| 4606 | MarkLastThrownObjectUnhandled(); |
| 4607 | } |
| 4608 | } |
| 4609 | EX_CATCH |
| 4610 | { |
| 4611 | // If either set didn't work, then set both throwables to the preallocated OOM exception, and return that |
| 4612 | // object instead of the original throwable. |
| 4613 | ret = CLRException::GetPreallocatedOutOfMemoryException(); |
| 4614 | |
| 4615 | // Neither of these will throw because we're setting with a preallocated exception. |
| 4616 | SetThrowable(ret DEBUG_ARG(stecFlags)); |
| 4617 | SetLastThrownObject(ret, isUnhandled); |
| 4618 | } |
| 4619 | EX_END_CATCH(SwallowAllExceptions); |
| 4620 | |
| 4621 | |
| 4622 | return ret; |
| 4623 | } |
| 4624 | |
| 4625 | // This method will sync the managed exception state to be in sync with the topmost active exception |
| 4626 | // for a given thread |
| 4627 | void Thread::SyncManagedExceptionState(bool fIsDebuggerThread) |
| 4628 | { |
| 4629 | CONTRACTL |
| 4630 | { |
| 4631 | NOTHROW; |
| 4632 | GC_NOTRIGGER; |
| 4633 | MODE_ANY; |
| 4634 | } |
| 4635 | CONTRACTL_END; |
| 4636 | |
| 4637 | { |
| 4638 | GCX_COOP(); |
| 4639 | |
| 4640 | // Syncup the LastThrownObject on the managed thread |
| 4641 | SafeUpdateLastThrownObject(); |
| 4642 | } |
| 4643 | |
| 4644 | #ifdef FEATURE_CORRUPTING_EXCEPTIONS |
| 4645 | // Since the catch clause has successfully executed and we are exiting it, reset the corruption severity |
| 4646 | // in the ThreadExceptionState for the last active exception. This will ensure that when the next exception |
| 4647 | // gets thrown/raised, EH tracker wont pick up an invalid value. |
| 4648 | if (!fIsDebuggerThread) |
| 4649 | { |
| 4650 | CEHelper::ResetLastActiveCorruptionSeverityPostCatchHandler(this); |
| 4651 | } |
| 4652 | #endif // FEATURE_CORRUPTING_EXCEPTIONS |
| 4653 | |
| 4654 | } |
| 4655 | |
| 4656 | void Thread::SetLastThrownObjectHandle(OBJECTHANDLE h) |
| 4657 | { |
| 4658 | CONTRACTL |
| 4659 | { |
| 4660 | NOTHROW; |
| 4661 | GC_NOTRIGGER; |
| 4662 | MODE_COOPERATIVE; |
| 4663 | SO_TOLERANT; |
| 4664 | } |
| 4665 | CONTRACTL_END; |
| 4666 | |
| 4667 | if (m_LastThrownObjectHandle != NULL && |
| 4668 | !CLRException::IsPreallocatedExceptionHandle(m_LastThrownObjectHandle)) |
| 4669 | { |
| 4670 | DestroyHandle(m_LastThrownObjectHandle); |
| 4671 | } |
| 4672 | |
| 4673 | m_LastThrownObjectHandle = h; |
| 4674 | } |
| 4675 | |
| 4676 | // |
| 4677 | // Create a duplicate handle of the current throwable and set the last thrown object to that. This ensures that the |
| 4678 | // last thrown object and the current throwable have handles that are in the same app domain. |
| 4679 | // |
| 4680 | void Thread::SafeUpdateLastThrownObject(void) |
| 4681 | { |
| 4682 | CONTRACTL |
| 4683 | { |
| 4684 | NOTHROW; |
| 4685 | GC_NOTRIGGER; |
| 4686 | MODE_COOPERATIVE; |
| 4687 | SO_INTOLERANT; |
| 4688 | } |
| 4689 | CONTRACTL_END; |
| 4690 | |
| 4691 | OBJECTHANDLE hThrowable = GetThrowableAsHandle(); |
| 4692 | |
| 4693 | if (hThrowable != NULL) |
| 4694 | { |
| 4695 | EX_TRY |
| 4696 | { |
| 4697 | IGCHandleManager *pHandleTable = GCHandleUtilities::GetGCHandleManager(); |
| 4698 | |
| 4699 | // Creating a duplicate handle here ensures that the AD of the last thrown object |
| 4700 | // matches the domain of the current throwable. |
| 4701 | OBJECTHANDLE duplicateHandle = pHandleTable->CreateDuplicateHandle(hThrowable); |
| 4702 | SetLastThrownObjectHandle(duplicateHandle); |
| 4703 | } |
| 4704 | EX_CATCH |
| 4705 | { |
| 4706 | // If we can't create a duplicate handle, we set both throwables to the preallocated OOM exception. |
| 4707 | SafeSetThrowables(CLRException::GetPreallocatedOutOfMemoryException()); |
| 4708 | } |
| 4709 | EX_END_CATCH(SwallowAllExceptions); |
| 4710 | } |
| 4711 | } |
| 4712 | |
| 4713 | // Background threads must be counted, because the EE should shut down when the |
| 4714 | // last non-background thread terminates. But we only count running ones. |
| 4715 | void Thread::SetBackground(BOOL isBack, BOOL bRequiresTSL) |
| 4716 | { |
| 4717 | CONTRACTL { |
| 4718 | NOTHROW; |
| 4719 | GC_TRIGGERS; |
| 4720 | } |
| 4721 | CONTRACTL_END; |
| 4722 | |
| 4723 | // booleanize IsBackground() which just returns bits |
| 4724 | if (isBack == !!IsBackground()) |
| 4725 | return; |
| 4726 | |
| 4727 | LOG((LF_SYNC, INFO3, "SetBackground obtain lock\n" )); |
| 4728 | ThreadStoreLockHolder TSLockHolder(FALSE); |
| 4729 | if (bRequiresTSL) |
| 4730 | { |
| 4731 | TSLockHolder.Acquire(); |
| 4732 | } |
| 4733 | |
| 4734 | if (IsDead()) |
| 4735 | { |
| 4736 | // This can only happen in a race condition, where the correct thing to do |
| 4737 | // is ignore it. If it happens without the race condition, we throw an |
| 4738 | // exception. |
| 4739 | } |
| 4740 | else |
| 4741 | if (isBack) |
| 4742 | { |
| 4743 | if (!IsBackground()) |
| 4744 | { |
| 4745 | FastInterlockOr((ULONG *) &m_State, TS_Background); |
| 4746 | |
| 4747 | // unstarted threads don't contribute to the background count |
| 4748 | if (!IsUnstarted()) |
| 4749 | ThreadStore::s_pThreadStore->m_BackgroundThreadCount++; |
| 4750 | |
| 4751 | // If we put the main thread into a wait, until only background threads exist, |
| 4752 | // then we make that |
| 4753 | // main thread a background thread. This cleanly handles the case where it |
| 4754 | // may or may not be one as it enters the wait. |
| 4755 | |
| 4756 | // One of the components of OtherThreadsComplete() has changed, so check whether |
| 4757 | // we should now exit the EE. |
| 4758 | ThreadStore::CheckForEEShutdown(); |
| 4759 | } |
| 4760 | } |
| 4761 | else |
| 4762 | { |
| 4763 | if (IsBackground()) |
| 4764 | { |
| 4765 | FastInterlockAnd((ULONG *) &m_State, ~TS_Background); |
| 4766 | |
| 4767 | // unstarted threads don't contribute to the background count |
| 4768 | if (!IsUnstarted()) |
| 4769 | ThreadStore::s_pThreadStore->m_BackgroundThreadCount--; |
| 4770 | |
| 4771 | _ASSERTE(ThreadStore::s_pThreadStore->m_BackgroundThreadCount >= 0); |
| 4772 | _ASSERTE(ThreadStore::s_pThreadStore->m_BackgroundThreadCount <= |
| 4773 | ThreadStore::s_pThreadStore->m_ThreadCount); |
| 4774 | } |
| 4775 | } |
| 4776 | |
| 4777 | if (bRequiresTSL) |
| 4778 | { |
| 4779 | TSLockHolder.Release(); |
| 4780 | } |
| 4781 | } |
| 4782 | |
| 4783 | #ifdef FEATURE_COMINTEROP |
| 4784 | class ApartmentSpyImpl : public IUnknownCommon<IInitializeSpy> |
| 4785 | { |
| 4786 | |
| 4787 | public: |
| 4788 | HRESULT STDMETHODCALLTYPE PreInitialize(DWORD dwCoInit, DWORD dwCurThreadAptRefs) |
| 4789 | { |
| 4790 | LIMITED_METHOD_CONTRACT; |
| 4791 | return S_OK; |
| 4792 | } |
| 4793 | |
| 4794 | HRESULT STDMETHODCALLTYPE PostInitialize(HRESULT hrCoInit, DWORD dwCoInit, DWORD dwNewThreadAptRefs) |
| 4795 | { |
| 4796 | LIMITED_METHOD_CONTRACT; |
| 4797 | return hrCoInit; // this HRESULT will be returned from CoInitialize(Ex) |
| 4798 | } |
| 4799 | |
| 4800 | HRESULT STDMETHODCALLTYPE PreUninitialize(DWORD dwCurThreadAptRefs) |
| 4801 | { |
| 4802 | // Don't assume that Thread exists and do not create it. |
| 4803 | STATIC_CONTRACT_NOTHROW; |
| 4804 | STATIC_CONTRACT_GC_TRIGGERS; |
| 4805 | STATIC_CONTRACT_MODE_PREEMPTIVE; |
| 4806 | |
| 4807 | HRESULT hr = S_OK; |
| 4808 | |
| 4809 | if (dwCurThreadAptRefs == 1 && !g_fEEShutDown) |
| 4810 | { |
| 4811 | // This is the last CoUninitialize on this thread and the CLR is still running. If it's an STA |
| 4812 | // we take the opportunity to perform COM/WinRT cleanup now, when the apartment is still alive. |
| 4813 | |
| 4814 | Thread *pThread = GetThreadNULLOk(); |
| 4815 | if (pThread != NULL) |
| 4816 | { |
| 4817 | BEGIN_EXTERNAL_ENTRYPOINT(&hr) |
| 4818 | { |
| 4819 | if (pThread->GetFinalApartment() == Thread::AS_InSTA) |
| 4820 | { |
| 4821 | // This will release RCWs and purge the WinRT factory cache on all AppDomains. It |
| 4822 | // will also synchronize with the finalizer thread which ensures that the RCWs |
| 4823 | // that were already in the global RCW cleanup list will be cleaned up as well. |
| 4824 | // |
| 4825 | ReleaseRCWsInCachesNoThrow(GetCurrentCtxCookie()); |
| 4826 | } |
| 4827 | } |
| 4828 | END_EXTERNAL_ENTRYPOINT; |
| 4829 | } |
| 4830 | } |
| 4831 | return hr; |
| 4832 | } |
| 4833 | |
| 4834 | HRESULT STDMETHODCALLTYPE PostUninitialize(DWORD dwNewThreadAptRefs) |
| 4835 | { |
| 4836 | LIMITED_METHOD_CONTRACT; |
| 4837 | return S_OK; |
| 4838 | } |
| 4839 | }; |
| 4840 | #endif // FEATURE_COMINTEROP |
| 4841 | |
| 4842 | // When the thread starts running, make sure it is running in the correct apartment |
| 4843 | // and context. |
| 4844 | BOOL Thread::PrepareApartmentAndContext() |
| 4845 | { |
| 4846 | CONTRACTL { |
| 4847 | THROWS; |
| 4848 | GC_TRIGGERS; |
| 4849 | } |
| 4850 | CONTRACTL_END; |
| 4851 | |
| 4852 | m_OSThreadId = ::GetCurrentThreadId(); |
| 4853 | |
| 4854 | #ifdef FEATURE_COMINTEROP_APARTMENT_SUPPORT |
| 4855 | // Be very careful in here because we haven't set up e.g. TLS yet. |
| 4856 | |
| 4857 | if (m_State & (TS_InSTA | TS_InMTA)) |
| 4858 | { |
| 4859 | // Make sure TS_InSTA and TS_InMTA aren't both set. |
| 4860 | _ASSERTE(!((m_State & TS_InSTA) && (m_State & TS_InMTA))); |
| 4861 | |
| 4862 | // Determine the apartment state to set based on the requested state. |
| 4863 | ApartmentState aState = m_State & TS_InSTA ? AS_InSTA : AS_InMTA; |
| 4864 | |
| 4865 | // Clear the requested apartment state from the thread. This is requested since |
| 4866 | // the thread might actually be a fiber that has already been initialized to |
| 4867 | // a different apartment state than the requested one. If we didn't clear |
| 4868 | // the requested apartment state, then we could end up with both TS_InSTA and |
| 4869 | // TS_InMTA set at the same time. |
| 4870 | FastInterlockAnd ((ULONG *) &m_State, ~TS_InSTA & ~TS_InMTA); |
| 4871 | |
| 4872 | // Attempt to set the requested apartment state. |
| 4873 | SetApartment(aState, FALSE); |
| 4874 | } |
| 4875 | |
| 4876 | // In the case where we own the thread and we have switched it to a different |
| 4877 | // starting context, it is the responsibility of the caller (KickOffThread()) |
| 4878 | // to notice that the context changed, and to adjust the delegate that it will |
| 4879 | // dispatch on, as appropriate. |
| 4880 | #endif //FEATURE_COMINTEROP_APARTMENT_SUPPORT |
| 4881 | |
| 4882 | #ifdef FEATURE_COMINTEROP |
| 4883 | // Our IInitializeSpy will be registered in AppX always, in classic processes |
| 4884 | // only if the internal config switch is on. |
| 4885 | if (AppX::IsAppXProcess() || g_pConfig->EnableRCWCleanupOnSTAShutdown()) |
| 4886 | { |
| 4887 | NewHolder<ApartmentSpyImpl> pSpyImpl = new ApartmentSpyImpl(); |
| 4888 | |
| 4889 | IfFailThrow(CoRegisterInitializeSpy(pSpyImpl, &m_uliInitializeSpyCookie)); |
| 4890 | pSpyImpl.SuppressRelease(); |
| 4891 | |
| 4892 | m_fInitializeSpyRegistered = true; |
| 4893 | } |
| 4894 | #endif // FEATURE_COMINTEROP |
| 4895 | |
| 4896 | return TRUE; |
| 4897 | } |
| 4898 | |
| 4899 | |
| 4900 | #ifdef FEATURE_COMINTEROP_APARTMENT_SUPPORT |
| 4901 | |
| 4902 | // TS_InSTA (0x00004000) -> AS_InSTA (0) |
| 4903 | // TS_InMTA (0x00008000) -> AS_InMTA (1) |
| 4904 | #define TS_TO_AS(ts) \ |
| 4905 | (Thread::ApartmentState)((((DWORD)ts) >> 14) - 1) \ |
| 4906 | |
| 4907 | // Retrieve the apartment state of the current thread. There are three possible |
| 4908 | // states: thread hosts an STA, thread is part of the MTA or thread state is |
| 4909 | // undecided. The last state may indicate that the apartment has not been set at |
| 4910 | // all (nobody has called CoInitializeEx) or that the EE does not know the |
| 4911 | // current state (EE has not called CoInitializeEx). |
| 4912 | Thread::ApartmentState Thread::GetApartment() |
| 4913 | { |
| 4914 | CONTRACTL |
| 4915 | { |
| 4916 | NOTHROW; |
| 4917 | GC_TRIGGERS; |
| 4918 | MODE_ANY; |
| 4919 | } |
| 4920 | CONTRACTL_END; |
| 4921 | |
| 4922 | ApartmentState as = AS_Unknown; |
| 4923 | ThreadState maskedTs = (ThreadState)(((DWORD)m_State) & (TS_InSTA|TS_InMTA)); |
| 4924 | if (maskedTs) |
| 4925 | { |
| 4926 | _ASSERTE((maskedTs == TS_InSTA) || (maskedTs == TS_InMTA)); |
| 4927 | static_assert_no_msg(TS_TO_AS(TS_InSTA) == AS_InSTA); |
| 4928 | static_assert_no_msg(TS_TO_AS(TS_InMTA) == AS_InMTA); |
| 4929 | |
| 4930 | as = TS_TO_AS(maskedTs); |
| 4931 | } |
| 4932 | |
| 4933 | if ( |
| 4934 | #ifdef MDA_SUPPORTED |
| 4935 | (NULL == MDA_GET_ASSISTANT(InvalidApartmentStateChange)) && |
| 4936 | #endif |
| 4937 | (as != AS_Unknown)) |
| 4938 | { |
| 4939 | return as; |
| 4940 | } |
| 4941 | |
| 4942 | return GetApartmentRare(as); |
| 4943 | } |
| 4944 | |
| 4945 | Thread::ApartmentState Thread::GetApartmentRare(Thread::ApartmentState as) |
| 4946 | { |
| 4947 | CONTRACTL |
| 4948 | { |
| 4949 | NOTHROW; |
| 4950 | GC_TRIGGERS; |
| 4951 | MODE_ANY; |
| 4952 | } |
| 4953 | CONTRACTL_END; |
| 4954 | |
| 4955 | if (this == GetThread()) |
| 4956 | { |
| 4957 | THDTYPE type; |
| 4958 | HRESULT hr = S_OK; |
| 4959 | |
| 4960 | #ifdef MDA_SUPPORTED |
| 4961 | MdaInvalidApartmentStateChange* pProbe = MDA_GET_ASSISTANT(InvalidApartmentStateChange); |
| 4962 | if (pProbe) |
| 4963 | { |
| 4964 | // Without notifications from OLE32, we cannot know when the apartment state of a |
| 4965 | // thread changes. But we have cached this fact and depend on it for all our |
| 4966 | // blocking and COM Interop behavior to work correctly. Using the CDH, log that it |
| 4967 | // is not changing underneath us, on those platforms where it is relatively cheap for |
| 4968 | // us to do so. |
| 4969 | if (as != AS_Unknown) |
| 4970 | { |
| 4971 | hr = GetCurrentThreadTypeNT5(&type); |
| 4972 | if (hr == S_OK) |
| 4973 | { |
| 4974 | if (type == THDTYPE_PROCESSMESSAGES && as == AS_InMTA) |
| 4975 | { |
| 4976 | pProbe->ReportViolation(this, as, FALSE); |
| 4977 | } |
| 4978 | else if (type == THDTYPE_BLOCKMESSAGES && as == AS_InSTA) |
| 4979 | { |
| 4980 | pProbe->ReportViolation(this, as, FALSE); |
| 4981 | } |
| 4982 | } |
| 4983 | } |
| 4984 | } |
| 4985 | #endif |
| 4986 | |
| 4987 | if (as == AS_Unknown) |
| 4988 | { |
| 4989 | hr = GetCurrentThreadTypeNT5(&type); |
| 4990 | if (hr == S_OK) |
| 4991 | { |
| 4992 | as = (type == THDTYPE_PROCESSMESSAGES) ? AS_InSTA : AS_InMTA; |
| 4993 | |
| 4994 | // If we get back THDTYPE_PROCESSMESSAGES, we are guaranteed to |
| 4995 | // be an STA thread. If not, we are an MTA thread, however |
| 4996 | // we can't know if the thread has been explicitly set to MTA |
| 4997 | // (via a call to CoInitializeEx) or if it has been implicitly |
| 4998 | // made MTA (if it hasn't been CoInitializeEx'd but CoInitialize |
| 4999 | // has already been called on some other thread in the process. |
| 5000 | if (as == AS_InSTA) |
| 5001 | FastInterlockOr((ULONG *) &m_State, AS_InSTA); |
| 5002 | } |
| 5003 | } |
| 5004 | } |
| 5005 | |
| 5006 | return as; |
| 5007 | } |
| 5008 | |
| 5009 | |
| 5010 | // Retrieve the explicit apartment state of the current thread. There are three possible |
| 5011 | // states: thread hosts an STA, thread is part of the MTA or thread state is |
| 5012 | // undecided. The last state may indicate that the apartment has not been set at |
| 5013 | // all (nobody has called CoInitializeEx), the EE does not know the |
| 5014 | // current state (EE has not called CoInitializeEx), or the thread is implicitly in |
| 5015 | // the MTA. |
| 5016 | Thread::ApartmentState Thread::GetExplicitApartment() |
| 5017 | { |
| 5018 | CONTRACTL |
| 5019 | { |
| 5020 | NOTHROW; |
| 5021 | GC_TRIGGERS; |
| 5022 | MODE_ANY; |
| 5023 | } |
| 5024 | CONTRACTL_END; |
| 5025 | |
| 5026 | _ASSERTE(!((m_State & TS_InSTA) && (m_State & TS_InMTA))); |
| 5027 | |
| 5028 | // Initialize m_State by calling GetApartment. |
| 5029 | GetApartment(); |
| 5030 | |
| 5031 | ApartmentState as = (m_State & TS_InSTA) ? AS_InSTA : |
| 5032 | (m_State & TS_InMTA) ? AS_InMTA : |
| 5033 | AS_Unknown; |
| 5034 | |
| 5035 | return as; |
| 5036 | } |
| 5037 | |
| 5038 | |
| 5039 | Thread::ApartmentState Thread::GetFinalApartment() |
| 5040 | { |
| 5041 | CONTRACTL |
| 5042 | { |
| 5043 | NOTHROW; |
| 5044 | GC_TRIGGERS; |
| 5045 | MODE_ANY; |
| 5046 | SO_TOLERANT; |
| 5047 | } |
| 5048 | CONTRACTL_END; |
| 5049 | |
| 5050 | _ASSERTE(this == GetThread()); |
| 5051 | |
| 5052 | ApartmentState as = AS_Unknown; |
| 5053 | if (g_fEEShutDown) |
| 5054 | { |
| 5055 | // On shutdown, do not use cached value. Someone might have called |
| 5056 | // CoUninitialize. |
| 5057 | FastInterlockAnd ((ULONG *) &m_State, ~TS_InSTA & ~TS_InMTA); |
| 5058 | } |
| 5059 | |
| 5060 | as = GetApartment(); |
| 5061 | if (as == AS_Unknown) |
| 5062 | { |
| 5063 | // On Win2k and above, GetApartment will only return AS_Unknown if CoInitialize |
| 5064 | // hasn't been called in the process. In that case we can simply assume MTA. However we |
| 5065 | // cannot cache this value in the Thread because if a CoInitialize does occur, then the |
| 5066 | // thread state might change. |
| 5067 | as = AS_InMTA; |
| 5068 | } |
| 5069 | |
| 5070 | return as; |
| 5071 | } |
| 5072 | |
| 5073 | // when we get apartment tear-down notification, |
| 5074 | // we want reset the apartment state we cache on the thread |
| 5075 | VOID Thread::ResetApartment() |
| 5076 | { |
| 5077 | CONTRACTL { |
| 5078 | NOTHROW; |
| 5079 | GC_NOTRIGGER; |
| 5080 | } |
| 5081 | CONTRACTL_END; |
| 5082 | |
| 5083 | // reset the TS_InSTA bit and TS_InMTA bit |
| 5084 | ThreadState t_State = (ThreadState)(~(TS_InSTA | TS_InMTA)); |
| 5085 | FastInterlockAnd((ULONG *) &m_State, t_State); |
| 5086 | } |
| 5087 | |
| 5088 | // Attempt to set current thread's apartment state. The actual apartment state |
| 5089 | // achieved is returned and may differ from the input state if someone managed |
| 5090 | // to call CoInitializeEx on this thread first (note that calls to SetApartment |
| 5091 | // made before the thread has started are guaranteed to succeed). |
| 5092 | // The fFireMDAOnMismatch indicates if we should fire the apartment state probe |
| 5093 | // on an apartment state mismatch. |
| 5094 | Thread::ApartmentState Thread::SetApartment(ApartmentState state, BOOL fFireMDAOnMismatch) |
| 5095 | { |
| 5096 | CONTRACTL { |
| 5097 | THROWS; |
| 5098 | GC_TRIGGERS; |
| 5099 | MODE_ANY; |
| 5100 | INJECT_FAULT(COMPlusThrowOM();); |
| 5101 | } |
| 5102 | CONTRACTL_END; |
| 5103 | |
| 5104 | // Reset any bits that request for CoInitialize |
| 5105 | ResetRequiresCoInitialize(); |
| 5106 | |
| 5107 | // Setting the state to AS_Unknown indicates we should CoUninitialize |
| 5108 | // the thread. |
| 5109 | if (state == AS_Unknown) |
| 5110 | { |
| 5111 | BOOL needUninitialize = (m_State & TS_CoInitialized) |
| 5112 | #ifdef FEATURE_COMINTEROP |
| 5113 | || IsWinRTInitialized() |
| 5114 | #endif // FEATURE_COMINTEROP |
| 5115 | ; |
| 5116 | |
| 5117 | if (needUninitialize) |
| 5118 | { |
| 5119 | GCX_PREEMP(); |
| 5120 | |
| 5121 | // If we haven't CoInitialized the thread, then we don't have anything to do. |
| 5122 | if (m_State & TS_CoInitialized) |
| 5123 | { |
| 5124 | // We should never be attempting to CoUninitialize another thread than |
| 5125 | // the currently running thread. |
| 5126 | _ASSERTE(m_OSThreadId == ::GetCurrentThreadId()); |
| 5127 | |
| 5128 | // CoUninitialize the thread and reset the STA/MTA/CoInitialized state bits. |
| 5129 | ::CoUninitialize(); |
| 5130 | |
| 5131 | ThreadState uninitialized = static_cast<ThreadState>(TS_InSTA | TS_InMTA | TS_CoInitialized); |
| 5132 | FastInterlockAnd((ULONG *) &m_State, ~uninitialized); |
| 5133 | } |
| 5134 | |
| 5135 | #ifdef FEATURE_COMINTEROP |
| 5136 | if (IsWinRTInitialized()) |
| 5137 | { |
| 5138 | _ASSERTE(WinRTSupported()); |
| 5139 | BaseWinRTUninitialize(); |
| 5140 | ResetWinRTInitialized(); |
| 5141 | } |
| 5142 | #endif // FEATURE_COMINTEROP |
| 5143 | } |
| 5144 | return GetApartment(); |
| 5145 | } |
| 5146 | |
| 5147 | // Call GetApartment to initialize the current apartment state. |
| 5148 | // |
| 5149 | // Important note: For Win2k and above this can return AS_InMTA even if the current |
| 5150 | // thread has never been CoInitialized. Because of this we MUST NOT look at the |
| 5151 | // return value of GetApartment here. We can however look at the m_State flags |
| 5152 | // since these will only be set to TS_InMTA if we know for a fact the the |
| 5153 | // current thread has explicitly been made MTA (via a call to CoInitializeEx). |
| 5154 | GetApartment(); |
| 5155 | |
| 5156 | // If the current thread is STA, then it is impossible to change it to |
| 5157 | // MTA. |
| 5158 | if (m_State & TS_InSTA) |
| 5159 | { |
| 5160 | #ifdef MDA_SUPPORTED |
| 5161 | if (state == AS_InMTA && fFireMDAOnMismatch) |
| 5162 | { |
| 5163 | MDA_TRIGGER_ASSISTANT(InvalidApartmentStateChange, ReportViolation(this, state, TRUE)); |
| 5164 | } |
| 5165 | #endif |
| 5166 | return AS_InSTA; |
| 5167 | } |
| 5168 | |
| 5169 | // If the current thread is EXPLICITLY MTA, then it is impossible to change it to |
| 5170 | // STA. |
| 5171 | if (m_State & TS_InMTA) |
| 5172 | { |
| 5173 | #ifdef MDA_SUPPORTED |
| 5174 | if (state == AS_InSTA && fFireMDAOnMismatch) |
| 5175 | { |
| 5176 | MDA_TRIGGER_ASSISTANT(InvalidApartmentStateChange, ReportViolation(this, state, TRUE)); |
| 5177 | } |
| 5178 | #endif |
| 5179 | return AS_InMTA; |
| 5180 | } |
| 5181 | |
| 5182 | // If the thread isn't even started yet, we mark the state bits without |
| 5183 | // calling CoInitializeEx (since we're obviously not in the correct thread |
| 5184 | // context yet). We'll retry this call when the thread is started. |
| 5185 | // Don't use the TS_Unstarted state bit to check for this, it's cleared far |
| 5186 | // too late in the day for us. Instead check whether we're in the correct |
| 5187 | // thread context. |
| 5188 | if (m_OSThreadId != ::GetCurrentThreadId()) |
| 5189 | { |
| 5190 | FastInterlockOr((ULONG *) &m_State, (state == AS_InSTA) ? TS_InSTA : TS_InMTA); |
| 5191 | return state; |
| 5192 | } |
| 5193 | |
| 5194 | HRESULT hr; |
| 5195 | { |
| 5196 | GCX_PREEMP(); |
| 5197 | |
| 5198 | // Attempt to set apartment by calling CoInitializeEx. This may fail if |
| 5199 | // another caller (outside EE) beat us to it. |
| 5200 | // |
| 5201 | // Important note: When calling CoInitializeEx(COINIT_MULTITHREADED) on a |
| 5202 | // thread that has never been CoInitialized, the return value will always |
| 5203 | // be S_OK, even if another thread in the process has already been |
| 5204 | // CoInitialized to MTA. However if the current thread has already been |
| 5205 | // CoInitialized to MTA, then S_FALSE will be returned. |
| 5206 | hr = ::CoInitializeEx(NULL, (state == AS_InSTA) ? |
| 5207 | COINIT_APARTMENTTHREADED : COINIT_MULTITHREADED); |
| 5208 | } |
| 5209 | |
| 5210 | if (SUCCEEDED(hr)) |
| 5211 | { |
| 5212 | ThreadState t_State = (state == AS_InSTA) ? TS_InSTA : TS_InMTA; |
| 5213 | |
| 5214 | if (hr == S_OK) |
| 5215 | { |
| 5216 | // The thread has never been CoInitialized. |
| 5217 | t_State = (ThreadState)(t_State | TS_CoInitialized); |
| 5218 | } |
| 5219 | else |
| 5220 | { |
| 5221 | _ASSERTE(hr == S_FALSE); |
| 5222 | |
| 5223 | // If the thread has already been CoInitialized to the proper mode, then |
| 5224 | // we don't want to leave an outstanding CoInit so we CoUninit. |
| 5225 | { |
| 5226 | GCX_PREEMP(); |
| 5227 | ::CoUninitialize(); |
| 5228 | } |
| 5229 | } |
| 5230 | |
| 5231 | // We succeeded in setting the apartment state to the requested state. |
| 5232 | FastInterlockOr((ULONG *) &m_State, t_State); |
| 5233 | } |
| 5234 | else if (hr == RPC_E_CHANGED_MODE) |
| 5235 | { |
| 5236 | // We didn't manage to enforce the requested apartment state, but at least |
| 5237 | // we can work out what the state is now. No need to actually do the CoInit -- |
| 5238 | // obviously someone else already took care of that. |
| 5239 | FastInterlockOr((ULONG *) &m_State, ((state == AS_InSTA) ? TS_InMTA : TS_InSTA)); |
| 5240 | |
| 5241 | #ifdef MDA_SUPPORTED |
| 5242 | if (fFireMDAOnMismatch) |
| 5243 | { |
| 5244 | // Report via the customer debug helper that we failed to set the apartment type |
| 5245 | // to the specified type. |
| 5246 | MDA_TRIGGER_ASSISTANT(InvalidApartmentStateChange, ReportViolation(this, state, TRUE)); |
| 5247 | } |
| 5248 | #endif |
| 5249 | } |
| 5250 | else if (hr == E_OUTOFMEMORY) |
| 5251 | { |
| 5252 | COMPlusThrowOM(); |
| 5253 | } |
| 5254 | else |
| 5255 | { |
| 5256 | _ASSERTE(!"Unexpected HRESULT returned from CoInitializeEx!" ); |
| 5257 | } |
| 5258 | |
| 5259 | #ifdef FEATURE_COMINTEROP |
| 5260 | |
| 5261 | // If WinRT is supported on this OS, also initialize it at the same time. Since WinRT sits on top of COM |
| 5262 | // we need to make sure that it is initialized in the same threading mode as we just started COM itself |
| 5263 | // with (or that we detected COM had already been started with). |
| 5264 | if (WinRTSupported() && !IsWinRTInitialized()) |
| 5265 | { |
| 5266 | GCX_PREEMP(); |
| 5267 | |
| 5268 | BOOL isSTA = m_State & TS_InSTA; |
| 5269 | _ASSERTE(isSTA || (m_State & TS_InMTA)); |
| 5270 | |
| 5271 | HRESULT hrWinRT = RoInitialize(isSTA ? RO_INIT_SINGLETHREADED : RO_INIT_MULTITHREADED); |
| 5272 | |
| 5273 | if (SUCCEEDED(hrWinRT)) |
| 5274 | { |
| 5275 | if (hrWinRT == S_OK) |
| 5276 | { |
| 5277 | SetThreadStateNC(TSNC_WinRTInitialized); |
| 5278 | } |
| 5279 | else |
| 5280 | { |
| 5281 | _ASSERTE(hrWinRT == S_FALSE); |
| 5282 | |
| 5283 | // If the thread has already been initialized, back it out. We may not |
| 5284 | // always be able to call RoUninitialize on shutdown so if there's |
| 5285 | // a way to avoid having to, we should take advantage of that. |
| 5286 | RoUninitialize(); |
| 5287 | } |
| 5288 | } |
| 5289 | else if (hrWinRT == E_OUTOFMEMORY) |
| 5290 | { |
| 5291 | COMPlusThrowOM(); |
| 5292 | } |
| 5293 | else |
| 5294 | { |
| 5295 | // We don't check for RPC_E_CHANGEDMODE, since we're using the mode that was read in by |
| 5296 | // initializing COM above. COM and WinRT need to always be in the same mode, so we should never |
| 5297 | // see that return code at this point. |
| 5298 | _ASSERTE(!"Unexpected HRESULT From RoInitialize" ); |
| 5299 | } |
| 5300 | } |
| 5301 | |
| 5302 | // Since we've just called CoInitialize, COM has effectively been started up. |
| 5303 | // To ensure the CLR is aware of this, we need to call EnsureComStarted. |
| 5304 | EnsureComStarted(FALSE); |
| 5305 | #endif // FEATURE_COMINTEROP |
| 5306 | |
| 5307 | return GetApartment(); |
| 5308 | } |
| 5309 | #endif // FEATURE_COMINTEROP_APARTMENT_SUPPORT |
| 5310 | |
| 5311 | |
| 5312 | //---------------------------------------------------------------------------- |
| 5313 | // |
| 5314 | // ThreadStore Implementation |
| 5315 | // |
| 5316 | //---------------------------------------------------------------------------- |
| 5317 | |
| 5318 | ThreadStore::ThreadStore() |
| 5319 | : m_Crst(CrstThreadStore, (CrstFlags) (CRST_UNSAFE_ANYMODE | CRST_DEBUGGER_THREAD)), |
| 5320 | m_ThreadCount(0), |
| 5321 | m_MaxThreadCount(0), |
| 5322 | m_UnstartedThreadCount(0), |
| 5323 | m_BackgroundThreadCount(0), |
| 5324 | m_PendingThreadCount(0), |
| 5325 | m_DeadThreadCount(0), |
| 5326 | m_DeadThreadCountForGCTrigger(0), |
| 5327 | m_TriggerGCForDeadThreads(false), |
| 5328 | m_GuidCreated(FALSE), |
| 5329 | m_HoldingThread(0) |
| 5330 | { |
| 5331 | CONTRACTL { |
| 5332 | THROWS; |
| 5333 | GC_NOTRIGGER; |
| 5334 | } |
| 5335 | CONTRACTL_END; |
| 5336 | |
| 5337 | m_TerminationEvent.CreateManualEvent(FALSE); |
| 5338 | _ASSERTE(m_TerminationEvent.IsValid()); |
| 5339 | } |
| 5340 | |
| 5341 | |
| 5342 | void ThreadStore::InitThreadStore() |
| 5343 | { |
| 5344 | CONTRACTL { |
| 5345 | THROWS; |
| 5346 | GC_TRIGGERS; |
| 5347 | } |
| 5348 | CONTRACTL_END; |
| 5349 | |
| 5350 | s_pThreadStore = new ThreadStore; |
| 5351 | |
| 5352 | g_pThinLockThreadIdDispenser = new IdDispenser(); |
| 5353 | |
| 5354 | ThreadSuspend::g_pGCSuspendEvent = new CLREvent(); |
| 5355 | ThreadSuspend::g_pGCSuspendEvent->CreateManualEvent(FALSE); |
| 5356 | |
| 5357 | s_pWaitForStackCrawlEvent = new CLREvent(); |
| 5358 | s_pWaitForStackCrawlEvent->CreateManualEvent(FALSE); |
| 5359 | |
| 5360 | s_DeadThreadCountThresholdForGCTrigger = |
| 5361 | static_cast<LONG>(CLRConfig::GetConfigValue(CLRConfig::INTERNAL_Thread_DeadThreadCountThresholdForGCTrigger)); |
| 5362 | if (s_DeadThreadCountThresholdForGCTrigger < 0) |
| 5363 | { |
| 5364 | s_DeadThreadCountThresholdForGCTrigger = 0; |
| 5365 | } |
| 5366 | s_DeadThreadGCTriggerPeriodMilliseconds = |
| 5367 | CLRConfig::GetConfigValue(CLRConfig::INTERNAL_Thread_DeadThreadGCTriggerPeriodMilliseconds); |
| 5368 | s_DeadThreadGenerationCounts = nullptr; |
| 5369 | } |
| 5370 | |
| 5371 | // Enter and leave the critical section around the thread store. Clients should |
| 5372 | // use LockThreadStore and UnlockThreadStore because ThreadStore lock has |
| 5373 | // additional semantics well beyond a normal lock. |
| 5374 | DEBUG_NOINLINE void ThreadStore::Enter() |
| 5375 | { |
| 5376 | WRAPPER_NO_CONTRACT; |
| 5377 | ANNOTATION_SPECIAL_HOLDER_CALLER_NEEDS_DYNAMIC_CONTRACT; |
| 5378 | CHECK_ONE_STORE(); |
| 5379 | m_Crst.Enter(); |
| 5380 | |
| 5381 | // Threadstore needs special shutdown handling. |
| 5382 | if (g_fSuspendOnShutdown) |
| 5383 | { |
| 5384 | m_Crst.ReleaseAndBlockForShutdownIfNotSpecialThread(); |
| 5385 | } |
| 5386 | } |
| 5387 | |
| 5388 | DEBUG_NOINLINE void ThreadStore::Leave() |
| 5389 | { |
| 5390 | WRAPPER_NO_CONTRACT; |
| 5391 | ANNOTATION_SPECIAL_HOLDER_CALLER_NEEDS_DYNAMIC_CONTRACT; |
| 5392 | CHECK_ONE_STORE(); |
| 5393 | m_Crst.Leave(); |
| 5394 | } |
| 5395 | |
| 5396 | void ThreadStore::LockThreadStore() |
| 5397 | { |
| 5398 | WRAPPER_NO_CONTRACT; |
| 5399 | |
| 5400 | // The actual implementation is in ThreadSuspend class since it is coupled |
| 5401 | // with thread suspension logic |
| 5402 | ThreadSuspend::LockThreadStore(ThreadSuspend::SUSPEND_OTHER); |
| 5403 | } |
| 5404 | |
| 5405 | void ThreadStore::UnlockThreadStore() |
| 5406 | { |
| 5407 | WRAPPER_NO_CONTRACT; |
| 5408 | |
| 5409 | // The actual implementation is in ThreadSuspend class since it is coupled |
| 5410 | // with thread suspension logic |
| 5411 | ThreadSuspend::UnlockThreadStore(FALSE, ThreadSuspend::SUSPEND_OTHER); |
| 5412 | } |
| 5413 | |
| 5414 | // AddThread adds 'newThread' to m_ThreadList |
| 5415 | void ThreadStore::AddThread(Thread *newThread, BOOL bRequiresTSL) |
| 5416 | { |
| 5417 | CONTRACTL { |
| 5418 | NOTHROW; |
| 5419 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 5420 | } |
| 5421 | CONTRACTL_END; |
| 5422 | |
| 5423 | LOG((LF_SYNC, INFO3, "AddThread obtain lock\n" )); |
| 5424 | |
| 5425 | ThreadStoreLockHolder TSLockHolder(FALSE); |
| 5426 | if (bRequiresTSL) |
| 5427 | { |
| 5428 | TSLockHolder.Acquire(); |
| 5429 | } |
| 5430 | |
| 5431 | s_pThreadStore->m_ThreadList.InsertTail(newThread); |
| 5432 | |
| 5433 | s_pThreadStore->m_ThreadCount++; |
| 5434 | if (s_pThreadStore->m_MaxThreadCount < s_pThreadStore->m_ThreadCount) |
| 5435 | s_pThreadStore->m_MaxThreadCount = s_pThreadStore->m_ThreadCount; |
| 5436 | |
| 5437 | if (newThread->IsUnstarted()) |
| 5438 | s_pThreadStore->m_UnstartedThreadCount++; |
| 5439 | |
| 5440 | newThread->SetThreadStateNC(Thread::TSNC_ExistInThreadStore); |
| 5441 | |
| 5442 | _ASSERTE(!newThread->IsBackground()); |
| 5443 | _ASSERTE(!newThread->IsDead()); |
| 5444 | |
| 5445 | if (bRequiresTSL) |
| 5446 | { |
| 5447 | TSLockHolder.Release(); |
| 5448 | } |
| 5449 | } |
| 5450 | |
| 5451 | // this function is just desgined to avoid deadlocks during abnormal process termination, and should not be used for any other purpose |
| 5452 | BOOL ThreadStore::CanAcquireLock() |
| 5453 | { |
| 5454 | WRAPPER_NO_CONTRACT; |
| 5455 | { |
| 5456 | return (s_pThreadStore->m_Crst.m_criticalsection.LockCount == -1 || (size_t)s_pThreadStore->m_Crst.m_criticalsection.OwningThread == (size_t)GetCurrentThreadId()); |
| 5457 | } |
| 5458 | } |
| 5459 | |
| 5460 | // Whenever one of the components of OtherThreadsComplete() has changed in the |
| 5461 | // correct direction, see whether we can now shutdown the EE because only background |
| 5462 | // threads are running. |
| 5463 | void ThreadStore::CheckForEEShutdown() |
| 5464 | { |
| 5465 | CONTRACTL { |
| 5466 | NOTHROW; |
| 5467 | GC_NOTRIGGER; |
| 5468 | } |
| 5469 | CONTRACTL_END; |
| 5470 | |
| 5471 | if (g_fWeControlLifetime && |
| 5472 | s_pThreadStore->OtherThreadsComplete()) |
| 5473 | { |
| 5474 | BOOL bRet; |
| 5475 | bRet = s_pThreadStore->m_TerminationEvent.Set(); |
| 5476 | _ASSERTE(bRet); |
| 5477 | } |
| 5478 | } |
| 5479 | |
| 5480 | |
| 5481 | BOOL ThreadStore::RemoveThread(Thread *target) |
| 5482 | { |
| 5483 | CONTRACTL { |
| 5484 | NOTHROW; |
| 5485 | GC_NOTRIGGER; |
| 5486 | } |
| 5487 | CONTRACTL_END; |
| 5488 | |
| 5489 | BOOL found; |
| 5490 | Thread *ret; |
| 5491 | |
| 5492 | #if 0 // This assert is not valid when failing to create background GC thread. |
| 5493 | // Main GC thread holds the TS lock. |
| 5494 | _ASSERTE (ThreadStore::HoldingThreadStore()); |
| 5495 | #endif |
| 5496 | |
| 5497 | _ASSERTE(s_pThreadStore->m_Crst.GetEnterCount() > 0 || |
| 5498 | IsAtProcessExit()); |
| 5499 | _ASSERTE(s_pThreadStore->DbgFindThread(target)); |
| 5500 | ret = s_pThreadStore->m_ThreadList.FindAndRemove(target); |
| 5501 | _ASSERTE(ret && ret == target); |
| 5502 | found = (ret != NULL); |
| 5503 | |
| 5504 | if (found) |
| 5505 | { |
| 5506 | target->ResetThreadStateNC(Thread::TSNC_ExistInThreadStore); |
| 5507 | |
| 5508 | s_pThreadStore->m_ThreadCount--; |
| 5509 | |
| 5510 | if (target->IsDead()) |
| 5511 | { |
| 5512 | s_pThreadStore->m_DeadThreadCount--; |
| 5513 | s_pThreadStore->DecrementDeadThreadCountForGCTrigger(); |
| 5514 | } |
| 5515 | |
| 5516 | // Unstarted threads are not in the Background count: |
| 5517 | if (target->IsUnstarted()) |
| 5518 | s_pThreadStore->m_UnstartedThreadCount--; |
| 5519 | else |
| 5520 | if (target->IsBackground()) |
| 5521 | s_pThreadStore->m_BackgroundThreadCount--; |
| 5522 | |
| 5523 | FastInterlockExchangeAdd( |
| 5524 | &Thread::s_threadPoolCompletionCountOverflow, |
| 5525 | target->m_threadPoolCompletionCount); |
| 5526 | |
| 5527 | _ASSERTE(s_pThreadStore->m_ThreadCount >= 0); |
| 5528 | _ASSERTE(s_pThreadStore->m_BackgroundThreadCount >= 0); |
| 5529 | _ASSERTE(s_pThreadStore->m_ThreadCount >= |
| 5530 | s_pThreadStore->m_BackgroundThreadCount); |
| 5531 | _ASSERTE(s_pThreadStore->m_ThreadCount >= |
| 5532 | s_pThreadStore->m_UnstartedThreadCount); |
| 5533 | _ASSERTE(s_pThreadStore->m_ThreadCount >= |
| 5534 | s_pThreadStore->m_DeadThreadCount); |
| 5535 | |
| 5536 | // One of the components of OtherThreadsComplete() has changed, so check whether |
| 5537 | // we should now exit the EE. |
| 5538 | CheckForEEShutdown(); |
| 5539 | } |
| 5540 | return found; |
| 5541 | } |
| 5542 | |
| 5543 | |
| 5544 | // When a thread is created as unstarted. Later it may get started, in which case |
| 5545 | // someone calls Thread::HasStarted() on that physical thread. This completes |
| 5546 | // the Setup and calls here. |
| 5547 | void ThreadStore::TransferStartedThread(Thread *thread, BOOL bRequiresTSL) |
| 5548 | { |
| 5549 | CONTRACTL { |
| 5550 | THROWS; |
| 5551 | GC_TRIGGERS; |
| 5552 | } |
| 5553 | CONTRACTL_END; |
| 5554 | |
| 5555 | _ASSERTE(GetThread() == thread); |
| 5556 | |
| 5557 | LOG((LF_SYNC, INFO3, "TransferUnstartedThread obtain lock\n" )); |
| 5558 | ThreadStoreLockHolder TSLockHolder(FALSE); |
| 5559 | if (bRequiresTSL) |
| 5560 | { |
| 5561 | TSLockHolder.Acquire(); |
| 5562 | } |
| 5563 | |
| 5564 | _ASSERTE(s_pThreadStore->DbgFindThread(thread)); |
| 5565 | _ASSERTE(thread->HasValidThreadHandle()); |
| 5566 | _ASSERTE(thread->m_State & Thread::TS_WeOwn); |
| 5567 | _ASSERTE(thread->IsUnstarted()); |
| 5568 | _ASSERTE(!thread->IsDead()); |
| 5569 | |
| 5570 | if (thread->m_State & Thread::TS_AbortRequested) |
| 5571 | { |
| 5572 | PAL_CPP_THROW(EEException *, new EEException(COR_E_THREADABORTED)); |
| 5573 | } |
| 5574 | |
| 5575 | // Of course, m_ThreadCount is already correct since it includes started and |
| 5576 | // unstarted threads. |
| 5577 | |
| 5578 | s_pThreadStore->m_UnstartedThreadCount--; |
| 5579 | |
| 5580 | // We only count background threads that have been started |
| 5581 | if (thread->IsBackground()) |
| 5582 | s_pThreadStore->m_BackgroundThreadCount++; |
| 5583 | |
| 5584 | _ASSERTE(s_pThreadStore->m_PendingThreadCount > 0); |
| 5585 | FastInterlockDecrement(&s_pThreadStore->m_PendingThreadCount); |
| 5586 | |
| 5587 | // As soon as we erase this bit, the thread becomes eligible for suspension, |
| 5588 | // stopping, interruption, etc. |
| 5589 | FastInterlockAnd((ULONG *) &thread->m_State, ~Thread::TS_Unstarted); |
| 5590 | FastInterlockOr((ULONG *) &thread->m_State, Thread::TS_LegalToJoin); |
| 5591 | |
| 5592 | // release ThreadStore Crst to avoid Crst Violation when calling HandleThreadAbort later |
| 5593 | if (bRequiresTSL) |
| 5594 | { |
| 5595 | TSLockHolder.Release(); |
| 5596 | } |
| 5597 | |
| 5598 | // One of the components of OtherThreadsComplete() has changed, so check whether |
| 5599 | // we should now exit the EE. |
| 5600 | CheckForEEShutdown(); |
| 5601 | } |
| 5602 | |
| 5603 | LONG ThreadStore::s_DeadThreadCountThresholdForGCTrigger = 0; |
| 5604 | DWORD ThreadStore::s_DeadThreadGCTriggerPeriodMilliseconds = 0; |
| 5605 | SIZE_T *ThreadStore::s_DeadThreadGenerationCounts = nullptr; |
| 5606 | |
| 5607 | void ThreadStore::IncrementDeadThreadCountForGCTrigger() |
| 5608 | { |
| 5609 | CONTRACTL { |
| 5610 | NOTHROW; |
| 5611 | GC_NOTRIGGER; |
| 5612 | } |
| 5613 | CONTRACTL_END; |
| 5614 | |
| 5615 | // Although all increments and decrements are usually done inside a lock, that is not sufficient to synchronize with a |
| 5616 | // background GC thread resetting this value, hence the interlocked operation. Ignore overflow; overflow would likely never |
| 5617 | // occur, the count is treated as unsigned, and nothing bad would happen if it were to overflow. |
| 5618 | SIZE_T count = static_cast<SIZE_T>(FastInterlockIncrement(&m_DeadThreadCountForGCTrigger)); |
| 5619 | |
| 5620 | SIZE_T countThreshold = static_cast<SIZE_T>(s_DeadThreadCountThresholdForGCTrigger); |
| 5621 | if (count < countThreshold || countThreshold == 0) |
| 5622 | { |
| 5623 | return; |
| 5624 | } |
| 5625 | |
| 5626 | IGCHeap *gcHeap = GCHeapUtilities::GetGCHeap(); |
| 5627 | if (gcHeap == nullptr) |
| 5628 | { |
| 5629 | return; |
| 5630 | } |
| 5631 | |
| 5632 | SIZE_T gcLastMilliseconds = gcHeap->GetLastGCStartTime(gcHeap->GetMaxGeneration()); |
| 5633 | SIZE_T gcNowMilliseconds = gcHeap->GetNow(); |
| 5634 | if (gcNowMilliseconds - gcLastMilliseconds < s_DeadThreadGCTriggerPeriodMilliseconds) |
| 5635 | { |
| 5636 | return; |
| 5637 | } |
| 5638 | |
| 5639 | if (!g_fEEStarted) // required for FinalizerThread::EnableFinalization() below |
| 5640 | { |
| 5641 | return; |
| 5642 | } |
| 5643 | |
| 5644 | // The GC is triggered on the finalizer thread since it's not safe to trigger it on DLL_THREAD_DETACH. |
| 5645 | // TriggerGCForDeadThreadsIfNecessary() will determine which generation of GC to trigger, and may not actually trigger a GC. |
| 5646 | // If a GC is triggered, since there would be a delay before the dead thread count is updated, clear the count and wait for |
| 5647 | // it to reach the threshold again. If a GC would not be triggered, the count is still cleared here to prevent waking up the |
| 5648 | // finalizer thread to do the work in TriggerGCForDeadThreadsIfNecessary() for every dead thread. |
| 5649 | m_DeadThreadCountForGCTrigger = 0; |
| 5650 | m_TriggerGCForDeadThreads = true; |
| 5651 | FinalizerThread::EnableFinalization(); |
| 5652 | } |
| 5653 | |
| 5654 | void ThreadStore::DecrementDeadThreadCountForGCTrigger() |
| 5655 | { |
| 5656 | CONTRACTL { |
| 5657 | NOTHROW; |
| 5658 | GC_NOTRIGGER; |
| 5659 | } |
| 5660 | CONTRACTL_END; |
| 5661 | |
| 5662 | // Although all increments and decrements are usually done inside a lock, that is not sufficient to synchronize with a |
| 5663 | // background GC thread resetting this value, hence the interlocked operation. |
| 5664 | if (FastInterlockDecrement(&m_DeadThreadCountForGCTrigger) < 0) |
| 5665 | { |
| 5666 | m_DeadThreadCountForGCTrigger = 0; |
| 5667 | } |
| 5668 | } |
| 5669 | |
| 5670 | void ThreadStore::OnMaxGenerationGCStarted() |
| 5671 | { |
| 5672 | LIMITED_METHOD_CONTRACT; |
| 5673 | |
| 5674 | // A dead thread may contribute to triggering a GC at most once. After a max-generation GC occurs, if some dead thread |
| 5675 | // objects are still reachable due to references to the thread objects, they will not contribute to triggering a GC again. |
| 5676 | // Synchronize the store with increment/decrement operations occurring on different threads, and make the change visible to |
| 5677 | // other threads in order to prevent unnecessary GC triggers. |
| 5678 | FastInterlockExchange(&m_DeadThreadCountForGCTrigger, 0); |
| 5679 | } |
| 5680 | |
| 5681 | bool ThreadStore::ShouldTriggerGCForDeadThreads() |
| 5682 | { |
| 5683 | LIMITED_METHOD_CONTRACT; |
| 5684 | |
| 5685 | return m_TriggerGCForDeadThreads; |
| 5686 | } |
| 5687 | |
| 5688 | void ThreadStore::TriggerGCForDeadThreadsIfNecessary() |
| 5689 | { |
| 5690 | CONTRACTL { |
| 5691 | THROWS; |
| 5692 | GC_TRIGGERS; |
| 5693 | } |
| 5694 | CONTRACTL_END; |
| 5695 | |
| 5696 | if (!m_TriggerGCForDeadThreads) |
| 5697 | { |
| 5698 | return; |
| 5699 | } |
| 5700 | m_TriggerGCForDeadThreads = false; |
| 5701 | |
| 5702 | if (g_fEEShutDown) |
| 5703 | { |
| 5704 | // Not safe to touch CLR state |
| 5705 | return; |
| 5706 | } |
| 5707 | |
| 5708 | unsigned gcGenerationToTrigger = 0; |
| 5709 | IGCHeap *gcHeap = GCHeapUtilities::GetGCHeap(); |
| 5710 | _ASSERTE(gcHeap != nullptr); |
| 5711 | SIZE_T generationCountThreshold = static_cast<SIZE_T>(s_DeadThreadCountThresholdForGCTrigger) / 2; |
| 5712 | unsigned maxGeneration = gcHeap->GetMaxGeneration(); |
| 5713 | if (!s_DeadThreadGenerationCounts) |
| 5714 | { |
| 5715 | // initialize this field on first use with an entry for every table. |
| 5716 | s_DeadThreadGenerationCounts = new (nothrow) SIZE_T[maxGeneration + 1]; |
| 5717 | if (!s_DeadThreadGenerationCounts) |
| 5718 | { |
| 5719 | return; |
| 5720 | } |
| 5721 | } |
| 5722 | |
| 5723 | memset(s_DeadThreadGenerationCounts, 0, sizeof(SIZE_T) * (maxGeneration + 1)); |
| 5724 | { |
| 5725 | ThreadStoreLockHolder threadStoreLockHolder; |
| 5726 | GCX_COOP(); |
| 5727 | |
| 5728 | // Determine the generation for which to trigger a GC. Iterate over all dead threads that have not yet been considered |
| 5729 | // for triggering a GC and see how many are in which generations. |
| 5730 | for (Thread *thread = ThreadStore::GetAllThreadList(NULL, Thread::TS_Dead, Thread::TS_Dead); |
| 5731 | thread != nullptr; |
| 5732 | thread = ThreadStore::GetAllThreadList(thread, Thread::TS_Dead, Thread::TS_Dead)) |
| 5733 | { |
| 5734 | if (thread->HasDeadThreadBeenConsideredForGCTrigger()) |
| 5735 | { |
| 5736 | continue; |
| 5737 | } |
| 5738 | |
| 5739 | Object *exposedObject = OBJECTREFToObject(thread->GetExposedObjectRaw()); |
| 5740 | if (exposedObject == nullptr) |
| 5741 | { |
| 5742 | continue; |
| 5743 | } |
| 5744 | |
| 5745 | unsigned exposedObjectGeneration = gcHeap->WhichGeneration(exposedObject); |
| 5746 | SIZE_T newDeadThreadGenerationCount = ++s_DeadThreadGenerationCounts[exposedObjectGeneration]; |
| 5747 | if (exposedObjectGeneration > gcGenerationToTrigger && newDeadThreadGenerationCount >= generationCountThreshold) |
| 5748 | { |
| 5749 | gcGenerationToTrigger = exposedObjectGeneration; |
| 5750 | if (gcGenerationToTrigger >= maxGeneration) |
| 5751 | { |
| 5752 | break; |
| 5753 | } |
| 5754 | } |
| 5755 | } |
| 5756 | |
| 5757 | // Make sure that enough time has elapsed since the last GC of the desired generation. We don't want to trigger GCs |
| 5758 | // based on this heuristic too often. Give it some time to let the memory pressure trigger GCs automatically, and only |
| 5759 | // if it doesn't in the given time, this heuristic may kick in to trigger a GC. |
| 5760 | SIZE_T gcLastMilliseconds = gcHeap->GetLastGCStartTime(gcGenerationToTrigger); |
| 5761 | SIZE_T gcNowMilliseconds = gcHeap->GetNow(); |
| 5762 | if (gcNowMilliseconds - gcLastMilliseconds < s_DeadThreadGCTriggerPeriodMilliseconds) |
| 5763 | { |
| 5764 | return; |
| 5765 | } |
| 5766 | |
| 5767 | // For threads whose exposed objects are in the generation of GC that will be triggered or in a lower GC generation, |
| 5768 | // mark them as having contributed to a GC trigger to prevent redundant GC triggers |
| 5769 | for (Thread *thread = ThreadStore::GetAllThreadList(NULL, Thread::TS_Dead, Thread::TS_Dead); |
| 5770 | thread != nullptr; |
| 5771 | thread = ThreadStore::GetAllThreadList(thread, Thread::TS_Dead, Thread::TS_Dead)) |
| 5772 | { |
| 5773 | if (thread->HasDeadThreadBeenConsideredForGCTrigger()) |
| 5774 | { |
| 5775 | continue; |
| 5776 | } |
| 5777 | |
| 5778 | Object *exposedObject = OBJECTREFToObject(thread->GetExposedObjectRaw()); |
| 5779 | if (exposedObject == nullptr) |
| 5780 | { |
| 5781 | continue; |
| 5782 | } |
| 5783 | |
| 5784 | if (gcGenerationToTrigger < maxGeneration && |
| 5785 | gcHeap->WhichGeneration(exposedObject) > gcGenerationToTrigger) |
| 5786 | { |
| 5787 | continue; |
| 5788 | } |
| 5789 | |
| 5790 | thread->SetHasDeadThreadBeenConsideredForGCTrigger(); |
| 5791 | } |
| 5792 | } // ThreadStoreLockHolder, GCX_COOP() |
| 5793 | |
| 5794 | GCHeapUtilities::GetGCHeap()->GarbageCollect(gcGenerationToTrigger, FALSE, collection_non_blocking); |
| 5795 | } |
| 5796 | |
| 5797 | #endif // #ifndef DACCESS_COMPILE |
| 5798 | |
| 5799 | |
| 5800 | // Access the list of threads. You must be inside a critical section, otherwise |
| 5801 | // the "cursor" thread might disappear underneath you. Pass in NULL for the |
| 5802 | // cursor to begin at the start of the list. |
| 5803 | Thread *ThreadStore::GetAllThreadList(Thread *cursor, ULONG mask, ULONG bits) |
| 5804 | { |
| 5805 | CONTRACTL { |
| 5806 | NOTHROW; |
| 5807 | GC_NOTRIGGER; |
| 5808 | SO_TOLERANT; |
| 5809 | } |
| 5810 | CONTRACTL_END; |
| 5811 | SUPPORTS_DAC; |
| 5812 | |
| 5813 | #ifndef DACCESS_COMPILE |
| 5814 | _ASSERTE((s_pThreadStore->m_Crst.GetEnterCount() > 0) || IsAtProcessExit()); |
| 5815 | #endif |
| 5816 | |
| 5817 | while (TRUE) |
| 5818 | { |
| 5819 | cursor = (cursor |
| 5820 | ? s_pThreadStore->m_ThreadList.GetNext(cursor) |
| 5821 | : s_pThreadStore->m_ThreadList.GetHead()); |
| 5822 | |
| 5823 | if (cursor == NULL) |
| 5824 | break; |
| 5825 | |
| 5826 | if ((cursor->m_State & mask) == bits) |
| 5827 | return cursor; |
| 5828 | } |
| 5829 | return NULL; |
| 5830 | } |
| 5831 | |
| 5832 | // Iterate over the threads that have been started |
| 5833 | Thread *ThreadStore::GetThreadList(Thread *cursor) |
| 5834 | { |
| 5835 | CONTRACTL { |
| 5836 | NOTHROW; |
| 5837 | GC_NOTRIGGER; |
| 5838 | SO_TOLERANT; |
| 5839 | } |
| 5840 | CONTRACTL_END; |
| 5841 | SUPPORTS_DAC; |
| 5842 | |
| 5843 | return GetAllThreadList(cursor, (Thread::TS_Unstarted | Thread::TS_Dead), 0); |
| 5844 | } |
| 5845 | |
| 5846 | //--------------------------------------------------------------------------------------- |
| 5847 | // |
| 5848 | // Grab a consistent snapshot of the thread's state, for reporting purposes only. |
| 5849 | // |
| 5850 | // Return Value: |
| 5851 | // the current state of the thread |
| 5852 | // |
| 5853 | |
| 5854 | Thread::ThreadState Thread::GetSnapshotState() |
| 5855 | { |
| 5856 | CONTRACTL { |
| 5857 | NOTHROW; |
| 5858 | GC_NOTRIGGER; |
| 5859 | SO_TOLERANT; |
| 5860 | SUPPORTS_DAC; |
| 5861 | } |
| 5862 | CONTRACTL_END; |
| 5863 | |
| 5864 | ThreadState res = m_State; |
| 5865 | |
| 5866 | if (res & TS_ReportDead) |
| 5867 | { |
| 5868 | res = (ThreadState) (res | TS_Dead); |
| 5869 | } |
| 5870 | |
| 5871 | return res; |
| 5872 | } |
| 5873 | |
| 5874 | #ifndef DACCESS_COMPILE |
| 5875 | |
| 5876 | BOOL CLREventWaitWithTry(CLREventBase *pEvent, DWORD timeout, BOOL fAlertable, DWORD *pStatus) |
| 5877 | { |
| 5878 | CONTRACTL |
| 5879 | { |
| 5880 | NOTHROW; |
| 5881 | WRAPPER(GC_TRIGGERS); |
| 5882 | } |
| 5883 | CONTRACTL_END; |
| 5884 | |
| 5885 | BOOL fLoop = TRUE; |
| 5886 | EX_TRY |
| 5887 | { |
| 5888 | *pStatus = pEvent->Wait(timeout, fAlertable); |
| 5889 | fLoop = FALSE; |
| 5890 | } |
| 5891 | EX_CATCH |
| 5892 | { |
| 5893 | } |
| 5894 | EX_END_CATCH(SwallowAllExceptions); |
| 5895 | |
| 5896 | return fLoop; |
| 5897 | } |
| 5898 | |
| 5899 | // We shut down the EE only when all the non-background threads have terminated |
| 5900 | // (unless this is an exceptional termination). So the main thread calls here to |
| 5901 | // wait before tearing down the EE. |
| 5902 | void ThreadStore::WaitForOtherThreads() |
| 5903 | { |
| 5904 | CONTRACTL { |
| 5905 | THROWS; |
| 5906 | GC_TRIGGERS; |
| 5907 | } |
| 5908 | CONTRACTL_END; |
| 5909 | |
| 5910 | CHECK_ONE_STORE(); |
| 5911 | |
| 5912 | Thread *pCurThread = GetThread(); |
| 5913 | |
| 5914 | // Regardless of whether the main thread is a background thread or not, force |
| 5915 | // it to be one. This simplifies our rules for counting non-background threads. |
| 5916 | pCurThread->SetBackground(TRUE); |
| 5917 | |
| 5918 | LOG((LF_SYNC, INFO3, "WaitForOtherThreads obtain lock\n" )); |
| 5919 | ThreadStoreLockHolder TSLockHolder(TRUE); |
| 5920 | if (!OtherThreadsComplete()) |
| 5921 | { |
| 5922 | TSLockHolder.Release(); |
| 5923 | |
| 5924 | FastInterlockOr((ULONG *) &pCurThread->m_State, Thread::TS_ReportDead); |
| 5925 | |
| 5926 | DWORD ret = WAIT_OBJECT_0; |
| 5927 | while (CLREventWaitWithTry(&m_TerminationEvent, INFINITE, TRUE, &ret)) |
| 5928 | { |
| 5929 | } |
| 5930 | _ASSERTE(ret == WAIT_OBJECT_0); |
| 5931 | } |
| 5932 | } |
| 5933 | |
| 5934 | |
| 5935 | // Every EE process can lazily create a GUID that uniquely identifies it (for |
| 5936 | // purposes of remoting). |
| 5937 | const GUID &ThreadStore::GetUniqueEEId() |
| 5938 | { |
| 5939 | CONTRACTL { |
| 5940 | NOTHROW; |
| 5941 | GC_TRIGGERS; |
| 5942 | } |
| 5943 | CONTRACTL_END; |
| 5944 | |
| 5945 | if (!m_GuidCreated) |
| 5946 | { |
| 5947 | ThreadStoreLockHolder TSLockHolder(TRUE); |
| 5948 | if (!m_GuidCreated) |
| 5949 | { |
| 5950 | HRESULT hr = ::CoCreateGuid(&m_EEGuid); |
| 5951 | |
| 5952 | _ASSERTE(SUCCEEDED(hr)); |
| 5953 | if (SUCCEEDED(hr)) |
| 5954 | m_GuidCreated = TRUE; |
| 5955 | } |
| 5956 | |
| 5957 | if (!m_GuidCreated) |
| 5958 | return IID_NULL; |
| 5959 | } |
| 5960 | return m_EEGuid; |
| 5961 | } |
| 5962 | |
| 5963 | |
| 5964 | #ifdef _DEBUG |
| 5965 | BOOL ThreadStore::DbgFindThread(Thread *target) |
| 5966 | { |
| 5967 | CONTRACTL { |
| 5968 | NOTHROW; |
| 5969 | GC_NOTRIGGER; |
| 5970 | } |
| 5971 | CONTRACTL_END; |
| 5972 | |
| 5973 | CHECK_ONE_STORE(); |
| 5974 | |
| 5975 | // Cache the current change stamp for g_TrapReturningThreads |
| 5976 | LONG chgStamp = g_trtChgStamp; |
| 5977 | STRESS_LOG3(LF_STORE, LL_INFO100, "ThreadStore::DbgFindThread - [thread=%p]. trt=%d. chgStamp=%d\n" , GetThread(), g_TrapReturningThreads.Load(), chgStamp); |
| 5978 | |
| 5979 | #if 0 // g_TrapReturningThreads debug code. |
| 5980 | int iRetry = 0; |
| 5981 | Retry: |
| 5982 | #endif // g_TrapReturningThreads debug code. |
| 5983 | BOOL found = FALSE; |
| 5984 | Thread *cur = NULL; |
| 5985 | LONG cnt = 0; |
| 5986 | LONG cntBack = 0; |
| 5987 | LONG cntUnstart = 0; |
| 5988 | LONG cntDead = 0; |
| 5989 | LONG cntReturn = 0; |
| 5990 | |
| 5991 | while ((cur = GetAllThreadList(cur, 0, 0)) != NULL) |
| 5992 | { |
| 5993 | cnt++; |
| 5994 | |
| 5995 | if (cur->IsDead()) |
| 5996 | cntDead++; |
| 5997 | |
| 5998 | // Unstarted threads do not contribute to the count of background threads |
| 5999 | if (cur->IsUnstarted()) |
| 6000 | cntUnstart++; |
| 6001 | else |
| 6002 | if (cur->IsBackground()) |
| 6003 | cntBack++; |
| 6004 | |
| 6005 | if (cur == target) |
| 6006 | found = TRUE; |
| 6007 | |
| 6008 | // Note that (DebugSuspendPending | SuspendPending) implies a count of 2. |
| 6009 | // We don't count GCPending because a single trap is held for the entire |
| 6010 | // GC, instead of counting each interesting thread. |
| 6011 | if (cur->m_State & Thread::TS_DebugSuspendPending) |
| 6012 | cntReturn++; |
| 6013 | |
| 6014 | // CoreCLR does not support user-requested thread suspension |
| 6015 | _ASSERTE(!(cur->m_State & Thread::TS_UserSuspendPending)); |
| 6016 | |
| 6017 | if (cur->m_TraceCallCount > 0) |
| 6018 | cntReturn++; |
| 6019 | |
| 6020 | if (cur->IsAbortRequested()) |
| 6021 | cntReturn++; |
| 6022 | } |
| 6023 | |
| 6024 | _ASSERTE(cnt == m_ThreadCount); |
| 6025 | _ASSERTE(cntUnstart == m_UnstartedThreadCount); |
| 6026 | _ASSERTE(cntBack == m_BackgroundThreadCount); |
| 6027 | _ASSERTE(cntDead == m_DeadThreadCount); |
| 6028 | _ASSERTE(0 <= m_PendingThreadCount); |
| 6029 | |
| 6030 | #if 0 // g_TrapReturningThreads debug code. |
| 6031 | if (cntReturn != g_TrapReturningThreads /*&& !g_fEEShutDown*/) |
| 6032 | { // If count is off, try again, to account for multiple threads. |
| 6033 | if (iRetry < 4) |
| 6034 | { |
| 6035 | // printf("Retry %d. cntReturn:%d, gReturn:%d\n", iRetry, cntReturn, g_TrapReturningThreads); |
| 6036 | ++iRetry; |
| 6037 | goto Retry; |
| 6038 | } |
| 6039 | printf("cnt:%d, Un:%d, Back:%d, Dead:%d, cntReturn:%d, TrapReturn:%d, eeShutdown:%d, threadShutdown:%d\n" , |
| 6040 | cnt,cntUnstart,cntBack,cntDead,cntReturn,g_TrapReturningThreads, g_fEEShutDown, Thread::IsAtProcessExit()); |
| 6041 | LOG((LF_CORDB, LL_INFO1000, |
| 6042 | "SUSPEND: cnt:%d, Un:%d, Back:%d, Dead:%d, cntReturn:%d, TrapReturn:%d, eeShutdown:%d, threadShutdown:%d\n" , |
| 6043 | cnt,cntUnstart,cntBack,cntDead,cntReturn,g_TrapReturningThreads, g_fEEShutDown, Thread::IsAtProcessExit()) ); |
| 6044 | |
| 6045 | //_ASSERTE(cntReturn + 2 >= g_TrapReturningThreads); |
| 6046 | } |
| 6047 | if (iRetry > 0 && iRetry < 4) |
| 6048 | { |
| 6049 | printf("%d retries to re-sync counted TrapReturn with global TrapReturn.\n" , iRetry); |
| 6050 | } |
| 6051 | #endif // g_TrapReturningThreads debug code. |
| 6052 | |
| 6053 | STRESS_LOG4(LF_STORE, LL_INFO100, "ThreadStore::DbgFindThread - [thread=%p]. trt=%d. chg=%d. cnt=%d\n" , GetThread(), g_TrapReturningThreads.Load(), g_trtChgStamp.Load(), cntReturn); |
| 6054 | |
| 6055 | // Because of race conditions and the fact that the GC places its |
| 6056 | // own count, I can't assert this precisely. But I do want to be |
| 6057 | // sure that this count isn't wandering ever higher -- with a |
| 6058 | // nasty impact on the performance of GC mode changes and method |
| 6059 | // call chaining! |
| 6060 | // |
| 6061 | // We don't bother asserting this during process exit, because |
| 6062 | // during a shutdown we will quietly terminate threads that are |
| 6063 | // being waited on. (If we aren't shutting down, we carefully |
| 6064 | // decrement our counts and alert anyone waiting for us to |
| 6065 | // return). |
| 6066 | // |
| 6067 | // Note: we don't actually assert this if |
| 6068 | // ThreadStore::TrapReturningThreads() updated g_TrapReturningThreads |
| 6069 | // between the beginning of this function and the moment of the assert. |
| 6070 | // *** The order of evaluation in the if condition is important *** |
| 6071 | _ASSERTE( |
| 6072 | (g_trtChgInFlight != 0 || (cntReturn + 2 >= g_TrapReturningThreads) || chgStamp != g_trtChgStamp) || |
| 6073 | g_fEEShutDown); |
| 6074 | |
| 6075 | return found; |
| 6076 | } |
| 6077 | |
| 6078 | #endif // _DEBUG |
| 6079 | |
| 6080 | void Thread::HandleThreadInterrupt (BOOL fWaitForADUnload) |
| 6081 | { |
| 6082 | STATIC_CONTRACT_THROWS; |
| 6083 | STATIC_CONTRACT_GC_TRIGGERS; |
| 6084 | STATIC_CONTRACT_SO_TOLERANT; |
| 6085 | |
| 6086 | // If we're waiting for shutdown, we don't want to abort/interrupt this thread |
| 6087 | if (HasThreadStateNC(Thread::TSNC_BlockedForShutdown)) |
| 6088 | return; |
| 6089 | |
| 6090 | BEGIN_SO_INTOLERANT_CODE(this); |
| 6091 | |
| 6092 | if ((m_UserInterrupt & TI_Abort) != 0) |
| 6093 | { |
| 6094 | // If the thread is waiting for AD unload to finish, and the thread is interrupted, |
| 6095 | // we can start aborting. |
| 6096 | HandleThreadAbort(fWaitForADUnload); |
| 6097 | } |
| 6098 | if ((m_UserInterrupt & TI_Interrupt) != 0) |
| 6099 | { |
| 6100 | ResetThreadState ((ThreadState)(TS_Interrupted | TS_Interruptible)); |
| 6101 | FastInterlockAnd ((DWORD*)&m_UserInterrupt, ~TI_Interrupt); |
| 6102 | |
| 6103 | COMPlusThrow(kThreadInterruptedException); |
| 6104 | } |
| 6105 | END_SO_INTOLERANT_CODE; |
| 6106 | } |
| 6107 | |
| 6108 | #ifdef _DEBUG |
| 6109 | #define MAXSTACKBYTES (2 * GetOsPageSize()) |
| 6110 | void CleanStackForFastGCStress () |
| 6111 | { |
| 6112 | CONTRACTL { |
| 6113 | NOTHROW; |
| 6114 | GC_NOTRIGGER; |
| 6115 | SO_TOLERANT; |
| 6116 | } |
| 6117 | CONTRACTL_END; |
| 6118 | |
| 6119 | PVOID StackLimit = ClrTeb::GetStackLimit(); |
| 6120 | size_t nBytes = (size_t)&nBytes - (size_t)StackLimit; |
| 6121 | nBytes &= ~sizeof (size_t); |
| 6122 | if (nBytes > MAXSTACKBYTES) { |
| 6123 | nBytes = MAXSTACKBYTES; |
| 6124 | } |
| 6125 | size_t* buffer = (size_t*) _alloca (nBytes); |
| 6126 | memset(buffer, 0, nBytes); |
| 6127 | GetThread()->m_pCleanedStackBase = &nBytes; |
| 6128 | } |
| 6129 | |
| 6130 | void Thread::ObjectRefFlush(Thread* thread) |
| 6131 | { |
| 6132 | |
| 6133 | BEGIN_PRESERVE_LAST_ERROR; |
| 6134 | |
| 6135 | // The constructor and destructor of AutoCleanupSONotMainlineHolder (allocated by SO_NOT_MAINLINE_FUNCTION below) |
| 6136 | // may trash the last error, so we need to save and restore last error here. Also, we need to add a scope here |
| 6137 | // because we can't let the destructor run after we call SetLastError(). |
| 6138 | { |
| 6139 | // this is debug only code, so no need to validate |
| 6140 | STATIC_CONTRACT_NOTHROW; |
| 6141 | STATIC_CONTRACT_GC_NOTRIGGER; |
| 6142 | STATIC_CONTRACT_ENTRY_POINT; |
| 6143 | |
| 6144 | _ASSERTE(thread->PreemptiveGCDisabled()); // Should have been in managed code |
| 6145 | memset(thread->dangerousObjRefs, 0, sizeof(thread->dangerousObjRefs)); |
| 6146 | thread->m_allObjRefEntriesBad = FALSE; |
| 6147 | CLEANSTACKFORFASTGCSTRESS (); |
| 6148 | } |
| 6149 | |
| 6150 | END_PRESERVE_LAST_ERROR; |
| 6151 | } |
| 6152 | #endif |
| 6153 | |
| 6154 | #if defined(STRESS_HEAP) |
| 6155 | |
| 6156 | PtrHashMap *g_pUniqueStackMap = NULL; |
| 6157 | Crst *g_pUniqueStackCrst = NULL; |
| 6158 | |
| 6159 | #define UniqueStackDepth 8 |
| 6160 | |
| 6161 | BOOL StackCompare (UPTR val1, UPTR val2) |
| 6162 | { |
| 6163 | CONTRACTL { |
| 6164 | NOTHROW; |
| 6165 | GC_NOTRIGGER; |
| 6166 | } |
| 6167 | CONTRACTL_END; |
| 6168 | |
| 6169 | size_t *p1 = (size_t *)(val1 << 1); |
| 6170 | size_t *p2 = (size_t *)val2; |
| 6171 | if (p1[0] != p2[0]) { |
| 6172 | return FALSE; |
| 6173 | } |
| 6174 | size_t nElem = p1[0]; |
| 6175 | if (nElem >= UniqueStackDepth) { |
| 6176 | nElem = UniqueStackDepth; |
| 6177 | } |
| 6178 | p1 ++; |
| 6179 | p2 ++; |
| 6180 | |
| 6181 | for (size_t n = 0; n < nElem; n ++) { |
| 6182 | if (p1[n] != p2[n]) { |
| 6183 | return FALSE; |
| 6184 | } |
| 6185 | } |
| 6186 | |
| 6187 | return TRUE; |
| 6188 | } |
| 6189 | |
| 6190 | void UniqueStackSetupMap() |
| 6191 | { |
| 6192 | WRAPPER_NO_CONTRACT; |
| 6193 | |
| 6194 | if (g_pUniqueStackCrst == NULL) |
| 6195 | { |
| 6196 | Crst *Attempt = new Crst ( |
| 6197 | CrstUniqueStack, |
| 6198 | CrstFlags(CRST_REENTRANCY | CRST_UNSAFE_ANYMODE)); |
| 6199 | |
| 6200 | if (FastInterlockCompareExchangePointer(&g_pUniqueStackCrst, |
| 6201 | Attempt, |
| 6202 | NULL) != NULL) |
| 6203 | { |
| 6204 | // We lost the race |
| 6205 | delete Attempt; |
| 6206 | } |
| 6207 | } |
| 6208 | |
| 6209 | // Now we have a Crst we can use to synchronize the remainder of the init. |
| 6210 | if (g_pUniqueStackMap == NULL) |
| 6211 | { |
| 6212 | CrstHolder ch(g_pUniqueStackCrst); |
| 6213 | |
| 6214 | if (g_pUniqueStackMap == NULL) |
| 6215 | { |
| 6216 | PtrHashMap *map = new (SystemDomain::GetGlobalLoaderAllocator()->GetLowFrequencyHeap()) PtrHashMap (); |
| 6217 | LockOwner lock = {g_pUniqueStackCrst, IsOwnerOfCrst}; |
| 6218 | map->Init (256, StackCompare, TRUE, &lock); |
| 6219 | g_pUniqueStackMap = map; |
| 6220 | } |
| 6221 | } |
| 6222 | } |
| 6223 | |
| 6224 | BOOL StartUniqueStackMapHelper() |
| 6225 | { |
| 6226 | CONTRACTL |
| 6227 | { |
| 6228 | NOTHROW; |
| 6229 | GC_NOTRIGGER; |
| 6230 | } |
| 6231 | CONTRACTL_END; |
| 6232 | |
| 6233 | BOOL fOK = TRUE; |
| 6234 | EX_TRY |
| 6235 | { |
| 6236 | if (g_pUniqueStackMap == NULL) |
| 6237 | { |
| 6238 | UniqueStackSetupMap(); |
| 6239 | } |
| 6240 | } |
| 6241 | EX_CATCH |
| 6242 | { |
| 6243 | fOK = FALSE; |
| 6244 | } |
| 6245 | EX_END_CATCH(SwallowAllExceptions); |
| 6246 | |
| 6247 | return fOK; |
| 6248 | } |
| 6249 | |
| 6250 | BOOL StartUniqueStackMap () |
| 6251 | { |
| 6252 | CONTRACTL |
| 6253 | { |
| 6254 | NOTHROW; |
| 6255 | GC_NOTRIGGER; |
| 6256 | } |
| 6257 | CONTRACTL_END; |
| 6258 | |
| 6259 | return StartUniqueStackMapHelper(); |
| 6260 | } |
| 6261 | |
| 6262 | #ifndef FEATURE_PAL |
| 6263 | |
| 6264 | size_t UpdateStackHash(size_t hash, size_t retAddr) |
| 6265 | { |
| 6266 | return ((hash << 3) + hash) ^ retAddr; |
| 6267 | } |
| 6268 | |
| 6269 | /***********************************************************************/ |
| 6270 | size_t getStackHash(size_t* stackTrace, size_t* stackTop, size_t* stackStop, size_t stackBase, size_t stackLimit) |
| 6271 | { |
| 6272 | CONTRACTL { |
| 6273 | NOTHROW; |
| 6274 | GC_NOTRIGGER; |
| 6275 | } |
| 6276 | CONTRACTL_END; |
| 6277 | |
| 6278 | // return a hash of every return address found between 'stackTop' (the lowest address) |
| 6279 | // and 'stackStop' (the highest address) |
| 6280 | |
| 6281 | size_t hash = 0; |
| 6282 | int idx = 0; |
| 6283 | |
| 6284 | #ifdef _TARGET_X86_ |
| 6285 | |
| 6286 | static size_t moduleBase = (size_t) -1; |
| 6287 | static size_t moduleTop = (size_t) -1; |
| 6288 | if (moduleTop == (size_t) -1) |
| 6289 | { |
| 6290 | MEMORY_BASIC_INFORMATION mbi; |
| 6291 | |
| 6292 | if (ClrVirtualQuery(getStackHash, &mbi, sizeof(mbi))) |
| 6293 | { |
| 6294 | moduleBase = (size_t)mbi.AllocationBase; |
| 6295 | moduleTop = (size_t)mbi.BaseAddress + mbi.RegionSize; |
| 6296 | } |
| 6297 | else |
| 6298 | { |
| 6299 | // way bad error, probably just assert and exit |
| 6300 | _ASSERTE (!"ClrVirtualQuery failed" ); |
| 6301 | moduleBase = 0; |
| 6302 | moduleTop = 0; |
| 6303 | } |
| 6304 | } |
| 6305 | |
| 6306 | while (stackTop < stackStop) |
| 6307 | { |
| 6308 | // Clean out things that point to stack, as those can't be return addresses |
| 6309 | if (*stackTop > moduleBase && *stackTop < moduleTop) |
| 6310 | { |
| 6311 | TADDR dummy; |
| 6312 | |
| 6313 | if (isRetAddr((TADDR)*stackTop, &dummy)) |
| 6314 | { |
| 6315 | hash = UpdateStackHash(hash, *stackTop); |
| 6316 | |
| 6317 | // If there is no jitted code on the stack, then just use the |
| 6318 | // top 16 frames as the context. |
| 6319 | idx++; |
| 6320 | if (idx <= UniqueStackDepth) |
| 6321 | { |
| 6322 | stackTrace [idx] = *stackTop; |
| 6323 | } |
| 6324 | } |
| 6325 | } |
| 6326 | stackTop++; |
| 6327 | } |
| 6328 | |
| 6329 | #else // _TARGET_X86_ |
| 6330 | |
| 6331 | CONTEXT ctx; |
| 6332 | ClrCaptureContext(&ctx); |
| 6333 | |
| 6334 | UINT_PTR uControlPc = (UINT_PTR)GetIP(&ctx); |
| 6335 | UINT_PTR uImageBase; |
| 6336 | |
| 6337 | UINT_PTR uPrevControlPc = uControlPc; |
| 6338 | |
| 6339 | for (;;) |
| 6340 | { |
| 6341 | RtlLookupFunctionEntry(uControlPc, |
| 6342 | ARM_ONLY((DWORD*))(&uImageBase), |
| 6343 | NULL |
| 6344 | ); |
| 6345 | |
| 6346 | if (((UINT_PTR)g_pMSCorEE) != uImageBase) |
| 6347 | { |
| 6348 | break; |
| 6349 | } |
| 6350 | |
| 6351 | uControlPc = Thread::VirtualUnwindCallFrame(&ctx); |
| 6352 | |
| 6353 | UINT_PTR uRetAddrForHash = uControlPc; |
| 6354 | |
| 6355 | if (uPrevControlPc == uControlPc) |
| 6356 | { |
| 6357 | // This is a special case when we fail to acquire the loader lock |
| 6358 | // in RtlLookupFunctionEntry(), which then returns false. The end |
| 6359 | // result is that we cannot go any further on the stack and |
| 6360 | // we will loop infinitely (because the owner of the loader lock |
| 6361 | // is blocked on us). |
| 6362 | hash = 0; |
| 6363 | break; |
| 6364 | } |
| 6365 | else |
| 6366 | { |
| 6367 | uPrevControlPc = uControlPc; |
| 6368 | } |
| 6369 | |
| 6370 | hash = UpdateStackHash(hash, uRetAddrForHash); |
| 6371 | |
| 6372 | // If there is no jitted code on the stack, then just use the |
| 6373 | // top 16 frames as the context. |
| 6374 | idx++; |
| 6375 | if (idx <= UniqueStackDepth) |
| 6376 | { |
| 6377 | stackTrace [idx] = uRetAddrForHash; |
| 6378 | } |
| 6379 | } |
| 6380 | #endif // _TARGET_X86_ |
| 6381 | |
| 6382 | stackTrace [0] = idx; |
| 6383 | |
| 6384 | return(hash); |
| 6385 | } |
| 6386 | |
| 6387 | void UniqueStackHelper(size_t stackTraceHash, size_t *stackTrace) |
| 6388 | { |
| 6389 | CONTRACTL { |
| 6390 | NOTHROW; |
| 6391 | GC_NOTRIGGER; |
| 6392 | } |
| 6393 | CONTRACTL_END; |
| 6394 | |
| 6395 | EX_TRY { |
| 6396 | size_t nElem = stackTrace[0]; |
| 6397 | if (nElem >= UniqueStackDepth) { |
| 6398 | nElem = UniqueStackDepth; |
| 6399 | } |
| 6400 | AllocMemHolder<size_t> stackTraceInMap = SystemDomain::GetGlobalLoaderAllocator()->GetLowFrequencyHeap()->AllocMem(S_SIZE_T(sizeof(size_t *)) * (S_SIZE_T(nElem) + S_SIZE_T(1))); |
| 6401 | memcpy (stackTraceInMap, stackTrace, sizeof(size_t *) * (nElem + 1)); |
| 6402 | g_pUniqueStackMap->InsertValue(stackTraceHash, stackTraceInMap); |
| 6403 | stackTraceInMap.SuppressRelease(); |
| 6404 | } |
| 6405 | EX_CATCH |
| 6406 | { |
| 6407 | } |
| 6408 | EX_END_CATCH(SwallowAllExceptions); |
| 6409 | } |
| 6410 | |
| 6411 | /***********************************************************************/ |
| 6412 | /* returns true if this stack has not been seen before, useful for |
| 6413 | running tests only once per stack trace. */ |
| 6414 | |
| 6415 | BOOL Thread::UniqueStack(void* stackStart) |
| 6416 | { |
| 6417 | CONTRACTL |
| 6418 | { |
| 6419 | NOTHROW; |
| 6420 | GC_NOTRIGGER; |
| 6421 | SO_NOT_MAINLINE; |
| 6422 | } |
| 6423 | CONTRACTL_END; |
| 6424 | |
| 6425 | // If we where not told where to start, start at the caller of UniqueStack |
| 6426 | if (stackStart == 0) |
| 6427 | { |
| 6428 | stackStart = &stackStart; |
| 6429 | } |
| 6430 | |
| 6431 | if (g_pUniqueStackMap == NULL) |
| 6432 | { |
| 6433 | if (!StartUniqueStackMap ()) |
| 6434 | { |
| 6435 | // We fail to initialize unique stack map due to OOM. |
| 6436 | // Let's say the stack is unique. |
| 6437 | return TRUE; |
| 6438 | } |
| 6439 | } |
| 6440 | |
| 6441 | size_t stackTrace[UniqueStackDepth+1] = {0}; |
| 6442 | |
| 6443 | // stackTraceHash represents a hash of entire stack at the time we make the call, |
| 6444 | // We insure at least GC per unique stackTrace. What information is contained in |
| 6445 | // 'stackTrace' is somewhat arbitrary. We choose it to mean all functions live |
| 6446 | // on the stack up to the first jitted function. |
| 6447 | |
| 6448 | size_t stackTraceHash; |
| 6449 | Thread* pThread = GetThread(); |
| 6450 | |
| 6451 | |
| 6452 | void* stopPoint = pThread->m_CacheStackBase; |
| 6453 | |
| 6454 | #ifdef _TARGET_X86_ |
| 6455 | // Find the stop point (most jitted function) |
| 6456 | Frame* pFrame = pThread->GetFrame(); |
| 6457 | for(;;) |
| 6458 | { |
| 6459 | // skip GC frames |
| 6460 | if (pFrame == 0 || pFrame == (Frame*) -1) |
| 6461 | break; |
| 6462 | |
| 6463 | pFrame->GetFunction(); // This insures that helper frames are inited |
| 6464 | |
| 6465 | if (pFrame->GetReturnAddress() != 0) |
| 6466 | { |
| 6467 | stopPoint = pFrame; |
| 6468 | break; |
| 6469 | } |
| 6470 | pFrame = pFrame->Next(); |
| 6471 | } |
| 6472 | #endif // _TARGET_X86_ |
| 6473 | |
| 6474 | // Get hash of all return addresses between here an the top most jitted function |
| 6475 | stackTraceHash = getStackHash (stackTrace, (size_t*) stackStart, (size_t*) stopPoint, |
| 6476 | size_t(pThread->m_CacheStackBase), size_t(pThread->m_CacheStackLimit)); |
| 6477 | |
| 6478 | if (stackTraceHash == 0 || |
| 6479 | g_pUniqueStackMap->LookupValue (stackTraceHash, stackTrace) != (LPVOID)INVALIDENTRY) |
| 6480 | { |
| 6481 | return FALSE; |
| 6482 | } |
| 6483 | BOOL fUnique = FALSE; |
| 6484 | |
| 6485 | { |
| 6486 | CrstHolder ch(g_pUniqueStackCrst); |
| 6487 | #ifdef _DEBUG |
| 6488 | if (GetThread ()) |
| 6489 | GetThread ()->m_bUniqueStacking = TRUE; |
| 6490 | #endif |
| 6491 | if (g_pUniqueStackMap->LookupValue (stackTraceHash, stackTrace) != (LPVOID)INVALIDENTRY) |
| 6492 | { |
| 6493 | fUnique = FALSE; |
| 6494 | } |
| 6495 | else |
| 6496 | { |
| 6497 | fUnique = TRUE; |
| 6498 | FAULT_NOT_FATAL(); |
| 6499 | UniqueStackHelper(stackTraceHash, stackTrace); |
| 6500 | } |
| 6501 | #ifdef _DEBUG |
| 6502 | if (GetThread ()) |
| 6503 | GetThread ()->m_bUniqueStacking = FALSE; |
| 6504 | #endif |
| 6505 | } |
| 6506 | |
| 6507 | #ifdef _DEBUG |
| 6508 | static int fCheckStack = -1; |
| 6509 | if (fCheckStack == -1) |
| 6510 | { |
| 6511 | fCheckStack = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_FastGCCheckStack); |
| 6512 | } |
| 6513 | if (fCheckStack && pThread->m_pCleanedStackBase > stackTrace |
| 6514 | && pThread->m_pCleanedStackBase - stackTrace > (int) MAXSTACKBYTES) |
| 6515 | { |
| 6516 | _ASSERTE (!"Garbage on stack" ); |
| 6517 | } |
| 6518 | #endif |
| 6519 | return fUnique; |
| 6520 | } |
| 6521 | |
| 6522 | #else // !FEATURE_PAL |
| 6523 | |
| 6524 | BOOL Thread::UniqueStack(void* stackStart) |
| 6525 | { |
| 6526 | return FALSE; |
| 6527 | } |
| 6528 | |
| 6529 | #endif // !FEATURE_PAL |
| 6530 | |
| 6531 | #endif // STRESS_HEAP |
| 6532 | |
| 6533 | |
| 6534 | /* |
| 6535 | * GetStackLowerBound |
| 6536 | * |
| 6537 | * Returns the lower bound of the stack space. Note -- the practical bound is some number of pages greater than |
| 6538 | * this value -- those pages are reserved for a stack overflow exception processing. |
| 6539 | * |
| 6540 | * Parameters: |
| 6541 | * None |
| 6542 | * |
| 6543 | * Returns: |
| 6544 | * address of the lower bound of the threads's stack. |
| 6545 | */ |
| 6546 | void * Thread::GetStackLowerBound() |
| 6547 | { |
| 6548 | // Called during fiber switch. Can not have non-static contract. |
| 6549 | STATIC_CONTRACT_NOTHROW; |
| 6550 | STATIC_CONTRACT_GC_NOTRIGGER; |
| 6551 | STATIC_CONTRACT_SO_TOLERANT; |
| 6552 | |
| 6553 | #ifndef FEATURE_PAL |
| 6554 | MEMORY_BASIC_INFORMATION lowerBoundMemInfo; |
| 6555 | SIZE_T dwRes; |
| 6556 | |
| 6557 | dwRes = ClrVirtualQuery((const void *)&lowerBoundMemInfo, &lowerBoundMemInfo, sizeof(MEMORY_BASIC_INFORMATION)); |
| 6558 | |
| 6559 | if (sizeof(MEMORY_BASIC_INFORMATION) == dwRes) |
| 6560 | { |
| 6561 | return (void *)(lowerBoundMemInfo.AllocationBase); |
| 6562 | } |
| 6563 | else |
| 6564 | { |
| 6565 | return NULL; |
| 6566 | } |
| 6567 | #else // !FEATURE_PAL |
| 6568 | return PAL_GetStackLimit(); |
| 6569 | #endif // !FEATURE_PAL |
| 6570 | } |
| 6571 | |
| 6572 | /* |
| 6573 | * GetStackUpperBound |
| 6574 | * |
| 6575 | * Return the upper bound of the thread's stack space. |
| 6576 | * |
| 6577 | * Parameters: |
| 6578 | * None |
| 6579 | * |
| 6580 | * Returns: |
| 6581 | * address of the base of the threads's stack. |
| 6582 | */ |
| 6583 | void *Thread::GetStackUpperBound() |
| 6584 | { |
| 6585 | // Called during fiber switch. Can not have non-static contract. |
| 6586 | STATIC_CONTRACT_NOTHROW; |
| 6587 | STATIC_CONTRACT_GC_NOTRIGGER; |
| 6588 | STATIC_CONTRACT_SO_TOLERANT; |
| 6589 | |
| 6590 | return ClrTeb::GetStackBase(); |
| 6591 | } |
| 6592 | |
| 6593 | BOOL Thread::SetStackLimits(SetStackLimitScope scope) |
| 6594 | { |
| 6595 | CONTRACTL |
| 6596 | { |
| 6597 | NOTHROW; |
| 6598 | GC_NOTRIGGER; |
| 6599 | SO_TOLERANT; |
| 6600 | } |
| 6601 | CONTRACTL_END; |
| 6602 | |
| 6603 | if (scope == fAll) |
| 6604 | { |
| 6605 | m_CacheStackBase = GetStackUpperBound(); |
| 6606 | m_CacheStackLimit = GetStackLowerBound(); |
| 6607 | if (m_CacheStackLimit == NULL) |
| 6608 | { |
| 6609 | _ASSERTE(!"Failed to set stack limits" ); |
| 6610 | return FALSE; |
| 6611 | } |
| 6612 | |
| 6613 | // Compute the limit used by EnsureSufficientExecutionStack and cache it on the thread. This minimum stack size should |
| 6614 | // be sufficient to allow a typical non-recursive call chain to execute, including potential exception handling and |
| 6615 | // garbage collection. Used for probing for available stack space through RuntimeImports.EnsureSufficientExecutionStack, |
| 6616 | // among other things. |
| 6617 | #ifdef BIT64 |
| 6618 | const UINT_PTR MinExecutionStackSize = 128 * 1024; |
| 6619 | #else // !BIT64 |
| 6620 | const UINT_PTR MinExecutionStackSize = 64 * 1024; |
| 6621 | #endif // BIT64 |
| 6622 | _ASSERTE(m_CacheStackBase >= m_CacheStackLimit); |
| 6623 | if ((reinterpret_cast<UINT_PTR>(m_CacheStackBase) - reinterpret_cast<UINT_PTR>(m_CacheStackLimit)) > |
| 6624 | MinExecutionStackSize) |
| 6625 | { |
| 6626 | m_CacheStackSufficientExecutionLimit = reinterpret_cast<UINT_PTR>(m_CacheStackLimit) + MinExecutionStackSize; |
| 6627 | } |
| 6628 | else |
| 6629 | { |
| 6630 | m_CacheStackSufficientExecutionLimit = reinterpret_cast<UINT_PTR>(m_CacheStackBase); |
| 6631 | } |
| 6632 | } |
| 6633 | |
| 6634 | // Ensure that we've setup the stack guarantee properly before we cache the stack limits |
| 6635 | // as they depend upon the stack guarantee. |
| 6636 | if (FAILED(CLRSetThreadStackGuarantee())) |
| 6637 | return FALSE; |
| 6638 | |
| 6639 | // Cache the last stack addresses that we are allowed to touch. We throw a stack overflow |
| 6640 | // if we cross that line. Note that we ignore any subsequent calls to STSG for Whidbey until |
| 6641 | // we see an exception and recache the values. We use the LastAllowableAddresses to |
| 6642 | // determine if we've taken a hard SO and the ProbeLimits on the probes themselves. |
| 6643 | |
| 6644 | m_LastAllowableStackAddress = GetLastNormalStackAddress(); |
| 6645 | |
| 6646 | if (g_pConfig->ProbeForStackOverflow()) |
| 6647 | { |
| 6648 | m_ProbeLimit = m_LastAllowableStackAddress; |
| 6649 | } |
| 6650 | else |
| 6651 | { |
| 6652 | // If we have stack probing disabled, set the probeLimit to 0 so that all probes will pass. This |
| 6653 | // way we don't have to do an extra check in the probe code. |
| 6654 | m_ProbeLimit = 0; |
| 6655 | } |
| 6656 | |
| 6657 | return TRUE; |
| 6658 | } |
| 6659 | |
| 6660 | //--------------------------------------------------------------------------------------------- |
| 6661 | // Routines we use to managed a thread's stack, for fiber switching or stack overflow purposes. |
| 6662 | //--------------------------------------------------------------------------------------------- |
| 6663 | |
| 6664 | HRESULT Thread::CLRSetThreadStackGuarantee(SetThreadStackGuaranteeScope fScope) |
| 6665 | { |
| 6666 | CONTRACTL |
| 6667 | { |
| 6668 | WRAPPER(NOTHROW); |
| 6669 | GC_NOTRIGGER; |
| 6670 | SO_TOLERANT; |
| 6671 | } |
| 6672 | CONTRACTL_END; |
| 6673 | |
| 6674 | #ifndef FEATURE_PAL |
| 6675 | // TODO: we need to measure what the stack usage needs are at the limits in the hosted scenario for host callbacks |
| 6676 | |
| 6677 | if (Thread::IsSetThreadStackGuaranteeInUse(fScope)) |
| 6678 | { |
| 6679 | // <TODO> Tune this as needed </TODO> |
| 6680 | ULONG uGuardSize = SIZEOF_DEFAULT_STACK_GUARANTEE; |
| 6681 | int EXTRA_PAGES = 0; |
| 6682 | #if defined(_WIN64) |
| 6683 | // Free Build EH Stack Stats: |
| 6684 | // -------------------------------- |
| 6685 | // currently the maximum stack usage we'll face while handling a SO includes: |
| 6686 | // 4.3k for the OS (kernel32!RaiseException, Rtl EH dispatch code, RtlUnwindEx [second pass]) |
| 6687 | // 1.2k for the CLR EH setup (NakedThrowHelper*) |
| 6688 | // 4.5k for other heavy CLR stack creations (2x CONTEXT, 1x REGDISPLAY) |
| 6689 | // ~1.0k for other misc CLR stack allocations |
| 6690 | // ----- |
| 6691 | // 11.0k --> ~2.75 pages for CLR SO EH dispatch |
| 6692 | // |
| 6693 | // -plus we might need some more for debugger EH dispatch, Watson, etc... |
| 6694 | // -also need to take into account that we can lose up to 1 page of the guard region |
| 6695 | // -additionally, we need to provide some region to hosts to allow for lock acquisition in a hosted scenario |
| 6696 | // |
| 6697 | EXTRA_PAGES = 3; |
| 6698 | INDEBUG(EXTRA_PAGES += 1); |
| 6699 | |
| 6700 | int ThreadGuardPages = CLRConfig::GetConfigValue(CLRConfig::EXTERNAL_ThreadGuardPages); |
| 6701 | if (ThreadGuardPages == 0) |
| 6702 | { |
| 6703 | uGuardSize += (EXTRA_PAGES * GetOsPageSize()); |
| 6704 | } |
| 6705 | else |
| 6706 | { |
| 6707 | uGuardSize += (ThreadGuardPages * GetOsPageSize()); |
| 6708 | } |
| 6709 | |
| 6710 | #else // _WIN64 |
| 6711 | #ifdef _DEBUG |
| 6712 | uGuardSize += (1 * GetOsPageSize()); // one extra page for debug infrastructure |
| 6713 | #endif // _DEBUG |
| 6714 | #endif // _WIN64 |
| 6715 | |
| 6716 | LOG((LF_EH, LL_INFO10000, "STACKOVERFLOW: setting thread stack guarantee to 0x%x\n" , uGuardSize)); |
| 6717 | |
| 6718 | if (!::SetThreadStackGuarantee(&uGuardSize)) |
| 6719 | { |
| 6720 | return HRESULT_FROM_GetLastErrorNA(); |
| 6721 | } |
| 6722 | } |
| 6723 | |
| 6724 | #endif // !FEATURE_PAL |
| 6725 | |
| 6726 | return S_OK; |
| 6727 | } |
| 6728 | |
| 6729 | |
| 6730 | /* |
| 6731 | * GetLastNormalStackAddress |
| 6732 | * |
| 6733 | * GetLastNormalStackAddress returns the last stack address before the guard |
| 6734 | * region of a thread. This is the last address that one could write to before |
| 6735 | * a stack overflow occurs. |
| 6736 | * |
| 6737 | * Parameters: |
| 6738 | * StackLimit - the base of the stack allocation |
| 6739 | * |
| 6740 | * Returns: |
| 6741 | * Address of the first page of the guard region. |
| 6742 | */ |
| 6743 | UINT_PTR Thread::GetLastNormalStackAddress(UINT_PTR StackLimit) |
| 6744 | { |
| 6745 | CONTRACTL |
| 6746 | { |
| 6747 | NOTHROW; |
| 6748 | GC_NOTRIGGER; |
| 6749 | SO_TOLERANT; |
| 6750 | } |
| 6751 | CONTRACTL_END; |
| 6752 | |
| 6753 | UINT_PTR cbStackGuarantee = GetStackGuarantee(); |
| 6754 | |
| 6755 | // Here we take the "hard guard region size", the "stack guarantee" and the "fault page" and add them |
| 6756 | // all together. Note that the "fault page" is the reason for the extra GetOsPageSize() below. The OS |
| 6757 | // will guarantee us a certain amount of stack remaining after a stack overflow. This is called the |
| 6758 | // "stack guarantee". But to do this, it has to fault on the page before that region as the app is |
| 6759 | // allowed to fault at the very end of that page. So, as a result, the last normal stack address is |
| 6760 | // one page sooner. |
| 6761 | return StackLimit + (cbStackGuarantee |
| 6762 | #ifndef FEATURE_PAL |
| 6763 | + GetOsPageSize() |
| 6764 | #endif // !FEATURE_PAL |
| 6765 | + HARD_GUARD_REGION_SIZE); |
| 6766 | } |
| 6767 | |
| 6768 | #ifdef _DEBUG |
| 6769 | |
| 6770 | static void DebugLogMBIFlags(UINT uState, UINT uProtect) |
| 6771 | { |
| 6772 | CONTRACTL |
| 6773 | { |
| 6774 | NOTHROW; |
| 6775 | GC_NOTRIGGER; |
| 6776 | CANNOT_TAKE_LOCK; |
| 6777 | } |
| 6778 | CONTRACTL_END; |
| 6779 | |
| 6780 | #ifndef FEATURE_PAL |
| 6781 | |
| 6782 | #define LOG_FLAG(flags, name) \ |
| 6783 | if (flags & name) \ |
| 6784 | { \ |
| 6785 | LOG((LF_EH, LL_INFO1000, "" #name " ")); \ |
| 6786 | } \ |
| 6787 | |
| 6788 | if (uState) |
| 6789 | { |
| 6790 | LOG((LF_EH, LL_INFO1000, "State: " )); |
| 6791 | |
| 6792 | LOG_FLAG(uState, MEM_COMMIT); |
| 6793 | LOG_FLAG(uState, MEM_RESERVE); |
| 6794 | LOG_FLAG(uState, MEM_DECOMMIT); |
| 6795 | LOG_FLAG(uState, MEM_RELEASE); |
| 6796 | LOG_FLAG(uState, MEM_FREE); |
| 6797 | LOG_FLAG(uState, MEM_PRIVATE); |
| 6798 | LOG_FLAG(uState, MEM_MAPPED); |
| 6799 | LOG_FLAG(uState, MEM_RESET); |
| 6800 | LOG_FLAG(uState, MEM_TOP_DOWN); |
| 6801 | LOG_FLAG(uState, MEM_WRITE_WATCH); |
| 6802 | LOG_FLAG(uState, MEM_PHYSICAL); |
| 6803 | LOG_FLAG(uState, MEM_LARGE_PAGES); |
| 6804 | LOG_FLAG(uState, MEM_4MB_PAGES); |
| 6805 | } |
| 6806 | |
| 6807 | if (uProtect) |
| 6808 | { |
| 6809 | LOG((LF_EH, LL_INFO1000, "Protect: " )); |
| 6810 | |
| 6811 | LOG_FLAG(uProtect, PAGE_NOACCESS); |
| 6812 | LOG_FLAG(uProtect, PAGE_READONLY); |
| 6813 | LOG_FLAG(uProtect, PAGE_READWRITE); |
| 6814 | LOG_FLAG(uProtect, PAGE_WRITECOPY); |
| 6815 | LOG_FLAG(uProtect, PAGE_EXECUTE); |
| 6816 | LOG_FLAG(uProtect, PAGE_EXECUTE_READ); |
| 6817 | LOG_FLAG(uProtect, PAGE_EXECUTE_READWRITE); |
| 6818 | LOG_FLAG(uProtect, PAGE_EXECUTE_WRITECOPY); |
| 6819 | LOG_FLAG(uProtect, PAGE_GUARD); |
| 6820 | LOG_FLAG(uProtect, PAGE_NOCACHE); |
| 6821 | LOG_FLAG(uProtect, PAGE_WRITECOMBINE); |
| 6822 | } |
| 6823 | |
| 6824 | #undef LOG_FLAG |
| 6825 | #endif // !FEATURE_PAL |
| 6826 | } |
| 6827 | |
| 6828 | |
| 6829 | static void DebugLogStackRegionMBIs(UINT_PTR uLowAddress, UINT_PTR uHighAddress) |
| 6830 | { |
| 6831 | CONTRACTL |
| 6832 | { |
| 6833 | NOTHROW; |
| 6834 | GC_NOTRIGGER; |
| 6835 | SO_INTOLERANT; |
| 6836 | CANNOT_TAKE_LOCK; |
| 6837 | } |
| 6838 | CONTRACTL_END; |
| 6839 | |
| 6840 | MEMORY_BASIC_INFORMATION meminfo; |
| 6841 | UINT_PTR uStartOfThisRegion = uLowAddress; |
| 6842 | |
| 6843 | LOG((LF_EH, LL_INFO1000, "----------------------------------------------------------------------\n" )); |
| 6844 | |
| 6845 | while (uStartOfThisRegion < uHighAddress) |
| 6846 | { |
| 6847 | SIZE_T res = ClrVirtualQuery((const void *)uStartOfThisRegion, &meminfo, sizeof(meminfo)); |
| 6848 | |
| 6849 | if (sizeof(meminfo) != res) |
| 6850 | { |
| 6851 | LOG((LF_EH, LL_INFO1000, "VirtualQuery failed on %p\n" , uStartOfThisRegion)); |
| 6852 | break; |
| 6853 | } |
| 6854 | |
| 6855 | UINT_PTR uStartOfNextRegion = uStartOfThisRegion + meminfo.RegionSize; |
| 6856 | |
| 6857 | if (uStartOfNextRegion > uHighAddress) |
| 6858 | { |
| 6859 | uStartOfNextRegion = uHighAddress; |
| 6860 | } |
| 6861 | |
| 6862 | UINT_PTR uRegionSize = uStartOfNextRegion - uStartOfThisRegion; |
| 6863 | |
| 6864 | LOG((LF_EH, LL_INFO1000, "0x%p -> 0x%p (%d pg) " , uStartOfThisRegion, uStartOfNextRegion - 1, uRegionSize / GetOsPageSize())); |
| 6865 | DebugLogMBIFlags(meminfo.State, meminfo.Protect); |
| 6866 | LOG((LF_EH, LL_INFO1000, "\n" )); |
| 6867 | |
| 6868 | uStartOfThisRegion = uStartOfNextRegion; |
| 6869 | } |
| 6870 | |
| 6871 | LOG((LF_EH, LL_INFO1000, "----------------------------------------------------------------------\n" )); |
| 6872 | } |
| 6873 | |
| 6874 | // static |
| 6875 | void Thread::DebugLogStackMBIs() |
| 6876 | { |
| 6877 | CONTRACTL |
| 6878 | { |
| 6879 | NOTHROW; |
| 6880 | GC_NOTRIGGER; |
| 6881 | SO_INTOLERANT; |
| 6882 | CANNOT_TAKE_LOCK; |
| 6883 | } |
| 6884 | CONTRACTL_END; |
| 6885 | |
| 6886 | Thread* pThread = GetThread(); // N.B. this can be NULL! |
| 6887 | |
| 6888 | UINT_PTR uStackLimit = (UINT_PTR)GetStackLowerBound(); |
| 6889 | UINT_PTR uStackBase = (UINT_PTR)GetStackUpperBound(); |
| 6890 | if (pThread) |
| 6891 | { |
| 6892 | uStackLimit = (UINT_PTR)pThread->GetCachedStackLimit(); |
| 6893 | uStackBase = (UINT_PTR)pThread->GetCachedStackBase(); |
| 6894 | } |
| 6895 | else |
| 6896 | { |
| 6897 | uStackLimit = (UINT_PTR)GetStackLowerBound(); |
| 6898 | uStackBase = (UINT_PTR)GetStackUpperBound(); |
| 6899 | } |
| 6900 | UINT_PTR uStackSize = uStackBase - uStackLimit; |
| 6901 | |
| 6902 | LOG((LF_EH, LL_INFO1000, "----------------------------------------------------------------------\n" )); |
| 6903 | LOG((LF_EH, LL_INFO1000, "Stack Snapshot 0x%p -> 0x%p (%d pg)\n" , uStackLimit, uStackBase, uStackSize / GetOsPageSize())); |
| 6904 | if (pThread) |
| 6905 | { |
| 6906 | LOG((LF_EH, LL_INFO1000, "Last normal addr: 0x%p\n" , pThread->GetLastNormalStackAddress())); |
| 6907 | } |
| 6908 | |
| 6909 | DebugLogStackRegionMBIs(uStackLimit, uStackBase); |
| 6910 | } |
| 6911 | #endif // _DEBUG |
| 6912 | |
| 6913 | // |
| 6914 | // IsSPBeyondLimit |
| 6915 | // |
| 6916 | // Determines if the stack pointer is beyond the stack limit, in which case |
| 6917 | // we can assume we've taken a hard SO. |
| 6918 | // |
| 6919 | // Parameters: none |
| 6920 | // |
| 6921 | // Returns: bool indicating if SP is beyond the limit or not |
| 6922 | // |
| 6923 | BOOL Thread::IsSPBeyondLimit() |
| 6924 | { |
| 6925 | WRAPPER_NO_CONTRACT; |
| 6926 | |
| 6927 | // Reset the stack limits if necessary. |
| 6928 | // @todo . Add a vectored handler for X86 so that we reset the stack limits |
| 6929 | // there, as anything that supports SetThreadStackGuarantee will support vectored handlers. |
| 6930 | // Then we can always assume during EH processing that our stack limits are good and we |
| 6931 | // don't have to call ResetStackLimits. |
| 6932 | ResetStackLimits(); |
| 6933 | char *approxSP = (char *)GetCurrentSP(); |
| 6934 | if (approxSP < (char *)(GetLastAllowableStackAddress())) |
| 6935 | { |
| 6936 | return TRUE; |
| 6937 | } |
| 6938 | return FALSE; |
| 6939 | } |
| 6940 | |
| 6941 | __declspec(noinline) void AllocateSomeStack(){ |
| 6942 | LIMITED_METHOD_CONTRACT; |
| 6943 | #ifdef _TARGET_X86_ |
| 6944 | const size_t size = 0x200; |
| 6945 | #else //_TARGET_X86_ |
| 6946 | const size_t size = 0x400; |
| 6947 | #endif //_TARGET_X86_ |
| 6948 | |
| 6949 | INT8* mem = (INT8*)_alloca(size); |
| 6950 | // Actually touch the memory we just allocated so the compiler can't |
| 6951 | // optimize it away completely. |
| 6952 | // NOTE: this assumes the stack grows down (towards 0). |
| 6953 | VolatileStore<INT8>(mem, 0); |
| 6954 | } |
| 6955 | |
| 6956 | #ifndef FEATURE_PAL |
| 6957 | |
| 6958 | // static // private |
| 6959 | BOOL Thread::DoesRegionContainGuardPage(UINT_PTR uLowAddress, UINT_PTR uHighAddress) |
| 6960 | { |
| 6961 | CONTRACTL |
| 6962 | { |
| 6963 | NOTHROW; |
| 6964 | GC_NOTRIGGER; |
| 6965 | SO_TOLERANT; |
| 6966 | CANNOT_TAKE_LOCK; |
| 6967 | } |
| 6968 | CONTRACTL_END; |
| 6969 | |
| 6970 | SIZE_T dwRes; |
| 6971 | MEMORY_BASIC_INFORMATION meminfo; |
| 6972 | UINT_PTR uStartOfCurrentRegion = uLowAddress; |
| 6973 | |
| 6974 | while (uStartOfCurrentRegion < uHighAddress) |
| 6975 | { |
| 6976 | #undef VirtualQuery |
| 6977 | // This code can run below YieldTask, which means that it must not call back into the host. |
| 6978 | // The reason is that YieldTask is invoked by the host, and the host needs not be reentrant. |
| 6979 | dwRes = VirtualQuery((const void *)uStartOfCurrentRegion, &meminfo, sizeof(meminfo)); |
| 6980 | #define VirtualQuery(lpAddress, lpBuffer, dwLength) Dont_Use_VirtualQuery(lpAddress, lpBuffer, dwLength) |
| 6981 | |
| 6982 | // If the query fails then assume we have no guard page. |
| 6983 | if (sizeof(meminfo) != dwRes) |
| 6984 | { |
| 6985 | return FALSE; |
| 6986 | } |
| 6987 | |
| 6988 | if (meminfo.Protect & PAGE_GUARD) |
| 6989 | { |
| 6990 | return TRUE; |
| 6991 | } |
| 6992 | |
| 6993 | uStartOfCurrentRegion += meminfo.RegionSize; |
| 6994 | } |
| 6995 | |
| 6996 | return FALSE; |
| 6997 | } |
| 6998 | |
| 6999 | #endif // !FEATURE_PAL |
| 7000 | |
| 7001 | /* |
| 7002 | * DetermineIfGuardPagePresent |
| 7003 | * |
| 7004 | * DetermineIfGuardPagePresent returns TRUE if the thread's stack contains a proper guard page. This function makes |
| 7005 | * a physical check of the stack, rather than relying on whether or not the CLR is currently processing a stack |
| 7006 | * overflow exception. |
| 7007 | * |
| 7008 | * It seems reasonable to want to check just the 3rd page for !MEM_COMMIT or PAGE_GUARD, but that's no good in a |
| 7009 | * world where a) one can extend the guard region arbitrarily with SetThreadStackGuarantee(), b) a thread's stack |
| 7010 | * could be pre-committed, and c) another lib might reset the guard page very high up on the stack, much as we |
| 7011 | * do. In that world, we have to do VirtualQuery from the lower bound up until we find a region with PAGE_GUARD on |
| 7012 | * it. If we've never SO'd, then that's two calls to VirtualQuery. |
| 7013 | * |
| 7014 | * Parameters: |
| 7015 | * None |
| 7016 | * |
| 7017 | * Returns: |
| 7018 | * TRUE if the thread has a guard page, FALSE otherwise. |
| 7019 | */ |
| 7020 | BOOL Thread::DetermineIfGuardPagePresent() |
| 7021 | { |
| 7022 | CONTRACTL |
| 7023 | { |
| 7024 | NOTHROW; |
| 7025 | GC_NOTRIGGER; |
| 7026 | SO_TOLERANT; |
| 7027 | CANNOT_TAKE_LOCK; |
| 7028 | } |
| 7029 | CONTRACTL_END; |
| 7030 | |
| 7031 | #ifndef FEATURE_PAL |
| 7032 | BOOL bStackGuarded = FALSE; |
| 7033 | UINT_PTR uStackBase = (UINT_PTR)GetCachedStackBase(); |
| 7034 | UINT_PTR uStackLimit = (UINT_PTR)GetCachedStackLimit(); |
| 7035 | |
| 7036 | // Note: we start our queries after the hard guard page (one page up from the base of the stack.) We know the |
| 7037 | // very last region of the stack is never the guard page (its always the uncomitted "hard" guard page) so there's |
| 7038 | // no need to waste a query on it. |
| 7039 | bStackGuarded = DoesRegionContainGuardPage(uStackLimit + HARD_GUARD_REGION_SIZE, |
| 7040 | uStackBase); |
| 7041 | |
| 7042 | LOG((LF_EH, LL_INFO10000, "Thread::DetermineIfGuardPagePresent: stack guard page: %s\n" , bStackGuarded ? "PRESENT" : "MISSING" )); |
| 7043 | |
| 7044 | return bStackGuarded; |
| 7045 | #else // !FEATURE_PAL |
| 7046 | return TRUE; |
| 7047 | #endif // !FEATURE_PAL |
| 7048 | } |
| 7049 | |
| 7050 | /* |
| 7051 | * GetLastNormalStackAddress |
| 7052 | * |
| 7053 | * GetLastNormalStackAddress returns the last stack address before the guard |
| 7054 | * region of this thread. This is the last address that one could write to |
| 7055 | * before a stack overflow occurs. |
| 7056 | * |
| 7057 | * Parameters: |
| 7058 | * None |
| 7059 | * |
| 7060 | * Returns: |
| 7061 | * Address of the first page of the guard region. |
| 7062 | */ |
| 7063 | UINT_PTR Thread::GetLastNormalStackAddress() |
| 7064 | { |
| 7065 | WRAPPER_NO_CONTRACT; |
| 7066 | |
| 7067 | return GetLastNormalStackAddress((UINT_PTR)m_CacheStackLimit); |
| 7068 | } |
| 7069 | |
| 7070 | |
| 7071 | #ifdef FEATURE_STACK_PROBE |
| 7072 | /* |
| 7073 | * CanResetStackTo |
| 7074 | * |
| 7075 | * Given a target stack pointer, this function will tell us whether or not we could restore the guard page if we |
| 7076 | * unwound the stack that far. |
| 7077 | * |
| 7078 | * Parameters: |
| 7079 | * stackPointer -- stack pointer that we want to try to reset the thread's stack up to. |
| 7080 | * |
| 7081 | * Returns: |
| 7082 | * TRUE if there's enough room to reset the stack, false otherwise. |
| 7083 | */ |
| 7084 | BOOL Thread::CanResetStackTo(LPCVOID stackPointer) |
| 7085 | { |
| 7086 | CONTRACTL |
| 7087 | { |
| 7088 | NOTHROW; |
| 7089 | GC_NOTRIGGER; |
| 7090 | SO_TOLERANT; |
| 7091 | } |
| 7092 | CONTRACTL_END; |
| 7093 | |
| 7094 | // How much space between the given stack pointer and the first guard page? |
| 7095 | // |
| 7096 | // This must be signed since the stack pointer might be in the guard region, |
| 7097 | // which is at a lower address than GetLastNormalStackAddress will return. |
| 7098 | INT_PTR iStackSpaceLeft = (INT_PTR)stackPointer - GetLastNormalStackAddress(); |
| 7099 | |
| 7100 | // We need to have enough space to call back into the EE from the handler, so we use the twice the entry point amount. |
| 7101 | // We need enough to do work and enough that partway through that work we won't probe and COMPlusThrowSO. |
| 7102 | |
| 7103 | const INT_PTR iStackSizeThreshold = (ADJUST_PROBE(DEFAULT_ENTRY_PROBE_AMOUNT * 2) * GetOsPageSize()); |
| 7104 | |
| 7105 | if (iStackSpaceLeft > iStackSizeThreshold) |
| 7106 | { |
| 7107 | return TRUE; |
| 7108 | } |
| 7109 | else |
| 7110 | { |
| 7111 | return FALSE; |
| 7112 | } |
| 7113 | } |
| 7114 | |
| 7115 | /* |
| 7116 | * IsStackSpaceAvailable |
| 7117 | * |
| 7118 | * Given a number of stack pages, this function will tell us whether or not we have that much space |
| 7119 | * before the top of the stack. If we are in the guard region we must be already handling an SO, |
| 7120 | * so we report how much space is left in the guard region |
| 7121 | * |
| 7122 | * Parameters: |
| 7123 | * numPages -- the number of pages that we need. This can be a fractional amount. |
| 7124 | * |
| 7125 | * Returns: |
| 7126 | * TRUE if there's that many pages of stack available |
| 7127 | */ |
| 7128 | BOOL Thread::IsStackSpaceAvailable(float numPages) |
| 7129 | { |
| 7130 | CONTRACTL |
| 7131 | { |
| 7132 | NOTHROW; |
| 7133 | GC_NOTRIGGER; |
| 7134 | SO_TOLERANT; |
| 7135 | } |
| 7136 | CONTRACTL_END; |
| 7137 | |
| 7138 | // How much space between the current stack pointer and the first guard page? |
| 7139 | // |
| 7140 | // This must be signed since the stack pointer might be in the guard region, |
| 7141 | // which is at a lower address than GetLastNormalStackAddress will return. |
| 7142 | float iStackSpaceLeft = static_cast<float>((INT_PTR)GetCurrentSP() - (INT_PTR)GetLastNormalStackAddress()); |
| 7143 | |
| 7144 | // If we have access to the stack guarantee (either in the guard region or we've tripped the guard page), then |
| 7145 | // use that. |
| 7146 | if ((iStackSpaceLeft/GetOsPageSize()) < numPages && !DetermineIfGuardPagePresent()) |
| 7147 | { |
| 7148 | UINT_PTR stackGuarantee = GetStackGuarantee(); |
| 7149 | // GetLastNormalStackAddress actually returns the 2nd to last stack page on the stack. We'll add that to our available |
| 7150 | // amount of stack, in addition to any sort of stack guarantee we might have. |
| 7151 | // |
| 7152 | // All these values are OS supplied, and will never overflow. (If they do, that means the stack is on the order |
| 7153 | // over GB, which isn't possible. |
| 7154 | iStackSpaceLeft += stackGuarantee + GetOsPageSize(); |
| 7155 | } |
| 7156 | if ((iStackSpaceLeft/GetOsPageSize()) < numPages) |
| 7157 | { |
| 7158 | return FALSE; |
| 7159 | } |
| 7160 | |
| 7161 | return TRUE; |
| 7162 | } |
| 7163 | |
| 7164 | #endif // FEATURE_STACK_PROBE |
| 7165 | |
| 7166 | /* |
| 7167 | * GetStackGuarantee |
| 7168 | * |
| 7169 | * Returns the amount of stack guaranteed after an SO but before the OS rips the process. |
| 7170 | * |
| 7171 | * Parameters: |
| 7172 | * none |
| 7173 | * |
| 7174 | * Returns: |
| 7175 | * The stack guarantee in OS pages. |
| 7176 | */ |
| 7177 | UINT_PTR Thread::GetStackGuarantee() |
| 7178 | { |
| 7179 | WRAPPER_NO_CONTRACT; |
| 7180 | |
| 7181 | #ifndef FEATURE_PAL |
| 7182 | // There is a new API available on new OS's called SetThreadStackGuarantee. It allows you to change the size of |
| 7183 | // the guard region on a per-thread basis. If we're running on an OS that supports the API, then we must query |
| 7184 | // it to see if someone has changed the size of the guard region for this thread. |
| 7185 | if (!IsSetThreadStackGuaranteeInUse()) |
| 7186 | { |
| 7187 | return SIZEOF_DEFAULT_STACK_GUARANTEE; |
| 7188 | } |
| 7189 | |
| 7190 | ULONG cbNewStackGuarantee = 0; |
| 7191 | // Passing in a value of 0 means that we're querying, and the value is changed with the new guard region |
| 7192 | // size. |
| 7193 | if (::SetThreadStackGuarantee(&cbNewStackGuarantee) && |
| 7194 | (cbNewStackGuarantee != 0)) |
| 7195 | { |
| 7196 | return cbNewStackGuarantee; |
| 7197 | } |
| 7198 | #endif // FEATURE_PAL |
| 7199 | |
| 7200 | return SIZEOF_DEFAULT_STACK_GUARANTEE; |
| 7201 | } |
| 7202 | |
| 7203 | #ifndef FEATURE_PAL |
| 7204 | |
| 7205 | // |
| 7206 | // MarkPageAsGuard |
| 7207 | // |
| 7208 | // Given a page base address, try to turn it into a guard page and then requery to determine success. |
| 7209 | // |
| 7210 | // static // private |
| 7211 | BOOL Thread::MarkPageAsGuard(UINT_PTR uGuardPageBase) |
| 7212 | { |
| 7213 | CONTRACTL |
| 7214 | { |
| 7215 | NOTHROW; |
| 7216 | GC_NOTRIGGER; |
| 7217 | SO_TOLERANT; |
| 7218 | CANNOT_TAKE_LOCK; |
| 7219 | } |
| 7220 | CONTRACTL_END; |
| 7221 | |
| 7222 | DWORD flOldProtect; |
| 7223 | |
| 7224 | ClrVirtualProtect((LPVOID)uGuardPageBase, 1, |
| 7225 | (PAGE_READWRITE | PAGE_GUARD), &flOldProtect); |
| 7226 | |
| 7227 | // Intentionally ignore return value -- if it failed, we'll find out below |
| 7228 | // and keep moving up the stack until we either succeed or we hit the guard |
| 7229 | // region. If we don't succeed before we hit the guard region, we'll end up |
| 7230 | // with a fatal error. |
| 7231 | |
| 7232 | // Now, make sure the guard page is really there. If its not, then VirtualProtect most likely failed |
| 7233 | // because our stack had grown onto the page we were trying to protect by the time we made it into |
| 7234 | // VirtualProtect. So try the next page down. |
| 7235 | MEMORY_BASIC_INFORMATION meminfo; |
| 7236 | SIZE_T dwRes; |
| 7237 | |
| 7238 | dwRes = ClrVirtualQuery((const void *)uGuardPageBase, &meminfo, sizeof(meminfo)); |
| 7239 | |
| 7240 | return ((sizeof(meminfo) == dwRes) && (meminfo.Protect & PAGE_GUARD)); |
| 7241 | } |
| 7242 | |
| 7243 | |
| 7244 | /* |
| 7245 | * RestoreGuardPage |
| 7246 | * |
| 7247 | * RestoreGuardPage will replace the guard page on this thread's stack. The assumption is that it was removed by |
| 7248 | * the OS due to a stack overflow exception. This function requires that you know that you have enough stack space |
| 7249 | * to restore the guard page, so make sure you know what you're doing when you decide to call this. |
| 7250 | * |
| 7251 | * Parameters: |
| 7252 | * None |
| 7253 | * |
| 7254 | * Returns: |
| 7255 | * Nothing |
| 7256 | */ |
| 7257 | VOID Thread::RestoreGuardPage() |
| 7258 | { |
| 7259 | CONTRACTL |
| 7260 | { |
| 7261 | NOTHROW; |
| 7262 | GC_NOTRIGGER; |
| 7263 | SO_TOLERANT; |
| 7264 | CANNOT_TAKE_LOCK; |
| 7265 | } |
| 7266 | CONTRACTL_END; |
| 7267 | |
| 7268 | // Need a hard SO probe here. |
| 7269 | CONTRACT_VIOLATION(SOToleranceViolation); |
| 7270 | |
| 7271 | BOOL bStackGuarded = DetermineIfGuardPagePresent(); |
| 7272 | |
| 7273 | // If the guard page is still there, then just return. |
| 7274 | if (bStackGuarded) |
| 7275 | { |
| 7276 | LOG((LF_EH, LL_INFO100, "Thread::RestoreGuardPage: no need to restore... guard page is already there.\n" )); |
| 7277 | return; |
| 7278 | } |
| 7279 | |
| 7280 | UINT_PTR approxStackPointer; |
| 7281 | UINT_PTR guardPageBase; |
| 7282 | UINT_PTR guardRegionThreshold; |
| 7283 | BOOL pageMissing; |
| 7284 | |
| 7285 | if (!bStackGuarded) |
| 7286 | { |
| 7287 | // The normal guard page is the 3rd page from the base. The first page is the "hard" guard, the second one is |
| 7288 | // reserve, and the 3rd one is marked as a guard page. However, since there is now an API (on some platforms) |
| 7289 | // to change the size of the guard region, we'll just go ahead and protect the next page down from where we are |
| 7290 | // now. The guard page will get pushed forward again, just like normal, until the next stack overflow. |
| 7291 | approxStackPointer = (UINT_PTR)GetCurrentSP(); |
| 7292 | guardPageBase = (UINT_PTR)ALIGN_DOWN(approxStackPointer, GetOsPageSize()) - GetOsPageSize(); |
| 7293 | |
| 7294 | // OS uses soft guard page to update the stack info in TEB. If our guard page is not beyond the current stack, the TEB |
| 7295 | // will not be updated, and then OS's check of stack during exception will fail. |
| 7296 | if (approxStackPointer >= guardPageBase) |
| 7297 | { |
| 7298 | guardPageBase -= GetOsPageSize(); |
| 7299 | } |
| 7300 | // If we're currently "too close" to the page we want to mark as a guard then the call to VirtualProtect to set |
| 7301 | // PAGE_GUARD will fail, but it won't return an error. Therefore, we protect the page, then query it to make |
| 7302 | // sure it worked. If it didn't, we try the next page down. We'll either find a page to protect, or run into |
| 7303 | // the guard region and rip the process down with EEPOLICY_HANDLE_FATAL_ERROR below. |
| 7304 | guardRegionThreshold = GetLastNormalStackAddress(); |
| 7305 | pageMissing = TRUE; |
| 7306 | |
| 7307 | while (pageMissing) |
| 7308 | { |
| 7309 | LOG((LF_EH, LL_INFO10000, |
| 7310 | "Thread::RestoreGuardPage: restoring guard page @ 0x%p, approxStackPointer=0x%p, " |
| 7311 | "last normal stack address=0x%p\n" , |
| 7312 | guardPageBase, approxStackPointer, guardRegionThreshold)); |
| 7313 | |
| 7314 | // Make sure we set the guard page above the guard region. |
| 7315 | if (guardPageBase < guardRegionThreshold) |
| 7316 | { |
| 7317 | goto lFatalError; |
| 7318 | } |
| 7319 | |
| 7320 | if (MarkPageAsGuard(guardPageBase)) |
| 7321 | { |
| 7322 | // The current GuardPage should be beyond the current SP. |
| 7323 | _ASSERTE (guardPageBase < approxStackPointer); |
| 7324 | pageMissing = FALSE; |
| 7325 | } |
| 7326 | else |
| 7327 | { |
| 7328 | guardPageBase -= GetOsPageSize(); |
| 7329 | } |
| 7330 | } |
| 7331 | } |
| 7332 | |
| 7333 | FinishSOWork(); |
| 7334 | |
| 7335 | INDEBUG(DebugLogStackMBIs()); |
| 7336 | |
| 7337 | return; |
| 7338 | |
| 7339 | lFatalError: |
| 7340 | STRESS_LOG2(LF_EH, LL_ALWAYS, |
| 7341 | "Thread::RestoreGuardPage: too close to the guard region (0x%p) to restore guard page @0x%p\n" , |
| 7342 | guardRegionThreshold, guardPageBase); |
| 7343 | _ASSERTE(!"Too close to the guard page to reset it!" ); |
| 7344 | EEPOLICY_HANDLE_FATAL_ERROR(COR_E_STACKOVERFLOW); |
| 7345 | } |
| 7346 | |
| 7347 | #endif // !FEATURE_PAL |
| 7348 | |
| 7349 | #endif // #ifndef DACCESS_COMPILE |
| 7350 | |
| 7351 | // |
| 7352 | // InitRegDisplay: initializes a REGDISPLAY for a thread. If validContext |
| 7353 | // is false, pRD is filled from the current context of the thread. The |
| 7354 | // thread's current context is also filled in pctx. If validContext is true, |
| 7355 | // pctx should point to a valid context and pRD is filled from that. |
| 7356 | // |
| 7357 | bool Thread::InitRegDisplay(const PREGDISPLAY pRD, PT_CONTEXT pctx, bool validContext) |
| 7358 | { |
| 7359 | CONTRACTL { |
| 7360 | NOTHROW; |
| 7361 | GC_NOTRIGGER; |
| 7362 | } |
| 7363 | CONTRACTL_END; |
| 7364 | |
| 7365 | if (!validContext) |
| 7366 | { |
| 7367 | if (GetFilterContext()!= NULL) |
| 7368 | { |
| 7369 | pctx = GetFilterContext(); |
| 7370 | } |
| 7371 | else |
| 7372 | { |
| 7373 | #ifdef DACCESS_COMPILE |
| 7374 | DacNotImpl(); |
| 7375 | #else |
| 7376 | pctx->ContextFlags = CONTEXT_FULL; |
| 7377 | |
| 7378 | _ASSERTE(this != GetThread()); // do not call GetThreadContext on the active thread |
| 7379 | |
| 7380 | BOOL ret = EEGetThreadContext(this, pctx); |
| 7381 | if (!ret) |
| 7382 | { |
| 7383 | SetIP(pctx, 0); |
| 7384 | #ifdef _TARGET_X86_ |
| 7385 | pRD->ControlPC = pctx->Eip; |
| 7386 | pRD->PCTAddr = (TADDR)&(pctx->Eip); |
| 7387 | #elif defined(_TARGET_AMD64_) |
| 7388 | // nothing more to do here, on Win64 setting the IP to 0 is enough. |
| 7389 | #elif defined(_TARGET_ARM_) |
| 7390 | // nothing more to do here, on Win64 setting the IP to 0 is enough. |
| 7391 | #else |
| 7392 | PORTABILITY_ASSERT("NYI for platform Thread::InitRegDisplay" ); |
| 7393 | #endif |
| 7394 | |
| 7395 | return false; |
| 7396 | } |
| 7397 | #endif // DACCESS_COMPILE |
| 7398 | } |
| 7399 | } |
| 7400 | |
| 7401 | FillRegDisplay( pRD, pctx ); |
| 7402 | |
| 7403 | return true; |
| 7404 | } |
| 7405 | |
| 7406 | |
| 7407 | void Thread::FillRegDisplay(const PREGDISPLAY pRD, PT_CONTEXT pctx) |
| 7408 | { |
| 7409 | WRAPPER_NO_CONTRACT; |
| 7410 | SUPPORTS_DAC; |
| 7411 | |
| 7412 | ::FillRegDisplay(pRD, pctx); |
| 7413 | |
| 7414 | #if defined(DEBUG_REGDISPLAY) && !defined(_TARGET_X86_) |
| 7415 | CONSISTENCY_CHECK(!pRD->_pThread || pRD->_pThread == this); |
| 7416 | pRD->_pThread = this; |
| 7417 | |
| 7418 | CheckRegDisplaySP(pRD); |
| 7419 | #endif // defined(DEBUG_REGDISPLAY) && !defined(_TARGET_X86_) |
| 7420 | } |
| 7421 | |
| 7422 | |
| 7423 | #ifdef DEBUG_REGDISPLAY |
| 7424 | |
| 7425 | void CheckRegDisplaySP (REGDISPLAY *pRD) |
| 7426 | { |
| 7427 | if (pRD->SP && pRD->_pThread) |
| 7428 | { |
| 7429 | #ifndef NO_FIXED_STACK_LIMIT |
| 7430 | _ASSERTE(PTR_VOID(pRD->SP) >= pRD->_pThread->GetCachedStackLimit()); |
| 7431 | #endif // NO_FIXED_STACK_LIMIT |
| 7432 | _ASSERTE(PTR_VOID(pRD->SP) < pRD->_pThread->GetCachedStackBase()); |
| 7433 | } |
| 7434 | } |
| 7435 | |
| 7436 | #endif // DEBUG_REGDISPLAY |
| 7437 | |
| 7438 | // Trip Functions |
| 7439 | // ============== |
| 7440 | // When a thread reaches a safe place, it will rendezvous back with us, via one of |
| 7441 | // the following trip functions: |
| 7442 | |
| 7443 | void CommonTripThread() |
| 7444 | { |
| 7445 | #ifndef DACCESS_COMPILE |
| 7446 | CONTRACTL { |
| 7447 | THROWS; |
| 7448 | GC_TRIGGERS; |
| 7449 | } |
| 7450 | CONTRACTL_END; |
| 7451 | |
| 7452 | Thread *thread = GetThread(); |
| 7453 | |
| 7454 | thread->HandleThreadAbort (); |
| 7455 | |
| 7456 | if (thread->CatchAtSafePoint()) |
| 7457 | { |
| 7458 | _ASSERTE(!ThreadStore::HoldingThreadStore(thread)); |
| 7459 | #ifdef FEATURE_HIJACK |
| 7460 | thread->UnhijackThread(); |
| 7461 | #endif // FEATURE_HIJACK |
| 7462 | |
| 7463 | // Trap |
| 7464 | thread->PulseGCMode(); |
| 7465 | } |
| 7466 | #else |
| 7467 | DacNotImpl(); |
| 7468 | #endif // #ifndef DACCESS_COMPILE |
| 7469 | } |
| 7470 | |
| 7471 | #ifndef DACCESS_COMPILE |
| 7472 | |
| 7473 | void Thread::SetFilterContext(CONTEXT *pContext) |
| 7474 | { |
| 7475 | // SetFilterContext is like pushing a Frame onto the Frame chain. |
| 7476 | CONTRACTL { |
| 7477 | NOTHROW; |
| 7478 | GC_NOTRIGGER; |
| 7479 | MODE_COOPERATIVE; // Absolutely must be in coop to coordinate w/ Runtime suspension. |
| 7480 | PRECONDITION(GetThread() == this); // must be on current thread. |
| 7481 | } CONTRACTL_END; |
| 7482 | |
| 7483 | m_debuggerFilterContext = pContext; |
| 7484 | } |
| 7485 | |
| 7486 | #endif // #ifndef DACCESS_COMPILE |
| 7487 | |
| 7488 | T_CONTEXT *Thread::GetFilterContext(void) |
| 7489 | { |
| 7490 | LIMITED_METHOD_DAC_CONTRACT; |
| 7491 | |
| 7492 | return m_debuggerFilterContext; |
| 7493 | } |
| 7494 | |
| 7495 | #ifndef DACCESS_COMPILE |
| 7496 | |
| 7497 | // @todo - eventually complete remove the CantStop count on the thread and use |
| 7498 | // the one in the PreDef block. For now, we increment both our thread counter, |
| 7499 | // and the FLS counter. Eventually we can remove our thread counter and only use |
| 7500 | // the FLS counter. |
| 7501 | void Thread::SetDebugCantStop(bool fCantStop) |
| 7502 | { |
| 7503 | LIMITED_METHOD_CONTRACT; |
| 7504 | |
| 7505 | if (fCantStop) |
| 7506 | { |
| 7507 | IncCantStopCount(); |
| 7508 | m_debuggerCantStop++; |
| 7509 | } |
| 7510 | else |
| 7511 | { |
| 7512 | DecCantStopCount(); |
| 7513 | m_debuggerCantStop--; |
| 7514 | } |
| 7515 | } |
| 7516 | |
| 7517 | // @todo - remove this, we only read this from oop. |
| 7518 | bool Thread::GetDebugCantStop(void) |
| 7519 | { |
| 7520 | LIMITED_METHOD_CONTRACT; |
| 7521 | |
| 7522 | return m_debuggerCantStop != 0; |
| 7523 | } |
| 7524 | |
| 7525 | |
| 7526 | //----------------------------------------------------------------------------- |
| 7527 | // Call w/a wrapper. |
| 7528 | // We've already transitioned AppDomains here. This just places a 1st-pass filter to sniff |
| 7529 | // for catch-handler found callbacks for the debugger. |
| 7530 | //----------------------------------------------------------------------------- |
| 7531 | void MakeADCallDebuggerWrapper( |
| 7532 | FPAPPDOMAINCALLBACK fpCallback, |
| 7533 | CtxTransitionBaseArgs * args, |
| 7534 | ContextTransitionFrame* pFrame) |
| 7535 | { |
| 7536 | STATIC_CONTRACT_THROWS; |
| 7537 | STATIC_CONTRACT_GC_TRIGGERS; |
| 7538 | STATIC_CONTRACT_MODE_ANY; |
| 7539 | |
| 7540 | BYTE * pCatcherStackAddr = (BYTE*) pFrame; |
| 7541 | |
| 7542 | struct Param : NotifyOfCHFFilterWrapperParam |
| 7543 | { |
| 7544 | FPAPPDOMAINCALLBACK fpCallback; |
| 7545 | CtxTransitionBaseArgs *args; |
| 7546 | } param; |
| 7547 | param.pFrame = pCatcherStackAddr; |
| 7548 | param.fpCallback = fpCallback; |
| 7549 | param.args = args; |
| 7550 | |
| 7551 | PAL_TRY(Param *, pParam, ¶m) |
| 7552 | { |
| 7553 | pParam->fpCallback(pParam->args); |
| 7554 | } |
| 7555 | PAL_EXCEPT_FILTER(AppDomainTransitionExceptionFilter) |
| 7556 | { |
| 7557 | // Should never reach here b/c handler should always continue search. |
| 7558 | _ASSERTE(false); |
| 7559 | } |
| 7560 | PAL_ENDTRY |
| 7561 | } |
| 7562 | |
| 7563 | |
| 7564 | // Invoke a callback in another appdomain. |
| 7565 | // Caller should have checked that we're actually transitioning domains here. |
| 7566 | void MakeCallWithAppDomainTransition( |
| 7567 | ADID TargetDomain, |
| 7568 | FPAPPDOMAINCALLBACK fpCallback, |
| 7569 | CtxTransitionBaseArgs * args) |
| 7570 | { |
| 7571 | DEBUG_ASSURE_NO_RETURN_BEGIN(MAKECALL) |
| 7572 | |
| 7573 | Thread* _ctx_trans_pThread = GetThread(); |
| 7574 | TESTHOOKCALL(EnteringAppDomain((TargetDomain.m_dwId))); |
| 7575 | AppDomain* pTargetDomain = SystemDomain::GetAppDomainFromId(TargetDomain, ADV_CURRENTAD); |
| 7576 | _ASSERTE(_ctx_trans_pThread != NULL); |
| 7577 | _ASSERTE(_ctx_trans_pThread->GetDomain()->GetId()!= TargetDomain); |
| 7578 | |
| 7579 | bool _ctx_trans_fRaiseNeeded = false; |
| 7580 | Exception* _ctx_trans_pTargetDomainException=NULL; \ |
| 7581 | |
| 7582 | FrameWithCookie<ContextTransitionFrame> _ctx_trans_Frame; |
| 7583 | ContextTransitionFrame* _ctx_trans_pFrame = &_ctx_trans_Frame; |
| 7584 | |
| 7585 | args->pCtxFrame = _ctx_trans_pFrame; |
| 7586 | TESTHOOKCALL(EnteredAppDomain((TargetDomain.m_dwId))); |
| 7587 | /* work around unreachable code warning */ |
| 7588 | EX_TRY |
| 7589 | { |
| 7590 | // Invoke the callback |
| 7591 | if (CORDebuggerAttached()) |
| 7592 | { |
| 7593 | // If a debugger is attached, do it through a wrapper that will sniff for CHF callbacks. |
| 7594 | MakeADCallDebuggerWrapper(fpCallback, args, GET_CTX_TRANSITION_FRAME()); |
| 7595 | } |
| 7596 | else |
| 7597 | { |
| 7598 | // If no debugger is attached, call directly. |
| 7599 | fpCallback(args); |
| 7600 | } |
| 7601 | } |
| 7602 | EX_CATCH |
| 7603 | { |
| 7604 | LOG((LF_EH|LF_APPDOMAIN, LL_INFO1000, "ENTER_DOMAIN(%s, %s, %d): exception in flight\n" , |
| 7605 | __FUNCTION__, __FILE__, __LINE__)); |
| 7606 | |
| 7607 | _ctx_trans_pTargetDomainException=EXTRACT_EXCEPTION(); |
| 7608 | _ctx_trans_fRaiseNeeded = true; |
| 7609 | } |
| 7610 | /* SwallowAllExceptions is fine because we don't get to this point */ |
| 7611 | /* unless fRaiseNeeded = true or no exception was thrown */ |
| 7612 | EX_END_CATCH(SwallowAllExceptions); |
| 7613 | TESTHOOKCALL(LeavingAppDomain((TargetDomain.m_dwId))); |
| 7614 | if (_ctx_trans_fRaiseNeeded) |
| 7615 | { |
| 7616 | LOG((LF_EH, LL_INFO1000, "RaiseCrossContextException(%s, %s, %d)\n" , |
| 7617 | __FUNCTION__, __FILE__, __LINE__)); |
| 7618 | _ctx_trans_pThread->RaiseCrossContextException(_ctx_trans_pTargetDomainException,_ctx_trans_pFrame); |
| 7619 | } |
| 7620 | |
| 7621 | LOG((LF_APPDOMAIN, LL_INFO1000, "LEAVE_DOMAIN(%s, %s, %d)\n" , |
| 7622 | __FUNCTION__, __FILE__, __LINE__)); |
| 7623 | |
| 7624 | #ifdef FEATURE_TESTHOOKS |
| 7625 | TESTHOOKCALL(LeftAppDomain(TargetDomain.m_dwId)); |
| 7626 | #endif |
| 7627 | |
| 7628 | DEBUG_ASSURE_NO_RETURN_END(MAKECALL) |
| 7629 | } |
| 7630 | |
| 7631 | |
| 7632 | |
| 7633 | void Thread::InitContext() |
| 7634 | { |
| 7635 | CONTRACTL { |
| 7636 | THROWS; |
| 7637 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 7638 | } |
| 7639 | CONTRACTL_END; |
| 7640 | |
| 7641 | // this should only be called when initializing a thread |
| 7642 | _ASSERTE(m_pDomain == NULL); |
| 7643 | GCX_COOP_NO_THREAD_BROKEN(); |
| 7644 | m_pDomain = SystemDomain::System()->DefaultDomain(); |
| 7645 | _ASSERTE(m_pDomain); |
| 7646 | m_pDomain->ThreadEnter(this, NULL); |
| 7647 | } |
| 7648 | |
| 7649 | void Thread::ClearContext() |
| 7650 | { |
| 7651 | CONTRACTL { |
| 7652 | NOTHROW; |
| 7653 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 7654 | } |
| 7655 | CONTRACTL_END; |
| 7656 | |
| 7657 | if (!m_pDomain) |
| 7658 | return; |
| 7659 | |
| 7660 | m_pDomain->ThreadExit(this, NULL); |
| 7661 | |
| 7662 | // must set exposed context to null first otherwise object verification |
| 7663 | // checks will fail AV when m_Context is null |
| 7664 | m_pDomain = NULL; |
| 7665 | #ifdef FEATURE_COMINTEROP |
| 7666 | m_fDisableComObjectEagerCleanup = false; |
| 7667 | #endif //FEATURE_COMINTEROP |
| 7668 | } |
| 7669 | |
| 7670 | void DECLSPEC_NORETURN Thread::RaiseCrossContextException(Exception* pExOrig, ContextTransitionFrame* pFrame) |
| 7671 | { |
| 7672 | CONTRACTL |
| 7673 | { |
| 7674 | THROWS; |
| 7675 | WRAPPER(GC_TRIGGERS); |
| 7676 | } |
| 7677 | CONTRACTL_END; |
| 7678 | |
| 7679 | // pEx is NULL means that the exception is CLRLastThrownObjectException |
| 7680 | CLRLastThrownObjectException lastThrown; |
| 7681 | Exception* pException = pExOrig ? pExOrig : &lastThrown; |
| 7682 | COMPlusThrow(CLRException::GetThrowableFromException(pException)); |
| 7683 | } |
| 7684 | |
| 7685 | |
| 7686 | struct FindADCallbackType { |
| 7687 | AppDomain *pSearchDomain; |
| 7688 | AppDomain *pPrevDomain; |
| 7689 | Frame *pFrame; |
| 7690 | int count; |
| 7691 | enum TargetTransition |
| 7692 | {fFirstTransitionInto, fMostRecentTransitionInto} |
| 7693 | fTargetTransition; |
| 7694 | |
| 7695 | FindADCallbackType() : pSearchDomain(NULL), pPrevDomain(NULL), pFrame(NULL) |
| 7696 | { |
| 7697 | LIMITED_METHOD_CONTRACT; |
| 7698 | } |
| 7699 | }; |
| 7700 | |
| 7701 | StackWalkAction StackWalkCallback_FindAD(CrawlFrame* pCF, void* data) |
| 7702 | { |
| 7703 | CONTRACTL { |
| 7704 | NOTHROW; |
| 7705 | GC_NOTRIGGER; |
| 7706 | } |
| 7707 | CONTRACTL_END; |
| 7708 | |
| 7709 | FindADCallbackType *pData = (FindADCallbackType *)data; |
| 7710 | |
| 7711 | Frame *pFrame = pCF->GetFrame(); |
| 7712 | |
| 7713 | if (!pFrame) |
| 7714 | return SWA_CONTINUE; |
| 7715 | |
| 7716 | AppDomain *pReturnDomain = pFrame->GetReturnDomain(); |
| 7717 | if (!pReturnDomain || pReturnDomain == pData->pPrevDomain) |
| 7718 | return SWA_CONTINUE; |
| 7719 | |
| 7720 | LOG((LF_APPDOMAIN, LL_INFO100, "StackWalkCallback_FindAD transition frame %8.8x into AD [%d]\n" , |
| 7721 | pFrame, pReturnDomain->GetId().m_dwId)); |
| 7722 | |
| 7723 | if (pData->pPrevDomain == pData->pSearchDomain) { |
| 7724 | ++pData->count; |
| 7725 | // this is a transition into the domain we are unloading, so save it in case it is the first |
| 7726 | pData->pFrame = pFrame; |
| 7727 | if (pData->fTargetTransition == FindADCallbackType::fMostRecentTransitionInto) |
| 7728 | return SWA_ABORT; // only need to find last transition, so bail now |
| 7729 | } |
| 7730 | |
| 7731 | pData->pPrevDomain = pReturnDomain; |
| 7732 | return SWA_CONTINUE; |
| 7733 | } |
| 7734 | |
| 7735 | // This determines if a thread is running in the given domain at any point on the stack |
| 7736 | Frame *Thread::IsRunningIn(AppDomain *pDomain, int *count) |
| 7737 | { |
| 7738 | CONTRACTL { |
| 7739 | NOTHROW; |
| 7740 | GC_NOTRIGGER; |
| 7741 | } |
| 7742 | CONTRACTL_END; |
| 7743 | |
| 7744 | FindADCallbackType fct; |
| 7745 | fct.pSearchDomain = pDomain; |
| 7746 | if (!fct.pSearchDomain) |
| 7747 | return FALSE; |
| 7748 | |
| 7749 | // set prev to current so if are currently running in the target domain, |
| 7750 | // we will detect the transition |
| 7751 | fct.pPrevDomain = m_pDomain; |
| 7752 | fct.fTargetTransition = FindADCallbackType::fMostRecentTransitionInto; |
| 7753 | fct.count = 0; |
| 7754 | |
| 7755 | // when this returns, if there is a transition into the AD, it will be in pFirstFrame |
| 7756 | StackWalkAction res; |
| 7757 | res = StackWalkFrames(StackWalkCallback_FindAD, (void*) &fct, ALLOW_ASYNC_STACK_WALK); |
| 7758 | if (count) |
| 7759 | *count = fct.count; |
| 7760 | return fct.pFrame; |
| 7761 | } |
| 7762 | |
| 7763 | // This finds the very first frame on the stack where the thread transitioned into the given domain |
| 7764 | Frame *Thread::GetFirstTransitionInto(AppDomain *pDomain, int *count) |
| 7765 | { |
| 7766 | CONTRACTL { |
| 7767 | NOTHROW; |
| 7768 | GC_NOTRIGGER; |
| 7769 | } |
| 7770 | CONTRACTL_END; |
| 7771 | |
| 7772 | FindADCallbackType fct; |
| 7773 | fct.pSearchDomain = pDomain; |
| 7774 | // set prev to current so if are currently running in the target domain, |
| 7775 | // we will detect the transition |
| 7776 | fct.pPrevDomain = m_pDomain; |
| 7777 | fct.fTargetTransition = FindADCallbackType::fFirstTransitionInto; |
| 7778 | fct.count = 0; |
| 7779 | |
| 7780 | // when this returns, if there is a transition into the AD, it will be in pFirstFrame |
| 7781 | StackWalkAction res; |
| 7782 | res = StackWalkFrames(StackWalkCallback_FindAD, (void*) &fct, ALLOW_ASYNC_STACK_WALK); |
| 7783 | if (count) |
| 7784 | *count = fct.count; |
| 7785 | return fct.pFrame; |
| 7786 | } |
| 7787 | |
| 7788 | BOOL Thread::HaveExtraWorkForFinalizer() |
| 7789 | { |
| 7790 | LIMITED_METHOD_CONTRACT; |
| 7791 | |
| 7792 | return m_ThreadTasks |
| 7793 | || ThreadpoolMgr::HaveTimerInfosToFlush() |
| 7794 | || ExecutionManager::IsCacheCleanupRequired() |
| 7795 | || Thread::CleanupNeededForFinalizedThread() |
| 7796 | || (m_DetachCount > 0) |
| 7797 | || SystemDomain::System()->RequireAppDomainCleanup() |
| 7798 | || ThreadStore::s_pThreadStore->ShouldTriggerGCForDeadThreads(); |
| 7799 | } |
| 7800 | |
| 7801 | void Thread::DoExtraWorkForFinalizer() |
| 7802 | { |
| 7803 | CONTRACTL { |
| 7804 | THROWS; |
| 7805 | GC_TRIGGERS; |
| 7806 | } |
| 7807 | CONTRACTL_END; |
| 7808 | |
| 7809 | _ASSERTE(GetThread() == this); |
| 7810 | _ASSERTE(this == FinalizerThread::GetFinalizerThread()); |
| 7811 | |
| 7812 | #ifdef FEATURE_COMINTEROP_APARTMENT_SUPPORT |
| 7813 | if (RequiresCoInitialize()) |
| 7814 | { |
| 7815 | SetApartment(AS_InMTA, FALSE); |
| 7816 | } |
| 7817 | #endif // FEATURE_COMINTEROP_APARTMENT_SUPPORT |
| 7818 | |
| 7819 | if (RequireSyncBlockCleanup()) |
| 7820 | { |
| 7821 | #ifndef FEATURE_PAL |
| 7822 | InteropSyncBlockInfo::FlushStandbyList(); |
| 7823 | #endif // !FEATURE_PAL |
| 7824 | |
| 7825 | #ifdef FEATURE_COMINTEROP |
| 7826 | RCW::FlushStandbyList(); |
| 7827 | #endif // FEATURE_COMINTEROP |
| 7828 | |
| 7829 | SyncBlockCache::GetSyncBlockCache()->CleanupSyncBlocks(); |
| 7830 | } |
| 7831 | if (SystemDomain::System()->RequireAppDomainCleanup()) |
| 7832 | { |
| 7833 | SystemDomain::System()->ProcessDelayedUnloadLoaderAllocators(); |
| 7834 | } |
| 7835 | |
| 7836 | if(m_DetachCount > 0 || Thread::CleanupNeededForFinalizedThread()) |
| 7837 | { |
| 7838 | Thread::CleanupDetachedThreads(); |
| 7839 | } |
| 7840 | |
| 7841 | if(ExecutionManager::IsCacheCleanupRequired() && GCHeapUtilities::GetGCHeap()->GetCondemnedGeneration()>=1) |
| 7842 | { |
| 7843 | ExecutionManager::ClearCaches(); |
| 7844 | } |
| 7845 | |
| 7846 | // If there were any TimerInfos waiting to be released, they'll get flushed now |
| 7847 | ThreadpoolMgr::FlushQueueOfTimerInfos(); |
| 7848 | |
| 7849 | ThreadStore::s_pThreadStore->TriggerGCForDeadThreadsIfNecessary(); |
| 7850 | } |
| 7851 | |
| 7852 | |
| 7853 | // HELPERS FOR THE BASE OF A MANAGED THREAD, INCLUDING AD TRANSITION SUPPORT |
| 7854 | |
| 7855 | // We have numerous places where we start up a managed thread. This includes several places in the |
| 7856 | // ThreadPool, the 'new Thread(...).Start()' case, and the Finalizer. Try to factor the code so our |
| 7857 | // base exception handling behavior is consistent across those places. The resulting code is convoluted, |
| 7858 | // but it's better than the prior situation of each thread being on a different plan. |
| 7859 | |
| 7860 | // We need Middle & Outer methods for the usual problem of combining C++ & SEH. |
| 7861 | |
| 7862 | /* The effect of all this is that we get: |
| 7863 | |
| 7864 | Base of thread -- OS unhandled exception filter that we hook |
| 7865 | |
| 7866 | SEH handler from DispatchOuter |
| 7867 | C++ handler from DispatchMiddle |
| 7868 | |
| 7869 | And if there is an AppDomain transition before we call back to user code, we additionally get: |
| 7870 | |
| 7871 | AppDomain transition -- contains its own handlers to terminate the first pass |
| 7872 | and marshal the exception. |
| 7873 | |
| 7874 | SEH handler from DispatchOuter |
| 7875 | C++ handler from DispatchMiddle |
| 7876 | |
| 7877 | Regardless of whether or not there is an AppDomain transition, we then have: |
| 7878 | |
| 7879 | User code that obviously can throw. |
| 7880 | |
| 7881 | So if we don't have an AD transition, or we take a fault before we successfully transition the |
| 7882 | AppDomain, then the base-most DispatchOuter/Middle will deal with the exception. This may |
| 7883 | involve swallowing exceptions or it may involve Watson & debugger attach. It will always |
| 7884 | involve notifications to any AppDomain.UnhandledException event listeners. |
| 7885 | |
| 7886 | But if we did transition the AppDomain, then any Watson, debugger attach and UnhandledException |
| 7887 | events will occur in that AppDomain in the initial first pass. So we get a good debugging |
| 7888 | experience and we get notifications to the host that show which AppDomain is allowing exceptions |
| 7889 | to go unhandled (so perhaps it can be unloaded or otherwise dealt with). |
| 7890 | |
| 7891 | The trick is that if the exception goes unhandled at the process level, we would normally try |
| 7892 | to fire AppDomain events and display the faulting exception on the console from two more |
| 7893 | places. These are the base-most DispatchOuter/Middle pair and the hook of the OS unhandled |
| 7894 | exception handler at the base of the thread. |
| 7895 | |
| 7896 | This is redundant and messy. (There's no concern with getting a 2nd Watson because we only |
| 7897 | do one of these per process anyway). The solution for the base-most DispatchOuter/Middle is |
| 7898 | to use the ManagedThreadCallState.flags to control whether the exception has already been |
| 7899 | dealt with or not. These flags cause the ThreadBaseRedirectingFilter to either do normal |
| 7900 | "base of the thread" exception handling, or to ignore the exception because it has already |
| 7901 | been reported in the AppDomain we transitioned to. |
| 7902 | |
| 7903 | But turning off the reporting in the OS unhandled exception filter is harder. We don't want |
| 7904 | to flip a bit on the Thread to disable this, unless we can be sure we are only disabling |
| 7905 | something we already reported, and that this thread will never recover from that situation and |
| 7906 | start executing code again. Here's the normal nightmare scenario with SEH: |
| 7907 | |
| 7908 | 1) exception of type A is thrown |
| 7909 | 2) All the filters in the 1st pass say they don't want an A |
| 7910 | 3) The exception gets all the way out and is considered unhandled. We report this "fact". |
| 7911 | 4) Imagine we then set a bit that says this thread shouldn't report unhandled exceptions. |
| 7912 | 5) The 2nd pass starts. |
| 7913 | 6) Inside a finally, someone throws an exception of type B. |
| 7914 | 7) A new 1st pass starts from the point of the throw, with a type B. |
| 7915 | 8) Now a filter says "Yes, I will swallow exception B." |
| 7916 | 9) We no longer have an unhandled exception, and execution continues merrily. |
| 7917 | |
| 7918 | This is an unavoidable consequence of the 2-pass model. If you report unhandled exceptions |
| 7919 | in the 1st pass (for good debugging), you might find that this was premature and you don't |
| 7920 | have an unhandled exception when you get to the 2nd pass. |
| 7921 | |
| 7922 | But it would not be optimal if in step 4 we set a bit that says we should suppress normal |
| 7923 | notifications and reporting on this thread, believing that the process will terminate. |
| 7924 | |
| 7925 | The solution is to recognize that the base OS unhandled exception filter runs in two modes. |
| 7926 | In the first mode, it operates as today and serves as our backstop. In the second mode |
| 7927 | it is fully redundant with the handlers pushed after the AppDomain transition, which are |
| 7928 | completely containing the exception to the AD that it occurred in (for purposes of reporting). |
| 7929 | So we just need a flag on the thread that says whether or not that set of handlers are pushed |
| 7930 | and functioning. That flag enables / disables the base exception reporting and is called |
| 7931 | TSNC_AppDomainContainUnhandled |
| 7932 | |
| 7933 | */ |
| 7934 | |
| 7935 | |
| 7936 | enum ManagedThreadCallStateFlags |
| 7937 | { |
| 7938 | MTCSF_NormalBase, |
| 7939 | MTCSF_ContainToAppDomain, |
| 7940 | MTCSF_SuppressDuplicate, |
| 7941 | }; |
| 7942 | |
| 7943 | struct ManagedThreadCallState |
| 7944 | { |
| 7945 | ADID pAppDomainId; |
| 7946 | AppDomain* pUnsafeAppDomain; |
| 7947 | BOOL bDomainIsAsID; |
| 7948 | |
| 7949 | ADCallBackFcnType pTarget; |
| 7950 | LPVOID args; |
| 7951 | UnhandledExceptionLocation filterType; |
| 7952 | ManagedThreadCallStateFlags flags; |
| 7953 | BOOL IsAppDomainEqual(AppDomain* pApp) |
| 7954 | { |
| 7955 | LIMITED_METHOD_CONTRACT; |
| 7956 | return bDomainIsAsID?(pApp->GetId()==pAppDomainId):(pUnsafeAppDomain==pApp); |
| 7957 | } |
| 7958 | ManagedThreadCallState(ADID AppDomainId,ADCallBackFcnType Target,LPVOID Args, |
| 7959 | UnhandledExceptionLocation FilterType, ManagedThreadCallStateFlags Flags): |
| 7960 | pAppDomainId(AppDomainId), |
| 7961 | pUnsafeAppDomain(NULL), |
| 7962 | bDomainIsAsID(TRUE), |
| 7963 | pTarget(Target), |
| 7964 | args(Args), |
| 7965 | filterType(FilterType), |
| 7966 | flags(Flags) |
| 7967 | { |
| 7968 | LIMITED_METHOD_CONTRACT; |
| 7969 | }; |
| 7970 | protected: |
| 7971 | ManagedThreadCallState(AppDomain* AppDomain,ADCallBackFcnType Target,LPVOID Args, |
| 7972 | UnhandledExceptionLocation FilterType, ManagedThreadCallStateFlags Flags): |
| 7973 | pAppDomainId(ADID(0)), |
| 7974 | pUnsafeAppDomain(AppDomain), |
| 7975 | bDomainIsAsID(FALSE), |
| 7976 | pTarget(Target), |
| 7977 | args(Args), |
| 7978 | filterType(FilterType), |
| 7979 | flags(Flags) |
| 7980 | { |
| 7981 | LIMITED_METHOD_CONTRACT; |
| 7982 | }; |
| 7983 | void InitForFinalizer(AppDomain* AppDomain,ADCallBackFcnType Target,LPVOID Args) |
| 7984 | { |
| 7985 | LIMITED_METHOD_CONTRACT; |
| 7986 | filterType=FinalizerThread; |
| 7987 | pUnsafeAppDomain=AppDomain; |
| 7988 | pTarget=Target; |
| 7989 | args=Args; |
| 7990 | }; |
| 7991 | |
| 7992 | friend void ManagedThreadBase_NoADTransition(ADCallBackFcnType pTarget, |
| 7993 | UnhandledExceptionLocation filterType); |
| 7994 | friend void ManagedThreadBase::FinalizerAppDomain(AppDomain* pAppDomain, |
| 7995 | ADCallBackFcnType pTarget, |
| 7996 | LPVOID args, |
| 7997 | ManagedThreadCallState *pTurnAround); |
| 7998 | }; |
| 7999 | |
| 8000 | // The following static helpers are outside of the ManagedThreadBase struct because I |
| 8001 | // don't want to change threads.h whenever I change the mechanism for how unhandled |
| 8002 | // exceptions works. The ManagedThreadBase struct is for the public exposure of the |
| 8003 | // API only. |
| 8004 | |
| 8005 | static void ManagedThreadBase_DispatchOuter(ManagedThreadCallState *pCallState); |
| 8006 | |
| 8007 | static void ManagedThreadBase_DispatchInner(ManagedThreadCallState *pCallState) |
| 8008 | { |
| 8009 | CONTRACTL |
| 8010 | { |
| 8011 | GC_TRIGGERS; |
| 8012 | THROWS; |
| 8013 | MODE_COOPERATIVE; |
| 8014 | } |
| 8015 | CONTRACTL_END; |
| 8016 | |
| 8017 | // Go ahead and dispatch the call. |
| 8018 | (*pCallState->pTarget) (pCallState->args); |
| 8019 | } |
| 8020 | |
| 8021 | static void ManagedThreadBase_DispatchMiddle(ManagedThreadCallState *pCallState) |
| 8022 | { |
| 8023 | STATIC_CONTRACT_GC_TRIGGERS; |
| 8024 | STATIC_CONTRACT_THROWS; |
| 8025 | STATIC_CONTRACT_MODE_COOPERATIVE; |
| 8026 | STATIC_CONTRACT_SO_TOLERANT; |
| 8027 | |
| 8028 | // We have the probe outside the EX_TRY below since corresponding EX_CATCH |
| 8029 | // also invokes SO_INTOLERANT code. |
| 8030 | BEGIN_SO_INTOLERANT_CODE(GetThread()); |
| 8031 | |
| 8032 | EX_TRY_CPP_ONLY |
| 8033 | { |
| 8034 | // During an unwind, we have some cleanup: |
| 8035 | // |
| 8036 | // 1) We should no longer suppress any unhandled exception reporting at the base |
| 8037 | // of the thread, because any handler that contained the exception to the AppDomain |
| 8038 | // where it occurred is now being removed from the stack. |
| 8039 | // |
| 8040 | // 2) We need to unwind the Frame chain. We cannot do it when we get to the __except clause |
| 8041 | // because at this point we are in the 2nd phase and the stack has been popped. Any |
| 8042 | // stack crawling from another thread will see a frame chain in a popped region of stack. |
| 8043 | // Nor can we pop it in a filter, since this would destroy all the stack-walking information |
| 8044 | // we need to perform the 2nd pass. So doing it in a C++ destructor will ensure it happens |
| 8045 | // during the 2nd pass but before the stack is actually popped. |
| 8046 | class Cleanup |
| 8047 | { |
| 8048 | Frame *m_pEntryFrame; |
| 8049 | Thread *m_pThread; |
| 8050 | |
| 8051 | public: |
| 8052 | Cleanup(Thread* pThread) |
| 8053 | { |
| 8054 | m_pThread = pThread; |
| 8055 | m_pEntryFrame = pThread->m_pFrame; |
| 8056 | } |
| 8057 | |
| 8058 | ~Cleanup() |
| 8059 | { |
| 8060 | GCX_COOP(); |
| 8061 | m_pThread->SetFrame(m_pEntryFrame); |
| 8062 | m_pThread->ResetThreadStateNC(Thread::TSNC_AppDomainContainUnhandled); |
| 8063 | } |
| 8064 | }; |
| 8065 | |
| 8066 | Cleanup cleanup(GetThread()); |
| 8067 | |
| 8068 | ManagedThreadBase_DispatchInner(pCallState); |
| 8069 | } |
| 8070 | EX_CATCH_CPP_ONLY |
| 8071 | { |
| 8072 | GCX_COOP(); |
| 8073 | Exception *pException = GET_EXCEPTION(); |
| 8074 | |
| 8075 | // RudeThreadAbort is a pre-allocated instance of ThreadAbort. So the following is sufficient. |
| 8076 | // For Whidbey, by default only swallow certain exceptions. If reverting back to Everett's |
| 8077 | // behavior (swallowing all unhandled exception), then swallow all unhandled exception. |
| 8078 | // |
| 8079 | if (SwallowUnhandledExceptions() || |
| 8080 | IsExceptionOfType(kThreadAbortException, pException)) |
| 8081 | { |
| 8082 | // Do nothing to swallow the exception |
| 8083 | } |
| 8084 | else |
| 8085 | { |
| 8086 | // Setting up the unwind_and_continue_handler ensures that C++ exceptions do not leak out. |
| 8087 | // An example is when Thread1 in Default AppDomain creates AppDomain2, enters it, creates |
| 8088 | // another thread T2 and T2 throws OOM exception (that goes unhandled). At the transition |
| 8089 | // boundary, END_DOMAIN_TRANSITION will catch it and invoke RaiseCrossContextException |
| 8090 | // that will rethrow the OOM as a C++ exception. |
| 8091 | // |
| 8092 | // Without unwind_and_continue_handler below, the exception will fly up the stack to |
| 8093 | // this point, where it will be rethrown and thus leak out. |
| 8094 | INSTALL_UNWIND_AND_CONTINUE_HANDLER; |
| 8095 | |
| 8096 | EX_RETHROW; |
| 8097 | |
| 8098 | UNINSTALL_UNWIND_AND_CONTINUE_HANDLER; |
| 8099 | } |
| 8100 | } |
| 8101 | EX_END_CATCH(SwallowAllExceptions); |
| 8102 | |
| 8103 | END_SO_INTOLERANT_CODE; |
| 8104 | } |
| 8105 | |
| 8106 | /* |
| 8107 | typedef struct Param |
| 8108 | { |
| 8109 | ManagedThreadCallState * m_pCallState; |
| 8110 | Frame * m_pFrame; |
| 8111 | Param(ManagedThreadCallState * pCallState, Frame * pFrame): m_pCallState(pCallState), m_pFrame(pFrame) {} |
| 8112 | } TryParam; |
| 8113 | */ |
| 8114 | typedef struct Param: public NotifyOfCHFFilterWrapperParam |
| 8115 | { |
| 8116 | ManagedThreadCallState * m_pCallState; |
| 8117 | Param(ManagedThreadCallState * pCallState): m_pCallState(pCallState) {} |
| 8118 | } TryParam; |
| 8119 | |
| 8120 | // Dispatch to the appropriate filter, based on the active CallState. |
| 8121 | static LONG ThreadBaseRedirectingFilter(PEXCEPTION_POINTERS pExceptionInfo, LPVOID pParam) |
| 8122 | { |
| 8123 | STATIC_CONTRACT_THROWS; |
| 8124 | STATIC_CONTRACT_GC_TRIGGERS; |
| 8125 | STATIC_CONTRACT_MODE_ANY; |
| 8126 | |
| 8127 | LONG (*ptrFilter) (PEXCEPTION_POINTERS, PVOID); |
| 8128 | |
| 8129 | TryParam * pRealParam = reinterpret_cast<TryParam *>(pParam); |
| 8130 | ManagedThreadCallState * _pCallState = pRealParam->m_pCallState; |
| 8131 | ManagedThreadCallStateFlags flags = _pCallState->flags; |
| 8132 | |
| 8133 | if (flags == MTCSF_SuppressDuplicate) |
| 8134 | { |
| 8135 | LOG((LF_EH, LL_INFO100, "ThreadBaseRedirectingFilter: setting TSNC_AppDomainContainUnhandled\n" )); |
| 8136 | GetThread()->SetThreadStateNC(Thread::TSNC_AppDomainContainUnhandled); |
| 8137 | return EXCEPTION_CONTINUE_SEARCH; |
| 8138 | } |
| 8139 | |
| 8140 | LONG ret = -1; |
| 8141 | BEGIN_SO_INTOLERANT_CODE_NO_THROW_CHECK_THREAD(return EXCEPTION_CONTINUE_SEARCH;); |
| 8142 | |
| 8143 | // This will invoke the swallowing filter. If that returns EXCEPTION_CONTINUE_SEARCH, |
| 8144 | // it will trigger unhandled exception processing. |
| 8145 | ptrFilter = ThreadBaseExceptionAppDomainFilter; |
| 8146 | |
| 8147 | // WARNING - ptrFilter may not return |
| 8148 | // This occurs when the debugger decides to intercept an exception and catch it in a frame closer |
| 8149 | // to the leaf than the one executing this filter |
| 8150 | ret = (*ptrFilter) (pExceptionInfo, _pCallState); |
| 8151 | |
| 8152 | // Although EXCEPTION_EXECUTE_HANDLER can also be returned in cases corresponding to |
| 8153 | // unhandled exceptions, all of those cases have already notified the debugger of an unhandled |
| 8154 | // exception which prevents a second notification indicating the exception was caught |
| 8155 | if (ret == EXCEPTION_EXECUTE_HANDLER) |
| 8156 | { |
| 8157 | |
| 8158 | // WARNING - NotifyOfCHFFilterWrapper may not return |
| 8159 | // This occurs when the debugger decides to intercept an exception and catch it in a frame closer |
| 8160 | // to the leaf than the one executing this filter |
| 8161 | NotifyOfCHFFilterWrapper(pExceptionInfo, pRealParam); |
| 8162 | } |
| 8163 | |
| 8164 | // If we are containing unhandled exceptions to the AppDomain we transitioned into, and the |
| 8165 | // exception is coming out, then this exception is going unhandled. We have already done |
| 8166 | // Watson and managed events, so suppress all filters below us. Otherwise we are swallowing |
| 8167 | // it and returning out of the AppDomain. |
| 8168 | if (flags == MTCSF_ContainToAppDomain) |
| 8169 | { |
| 8170 | if(ret == EXCEPTION_CONTINUE_SEARCH) |
| 8171 | { |
| 8172 | _pCallState->flags = MTCSF_SuppressDuplicate; |
| 8173 | } |
| 8174 | else if(ret == EXCEPTION_EXECUTE_HANDLER) |
| 8175 | { |
| 8176 | _pCallState->flags = MTCSF_NormalBase; |
| 8177 | } |
| 8178 | // else if( EXCEPTION_CONTINUE_EXECUTION ) do nothing |
| 8179 | } |
| 8180 | |
| 8181 | // Get the reference to the current thread.. |
| 8182 | Thread *pCurThread = GetThread(); |
| 8183 | _ASSERTE(pCurThread); |
| 8184 | |
| 8185 | if (flags == MTCSF_ContainToAppDomain) |
| 8186 | { |
| 8187 | |
| 8188 | if (((ManagedThreadCallState *) _pCallState)->flags == MTCSF_SuppressDuplicate) |
| 8189 | { |
| 8190 | // Set the flag that we have done unhandled exception processing |
| 8191 | // for this managed thread that started in a non-default domain |
| 8192 | LOG((LF_EH, LL_INFO100, "ThreadBaseRedirectingFilter: setting TSNC_AppDomainContainUnhandled\n" )); |
| 8193 | pCurThread->SetThreadStateNC(Thread::TSNC_AppDomainContainUnhandled); |
| 8194 | } |
| 8195 | } |
| 8196 | else |
| 8197 | { |
| 8198 | _ASSERTE(flags == MTCSF_NormalBase); |
| 8199 | |
| 8200 | LOG((LF_EH, LL_INFO100, "ThreadBaseRedirectingFilter: setting TSNC_ProcessedUnhandledException\n" )); |
| 8201 | |
| 8202 | // |
| 8203 | // In the default domain, when an exception goes unhandled on a managed thread whose threadbase is in the VM (e.g. explicitly spawned threads, |
| 8204 | // ThreadPool threads, finalizer thread, etc), CLR can end up in the unhandled exception processing path twice. |
| 8205 | // |
| 8206 | // The first attempt to perform UE processing happens at the managed thread base (via this function). When it completes, |
| 8207 | // we will set TSNC_ProcessedUnhandledException state against the thread to indicate that we have perform the unhandled exception processing. |
| 8208 | // |
| 8209 | // On the desktop CLR, after the first attempt, we will return back to the OS with EXCEPTION_CONTINUE_SEARCH as unhandled exceptions cannot be swallowed. When the exception reaches |
| 8210 | // the native threadbase in the OS kernel, the OS will invoke the UEF registered for the process. This can result in CLR's UEF (COMUnhandledExceptionFilter) |
| 8211 | // getting invoked that will attempt to perform UE processing yet again for the same thread. To avoid this duplicate processing, we check the presence of |
| 8212 | // TSNC_ProcessedUnhandledException state on the thread and if present, we simply return back to the OS. |
| 8213 | // |
| 8214 | // On desktop CoreCLR, we will only do UE processing once (at the managed threadbase) since no thread is created in default domain - all are created and executed in non-default domain. |
| 8215 | // As a result, we go via completely different codepath that prevents duplication of UE processing from happening, especially since desktop CoreCLR is targetted for SL and SL |
| 8216 | // always passes us a flag to swallow unhandled exceptions. |
| 8217 | // |
| 8218 | // On CoreSys CoreCLR, the host can ask CoreCLR to run all code in the default domain. As a result, when we return from the first attempt to perform UE |
| 8219 | // processing, the call could return back with EXCEPTION_EXECUTE_HANDLER since, like desktop CoreCLR is instructed by SL host to swallow all unhandled exceptions, |
| 8220 | // CoreSys CoreCLR can also be instructed by its Phone host to swallow all unhandled exceptions. As a result, the exception dispatch will never continue to go upstack |
| 8221 | // to the native threadbase in the OS kernel and thus, there will never be a second attempt to perform UE processing. Hence, we dont, and shouldnt, need to set |
| 8222 | // TSNC_ProcessedUnhandledException state against the thread if we are in SingleAppDomain mode and have been asked to swallow the exception. |
| 8223 | // |
| 8224 | // If we continue to set TSNC_ProcessedUnhandledException and a ThreadPool Thread A has an exception go unhandled, we will swallow it correctly for the first time. |
| 8225 | // The next time Thread A has an exception go unhandled, our UEF will see TSNC_ProcessedUnhandledException set and assume (incorrectly) UE processing has happened and |
| 8226 | // will fail to honor the host policy (e.g. swallow unhandled exception). Thus, the 2nd unhandled exception may end up crashing the app when it should not. |
| 8227 | // |
| 8228 | if (ret != EXCEPTION_EXECUTE_HANDLER) |
| 8229 | { |
| 8230 | // Since we have already done unhandled exception processing for it, we dont want it |
| 8231 | // to happen again if our UEF gets invoked upon returning back to the OS. |
| 8232 | // |
| 8233 | // Set the flag to indicate so. |
| 8234 | pCurThread->SetThreadStateNC(Thread::TSNC_ProcessedUnhandledException); |
| 8235 | } |
| 8236 | } |
| 8237 | |
| 8238 | |
| 8239 | END_SO_INTOLERANT_CODE; |
| 8240 | return ret; |
| 8241 | } |
| 8242 | |
| 8243 | static void ManagedThreadBase_DispatchOuter(ManagedThreadCallState *pCallState) |
| 8244 | { |
| 8245 | STATIC_CONTRACT_GC_TRIGGERS; |
| 8246 | STATIC_CONTRACT_THROWS; |
| 8247 | STATIC_CONTRACT_MODE_COOPERATIVE; |
| 8248 | |
| 8249 | // HasStarted() must have already been performed by our caller |
| 8250 | _ASSERTE(GetThread() != NULL); |
| 8251 | |
| 8252 | Thread *pThread = GetThread(); |
| 8253 | #ifdef WIN64EXCEPTIONS |
| 8254 | Frame *pFrame = pThread->m_pFrame; |
| 8255 | #endif // WIN64EXCEPTIONS |
| 8256 | |
| 8257 | // The sole purpose of having this frame is to tell the debugger that we have a catch handler here |
| 8258 | // which may swallow managed exceptions. The debugger needs this in order to send a |
| 8259 | // CatchHandlerFound (CHF) notification. |
| 8260 | FrameWithCookie<DebuggerU2MCatchHandlerFrame> catchFrame; |
| 8261 | |
| 8262 | TryParam param(pCallState); |
| 8263 | param.pFrame = &catchFrame; |
| 8264 | |
| 8265 | struct TryArgs |
| 8266 | { |
| 8267 | TryParam *pTryParam; |
| 8268 | Thread *pThread; |
| 8269 | |
| 8270 | BOOL *pfHadException; |
| 8271 | |
| 8272 | #ifdef WIN64EXCEPTIONS |
| 8273 | Frame *pFrame; |
| 8274 | #endif // WIN64EXCEPTIONS |
| 8275 | }args; |
| 8276 | |
| 8277 | args.pTryParam = ¶m; |
| 8278 | args.pThread = pThread; |
| 8279 | |
| 8280 | BOOL fHadException = TRUE; |
| 8281 | args.pfHadException = &fHadException; |
| 8282 | |
| 8283 | #ifdef WIN64EXCEPTIONS |
| 8284 | args.pFrame = pFrame; |
| 8285 | #endif // WIN64EXCEPTIONS |
| 8286 | |
| 8287 | PAL_TRY(TryArgs *, pArgs, &args) |
| 8288 | { |
| 8289 | PAL_TRY(TryParam *, pParam, pArgs->pTryParam) |
| 8290 | { |
| 8291 | ManagedThreadBase_DispatchMiddle(pParam->m_pCallState); |
| 8292 | } |
| 8293 | PAL_EXCEPT_FILTER(ThreadBaseRedirectingFilter) |
| 8294 | { |
| 8295 | // Note: one of our C++ exceptions will never reach this filter because they're always caught by |
| 8296 | // the EX_CATCH in ManagedThreadBase_DispatchMiddle(). |
| 8297 | // |
| 8298 | // If eCLRDeterminedPolicy, we only swallow for TA, RTA, and ADU exception. |
| 8299 | // For eHostDeterminedPolicy, we will swallow all the managed exception. |
| 8300 | #ifdef WIN64EXCEPTIONS |
| 8301 | // this must be done after the second pass has run, it does not |
| 8302 | // reference anything on the stack, so it is safe to run in an |
| 8303 | // SEH __except clause as well as a C++ catch clause. |
| 8304 | ExceptionTracker::PopTrackers(pArgs->pFrame); |
| 8305 | #endif // WIN64EXCEPTIONS |
| 8306 | |
| 8307 | // Fortunately, ThreadAbortExceptions are always |
| 8308 | if (pArgs->pThread->IsAbortRequested()) |
| 8309 | pArgs->pThread->EEResetAbort(Thread::TAR_Thread); |
| 8310 | } |
| 8311 | PAL_ENDTRY; |
| 8312 | |
| 8313 | *(pArgs->pfHadException) = FALSE; |
| 8314 | } |
| 8315 | PAL_FINALLY |
| 8316 | { |
| 8317 | catchFrame.Pop(); |
| 8318 | } |
| 8319 | PAL_ENDTRY; |
| 8320 | } |
| 8321 | |
| 8322 | |
| 8323 | // For the implementation, there are three variants of work possible: |
| 8324 | |
| 8325 | // 1. Establish the base of a managed thread, and switch to the correct AppDomain. |
| 8326 | static void ManagedThreadBase_FullTransitionWithAD(ADID pAppDomain, |
| 8327 | ADCallBackFcnType pTarget, |
| 8328 | LPVOID args, |
| 8329 | UnhandledExceptionLocation filterType) |
| 8330 | { |
| 8331 | CONTRACTL |
| 8332 | { |
| 8333 | GC_TRIGGERS; |
| 8334 | THROWS; |
| 8335 | MODE_COOPERATIVE; |
| 8336 | } |
| 8337 | CONTRACTL_END; |
| 8338 | |
| 8339 | ManagedThreadCallState CallState(pAppDomain, pTarget, args, filterType, MTCSF_NormalBase); |
| 8340 | ManagedThreadBase_DispatchOuter(&CallState); |
| 8341 | } |
| 8342 | |
| 8343 | // 2. Establish the base of a managed thread, but the AppDomain transition must be |
| 8344 | // deferred until later. |
| 8345 | void ManagedThreadBase_NoADTransition(ADCallBackFcnType pTarget, |
| 8346 | UnhandledExceptionLocation filterType) |
| 8347 | { |
| 8348 | CONTRACTL |
| 8349 | { |
| 8350 | GC_TRIGGERS; |
| 8351 | THROWS; |
| 8352 | MODE_COOPERATIVE; |
| 8353 | } |
| 8354 | CONTRACTL_END; |
| 8355 | |
| 8356 | AppDomain *pAppDomain = GetAppDomain(); |
| 8357 | |
| 8358 | ManagedThreadCallState CallState(pAppDomain, pTarget, NULL, filterType, MTCSF_NormalBase); |
| 8359 | |
| 8360 | // self-describing, to create a pTurnAround data for eventual delivery to a subsequent AppDomain |
| 8361 | // transition. |
| 8362 | CallState.args = &CallState; |
| 8363 | |
| 8364 | ManagedThreadBase_DispatchOuter(&CallState); |
| 8365 | } |
| 8366 | |
| 8367 | |
| 8368 | |
| 8369 | // And here are the various exposed entrypoints for base thread behavior |
| 8370 | |
| 8371 | // The 'new Thread(...).Start()' case from COMSynchronizable kickoff thread worker |
| 8372 | void ManagedThreadBase::KickOff(ADID pAppDomain, ADCallBackFcnType pTarget, LPVOID args) |
| 8373 | { |
| 8374 | WRAPPER_NO_CONTRACT; |
| 8375 | ManagedThreadBase_FullTransitionWithAD(pAppDomain, pTarget, args, ManagedThread); |
| 8376 | } |
| 8377 | |
| 8378 | // The IOCompletion, QueueUserWorkItem, AddTimer, RegisterWaitForSingleObject cases in the ThreadPool |
| 8379 | void ManagedThreadBase::ThreadPool(ADID pAppDomain, ADCallBackFcnType pTarget, LPVOID args) |
| 8380 | { |
| 8381 | WRAPPER_NO_CONTRACT; |
| 8382 | ManagedThreadBase_FullTransitionWithAD(pAppDomain, pTarget, args, ThreadPoolThread); |
| 8383 | } |
| 8384 | |
| 8385 | // The Finalizer thread establishes exception handling at its base, but defers all the AppDomain |
| 8386 | // transitions. |
| 8387 | void ManagedThreadBase::FinalizerBase(ADCallBackFcnType pTarget) |
| 8388 | { |
| 8389 | WRAPPER_NO_CONTRACT; |
| 8390 | ManagedThreadBase_NoADTransition(pTarget, FinalizerThread); |
| 8391 | } |
| 8392 | |
| 8393 | void ManagedThreadBase::FinalizerAppDomain(AppDomain *pAppDomain, |
| 8394 | ADCallBackFcnType pTarget, |
| 8395 | LPVOID args, |
| 8396 | ManagedThreadCallState *pTurnAround) |
| 8397 | { |
| 8398 | WRAPPER_NO_CONTRACT; |
| 8399 | pTurnAround->InitForFinalizer(pAppDomain,pTarget,args); |
| 8400 | _ASSERTE(pTurnAround->flags == MTCSF_NormalBase); |
| 8401 | ManagedThreadBase_DispatchInner(pTurnAround); |
| 8402 | } |
| 8403 | |
| 8404 | //+---------------------------------------------------------------------------- |
| 8405 | // |
| 8406 | // Method: Thread::GetStaticFieldAddress private |
| 8407 | // |
| 8408 | // Synopsis: Get the address of the field relative to the current thread. |
| 8409 | // If an address has not been assigned yet then create one. |
| 8410 | // |
| 8411 | //+---------------------------------------------------------------------------- |
| 8412 | |
| 8413 | LPVOID Thread::GetStaticFieldAddress(FieldDesc *pFD) |
| 8414 | { |
| 8415 | CONTRACTL { |
| 8416 | THROWS; |
| 8417 | GC_TRIGGERS; |
| 8418 | } |
| 8419 | CONTRACTL_END; |
| 8420 | |
| 8421 | _ASSERTE(pFD != NULL); |
| 8422 | _ASSERTE(pFD->IsThreadStatic()); |
| 8423 | _ASSERTE(!pFD->IsRVA()); |
| 8424 | |
| 8425 | // for static field the MethodTable is exact even for generic classes |
| 8426 | MethodTable *pMT = pFD->GetEnclosingMethodTable(); |
| 8427 | |
| 8428 | // We need to make sure that the class has been allocated, however |
| 8429 | // we should not call the class constructor |
| 8430 | ThreadStatics::GetTLM(pMT)->EnsureClassAllocated(pMT); |
| 8431 | |
| 8432 | PTR_BYTE base = NULL; |
| 8433 | |
| 8434 | if (pFD->GetFieldType() == ELEMENT_TYPE_CLASS || |
| 8435 | pFD->GetFieldType() == ELEMENT_TYPE_VALUETYPE) |
| 8436 | { |
| 8437 | base = pMT->GetGCThreadStaticsBasePointer(); |
| 8438 | } |
| 8439 | else |
| 8440 | { |
| 8441 | base = pMT->GetNonGCThreadStaticsBasePointer(); |
| 8442 | } |
| 8443 | |
| 8444 | _ASSERTE(base != NULL); |
| 8445 | |
| 8446 | DWORD offset = pFD->GetOffset(); |
| 8447 | _ASSERTE(offset <= FIELD_OFFSET_LAST_REAL_OFFSET); |
| 8448 | |
| 8449 | LPVOID result = (LPVOID)((PTR_BYTE)base + (DWORD)offset); |
| 8450 | |
| 8451 | // For value classes, the handle points at an OBJECTREF |
| 8452 | // which holds the boxed value class, so derefernce and unbox. |
| 8453 | if (pFD->GetFieldType() == ELEMENT_TYPE_VALUETYPE) |
| 8454 | { |
| 8455 | OBJECTREF obj = ObjectToOBJECTREF(*(Object**) result); |
| 8456 | result = obj->GetData(); |
| 8457 | } |
| 8458 | |
| 8459 | return result; |
| 8460 | } |
| 8461 | |
| 8462 | #endif // #ifndef DACCESS_COMPILE |
| 8463 | |
| 8464 | //+---------------------------------------------------------------------------- |
| 8465 | // |
| 8466 | // Method: Thread::GetStaticFieldAddrNoCreate private |
| 8467 | // |
| 8468 | // Synopsis: Get the address of the field relative to the thread. |
| 8469 | // If an address has not been assigned, return NULL. |
| 8470 | // No creating is allowed. |
| 8471 | // |
| 8472 | //+---------------------------------------------------------------------------- |
| 8473 | |
| 8474 | TADDR Thread::GetStaticFieldAddrNoCreate(FieldDesc *pFD) |
| 8475 | { |
| 8476 | CONTRACTL { |
| 8477 | NOTHROW; |
| 8478 | GC_NOTRIGGER; |
| 8479 | SUPPORTS_DAC; |
| 8480 | } |
| 8481 | CONTRACTL_END; |
| 8482 | |
| 8483 | _ASSERTE(pFD != NULL); |
| 8484 | _ASSERTE(pFD->IsThreadStatic()); |
| 8485 | |
| 8486 | // for static field the MethodTable is exact even for generic classes |
| 8487 | PTR_MethodTable pMT = pFD->GetEnclosingMethodTable(); |
| 8488 | |
| 8489 | PTR_BYTE base = NULL; |
| 8490 | |
| 8491 | if (pFD->GetFieldType() == ELEMENT_TYPE_CLASS || |
| 8492 | pFD->GetFieldType() == ELEMENT_TYPE_VALUETYPE) |
| 8493 | { |
| 8494 | base = pMT->GetGCThreadStaticsBasePointer(dac_cast<PTR_Thread>(this)); |
| 8495 | } |
| 8496 | else |
| 8497 | { |
| 8498 | base = pMT->GetNonGCThreadStaticsBasePointer(dac_cast<PTR_Thread>(this)); |
| 8499 | } |
| 8500 | |
| 8501 | if (base == NULL) |
| 8502 | return NULL; |
| 8503 | |
| 8504 | DWORD offset = pFD->GetOffset(); |
| 8505 | _ASSERTE(offset <= FIELD_OFFSET_LAST_REAL_OFFSET); |
| 8506 | |
| 8507 | TADDR result = dac_cast<TADDR>(base) + (DWORD)offset; |
| 8508 | |
| 8509 | // For value classes, the handle points at an OBJECTREF |
| 8510 | // which holds the boxed value class, so derefernce and unbox. |
| 8511 | if (pFD->IsByValue()) |
| 8512 | { |
| 8513 | _ASSERTE(result != NULL); |
| 8514 | PTR_Object obj = *PTR_UNCHECKED_OBJECTREF(result); |
| 8515 | if (obj == NULL) |
| 8516 | return NULL; |
| 8517 | result = dac_cast<TADDR>(obj->GetData()); |
| 8518 | } |
| 8519 | |
| 8520 | return result; |
| 8521 | } |
| 8522 | |
| 8523 | #ifndef DACCESS_COMPILE |
| 8524 | |
| 8525 | // |
| 8526 | // NotifyFrameChainOfExceptionUnwind |
| 8527 | // ----------------------------------------------------------- |
| 8528 | // This method will walk the Frame chain from pStartFrame to |
| 8529 | // the last frame that is below pvLimitSP and will call each |
| 8530 | // frame's ExceptionUnwind method. It will return the first |
| 8531 | // Frame that is above pvLimitSP. |
| 8532 | // |
| 8533 | Frame * Thread::NotifyFrameChainOfExceptionUnwind(Frame* pStartFrame, LPVOID pvLimitSP) |
| 8534 | { |
| 8535 | CONTRACTL |
| 8536 | { |
| 8537 | NOTHROW; |
| 8538 | DISABLED(GC_TRIGGERS); // due to UnwindFrameChain from NOTRIGGER areas |
| 8539 | MODE_COOPERATIVE; |
| 8540 | PRECONDITION(CheckPointer(pStartFrame)); |
| 8541 | PRECONDITION(CheckPointer(pvLimitSP)); |
| 8542 | } |
| 8543 | CONTRACTL_END; |
| 8544 | |
| 8545 | Frame * pFrame; |
| 8546 | |
| 8547 | #ifdef _DEBUG |
| 8548 | // |
| 8549 | // assert that the specified Thread's Frame chain actually |
| 8550 | // contains the start Frame. |
| 8551 | // |
| 8552 | pFrame = m_pFrame; |
| 8553 | while ((pFrame != pStartFrame) && |
| 8554 | (pFrame != FRAME_TOP)) |
| 8555 | { |
| 8556 | pFrame = pFrame->Next(); |
| 8557 | } |
| 8558 | CONSISTENCY_CHECK_MSG(pFrame == pStartFrame, "pStartFrame is not on pThread's Frame chain!" ); |
| 8559 | #endif // _DEBUG |
| 8560 | |
| 8561 | pFrame = pStartFrame; |
| 8562 | while (pFrame < pvLimitSP) |
| 8563 | { |
| 8564 | CONSISTENCY_CHECK(pFrame != PTR_NULL); |
| 8565 | CONSISTENCY_CHECK((pFrame) > static_cast<Frame *>((LPVOID)GetCurrentSP())); |
| 8566 | pFrame->ExceptionUnwind(); |
| 8567 | pFrame = pFrame->Next(); |
| 8568 | } |
| 8569 | |
| 8570 | // return the frame after the last one notified of the unwind |
| 8571 | return pFrame; |
| 8572 | } |
| 8573 | |
| 8574 | //+---------------------------------------------------------------------------- |
| 8575 | // |
| 8576 | // Method: Thread::DeleteThreadStaticData private |
| 8577 | // |
| 8578 | // Synopsis: Delete the static data for each appdomain that this thread |
| 8579 | // visited. |
| 8580 | // |
| 8581 | // |
| 8582 | //+---------------------------------------------------------------------------- |
| 8583 | |
| 8584 | void Thread::DeleteThreadStaticData() |
| 8585 | { |
| 8586 | CONTRACTL { |
| 8587 | NOTHROW; |
| 8588 | GC_NOTRIGGER; |
| 8589 | } |
| 8590 | CONTRACTL_END; |
| 8591 | |
| 8592 | m_ThreadLocalBlock.FreeTable(); |
| 8593 | } |
| 8594 | |
| 8595 | //+---------------------------------------------------------------------------- |
| 8596 | // |
| 8597 | // Method: Thread::DeleteThreadStaticData public |
| 8598 | // |
| 8599 | // Synopsis: Delete the static data for the given module. This is called |
| 8600 | // when the AssemblyLoadContext unloads. |
| 8601 | // |
| 8602 | // |
| 8603 | //+---------------------------------------------------------------------------- |
| 8604 | |
| 8605 | void Thread::DeleteThreadStaticData(ModuleIndex index) |
| 8606 | { |
| 8607 | m_ThreadLocalBlock.FreeTLM(index.m_dwIndex, FALSE /* isThreadShuttingDown */); |
| 8608 | } |
| 8609 | |
| 8610 | OBJECTREF Thread::GetCulture(BOOL bUICulture) |
| 8611 | { |
| 8612 | CONTRACTL { |
| 8613 | THROWS; |
| 8614 | GC_TRIGGERS; |
| 8615 | MODE_COOPERATIVE; |
| 8616 | } |
| 8617 | CONTRACTL_END; |
| 8618 | |
| 8619 | FieldDesc * pFD; |
| 8620 | |
| 8621 | // This is the case when we're building mscorlib and haven't yet created |
| 8622 | // the system assembly. |
| 8623 | if (SystemDomain::System()->SystemAssembly()==NULL || g_fForbidEnterEE) { |
| 8624 | return NULL; |
| 8625 | } |
| 8626 | |
| 8627 | OBJECTREF pCurrentCulture; |
| 8628 | if (bUICulture) { |
| 8629 | // Call the Getter for the CurrentUICulture. This will cause it to populate the field. |
| 8630 | MethodDescCallSite propGet(METHOD__CULTURE_INFO__GET_CURRENT_UI_CULTURE); |
| 8631 | ARG_SLOT retVal = propGet.Call_RetArgSlot(NULL); |
| 8632 | pCurrentCulture = ArgSlotToObj(retVal); |
| 8633 | } else { |
| 8634 | //This is faster than calling the property, because this is what the call does anyway. |
| 8635 | pFD = MscorlibBinder::GetField(FIELD__CULTURE_INFO__CURRENT_CULTURE); |
| 8636 | _ASSERTE(pFD); |
| 8637 | |
| 8638 | pFD->CheckRunClassInitThrowing(); |
| 8639 | |
| 8640 | pCurrentCulture = pFD->GetStaticOBJECTREF(); |
| 8641 | _ASSERTE(pCurrentCulture!=NULL); |
| 8642 | } |
| 8643 | |
| 8644 | return pCurrentCulture; |
| 8645 | } |
| 8646 | |
| 8647 | void Thread::SetCulture(OBJECTREF *CultureObj, BOOL bUICulture) |
| 8648 | { |
| 8649 | CONTRACTL { |
| 8650 | THROWS; |
| 8651 | GC_TRIGGERS; |
| 8652 | MODE_COOPERATIVE; |
| 8653 | } |
| 8654 | CONTRACTL_END; |
| 8655 | |
| 8656 | MethodDescCallSite propSet(bUICulture |
| 8657 | ? METHOD__CULTURE_INFO__SET_CURRENT_UI_CULTURE |
| 8658 | : METHOD__CULTURE_INFO__SET_CURRENT_CULTURE); |
| 8659 | |
| 8660 | // Set up the Stack. |
| 8661 | ARG_SLOT pNewArgs[] = { |
| 8662 | ObjToArgSlot(*CultureObj) |
| 8663 | }; |
| 8664 | |
| 8665 | // Make the actual call. |
| 8666 | propSet.Call_RetArgSlot(pNewArgs); |
| 8667 | } |
| 8668 | |
| 8669 | void Thread::SetHasPromotedBytes () |
| 8670 | { |
| 8671 | CONTRACTL { |
| 8672 | NOTHROW; |
| 8673 | GC_NOTRIGGER; |
| 8674 | } |
| 8675 | CONTRACTL_END; |
| 8676 | |
| 8677 | m_fPromoted = TRUE; |
| 8678 | |
| 8679 | _ASSERTE(GCHeapUtilities::IsGCInProgress() && IsGCThread ()); |
| 8680 | |
| 8681 | if (!m_fPreemptiveGCDisabled) |
| 8682 | { |
| 8683 | if (FRAME_TOP == GetFrame()) |
| 8684 | m_fPromoted = FALSE; |
| 8685 | } |
| 8686 | } |
| 8687 | |
| 8688 | BOOL ThreadStore::HoldingThreadStore(Thread *pThread) |
| 8689 | { |
| 8690 | CONTRACTL { |
| 8691 | NOTHROW; |
| 8692 | GC_NOTRIGGER; |
| 8693 | SO_TOLERANT; |
| 8694 | } |
| 8695 | CONTRACTL_END; |
| 8696 | |
| 8697 | if (pThread) |
| 8698 | { |
| 8699 | return (pThread == s_pThreadStore->m_HoldingThread); |
| 8700 | } |
| 8701 | else |
| 8702 | { |
| 8703 | return (s_pThreadStore->m_holderthreadid.IsCurrentThread()); |
| 8704 | } |
| 8705 | } |
| 8706 | |
| 8707 | LONG Thread::GetTotalThreadPoolCompletionCount() |
| 8708 | { |
| 8709 | CONTRACTL |
| 8710 | { |
| 8711 | NOTHROW; |
| 8712 | MODE_ANY; |
| 8713 | } |
| 8714 | CONTRACTL_END; |
| 8715 | |
| 8716 | LONG total; |
| 8717 | if (g_fEEStarted) //make sure we actually have a thread store |
| 8718 | { |
| 8719 | // make sure up-to-date thread-local counts are visible to us |
| 8720 | ::FlushProcessWriteBuffers(); |
| 8721 | |
| 8722 | // enumerate all threads, summing their local counts. |
| 8723 | ThreadStoreLockHolder tsl; |
| 8724 | |
| 8725 | total = s_threadPoolCompletionCountOverflow.Load(); |
| 8726 | |
| 8727 | Thread *pThread = NULL; |
| 8728 | while ((pThread = ThreadStore::GetAllThreadList(pThread, 0, 0)) != NULL) |
| 8729 | { |
| 8730 | total += pThread->m_threadPoolCompletionCount; |
| 8731 | } |
| 8732 | } |
| 8733 | else |
| 8734 | { |
| 8735 | total = s_threadPoolCompletionCountOverflow.Load(); |
| 8736 | } |
| 8737 | |
| 8738 | return total; |
| 8739 | } |
| 8740 | |
| 8741 | |
| 8742 | INT32 Thread::ResetManagedThreadObject(INT32 nPriority) |
| 8743 | { |
| 8744 | CONTRACTL { |
| 8745 | NOTHROW; |
| 8746 | GC_TRIGGERS; |
| 8747 | } |
| 8748 | CONTRACTL_END; |
| 8749 | |
| 8750 | GCX_COOP(); |
| 8751 | return ResetManagedThreadObjectInCoopMode(nPriority); |
| 8752 | } |
| 8753 | |
| 8754 | INT32 Thread::ResetManagedThreadObjectInCoopMode(INT32 nPriority) |
| 8755 | { |
| 8756 | CONTRACTL { |
| 8757 | NOTHROW; |
| 8758 | GC_NOTRIGGER; |
| 8759 | MODE_COOPERATIVE; |
| 8760 | SO_TOLERANT; |
| 8761 | } |
| 8762 | CONTRACTL_END; |
| 8763 | |
| 8764 | THREADBASEREF pObject = (THREADBASEREF)ObjectFromHandle(m_ExposedObject); |
| 8765 | if (pObject != NULL) |
| 8766 | { |
| 8767 | pObject->ResetName(); |
| 8768 | nPriority = pObject->GetPriority(); |
| 8769 | } |
| 8770 | |
| 8771 | return nPriority; |
| 8772 | } |
| 8773 | |
| 8774 | BOOL Thread::IsRealThreadPoolResetNeeded() |
| 8775 | { |
| 8776 | CONTRACTL |
| 8777 | { |
| 8778 | NOTHROW; |
| 8779 | GC_NOTRIGGER; |
| 8780 | MODE_COOPERATIVE; |
| 8781 | SO_TOLERANT; |
| 8782 | } |
| 8783 | CONTRACTL_END; |
| 8784 | |
| 8785 | if(!IsBackground()) |
| 8786 | return TRUE; |
| 8787 | |
| 8788 | THREADBASEREF pObject = (THREADBASEREF)ObjectFromHandle(m_ExposedObject); |
| 8789 | |
| 8790 | if(pObject != NULL) |
| 8791 | { |
| 8792 | INT32 nPriority = pObject->GetPriority(); |
| 8793 | |
| 8794 | if(nPriority != ThreadNative::PRIORITY_NORMAL) |
| 8795 | return TRUE; |
| 8796 | } |
| 8797 | |
| 8798 | return FALSE; |
| 8799 | } |
| 8800 | |
| 8801 | void Thread::InternalReset(BOOL fNotFinalizerThread, BOOL fThreadObjectResetNeeded, BOOL fResetAbort) |
| 8802 | { |
| 8803 | CONTRACTL { |
| 8804 | NOTHROW; |
| 8805 | if(!fNotFinalizerThread || fThreadObjectResetNeeded) {GC_TRIGGERS;SO_INTOLERANT;} else {GC_NOTRIGGER;SO_TOLERANT;} |
| 8806 | } |
| 8807 | CONTRACTL_END; |
| 8808 | |
| 8809 | _ASSERTE (this == GetThread()); |
| 8810 | |
| 8811 | FinishSOWork(); |
| 8812 | |
| 8813 | INT32 nPriority = ThreadNative::PRIORITY_NORMAL; |
| 8814 | |
| 8815 | if (!fNotFinalizerThread && this == FinalizerThread::GetFinalizerThread()) |
| 8816 | { |
| 8817 | nPriority = ThreadNative::PRIORITY_HIGHEST; |
| 8818 | } |
| 8819 | |
| 8820 | if(fThreadObjectResetNeeded) |
| 8821 | { |
| 8822 | nPriority = ResetManagedThreadObject(nPriority); |
| 8823 | } |
| 8824 | |
| 8825 | //m_MarshalAlloc.Collapse(NULL); |
| 8826 | |
| 8827 | if (fResetAbort && IsAbortRequested()) { |
| 8828 | UnmarkThreadForAbort(TAR_ALL); |
| 8829 | } |
| 8830 | |
| 8831 | if (fResetAbort && IsAborted()) |
| 8832 | ClearAborted(); |
| 8833 | |
| 8834 | if (IsThreadPoolThread() && fThreadObjectResetNeeded) |
| 8835 | { |
| 8836 | SetBackground(TRUE); |
| 8837 | if (nPriority != ThreadNative::PRIORITY_NORMAL) |
| 8838 | { |
| 8839 | SetThreadPriority(THREAD_PRIORITY_NORMAL); |
| 8840 | } |
| 8841 | } |
| 8842 | else if (!fNotFinalizerThread && this == FinalizerThread::GetFinalizerThread()) |
| 8843 | { |
| 8844 | SetBackground(TRUE); |
| 8845 | if (nPriority != ThreadNative::PRIORITY_HIGHEST) |
| 8846 | { |
| 8847 | SetThreadPriority(THREAD_PRIORITY_HIGHEST); |
| 8848 | } |
| 8849 | } |
| 8850 | } |
| 8851 | |
| 8852 | HRESULT Thread::Abort () |
| 8853 | { |
| 8854 | CONTRACTL |
| 8855 | { |
| 8856 | NOTHROW; |
| 8857 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 8858 | SO_TOLERANT; |
| 8859 | } |
| 8860 | CONTRACTL_END; |
| 8861 | |
| 8862 | BEGIN_SO_INTOLERANT_CODE_NO_THROW_CHECK_THREAD(return COR_E_STACKOVERFLOW;); |
| 8863 | EX_TRY |
| 8864 | { |
| 8865 | UserAbort(TAR_Thread, EEPolicy::TA_Safe, INFINITE, Thread::UAC_Host); |
| 8866 | } |
| 8867 | EX_CATCH |
| 8868 | { |
| 8869 | } |
| 8870 | EX_END_CATCH(SwallowAllExceptions); |
| 8871 | END_SO_INTOLERANT_CODE; |
| 8872 | |
| 8873 | return S_OK; |
| 8874 | } |
| 8875 | |
| 8876 | HRESULT Thread::RudeAbort() |
| 8877 | { |
| 8878 | CONTRACTL |
| 8879 | { |
| 8880 | NOTHROW; |
| 8881 | if (GetThread()) {GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 8882 | SO_TOLERANT; |
| 8883 | } |
| 8884 | CONTRACTL_END; |
| 8885 | |
| 8886 | BEGIN_SO_INTOLERANT_CODE_NO_THROW_CHECK_THREAD(return COR_E_STACKOVERFLOW); |
| 8887 | |
| 8888 | EX_TRY |
| 8889 | { |
| 8890 | UserAbort(TAR_Thread, EEPolicy::TA_Rude, INFINITE, Thread::UAC_Host); |
| 8891 | } |
| 8892 | EX_CATCH |
| 8893 | { |
| 8894 | } |
| 8895 | EX_END_CATCH(SwallowAllExceptions); |
| 8896 | |
| 8897 | END_SO_INTOLERANT_CODE; |
| 8898 | |
| 8899 | return S_OK; |
| 8900 | } |
| 8901 | |
| 8902 | HRESULT Thread::NeedsPriorityScheduling(BOOL *pbNeedsPriorityScheduling) |
| 8903 | { |
| 8904 | CONTRACTL { |
| 8905 | NOTHROW; |
| 8906 | GC_NOTRIGGER; |
| 8907 | SO_TOLERANT; |
| 8908 | } |
| 8909 | CONTRACTL_END; |
| 8910 | |
| 8911 | *pbNeedsPriorityScheduling = (m_fPreemptiveGCDisabled || |
| 8912 | (g_fEEStarted && this == FinalizerThread::GetFinalizerThread())); |
| 8913 | return S_OK; |
| 8914 | } |
| 8915 | |
| 8916 | |
| 8917 | HRESULT Thread::LocksHeld(SIZE_T *pLockCount) |
| 8918 | { |
| 8919 | LIMITED_METHOD_CONTRACT; |
| 8920 | |
| 8921 | *pLockCount = m_dwLockCount; |
| 8922 | return S_OK; |
| 8923 | } |
| 8924 | |
| 8925 | HRESULT Thread::BeginPreventAsyncAbort() |
| 8926 | { |
| 8927 | WRAPPER_NO_CONTRACT; |
| 8928 | |
| 8929 | #ifdef _DEBUG |
| 8930 | int count = |
| 8931 | #endif |
| 8932 | FastInterlockIncrement((LONG*)&m_PreventAbort); |
| 8933 | |
| 8934 | #ifdef _DEBUG |
| 8935 | ASSERT(count > 0); |
| 8936 | |
| 8937 | FastInterlockIncrement((LONG*)&m_dwDisableAbortCheckCount); |
| 8938 | #endif |
| 8939 | |
| 8940 | return S_OK; |
| 8941 | } |
| 8942 | |
| 8943 | HRESULT Thread::EndPreventAsyncAbort() |
| 8944 | { |
| 8945 | WRAPPER_NO_CONTRACT; |
| 8946 | |
| 8947 | #ifdef _DEBUG |
| 8948 | int count = |
| 8949 | #endif |
| 8950 | FastInterlockDecrement((LONG*)&m_PreventAbort); |
| 8951 | |
| 8952 | #ifdef _DEBUG |
| 8953 | ASSERT(count >= 0); |
| 8954 | |
| 8955 | FastInterlockDecrement((LONG*)&m_dwDisableAbortCheckCount); |
| 8956 | #endif |
| 8957 | |
| 8958 | return S_OK; |
| 8959 | } |
| 8960 | |
| 8961 | |
| 8962 | ULONG Thread::AddRef() |
| 8963 | { |
| 8964 | WRAPPER_NO_CONTRACT; |
| 8965 | |
| 8966 | _ASSERTE(m_ExternalRefCount > 0); |
| 8967 | |
| 8968 | _ASSERTE (m_UnmanagedRefCount != (DWORD) -1); |
| 8969 | ULONG ref = FastInterlockIncrement((LONG*)&m_UnmanagedRefCount); |
| 8970 | |
| 8971 | return ref; |
| 8972 | } |
| 8973 | |
| 8974 | ULONG Thread::Release() |
| 8975 | { |
| 8976 | WRAPPER_NO_CONTRACT; |
| 8977 | SUPPORTS_DAC_HOST_ONLY; |
| 8978 | |
| 8979 | _ASSERTE (m_ExternalRefCount > 0); |
| 8980 | _ASSERTE (m_UnmanagedRefCount > 0); |
| 8981 | ULONG ref = FastInterlockDecrement((LONG*)&m_UnmanagedRefCount); |
| 8982 | return ref; |
| 8983 | } |
| 8984 | |
| 8985 | HRESULT Thread::QueryInterface(REFIID riid, void **ppUnk) |
| 8986 | { |
| 8987 | LIMITED_METHOD_CONTRACT; |
| 8988 | |
| 8989 | return E_NOINTERFACE; |
| 8990 | |
| 8991 | } |
| 8992 | |
| 8993 | void Thread::SetupThreadForHost() |
| 8994 | { |
| 8995 | CONTRACTL |
| 8996 | { |
| 8997 | THROWS; |
| 8998 | GC_TRIGGERS; |
| 8999 | SO_TOLERANT; |
| 9000 | } |
| 9001 | CONTRACTL_END; |
| 9002 | |
| 9003 | _ASSERTE (GetThread() == this); |
| 9004 | CONTRACT_VIOLATION(SOToleranceViolation); |
| 9005 | |
| 9006 | } |
| 9007 | |
| 9008 | |
| 9009 | ETaskType GetCurrentTaskType() |
| 9010 | { |
| 9011 | STATIC_CONTRACT_NOTHROW; |
| 9012 | STATIC_CONTRACT_GC_NOTRIGGER; |
| 9013 | STATIC_CONTRACT_SO_TOLERANT; |
| 9014 | |
| 9015 | ETaskType TaskType = TT_UNKNOWN; |
| 9016 | size_t type = (size_t)ClrFlsGetValue (TlsIdx_ThreadType); |
| 9017 | if (type & ThreadType_DbgHelper) |
| 9018 | { |
| 9019 | TaskType = TT_DEBUGGERHELPER; |
| 9020 | } |
| 9021 | else if (type & ThreadType_GC) |
| 9022 | { |
| 9023 | TaskType = TT_GC; |
| 9024 | } |
| 9025 | else if (type & ThreadType_Finalizer) |
| 9026 | { |
| 9027 | TaskType = TT_FINALIZER; |
| 9028 | } |
| 9029 | else if (type & ThreadType_Timer) |
| 9030 | { |
| 9031 | TaskType = TT_THREADPOOL_TIMER; |
| 9032 | } |
| 9033 | else if (type & ThreadType_Gate) |
| 9034 | { |
| 9035 | TaskType = TT_THREADPOOL_GATE; |
| 9036 | } |
| 9037 | else if (type & ThreadType_Wait) |
| 9038 | { |
| 9039 | TaskType = TT_THREADPOOL_WAIT; |
| 9040 | } |
| 9041 | else if (type & ThreadType_Threadpool_IOCompletion) |
| 9042 | { |
| 9043 | TaskType = TT_THREADPOOL_IOCOMPLETION; |
| 9044 | } |
| 9045 | else if (type & ThreadType_Threadpool_Worker) |
| 9046 | { |
| 9047 | TaskType = TT_THREADPOOL_WORKER; |
| 9048 | } |
| 9049 | else |
| 9050 | { |
| 9051 | Thread *pThread = GetThread(); |
| 9052 | if (pThread) |
| 9053 | { |
| 9054 | TaskType = TT_USER; |
| 9055 | } |
| 9056 | } |
| 9057 | |
| 9058 | return TaskType; |
| 9059 | } |
| 9060 | |
| 9061 | DeadlockAwareLock::DeadlockAwareLock(const char *description) |
| 9062 | : m_pHoldingThread(NULL) |
| 9063 | #ifdef _DEBUG |
| 9064 | , m_description(description) |
| 9065 | #endif |
| 9066 | { |
| 9067 | LIMITED_METHOD_CONTRACT; |
| 9068 | } |
| 9069 | |
| 9070 | DeadlockAwareLock::~DeadlockAwareLock() |
| 9071 | { |
| 9072 | CONTRACTL |
| 9073 | { |
| 9074 | NOTHROW; |
| 9075 | GC_NOTRIGGER; |
| 9076 | MODE_ANY; |
| 9077 | CAN_TAKE_LOCK; |
| 9078 | } |
| 9079 | CONTRACTL_END; |
| 9080 | |
| 9081 | // Wait for another thread to leave its loop in DeadlockAwareLock::TryBeginEnterLock |
| 9082 | CrstHolder lock(&g_DeadlockAwareCrst); |
| 9083 | } |
| 9084 | |
| 9085 | CHECK DeadlockAwareLock::CheckDeadlock(Thread *pThread) |
| 9086 | { |
| 9087 | CONTRACTL |
| 9088 | { |
| 9089 | PRECONDITION(g_DeadlockAwareCrst.OwnedByCurrentThread()); |
| 9090 | NOTHROW; |
| 9091 | GC_NOTRIGGER; |
| 9092 | } |
| 9093 | CONTRACTL_END; |
| 9094 | |
| 9095 | // Note that this check is recursive in order to produce descriptive check failure messages. |
| 9096 | Thread *pHoldingThread = m_pHoldingThread.Load(); |
| 9097 | if (pThread == pHoldingThread) |
| 9098 | { |
| 9099 | CHECK_FAILF(("Lock %p (%s) is held by thread %d" , this, m_description, pThread)); |
| 9100 | } |
| 9101 | |
| 9102 | if (pHoldingThread != NULL) |
| 9103 | { |
| 9104 | DeadlockAwareLock *pBlockingLock = pHoldingThread->m_pBlockingLock.Load(); |
| 9105 | if (pBlockingLock != NULL) |
| 9106 | { |
| 9107 | CHECK_MSGF(pBlockingLock->CheckDeadlock(pThread), |
| 9108 | ("Deadlock: Lock %p (%s) is held by thread %d" , this, m_description, pHoldingThread)); |
| 9109 | } |
| 9110 | } |
| 9111 | |
| 9112 | CHECK_OK; |
| 9113 | } |
| 9114 | |
| 9115 | BOOL DeadlockAwareLock::CanEnterLock() |
| 9116 | { |
| 9117 | Thread * pThread = GetThread(); |
| 9118 | |
| 9119 | CONSISTENCY_CHECK_MSG(pThread != NULL, |
| 9120 | "Cannot do deadlock detection on non-EE thread" ); |
| 9121 | CONSISTENCY_CHECK_MSG(pThread->m_pBlockingLock.Load() == NULL, |
| 9122 | "Cannot block on two locks at once" ); |
| 9123 | |
| 9124 | { |
| 9125 | CrstHolder lock(&g_DeadlockAwareCrst); |
| 9126 | |
| 9127 | // Look for deadlocks |
| 9128 | DeadlockAwareLock *pLock = this; |
| 9129 | |
| 9130 | while (TRUE) |
| 9131 | { |
| 9132 | Thread * holdingThread = pLock->m_pHoldingThread; |
| 9133 | |
| 9134 | if (holdingThread == pThread) |
| 9135 | { |
| 9136 | // Deadlock! |
| 9137 | return FALSE; |
| 9138 | } |
| 9139 | if (holdingThread == NULL) |
| 9140 | { |
| 9141 | // Lock is unheld |
| 9142 | break; |
| 9143 | } |
| 9144 | |
| 9145 | pLock = holdingThread->m_pBlockingLock; |
| 9146 | |
| 9147 | if (pLock == NULL) |
| 9148 | { |
| 9149 | // Thread is running free |
| 9150 | break; |
| 9151 | } |
| 9152 | } |
| 9153 | |
| 9154 | return TRUE; |
| 9155 | } |
| 9156 | } |
| 9157 | |
| 9158 | BOOL DeadlockAwareLock::TryBeginEnterLock() |
| 9159 | { |
| 9160 | CONTRACTL |
| 9161 | { |
| 9162 | NOTHROW; |
| 9163 | GC_NOTRIGGER; |
| 9164 | } |
| 9165 | CONTRACTL_END; |
| 9166 | |
| 9167 | Thread * pThread = GetThread(); |
| 9168 | |
| 9169 | CONSISTENCY_CHECK_MSG(pThread != NULL, |
| 9170 | "Cannot do deadlock detection on non-EE thread" ); |
| 9171 | CONSISTENCY_CHECK_MSG(pThread->m_pBlockingLock.Load() == NULL, |
| 9172 | "Cannot block on two locks at once" ); |
| 9173 | |
| 9174 | { |
| 9175 | CrstHolder lock(&g_DeadlockAwareCrst); |
| 9176 | |
| 9177 | // Look for deadlocks |
| 9178 | DeadlockAwareLock *pLock = this; |
| 9179 | |
| 9180 | while (TRUE) |
| 9181 | { |
| 9182 | Thread * holdingThread = pLock->m_pHoldingThread; |
| 9183 | |
| 9184 | if (holdingThread == pThread) |
| 9185 | { |
| 9186 | // Deadlock! |
| 9187 | return FALSE; |
| 9188 | } |
| 9189 | if (holdingThread == NULL) |
| 9190 | { |
| 9191 | // Lock is unheld |
| 9192 | break; |
| 9193 | } |
| 9194 | |
| 9195 | pLock = holdingThread->m_pBlockingLock; |
| 9196 | |
| 9197 | if (pLock == NULL) |
| 9198 | { |
| 9199 | // Thread is running free |
| 9200 | break; |
| 9201 | } |
| 9202 | } |
| 9203 | |
| 9204 | pThread->m_pBlockingLock = this; |
| 9205 | } |
| 9206 | |
| 9207 | return TRUE; |
| 9208 | }; |
| 9209 | |
| 9210 | void DeadlockAwareLock::BeginEnterLock() |
| 9211 | { |
| 9212 | CONTRACTL |
| 9213 | { |
| 9214 | NOTHROW; |
| 9215 | GC_NOTRIGGER; |
| 9216 | } |
| 9217 | CONTRACTL_END; |
| 9218 | |
| 9219 | Thread * pThread = GetThread(); |
| 9220 | |
| 9221 | CONSISTENCY_CHECK_MSG(pThread != NULL, |
| 9222 | "Cannot do deadlock detection on non-EE thread" ); |
| 9223 | CONSISTENCY_CHECK_MSG(pThread->m_pBlockingLock.Load() == NULL, |
| 9224 | "Cannot block on two locks at once" ); |
| 9225 | |
| 9226 | { |
| 9227 | CrstHolder lock(&g_DeadlockAwareCrst); |
| 9228 | |
| 9229 | // Look for deadlock loop |
| 9230 | CONSISTENCY_CHECK_MSG(CheckDeadlock(pThread), "Deadlock detected!" ); |
| 9231 | |
| 9232 | pThread->m_pBlockingLock = this; |
| 9233 | } |
| 9234 | }; |
| 9235 | |
| 9236 | void DeadlockAwareLock::EndEnterLock() |
| 9237 | { |
| 9238 | CONTRACTL |
| 9239 | { |
| 9240 | NOTHROW; |
| 9241 | GC_NOTRIGGER; |
| 9242 | } |
| 9243 | CONTRACTL_END; |
| 9244 | |
| 9245 | Thread * pThread = GetThread(); |
| 9246 | |
| 9247 | CONSISTENCY_CHECK(m_pHoldingThread.Load() == NULL || m_pHoldingThread.Load() == pThread); |
| 9248 | CONSISTENCY_CHECK(pThread->m_pBlockingLock.Load() == this); |
| 9249 | |
| 9250 | // No need to take a lock when going from blocking to holding. This |
| 9251 | // transition implies the lack of a deadlock that other threads can see. |
| 9252 | // (If they would see a deadlock after the transition, they would see |
| 9253 | // one before as well.) |
| 9254 | |
| 9255 | m_pHoldingThread = pThread; |
| 9256 | } |
| 9257 | |
| 9258 | void DeadlockAwareLock::LeaveLock() |
| 9259 | { |
| 9260 | CONTRACTL |
| 9261 | { |
| 9262 | NOTHROW; |
| 9263 | GC_NOTRIGGER; |
| 9264 | } |
| 9265 | CONTRACTL_END; |
| 9266 | |
| 9267 | CONSISTENCY_CHECK(m_pHoldingThread == GetThread()); |
| 9268 | CONSISTENCY_CHECK(GetThread()->m_pBlockingLock.Load() == NULL); |
| 9269 | |
| 9270 | m_pHoldingThread = NULL; |
| 9271 | } |
| 9272 | |
| 9273 | |
| 9274 | #ifdef _DEBUG |
| 9275 | |
| 9276 | // Normally, any thread we operate on has a Thread block in its TLS. But there are |
| 9277 | // a few special threads we don't normally execute managed code on. |
| 9278 | // |
| 9279 | // There is a scenario where we run managed code on such a thread, which is when the |
| 9280 | // DLL_THREAD_ATTACH notification of an (IJW?) module calls into managed code. This |
| 9281 | // is incredibly dangerous. If a GC is provoked, the system may have trouble performing |
| 9282 | // the GC because its threads aren't available yet. |
| 9283 | static DWORD SpecialEEThreads[10]; |
| 9284 | static LONG cnt_SpecialEEThreads = 0; |
| 9285 | |
| 9286 | void dbgOnly_IdentifySpecialEEThread() |
| 9287 | { |
| 9288 | WRAPPER_NO_CONTRACT; |
| 9289 | |
| 9290 | LONG ourCount = FastInterlockIncrement(&cnt_SpecialEEThreads); |
| 9291 | |
| 9292 | _ASSERTE(ourCount < (LONG) NumItems(SpecialEEThreads)); |
| 9293 | SpecialEEThreads[ourCount-1] = ::GetCurrentThreadId(); |
| 9294 | } |
| 9295 | |
| 9296 | BOOL dbgOnly_IsSpecialEEThread() |
| 9297 | { |
| 9298 | WRAPPER_NO_CONTRACT; |
| 9299 | |
| 9300 | DWORD ourId = ::GetCurrentThreadId(); |
| 9301 | |
| 9302 | for (LONG i=0; i<cnt_SpecialEEThreads; i++) |
| 9303 | if (ourId == SpecialEEThreads[i]) |
| 9304 | return TRUE; |
| 9305 | |
| 9306 | // If we have an EE thread doing helper thread duty, then it is temporarily |
| 9307 | // 'special' too. |
| 9308 | #ifdef DEBUGGING_SUPPORTED |
| 9309 | if (g_pDebugInterface) |
| 9310 | { |
| 9311 | //<TODO>We probably should use Thread::GetThreadId</TODO> |
| 9312 | DWORD helperID = g_pDebugInterface->GetHelperThreadID(); |
| 9313 | if (helperID == ourId) |
| 9314 | return TRUE; |
| 9315 | } |
| 9316 | #endif |
| 9317 | |
| 9318 | //<TODO>Clean this up</TODO> |
| 9319 | if (GetThread() == NULL) |
| 9320 | return TRUE; |
| 9321 | |
| 9322 | |
| 9323 | return FALSE; |
| 9324 | } |
| 9325 | |
| 9326 | #endif // _DEBUG |
| 9327 | |
| 9328 | |
| 9329 | // There is an MDA which can detect illegal reentrancy into the CLR. For instance, if you call managed |
| 9330 | // code from a native vectored exception handler, this might cause a reverse PInvoke to occur. But if the |
| 9331 | // exception was triggered from code that was executing in cooperative GC mode, we now have GC holes and |
| 9332 | // general corruption. |
| 9333 | #ifdef MDA_SUPPORTED |
| 9334 | NOINLINE BOOL HasIllegalReentrancyRare() |
| 9335 | { |
| 9336 | CONTRACTL |
| 9337 | { |
| 9338 | NOTHROW; |
| 9339 | GC_TRIGGERS; |
| 9340 | ENTRY_POINT; |
| 9341 | MODE_ANY; |
| 9342 | } |
| 9343 | CONTRACTL_END; |
| 9344 | |
| 9345 | Thread *pThread = GetThread(); |
| 9346 | if (pThread == NULL || !pThread->PreemptiveGCDisabled()) |
| 9347 | return FALSE; |
| 9348 | |
| 9349 | BEGIN_ENTRYPOINT_VOIDRET; |
| 9350 | MDA_TRIGGER_ASSISTANT(Reentrancy, ReportViolation()); |
| 9351 | END_ENTRYPOINT_VOIDRET; |
| 9352 | return TRUE; |
| 9353 | } |
| 9354 | #endif |
| 9355 | |
| 9356 | // Actually fire the Reentrancy probe, if warranted. |
| 9357 | BOOL HasIllegalReentrancy() |
| 9358 | { |
| 9359 | CONTRACTL |
| 9360 | { |
| 9361 | NOTHROW; |
| 9362 | GC_TRIGGERS; |
| 9363 | ENTRY_POINT; |
| 9364 | MODE_ANY; |
| 9365 | } |
| 9366 | CONTRACTL_END; |
| 9367 | |
| 9368 | #ifdef MDA_SUPPORTED |
| 9369 | if (NULL == MDA_GET_ASSISTANT(Reentrancy)) |
| 9370 | return FALSE; |
| 9371 | return HasIllegalReentrancyRare(); |
| 9372 | #else |
| 9373 | return FALSE; |
| 9374 | #endif // MDA_SUPPORTED |
| 9375 | } |
| 9376 | |
| 9377 | |
| 9378 | #endif // #ifndef DACCESS_COMPILE |
| 9379 | |
| 9380 | #ifdef DACCESS_COMPILE |
| 9381 | |
| 9382 | void |
| 9383 | STATIC_DATA::EnumMemoryRegions(CLRDataEnumMemoryFlags flags) |
| 9384 | { |
| 9385 | WRAPPER_NO_CONTRACT; |
| 9386 | |
| 9387 | DAC_ENUM_STHIS(STATIC_DATA); |
| 9388 | } |
| 9389 | |
| 9390 | void |
| 9391 | Thread::EnumMemoryRegions(CLRDataEnumMemoryFlags flags) |
| 9392 | { |
| 9393 | WRAPPER_NO_CONTRACT; |
| 9394 | |
| 9395 | DAC_ENUM_VTHIS(); |
| 9396 | if (flags != CLRDATA_ENUM_MEM_MINI && flags != CLRDATA_ENUM_MEM_TRIAGE) |
| 9397 | { |
| 9398 | if (m_pDomain.IsValid()) |
| 9399 | { |
| 9400 | m_pDomain->EnumMemoryRegions(flags, true); |
| 9401 | } |
| 9402 | } |
| 9403 | |
| 9404 | if (m_debuggerFilterContext.IsValid()) |
| 9405 | { |
| 9406 | m_debuggerFilterContext.EnumMem(); |
| 9407 | } |
| 9408 | |
| 9409 | OBJECTHANDLE_EnumMemoryRegions(m_LastThrownObjectHandle); |
| 9410 | |
| 9411 | m_ExceptionState.EnumChainMemoryRegions(flags); |
| 9412 | |
| 9413 | m_ThreadLocalBlock.EnumMemoryRegions(flags); |
| 9414 | |
| 9415 | if (flags != CLRDATA_ENUM_MEM_MINI && flags != CLRDATA_ENUM_MEM_TRIAGE) |
| 9416 | { |
| 9417 | |
| 9418 | // |
| 9419 | // Allow all of the frames on the stack to enumerate |
| 9420 | // their memory. |
| 9421 | // |
| 9422 | |
| 9423 | PTR_Frame frame = m_pFrame; |
| 9424 | while (frame.IsValid() && |
| 9425 | frame.GetAddr() != dac_cast<TADDR>(FRAME_TOP)) |
| 9426 | { |
| 9427 | frame->EnumMemoryRegions(flags); |
| 9428 | frame = frame->m_Next; |
| 9429 | } |
| 9430 | } |
| 9431 | |
| 9432 | // |
| 9433 | // Try and do a stack trace and save information |
| 9434 | // for each part of the stack. This is very vulnerable |
| 9435 | // to memory problems so ignore all exceptions here. |
| 9436 | // |
| 9437 | |
| 9438 | CATCH_ALL_EXCEPT_RETHROW_COR_E_OPERATIONCANCELLED |
| 9439 | ( |
| 9440 | EnumMemoryRegionsWorker(flags); |
| 9441 | ); |
| 9442 | } |
| 9443 | |
| 9444 | void |
| 9445 | Thread::EnumMemoryRegionsWorker(CLRDataEnumMemoryFlags flags) |
| 9446 | { |
| 9447 | WRAPPER_NO_CONTRACT; |
| 9448 | |
| 9449 | if (IsUnstarted()) |
| 9450 | { |
| 9451 | return; |
| 9452 | } |
| 9453 | |
| 9454 | T_CONTEXT context; |
| 9455 | BOOL DacGetThreadContext(Thread* thread, T_CONTEXT* context); |
| 9456 | REGDISPLAY regDisp; |
| 9457 | StackFrameIterator frameIter; |
| 9458 | |
| 9459 | TADDR previousSP = 0; //start at zero; this allows first check to always succeed. |
| 9460 | TADDR currentSP; |
| 9461 | |
| 9462 | // Init value. The Limit itself is not legal, so move one target pointer size to the smallest-magnitude |
| 9463 | // legal address. |
| 9464 | currentSP = dac_cast<TADDR>(m_CacheStackLimit) + sizeof(TADDR); |
| 9465 | |
| 9466 | if (GetFilterContext()) |
| 9467 | { |
| 9468 | context = *GetFilterContext(); |
| 9469 | } |
| 9470 | else |
| 9471 | { |
| 9472 | DacGetThreadContext(this, &context); |
| 9473 | } |
| 9474 | |
| 9475 | FillRegDisplay(®Disp, &context); |
| 9476 | frameIter.Init(this, NULL, ®Disp, 0); |
| 9477 | while (frameIter.IsValid()) |
| 9478 | { |
| 9479 | // |
| 9480 | // There are identical stack pointer checking semantics in code:ClrDataAccess::EnumMemWalkStackHelper |
| 9481 | // You ***MUST*** maintain identical semantics for both checks! |
| 9482 | // |
| 9483 | |
| 9484 | // Before we continue, we should check to be sure we have a valid |
| 9485 | // stack pointer. This is to prevent stacks that are not walked |
| 9486 | // properly due to |
| 9487 | // a) stack corruption bugs |
| 9488 | // b) bad stack walks |
| 9489 | // from continuing on indefinitely. |
| 9490 | // |
| 9491 | // We will force SP to strictly increase. |
| 9492 | // this check can only happen for real stack frames (i.e. not for explicit frames that don't update the RegDisplay) |
| 9493 | // for ia64, SP may be equal, but in this case BSP must strictly decrease. |
| 9494 | // We will force SP to be properly aligned. |
| 9495 | // We will force SP to be in the correct range. |
| 9496 | // |
| 9497 | if (frameIter.GetFrameState() == StackFrameIterator::SFITER_FRAMELESS_METHOD) |
| 9498 | { |
| 9499 | // This check cannot be applied to explicit frames; they may not move the SP at all. |
| 9500 | // Also, a single function can push several on the stack at a time with no guarantees about |
| 9501 | // ordering so we can't check that the addresses of the explicit frames are monotonically increasing. |
| 9502 | // There is the potential that the walk will not terminate if a set of explicit frames reference |
| 9503 | // each other circularly. While we could choose a limit for the number of explicit frames allowed |
| 9504 | // in a row like the total stack size/pointer size, we have no known problems with this scenario. |
| 9505 | // Thus for now we ignore it. |
| 9506 | currentSP = (TADDR)GetRegdisplaySP(®Disp); |
| 9507 | |
| 9508 | if (currentSP <= previousSP) |
| 9509 | { |
| 9510 | _ASSERTE(!"Target stack has been corrupted, SP for current frame must be larger than previous frame." ); |
| 9511 | break; |
| 9512 | } |
| 9513 | } |
| 9514 | |
| 9515 | // On windows desktop, the stack pointer should be a multiple |
| 9516 | // of pointer-size-aligned in the target address space |
| 9517 | if (currentSP % sizeof(TADDR) != 0) |
| 9518 | { |
| 9519 | _ASSERTE(!"Target stack has been corrupted, SP must be aligned." ); |
| 9520 | break; |
| 9521 | } |
| 9522 | |
| 9523 | if (!IsAddressInStack(currentSP)) |
| 9524 | { |
| 9525 | _ASSERTE(!"Target stack has been corrupted, SP must in in the stack range." ); |
| 9526 | break; |
| 9527 | } |
| 9528 | |
| 9529 | // Enumerate the code around the call site to help debugger stack walking heuristics |
| 9530 | PCODE callEnd = GetControlPC(®Disp); |
| 9531 | DacEnumCodeForStackwalk(callEnd); |
| 9532 | |
| 9533 | if (flags != CLRDATA_ENUM_MEM_MINI && flags != CLRDATA_ENUM_MEM_TRIAGE) |
| 9534 | { |
| 9535 | if (frameIter.m_crawl.GetAppDomain()) |
| 9536 | { |
| 9537 | frameIter.m_crawl.GetAppDomain()->EnumMemoryRegions(flags, true); |
| 9538 | } |
| 9539 | } |
| 9540 | |
| 9541 | // To stackwalk through funceval frames, we need to be sure to preserve the |
| 9542 | // DebuggerModule's m_pRuntimeDomainFile. This is the only case that doesn't use the current |
| 9543 | // vmDomainFile in code:DacDbiInterfaceImpl::EnumerateInternalFrames. The following |
| 9544 | // code mimics that function. |
| 9545 | // Allow failure, since we want to continue attempting to walk the stack regardless of the outcome. |
| 9546 | EX_TRY |
| 9547 | { |
| 9548 | if ((frameIter.GetFrameState() == StackFrameIterator::SFITER_FRAME_FUNCTION) || |
| 9549 | (frameIter.GetFrameState() == StackFrameIterator::SFITER_SKIPPED_FRAME_FUNCTION)) |
| 9550 | { |
| 9551 | Frame * pFrame = frameIter.m_crawl.GetFrame(); |
| 9552 | g_pDebugInterface->EnumMemoryRegionsIfFuncEvalFrame(flags, pFrame); |
| 9553 | } |
| 9554 | } |
| 9555 | EX_CATCH_RETHROW_ONLY_COR_E_OPERATIONCANCELLED |
| 9556 | |
| 9557 | MethodDesc* pMD = frameIter.m_crawl.GetFunction(); |
| 9558 | if (pMD != NULL) |
| 9559 | { |
| 9560 | pMD->EnumMemoryRegions(flags); |
| 9561 | #if defined(WIN64EXCEPTIONS) && defined(FEATURE_PREJIT) |
| 9562 | // Enumerate unwind info |
| 9563 | // Note that we don't do this based on the MethodDesc because in theory there isn't a 1:1 correspondence |
| 9564 | // between MethodDesc and code (and so unwind info, and even debug info). Eg., EnC creates new versions |
| 9565 | // of the code, but the MethodDesc always points at the latest version (which isn't necessarily |
| 9566 | // the one on the stack). In practice this is unlikely to be a problem since wanting a minidump |
| 9567 | // and making EnC edits are usually mutually exclusive. |
| 9568 | if (frameIter.m_crawl.IsFrameless()) |
| 9569 | { |
| 9570 | frameIter.m_crawl.GetJitManager()->EnumMemoryRegionsForMethodUnwindInfo(flags, frameIter.m_crawl.GetCodeInfo()); |
| 9571 | } |
| 9572 | #endif // defined(WIN64EXCEPTIONS) && defined(FEATURE_PREJIT) |
| 9573 | } |
| 9574 | |
| 9575 | previousSP = currentSP; |
| 9576 | |
| 9577 | if (frameIter.Next() != SWA_CONTINUE) |
| 9578 | { |
| 9579 | break; |
| 9580 | } |
| 9581 | } |
| 9582 | } |
| 9583 | |
| 9584 | void |
| 9585 | ThreadStore::EnumMemoryRegions(CLRDataEnumMemoryFlags flags) |
| 9586 | { |
| 9587 | SUPPORTS_DAC; |
| 9588 | WRAPPER_NO_CONTRACT; |
| 9589 | |
| 9590 | // This will write out the context of the s_pThreadStore. ie |
| 9591 | // just the pointer |
| 9592 | // |
| 9593 | s_pThreadStore.EnumMem(); |
| 9594 | if (s_pThreadStore.IsValid()) |
| 9595 | { |
| 9596 | // write out the whole ThreadStore structure |
| 9597 | DacEnumHostDPtrMem(s_pThreadStore); |
| 9598 | |
| 9599 | // The thread list may be corrupt, so just |
| 9600 | // ignore exceptions during enumeration. |
| 9601 | EX_TRY |
| 9602 | { |
| 9603 | Thread* thread = s_pThreadStore->m_ThreadList.GetHead(); |
| 9604 | LONG dwNumThreads = s_pThreadStore->m_ThreadCount; |
| 9605 | |
| 9606 | for (LONG i = 0; (i < dwNumThreads) && (thread != NULL); i++) |
| 9607 | { |
| 9608 | // Even if this thread is totally broken and we can't enum it, struggle on. |
| 9609 | // If we do not, we will leave this loop and not enum stack memory for any further threads. |
| 9610 | CATCH_ALL_EXCEPT_RETHROW_COR_E_OPERATIONCANCELLED( |
| 9611 | thread->EnumMemoryRegions(flags); |
| 9612 | ); |
| 9613 | thread = s_pThreadStore->m_ThreadList.GetNext(thread); |
| 9614 | } |
| 9615 | } |
| 9616 | EX_CATCH_RETHROW_ONLY_COR_E_OPERATIONCANCELLED |
| 9617 | } |
| 9618 | } |
| 9619 | |
| 9620 | #endif // #ifdef DACCESS_COMPILE |
| 9621 | |
| 9622 | |
| 9623 | #ifdef FEATURE_APPDOMAIN_RESOURCE_MONITORING |
| 9624 | // For the purposes of tracking resource usage we implement a simple cpu resource usage counter on each |
| 9625 | // thread. Every time QueryThreadProcessorUsage() is invoked it returns the amount of cpu time (a combination |
| 9626 | // of user and kernel mode time) used since the last call to QueryThreadProcessorUsage(). The result is in 100 |
| 9627 | // nanosecond units. |
| 9628 | ULONGLONG Thread::QueryThreadProcessorUsage() |
| 9629 | { |
| 9630 | LIMITED_METHOD_CONTRACT; |
| 9631 | |
| 9632 | // Get current values for the amount of kernel and user time used by this thread over its entire lifetime. |
| 9633 | FILETIME sCreationTime, sExitTime, sKernelTime, sUserTime; |
| 9634 | HANDLE hThread = GetThreadHandle(); |
| 9635 | BOOL fResult = GetThreadTimes(hThread, |
| 9636 | &sCreationTime, |
| 9637 | &sExitTime, |
| 9638 | &sKernelTime, |
| 9639 | &sUserTime); |
| 9640 | if (!fResult) |
| 9641 | { |
| 9642 | #ifdef _DEBUG |
| 9643 | ULONG error = GetLastError(); |
| 9644 | printf("GetThreadTimes failed: %d; handle is %p\n" , error, hThread); |
| 9645 | _ASSERTE(FALSE); |
| 9646 | #endif |
| 9647 | return 0; |
| 9648 | } |
| 9649 | |
| 9650 | // Combine the user and kernel times into a single value (FILETIME is just a structure representing an |
| 9651 | // unsigned int64 in two 32-bit pieces). |
| 9652 | _ASSERTE(sizeof(FILETIME) == sizeof(UINT64)); |
| 9653 | ULONGLONG ullCurrentUsage = *(ULONGLONG*)&sKernelTime + *(ULONGLONG*)&sUserTime; |
| 9654 | |
| 9655 | // Store the current processor usage as the new baseline, and retrieve the previous usage. |
| 9656 | ULONGLONG ullPreviousUsage = VolatileLoad(&m_ullProcessorUsageBaseline); |
| 9657 | if (ullPreviousUsage >= ullCurrentUsage || |
| 9658 | ullPreviousUsage != (ULONGLONG)InterlockedCompareExchange64( |
| 9659 | (LONGLONG*)&m_ullProcessorUsageBaseline, |
| 9660 | (LONGLONG)ullCurrentUsage, |
| 9661 | (LONGLONG)ullPreviousUsage)) |
| 9662 | { |
| 9663 | // another thread beat us to it, and already reported this usage. |
| 9664 | return 0; |
| 9665 | } |
| 9666 | |
| 9667 | // The result is the difference between this value and the previous usage value. |
| 9668 | return ullCurrentUsage - ullPreviousUsage; |
| 9669 | } |
| 9670 | #endif // FEATURE_APPDOMAIN_RESOURCE_MONITORING |
| 9671 | |