1 | /* |
2 | * Copyright 2000-2018 The OpenSSL Project Authors. All Rights Reserved. |
3 | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
4 | * |
5 | * Licensed under the OpenSSL license (the "License"). You may not use |
6 | * this file except in compliance with the License. You can obtain a copy |
7 | * in the file LICENSE in the source distribution or at |
8 | * https://www.openssl.org/source/license.html |
9 | */ |
10 | |
11 | #ifndef HEADER_ENGINE_H |
12 | # define |
13 | |
14 | # include <openssl/opensslconf.h> |
15 | |
16 | # ifndef OPENSSL_NO_ENGINE |
17 | # if OPENSSL_API_COMPAT < 0x10100000L |
18 | # include <openssl/bn.h> |
19 | # include <openssl/rsa.h> |
20 | # include <openssl/dsa.h> |
21 | # include <openssl/dh.h> |
22 | # include <openssl/ec.h> |
23 | # include <openssl/rand.h> |
24 | # include <openssl/ui.h> |
25 | # include <openssl/err.h> |
26 | # endif |
27 | # include <openssl/ossl_typ.h> |
28 | # include <openssl/symhacks.h> |
29 | # include <openssl/x509.h> |
30 | # include <openssl/engineerr.h> |
31 | # ifdef __cplusplus |
32 | extern "C" { |
33 | # endif |
34 | |
35 | /* |
36 | * These flags are used to control combinations of algorithm (methods) by |
37 | * bitwise "OR"ing. |
38 | */ |
39 | # define ENGINE_METHOD_RSA (unsigned int)0x0001 |
40 | # define ENGINE_METHOD_DSA (unsigned int)0x0002 |
41 | # define ENGINE_METHOD_DH (unsigned int)0x0004 |
42 | # define ENGINE_METHOD_RAND (unsigned int)0x0008 |
43 | # define ENGINE_METHOD_CIPHERS (unsigned int)0x0040 |
44 | # define ENGINE_METHOD_DIGESTS (unsigned int)0x0080 |
45 | # define ENGINE_METHOD_PKEY_METHS (unsigned int)0x0200 |
46 | # define ENGINE_METHOD_PKEY_ASN1_METHS (unsigned int)0x0400 |
47 | # define ENGINE_METHOD_EC (unsigned int)0x0800 |
48 | /* Obvious all-or-nothing cases. */ |
49 | # define ENGINE_METHOD_ALL (unsigned int)0xFFFF |
50 | # define ENGINE_METHOD_NONE (unsigned int)0x0000 |
51 | |
52 | /* |
53 | * This(ese) flag(s) controls behaviour of the ENGINE_TABLE mechanism used |
54 | * internally to control registration of ENGINE implementations, and can be |
55 | * set by ENGINE_set_table_flags(). The "NOINIT" flag prevents attempts to |
56 | * initialise registered ENGINEs if they are not already initialised. |
57 | */ |
58 | # define ENGINE_TABLE_FLAG_NOINIT (unsigned int)0x0001 |
59 | |
60 | /* ENGINE flags that can be set by ENGINE_set_flags(). */ |
61 | /* Not used */ |
62 | /* #define ENGINE_FLAGS_MALLOCED 0x0001 */ |
63 | |
64 | /* |
65 | * This flag is for ENGINEs that wish to handle the various 'CMD'-related |
66 | * control commands on their own. Without this flag, ENGINE_ctrl() handles |
67 | * these control commands on behalf of the ENGINE using their "cmd_defns" |
68 | * data. |
69 | */ |
70 | # define ENGINE_FLAGS_MANUAL_CMD_CTRL (int)0x0002 |
71 | |
72 | /* |
73 | * This flag is for ENGINEs who return new duplicate structures when found |
74 | * via "ENGINE_by_id()". When an ENGINE must store state (eg. if |
75 | * ENGINE_ctrl() commands are called in sequence as part of some stateful |
76 | * process like key-generation setup and execution), it can set this flag - |
77 | * then each attempt to obtain the ENGINE will result in it being copied into |
78 | * a new structure. Normally, ENGINEs don't declare this flag so |
79 | * ENGINE_by_id() just increments the existing ENGINE's structural reference |
80 | * count. |
81 | */ |
82 | # define ENGINE_FLAGS_BY_ID_COPY (int)0x0004 |
83 | |
84 | /* |
85 | * This flag if for an ENGINE that does not want its methods registered as |
86 | * part of ENGINE_register_all_complete() for example if the methods are not |
87 | * usable as default methods. |
88 | */ |
89 | |
90 | # define ENGINE_FLAGS_NO_REGISTER_ALL (int)0x0008 |
91 | |
92 | /* |
93 | * ENGINEs can support their own command types, and these flags are used in |
94 | * ENGINE_CTRL_GET_CMD_FLAGS to indicate to the caller what kind of input |
95 | * each command expects. Currently only numeric and string input is |
96 | * supported. If a control command supports none of the _NUMERIC, _STRING, or |
97 | * _NO_INPUT options, then it is regarded as an "internal" control command - |
98 | * and not for use in config setting situations. As such, they're not |
99 | * available to the ENGINE_ctrl_cmd_string() function, only raw ENGINE_ctrl() |
100 | * access. Changes to this list of 'command types' should be reflected |
101 | * carefully in ENGINE_cmd_is_executable() and ENGINE_ctrl_cmd_string(). |
102 | */ |
103 | |
104 | /* accepts a 'long' input value (3rd parameter to ENGINE_ctrl) */ |
105 | # define ENGINE_CMD_FLAG_NUMERIC (unsigned int)0x0001 |
106 | /* |
107 | * accepts string input (cast from 'void*' to 'const char *', 4th parameter |
108 | * to ENGINE_ctrl) |
109 | */ |
110 | # define ENGINE_CMD_FLAG_STRING (unsigned int)0x0002 |
111 | /* |
112 | * Indicates that the control command takes *no* input. Ie. the control |
113 | * command is unparameterised. |
114 | */ |
115 | # define ENGINE_CMD_FLAG_NO_INPUT (unsigned int)0x0004 |
116 | /* |
117 | * Indicates that the control command is internal. This control command won't |
118 | * be shown in any output, and is only usable through the ENGINE_ctrl_cmd() |
119 | * function. |
120 | */ |
121 | # define ENGINE_CMD_FLAG_INTERNAL (unsigned int)0x0008 |
122 | |
123 | /* |
124 | * NB: These 3 control commands are deprecated and should not be used. |
125 | * ENGINEs relying on these commands should compile conditional support for |
126 | * compatibility (eg. if these symbols are defined) but should also migrate |
127 | * the same functionality to their own ENGINE-specific control functions that |
128 | * can be "discovered" by calling applications. The fact these control |
129 | * commands wouldn't be "executable" (ie. usable by text-based config) |
130 | * doesn't change the fact that application code can find and use them |
131 | * without requiring per-ENGINE hacking. |
132 | */ |
133 | |
134 | /* |
135 | * These flags are used to tell the ctrl function what should be done. All |
136 | * command numbers are shared between all engines, even if some don't make |
137 | * sense to some engines. In such a case, they do nothing but return the |
138 | * error ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED. |
139 | */ |
140 | # define ENGINE_CTRL_SET_LOGSTREAM 1 |
141 | # define ENGINE_CTRL_SET_PASSWORD_CALLBACK 2 |
142 | # define ENGINE_CTRL_HUP 3/* Close and reinitialise |
143 | * any handles/connections |
144 | * etc. */ |
145 | # define ENGINE_CTRL_SET_USER_INTERFACE 4/* Alternative to callback */ |
146 | # define ENGINE_CTRL_SET_CALLBACK_DATA 5/* User-specific data, used |
147 | * when calling the password |
148 | * callback and the user |
149 | * interface */ |
150 | # define ENGINE_CTRL_LOAD_CONFIGURATION 6/* Load a configuration, |
151 | * given a string that |
152 | * represents a file name |
153 | * or so */ |
154 | # define ENGINE_CTRL_LOAD_SECTION 7/* Load data from a given |
155 | * section in the already |
156 | * loaded configuration */ |
157 | |
158 | /* |
159 | * These control commands allow an application to deal with an arbitrary |
160 | * engine in a dynamic way. Warn: Negative return values indicate errors FOR |
161 | * THESE COMMANDS because zero is used to indicate 'end-of-list'. Other |
162 | * commands, including ENGINE-specific command types, return zero for an |
163 | * error. An ENGINE can choose to implement these ctrl functions, and can |
164 | * internally manage things however it chooses - it does so by setting the |
165 | * ENGINE_FLAGS_MANUAL_CMD_CTRL flag (using ENGINE_set_flags()). Otherwise |
166 | * the ENGINE_ctrl() code handles this on the ENGINE's behalf using the |
167 | * cmd_defns data (set using ENGINE_set_cmd_defns()). This means an ENGINE's |
168 | * ctrl() handler need only implement its own commands - the above "meta" |
169 | * commands will be taken care of. |
170 | */ |
171 | |
172 | /* |
173 | * Returns non-zero if the supplied ENGINE has a ctrl() handler. If "not", |
174 | * then all the remaining control commands will return failure, so it is |
175 | * worth checking this first if the caller is trying to "discover" the |
176 | * engine's capabilities and doesn't want errors generated unnecessarily. |
177 | */ |
178 | # define ENGINE_CTRL_HAS_CTRL_FUNCTION 10 |
179 | /* |
180 | * Returns a positive command number for the first command supported by the |
181 | * engine. Returns zero if no ctrl commands are supported. |
182 | */ |
183 | # define ENGINE_CTRL_GET_FIRST_CMD_TYPE 11 |
184 | /* |
185 | * The 'long' argument specifies a command implemented by the engine, and the |
186 | * return value is the next command supported, or zero if there are no more. |
187 | */ |
188 | # define ENGINE_CTRL_GET_NEXT_CMD_TYPE 12 |
189 | /* |
190 | * The 'void*' argument is a command name (cast from 'const char *'), and the |
191 | * return value is the command that corresponds to it. |
192 | */ |
193 | # define ENGINE_CTRL_GET_CMD_FROM_NAME 13 |
194 | /* |
195 | * The next two allow a command to be converted into its corresponding string |
196 | * form. In each case, the 'long' argument supplies the command. In the |
197 | * NAME_LEN case, the return value is the length of the command name (not |
198 | * counting a trailing EOL). In the NAME case, the 'void*' argument must be a |
199 | * string buffer large enough, and it will be populated with the name of the |
200 | * command (WITH a trailing EOL). |
201 | */ |
202 | # define ENGINE_CTRL_GET_NAME_LEN_FROM_CMD 14 |
203 | # define ENGINE_CTRL_GET_NAME_FROM_CMD 15 |
204 | /* The next two are similar but give a "short description" of a command. */ |
205 | # define ENGINE_CTRL_GET_DESC_LEN_FROM_CMD 16 |
206 | # define ENGINE_CTRL_GET_DESC_FROM_CMD 17 |
207 | /* |
208 | * With this command, the return value is the OR'd combination of |
209 | * ENGINE_CMD_FLAG_*** values that indicate what kind of input a given |
210 | * engine-specific ctrl command expects. |
211 | */ |
212 | # define ENGINE_CTRL_GET_CMD_FLAGS 18 |
213 | |
214 | /* |
215 | * ENGINE implementations should start the numbering of their own control |
216 | * commands from this value. (ie. ENGINE_CMD_BASE, ENGINE_CMD_BASE + 1, etc). |
217 | */ |
218 | # define ENGINE_CMD_BASE 200 |
219 | |
220 | /* |
221 | * NB: These 2 nCipher "chil" control commands are deprecated, and their |
222 | * functionality is now available through ENGINE-specific control commands |
223 | * (exposed through the above-mentioned 'CMD'-handling). Code using these 2 |
224 | * commands should be migrated to the more general command handling before |
225 | * these are removed. |
226 | */ |
227 | |
228 | /* Flags specific to the nCipher "chil" engine */ |
229 | # define ENGINE_CTRL_CHIL_SET_FORKCHECK 100 |
230 | /* |
231 | * Depending on the value of the (long)i argument, this sets or |
232 | * unsets the SimpleForkCheck flag in the CHIL API to enable or |
233 | * disable checking and workarounds for applications that fork(). |
234 | */ |
235 | # define ENGINE_CTRL_CHIL_NO_LOCKING 101 |
236 | /* |
237 | * This prevents the initialisation function from providing mutex |
238 | * callbacks to the nCipher library. |
239 | */ |
240 | |
241 | /* |
242 | * If an ENGINE supports its own specific control commands and wishes the |
243 | * framework to handle the above 'ENGINE_CMD_***'-manipulation commands on |
244 | * its behalf, it should supply a null-terminated array of ENGINE_CMD_DEFN |
245 | * entries to ENGINE_set_cmd_defns(). It should also implement a ctrl() |
246 | * handler that supports the stated commands (ie. the "cmd_num" entries as |
247 | * described by the array). NB: The array must be ordered in increasing order |
248 | * of cmd_num. "null-terminated" means that the last ENGINE_CMD_DEFN element |
249 | * has cmd_num set to zero and/or cmd_name set to NULL. |
250 | */ |
251 | typedef struct ENGINE_CMD_DEFN_st { |
252 | unsigned int cmd_num; /* The command number */ |
253 | const char *cmd_name; /* The command name itself */ |
254 | const char *cmd_desc; /* A short description of the command */ |
255 | unsigned int cmd_flags; /* The input the command expects */ |
256 | } ENGINE_CMD_DEFN; |
257 | |
258 | /* Generic function pointer */ |
259 | typedef int (*ENGINE_GEN_FUNC_PTR) (void); |
260 | /* Generic function pointer taking no arguments */ |
261 | typedef int (*ENGINE_GEN_INT_FUNC_PTR) (ENGINE *); |
262 | /* Specific control function pointer */ |
263 | typedef int (*ENGINE_CTRL_FUNC_PTR) (ENGINE *, int, long, void *, |
264 | void (*f) (void)); |
265 | /* Generic load_key function pointer */ |
266 | typedef EVP_PKEY *(*ENGINE_LOAD_KEY_PTR)(ENGINE *, const char *, |
267 | UI_METHOD *ui_method, |
268 | void *callback_data); |
269 | typedef int (*ENGINE_SSL_CLIENT_CERT_PTR) (ENGINE *, SSL *ssl, |
270 | STACK_OF(X509_NAME) *ca_dn, |
271 | X509 **pcert, EVP_PKEY **pkey, |
272 | STACK_OF(X509) **pother, |
273 | UI_METHOD *ui_method, |
274 | void *callback_data); |
275 | /*- |
276 | * These callback types are for an ENGINE's handler for cipher and digest logic. |
277 | * These handlers have these prototypes; |
278 | * int foo(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid); |
279 | * int foo(ENGINE *e, const EVP_MD **digest, const int **nids, int nid); |
280 | * Looking at how to implement these handlers in the case of cipher support, if |
281 | * the framework wants the EVP_CIPHER for 'nid', it will call; |
282 | * foo(e, &p_evp_cipher, NULL, nid); (return zero for failure) |
283 | * If the framework wants a list of supported 'nid's, it will call; |
284 | * foo(e, NULL, &p_nids, 0); (returns number of 'nids' or -1 for error) |
285 | */ |
286 | /* |
287 | * Returns to a pointer to the array of supported cipher 'nid's. If the |
288 | * second parameter is non-NULL it is set to the size of the returned array. |
289 | */ |
290 | typedef int (*ENGINE_CIPHERS_PTR) (ENGINE *, const EVP_CIPHER **, |
291 | const int **, int); |
292 | typedef int (*ENGINE_DIGESTS_PTR) (ENGINE *, const EVP_MD **, const int **, |
293 | int); |
294 | typedef int (*ENGINE_PKEY_METHS_PTR) (ENGINE *, EVP_PKEY_METHOD **, |
295 | const int **, int); |
296 | typedef int (*ENGINE_PKEY_ASN1_METHS_PTR) (ENGINE *, EVP_PKEY_ASN1_METHOD **, |
297 | const int **, int); |
298 | /* |
299 | * STRUCTURE functions ... all of these functions deal with pointers to |
300 | * ENGINE structures where the pointers have a "structural reference". This |
301 | * means that their reference is to allowed access to the structure but it |
302 | * does not imply that the structure is functional. To simply increment or |
303 | * decrement the structural reference count, use ENGINE_by_id and |
304 | * ENGINE_free. NB: This is not required when iterating using ENGINE_get_next |
305 | * as it will automatically decrement the structural reference count of the |
306 | * "current" ENGINE and increment the structural reference count of the |
307 | * ENGINE it returns (unless it is NULL). |
308 | */ |
309 | |
310 | /* Get the first/last "ENGINE" type available. */ |
311 | ENGINE *ENGINE_get_first(void); |
312 | ENGINE *ENGINE_get_last(void); |
313 | /* Iterate to the next/previous "ENGINE" type (NULL = end of the list). */ |
314 | ENGINE *ENGINE_get_next(ENGINE *e); |
315 | ENGINE *ENGINE_get_prev(ENGINE *e); |
316 | /* Add another "ENGINE" type into the array. */ |
317 | int ENGINE_add(ENGINE *e); |
318 | /* Remove an existing "ENGINE" type from the array. */ |
319 | int ENGINE_remove(ENGINE *e); |
320 | /* Retrieve an engine from the list by its unique "id" value. */ |
321 | ENGINE *ENGINE_by_id(const char *id); |
322 | |
323 | #if OPENSSL_API_COMPAT < 0x10100000L |
324 | # define ENGINE_load_openssl() \ |
325 | OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_OPENSSL, NULL) |
326 | # define ENGINE_load_dynamic() \ |
327 | OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_DYNAMIC, NULL) |
328 | # ifndef OPENSSL_NO_STATIC_ENGINE |
329 | # define ENGINE_load_padlock() \ |
330 | OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_PADLOCK, NULL) |
331 | # define ENGINE_load_capi() \ |
332 | OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_CAPI, NULL) |
333 | # define ENGINE_load_afalg() \ |
334 | OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_AFALG, NULL) |
335 | # endif |
336 | # define ENGINE_load_cryptodev() \ |
337 | OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_CRYPTODEV, NULL) |
338 | # define ENGINE_load_rdrand() \ |
339 | OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_RDRAND, NULL) |
340 | #endif |
341 | void ENGINE_load_builtin_engines(void); |
342 | |
343 | /* |
344 | * Get and set global flags (ENGINE_TABLE_FLAG_***) for the implementation |
345 | * "registry" handling. |
346 | */ |
347 | unsigned int ENGINE_get_table_flags(void); |
348 | void ENGINE_set_table_flags(unsigned int flags); |
349 | |
350 | /*- Manage registration of ENGINEs per "table". For each type, there are 3 |
351 | * functions; |
352 | * ENGINE_register_***(e) - registers the implementation from 'e' (if it has one) |
353 | * ENGINE_unregister_***(e) - unregister the implementation from 'e' |
354 | * ENGINE_register_all_***() - call ENGINE_register_***() for each 'e' in the list |
355 | * Cleanup is automatically registered from each table when required. |
356 | */ |
357 | |
358 | int ENGINE_register_RSA(ENGINE *e); |
359 | void ENGINE_unregister_RSA(ENGINE *e); |
360 | void ENGINE_register_all_RSA(void); |
361 | |
362 | int ENGINE_register_DSA(ENGINE *e); |
363 | void ENGINE_unregister_DSA(ENGINE *e); |
364 | void ENGINE_register_all_DSA(void); |
365 | |
366 | int ENGINE_register_EC(ENGINE *e); |
367 | void ENGINE_unregister_EC(ENGINE *e); |
368 | void ENGINE_register_all_EC(void); |
369 | |
370 | int ENGINE_register_DH(ENGINE *e); |
371 | void ENGINE_unregister_DH(ENGINE *e); |
372 | void ENGINE_register_all_DH(void); |
373 | |
374 | int ENGINE_register_RAND(ENGINE *e); |
375 | void ENGINE_unregister_RAND(ENGINE *e); |
376 | void ENGINE_register_all_RAND(void); |
377 | |
378 | int ENGINE_register_ciphers(ENGINE *e); |
379 | void ENGINE_unregister_ciphers(ENGINE *e); |
380 | void ENGINE_register_all_ciphers(void); |
381 | |
382 | int ENGINE_register_digests(ENGINE *e); |
383 | void ENGINE_unregister_digests(ENGINE *e); |
384 | void ENGINE_register_all_digests(void); |
385 | |
386 | int ENGINE_register_pkey_meths(ENGINE *e); |
387 | void ENGINE_unregister_pkey_meths(ENGINE *e); |
388 | void ENGINE_register_all_pkey_meths(void); |
389 | |
390 | int ENGINE_register_pkey_asn1_meths(ENGINE *e); |
391 | void ENGINE_unregister_pkey_asn1_meths(ENGINE *e); |
392 | void ENGINE_register_all_pkey_asn1_meths(void); |
393 | |
394 | /* |
395 | * These functions register all support from the above categories. Note, use |
396 | * of these functions can result in static linkage of code your application |
397 | * may not need. If you only need a subset of functionality, consider using |
398 | * more selective initialisation. |
399 | */ |
400 | int ENGINE_register_complete(ENGINE *e); |
401 | int ENGINE_register_all_complete(void); |
402 | |
403 | /* |
404 | * Send parameterised control commands to the engine. The possibilities to |
405 | * send down an integer, a pointer to data or a function pointer are |
406 | * provided. Any of the parameters may or may not be NULL, depending on the |
407 | * command number. In actuality, this function only requires a structural |
408 | * (rather than functional) reference to an engine, but many control commands |
409 | * may require the engine be functional. The caller should be aware of trying |
410 | * commands that require an operational ENGINE, and only use functional |
411 | * references in such situations. |
412 | */ |
413 | int ENGINE_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void)); |
414 | |
415 | /* |
416 | * This function tests if an ENGINE-specific command is usable as a |
417 | * "setting". Eg. in an application's config file that gets processed through |
418 | * ENGINE_ctrl_cmd_string(). If this returns zero, it is not available to |
419 | * ENGINE_ctrl_cmd_string(), only ENGINE_ctrl(). |
420 | */ |
421 | int ENGINE_cmd_is_executable(ENGINE *e, int cmd); |
422 | |
423 | /* |
424 | * This function works like ENGINE_ctrl() with the exception of taking a |
425 | * command name instead of a command number, and can handle optional |
426 | * commands. See the comment on ENGINE_ctrl_cmd_string() for an explanation |
427 | * on how to use the cmd_name and cmd_optional. |
428 | */ |
429 | int ENGINE_ctrl_cmd(ENGINE *e, const char *cmd_name, |
430 | long i, void *p, void (*f) (void), int cmd_optional); |
431 | |
432 | /* |
433 | * This function passes a command-name and argument to an ENGINE. The |
434 | * cmd_name is converted to a command number and the control command is |
435 | * called using 'arg' as an argument (unless the ENGINE doesn't support such |
436 | * a command, in which case no control command is called). The command is |
437 | * checked for input flags, and if necessary the argument will be converted |
438 | * to a numeric value. If cmd_optional is non-zero, then if the ENGINE |
439 | * doesn't support the given cmd_name the return value will be success |
440 | * anyway. This function is intended for applications to use so that users |
441 | * (or config files) can supply engine-specific config data to the ENGINE at |
442 | * run-time to control behaviour of specific engines. As such, it shouldn't |
443 | * be used for calling ENGINE_ctrl() functions that return data, deal with |
444 | * binary data, or that are otherwise supposed to be used directly through |
445 | * ENGINE_ctrl() in application code. Any "return" data from an ENGINE_ctrl() |
446 | * operation in this function will be lost - the return value is interpreted |
447 | * as failure if the return value is zero, success otherwise, and this |
448 | * function returns a boolean value as a result. In other words, vendors of |
449 | * 'ENGINE'-enabled devices should write ENGINE implementations with |
450 | * parameterisations that work in this scheme, so that compliant ENGINE-based |
451 | * applications can work consistently with the same configuration for the |
452 | * same ENGINE-enabled devices, across applications. |
453 | */ |
454 | int ENGINE_ctrl_cmd_string(ENGINE *e, const char *cmd_name, const char *arg, |
455 | int cmd_optional); |
456 | |
457 | /* |
458 | * These functions are useful for manufacturing new ENGINE structures. They |
459 | * don't address reference counting at all - one uses them to populate an |
460 | * ENGINE structure with personalised implementations of things prior to |
461 | * using it directly or adding it to the builtin ENGINE list in OpenSSL. |
462 | * These are also here so that the ENGINE structure doesn't have to be |
463 | * exposed and break binary compatibility! |
464 | */ |
465 | ENGINE *ENGINE_new(void); |
466 | int ENGINE_free(ENGINE *e); |
467 | int ENGINE_up_ref(ENGINE *e); |
468 | int ENGINE_set_id(ENGINE *e, const char *id); |
469 | int ENGINE_set_name(ENGINE *e, const char *name); |
470 | int ENGINE_set_RSA(ENGINE *e, const RSA_METHOD *rsa_meth); |
471 | int ENGINE_set_DSA(ENGINE *e, const DSA_METHOD *dsa_meth); |
472 | int ENGINE_set_EC(ENGINE *e, const EC_KEY_METHOD *ecdsa_meth); |
473 | int ENGINE_set_DH(ENGINE *e, const DH_METHOD *dh_meth); |
474 | int ENGINE_set_RAND(ENGINE *e, const RAND_METHOD *rand_meth); |
475 | int ENGINE_set_destroy_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR destroy_f); |
476 | int ENGINE_set_init_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR init_f); |
477 | int ENGINE_set_finish_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR finish_f); |
478 | int ENGINE_set_ctrl_function(ENGINE *e, ENGINE_CTRL_FUNC_PTR ctrl_f); |
479 | int ENGINE_set_load_privkey_function(ENGINE *e, |
480 | ENGINE_LOAD_KEY_PTR loadpriv_f); |
481 | int ENGINE_set_load_pubkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpub_f); |
482 | int ENGINE_set_load_ssl_client_cert_function(ENGINE *e, |
483 | ENGINE_SSL_CLIENT_CERT_PTR |
484 | loadssl_f); |
485 | int ENGINE_set_ciphers(ENGINE *e, ENGINE_CIPHERS_PTR f); |
486 | int ENGINE_set_digests(ENGINE *e, ENGINE_DIGESTS_PTR f); |
487 | int ENGINE_set_pkey_meths(ENGINE *e, ENGINE_PKEY_METHS_PTR f); |
488 | int ENGINE_set_pkey_asn1_meths(ENGINE *e, ENGINE_PKEY_ASN1_METHS_PTR f); |
489 | int ENGINE_set_flags(ENGINE *e, int flags); |
490 | int ENGINE_set_cmd_defns(ENGINE *e, const ENGINE_CMD_DEFN *defns); |
491 | /* These functions allow control over any per-structure ENGINE data. */ |
492 | #define ENGINE_get_ex_new_index(l, p, newf, dupf, freef) \ |
493 | CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_ENGINE, l, p, newf, dupf, freef) |
494 | int ENGINE_set_ex_data(ENGINE *e, int idx, void *arg); |
495 | void *ENGINE_get_ex_data(const ENGINE *e, int idx); |
496 | |
497 | #if OPENSSL_API_COMPAT < 0x10100000L |
498 | /* |
499 | * This function previously cleaned up anything that needs it. Auto-deinit will |
500 | * now take care of it so it is no longer required to call this function. |
501 | */ |
502 | # define ENGINE_cleanup() while(0) continue |
503 | #endif |
504 | |
505 | /* |
506 | * These return values from within the ENGINE structure. These can be useful |
507 | * with functional references as well as structural references - it depends |
508 | * which you obtained. Using the result for functional purposes if you only |
509 | * obtained a structural reference may be problematic! |
510 | */ |
511 | const char *ENGINE_get_id(const ENGINE *e); |
512 | const char *ENGINE_get_name(const ENGINE *e); |
513 | const RSA_METHOD *ENGINE_get_RSA(const ENGINE *e); |
514 | const DSA_METHOD *ENGINE_get_DSA(const ENGINE *e); |
515 | const EC_KEY_METHOD *ENGINE_get_EC(const ENGINE *e); |
516 | const DH_METHOD *ENGINE_get_DH(const ENGINE *e); |
517 | const RAND_METHOD *ENGINE_get_RAND(const ENGINE *e); |
518 | ENGINE_GEN_INT_FUNC_PTR ENGINE_get_destroy_function(const ENGINE *e); |
519 | ENGINE_GEN_INT_FUNC_PTR ENGINE_get_init_function(const ENGINE *e); |
520 | ENGINE_GEN_INT_FUNC_PTR ENGINE_get_finish_function(const ENGINE *e); |
521 | ENGINE_CTRL_FUNC_PTR ENGINE_get_ctrl_function(const ENGINE *e); |
522 | ENGINE_LOAD_KEY_PTR ENGINE_get_load_privkey_function(const ENGINE *e); |
523 | ENGINE_LOAD_KEY_PTR ENGINE_get_load_pubkey_function(const ENGINE *e); |
524 | ENGINE_SSL_CLIENT_CERT_PTR ENGINE_get_ssl_client_cert_function(const ENGINE |
525 | *e); |
526 | ENGINE_CIPHERS_PTR ENGINE_get_ciphers(const ENGINE *e); |
527 | ENGINE_DIGESTS_PTR ENGINE_get_digests(const ENGINE *e); |
528 | ENGINE_PKEY_METHS_PTR ENGINE_get_pkey_meths(const ENGINE *e); |
529 | ENGINE_PKEY_ASN1_METHS_PTR ENGINE_get_pkey_asn1_meths(const ENGINE *e); |
530 | const EVP_CIPHER *ENGINE_get_cipher(ENGINE *e, int nid); |
531 | const EVP_MD *ENGINE_get_digest(ENGINE *e, int nid); |
532 | const EVP_PKEY_METHOD *ENGINE_get_pkey_meth(ENGINE *e, int nid); |
533 | const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth(ENGINE *e, int nid); |
534 | const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth_str(ENGINE *e, |
535 | const char *str, |
536 | int len); |
537 | const EVP_PKEY_ASN1_METHOD *ENGINE_pkey_asn1_find_str(ENGINE **pe, |
538 | const char *str, |
539 | int len); |
540 | const ENGINE_CMD_DEFN *ENGINE_get_cmd_defns(const ENGINE *e); |
541 | int ENGINE_get_flags(const ENGINE *e); |
542 | |
543 | /* |
544 | * FUNCTIONAL functions. These functions deal with ENGINE structures that |
545 | * have (or will) be initialised for use. Broadly speaking, the structural |
546 | * functions are useful for iterating the list of available engine types, |
547 | * creating new engine types, and other "list" operations. These functions |
548 | * actually deal with ENGINEs that are to be used. As such these functions |
549 | * can fail (if applicable) when particular engines are unavailable - eg. if |
550 | * a hardware accelerator is not attached or not functioning correctly. Each |
551 | * ENGINE has 2 reference counts; structural and functional. Every time a |
552 | * functional reference is obtained or released, a corresponding structural |
553 | * reference is automatically obtained or released too. |
554 | */ |
555 | |
556 | /* |
557 | * Initialise a engine type for use (or up its reference count if it's |
558 | * already in use). This will fail if the engine is not currently operational |
559 | * and cannot initialise. |
560 | */ |
561 | int ENGINE_init(ENGINE *e); |
562 | /* |
563 | * Free a functional reference to a engine type. This does not require a |
564 | * corresponding call to ENGINE_free as it also releases a structural |
565 | * reference. |
566 | */ |
567 | int ENGINE_finish(ENGINE *e); |
568 | |
569 | /* |
570 | * The following functions handle keys that are stored in some secondary |
571 | * location, handled by the engine. The storage may be on a card or |
572 | * whatever. |
573 | */ |
574 | EVP_PKEY *ENGINE_load_private_key(ENGINE *e, const char *key_id, |
575 | UI_METHOD *ui_method, void *callback_data); |
576 | EVP_PKEY *ENGINE_load_public_key(ENGINE *e, const char *key_id, |
577 | UI_METHOD *ui_method, void *callback_data); |
578 | int ENGINE_load_ssl_client_cert(ENGINE *e, SSL *s, |
579 | STACK_OF(X509_NAME) *ca_dn, X509 **pcert, |
580 | EVP_PKEY **ppkey, STACK_OF(X509) **pother, |
581 | UI_METHOD *ui_method, void *callback_data); |
582 | |
583 | /* |
584 | * This returns a pointer for the current ENGINE structure that is (by |
585 | * default) performing any RSA operations. The value returned is an |
586 | * incremented reference, so it should be free'd (ENGINE_finish) before it is |
587 | * discarded. |
588 | */ |
589 | ENGINE *ENGINE_get_default_RSA(void); |
590 | /* Same for the other "methods" */ |
591 | ENGINE *ENGINE_get_default_DSA(void); |
592 | ENGINE *ENGINE_get_default_EC(void); |
593 | ENGINE *ENGINE_get_default_DH(void); |
594 | ENGINE *ENGINE_get_default_RAND(void); |
595 | /* |
596 | * These functions can be used to get a functional reference to perform |
597 | * ciphering or digesting corresponding to "nid". |
598 | */ |
599 | ENGINE *ENGINE_get_cipher_engine(int nid); |
600 | ENGINE *ENGINE_get_digest_engine(int nid); |
601 | ENGINE *ENGINE_get_pkey_meth_engine(int nid); |
602 | ENGINE *ENGINE_get_pkey_asn1_meth_engine(int nid); |
603 | |
604 | /* |
605 | * This sets a new default ENGINE structure for performing RSA operations. If |
606 | * the result is non-zero (success) then the ENGINE structure will have had |
607 | * its reference count up'd so the caller should still free their own |
608 | * reference 'e'. |
609 | */ |
610 | int ENGINE_set_default_RSA(ENGINE *e); |
611 | int ENGINE_set_default_string(ENGINE *e, const char *def_list); |
612 | /* Same for the other "methods" */ |
613 | int ENGINE_set_default_DSA(ENGINE *e); |
614 | int ENGINE_set_default_EC(ENGINE *e); |
615 | int ENGINE_set_default_DH(ENGINE *e); |
616 | int ENGINE_set_default_RAND(ENGINE *e); |
617 | int ENGINE_set_default_ciphers(ENGINE *e); |
618 | int ENGINE_set_default_digests(ENGINE *e); |
619 | int ENGINE_set_default_pkey_meths(ENGINE *e); |
620 | int ENGINE_set_default_pkey_asn1_meths(ENGINE *e); |
621 | |
622 | /* |
623 | * The combination "set" - the flags are bitwise "OR"d from the |
624 | * ENGINE_METHOD_*** defines above. As with the "ENGINE_register_complete()" |
625 | * function, this function can result in unnecessary static linkage. If your |
626 | * application requires only specific functionality, consider using more |
627 | * selective functions. |
628 | */ |
629 | int ENGINE_set_default(ENGINE *e, unsigned int flags); |
630 | |
631 | void ENGINE_add_conf_module(void); |
632 | |
633 | /* Deprecated functions ... */ |
634 | /* int ENGINE_clear_defaults(void); */ |
635 | |
636 | /**************************/ |
637 | /* DYNAMIC ENGINE SUPPORT */ |
638 | /**************************/ |
639 | |
640 | /* Binary/behaviour compatibility levels */ |
641 | # define OSSL_DYNAMIC_VERSION (unsigned long)0x00030000 |
642 | /* |
643 | * Binary versions older than this are too old for us (whether we're a loader |
644 | * or a loadee) |
645 | */ |
646 | # define OSSL_DYNAMIC_OLDEST (unsigned long)0x00030000 |
647 | |
648 | /* |
649 | * When compiling an ENGINE entirely as an external shared library, loadable |
650 | * by the "dynamic" ENGINE, these types are needed. The 'dynamic_fns' |
651 | * structure type provides the calling application's (or library's) error |
652 | * functionality and memory management function pointers to the loaded |
653 | * library. These should be used/set in the loaded library code so that the |
654 | * loading application's 'state' will be used/changed in all operations. The |
655 | * 'static_state' pointer allows the loaded library to know if it shares the |
656 | * same static data as the calling application (or library), and thus whether |
657 | * these callbacks need to be set or not. |
658 | */ |
659 | typedef void *(*dyn_MEM_malloc_fn) (size_t, const char *, int); |
660 | typedef void *(*dyn_MEM_realloc_fn) (void *, size_t, const char *, int); |
661 | typedef void (*dyn_MEM_free_fn) (void *, const char *, int); |
662 | typedef struct st_dynamic_MEM_fns { |
663 | dyn_MEM_malloc_fn malloc_fn; |
664 | dyn_MEM_realloc_fn realloc_fn; |
665 | dyn_MEM_free_fn free_fn; |
666 | } dynamic_MEM_fns; |
667 | /* |
668 | * FIXME: Perhaps the memory and locking code (crypto.h) should declare and |
669 | * use these types so we (and any other dependent code) can simplify a bit?? |
670 | */ |
671 | /* The top-level structure */ |
672 | typedef struct st_dynamic_fns { |
673 | void *static_state; |
674 | dynamic_MEM_fns mem_fns; |
675 | } dynamic_fns; |
676 | |
677 | /* |
678 | * The version checking function should be of this prototype. NB: The |
679 | * ossl_version value passed in is the OSSL_DYNAMIC_VERSION of the loading |
680 | * code. If this function returns zero, it indicates a (potential) version |
681 | * incompatibility and the loaded library doesn't believe it can proceed. |
682 | * Otherwise, the returned value is the (latest) version supported by the |
683 | * loading library. The loader may still decide that the loaded code's |
684 | * version is unsatisfactory and could veto the load. The function is |
685 | * expected to be implemented with the symbol name "v_check", and a default |
686 | * implementation can be fully instantiated with |
687 | * IMPLEMENT_DYNAMIC_CHECK_FN(). |
688 | */ |
689 | typedef unsigned long (*dynamic_v_check_fn) (unsigned long ossl_version); |
690 | # define IMPLEMENT_DYNAMIC_CHECK_FN() \ |
691 | OPENSSL_EXPORT unsigned long v_check(unsigned long v); \ |
692 | OPENSSL_EXPORT unsigned long v_check(unsigned long v) { \ |
693 | if (v >= OSSL_DYNAMIC_OLDEST) return OSSL_DYNAMIC_VERSION; \ |
694 | return 0; } |
695 | |
696 | /* |
697 | * This function is passed the ENGINE structure to initialise with its own |
698 | * function and command settings. It should not adjust the structural or |
699 | * functional reference counts. If this function returns zero, (a) the load |
700 | * will be aborted, (b) the previous ENGINE state will be memcpy'd back onto |
701 | * the structure, and (c) the shared library will be unloaded. So |
702 | * implementations should do their own internal cleanup in failure |
703 | * circumstances otherwise they could leak. The 'id' parameter, if non-NULL, |
704 | * represents the ENGINE id that the loader is looking for. If this is NULL, |
705 | * the shared library can choose to return failure or to initialise a |
706 | * 'default' ENGINE. If non-NULL, the shared library must initialise only an |
707 | * ENGINE matching the passed 'id'. The function is expected to be |
708 | * implemented with the symbol name "bind_engine". A standard implementation |
709 | * can be instantiated with IMPLEMENT_DYNAMIC_BIND_FN(fn) where the parameter |
710 | * 'fn' is a callback function that populates the ENGINE structure and |
711 | * returns an int value (zero for failure). 'fn' should have prototype; |
712 | * [static] int fn(ENGINE *e, const char *id); |
713 | */ |
714 | typedef int (*dynamic_bind_engine) (ENGINE *e, const char *id, |
715 | const dynamic_fns *fns); |
716 | # define IMPLEMENT_DYNAMIC_BIND_FN(fn) \ |
717 | OPENSSL_EXPORT \ |
718 | int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns); \ |
719 | OPENSSL_EXPORT \ |
720 | int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns) { \ |
721 | if (ENGINE_get_static_state() == fns->static_state) goto skip_cbs; \ |
722 | CRYPTO_set_mem_functions(fns->mem_fns.malloc_fn, \ |
723 | fns->mem_fns.realloc_fn, \ |
724 | fns->mem_fns.free_fn); \ |
725 | skip_cbs: \ |
726 | if (!fn(e, id)) return 0; \ |
727 | return 1; } |
728 | |
729 | /* |
730 | * If the loading application (or library) and the loaded ENGINE library |
731 | * share the same static data (eg. they're both dynamically linked to the |
732 | * same libcrypto.so) we need a way to avoid trying to set system callbacks - |
733 | * this would fail, and for the same reason that it's unnecessary to try. If |
734 | * the loaded ENGINE has (or gets from through the loader) its own copy of |
735 | * the libcrypto static data, we will need to set the callbacks. The easiest |
736 | * way to detect this is to have a function that returns a pointer to some |
737 | * static data and let the loading application and loaded ENGINE compare |
738 | * their respective values. |
739 | */ |
740 | void *ENGINE_get_static_state(void); |
741 | |
742 | # if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__DragonFly__) |
743 | DEPRECATEDIN_1_1_0(void ENGINE_setup_bsd_cryptodev(void)) |
744 | # endif |
745 | |
746 | |
747 | # ifdef __cplusplus |
748 | } |
749 | # endif |
750 | # endif |
751 | #endif |
752 | |