| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | // --------------------------------------------------------------------------- |
| 6 | // NativeFormatWriter |
| 7 | // |
| 8 | // Utilities to write native data to images, that can be read by the NativeFormat.Reader class |
| 9 | // --------------------------------------------------------------------------- |
| 10 | |
| 11 | #include "common.h" |
| 12 | |
| 13 | #include "nativeformatwriter.h" |
| 14 | |
| 15 | #include <clr_std/algorithm> |
| 16 | |
| 17 | namespace NativeFormat |
| 18 | { |
| 19 | // |
| 20 | // Same encoding as what's used by CTL |
| 21 | // |
| 22 | void NativeWriter::WriteUnsigned(unsigned d) |
| 23 | { |
| 24 | if (d < 128) |
| 25 | { |
| 26 | WriteByte((byte)(d*2 + 0)); |
| 27 | } |
| 28 | else if (d < 128*128) |
| 29 | { |
| 30 | WriteByte((byte)(d*4 + 1)); |
| 31 | WriteByte((byte)(d >> 6)); |
| 32 | } |
| 33 | else if (d < 128*128*128) |
| 34 | { |
| 35 | WriteByte((byte)(d*8 + 3)); |
| 36 | WriteByte((byte)(d >> 5)); |
| 37 | WriteByte((byte)(d >> 13)); |
| 38 | } |
| 39 | else if (d < 128*128*128*128) |
| 40 | { |
| 41 | WriteByte((byte)(d*16 + 7)); |
| 42 | WriteByte((byte)(d >> 4)); |
| 43 | WriteByte((byte)(d >> 12)); |
| 44 | WriteByte((byte)(d >> 20)); |
| 45 | } |
| 46 | else |
| 47 | { |
| 48 | WriteByte((byte)15); |
| 49 | WriteUInt32(d); |
| 50 | } |
| 51 | } |
| 52 | |
| 53 | unsigned NativeWriter::GetUnsignedEncodingSize(unsigned d) |
| 54 | { |
| 55 | if (d < 128) return 1; |
| 56 | if (d < 128*128) return 2; |
| 57 | if (d < 128*128*128) return 3; |
| 58 | if (d < 128*128*128*128) return 4; |
| 59 | return 5; |
| 60 | } |
| 61 | |
| 62 | void NativeWriter::WriteSigned(int i) |
| 63 | { |
| 64 | unsigned d = (unsigned)i; |
| 65 | if (d + 64 < 128) |
| 66 | { |
| 67 | WriteByte((byte)(d*2 + 0)); |
| 68 | } |
| 69 | else if (d + 64*128 < 128*128) |
| 70 | { |
| 71 | WriteByte((byte)(d*4 + 1)); |
| 72 | WriteByte((byte)(d >> 6)); |
| 73 | } |
| 74 | else if (d + 64*128*128 < 128*128*128) |
| 75 | { |
| 76 | WriteByte((byte)(d*8 + 3)); |
| 77 | WriteByte((byte)(d >> 5)); |
| 78 | WriteByte((byte)(d >> 13)); |
| 79 | } |
| 80 | else if (d + 64*128*128*128 < 128*128*128*128) |
| 81 | { |
| 82 | WriteByte((byte)(d*16 + 7)); |
| 83 | WriteByte((byte)(d >> 4)); |
| 84 | WriteByte((byte)(d >> 12)); |
| 85 | WriteByte((byte)(d >> 20)); |
| 86 | } |
| 87 | else |
| 88 | { |
| 89 | WriteByte((byte)15); |
| 90 | WriteUInt32(d); |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | void NativeWriter::WriteRelativeOffset(Vertex * pVal) |
| 95 | { |
| 96 | WriteSigned(GetExpectedOffset(pVal) - GetCurrentOffset()); |
| 97 | } |
| 98 | |
| 99 | int NativeWriter::GetExpectedOffset(Vertex * pVal) |
| 100 | { |
| 101 | assert(pVal->m_offset != Vertex::NotPlaced); |
| 102 | |
| 103 | if (pVal->m_iteration == -1) |
| 104 | { |
| 105 | // If the offsets are not determined yet, use the maximum possible encoding |
| 106 | return 0x7FFFFFFF; |
| 107 | } |
| 108 | |
| 109 | int offset = pVal->m_offset; |
| 110 | |
| 111 | // If the offset was not update in this iteration yet, adjust it by delta we have accumulated in this iteration so far. |
| 112 | // This adjustment allows the offsets to converge faster. |
| 113 | if (pVal->m_iteration < m_iteration) |
| 114 | offset += m_offsetAdjustment; |
| 115 | |
| 116 | return offset; |
| 117 | } |
| 118 | |
| 119 | vector<byte>& NativeWriter::Save() |
| 120 | { |
| 121 | assert(m_phase == Initial); |
| 122 | |
| 123 | for (auto pSection : m_Sections) for (auto pVertex : *pSection) |
| 124 | { |
| 125 | pVertex->m_offset = GetCurrentOffset(); |
| 126 | pVertex->m_iteration = m_iteration; |
| 127 | pVertex->Save(this); |
| 128 | } |
| 129 | |
| 130 | // Aggresive phase that only allows offsets to shrink. |
| 131 | m_phase = Shrinking; |
| 132 | for (;;) |
| 133 | { |
| 134 | m_iteration++; |
| 135 | m_Buffer.clear(); |
| 136 | |
| 137 | m_offsetAdjustment = 0; |
| 138 | |
| 139 | for (auto pSection : m_Sections) for (auto pVertex : *pSection) |
| 140 | { |
| 141 | int currentOffset = GetCurrentOffset(); |
| 142 | |
| 143 | // Only allow the offsets to shrink. |
| 144 | m_offsetAdjustment = min(m_offsetAdjustment, currentOffset - pVertex->m_offset); |
| 145 | |
| 146 | pVertex->m_offset += m_offsetAdjustment; |
| 147 | |
| 148 | if (pVertex->m_offset < currentOffset) |
| 149 | { |
| 150 | // It is possible for the encoding of relative offsets to grow during some iterations. |
| 151 | // Ignore this growth because of it should disappear during next iteration. |
| 152 | RollbackTo(pVertex->m_offset); |
| 153 | } |
| 154 | assert(pVertex->m_offset == GetCurrentOffset()); |
| 155 | |
| 156 | pVertex->m_iteration = m_iteration; |
| 157 | |
| 158 | pVertex->Save(this); |
| 159 | } |
| 160 | |
| 161 | // We are not able to shrink anymore. We cannot just return here. It is possible that we have rolledback |
| 162 | // above because of we shrinked too much. |
| 163 | if (m_offsetAdjustment == 0) |
| 164 | break; |
| 165 | |
| 166 | // Limit number of shrinking interations. This limit is meant to be hit in corner cases only. |
| 167 | if (m_iteration > 10) |
| 168 | break; |
| 169 | } |
| 170 | |
| 171 | // Conservative phase that only allows the offsets to grow. It is guaranteed to converge. |
| 172 | m_phase = Growing; |
| 173 | for (;;) |
| 174 | { |
| 175 | m_iteration++; |
| 176 | m_Buffer.clear(); |
| 177 | |
| 178 | m_offsetAdjustment = 0; |
| 179 | m_paddingSize = 0; |
| 180 | |
| 181 | for (auto pSection : m_Sections) for (auto pVertex : *pSection) |
| 182 | { |
| 183 | int currentOffset = GetCurrentOffset(); |
| 184 | |
| 185 | // Only allow the offsets to grow. |
| 186 | m_offsetAdjustment = max(m_offsetAdjustment, currentOffset - pVertex->m_offset); |
| 187 | |
| 188 | pVertex->m_offset += m_offsetAdjustment; |
| 189 | |
| 190 | if (pVertex->m_offset > currentOffset) |
| 191 | { |
| 192 | // Padding |
| 193 | int padding = pVertex->m_offset - currentOffset; |
| 194 | m_paddingSize += padding; |
| 195 | WritePad(padding); |
| 196 | } |
| 197 | assert(pVertex->m_offset == GetCurrentOffset()); |
| 198 | |
| 199 | pVertex->m_iteration = m_iteration; |
| 200 | |
| 201 | pVertex->Save(this); |
| 202 | } |
| 203 | |
| 204 | if (m_offsetAdjustment == 0) |
| 205 | return m_Buffer; |
| 206 | } |
| 207 | |
| 208 | m_phase = Done; |
| 209 | } |
| 210 | |
| 211 | Vertex * NativeSection::Place(Vertex * pVertex) |
| 212 | { |
| 213 | assert(pVertex->m_offset == Vertex::NotPlaced); |
| 214 | pVertex->m_offset = Vertex::Placed; |
| 215 | push_back(pVertex); |
| 216 | |
| 217 | return pVertex; |
| 218 | } |
| 219 | |
| 220 | Vertex * VertexArray::ExpandBlock(size_t index, int depth, bool place, bool * pIsLeaf) |
| 221 | { |
| 222 | if (depth == 1) |
| 223 | { |
| 224 | Vertex * pFirst = (index < m_Entries.size()) ? m_Entries[index] : nullptr; |
| 225 | Vertex * pSecond = ((index + 1) < m_Entries.size()) ? m_Entries[index + 1] : nullptr; |
| 226 | |
| 227 | if (pFirst == nullptr && pSecond == nullptr) |
| 228 | return nullptr; |
| 229 | |
| 230 | if (pFirst == nullptr || pSecond == nullptr) |
| 231 | { |
| 232 | VertexLeaf * pLeaf = new VertexLeaf(); |
| 233 | if (place) |
| 234 | m_pSection->Place(pLeaf); |
| 235 | |
| 236 | pLeaf->m_pVertex = (pFirst == nullptr) ? pSecond : pFirst; |
| 237 | pLeaf->m_leafIndex = ((pFirst == nullptr) ? (index + 1) : index) & (_blockSize - 1); |
| 238 | |
| 239 | *pIsLeaf = true; |
| 240 | return pLeaf; |
| 241 | } |
| 242 | |
| 243 | VertexTree * pTree = new VertexTree(); |
| 244 | if (place) |
| 245 | m_pSection->Place(pTree); |
| 246 | |
| 247 | pTree->m_pFirst = pFirst; |
| 248 | pTree->m_pSecond = pSecond; |
| 249 | |
| 250 | m_pSection->Place(pSecond); |
| 251 | |
| 252 | return pTree; |
| 253 | } |
| 254 | else |
| 255 | { |
| 256 | VertexTree * pTree = new VertexTree(); |
| 257 | if (place) |
| 258 | m_pSection->Place(pTree); |
| 259 | |
| 260 | bool fFirstIsLeaf = false, fSecondIsLeaf = false; |
| 261 | Vertex * pFirst = ExpandBlock(index, depth - 1, false, &fFirstIsLeaf); |
| 262 | Vertex * pSecond = ExpandBlock(index + (size_t{ 1 } << (depth - 1)), depth - 1, true, &fSecondIsLeaf); |
| 263 | |
| 264 | Vertex * pPop; |
| 265 | |
| 266 | if ((pFirst == nullptr && pSecond == nullptr)) |
| 267 | { |
| 268 | if (place) |
| 269 | { |
| 270 | pPop = m_pSection->Pop(); |
| 271 | assert(pPop == pTree); |
| 272 | } |
| 273 | |
| 274 | delete pTree; |
| 275 | return nullptr; |
| 276 | } |
| 277 | |
| 278 | if ((pFirst == nullptr) && fSecondIsLeaf) |
| 279 | { |
| 280 | pPop = m_pSection->Pop(); |
| 281 | assert(pPop == pSecond); |
| 282 | |
| 283 | if (place) |
| 284 | { |
| 285 | pPop = m_pSection->Pop(); |
| 286 | assert(pPop == pTree); |
| 287 | } |
| 288 | |
| 289 | delete pTree; |
| 290 | |
| 291 | if (place) |
| 292 | m_pSection->Place(pSecond); |
| 293 | |
| 294 | *pIsLeaf = true; |
| 295 | return pSecond; |
| 296 | } |
| 297 | |
| 298 | if ((pSecond == nullptr) && fFirstIsLeaf) |
| 299 | { |
| 300 | if (place) |
| 301 | { |
| 302 | pPop = m_pSection->Pop(); |
| 303 | assert(pPop == pTree); |
| 304 | } |
| 305 | |
| 306 | delete pTree; |
| 307 | |
| 308 | if (place) |
| 309 | m_pSection->Place(pFirst); |
| 310 | |
| 311 | *pIsLeaf = true; |
| 312 | return pFirst; |
| 313 | } |
| 314 | |
| 315 | pTree->m_pFirst = pFirst; |
| 316 | pTree->m_pSecond = pSecond; |
| 317 | |
| 318 | return pTree; |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | void VertexArray::ExpandLayout() |
| 323 | { |
| 324 | VertexLeaf * pNullBlock = nullptr; |
| 325 | for (size_t i = 0; i < m_Entries.size(); i += _blockSize) |
| 326 | { |
| 327 | bool fIsLeaf; |
| 328 | Vertex * pBlock = ExpandBlock(i, 4, true, &fIsLeaf); |
| 329 | |
| 330 | if (pBlock == nullptr) |
| 331 | { |
| 332 | if (pNullBlock == nullptr) |
| 333 | { |
| 334 | pNullBlock = new VertexLeaf(); |
| 335 | pNullBlock->m_leafIndex = _blockSize; |
| 336 | pNullBlock->m_pVertex = nullptr; |
| 337 | m_pSection->Place(pNullBlock); |
| 338 | } |
| 339 | pBlock = pNullBlock; |
| 340 | } |
| 341 | |
| 342 | m_Blocks.push_back(pBlock); |
| 343 | } |
| 344 | |
| 345 | // Start with maximum size entries |
| 346 | m_entryIndexSize = 2; |
| 347 | } |
| 348 | |
| 349 | void VertexArray::VertexLeaf::Save(NativeWriter * pWriter) |
| 350 | { |
| 351 | pWriter->WriteUnsigned(m_leafIndex << 2); |
| 352 | |
| 353 | if (m_pVertex != nullptr) |
| 354 | m_pVertex->Save(pWriter); |
| 355 | } |
| 356 | |
| 357 | void VertexArray::VertexTree::Save(NativeWriter * pWriter) |
| 358 | { |
| 359 | unsigned value = (m_pFirst != nullptr) ? 1 : 0; |
| 360 | |
| 361 | if (m_pSecond != nullptr) |
| 362 | { |
| 363 | value |= 2; |
| 364 | |
| 365 | int delta = pWriter->GetExpectedOffset(m_pSecond) - pWriter->GetCurrentOffset(); |
| 366 | assert(delta >= 0); |
| 367 | value |= (delta << 2); |
| 368 | } |
| 369 | |
| 370 | pWriter->WriteUnsigned(value); |
| 371 | |
| 372 | if (m_pFirst != nullptr) |
| 373 | m_pFirst->Save(pWriter); |
| 374 | } |
| 375 | |
| 376 | void VertexArray::Save(NativeWriter * pWriter) |
| 377 | { |
| 378 | // Lowest two bits are entry index size, the rest is number of elements |
| 379 | pWriter->WriteUnsigned((m_Entries.size() << 2) | m_entryIndexSize); |
| 380 | |
| 381 | int blocksOffset = pWriter->GetCurrentOffset(); |
| 382 | int maxOffset = 0; |
| 383 | |
| 384 | for (auto pBlock : m_Blocks) |
| 385 | { |
| 386 | int offset = pWriter->GetExpectedOffset(pBlock) - blocksOffset; |
| 387 | assert(offset >= 0); |
| 388 | |
| 389 | maxOffset = max(offset, maxOffset); |
| 390 | |
| 391 | if (m_entryIndexSize == 0) |
| 392 | { |
| 393 | pWriter->WriteByte((byte)offset); |
| 394 | } |
| 395 | else |
| 396 | if (m_entryIndexSize == 1) |
| 397 | { |
| 398 | pWriter->WriteUInt16((UInt16)offset); |
| 399 | } |
| 400 | else |
| 401 | { |
| 402 | pWriter->WriteUInt32((UInt32)offset); |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | int newEntryIndexSize = 0; |
| 407 | if (maxOffset > 0xFF) |
| 408 | { |
| 409 | newEntryIndexSize++; |
| 410 | if (maxOffset > 0xFFFF) |
| 411 | newEntryIndexSize++; |
| 412 | } |
| 413 | |
| 414 | if (pWriter->IsGrowing()) |
| 415 | { |
| 416 | if (newEntryIndexSize > m_entryIndexSize) |
| 417 | { |
| 418 | // Ensure that the table will be redone with new entry index size |
| 419 | pWriter->UpdateOffsetAdjustment(1); |
| 420 | |
| 421 | m_entryIndexSize = newEntryIndexSize; |
| 422 | } |
| 423 | } |
| 424 | else |
| 425 | { |
| 426 | if (newEntryIndexSize < m_entryIndexSize) |
| 427 | { |
| 428 | // Ensure that the table will be redone with new entry index size |
| 429 | pWriter->UpdateOffsetAdjustment(-1); |
| 430 | |
| 431 | m_entryIndexSize = newEntryIndexSize; |
| 432 | } |
| 433 | } |
| 434 | } |
| 435 | |
| 436 | // |
| 437 | // VertexHashtable |
| 438 | // |
| 439 | |
| 440 | // Returns 1 + log2(x) rounded up, 0 iff x == 0 |
| 441 | static unsigned HighestBit(unsigned x) |
| 442 | { |
| 443 | unsigned ret = 0; |
| 444 | while (x != 0) |
| 445 | { |
| 446 | x >>= 1; |
| 447 | ret++; |
| 448 | } |
| 449 | return ret; |
| 450 | } |
| 451 | |
| 452 | // Helper method to back patch entry index in the bucket table |
| 453 | static void PatchEntryIndex(NativeWriter * pWriter, int patchOffset, int entryIndexSize, int entryIndex) |
| 454 | { |
| 455 | if (entryIndexSize == 0) |
| 456 | { |
| 457 | pWriter->PatchByteAt(patchOffset, (byte)entryIndex); |
| 458 | } |
| 459 | else |
| 460 | if (entryIndexSize == 1) |
| 461 | { |
| 462 | pWriter->PatchByteAt(patchOffset, (byte)entryIndex); |
| 463 | pWriter->PatchByteAt(patchOffset + 1, (byte)(entryIndex >> 8)); |
| 464 | } |
| 465 | else |
| 466 | { |
| 467 | pWriter->PatchByteAt(patchOffset, (byte)entryIndex); |
| 468 | pWriter->PatchByteAt(patchOffset + 1, (byte)(entryIndex >> 8)); |
| 469 | pWriter->PatchByteAt(patchOffset + 2, (byte)(entryIndex >> 16)); |
| 470 | pWriter->PatchByteAt(patchOffset + 3, (byte)(entryIndex >> 24)); |
| 471 | } |
| 472 | } |
| 473 | |
| 474 | void VertexHashtable::Save(NativeWriter * pWriter) |
| 475 | { |
| 476 | // Compute the layout of the table if we have not done it yet |
| 477 | if (m_nBuckets == 0) |
| 478 | ComputeLayout(); |
| 479 | |
| 480 | int nEntries = (int)m_Entries.size(); |
| 481 | int startOffset = pWriter->GetCurrentOffset(); |
| 482 | int bucketMask = (m_nBuckets - 1); |
| 483 | |
| 484 | // Lowest two bits are entry index size, the rest is log2 number of buckets |
| 485 | int numberOfBucketsShift = HighestBit(m_nBuckets) - 1; |
| 486 | pWriter->WriteByte(static_cast<uint8_t>((numberOfBucketsShift << 2) | m_entryIndexSize)); |
| 487 | |
| 488 | int bucketsOffset = pWriter->GetCurrentOffset(); |
| 489 | |
| 490 | pWriter->WritePad((m_nBuckets + 1) << m_entryIndexSize); |
| 491 | |
| 492 | // For faster lookup at runtime, we store the first entry index even though it is redundant (the value can be |
| 493 | // inferred from number of buckets) |
| 494 | PatchEntryIndex(pWriter, bucketsOffset, m_entryIndexSize, pWriter->GetCurrentOffset() - bucketsOffset); |
| 495 | |
| 496 | int iEntry = 0; |
| 497 | |
| 498 | for (int iBucket = 0; iBucket < m_nBuckets; iBucket++) |
| 499 | { |
| 500 | while (iEntry < nEntries) |
| 501 | { |
| 502 | Entry &e = m_Entries[iEntry]; |
| 503 | |
| 504 | if (((e.hashcode >> 8) & bucketMask) != (unsigned)iBucket) |
| 505 | break; |
| 506 | |
| 507 | int currentOffset = pWriter->GetCurrentOffset(); |
| 508 | pWriter->UpdateOffsetAdjustment(currentOffset - e.offset); |
| 509 | e.offset = currentOffset; |
| 510 | |
| 511 | pWriter->WriteByte((byte)e.hashcode); |
| 512 | pWriter->WriteRelativeOffset(e.pVertex); |
| 513 | |
| 514 | iEntry++; |
| 515 | } |
| 516 | |
| 517 | int patchOffset = bucketsOffset + ((iBucket + 1) << m_entryIndexSize); |
| 518 | |
| 519 | PatchEntryIndex(pWriter, patchOffset, m_entryIndexSize, pWriter->GetCurrentOffset() - bucketsOffset); |
| 520 | } |
| 521 | assert(iEntry == nEntries); |
| 522 | |
| 523 | int maxIndexEntry = (pWriter->GetCurrentOffset() - bucketsOffset); |
| 524 | int newEntryIndexSize = 0; |
| 525 | if (maxIndexEntry > 0xFF) |
| 526 | { |
| 527 | newEntryIndexSize++; |
| 528 | if (maxIndexEntry > 0xFFFF) |
| 529 | newEntryIndexSize++; |
| 530 | } |
| 531 | |
| 532 | if (pWriter->IsGrowing()) |
| 533 | { |
| 534 | if (newEntryIndexSize > m_entryIndexSize) |
| 535 | { |
| 536 | // Ensure that the table will be redone with new entry index size |
| 537 | pWriter->UpdateOffsetAdjustment(1); |
| 538 | |
| 539 | m_entryIndexSize = newEntryIndexSize; |
| 540 | } |
| 541 | } |
| 542 | else |
| 543 | { |
| 544 | if (newEntryIndexSize < m_entryIndexSize) |
| 545 | { |
| 546 | // Ensure that the table will be redone with new entry index size |
| 547 | pWriter->UpdateOffsetAdjustment(-1); |
| 548 | |
| 549 | m_entryIndexSize = newEntryIndexSize; |
| 550 | } |
| 551 | } |
| 552 | } |
| 553 | |
| 554 | void VertexHashtable::ComputeLayout() |
| 555 | { |
| 556 | unsigned bucketsEstimate = (unsigned)(m_Entries.size() / m_nFillFactor); |
| 557 | |
| 558 | // Round number of buckets up to the power of two |
| 559 | m_nBuckets = 1 << HighestBit(bucketsEstimate); |
| 560 | |
| 561 | // Lowest byte of the hashcode is used for lookup within the bucket. Keep it sorted too so that |
| 562 | // we can use the ordering to terminate the lookup prematurely. |
| 563 | unsigned mask = ((m_nBuckets - 1) << 8) | 0xFF; |
| 564 | |
| 565 | // sort it by hashcode |
| 566 | std::sort(m_Entries.begin(), m_Entries.end(), |
| 567 | [=](Entry const& a, Entry const& b) |
| 568 | { |
| 569 | return (a.hashcode & mask) < (b.hashcode & mask); |
| 570 | } |
| 571 | ); |
| 572 | |
| 573 | // Start with maximum size entries |
| 574 | m_entryIndexSize = 2; |
| 575 | } |
| 576 | } |
| 577 | |