| 1 | #include "duckdb/execution/index/art/node4.hpp" | 
| 2 | #include "duckdb/execution/index/art/node16.hpp" | 
| 3 | #include "duckdb/execution/index/art/node48.hpp" | 
| 4 |  | 
| 5 | #include <cstring> | 
| 6 |  | 
| 7 | using namespace duckdb; | 
| 8 |  | 
| 9 | Node16::Node16(ART &art, size_t compressionLength) : Node(art, NodeType::N16, compressionLength) { | 
| 10 | 	memset(key, 16, sizeof(key)); | 
| 11 | } | 
| 12 |  | 
| 13 | // TODO : In the future this can be performed using SIMD (#include <emmintrin.h>  x86 SSE intrinsics) | 
| 14 | idx_t Node16::GetChildPos(uint8_t k) { | 
| 15 | 	for (idx_t pos = 0; pos < count; pos++) { | 
| 16 | 		if (key[pos] == k) { | 
| 17 | 			return pos; | 
| 18 | 		} | 
| 19 | 	} | 
| 20 | 	return Node::GetChildPos(k); | 
| 21 | } | 
| 22 |  | 
| 23 | idx_t Node16::GetChildGreaterEqual(uint8_t k, bool &equal) { | 
| 24 | 	for (idx_t pos = 0; pos < count; pos++) { | 
| 25 | 		if (key[pos] >= k) { | 
| 26 | 			if (key[pos] == k) { | 
| 27 | 				equal = true; | 
| 28 | 			} else { | 
| 29 | 				equal = false; | 
| 30 | 			} | 
| 31 |  | 
| 32 | 			return pos; | 
| 33 | 		} | 
| 34 | 	} | 
| 35 | 	return Node::GetChildGreaterEqual(k, equal); | 
| 36 | } | 
| 37 |  | 
| 38 | idx_t Node16::GetNextPos(idx_t pos) { | 
| 39 | 	if (pos == INVALID_INDEX) { | 
| 40 | 		return 0; | 
| 41 | 	} | 
| 42 | 	pos++; | 
| 43 | 	return pos < count ? pos : INVALID_INDEX; | 
| 44 | } | 
| 45 |  | 
| 46 | unique_ptr<Node> *Node16::GetChild(idx_t pos) { | 
| 47 | 	assert(pos < count); | 
| 48 | 	return &child[pos]; | 
| 49 | } | 
| 50 |  | 
| 51 | idx_t Node16::GetMin() { | 
| 52 | 	return 0; | 
| 53 | } | 
| 54 |  | 
| 55 | void Node16::insert(ART &art, unique_ptr<Node> &node, uint8_t keyByte, unique_ptr<Node> &child) { | 
| 56 | 	Node16 *n = static_cast<Node16 *>(node.get()); | 
| 57 |  | 
| 58 | 	if (n->count < 16) { | 
| 59 | 		// Insert element | 
| 60 | 		unsigned pos; | 
| 61 | 		for (pos = 0; (pos < node->count) && (n->key[pos] < keyByte); pos++) | 
| 62 | 			; | 
| 63 | 		if (n->child[pos] != nullptr) { | 
| 64 | 			for (unsigned i = n->count; i > pos; i--) { | 
| 65 | 				n->key[i] = n->key[i - 1]; | 
| 66 | 				n->child[i] = move(n->child[i - 1]); | 
| 67 | 			} | 
| 68 | 		} | 
| 69 | 		n->key[pos] = keyByte; | 
| 70 | 		n->child[pos] = move(child); | 
| 71 | 		n->count++; | 
| 72 | 	} else { | 
| 73 | 		// Grow to Node48 | 
| 74 | 		auto newNode = make_unique<Node48>(art, n->prefix_length); | 
| 75 | 		for (unsigned i = 0; i < node->count; i++) { | 
| 76 | 			newNode->childIndex[n->key[i]] = i; | 
| 77 | 			newNode->child[i] = move(n->child[i]); | 
| 78 | 		} | 
| 79 | 		CopyPrefix(art, n, newNode.get()); | 
| 80 | 		newNode->count = node->count; | 
| 81 | 		node = move(newNode); | 
| 82 |  | 
| 83 | 		Node48::insert(art, node, keyByte, child); | 
| 84 | 	} | 
| 85 | } | 
| 86 |  | 
| 87 | void Node16::erase(ART &art, unique_ptr<Node> &node, int pos) { | 
| 88 | 	Node16 *n = static_cast<Node16 *>(node.get()); | 
| 89 | 	// erase the child and decrease the count | 
| 90 | 	n->child[pos].reset(); | 
| 91 | 	n->count--; | 
| 92 | 	// potentially move any children backwards | 
| 93 | 	for (; pos < n->count; pos++) { | 
| 94 | 		n->key[pos] = n->key[pos + 1]; | 
| 95 | 		n->child[pos] = move(n->child[pos + 1]); | 
| 96 | 	} | 
| 97 | 	if (node->count <= 3) { | 
| 98 | 		// Shrink node | 
| 99 | 		auto newNode = make_unique<Node4>(art, n->prefix_length); | 
| 100 | 		for (unsigned i = 0; i < n->count; i++) { | 
| 101 | 			newNode->key[newNode->count] = n->key[i]; | 
| 102 | 			newNode->child[newNode->count++] = move(n->child[i]); | 
| 103 | 		} | 
| 104 | 		CopyPrefix(art, n, newNode.get()); | 
| 105 | 		node = move(newNode); | 
| 106 | 	} | 
| 107 | } | 
| 108 |  |