| 1 | #include "duckdb/execution/join_hashtable.hpp" |
| 2 | |
| 3 | #include "duckdb/storage/buffer_manager.hpp" |
| 4 | |
| 5 | #include "duckdb/common/exception.hpp" |
| 6 | #include "duckdb/common/types/null_value.hpp" |
| 7 | #include "duckdb/common/vector_operations/vector_operations.hpp" |
| 8 | #include "duckdb/common/vector_operations/unary_executor.hpp" |
| 9 | #include "duckdb/common/operator/comparison_operators.hpp" |
| 10 | |
| 11 | using namespace std; |
| 12 | |
| 13 | namespace duckdb { |
| 14 | |
| 15 | using ScanStructure = JoinHashTable::ScanStructure; |
| 16 | |
| 17 | JoinHashTable::JoinHashTable(BufferManager &buffer_manager, vector<JoinCondition> &conditions, vector<TypeId> btypes, |
| 18 | JoinType type) |
| 19 | : buffer_manager(buffer_manager), build_types(move(btypes)), equality_size(0), condition_size(0), build_size(0), |
| 20 | entry_size(0), tuple_size(0), join_type(type), finalized(false), has_null(false), count(0) { |
| 21 | for (auto &condition : conditions) { |
| 22 | assert(condition.left->return_type == condition.right->return_type); |
| 23 | auto type = condition.left->return_type; |
| 24 | auto type_size = GetTypeIdSize(type); |
| 25 | if (condition.comparison == ExpressionType::COMPARE_EQUAL) { |
| 26 | // all equality conditions should be at the front |
| 27 | // all other conditions at the back |
| 28 | // this assert checks that |
| 29 | assert(equality_types.size() == condition_types.size()); |
| 30 | equality_types.push_back(type); |
| 31 | equality_size += type_size; |
| 32 | } |
| 33 | predicates.push_back(condition.comparison); |
| 34 | null_values_are_equal.push_back(condition.null_values_are_equal); |
| 35 | assert(!condition.null_values_are_equal || |
| 36 | (condition.null_values_are_equal && condition.comparison == ExpressionType::COMPARE_EQUAL)); |
| 37 | |
| 38 | condition_types.push_back(type); |
| 39 | condition_size += type_size; |
| 40 | } |
| 41 | // at least one equality is necessary |
| 42 | assert(equality_types.size() > 0); |
| 43 | |
| 44 | if (type == JoinType::ANTI || type == JoinType::SEMI || type == JoinType::MARK) { |
| 45 | // for ANTI, SEMI and MARK join, we only need to store the keys |
| 46 | build_size = 0; |
| 47 | build_types.clear(); |
| 48 | } else { |
| 49 | // otherwise we need to store the entire build side for reconstruction |
| 50 | // purposes |
| 51 | for (idx_t i = 0; i < build_types.size(); i++) { |
| 52 | build_size += GetTypeIdSize(build_types[i]); |
| 53 | } |
| 54 | } |
| 55 | tuple_size = condition_size + build_size; |
| 56 | // entry size is the tuple size and the size of the hash/next pointer |
| 57 | entry_size = tuple_size + std::max(sizeof(hash_t), sizeof(uintptr_t)); |
| 58 | // compute the per-block capacity of this HT |
| 59 | block_capacity = std::max((idx_t)STANDARD_VECTOR_SIZE, (Storage::BLOCK_ALLOC_SIZE / entry_size) + 1); |
| 60 | } |
| 61 | |
| 62 | JoinHashTable::~JoinHashTable() { |
| 63 | if (hash_map) { |
| 64 | auto hash_id = hash_map->block_id; |
| 65 | hash_map.reset(); |
| 66 | buffer_manager.DestroyBuffer(hash_id); |
| 67 | } |
| 68 | pinned_handles.clear(); |
| 69 | for (auto &block : blocks) { |
| 70 | buffer_manager.DestroyBuffer(block.block_id); |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | void JoinHashTable::ApplyBitmask(Vector &hashes, idx_t count) { |
| 75 | if (hashes.vector_type == VectorType::CONSTANT_VECTOR) { |
| 76 | assert(!ConstantVector::IsNull(hashes)); |
| 77 | auto indices = ConstantVector::GetData<hash_t>(hashes); |
| 78 | *indices = *indices & bitmask; |
| 79 | } else { |
| 80 | hashes.Normalify(count); |
| 81 | auto indices = FlatVector::GetData<hash_t>(hashes); |
| 82 | for (idx_t i = 0; i < count; i++) { |
| 83 | indices[i] &= bitmask; |
| 84 | } |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | void JoinHashTable::ApplyBitmask(Vector &hashes, const SelectionVector &sel, idx_t count, Vector &pointers) { |
| 89 | VectorData hdata; |
| 90 | hashes.Orrify(count, hdata); |
| 91 | |
| 92 | auto hash_data = (hash_t *)hdata.data; |
| 93 | auto result_data = FlatVector::GetData<data_ptr_t *>(pointers); |
| 94 | auto main_ht = (data_ptr_t *)hash_map->node->buffer; |
| 95 | for (idx_t i = 0; i < count; i++) { |
| 96 | auto rindex = sel.get_index(i); |
| 97 | auto hindex = hdata.sel->get_index(rindex); |
| 98 | auto hash = hash_data[hindex]; |
| 99 | result_data[rindex] = main_ht + (hash & bitmask); |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | void JoinHashTable::Hash(DataChunk &keys, const SelectionVector &sel, idx_t count, Vector &hashes) { |
| 104 | if (count == keys.size()) { |
| 105 | // no null values are filtered: use regular hash functions |
| 106 | VectorOperations::Hash(keys.data[0], hashes, keys.size()); |
| 107 | for (idx_t i = 1; i < equality_types.size(); i++) { |
| 108 | VectorOperations::CombineHash(hashes, keys.data[i], keys.size()); |
| 109 | } |
| 110 | } else { |
| 111 | // null values were filtered: use selection vector |
| 112 | VectorOperations::Hash(keys.data[0], hashes, sel, count); |
| 113 | for (idx_t i = 1; i < equality_types.size(); i++) { |
| 114 | VectorOperations::CombineHash(hashes, keys.data[i], sel, count); |
| 115 | } |
| 116 | } |
| 117 | } |
| 118 | template <class T> |
| 119 | static void templated_serialize_vdata(VectorData &vdata, const SelectionVector &sel, idx_t count, |
| 120 | data_ptr_t key_locations[]) { |
| 121 | auto source = (T *)vdata.data; |
| 122 | if (vdata.nullmask->any()) { |
| 123 | for (idx_t i = 0; i < count; i++) { |
| 124 | auto idx = sel.get_index(i); |
| 125 | auto source_idx = vdata.sel->get_index(idx); |
| 126 | |
| 127 | auto target = (T *)key_locations[i]; |
| 128 | if ((*vdata.nullmask)[source_idx]) { |
| 129 | *target = NullValue<T>(); |
| 130 | } else { |
| 131 | *target = source[source_idx]; |
| 132 | } |
| 133 | key_locations[i] += sizeof(T); |
| 134 | } |
| 135 | } else { |
| 136 | for (idx_t i = 0; i < count; i++) { |
| 137 | auto idx = sel.get_index(i); |
| 138 | auto source_idx = vdata.sel->get_index(idx); |
| 139 | |
| 140 | auto target = (T *)key_locations[i]; |
| 141 | *target = source[source_idx]; |
| 142 | key_locations[i] += sizeof(T); |
| 143 | } |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | void JoinHashTable::SerializeVectorData(VectorData &vdata, TypeId type, const SelectionVector &sel, idx_t count, |
| 148 | data_ptr_t key_locations[]) { |
| 149 | switch (type) { |
| 150 | case TypeId::BOOL: |
| 151 | case TypeId::INT8: |
| 152 | templated_serialize_vdata<int8_t>(vdata, sel, count, key_locations); |
| 153 | break; |
| 154 | case TypeId::INT16: |
| 155 | templated_serialize_vdata<int16_t>(vdata, sel, count, key_locations); |
| 156 | break; |
| 157 | case TypeId::INT32: |
| 158 | templated_serialize_vdata<int32_t>(vdata, sel, count, key_locations); |
| 159 | break; |
| 160 | case TypeId::INT64: |
| 161 | templated_serialize_vdata<int64_t>(vdata, sel, count, key_locations); |
| 162 | break; |
| 163 | case TypeId::FLOAT: |
| 164 | templated_serialize_vdata<float>(vdata, sel, count, key_locations); |
| 165 | break; |
| 166 | case TypeId::DOUBLE: |
| 167 | templated_serialize_vdata<double>(vdata, sel, count, key_locations); |
| 168 | break; |
| 169 | case TypeId::HASH: |
| 170 | templated_serialize_vdata<hash_t>(vdata, sel, count, key_locations); |
| 171 | break; |
| 172 | case TypeId::VARCHAR: { |
| 173 | auto source = (string_t *)vdata.data; |
| 174 | for (idx_t i = 0; i < count; i++) { |
| 175 | auto idx = sel.get_index(i); |
| 176 | auto source_idx = vdata.sel->get_index(idx); |
| 177 | |
| 178 | auto target = (string_t *)key_locations[i]; |
| 179 | if ((*vdata.nullmask)[source_idx]) { |
| 180 | *target = NullValue<string_t>(); |
| 181 | } else if (source[source_idx].IsInlined()) { |
| 182 | *target = source[source_idx]; |
| 183 | } else { |
| 184 | *target = string_heap.AddString(source[source_idx]); |
| 185 | } |
| 186 | key_locations[i] += sizeof(string_t); |
| 187 | } |
| 188 | break; |
| 189 | } |
| 190 | default: |
| 191 | throw NotImplementedException("FIXME: unimplemented serialize" ); |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | void JoinHashTable::SerializeVector(Vector &v, idx_t vcount, const SelectionVector &sel, idx_t count, |
| 196 | data_ptr_t key_locations[]) { |
| 197 | VectorData vdata; |
| 198 | v.Orrify(vcount, vdata); |
| 199 | |
| 200 | SerializeVectorData(vdata, v.type, sel, count, key_locations); |
| 201 | } |
| 202 | |
| 203 | idx_t JoinHashTable::AppendToBlock(HTDataBlock &block, BufferHandle &handle, idx_t count, data_ptr_t key_locations[], |
| 204 | idx_t remaining) { |
| 205 | idx_t append_count = std::min(remaining, block.capacity - block.count); |
| 206 | auto dataptr = handle.node->buffer + block.count * entry_size; |
| 207 | idx_t offset = count - remaining; |
| 208 | for (idx_t i = 0; i < append_count; i++) { |
| 209 | key_locations[offset + i] = dataptr; |
| 210 | dataptr += entry_size; |
| 211 | } |
| 212 | block.count += append_count; |
| 213 | return append_count; |
| 214 | } |
| 215 | |
| 216 | static idx_t FilterNullValues(VectorData &vdata, const SelectionVector &sel, idx_t count, SelectionVector &result) { |
| 217 | auto &nullmask = *vdata.nullmask; |
| 218 | idx_t result_count = 0; |
| 219 | for (idx_t i = 0; i < count; i++) { |
| 220 | auto idx = sel.get_index(i); |
| 221 | auto key_idx = vdata.sel->get_index(idx); |
| 222 | if (!nullmask[key_idx]) { |
| 223 | result.set_index(result_count++, idx); |
| 224 | } |
| 225 | } |
| 226 | return result_count; |
| 227 | } |
| 228 | |
| 229 | idx_t JoinHashTable::PrepareKeys(DataChunk &keys, unique_ptr<VectorData[]> &key_data, |
| 230 | const SelectionVector *¤t_sel, SelectionVector &sel) { |
| 231 | key_data = keys.Orrify(); |
| 232 | |
| 233 | // figure out which keys are NULL, and create a selection vector out of them |
| 234 | current_sel = &FlatVector::IncrementalSelectionVector; |
| 235 | idx_t added_count = keys.size(); |
| 236 | for (idx_t i = 0; i < keys.column_count(); i++) { |
| 237 | if (!null_values_are_equal[i]) { |
| 238 | if (!key_data[i].nullmask->any()) { |
| 239 | continue; |
| 240 | } |
| 241 | added_count = FilterNullValues(key_data[i], *current_sel, added_count, sel); |
| 242 | // null values are NOT equal for this column, filter them out |
| 243 | current_sel = &sel; |
| 244 | } |
| 245 | } |
| 246 | return added_count; |
| 247 | } |
| 248 | |
| 249 | void JoinHashTable::Build(DataChunk &keys, DataChunk &payload) { |
| 250 | assert(!finalized); |
| 251 | assert(keys.size() == payload.size()); |
| 252 | if (keys.size() == 0) { |
| 253 | return; |
| 254 | } |
| 255 | // special case: correlated mark join |
| 256 | if (join_type == JoinType::MARK && correlated_mark_join_info.correlated_types.size() > 0) { |
| 257 | auto &info = correlated_mark_join_info; |
| 258 | // Correlated MARK join |
| 259 | // for the correlated mark join we need to keep track of COUNT(*) and COUNT(COLUMN) for each of the correlated |
| 260 | // columns push into the aggregate hash table |
| 261 | assert(info.correlated_counts); |
| 262 | info.group_chunk.SetCardinality(keys); |
| 263 | for (idx_t i = 0; i < info.correlated_types.size(); i++) { |
| 264 | info.group_chunk.data[i].Reference(keys.data[i]); |
| 265 | } |
| 266 | info.payload_chunk.SetCardinality(keys); |
| 267 | for (idx_t i = 0; i < 2; i++) { |
| 268 | info.payload_chunk.data[i].Reference(keys.data[info.correlated_types.size()]); |
| 269 | } |
| 270 | info.correlated_counts->AddChunk(info.group_chunk, info.payload_chunk); |
| 271 | } |
| 272 | |
| 273 | // prepare the keys for processing |
| 274 | unique_ptr<VectorData[]> key_data; |
| 275 | const SelectionVector *current_sel; |
| 276 | SelectionVector sel(STANDARD_VECTOR_SIZE); |
| 277 | idx_t added_count = PrepareKeys(keys, key_data, current_sel, sel); |
| 278 | if (added_count < keys.size()) { |
| 279 | has_null = true; |
| 280 | } |
| 281 | if (added_count == 0) { |
| 282 | return; |
| 283 | } |
| 284 | count += added_count; |
| 285 | |
| 286 | vector<unique_ptr<BufferHandle>> handles; |
| 287 | data_ptr_t key_locations[STANDARD_VECTOR_SIZE]; |
| 288 | // first allocate space of where to serialize the keys and payload columns |
| 289 | idx_t remaining = added_count; |
| 290 | // first append to the last block (if any) |
| 291 | if (blocks.size() != 0) { |
| 292 | auto &last_block = blocks.back(); |
| 293 | if (last_block.count < last_block.capacity) { |
| 294 | // last block has space: pin the buffer of this block |
| 295 | auto handle = buffer_manager.Pin(last_block.block_id); |
| 296 | // now append to the block |
| 297 | idx_t append_count = AppendToBlock(last_block, *handle, added_count, key_locations, remaining); |
| 298 | remaining -= append_count; |
| 299 | handles.push_back(move(handle)); |
| 300 | } |
| 301 | } |
| 302 | while (remaining > 0) { |
| 303 | // now for the remaining data, allocate new buffers to store the data and append there |
| 304 | auto handle = buffer_manager.Allocate(block_capacity * entry_size); |
| 305 | |
| 306 | HTDataBlock new_block; |
| 307 | new_block.count = 0; |
| 308 | new_block.capacity = block_capacity; |
| 309 | new_block.block_id = handle->block_id; |
| 310 | |
| 311 | idx_t append_count = AppendToBlock(new_block, *handle, added_count, key_locations, remaining); |
| 312 | remaining -= append_count; |
| 313 | handles.push_back(move(handle)); |
| 314 | blocks.push_back(new_block); |
| 315 | } |
| 316 | |
| 317 | // hash the keys and obtain an entry in the list |
| 318 | // note that we only hash the keys used in the equality comparison |
| 319 | Vector hash_values(TypeId::HASH); |
| 320 | Hash(keys, *current_sel, added_count, hash_values); |
| 321 | |
| 322 | // serialize the keys to the key locations |
| 323 | for (idx_t i = 0; i < keys.column_count(); i++) { |
| 324 | SerializeVectorData(key_data[i], keys.data[i].type, *current_sel, added_count, key_locations); |
| 325 | } |
| 326 | // now serialize the payload |
| 327 | if (build_types.size() > 0) { |
| 328 | for (idx_t i = 0; i < payload.column_count(); i++) { |
| 329 | SerializeVector(payload.data[i], payload.size(), *current_sel, added_count, key_locations); |
| 330 | } |
| 331 | } |
| 332 | SerializeVector(hash_values, payload.size(), *current_sel, added_count, key_locations); |
| 333 | } |
| 334 | |
| 335 | void JoinHashTable::InsertHashes(Vector &hashes, idx_t count, data_ptr_t key_locations[]) { |
| 336 | assert(hashes.type == TypeId::HASH); |
| 337 | |
| 338 | // use bitmask to get position in array |
| 339 | ApplyBitmask(hashes, count); |
| 340 | |
| 341 | hashes.Normalify(count); |
| 342 | |
| 343 | assert(hashes.vector_type == VectorType::FLAT_VECTOR); |
| 344 | auto pointers = (data_ptr_t *)hash_map->node->buffer; |
| 345 | auto indices = FlatVector::GetData<hash_t>(hashes); |
| 346 | for (idx_t i = 0; i < count; i++) { |
| 347 | auto index = indices[i]; |
| 348 | // set prev in current key to the value (NOTE: this will be nullptr if |
| 349 | // there is none) |
| 350 | auto prev_pointer = (data_ptr_t *)(key_locations[i] + tuple_size); |
| 351 | *prev_pointer = pointers[index]; |
| 352 | |
| 353 | // set pointer to current tuple |
| 354 | pointers[index] = key_locations[i]; |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | void JoinHashTable::Finalize() { |
| 359 | // the build has finished, now iterate over all the nodes and construct the final hash table |
| 360 | // select a HT that has at least 50% empty space |
| 361 | idx_t capacity = NextPowerOfTwo(std::max(count * 2, (idx_t)(Storage::BLOCK_ALLOC_SIZE / sizeof(data_ptr_t)) + 1)); |
| 362 | // size needs to be a power of 2 |
| 363 | assert((capacity & (capacity - 1)) == 0); |
| 364 | bitmask = capacity - 1; |
| 365 | |
| 366 | // allocate the HT and initialize it with all-zero entries |
| 367 | hash_map = buffer_manager.Allocate(capacity * sizeof(data_ptr_t)); |
| 368 | memset(hash_map->node->buffer, 0, capacity * sizeof(data_ptr_t)); |
| 369 | |
| 370 | Vector hashes(TypeId::HASH); |
| 371 | auto hash_data = FlatVector::GetData<hash_t>(hashes); |
| 372 | data_ptr_t key_locations[STANDARD_VECTOR_SIZE]; |
| 373 | // now construct the actual hash table; scan the nodes |
| 374 | // as we can the nodes we pin all the blocks of the HT and keep them pinned until the HT is destroyed |
| 375 | // this is so that we can keep pointers around to the blocks |
| 376 | // FIXME: if we cannot keep everything pinned in memory, we could switch to an out-of-memory merge join or so |
| 377 | for (auto &block : blocks) { |
| 378 | auto handle = buffer_manager.Pin(block.block_id); |
| 379 | data_ptr_t dataptr = handle->node->buffer; |
| 380 | idx_t entry = 0; |
| 381 | while (entry < block.count) { |
| 382 | // fetch the next vector of entries from the blocks |
| 383 | idx_t next = std::min((idx_t)STANDARD_VECTOR_SIZE, block.count - entry); |
| 384 | for (idx_t i = 0; i < next; i++) { |
| 385 | hash_data[i] = *((hash_t *)(dataptr + tuple_size)); |
| 386 | key_locations[i] = dataptr; |
| 387 | dataptr += entry_size; |
| 388 | } |
| 389 | // now insert into the hash table |
| 390 | InsertHashes(hashes, next, key_locations); |
| 391 | |
| 392 | entry += next; |
| 393 | } |
| 394 | pinned_handles.push_back(move(handle)); |
| 395 | } |
| 396 | finalized = true; |
| 397 | } |
| 398 | |
| 399 | unique_ptr<ScanStructure> JoinHashTable::Probe(DataChunk &keys) { |
| 400 | assert(count > 0); // should be handled before |
| 401 | assert(finalized); |
| 402 | |
| 403 | // set up the scan structure |
| 404 | auto ss = make_unique<ScanStructure>(*this); |
| 405 | |
| 406 | if (join_type != JoinType::INNER) { |
| 407 | ss->found_match = unique_ptr<bool[]>(new bool[STANDARD_VECTOR_SIZE]); |
| 408 | memset(ss->found_match.get(), 0, sizeof(bool) * STANDARD_VECTOR_SIZE); |
| 409 | } |
| 410 | |
| 411 | // first prepare the keys for probing |
| 412 | const SelectionVector *current_sel; |
| 413 | ss->count = PrepareKeys(keys, ss->key_data, current_sel, ss->sel_vector); |
| 414 | if (ss->count == 0) { |
| 415 | return ss; |
| 416 | } |
| 417 | |
| 418 | // hash all the keys |
| 419 | Vector hashes(TypeId::HASH); |
| 420 | Hash(keys, *current_sel, ss->count, hashes); |
| 421 | |
| 422 | // now initialize the pointers of the scan structure based on the hashes |
| 423 | ApplyBitmask(hashes, *current_sel, ss->count, ss->pointers); |
| 424 | |
| 425 | // create the selection vector linking to only non-empty entries |
| 426 | idx_t count = 0; |
| 427 | auto pointers = FlatVector::GetData<data_ptr_t>(ss->pointers); |
| 428 | for (idx_t i = 0; i < ss->count; i++) { |
| 429 | auto idx = current_sel->get_index(i); |
| 430 | auto chain_pointer = (data_ptr_t *)(pointers[idx]); |
| 431 | pointers[idx] = *chain_pointer; |
| 432 | if (pointers[idx]) { |
| 433 | ss->sel_vector.set_index(count++, idx); |
| 434 | } |
| 435 | } |
| 436 | ss->count = count; |
| 437 | return ss; |
| 438 | } |
| 439 | |
| 440 | ScanStructure::ScanStructure(JoinHashTable &ht) : sel_vector(STANDARD_VECTOR_SIZE), ht(ht), finished(false) { |
| 441 | pointers.Initialize(TypeId::POINTER); |
| 442 | } |
| 443 | |
| 444 | void ScanStructure::Next(DataChunk &keys, DataChunk &left, DataChunk &result) { |
| 445 | if (finished) { |
| 446 | return; |
| 447 | } |
| 448 | |
| 449 | switch (ht.join_type) { |
| 450 | case JoinType::INNER: |
| 451 | NextInnerJoin(keys, left, result); |
| 452 | break; |
| 453 | case JoinType::SEMI: |
| 454 | NextSemiJoin(keys, left, result); |
| 455 | break; |
| 456 | case JoinType::MARK: |
| 457 | NextMarkJoin(keys, left, result); |
| 458 | break; |
| 459 | case JoinType::ANTI: |
| 460 | NextAntiJoin(keys, left, result); |
| 461 | break; |
| 462 | case JoinType::LEFT: |
| 463 | NextLeftJoin(keys, left, result); |
| 464 | break; |
| 465 | case JoinType::SINGLE: |
| 466 | NextSingleJoin(keys, left, result); |
| 467 | break; |
| 468 | default: |
| 469 | throw Exception("Unhandled join type in JoinHashTable" ); |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | template <bool NO_MATCH_SEL, class T, class OP> |
| 474 | static idx_t TemplatedGather(VectorData &vdata, Vector &pointers, const SelectionVector ¤t_sel, idx_t count, |
| 475 | idx_t offset, SelectionVector *match_sel, SelectionVector *no_match_sel, |
| 476 | idx_t &no_match_count) { |
| 477 | idx_t result_count = 0; |
| 478 | auto data = (T *)vdata.data; |
| 479 | auto ptrs = FlatVector::GetData<uintptr_t>(pointers); |
| 480 | for (idx_t i = 0; i < count; i++) { |
| 481 | auto idx = current_sel.get_index(i); |
| 482 | auto kidx = vdata.sel->get_index(idx); |
| 483 | auto gdata = (T *)(ptrs[idx] + offset); |
| 484 | if ((*vdata.nullmask)[kidx]) { |
| 485 | if (IsNullValue<T>(*gdata)) { |
| 486 | match_sel->set_index(result_count++, idx); |
| 487 | } else { |
| 488 | if (NO_MATCH_SEL) { |
| 489 | no_match_sel->set_index(no_match_count++, idx); |
| 490 | } |
| 491 | } |
| 492 | } else { |
| 493 | if (OP::template Operation<T>(data[kidx], *gdata)) { |
| 494 | match_sel->set_index(result_count++, idx); |
| 495 | } else { |
| 496 | if (NO_MATCH_SEL) { |
| 497 | no_match_sel->set_index(no_match_count++, idx); |
| 498 | } |
| 499 | } |
| 500 | } |
| 501 | } |
| 502 | return result_count; |
| 503 | } |
| 504 | |
| 505 | template <bool NO_MATCH_SEL, class OP> |
| 506 | static idx_t GatherSwitch(VectorData &data, TypeId type, Vector &pointers, const SelectionVector ¤t_sel, |
| 507 | idx_t count, idx_t offset, SelectionVector *match_sel, SelectionVector *no_match_sel, |
| 508 | idx_t &no_match_count) { |
| 509 | switch (type) { |
| 510 | case TypeId::BOOL: |
| 511 | case TypeId::INT8: |
| 512 | return TemplatedGather<NO_MATCH_SEL, int8_t, OP>(data, pointers, current_sel, count, offset, match_sel, |
| 513 | no_match_sel, no_match_count); |
| 514 | case TypeId::INT16: |
| 515 | return TemplatedGather<NO_MATCH_SEL, int16_t, OP>(data, pointers, current_sel, count, offset, match_sel, |
| 516 | no_match_sel, no_match_count); |
| 517 | case TypeId::INT32: |
| 518 | return TemplatedGather<NO_MATCH_SEL, int32_t, OP>(data, pointers, current_sel, count, offset, match_sel, |
| 519 | no_match_sel, no_match_count); |
| 520 | case TypeId::INT64: |
| 521 | return TemplatedGather<NO_MATCH_SEL, int64_t, OP>(data, pointers, current_sel, count, offset, match_sel, |
| 522 | no_match_sel, no_match_count); |
| 523 | case TypeId::FLOAT: |
| 524 | return TemplatedGather<NO_MATCH_SEL, float, OP>(data, pointers, current_sel, count, offset, match_sel, |
| 525 | no_match_sel, no_match_count); |
| 526 | case TypeId::DOUBLE: |
| 527 | return TemplatedGather<NO_MATCH_SEL, double, OP>(data, pointers, current_sel, count, offset, match_sel, |
| 528 | no_match_sel, no_match_count); |
| 529 | case TypeId::VARCHAR: |
| 530 | return TemplatedGather<NO_MATCH_SEL, string_t, OP>(data, pointers, current_sel, count, offset, match_sel, |
| 531 | no_match_sel, no_match_count); |
| 532 | default: |
| 533 | throw NotImplementedException("Unimplemented type for GatherSwitch" ); |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | template <bool NO_MATCH_SEL> |
| 538 | idx_t ScanStructure::ResolvePredicates(DataChunk &keys, SelectionVector *match_sel, SelectionVector *no_match_sel) { |
| 539 | SelectionVector *current_sel = &this->sel_vector; |
| 540 | idx_t remaining_count = this->count; |
| 541 | idx_t offset = 0; |
| 542 | idx_t no_match_count = 0; |
| 543 | for (idx_t i = 0; i < ht.predicates.size(); i++) { |
| 544 | switch (ht.predicates[i]) { |
| 545 | case ExpressionType::COMPARE_EQUAL: |
| 546 | remaining_count = |
| 547 | GatherSwitch<NO_MATCH_SEL, Equals>(key_data[i], keys.data[i].type, this->pointers, *current_sel, |
| 548 | remaining_count, offset, match_sel, no_match_sel, no_match_count); |
| 549 | break; |
| 550 | case ExpressionType::COMPARE_NOTEQUAL: |
| 551 | remaining_count = |
| 552 | GatherSwitch<NO_MATCH_SEL, NotEquals>(key_data[i], keys.data[i].type, this->pointers, *current_sel, |
| 553 | remaining_count, offset, match_sel, no_match_sel, no_match_count); |
| 554 | break; |
| 555 | case ExpressionType::COMPARE_GREATERTHAN: |
| 556 | remaining_count = GatherSwitch<NO_MATCH_SEL, GreaterThan>(key_data[i], keys.data[i].type, this->pointers, |
| 557 | *current_sel, remaining_count, offset, match_sel, |
| 558 | no_match_sel, no_match_count); |
| 559 | break; |
| 560 | case ExpressionType::COMPARE_GREATERTHANOREQUALTO: |
| 561 | remaining_count = GatherSwitch<NO_MATCH_SEL, GreaterThanEquals>( |
| 562 | key_data[i], keys.data[i].type, this->pointers, *current_sel, remaining_count, offset, match_sel, |
| 563 | no_match_sel, no_match_count); |
| 564 | break; |
| 565 | case ExpressionType::COMPARE_LESSTHAN: |
| 566 | remaining_count = |
| 567 | GatherSwitch<NO_MATCH_SEL, LessThan>(key_data[i], keys.data[i].type, this->pointers, *current_sel, |
| 568 | remaining_count, offset, match_sel, no_match_sel, no_match_count); |
| 569 | break; |
| 570 | case ExpressionType::COMPARE_LESSTHANOREQUALTO: |
| 571 | remaining_count = GatherSwitch<NO_MATCH_SEL, LessThanEquals>(key_data[i], keys.data[i].type, this->pointers, |
| 572 | *current_sel, remaining_count, offset, |
| 573 | match_sel, no_match_sel, no_match_count); |
| 574 | break; |
| 575 | default: |
| 576 | throw NotImplementedException("Unimplemented comparison type for join" ); |
| 577 | } |
| 578 | if (remaining_count == 0) { |
| 579 | break; |
| 580 | } |
| 581 | current_sel = match_sel; |
| 582 | offset += GetTypeIdSize(keys.data[i].type); |
| 583 | } |
| 584 | return remaining_count; |
| 585 | } |
| 586 | |
| 587 | idx_t ScanStructure::ResolvePredicates(DataChunk &keys, SelectionVector &match_sel, SelectionVector &no_match_sel) { |
| 588 | return ResolvePredicates<true>(keys, &match_sel, &no_match_sel); |
| 589 | } |
| 590 | |
| 591 | idx_t ScanStructure::ResolvePredicates(DataChunk &keys, SelectionVector &match_sel) { |
| 592 | return ResolvePredicates<false>(keys, &match_sel, nullptr); |
| 593 | } |
| 594 | |
| 595 | idx_t ScanStructure::ScanInnerJoin(DataChunk &keys, SelectionVector &result_vector) { |
| 596 | while (true) { |
| 597 | // resolve the predicates for this set of keys |
| 598 | idx_t result_count = ResolvePredicates(keys, result_vector); |
| 599 | |
| 600 | // after doing all the comparisons set the found_match vector |
| 601 | if (found_match) { |
| 602 | for (idx_t i = 0; i < result_count; i++) { |
| 603 | auto idx = result_vector.get_index(i); |
| 604 | found_match[idx] = true; |
| 605 | } |
| 606 | } |
| 607 | if (result_count > 0) { |
| 608 | return result_count; |
| 609 | } |
| 610 | // no matches found: check the next set of pointers |
| 611 | AdvancePointers(); |
| 612 | if (this->count == 0) { |
| 613 | return 0; |
| 614 | } |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | void ScanStructure::AdvancePointers(const SelectionVector &sel, idx_t sel_count) { |
| 619 | // now for all the pointers, we move on to the next set of pointers |
| 620 | idx_t new_count = 0; |
| 621 | auto ptrs = FlatVector::GetData<data_ptr_t>(this->pointers); |
| 622 | for (idx_t i = 0; i < sel_count; i++) { |
| 623 | auto idx = sel.get_index(i); |
| 624 | auto chain_pointer = (data_ptr_t *)(ptrs[idx] + ht.tuple_size); |
| 625 | ptrs[idx] = *chain_pointer; |
| 626 | if (ptrs[idx]) { |
| 627 | this->sel_vector.set_index(new_count++, idx); |
| 628 | } |
| 629 | } |
| 630 | this->count = new_count; |
| 631 | } |
| 632 | |
| 633 | void ScanStructure::AdvancePointers() { |
| 634 | AdvancePointers(this->sel_vector, this->count); |
| 635 | } |
| 636 | |
| 637 | template <class T> |
| 638 | static void TemplatedGatherResult(Vector &result, uintptr_t *pointers, const SelectionVector &result_vector, |
| 639 | const SelectionVector &sel_vector, idx_t count, idx_t offset) { |
| 640 | auto rdata = FlatVector::GetData<T>(result); |
| 641 | auto &nullmask = FlatVector::Nullmask(result); |
| 642 | for (idx_t i = 0; i < count; i++) { |
| 643 | auto ridx = result_vector.get_index(i); |
| 644 | auto pidx = sel_vector.get_index(i); |
| 645 | auto hdata = (T *)(pointers[pidx] + offset); |
| 646 | if (IsNullValue<T>(*hdata)) { |
| 647 | nullmask[ridx] = true; |
| 648 | } else { |
| 649 | rdata[ridx] = *hdata; |
| 650 | } |
| 651 | } |
| 652 | } |
| 653 | |
| 654 | void ScanStructure::GatherResult(Vector &result, const SelectionVector &result_vector, |
| 655 | const SelectionVector &sel_vector, idx_t count, idx_t &offset) { |
| 656 | result.vector_type = VectorType::FLAT_VECTOR; |
| 657 | auto ptrs = FlatVector::GetData<uintptr_t>(pointers); |
| 658 | switch (result.type) { |
| 659 | case TypeId::BOOL: |
| 660 | case TypeId::INT8: |
| 661 | TemplatedGatherResult<int8_t>(result, ptrs, result_vector, sel_vector, count, offset); |
| 662 | break; |
| 663 | case TypeId::INT16: |
| 664 | TemplatedGatherResult<int16_t>(result, ptrs, result_vector, sel_vector, count, offset); |
| 665 | break; |
| 666 | case TypeId::INT32: |
| 667 | TemplatedGatherResult<int32_t>(result, ptrs, result_vector, sel_vector, count, offset); |
| 668 | break; |
| 669 | case TypeId::INT64: |
| 670 | TemplatedGatherResult<int64_t>(result, ptrs, result_vector, sel_vector, count, offset); |
| 671 | break; |
| 672 | case TypeId::FLOAT: |
| 673 | TemplatedGatherResult<float>(result, ptrs, result_vector, sel_vector, count, offset); |
| 674 | break; |
| 675 | case TypeId::DOUBLE: |
| 676 | TemplatedGatherResult<double>(result, ptrs, result_vector, sel_vector, count, offset); |
| 677 | break; |
| 678 | case TypeId::VARCHAR: |
| 679 | TemplatedGatherResult<string_t>(result, ptrs, result_vector, sel_vector, count, offset); |
| 680 | break; |
| 681 | default: |
| 682 | throw NotImplementedException("Unimplemented type for ScanStructure::GatherResult" ); |
| 683 | } |
| 684 | offset += GetTypeIdSize(result.type); |
| 685 | } |
| 686 | |
| 687 | void ScanStructure::GatherResult(Vector &result, const SelectionVector &sel_vector, idx_t count, idx_t &offset) { |
| 688 | GatherResult(result, FlatVector::IncrementalSelectionVector, sel_vector, count, offset); |
| 689 | } |
| 690 | |
| 691 | void ScanStructure::NextInnerJoin(DataChunk &keys, DataChunk &left, DataChunk &result) { |
| 692 | assert(result.column_count() == left.column_count() + ht.build_types.size()); |
| 693 | if (this->count == 0) { |
| 694 | // no pointers left to chase |
| 695 | return; |
| 696 | } |
| 697 | |
| 698 | SelectionVector result_vector(STANDARD_VECTOR_SIZE); |
| 699 | |
| 700 | idx_t result_count = ScanInnerJoin(keys, result_vector); |
| 701 | if (result_count > 0) { |
| 702 | // matches were found |
| 703 | // construct the result |
| 704 | // on the LHS, we create a slice using the result vector |
| 705 | result.Slice(left, result_vector, result_count); |
| 706 | |
| 707 | // on the RHS, we need to fetch the data from the hash table |
| 708 | idx_t offset = ht.condition_size; |
| 709 | for (idx_t i = 0; i < ht.build_types.size(); i++) { |
| 710 | auto &vector = result.data[left.column_count() + i]; |
| 711 | assert(vector.type == ht.build_types[i]); |
| 712 | GatherResult(vector, result_vector, result_count, offset); |
| 713 | } |
| 714 | AdvancePointers(); |
| 715 | } |
| 716 | } |
| 717 | |
| 718 | void ScanStructure::ScanKeyMatches(DataChunk &keys) { |
| 719 | // the semi-join, anti-join and mark-join we handle a differently from the inner join |
| 720 | // since there can be at most STANDARD_VECTOR_SIZE results |
| 721 | // we handle the entire chunk in one call to Next(). |
| 722 | // for every pointer, we keep chasing pointers and doing comparisons. |
| 723 | // this results in a boolean array indicating whether or not the tuple has a match |
| 724 | SelectionVector match_sel(STANDARD_VECTOR_SIZE), no_match_sel(STANDARD_VECTOR_SIZE); |
| 725 | while (this->count > 0) { |
| 726 | // resolve the predicates for the current set of pointers |
| 727 | idx_t match_count = ResolvePredicates(keys, match_sel, no_match_sel); |
| 728 | idx_t no_match_count = this->count - match_count; |
| 729 | |
| 730 | // mark each of the matches as found |
| 731 | for (idx_t i = 0; i < match_count; i++) { |
| 732 | found_match[match_sel.get_index(i)] = true; |
| 733 | } |
| 734 | // continue searching for the ones where we did not find a match yet |
| 735 | AdvancePointers(no_match_sel, no_match_count); |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | template <bool MATCH> void ScanStructure::NextSemiOrAntiJoin(DataChunk &keys, DataChunk &left, DataChunk &result) { |
| 740 | assert(left.column_count() == result.column_count()); |
| 741 | assert(keys.size() == left.size()); |
| 742 | // create the selection vector from the matches that were found |
| 743 | SelectionVector sel(STANDARD_VECTOR_SIZE); |
| 744 | idx_t result_count = 0; |
| 745 | for (idx_t i = 0; i < keys.size(); i++) { |
| 746 | if (found_match[i] == MATCH) { |
| 747 | // part of the result |
| 748 | sel.set_index(result_count++, i); |
| 749 | } |
| 750 | } |
| 751 | // construct the final result |
| 752 | if (result_count > 0) { |
| 753 | // we only return the columns on the left side |
| 754 | // reference the columns of the left side from the result |
| 755 | result.Slice(left, sel, result_count); |
| 756 | } else { |
| 757 | assert(result.size() == 0); |
| 758 | } |
| 759 | } |
| 760 | |
| 761 | void ScanStructure::NextSemiJoin(DataChunk &keys, DataChunk &left, DataChunk &result) { |
| 762 | // first scan for key matches |
| 763 | ScanKeyMatches(keys); |
| 764 | // then construct the result from all tuples with a match |
| 765 | NextSemiOrAntiJoin<true>(keys, left, result); |
| 766 | |
| 767 | finished = true; |
| 768 | } |
| 769 | |
| 770 | void ScanStructure::NextAntiJoin(DataChunk &keys, DataChunk &left, DataChunk &result) { |
| 771 | // first scan for key matches |
| 772 | ScanKeyMatches(keys); |
| 773 | // then construct the result from all tuples that did not find a match |
| 774 | NextSemiOrAntiJoin<false>(keys, left, result); |
| 775 | |
| 776 | finished = true; |
| 777 | } |
| 778 | |
| 779 | void ScanStructure::ConstructMarkJoinResult(DataChunk &join_keys, DataChunk &child, DataChunk &result) { |
| 780 | // for the initial set of columns we just reference the left side |
| 781 | result.SetCardinality(child); |
| 782 | for (idx_t i = 0; i < child.column_count(); i++) { |
| 783 | result.data[i].Reference(child.data[i]); |
| 784 | } |
| 785 | auto &mark_vector = result.data.back(); |
| 786 | mark_vector.vector_type = VectorType::FLAT_VECTOR; |
| 787 | // first we set the NULL values from the join keys |
| 788 | // if there is any NULL in the keys, the result is NULL |
| 789 | auto bool_result = FlatVector::GetData<bool>(mark_vector); |
| 790 | auto &nullmask = FlatVector::Nullmask(mark_vector); |
| 791 | for (idx_t col_idx = 0; col_idx < join_keys.column_count(); col_idx++) { |
| 792 | if (ht.null_values_are_equal[col_idx]) { |
| 793 | continue; |
| 794 | } |
| 795 | VectorData jdata; |
| 796 | join_keys.data[col_idx].Orrify(join_keys.size(), jdata); |
| 797 | if (jdata.nullmask->any()) { |
| 798 | for (idx_t i = 0; i < join_keys.size(); i++) { |
| 799 | auto jidx = jdata.sel->get_index(i); |
| 800 | nullmask[i] = (*jdata.nullmask)[jidx]; |
| 801 | } |
| 802 | } |
| 803 | } |
| 804 | // now set the remaining entries to either true or false based on whether a match was found |
| 805 | if (found_match) { |
| 806 | for (idx_t i = 0; i < child.size(); i++) { |
| 807 | bool_result[i] = found_match[i]; |
| 808 | } |
| 809 | } else { |
| 810 | memset(bool_result, 0, sizeof(bool) * child.size()); |
| 811 | } |
| 812 | // if the right side contains NULL values, the result of any FALSE becomes NULL |
| 813 | if (ht.has_null) { |
| 814 | for (idx_t i = 0; i < child.size(); i++) { |
| 815 | if (!bool_result[i]) { |
| 816 | nullmask[i] = true; |
| 817 | } |
| 818 | } |
| 819 | } |
| 820 | } |
| 821 | |
| 822 | void ScanStructure::NextMarkJoin(DataChunk &keys, DataChunk &input, DataChunk &result) { |
| 823 | assert(result.column_count() == input.column_count() + 1); |
| 824 | assert(result.data.back().type == TypeId::BOOL); |
| 825 | // this method should only be called for a non-empty HT |
| 826 | assert(ht.count > 0); |
| 827 | |
| 828 | ScanKeyMatches(keys); |
| 829 | if (ht.correlated_mark_join_info.correlated_types.size() == 0) { |
| 830 | ConstructMarkJoinResult(keys, input, result); |
| 831 | } else { |
| 832 | auto &info = ht.correlated_mark_join_info; |
| 833 | // there are correlated columns |
| 834 | // first we fetch the counts from the aggregate hashtable corresponding to these entries |
| 835 | assert(keys.column_count() == info.group_chunk.column_count() + 1); |
| 836 | info.group_chunk.SetCardinality(keys); |
| 837 | for (idx_t i = 0; i < info.group_chunk.column_count(); i++) { |
| 838 | info.group_chunk.data[i].Reference(keys.data[i]); |
| 839 | } |
| 840 | info.correlated_counts->FetchAggregates(info.group_chunk, info.result_chunk); |
| 841 | |
| 842 | // for the initial set of columns we just reference the left side |
| 843 | result.SetCardinality(input); |
| 844 | for (idx_t i = 0; i < input.column_count(); i++) { |
| 845 | result.data[i].Reference(input.data[i]); |
| 846 | } |
| 847 | // create the result matching vector |
| 848 | auto &last_key = keys.data.back(); |
| 849 | auto &result_vector = result.data.back(); |
| 850 | // first set the nullmask based on whether or not there were NULL values in the join key |
| 851 | result_vector.vector_type = VectorType::FLAT_VECTOR; |
| 852 | auto bool_result = FlatVector::GetData<bool>(result_vector); |
| 853 | auto &nullmask = FlatVector::Nullmask(result_vector); |
| 854 | switch (last_key.vector_type) { |
| 855 | case VectorType::CONSTANT_VECTOR: |
| 856 | if (ConstantVector::IsNull(last_key)) { |
| 857 | nullmask.set(); |
| 858 | } |
| 859 | break; |
| 860 | case VectorType::FLAT_VECTOR: |
| 861 | nullmask = FlatVector::Nullmask(last_key); |
| 862 | break; |
| 863 | default: { |
| 864 | VectorData kdata; |
| 865 | last_key.Orrify(keys.size(), kdata); |
| 866 | for (idx_t i = 0; i < input.size(); i++) { |
| 867 | auto kidx = kdata.sel->get_index(i); |
| 868 | ; |
| 869 | nullmask[i] = (*kdata.nullmask)[kidx]; |
| 870 | } |
| 871 | break; |
| 872 | } |
| 873 | } |
| 874 | |
| 875 | auto count_star = FlatVector::GetData<int64_t>(info.result_chunk.data[0]); |
| 876 | auto count = FlatVector::GetData<int64_t>(info.result_chunk.data[1]); |
| 877 | // set the entries to either true or false based on whether a match was found |
| 878 | for (idx_t i = 0; i < input.size(); i++) { |
| 879 | assert(count_star[i] >= count[i]); |
| 880 | bool_result[i] = found_match ? found_match[i] : false; |
| 881 | if (!bool_result[i] && count_star[i] > count[i]) { |
| 882 | // RHS has NULL value and result is false: set to null |
| 883 | nullmask[i] = true; |
| 884 | } |
| 885 | if (count_star[i] == 0) { |
| 886 | // count == 0, set nullmask to false (we know the result is false now) |
| 887 | nullmask[i] = false; |
| 888 | } |
| 889 | } |
| 890 | } |
| 891 | finished = true; |
| 892 | } |
| 893 | |
| 894 | void ScanStructure::NextLeftJoin(DataChunk &keys, DataChunk &left, DataChunk &result) { |
| 895 | // a LEFT OUTER JOIN is identical to an INNER JOIN except all tuples that do |
| 896 | // not have a match must return at least one tuple (with the right side set |
| 897 | // to NULL in every column) |
| 898 | NextInnerJoin(keys, left, result); |
| 899 | if (result.size() == 0) { |
| 900 | // no entries left from the normal join |
| 901 | // fill in the result of the remaining left tuples |
| 902 | // together with NULL values on the right-hand side |
| 903 | idx_t remaining_count = 0; |
| 904 | SelectionVector sel(STANDARD_VECTOR_SIZE); |
| 905 | for (idx_t i = 0; i < left.size(); i++) { |
| 906 | if (!found_match[i]) { |
| 907 | sel.set_index(remaining_count++, i); |
| 908 | } |
| 909 | } |
| 910 | if (remaining_count > 0) { |
| 911 | // have remaining tuples |
| 912 | // slice the left side with tuples that did not find a match |
| 913 | result.Slice(left, sel, remaining_count); |
| 914 | |
| 915 | // now set the right side to NULL |
| 916 | for (idx_t i = left.column_count(); i < result.column_count(); i++) { |
| 917 | result.data[i].vector_type = VectorType::CONSTANT_VECTOR; |
| 918 | ConstantVector::SetNull(result.data[i], true); |
| 919 | } |
| 920 | } |
| 921 | finished = true; |
| 922 | } |
| 923 | } |
| 924 | |
| 925 | void ScanStructure::NextSingleJoin(DataChunk &keys, DataChunk &input, DataChunk &result) { |
| 926 | // single join |
| 927 | // this join is similar to the semi join except that |
| 928 | // (1) we actually return data from the RHS and |
| 929 | // (2) we return NULL for that data if there is no match |
| 930 | idx_t result_count = 0; |
| 931 | SelectionVector result_sel(STANDARD_VECTOR_SIZE); |
| 932 | SelectionVector match_sel(STANDARD_VECTOR_SIZE), no_match_sel(STANDARD_VECTOR_SIZE); |
| 933 | while (this->count > 0) { |
| 934 | // resolve the predicates for the current set of pointers |
| 935 | idx_t match_count = ResolvePredicates(keys, match_sel, no_match_sel); |
| 936 | idx_t no_match_count = this->count - match_count; |
| 937 | |
| 938 | // mark each of the matches as found |
| 939 | for (idx_t i = 0; i < match_count; i++) { |
| 940 | // found a match for this index |
| 941 | auto index = match_sel.get_index(i); |
| 942 | found_match[index] = true; |
| 943 | result_sel.set_index(result_count++, index); |
| 944 | } |
| 945 | // continue searching for the ones where we did not find a match yet |
| 946 | AdvancePointers(no_match_sel, no_match_count); |
| 947 | } |
| 948 | // reference the columns of the left side from the result |
| 949 | assert(input.column_count() > 0); |
| 950 | for (idx_t i = 0; i < input.column_count(); i++) { |
| 951 | result.data[i].Reference(input.data[i]); |
| 952 | } |
| 953 | // now fetch the data from the RHS |
| 954 | idx_t offset = ht.condition_size; |
| 955 | for (idx_t i = 0; i < ht.build_types.size(); i++) { |
| 956 | auto &vector = result.data[input.column_count() + i]; |
| 957 | // set NULL entries for every entry that was not found |
| 958 | auto &nullmask = FlatVector::Nullmask(vector); |
| 959 | nullmask.set(); |
| 960 | for (idx_t j = 0; j < result_count; j++) { |
| 961 | nullmask[result_sel.get_index(j)] = false; |
| 962 | } |
| 963 | // for the remaining values we fetch the values |
| 964 | GatherResult(vector, result_sel, result_sel, result_count, offset); |
| 965 | } |
| 966 | result.SetCardinality(input.size()); |
| 967 | |
| 968 | // like the SEMI, ANTI and MARK join types, the SINGLE join only ever does one pass over the HT per input chunk |
| 969 | finished = true; |
| 970 | } |
| 971 | |
| 972 | } // namespace duckdb |
| 973 | |