| 1 | #include "duckdb/parser/expression_util.hpp" |
| 2 | #include "duckdb/planner/expression.hpp" |
| 3 | #include "duckdb/parser/parsed_expression.hpp" |
| 4 | #include "duckdb/parser/expression_map.hpp" |
| 5 | |
| 6 | using namespace duckdb; |
| 7 | using namespace std; |
| 8 | |
| 9 | template <class T> |
| 10 | bool ExpressionUtil::ExpressionListEquals(const vector<unique_ptr<T>> &a, const vector<unique_ptr<T>> &b) { |
| 11 | if (a.size() != b.size()) { |
| 12 | return false; |
| 13 | } |
| 14 | for (idx_t i = 0; i < a.size(); i++) { |
| 15 | if (!(*a[i] == *b[i])) { |
| 16 | return false; |
| 17 | } |
| 18 | } |
| 19 | return true; |
| 20 | } |
| 21 | |
| 22 | template <class T> |
| 23 | bool ExpressionUtil::ExpressionSetEquals(const vector<unique_ptr<T>> &a, const vector<unique_ptr<T>> &b) { |
| 24 | if (a.size() != b.size()) { |
| 25 | return false; |
| 26 | } |
| 27 | // we create a map of expression -> count for the left side |
| 28 | // we keep the count because the same expression can occur multiple times (e.g. "1 AND 1" is legal) |
| 29 | // in this case we track the following value: map["Constant(1)"] = 2 |
| 30 | expression_map_t<idx_t> map; |
| 31 | for (idx_t i = 0; i < a.size(); i++) { |
| 32 | map[a[i].get()]++; |
| 33 | } |
| 34 | // now on the right side we reduce the counts again |
| 35 | // if the conjunctions are identical, all the counts will be 0 after the |
| 36 | for (auto &expr : b) { |
| 37 | auto entry = map.find(expr.get()); |
| 38 | // first we check if we can find the expression in the map at all |
| 39 | if (entry == map.end()) { |
| 40 | return false; |
| 41 | } |
| 42 | // if we found it we check the count; if the count is already 0 we return false |
| 43 | // this happens if e.g. the left side contains "1 AND X", and the right side contains "1 AND 1" |
| 44 | // "1" is contained in the map, however, the right side contains the expression twice |
| 45 | // hence we know the children are not identical in this case because the LHS and RHS have a different count for |
| 46 | // the Constant(1) expression |
| 47 | if (entry->second == 0) { |
| 48 | return false; |
| 49 | } |
| 50 | entry->second--; |
| 51 | } |
| 52 | return true; |
| 53 | } |
| 54 | |
| 55 | bool ExpressionUtil::ListEquals(const vector<unique_ptr<ParsedExpression>> &a, |
| 56 | const vector<unique_ptr<ParsedExpression>> &b) { |
| 57 | return ExpressionListEquals<ParsedExpression>(a, b); |
| 58 | } |
| 59 | |
| 60 | bool ExpressionUtil::ListEquals(const vector<unique_ptr<Expression>> &a, const vector<unique_ptr<Expression>> &b) { |
| 61 | return ExpressionListEquals<Expression>(a, b); |
| 62 | } |
| 63 | |
| 64 | bool ExpressionUtil::SetEquals(const vector<unique_ptr<ParsedExpression>> &a, |
| 65 | const vector<unique_ptr<ParsedExpression>> &b) { |
| 66 | return ExpressionSetEquals<ParsedExpression>(a, b); |
| 67 | } |
| 68 | |
| 69 | bool ExpressionUtil::SetEquals(const vector<unique_ptr<Expression>> &a, const vector<unique_ptr<Expression>> &b) { |
| 70 | return ExpressionSetEquals<Expression>(a, b); |
| 71 | } |
| 72 | |