| 1 | #include "duckdb/execution/index/art/node4.hpp" |
| 2 | #include "duckdb/execution/index/art/node16.hpp" |
| 3 | #include "duckdb/execution/index/art/art.hpp" |
| 4 | |
| 5 | using namespace duckdb; |
| 6 | |
| 7 | Node4::Node4(ART &art, size_t compressionLength) : Node(art, NodeType::N4, compressionLength) { |
| 8 | memset(key, 0, sizeof(key)); |
| 9 | } |
| 10 | |
| 11 | idx_t Node4::GetChildPos(uint8_t k) { |
| 12 | for (idx_t pos = 0; pos < count; pos++) { |
| 13 | if (key[pos] == k) { |
| 14 | return pos; |
| 15 | } |
| 16 | } |
| 17 | return Node::GetChildPos(k); |
| 18 | } |
| 19 | |
| 20 | idx_t Node4::GetChildGreaterEqual(uint8_t k, bool &equal) { |
| 21 | for (idx_t pos = 0; pos < count; pos++) { |
| 22 | if (key[pos] >= k) { |
| 23 | if (key[pos] == k) { |
| 24 | equal = true; |
| 25 | } else { |
| 26 | equal = false; |
| 27 | } |
| 28 | return pos; |
| 29 | } |
| 30 | } |
| 31 | return Node::GetChildGreaterEqual(k, equal); |
| 32 | } |
| 33 | |
| 34 | idx_t Node4::GetMin() { |
| 35 | return 0; |
| 36 | } |
| 37 | |
| 38 | idx_t Node4::GetNextPos(idx_t pos) { |
| 39 | if (pos == INVALID_INDEX) { |
| 40 | return 0; |
| 41 | } |
| 42 | pos++; |
| 43 | return pos < count ? pos : INVALID_INDEX; |
| 44 | } |
| 45 | |
| 46 | unique_ptr<Node> *Node4::GetChild(idx_t pos) { |
| 47 | assert(pos < count); |
| 48 | return &child[pos]; |
| 49 | } |
| 50 | |
| 51 | void Node4::insert(ART &art, unique_ptr<Node> &node, uint8_t keyByte, unique_ptr<Node> &child) { |
| 52 | Node4 *n = static_cast<Node4 *>(node.get()); |
| 53 | |
| 54 | // Insert leaf into inner node |
| 55 | if (node->count < 4) { |
| 56 | // Insert element |
| 57 | unsigned pos; |
| 58 | for (pos = 0; (pos < node->count) && (n->key[pos] < keyByte); pos++) |
| 59 | ; |
| 60 | if (n->child[pos] != nullptr) { |
| 61 | for (unsigned i = n->count; i > pos; i--) { |
| 62 | n->key[i] = n->key[i - 1]; |
| 63 | n->child[i] = move(n->child[i - 1]); |
| 64 | } |
| 65 | } |
| 66 | n->key[pos] = keyByte; |
| 67 | n->child[pos] = move(child); |
| 68 | n->count++; |
| 69 | } else { |
| 70 | // Grow to Node16 |
| 71 | auto newNode = make_unique<Node16>(art, n->prefix_length); |
| 72 | newNode->count = 4; |
| 73 | CopyPrefix(art, node.get(), newNode.get()); |
| 74 | for (unsigned i = 0; i < 4; i++) { |
| 75 | newNode->key[i] = n->key[i]; |
| 76 | newNode->child[i] = move(n->child[i]); |
| 77 | } |
| 78 | node = move(newNode); |
| 79 | Node16::insert(art, node, keyByte, child); |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | void Node4::erase(ART &art, unique_ptr<Node> &node, int pos) { |
| 84 | Node4 *n = static_cast<Node4 *>(node.get()); |
| 85 | assert(pos < n->count); |
| 86 | |
| 87 | // erase the child and decrease the count |
| 88 | n->child[pos].reset(); |
| 89 | n->count--; |
| 90 | // potentially move any children backwards |
| 91 | for (; pos < n->count; pos++) { |
| 92 | n->key[pos] = n->key[pos + 1]; |
| 93 | n->child[pos] = move(n->child[pos + 1]); |
| 94 | } |
| 95 | |
| 96 | // This is a one way node |
| 97 | if (n->count == 1) { |
| 98 | auto childref = n->child[0].get(); |
| 99 | //! concatenate prefixes |
| 100 | auto new_length = node->prefix_length + childref->prefix_length + 1; |
| 101 | //! have to allocate space in our prefix array |
| 102 | unique_ptr<uint8_t[]> new_prefix = unique_ptr<uint8_t[]>(new uint8_t[new_length]); |
| 103 | ; |
| 104 | |
| 105 | //! first move the existing prefix (if any) |
| 106 | for (uint32_t i = 0; i < childref->prefix_length; i++) { |
| 107 | new_prefix[new_length - (i + 1)] = childref->prefix[childref->prefix_length - (i + 1)]; |
| 108 | } |
| 109 | //! now move the current key as part of the prefix |
| 110 | new_prefix[node->prefix_length] = n->key[0]; |
| 111 | //! finally add the old prefix |
| 112 | for (uint32_t i = 0; i < node->prefix_length; i++) { |
| 113 | new_prefix[i] = node->prefix[i]; |
| 114 | } |
| 115 | //! set new prefix and move the child |
| 116 | childref->prefix = move(new_prefix); |
| 117 | childref->prefix_length = new_length; |
| 118 | node = move(n->child[0]); |
| 119 | } |
| 120 | } |
| 121 | |