1 | #include "duckdb/execution/join_hashtable.hpp" |
2 | |
3 | #include "duckdb/storage/buffer_manager.hpp" |
4 | |
5 | #include "duckdb/common/exception.hpp" |
6 | #include "duckdb/common/types/null_value.hpp" |
7 | #include "duckdb/common/vector_operations/vector_operations.hpp" |
8 | #include "duckdb/common/vector_operations/unary_executor.hpp" |
9 | #include "duckdb/common/operator/comparison_operators.hpp" |
10 | |
11 | using namespace std; |
12 | |
13 | namespace duckdb { |
14 | |
15 | using ScanStructure = JoinHashTable::ScanStructure; |
16 | |
17 | JoinHashTable::JoinHashTable(BufferManager &buffer_manager, vector<JoinCondition> &conditions, vector<TypeId> btypes, |
18 | JoinType type) |
19 | : buffer_manager(buffer_manager), build_types(move(btypes)), equality_size(0), condition_size(0), build_size(0), |
20 | entry_size(0), tuple_size(0), join_type(type), finalized(false), has_null(false), count(0) { |
21 | for (auto &condition : conditions) { |
22 | assert(condition.left->return_type == condition.right->return_type); |
23 | auto type = condition.left->return_type; |
24 | auto type_size = GetTypeIdSize(type); |
25 | if (condition.comparison == ExpressionType::COMPARE_EQUAL) { |
26 | // all equality conditions should be at the front |
27 | // all other conditions at the back |
28 | // this assert checks that |
29 | assert(equality_types.size() == condition_types.size()); |
30 | equality_types.push_back(type); |
31 | equality_size += type_size; |
32 | } |
33 | predicates.push_back(condition.comparison); |
34 | null_values_are_equal.push_back(condition.null_values_are_equal); |
35 | assert(!condition.null_values_are_equal || |
36 | (condition.null_values_are_equal && condition.comparison == ExpressionType::COMPARE_EQUAL)); |
37 | |
38 | condition_types.push_back(type); |
39 | condition_size += type_size; |
40 | } |
41 | // at least one equality is necessary |
42 | assert(equality_types.size() > 0); |
43 | |
44 | if (type == JoinType::ANTI || type == JoinType::SEMI || type == JoinType::MARK) { |
45 | // for ANTI, SEMI and MARK join, we only need to store the keys |
46 | build_size = 0; |
47 | build_types.clear(); |
48 | } else { |
49 | // otherwise we need to store the entire build side for reconstruction |
50 | // purposes |
51 | for (idx_t i = 0; i < build_types.size(); i++) { |
52 | build_size += GetTypeIdSize(build_types[i]); |
53 | } |
54 | } |
55 | tuple_size = condition_size + build_size; |
56 | // entry size is the tuple size and the size of the hash/next pointer |
57 | entry_size = tuple_size + std::max(sizeof(hash_t), sizeof(uintptr_t)); |
58 | // compute the per-block capacity of this HT |
59 | block_capacity = std::max((idx_t)STANDARD_VECTOR_SIZE, (Storage::BLOCK_ALLOC_SIZE / entry_size) + 1); |
60 | } |
61 | |
62 | JoinHashTable::~JoinHashTable() { |
63 | if (hash_map) { |
64 | auto hash_id = hash_map->block_id; |
65 | hash_map.reset(); |
66 | buffer_manager.DestroyBuffer(hash_id); |
67 | } |
68 | pinned_handles.clear(); |
69 | for (auto &block : blocks) { |
70 | buffer_manager.DestroyBuffer(block.block_id); |
71 | } |
72 | } |
73 | |
74 | void JoinHashTable::ApplyBitmask(Vector &hashes, idx_t count) { |
75 | if (hashes.vector_type == VectorType::CONSTANT_VECTOR) { |
76 | assert(!ConstantVector::IsNull(hashes)); |
77 | auto indices = ConstantVector::GetData<hash_t>(hashes); |
78 | *indices = *indices & bitmask; |
79 | } else { |
80 | hashes.Normalify(count); |
81 | auto indices = FlatVector::GetData<hash_t>(hashes); |
82 | for (idx_t i = 0; i < count; i++) { |
83 | indices[i] &= bitmask; |
84 | } |
85 | } |
86 | } |
87 | |
88 | void JoinHashTable::ApplyBitmask(Vector &hashes, const SelectionVector &sel, idx_t count, Vector &pointers) { |
89 | VectorData hdata; |
90 | hashes.Orrify(count, hdata); |
91 | |
92 | auto hash_data = (hash_t *)hdata.data; |
93 | auto result_data = FlatVector::GetData<data_ptr_t *>(pointers); |
94 | auto main_ht = (data_ptr_t *)hash_map->node->buffer; |
95 | for (idx_t i = 0; i < count; i++) { |
96 | auto rindex = sel.get_index(i); |
97 | auto hindex = hdata.sel->get_index(rindex); |
98 | auto hash = hash_data[hindex]; |
99 | result_data[rindex] = main_ht + (hash & bitmask); |
100 | } |
101 | } |
102 | |
103 | void JoinHashTable::Hash(DataChunk &keys, const SelectionVector &sel, idx_t count, Vector &hashes) { |
104 | if (count == keys.size()) { |
105 | // no null values are filtered: use regular hash functions |
106 | VectorOperations::Hash(keys.data[0], hashes, keys.size()); |
107 | for (idx_t i = 1; i < equality_types.size(); i++) { |
108 | VectorOperations::CombineHash(hashes, keys.data[i], keys.size()); |
109 | } |
110 | } else { |
111 | // null values were filtered: use selection vector |
112 | VectorOperations::Hash(keys.data[0], hashes, sel, count); |
113 | for (idx_t i = 1; i < equality_types.size(); i++) { |
114 | VectorOperations::CombineHash(hashes, keys.data[i], sel, count); |
115 | } |
116 | } |
117 | } |
118 | template <class T> |
119 | static void templated_serialize_vdata(VectorData &vdata, const SelectionVector &sel, idx_t count, |
120 | data_ptr_t key_locations[]) { |
121 | auto source = (T *)vdata.data; |
122 | if (vdata.nullmask->any()) { |
123 | for (idx_t i = 0; i < count; i++) { |
124 | auto idx = sel.get_index(i); |
125 | auto source_idx = vdata.sel->get_index(idx); |
126 | |
127 | auto target = (T *)key_locations[i]; |
128 | if ((*vdata.nullmask)[source_idx]) { |
129 | *target = NullValue<T>(); |
130 | } else { |
131 | *target = source[source_idx]; |
132 | } |
133 | key_locations[i] += sizeof(T); |
134 | } |
135 | } else { |
136 | for (idx_t i = 0; i < count; i++) { |
137 | auto idx = sel.get_index(i); |
138 | auto source_idx = vdata.sel->get_index(idx); |
139 | |
140 | auto target = (T *)key_locations[i]; |
141 | *target = source[source_idx]; |
142 | key_locations[i] += sizeof(T); |
143 | } |
144 | } |
145 | } |
146 | |
147 | void JoinHashTable::SerializeVectorData(VectorData &vdata, TypeId type, const SelectionVector &sel, idx_t count, |
148 | data_ptr_t key_locations[]) { |
149 | switch (type) { |
150 | case TypeId::BOOL: |
151 | case TypeId::INT8: |
152 | templated_serialize_vdata<int8_t>(vdata, sel, count, key_locations); |
153 | break; |
154 | case TypeId::INT16: |
155 | templated_serialize_vdata<int16_t>(vdata, sel, count, key_locations); |
156 | break; |
157 | case TypeId::INT32: |
158 | templated_serialize_vdata<int32_t>(vdata, sel, count, key_locations); |
159 | break; |
160 | case TypeId::INT64: |
161 | templated_serialize_vdata<int64_t>(vdata, sel, count, key_locations); |
162 | break; |
163 | case TypeId::FLOAT: |
164 | templated_serialize_vdata<float>(vdata, sel, count, key_locations); |
165 | break; |
166 | case TypeId::DOUBLE: |
167 | templated_serialize_vdata<double>(vdata, sel, count, key_locations); |
168 | break; |
169 | case TypeId::HASH: |
170 | templated_serialize_vdata<hash_t>(vdata, sel, count, key_locations); |
171 | break; |
172 | case TypeId::VARCHAR: { |
173 | auto source = (string_t *)vdata.data; |
174 | for (idx_t i = 0; i < count; i++) { |
175 | auto idx = sel.get_index(i); |
176 | auto source_idx = vdata.sel->get_index(idx); |
177 | |
178 | auto target = (string_t *)key_locations[i]; |
179 | if ((*vdata.nullmask)[source_idx]) { |
180 | *target = NullValue<string_t>(); |
181 | } else if (source[source_idx].IsInlined()) { |
182 | *target = source[source_idx]; |
183 | } else { |
184 | *target = string_heap.AddString(source[source_idx]); |
185 | } |
186 | key_locations[i] += sizeof(string_t); |
187 | } |
188 | break; |
189 | } |
190 | default: |
191 | throw NotImplementedException("FIXME: unimplemented serialize" ); |
192 | } |
193 | } |
194 | |
195 | void JoinHashTable::SerializeVector(Vector &v, idx_t vcount, const SelectionVector &sel, idx_t count, |
196 | data_ptr_t key_locations[]) { |
197 | VectorData vdata; |
198 | v.Orrify(vcount, vdata); |
199 | |
200 | SerializeVectorData(vdata, v.type, sel, count, key_locations); |
201 | } |
202 | |
203 | idx_t JoinHashTable::AppendToBlock(HTDataBlock &block, BufferHandle &handle, idx_t count, data_ptr_t key_locations[], |
204 | idx_t remaining) { |
205 | idx_t append_count = std::min(remaining, block.capacity - block.count); |
206 | auto dataptr = handle.node->buffer + block.count * entry_size; |
207 | idx_t offset = count - remaining; |
208 | for (idx_t i = 0; i < append_count; i++) { |
209 | key_locations[offset + i] = dataptr; |
210 | dataptr += entry_size; |
211 | } |
212 | block.count += append_count; |
213 | return append_count; |
214 | } |
215 | |
216 | static idx_t FilterNullValues(VectorData &vdata, const SelectionVector &sel, idx_t count, SelectionVector &result) { |
217 | auto &nullmask = *vdata.nullmask; |
218 | idx_t result_count = 0; |
219 | for (idx_t i = 0; i < count; i++) { |
220 | auto idx = sel.get_index(i); |
221 | auto key_idx = vdata.sel->get_index(idx); |
222 | if (!nullmask[key_idx]) { |
223 | result.set_index(result_count++, idx); |
224 | } |
225 | } |
226 | return result_count; |
227 | } |
228 | |
229 | idx_t JoinHashTable::PrepareKeys(DataChunk &keys, unique_ptr<VectorData[]> &key_data, |
230 | const SelectionVector *¤t_sel, SelectionVector &sel) { |
231 | key_data = keys.Orrify(); |
232 | |
233 | // figure out which keys are NULL, and create a selection vector out of them |
234 | current_sel = &FlatVector::IncrementalSelectionVector; |
235 | idx_t added_count = keys.size(); |
236 | for (idx_t i = 0; i < keys.column_count(); i++) { |
237 | if (!null_values_are_equal[i]) { |
238 | if (!key_data[i].nullmask->any()) { |
239 | continue; |
240 | } |
241 | added_count = FilterNullValues(key_data[i], *current_sel, added_count, sel); |
242 | // null values are NOT equal for this column, filter them out |
243 | current_sel = &sel; |
244 | } |
245 | } |
246 | return added_count; |
247 | } |
248 | |
249 | void JoinHashTable::Build(DataChunk &keys, DataChunk &payload) { |
250 | assert(!finalized); |
251 | assert(keys.size() == payload.size()); |
252 | if (keys.size() == 0) { |
253 | return; |
254 | } |
255 | // special case: correlated mark join |
256 | if (join_type == JoinType::MARK && correlated_mark_join_info.correlated_types.size() > 0) { |
257 | auto &info = correlated_mark_join_info; |
258 | // Correlated MARK join |
259 | // for the correlated mark join we need to keep track of COUNT(*) and COUNT(COLUMN) for each of the correlated |
260 | // columns push into the aggregate hash table |
261 | assert(info.correlated_counts); |
262 | info.group_chunk.SetCardinality(keys); |
263 | for (idx_t i = 0; i < info.correlated_types.size(); i++) { |
264 | info.group_chunk.data[i].Reference(keys.data[i]); |
265 | } |
266 | info.payload_chunk.SetCardinality(keys); |
267 | for (idx_t i = 0; i < 2; i++) { |
268 | info.payload_chunk.data[i].Reference(keys.data[info.correlated_types.size()]); |
269 | } |
270 | info.correlated_counts->AddChunk(info.group_chunk, info.payload_chunk); |
271 | } |
272 | |
273 | // prepare the keys for processing |
274 | unique_ptr<VectorData[]> key_data; |
275 | const SelectionVector *current_sel; |
276 | SelectionVector sel(STANDARD_VECTOR_SIZE); |
277 | idx_t added_count = PrepareKeys(keys, key_data, current_sel, sel); |
278 | if (added_count < keys.size()) { |
279 | has_null = true; |
280 | } |
281 | if (added_count == 0) { |
282 | return; |
283 | } |
284 | count += added_count; |
285 | |
286 | vector<unique_ptr<BufferHandle>> handles; |
287 | data_ptr_t key_locations[STANDARD_VECTOR_SIZE]; |
288 | // first allocate space of where to serialize the keys and payload columns |
289 | idx_t remaining = added_count; |
290 | // first append to the last block (if any) |
291 | if (blocks.size() != 0) { |
292 | auto &last_block = blocks.back(); |
293 | if (last_block.count < last_block.capacity) { |
294 | // last block has space: pin the buffer of this block |
295 | auto handle = buffer_manager.Pin(last_block.block_id); |
296 | // now append to the block |
297 | idx_t append_count = AppendToBlock(last_block, *handle, added_count, key_locations, remaining); |
298 | remaining -= append_count; |
299 | handles.push_back(move(handle)); |
300 | } |
301 | } |
302 | while (remaining > 0) { |
303 | // now for the remaining data, allocate new buffers to store the data and append there |
304 | auto handle = buffer_manager.Allocate(block_capacity * entry_size); |
305 | |
306 | HTDataBlock new_block; |
307 | new_block.count = 0; |
308 | new_block.capacity = block_capacity; |
309 | new_block.block_id = handle->block_id; |
310 | |
311 | idx_t append_count = AppendToBlock(new_block, *handle, added_count, key_locations, remaining); |
312 | remaining -= append_count; |
313 | handles.push_back(move(handle)); |
314 | blocks.push_back(new_block); |
315 | } |
316 | |
317 | // hash the keys and obtain an entry in the list |
318 | // note that we only hash the keys used in the equality comparison |
319 | Vector hash_values(TypeId::HASH); |
320 | Hash(keys, *current_sel, added_count, hash_values); |
321 | |
322 | // serialize the keys to the key locations |
323 | for (idx_t i = 0; i < keys.column_count(); i++) { |
324 | SerializeVectorData(key_data[i], keys.data[i].type, *current_sel, added_count, key_locations); |
325 | } |
326 | // now serialize the payload |
327 | if (build_types.size() > 0) { |
328 | for (idx_t i = 0; i < payload.column_count(); i++) { |
329 | SerializeVector(payload.data[i], payload.size(), *current_sel, added_count, key_locations); |
330 | } |
331 | } |
332 | SerializeVector(hash_values, payload.size(), *current_sel, added_count, key_locations); |
333 | } |
334 | |
335 | void JoinHashTable::InsertHashes(Vector &hashes, idx_t count, data_ptr_t key_locations[]) { |
336 | assert(hashes.type == TypeId::HASH); |
337 | |
338 | // use bitmask to get position in array |
339 | ApplyBitmask(hashes, count); |
340 | |
341 | hashes.Normalify(count); |
342 | |
343 | assert(hashes.vector_type == VectorType::FLAT_VECTOR); |
344 | auto pointers = (data_ptr_t *)hash_map->node->buffer; |
345 | auto indices = FlatVector::GetData<hash_t>(hashes); |
346 | for (idx_t i = 0; i < count; i++) { |
347 | auto index = indices[i]; |
348 | // set prev in current key to the value (NOTE: this will be nullptr if |
349 | // there is none) |
350 | auto prev_pointer = (data_ptr_t *)(key_locations[i] + tuple_size); |
351 | *prev_pointer = pointers[index]; |
352 | |
353 | // set pointer to current tuple |
354 | pointers[index] = key_locations[i]; |
355 | } |
356 | } |
357 | |
358 | void JoinHashTable::Finalize() { |
359 | // the build has finished, now iterate over all the nodes and construct the final hash table |
360 | // select a HT that has at least 50% empty space |
361 | idx_t capacity = NextPowerOfTwo(std::max(count * 2, (idx_t)(Storage::BLOCK_ALLOC_SIZE / sizeof(data_ptr_t)) + 1)); |
362 | // size needs to be a power of 2 |
363 | assert((capacity & (capacity - 1)) == 0); |
364 | bitmask = capacity - 1; |
365 | |
366 | // allocate the HT and initialize it with all-zero entries |
367 | hash_map = buffer_manager.Allocate(capacity * sizeof(data_ptr_t)); |
368 | memset(hash_map->node->buffer, 0, capacity * sizeof(data_ptr_t)); |
369 | |
370 | Vector hashes(TypeId::HASH); |
371 | auto hash_data = FlatVector::GetData<hash_t>(hashes); |
372 | data_ptr_t key_locations[STANDARD_VECTOR_SIZE]; |
373 | // now construct the actual hash table; scan the nodes |
374 | // as we can the nodes we pin all the blocks of the HT and keep them pinned until the HT is destroyed |
375 | // this is so that we can keep pointers around to the blocks |
376 | // FIXME: if we cannot keep everything pinned in memory, we could switch to an out-of-memory merge join or so |
377 | for (auto &block : blocks) { |
378 | auto handle = buffer_manager.Pin(block.block_id); |
379 | data_ptr_t dataptr = handle->node->buffer; |
380 | idx_t entry = 0; |
381 | while (entry < block.count) { |
382 | // fetch the next vector of entries from the blocks |
383 | idx_t next = std::min((idx_t)STANDARD_VECTOR_SIZE, block.count - entry); |
384 | for (idx_t i = 0; i < next; i++) { |
385 | hash_data[i] = *((hash_t *)(dataptr + tuple_size)); |
386 | key_locations[i] = dataptr; |
387 | dataptr += entry_size; |
388 | } |
389 | // now insert into the hash table |
390 | InsertHashes(hashes, next, key_locations); |
391 | |
392 | entry += next; |
393 | } |
394 | pinned_handles.push_back(move(handle)); |
395 | } |
396 | finalized = true; |
397 | } |
398 | |
399 | unique_ptr<ScanStructure> JoinHashTable::Probe(DataChunk &keys) { |
400 | assert(count > 0); // should be handled before |
401 | assert(finalized); |
402 | |
403 | // set up the scan structure |
404 | auto ss = make_unique<ScanStructure>(*this); |
405 | |
406 | if (join_type != JoinType::INNER) { |
407 | ss->found_match = unique_ptr<bool[]>(new bool[STANDARD_VECTOR_SIZE]); |
408 | memset(ss->found_match.get(), 0, sizeof(bool) * STANDARD_VECTOR_SIZE); |
409 | } |
410 | |
411 | // first prepare the keys for probing |
412 | const SelectionVector *current_sel; |
413 | ss->count = PrepareKeys(keys, ss->key_data, current_sel, ss->sel_vector); |
414 | if (ss->count == 0) { |
415 | return ss; |
416 | } |
417 | |
418 | // hash all the keys |
419 | Vector hashes(TypeId::HASH); |
420 | Hash(keys, *current_sel, ss->count, hashes); |
421 | |
422 | // now initialize the pointers of the scan structure based on the hashes |
423 | ApplyBitmask(hashes, *current_sel, ss->count, ss->pointers); |
424 | |
425 | // create the selection vector linking to only non-empty entries |
426 | idx_t count = 0; |
427 | auto pointers = FlatVector::GetData<data_ptr_t>(ss->pointers); |
428 | for (idx_t i = 0; i < ss->count; i++) { |
429 | auto idx = current_sel->get_index(i); |
430 | auto chain_pointer = (data_ptr_t *)(pointers[idx]); |
431 | pointers[idx] = *chain_pointer; |
432 | if (pointers[idx]) { |
433 | ss->sel_vector.set_index(count++, idx); |
434 | } |
435 | } |
436 | ss->count = count; |
437 | return ss; |
438 | } |
439 | |
440 | ScanStructure::ScanStructure(JoinHashTable &ht) : sel_vector(STANDARD_VECTOR_SIZE), ht(ht), finished(false) { |
441 | pointers.Initialize(TypeId::POINTER); |
442 | } |
443 | |
444 | void ScanStructure::Next(DataChunk &keys, DataChunk &left, DataChunk &result) { |
445 | if (finished) { |
446 | return; |
447 | } |
448 | |
449 | switch (ht.join_type) { |
450 | case JoinType::INNER: |
451 | NextInnerJoin(keys, left, result); |
452 | break; |
453 | case JoinType::SEMI: |
454 | NextSemiJoin(keys, left, result); |
455 | break; |
456 | case JoinType::MARK: |
457 | NextMarkJoin(keys, left, result); |
458 | break; |
459 | case JoinType::ANTI: |
460 | NextAntiJoin(keys, left, result); |
461 | break; |
462 | case JoinType::LEFT: |
463 | NextLeftJoin(keys, left, result); |
464 | break; |
465 | case JoinType::SINGLE: |
466 | NextSingleJoin(keys, left, result); |
467 | break; |
468 | default: |
469 | throw Exception("Unhandled join type in JoinHashTable" ); |
470 | } |
471 | } |
472 | |
473 | template <bool NO_MATCH_SEL, class T, class OP> |
474 | static idx_t TemplatedGather(VectorData &vdata, Vector &pointers, const SelectionVector ¤t_sel, idx_t count, |
475 | idx_t offset, SelectionVector *match_sel, SelectionVector *no_match_sel, |
476 | idx_t &no_match_count) { |
477 | idx_t result_count = 0; |
478 | auto data = (T *)vdata.data; |
479 | auto ptrs = FlatVector::GetData<uintptr_t>(pointers); |
480 | for (idx_t i = 0; i < count; i++) { |
481 | auto idx = current_sel.get_index(i); |
482 | auto kidx = vdata.sel->get_index(idx); |
483 | auto gdata = (T *)(ptrs[idx] + offset); |
484 | if ((*vdata.nullmask)[kidx]) { |
485 | if (IsNullValue<T>(*gdata)) { |
486 | match_sel->set_index(result_count++, idx); |
487 | } else { |
488 | if (NO_MATCH_SEL) { |
489 | no_match_sel->set_index(no_match_count++, idx); |
490 | } |
491 | } |
492 | } else { |
493 | if (OP::template Operation<T>(data[kidx], *gdata)) { |
494 | match_sel->set_index(result_count++, idx); |
495 | } else { |
496 | if (NO_MATCH_SEL) { |
497 | no_match_sel->set_index(no_match_count++, idx); |
498 | } |
499 | } |
500 | } |
501 | } |
502 | return result_count; |
503 | } |
504 | |
505 | template <bool NO_MATCH_SEL, class OP> |
506 | static idx_t GatherSwitch(VectorData &data, TypeId type, Vector &pointers, const SelectionVector ¤t_sel, |
507 | idx_t count, idx_t offset, SelectionVector *match_sel, SelectionVector *no_match_sel, |
508 | idx_t &no_match_count) { |
509 | switch (type) { |
510 | case TypeId::BOOL: |
511 | case TypeId::INT8: |
512 | return TemplatedGather<NO_MATCH_SEL, int8_t, OP>(data, pointers, current_sel, count, offset, match_sel, |
513 | no_match_sel, no_match_count); |
514 | case TypeId::INT16: |
515 | return TemplatedGather<NO_MATCH_SEL, int16_t, OP>(data, pointers, current_sel, count, offset, match_sel, |
516 | no_match_sel, no_match_count); |
517 | case TypeId::INT32: |
518 | return TemplatedGather<NO_MATCH_SEL, int32_t, OP>(data, pointers, current_sel, count, offset, match_sel, |
519 | no_match_sel, no_match_count); |
520 | case TypeId::INT64: |
521 | return TemplatedGather<NO_MATCH_SEL, int64_t, OP>(data, pointers, current_sel, count, offset, match_sel, |
522 | no_match_sel, no_match_count); |
523 | case TypeId::FLOAT: |
524 | return TemplatedGather<NO_MATCH_SEL, float, OP>(data, pointers, current_sel, count, offset, match_sel, |
525 | no_match_sel, no_match_count); |
526 | case TypeId::DOUBLE: |
527 | return TemplatedGather<NO_MATCH_SEL, double, OP>(data, pointers, current_sel, count, offset, match_sel, |
528 | no_match_sel, no_match_count); |
529 | case TypeId::VARCHAR: |
530 | return TemplatedGather<NO_MATCH_SEL, string_t, OP>(data, pointers, current_sel, count, offset, match_sel, |
531 | no_match_sel, no_match_count); |
532 | default: |
533 | throw NotImplementedException("Unimplemented type for GatherSwitch" ); |
534 | } |
535 | } |
536 | |
537 | template <bool NO_MATCH_SEL> |
538 | idx_t ScanStructure::ResolvePredicates(DataChunk &keys, SelectionVector *match_sel, SelectionVector *no_match_sel) { |
539 | SelectionVector *current_sel = &this->sel_vector; |
540 | idx_t remaining_count = this->count; |
541 | idx_t offset = 0; |
542 | idx_t no_match_count = 0; |
543 | for (idx_t i = 0; i < ht.predicates.size(); i++) { |
544 | switch (ht.predicates[i]) { |
545 | case ExpressionType::COMPARE_EQUAL: |
546 | remaining_count = |
547 | GatherSwitch<NO_MATCH_SEL, Equals>(key_data[i], keys.data[i].type, this->pointers, *current_sel, |
548 | remaining_count, offset, match_sel, no_match_sel, no_match_count); |
549 | break; |
550 | case ExpressionType::COMPARE_NOTEQUAL: |
551 | remaining_count = |
552 | GatherSwitch<NO_MATCH_SEL, NotEquals>(key_data[i], keys.data[i].type, this->pointers, *current_sel, |
553 | remaining_count, offset, match_sel, no_match_sel, no_match_count); |
554 | break; |
555 | case ExpressionType::COMPARE_GREATERTHAN: |
556 | remaining_count = GatherSwitch<NO_MATCH_SEL, GreaterThan>(key_data[i], keys.data[i].type, this->pointers, |
557 | *current_sel, remaining_count, offset, match_sel, |
558 | no_match_sel, no_match_count); |
559 | break; |
560 | case ExpressionType::COMPARE_GREATERTHANOREQUALTO: |
561 | remaining_count = GatherSwitch<NO_MATCH_SEL, GreaterThanEquals>( |
562 | key_data[i], keys.data[i].type, this->pointers, *current_sel, remaining_count, offset, match_sel, |
563 | no_match_sel, no_match_count); |
564 | break; |
565 | case ExpressionType::COMPARE_LESSTHAN: |
566 | remaining_count = |
567 | GatherSwitch<NO_MATCH_SEL, LessThan>(key_data[i], keys.data[i].type, this->pointers, *current_sel, |
568 | remaining_count, offset, match_sel, no_match_sel, no_match_count); |
569 | break; |
570 | case ExpressionType::COMPARE_LESSTHANOREQUALTO: |
571 | remaining_count = GatherSwitch<NO_MATCH_SEL, LessThanEquals>(key_data[i], keys.data[i].type, this->pointers, |
572 | *current_sel, remaining_count, offset, |
573 | match_sel, no_match_sel, no_match_count); |
574 | break; |
575 | default: |
576 | throw NotImplementedException("Unimplemented comparison type for join" ); |
577 | } |
578 | if (remaining_count == 0) { |
579 | break; |
580 | } |
581 | current_sel = match_sel; |
582 | offset += GetTypeIdSize(keys.data[i].type); |
583 | } |
584 | return remaining_count; |
585 | } |
586 | |
587 | idx_t ScanStructure::ResolvePredicates(DataChunk &keys, SelectionVector &match_sel, SelectionVector &no_match_sel) { |
588 | return ResolvePredicates<true>(keys, &match_sel, &no_match_sel); |
589 | } |
590 | |
591 | idx_t ScanStructure::ResolvePredicates(DataChunk &keys, SelectionVector &match_sel) { |
592 | return ResolvePredicates<false>(keys, &match_sel, nullptr); |
593 | } |
594 | |
595 | idx_t ScanStructure::ScanInnerJoin(DataChunk &keys, SelectionVector &result_vector) { |
596 | while (true) { |
597 | // resolve the predicates for this set of keys |
598 | idx_t result_count = ResolvePredicates(keys, result_vector); |
599 | |
600 | // after doing all the comparisons set the found_match vector |
601 | if (found_match) { |
602 | for (idx_t i = 0; i < result_count; i++) { |
603 | auto idx = result_vector.get_index(i); |
604 | found_match[idx] = true; |
605 | } |
606 | } |
607 | if (result_count > 0) { |
608 | return result_count; |
609 | } |
610 | // no matches found: check the next set of pointers |
611 | AdvancePointers(); |
612 | if (this->count == 0) { |
613 | return 0; |
614 | } |
615 | } |
616 | } |
617 | |
618 | void ScanStructure::AdvancePointers(const SelectionVector &sel, idx_t sel_count) { |
619 | // now for all the pointers, we move on to the next set of pointers |
620 | idx_t new_count = 0; |
621 | auto ptrs = FlatVector::GetData<data_ptr_t>(this->pointers); |
622 | for (idx_t i = 0; i < sel_count; i++) { |
623 | auto idx = sel.get_index(i); |
624 | auto chain_pointer = (data_ptr_t *)(ptrs[idx] + ht.tuple_size); |
625 | ptrs[idx] = *chain_pointer; |
626 | if (ptrs[idx]) { |
627 | this->sel_vector.set_index(new_count++, idx); |
628 | } |
629 | } |
630 | this->count = new_count; |
631 | } |
632 | |
633 | void ScanStructure::AdvancePointers() { |
634 | AdvancePointers(this->sel_vector, this->count); |
635 | } |
636 | |
637 | template <class T> |
638 | static void TemplatedGatherResult(Vector &result, uintptr_t *pointers, const SelectionVector &result_vector, |
639 | const SelectionVector &sel_vector, idx_t count, idx_t offset) { |
640 | auto rdata = FlatVector::GetData<T>(result); |
641 | auto &nullmask = FlatVector::Nullmask(result); |
642 | for (idx_t i = 0; i < count; i++) { |
643 | auto ridx = result_vector.get_index(i); |
644 | auto pidx = sel_vector.get_index(i); |
645 | auto hdata = (T *)(pointers[pidx] + offset); |
646 | if (IsNullValue<T>(*hdata)) { |
647 | nullmask[ridx] = true; |
648 | } else { |
649 | rdata[ridx] = *hdata; |
650 | } |
651 | } |
652 | } |
653 | |
654 | void ScanStructure::GatherResult(Vector &result, const SelectionVector &result_vector, |
655 | const SelectionVector &sel_vector, idx_t count, idx_t &offset) { |
656 | result.vector_type = VectorType::FLAT_VECTOR; |
657 | auto ptrs = FlatVector::GetData<uintptr_t>(pointers); |
658 | switch (result.type) { |
659 | case TypeId::BOOL: |
660 | case TypeId::INT8: |
661 | TemplatedGatherResult<int8_t>(result, ptrs, result_vector, sel_vector, count, offset); |
662 | break; |
663 | case TypeId::INT16: |
664 | TemplatedGatherResult<int16_t>(result, ptrs, result_vector, sel_vector, count, offset); |
665 | break; |
666 | case TypeId::INT32: |
667 | TemplatedGatherResult<int32_t>(result, ptrs, result_vector, sel_vector, count, offset); |
668 | break; |
669 | case TypeId::INT64: |
670 | TemplatedGatherResult<int64_t>(result, ptrs, result_vector, sel_vector, count, offset); |
671 | break; |
672 | case TypeId::FLOAT: |
673 | TemplatedGatherResult<float>(result, ptrs, result_vector, sel_vector, count, offset); |
674 | break; |
675 | case TypeId::DOUBLE: |
676 | TemplatedGatherResult<double>(result, ptrs, result_vector, sel_vector, count, offset); |
677 | break; |
678 | case TypeId::VARCHAR: |
679 | TemplatedGatherResult<string_t>(result, ptrs, result_vector, sel_vector, count, offset); |
680 | break; |
681 | default: |
682 | throw NotImplementedException("Unimplemented type for ScanStructure::GatherResult" ); |
683 | } |
684 | offset += GetTypeIdSize(result.type); |
685 | } |
686 | |
687 | void ScanStructure::GatherResult(Vector &result, const SelectionVector &sel_vector, idx_t count, idx_t &offset) { |
688 | GatherResult(result, FlatVector::IncrementalSelectionVector, sel_vector, count, offset); |
689 | } |
690 | |
691 | void ScanStructure::NextInnerJoin(DataChunk &keys, DataChunk &left, DataChunk &result) { |
692 | assert(result.column_count() == left.column_count() + ht.build_types.size()); |
693 | if (this->count == 0) { |
694 | // no pointers left to chase |
695 | return; |
696 | } |
697 | |
698 | SelectionVector result_vector(STANDARD_VECTOR_SIZE); |
699 | |
700 | idx_t result_count = ScanInnerJoin(keys, result_vector); |
701 | if (result_count > 0) { |
702 | // matches were found |
703 | // construct the result |
704 | // on the LHS, we create a slice using the result vector |
705 | result.Slice(left, result_vector, result_count); |
706 | |
707 | // on the RHS, we need to fetch the data from the hash table |
708 | idx_t offset = ht.condition_size; |
709 | for (idx_t i = 0; i < ht.build_types.size(); i++) { |
710 | auto &vector = result.data[left.column_count() + i]; |
711 | assert(vector.type == ht.build_types[i]); |
712 | GatherResult(vector, result_vector, result_count, offset); |
713 | } |
714 | AdvancePointers(); |
715 | } |
716 | } |
717 | |
718 | void ScanStructure::ScanKeyMatches(DataChunk &keys) { |
719 | // the semi-join, anti-join and mark-join we handle a differently from the inner join |
720 | // since there can be at most STANDARD_VECTOR_SIZE results |
721 | // we handle the entire chunk in one call to Next(). |
722 | // for every pointer, we keep chasing pointers and doing comparisons. |
723 | // this results in a boolean array indicating whether or not the tuple has a match |
724 | SelectionVector match_sel(STANDARD_VECTOR_SIZE), no_match_sel(STANDARD_VECTOR_SIZE); |
725 | while (this->count > 0) { |
726 | // resolve the predicates for the current set of pointers |
727 | idx_t match_count = ResolvePredicates(keys, match_sel, no_match_sel); |
728 | idx_t no_match_count = this->count - match_count; |
729 | |
730 | // mark each of the matches as found |
731 | for (idx_t i = 0; i < match_count; i++) { |
732 | found_match[match_sel.get_index(i)] = true; |
733 | } |
734 | // continue searching for the ones where we did not find a match yet |
735 | AdvancePointers(no_match_sel, no_match_count); |
736 | } |
737 | } |
738 | |
739 | template <bool MATCH> void ScanStructure::NextSemiOrAntiJoin(DataChunk &keys, DataChunk &left, DataChunk &result) { |
740 | assert(left.column_count() == result.column_count()); |
741 | assert(keys.size() == left.size()); |
742 | // create the selection vector from the matches that were found |
743 | SelectionVector sel(STANDARD_VECTOR_SIZE); |
744 | idx_t result_count = 0; |
745 | for (idx_t i = 0; i < keys.size(); i++) { |
746 | if (found_match[i] == MATCH) { |
747 | // part of the result |
748 | sel.set_index(result_count++, i); |
749 | } |
750 | } |
751 | // construct the final result |
752 | if (result_count > 0) { |
753 | // we only return the columns on the left side |
754 | // reference the columns of the left side from the result |
755 | result.Slice(left, sel, result_count); |
756 | } else { |
757 | assert(result.size() == 0); |
758 | } |
759 | } |
760 | |
761 | void ScanStructure::NextSemiJoin(DataChunk &keys, DataChunk &left, DataChunk &result) { |
762 | // first scan for key matches |
763 | ScanKeyMatches(keys); |
764 | // then construct the result from all tuples with a match |
765 | NextSemiOrAntiJoin<true>(keys, left, result); |
766 | |
767 | finished = true; |
768 | } |
769 | |
770 | void ScanStructure::NextAntiJoin(DataChunk &keys, DataChunk &left, DataChunk &result) { |
771 | // first scan for key matches |
772 | ScanKeyMatches(keys); |
773 | // then construct the result from all tuples that did not find a match |
774 | NextSemiOrAntiJoin<false>(keys, left, result); |
775 | |
776 | finished = true; |
777 | } |
778 | |
779 | void ScanStructure::ConstructMarkJoinResult(DataChunk &join_keys, DataChunk &child, DataChunk &result) { |
780 | // for the initial set of columns we just reference the left side |
781 | result.SetCardinality(child); |
782 | for (idx_t i = 0; i < child.column_count(); i++) { |
783 | result.data[i].Reference(child.data[i]); |
784 | } |
785 | auto &mark_vector = result.data.back(); |
786 | mark_vector.vector_type = VectorType::FLAT_VECTOR; |
787 | // first we set the NULL values from the join keys |
788 | // if there is any NULL in the keys, the result is NULL |
789 | auto bool_result = FlatVector::GetData<bool>(mark_vector); |
790 | auto &nullmask = FlatVector::Nullmask(mark_vector); |
791 | for (idx_t col_idx = 0; col_idx < join_keys.column_count(); col_idx++) { |
792 | if (ht.null_values_are_equal[col_idx]) { |
793 | continue; |
794 | } |
795 | VectorData jdata; |
796 | join_keys.data[col_idx].Orrify(join_keys.size(), jdata); |
797 | if (jdata.nullmask->any()) { |
798 | for (idx_t i = 0; i < join_keys.size(); i++) { |
799 | auto jidx = jdata.sel->get_index(i); |
800 | nullmask[i] = (*jdata.nullmask)[jidx]; |
801 | } |
802 | } |
803 | } |
804 | // now set the remaining entries to either true or false based on whether a match was found |
805 | if (found_match) { |
806 | for (idx_t i = 0; i < child.size(); i++) { |
807 | bool_result[i] = found_match[i]; |
808 | } |
809 | } else { |
810 | memset(bool_result, 0, sizeof(bool) * child.size()); |
811 | } |
812 | // if the right side contains NULL values, the result of any FALSE becomes NULL |
813 | if (ht.has_null) { |
814 | for (idx_t i = 0; i < child.size(); i++) { |
815 | if (!bool_result[i]) { |
816 | nullmask[i] = true; |
817 | } |
818 | } |
819 | } |
820 | } |
821 | |
822 | void ScanStructure::NextMarkJoin(DataChunk &keys, DataChunk &input, DataChunk &result) { |
823 | assert(result.column_count() == input.column_count() + 1); |
824 | assert(result.data.back().type == TypeId::BOOL); |
825 | // this method should only be called for a non-empty HT |
826 | assert(ht.count > 0); |
827 | |
828 | ScanKeyMatches(keys); |
829 | if (ht.correlated_mark_join_info.correlated_types.size() == 0) { |
830 | ConstructMarkJoinResult(keys, input, result); |
831 | } else { |
832 | auto &info = ht.correlated_mark_join_info; |
833 | // there are correlated columns |
834 | // first we fetch the counts from the aggregate hashtable corresponding to these entries |
835 | assert(keys.column_count() == info.group_chunk.column_count() + 1); |
836 | info.group_chunk.SetCardinality(keys); |
837 | for (idx_t i = 0; i < info.group_chunk.column_count(); i++) { |
838 | info.group_chunk.data[i].Reference(keys.data[i]); |
839 | } |
840 | info.correlated_counts->FetchAggregates(info.group_chunk, info.result_chunk); |
841 | |
842 | // for the initial set of columns we just reference the left side |
843 | result.SetCardinality(input); |
844 | for (idx_t i = 0; i < input.column_count(); i++) { |
845 | result.data[i].Reference(input.data[i]); |
846 | } |
847 | // create the result matching vector |
848 | auto &last_key = keys.data.back(); |
849 | auto &result_vector = result.data.back(); |
850 | // first set the nullmask based on whether or not there were NULL values in the join key |
851 | result_vector.vector_type = VectorType::FLAT_VECTOR; |
852 | auto bool_result = FlatVector::GetData<bool>(result_vector); |
853 | auto &nullmask = FlatVector::Nullmask(result_vector); |
854 | switch (last_key.vector_type) { |
855 | case VectorType::CONSTANT_VECTOR: |
856 | if (ConstantVector::IsNull(last_key)) { |
857 | nullmask.set(); |
858 | } |
859 | break; |
860 | case VectorType::FLAT_VECTOR: |
861 | nullmask = FlatVector::Nullmask(last_key); |
862 | break; |
863 | default: { |
864 | VectorData kdata; |
865 | last_key.Orrify(keys.size(), kdata); |
866 | for (idx_t i = 0; i < input.size(); i++) { |
867 | auto kidx = kdata.sel->get_index(i); |
868 | ; |
869 | nullmask[i] = (*kdata.nullmask)[kidx]; |
870 | } |
871 | break; |
872 | } |
873 | } |
874 | |
875 | auto count_star = FlatVector::GetData<int64_t>(info.result_chunk.data[0]); |
876 | auto count = FlatVector::GetData<int64_t>(info.result_chunk.data[1]); |
877 | // set the entries to either true or false based on whether a match was found |
878 | for (idx_t i = 0; i < input.size(); i++) { |
879 | assert(count_star[i] >= count[i]); |
880 | bool_result[i] = found_match ? found_match[i] : false; |
881 | if (!bool_result[i] && count_star[i] > count[i]) { |
882 | // RHS has NULL value and result is false: set to null |
883 | nullmask[i] = true; |
884 | } |
885 | if (count_star[i] == 0) { |
886 | // count == 0, set nullmask to false (we know the result is false now) |
887 | nullmask[i] = false; |
888 | } |
889 | } |
890 | } |
891 | finished = true; |
892 | } |
893 | |
894 | void ScanStructure::NextLeftJoin(DataChunk &keys, DataChunk &left, DataChunk &result) { |
895 | // a LEFT OUTER JOIN is identical to an INNER JOIN except all tuples that do |
896 | // not have a match must return at least one tuple (with the right side set |
897 | // to NULL in every column) |
898 | NextInnerJoin(keys, left, result); |
899 | if (result.size() == 0) { |
900 | // no entries left from the normal join |
901 | // fill in the result of the remaining left tuples |
902 | // together with NULL values on the right-hand side |
903 | idx_t remaining_count = 0; |
904 | SelectionVector sel(STANDARD_VECTOR_SIZE); |
905 | for (idx_t i = 0; i < left.size(); i++) { |
906 | if (!found_match[i]) { |
907 | sel.set_index(remaining_count++, i); |
908 | } |
909 | } |
910 | if (remaining_count > 0) { |
911 | // have remaining tuples |
912 | // slice the left side with tuples that did not find a match |
913 | result.Slice(left, sel, remaining_count); |
914 | |
915 | // now set the right side to NULL |
916 | for (idx_t i = left.column_count(); i < result.column_count(); i++) { |
917 | result.data[i].vector_type = VectorType::CONSTANT_VECTOR; |
918 | ConstantVector::SetNull(result.data[i], true); |
919 | } |
920 | } |
921 | finished = true; |
922 | } |
923 | } |
924 | |
925 | void ScanStructure::NextSingleJoin(DataChunk &keys, DataChunk &input, DataChunk &result) { |
926 | // single join |
927 | // this join is similar to the semi join except that |
928 | // (1) we actually return data from the RHS and |
929 | // (2) we return NULL for that data if there is no match |
930 | idx_t result_count = 0; |
931 | SelectionVector result_sel(STANDARD_VECTOR_SIZE); |
932 | SelectionVector match_sel(STANDARD_VECTOR_SIZE), no_match_sel(STANDARD_VECTOR_SIZE); |
933 | while (this->count > 0) { |
934 | // resolve the predicates for the current set of pointers |
935 | idx_t match_count = ResolvePredicates(keys, match_sel, no_match_sel); |
936 | idx_t no_match_count = this->count - match_count; |
937 | |
938 | // mark each of the matches as found |
939 | for (idx_t i = 0; i < match_count; i++) { |
940 | // found a match for this index |
941 | auto index = match_sel.get_index(i); |
942 | found_match[index] = true; |
943 | result_sel.set_index(result_count++, index); |
944 | } |
945 | // continue searching for the ones where we did not find a match yet |
946 | AdvancePointers(no_match_sel, no_match_count); |
947 | } |
948 | // reference the columns of the left side from the result |
949 | assert(input.column_count() > 0); |
950 | for (idx_t i = 0; i < input.column_count(); i++) { |
951 | result.data[i].Reference(input.data[i]); |
952 | } |
953 | // now fetch the data from the RHS |
954 | idx_t offset = ht.condition_size; |
955 | for (idx_t i = 0; i < ht.build_types.size(); i++) { |
956 | auto &vector = result.data[input.column_count() + i]; |
957 | // set NULL entries for every entry that was not found |
958 | auto &nullmask = FlatVector::Nullmask(vector); |
959 | nullmask.set(); |
960 | for (idx_t j = 0; j < result_count; j++) { |
961 | nullmask[result_sel.get_index(j)] = false; |
962 | } |
963 | // for the remaining values we fetch the values |
964 | GatherResult(vector, result_sel, result_sel, result_count, offset); |
965 | } |
966 | result.SetCardinality(input.size()); |
967 | |
968 | // like the SEMI, ANTI and MARK join types, the SINGLE join only ever does one pass over the HT per input chunk |
969 | finished = true; |
970 | } |
971 | |
972 | } // namespace duckdb |
973 | |