1 | // Copyright 2011 Google Inc. All Rights Reserved. |
2 | // |
3 | // Redistribution and use in source and binary forms, with or without |
4 | // modification, are permitted provided that the following conditions are |
5 | // met: |
6 | // |
7 | // * Redistributions of source code must retain the above copyright |
8 | // notice, this list of conditions and the following disclaimer. |
9 | // * Redistributions in binary form must reproduce the above |
10 | // copyright notice, this list of conditions and the following disclaimer |
11 | // in the documentation and/or other materials provided with the |
12 | // distribution. |
13 | // * Neither the name of Google Inc. nor the names of its |
14 | // contributors may be used to endorse or promote products derived from |
15 | // this software without specific prior written permission. |
16 | // |
17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
18 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
19 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
20 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
21 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
22 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
23 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
24 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
25 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
26 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
27 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | // |
29 | // Various stubs for the open-source version of Snappy. |
30 | |
31 | #ifndef THIRD_PARTY_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_ |
32 | #define THIRD_PARTY_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_ |
33 | |
34 | #ifdef HAVE_CONFIG_H |
35 | #include "config.h" |
36 | #endif |
37 | |
38 | #include <string> |
39 | |
40 | #include <assert.h> |
41 | #include <stdlib.h> |
42 | #include <string.h> |
43 | |
44 | #ifdef HAVE_SYS_MMAN_H |
45 | #include <sys/mman.h> |
46 | #endif |
47 | |
48 | #ifdef HAVE_UNISTD_H |
49 | #include <unistd.h> |
50 | #endif |
51 | |
52 | #if defined(_MSC_VER) |
53 | #include <intrin.h> |
54 | #endif // defined(_MSC_VER) |
55 | |
56 | #ifndef __has_feature |
57 | #define __has_feature(x) 0 |
58 | #endif |
59 | |
60 | #if __has_feature(memory_sanitizer) |
61 | #include <sanitizer/msan_interface.h> |
62 | #define SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(address, size) \ |
63 | __msan_unpoison((address), (size)) |
64 | #else |
65 | #define SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(address, size) /* empty */ |
66 | #endif // __has_feature(memory_sanitizer) |
67 | |
68 | #include "snappy-stubs-public.h" |
69 | |
70 | #if defined(__x86_64__) |
71 | |
72 | // Enable 64-bit optimized versions of some routines. |
73 | #define ARCH_K8 1 |
74 | |
75 | #elif defined(__ppc64__) |
76 | |
77 | #define ARCH_PPC 1 |
78 | |
79 | #elif defined(__aarch64__) |
80 | |
81 | #define ARCH_ARM 1 |
82 | |
83 | #endif |
84 | |
85 | // Needed by OS X, among others. |
86 | #ifndef MAP_ANONYMOUS |
87 | #define MAP_ANONYMOUS MAP_ANON |
88 | #endif |
89 | |
90 | // The size of an array, if known at compile-time. |
91 | // Will give unexpected results if used on a pointer. |
92 | // We undefine it first, since some compilers already have a definition. |
93 | #ifdef ARRAYSIZE |
94 | #undef ARRAYSIZE |
95 | #endif |
96 | #define ARRAYSIZE(a) (sizeof(a) / sizeof(*(a))) |
97 | |
98 | // Static prediction hints. |
99 | #ifdef HAVE_BUILTIN_EXPECT |
100 | #define SNAPPY_PREDICT_FALSE(x) (__builtin_expect(x, 0)) |
101 | #define SNAPPY_PREDICT_TRUE(x) (__builtin_expect(!!(x), 1)) |
102 | #else |
103 | #define SNAPPY_PREDICT_FALSE(x) x |
104 | #define SNAPPY_PREDICT_TRUE(x) x |
105 | #endif |
106 | |
107 | // This is only used for recomputing the tag byte table used during |
108 | // decompression; for simplicity we just remove it from the open-source |
109 | // version (anyone who wants to regenerate it can just do the call |
110 | // themselves within main()). |
111 | #define DEFINE_bool(flag_name, default_value, description) \ |
112 | bool FLAGS_ ## flag_name = default_value |
113 | #define DECLARE_bool(flag_name) \ |
114 | extern bool FLAGS_ ## flag_name |
115 | |
116 | namespace snappy { |
117 | |
118 | static const uint32 kuint32max = static_cast<uint32>(0xFFFFFFFF); |
119 | //static const int64 kint64max = static_cast<int64>(0x7FFFFFFFFFFFFFFFLL); |
120 | |
121 | |
122 | // HM: Always use aligned load to keep ourselves out of trouble. Sorry. |
123 | |
124 | inline uint16 UNALIGNED_LOAD16(const void *p) { |
125 | uint16 t; |
126 | memcpy(&t, p, sizeof t); |
127 | return t; |
128 | } |
129 | |
130 | inline uint32 UNALIGNED_LOAD32(const void *p) { |
131 | uint32 t; |
132 | memcpy(&t, p, sizeof t); |
133 | return t; |
134 | } |
135 | |
136 | inline uint64 UNALIGNED_LOAD64(const void *p) { |
137 | uint64 t; |
138 | memcpy(&t, p, sizeof t); |
139 | return t; |
140 | } |
141 | |
142 | inline void UNALIGNED_STORE16(void *p, uint16 v) { |
143 | memcpy(p, &v, sizeof v); |
144 | } |
145 | |
146 | inline void UNALIGNED_STORE32(void *p, uint32 v) { |
147 | memcpy(p, &v, sizeof v); |
148 | } |
149 | |
150 | inline void UNALIGNED_STORE64(void *p, uint64 v) { |
151 | memcpy(p, &v, sizeof v); |
152 | } |
153 | |
154 | |
155 | // The following guarantees declaration of the byte swap functions. |
156 | #if defined(SNAPPY_IS_BIG_ENDIAN) |
157 | |
158 | #ifdef HAVE_SYS_BYTEORDER_H |
159 | #include <sys/byteorder.h> |
160 | #endif |
161 | |
162 | #ifdef HAVE_SYS_ENDIAN_H |
163 | #include <sys/endian.h> |
164 | #endif |
165 | |
166 | #ifdef _MSC_VER |
167 | #include <stdlib.h> |
168 | #define bswap_16(x) _byteswap_ushort(x) |
169 | #define bswap_32(x) _byteswap_ulong(x) |
170 | #define bswap_64(x) _byteswap_uint64(x) |
171 | |
172 | #elif defined(__APPLE__) |
173 | // Mac OS X / Darwin features |
174 | #include <libkern/OSByteOrder.h> |
175 | #define bswap_16(x) OSSwapInt16(x) |
176 | #define bswap_32(x) OSSwapInt32(x) |
177 | #define bswap_64(x) OSSwapInt64(x) |
178 | |
179 | #elif defined(HAVE_BYTESWAP_H) |
180 | #include <byteswap.h> |
181 | |
182 | #elif defined(bswap32) |
183 | // FreeBSD defines bswap{16,32,64} in <sys/endian.h> (already #included). |
184 | #define bswap_16(x) bswap16(x) |
185 | #define bswap_32(x) bswap32(x) |
186 | #define bswap_64(x) bswap64(x) |
187 | |
188 | #elif defined(BSWAP_64) |
189 | // Solaris 10 defines BSWAP_{16,32,64} in <sys/byteorder.h> (already #included). |
190 | #define bswap_16(x) BSWAP_16(x) |
191 | #define bswap_32(x) BSWAP_32(x) |
192 | #define bswap_64(x) BSWAP_64(x) |
193 | |
194 | #else |
195 | |
196 | inline uint16 bswap_16(uint16 x) { |
197 | return (x << 8) | (x >> 8); |
198 | } |
199 | |
200 | inline uint32 bswap_32(uint32 x) { |
201 | x = ((x & 0xff00ff00UL) >> 8) | ((x & 0x00ff00ffUL) << 8); |
202 | return (x >> 16) | (x << 16); |
203 | } |
204 | |
205 | inline uint64 bswap_64(uint64 x) { |
206 | x = ((x & 0xff00ff00ff00ff00ULL) >> 8) | ((x & 0x00ff00ff00ff00ffULL) << 8); |
207 | x = ((x & 0xffff0000ffff0000ULL) >> 16) | ((x & 0x0000ffff0000ffffULL) << 16); |
208 | return (x >> 32) | (x << 32); |
209 | } |
210 | |
211 | #endif |
212 | |
213 | #endif // defined(SNAPPY_IS_BIG_ENDIAN) |
214 | |
215 | // Convert to little-endian storage, opposite of network format. |
216 | // Convert x from host to little endian: x = LittleEndian.FromHost(x); |
217 | // convert x from little endian to host: x = LittleEndian.ToHost(x); |
218 | // |
219 | // Store values into unaligned memory converting to little endian order: |
220 | // LittleEndian.Store16(p, x); |
221 | // |
222 | // Load unaligned values stored in little endian converting to host order: |
223 | // x = LittleEndian.Load16(p); |
224 | class LittleEndian { |
225 | public: |
226 | // Conversion functions. |
227 | #if defined(SNAPPY_IS_BIG_ENDIAN) |
228 | |
229 | static uint16 FromHost16(uint16 x) { return bswap_16(x); } |
230 | static uint16 ToHost16(uint16 x) { return bswap_16(x); } |
231 | |
232 | static uint32 FromHost32(uint32 x) { return bswap_32(x); } |
233 | static uint32 ToHost32(uint32 x) { return bswap_32(x); } |
234 | |
235 | static bool IsLittleEndian() { return false; } |
236 | |
237 | #else // !defined(SNAPPY_IS_BIG_ENDIAN) |
238 | |
239 | static uint16 FromHost16(uint16 x) { return x; } |
240 | static uint16 ToHost16(uint16 x) { return x; } |
241 | |
242 | static uint32 FromHost32(uint32 x) { return x; } |
243 | static uint32 ToHost32(uint32 x) { return x; } |
244 | |
245 | static bool IsLittleEndian() { return true; } |
246 | |
247 | #endif // !defined(SNAPPY_IS_BIG_ENDIAN) |
248 | |
249 | // Functions to do unaligned loads and stores in little-endian order. |
250 | static uint16 Load16(const void *p) { |
251 | return ToHost16(UNALIGNED_LOAD16(p)); |
252 | } |
253 | |
254 | static void Store16(void *p, uint16 v) { |
255 | UNALIGNED_STORE16(p, FromHost16(v)); |
256 | } |
257 | |
258 | static uint32 Load32(const void *p) { |
259 | return ToHost32(UNALIGNED_LOAD32(p)); |
260 | } |
261 | |
262 | static void Store32(void *p, uint32 v) { |
263 | UNALIGNED_STORE32(p, FromHost32(v)); |
264 | } |
265 | }; |
266 | |
267 | // Some bit-manipulation functions. |
268 | class Bits { |
269 | public: |
270 | // Return floor(log2(n)) for positive integer n. |
271 | static int Log2FloorNonZero(uint32 n); |
272 | |
273 | // Return floor(log2(n)) for positive integer n. Returns -1 iff n == 0. |
274 | static int Log2Floor(uint32 n); |
275 | |
276 | // Return the first set least / most significant bit, 0-indexed. Returns an |
277 | // undefined value if n == 0. FindLSBSetNonZero() is similar to ffs() except |
278 | // that it's 0-indexed. |
279 | static int FindLSBSetNonZero(uint32 n); |
280 | |
281 | #if defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM) |
282 | static int FindLSBSetNonZero64(uint64 n); |
283 | #endif // defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM) |
284 | |
285 | private: |
286 | // No copying |
287 | Bits(const Bits&); |
288 | void operator=(const Bits&); |
289 | }; |
290 | |
291 | #ifdef HAVE_BUILTIN_CTZ |
292 | |
293 | inline int Bits::Log2FloorNonZero(uint32 n) { |
294 | assert(n != 0); |
295 | // (31 ^ x) is equivalent to (31 - x) for x in [0, 31]. An easy proof |
296 | // represents subtraction in base 2 and observes that there's no carry. |
297 | // |
298 | // GCC and Clang represent __builtin_clz on x86 as 31 ^ _bit_scan_reverse(x). |
299 | // Using "31 ^" here instead of "31 -" allows the optimizer to strip the |
300 | // function body down to _bit_scan_reverse(x). |
301 | return 31 ^ __builtin_clz(n); |
302 | } |
303 | |
304 | inline int Bits::Log2Floor(uint32 n) { |
305 | return (n == 0) ? -1 : Bits::Log2FloorNonZero(n); |
306 | } |
307 | |
308 | inline int Bits::FindLSBSetNonZero(uint32 n) { |
309 | assert(n != 0); |
310 | return __builtin_ctz(n); |
311 | } |
312 | |
313 | #if defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM) |
314 | inline int Bits::FindLSBSetNonZero64(uint64 n) { |
315 | assert(n != 0); |
316 | return __builtin_ctzll(n); |
317 | } |
318 | #endif // defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM) |
319 | |
320 | #elif defined(_MSC_VER) |
321 | |
322 | inline int Bits::Log2FloorNonZero(uint32 n) { |
323 | assert(n != 0); |
324 | unsigned long where; |
325 | _BitScanReverse(&where, n); |
326 | return static_cast<int>(where); |
327 | } |
328 | |
329 | inline int Bits::Log2Floor(uint32 n) { |
330 | unsigned long where; |
331 | if (_BitScanReverse(&where, n)) |
332 | return static_cast<int>(where); |
333 | return -1; |
334 | } |
335 | |
336 | inline int Bits::FindLSBSetNonZero(uint32 n) { |
337 | assert(n != 0); |
338 | unsigned long where; |
339 | if (_BitScanForward(&where, n)) |
340 | return static_cast<int>(where); |
341 | return 32; |
342 | } |
343 | |
344 | #if defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM) |
345 | inline int Bits::FindLSBSetNonZero64(uint64 n) { |
346 | assert(n != 0); |
347 | unsigned long where; |
348 | if (_BitScanForward64(&where, n)) |
349 | return static_cast<int>(where); |
350 | return 64; |
351 | } |
352 | #endif // defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM) |
353 | |
354 | #else // Portable versions. |
355 | |
356 | inline int Bits::Log2FloorNonZero(uint32 n) { |
357 | assert(n != 0); |
358 | |
359 | int log = 0; |
360 | uint32 value = n; |
361 | for (int i = 4; i >= 0; --i) { |
362 | int shift = (1 << i); |
363 | uint32 x = value >> shift; |
364 | if (x != 0) { |
365 | value = x; |
366 | log += shift; |
367 | } |
368 | } |
369 | assert(value == 1); |
370 | return log; |
371 | } |
372 | |
373 | inline int Bits::Log2Floor(uint32 n) { |
374 | return (n == 0) ? -1 : Bits::Log2FloorNonZero(n); |
375 | } |
376 | |
377 | inline int Bits::FindLSBSetNonZero(uint32 n) { |
378 | assert(n != 0); |
379 | |
380 | int rc = 31; |
381 | for (int i = 4, shift = 1 << 4; i >= 0; --i) { |
382 | const uint32 x = n << shift; |
383 | if (x != 0) { |
384 | n = x; |
385 | rc -= shift; |
386 | } |
387 | shift >>= 1; |
388 | } |
389 | return rc; |
390 | } |
391 | |
392 | #if defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM) |
393 | // FindLSBSetNonZero64() is defined in terms of FindLSBSetNonZero(). |
394 | inline int Bits::FindLSBSetNonZero64(uint64 n) { |
395 | assert(n != 0); |
396 | |
397 | const uint32 bottombits = static_cast<uint32>(n); |
398 | if (bottombits == 0) { |
399 | // Bottom bits are zero, so scan in top bits |
400 | return 32 + FindLSBSetNonZero(static_cast<uint32>(n >> 32)); |
401 | } else { |
402 | return FindLSBSetNonZero(bottombits); |
403 | } |
404 | } |
405 | #endif // defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM) |
406 | |
407 | #endif // End portable versions. |
408 | |
409 | // Variable-length integer encoding. |
410 | class Varint { |
411 | public: |
412 | // Maximum lengths of varint encoding of uint32. |
413 | static const int kMax32 = 5; |
414 | |
415 | // Attempts to parse a varint32 from a prefix of the bytes in [ptr,limit-1]. |
416 | // Never reads a character at or beyond limit. If a valid/terminated varint32 |
417 | // was found in the range, stores it in *OUTPUT and returns a pointer just |
418 | // past the last byte of the varint32. Else returns NULL. On success, |
419 | // "result <= limit". |
420 | static const char* Parse32WithLimit(const char* ptr, const char* limit, |
421 | uint32* OUTPUT); |
422 | |
423 | // REQUIRES "ptr" points to a buffer of length sufficient to hold "v". |
424 | // EFFECTS Encodes "v" into "ptr" and returns a pointer to the |
425 | // byte just past the last encoded byte. |
426 | static char* Encode32(char* ptr, uint32 v); |
427 | |
428 | // EFFECTS Appends the varint representation of "value" to "*s". |
429 | static void Append32(string* s, uint32 value); |
430 | }; |
431 | |
432 | inline const char* Varint::Parse32WithLimit(const char* p, |
433 | const char* l, |
434 | uint32* OUTPUT) { |
435 | const unsigned char* ptr = reinterpret_cast<const unsigned char*>(p); |
436 | const unsigned char* limit = reinterpret_cast<const unsigned char*>(l); |
437 | uint32 b, result; |
438 | if (ptr >= limit) return NULL; |
439 | b = *(ptr++); result = b & 127; if (b < 128) goto done; |
440 | if (ptr >= limit) return NULL; |
441 | b = *(ptr++); result |= (b & 127) << 7; if (b < 128) goto done; |
442 | if (ptr >= limit) return NULL; |
443 | b = *(ptr++); result |= (b & 127) << 14; if (b < 128) goto done; |
444 | if (ptr >= limit) return NULL; |
445 | b = *(ptr++); result |= (b & 127) << 21; if (b < 128) goto done; |
446 | if (ptr >= limit) return NULL; |
447 | b = *(ptr++); result |= (b & 127) << 28; if (b < 16) goto done; |
448 | return NULL; // Value is too long to be a varint32 |
449 | done: |
450 | *OUTPUT = result; |
451 | return reinterpret_cast<const char*>(ptr); |
452 | } |
453 | |
454 | inline char* Varint::Encode32(char* sptr, uint32 v) { |
455 | // Operate on characters as unsigneds |
456 | unsigned char* ptr = reinterpret_cast<unsigned char*>(sptr); |
457 | static const int B = 128; |
458 | if (v < (1<<7)) { |
459 | *(ptr++) = v; |
460 | } else if (v < (1<<14)) { |
461 | *(ptr++) = v | B; |
462 | *(ptr++) = v>>7; |
463 | } else if (v < (1<<21)) { |
464 | *(ptr++) = v | B; |
465 | *(ptr++) = (v>>7) | B; |
466 | *(ptr++) = v>>14; |
467 | } else if (v < (1<<28)) { |
468 | *(ptr++) = v | B; |
469 | *(ptr++) = (v>>7) | B; |
470 | *(ptr++) = (v>>14) | B; |
471 | *(ptr++) = v>>21; |
472 | } else { |
473 | *(ptr++) = v | B; |
474 | *(ptr++) = (v>>7) | B; |
475 | *(ptr++) = (v>>14) | B; |
476 | *(ptr++) = (v>>21) | B; |
477 | *(ptr++) = v>>28; |
478 | } |
479 | return reinterpret_cast<char*>(ptr); |
480 | } |
481 | |
482 | // If you know the internal layout of the std::string in use, you can |
483 | // replace this function with one that resizes the string without |
484 | // filling the new space with zeros (if applicable) -- |
485 | // it will be non-portable but faster. |
486 | inline void STLStringResizeUninitialized(string* s, size_t new_size) { |
487 | s->resize(new_size); |
488 | } |
489 | |
490 | // Return a mutable char* pointing to a string's internal buffer, |
491 | // which may not be null-terminated. Writing through this pointer will |
492 | // modify the string. |
493 | // |
494 | // string_as_array(&str)[i] is valid for 0 <= i < str.size() until the |
495 | // next call to a string method that invalidates iterators. |
496 | // |
497 | // As of 2006-04, there is no standard-blessed way of getting a |
498 | // mutable reference to a string's internal buffer. However, issue 530 |
499 | // (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-defects.html#530) |
500 | // proposes this as the method. It will officially be part of the standard |
501 | // for C++0x. This should already work on all current implementations. |
502 | inline char* string_as_array(string* str) { |
503 | return str->empty() ? NULL : &*str->begin(); |
504 | } |
505 | |
506 | } // namespace snappy |
507 | |
508 | #endif // THIRD_PARTY_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_ |
509 | |