1 | #include "duckdb/execution/index/art/node4.hpp" |
2 | #include "duckdb/execution/index/art/node16.hpp" |
3 | #include "duckdb/execution/index/art/art.hpp" |
4 | |
5 | using namespace duckdb; |
6 | |
7 | Node4::Node4(ART &art, size_t compressionLength) : Node(art, NodeType::N4, compressionLength) { |
8 | memset(key, 0, sizeof(key)); |
9 | } |
10 | |
11 | idx_t Node4::GetChildPos(uint8_t k) { |
12 | for (idx_t pos = 0; pos < count; pos++) { |
13 | if (key[pos] == k) { |
14 | return pos; |
15 | } |
16 | } |
17 | return Node::GetChildPos(k); |
18 | } |
19 | |
20 | idx_t Node4::GetChildGreaterEqual(uint8_t k, bool &equal) { |
21 | for (idx_t pos = 0; pos < count; pos++) { |
22 | if (key[pos] >= k) { |
23 | if (key[pos] == k) { |
24 | equal = true; |
25 | } else { |
26 | equal = false; |
27 | } |
28 | return pos; |
29 | } |
30 | } |
31 | return Node::GetChildGreaterEqual(k, equal); |
32 | } |
33 | |
34 | idx_t Node4::GetMin() { |
35 | return 0; |
36 | } |
37 | |
38 | idx_t Node4::GetNextPos(idx_t pos) { |
39 | if (pos == INVALID_INDEX) { |
40 | return 0; |
41 | } |
42 | pos++; |
43 | return pos < count ? pos : INVALID_INDEX; |
44 | } |
45 | |
46 | unique_ptr<Node> *Node4::GetChild(idx_t pos) { |
47 | assert(pos < count); |
48 | return &child[pos]; |
49 | } |
50 | |
51 | void Node4::insert(ART &art, unique_ptr<Node> &node, uint8_t keyByte, unique_ptr<Node> &child) { |
52 | Node4 *n = static_cast<Node4 *>(node.get()); |
53 | |
54 | // Insert leaf into inner node |
55 | if (node->count < 4) { |
56 | // Insert element |
57 | unsigned pos; |
58 | for (pos = 0; (pos < node->count) && (n->key[pos] < keyByte); pos++) |
59 | ; |
60 | if (n->child[pos] != nullptr) { |
61 | for (unsigned i = n->count; i > pos; i--) { |
62 | n->key[i] = n->key[i - 1]; |
63 | n->child[i] = move(n->child[i - 1]); |
64 | } |
65 | } |
66 | n->key[pos] = keyByte; |
67 | n->child[pos] = move(child); |
68 | n->count++; |
69 | } else { |
70 | // Grow to Node16 |
71 | auto newNode = make_unique<Node16>(art, n->prefix_length); |
72 | newNode->count = 4; |
73 | CopyPrefix(art, node.get(), newNode.get()); |
74 | for (unsigned i = 0; i < 4; i++) { |
75 | newNode->key[i] = n->key[i]; |
76 | newNode->child[i] = move(n->child[i]); |
77 | } |
78 | node = move(newNode); |
79 | Node16::insert(art, node, keyByte, child); |
80 | } |
81 | } |
82 | |
83 | void Node4::erase(ART &art, unique_ptr<Node> &node, int pos) { |
84 | Node4 *n = static_cast<Node4 *>(node.get()); |
85 | assert(pos < n->count); |
86 | |
87 | // erase the child and decrease the count |
88 | n->child[pos].reset(); |
89 | n->count--; |
90 | // potentially move any children backwards |
91 | for (; pos < n->count; pos++) { |
92 | n->key[pos] = n->key[pos + 1]; |
93 | n->child[pos] = move(n->child[pos + 1]); |
94 | } |
95 | |
96 | // This is a one way node |
97 | if (n->count == 1) { |
98 | auto childref = n->child[0].get(); |
99 | //! concatenate prefixes |
100 | auto new_length = node->prefix_length + childref->prefix_length + 1; |
101 | //! have to allocate space in our prefix array |
102 | unique_ptr<uint8_t[]> new_prefix = unique_ptr<uint8_t[]>(new uint8_t[new_length]); |
103 | ; |
104 | |
105 | //! first move the existing prefix (if any) |
106 | for (uint32_t i = 0; i < childref->prefix_length; i++) { |
107 | new_prefix[new_length - (i + 1)] = childref->prefix[childref->prefix_length - (i + 1)]; |
108 | } |
109 | //! now move the current key as part of the prefix |
110 | new_prefix[node->prefix_length] = n->key[0]; |
111 | //! finally add the old prefix |
112 | for (uint32_t i = 0; i < node->prefix_length; i++) { |
113 | new_prefix[i] = node->prefix[i]; |
114 | } |
115 | //! set new prefix and move the child |
116 | childref->prefix = move(new_prefix); |
117 | childref->prefix_length = new_length; |
118 | node = move(n->child[0]); |
119 | } |
120 | } |
121 | |