1 | // Copyright 2005 Google Inc. All Rights Reserved. |
2 | // |
3 | // Redistribution and use in source and binary forms, with or without |
4 | // modification, are permitted provided that the following conditions are |
5 | // met: |
6 | // |
7 | // * Redistributions of source code must retain the above copyright |
8 | // notice, this list of conditions and the following disclaimer. |
9 | // * Redistributions in binary form must reproduce the above |
10 | // copyright notice, this list of conditions and the following disclaimer |
11 | // in the documentation and/or other materials provided with the |
12 | // distribution. |
13 | // * Neither the name of Google Inc. nor the names of its |
14 | // contributors may be used to endorse or promote products derived from |
15 | // this software without specific prior written permission. |
16 | // |
17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
18 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
19 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
20 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
21 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
22 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
23 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
24 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
25 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
26 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
27 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | |
29 | #include "snappy.h" |
30 | #include "snappy-internal.h" |
31 | #include "snappy-sinksource.h" |
32 | |
33 | #if !defined(SNAPPY_HAVE_SSSE3) |
34 | // __SSSE3__ is defined by GCC and Clang. Visual Studio doesn't target SIMD |
35 | // support between SSE2 and AVX (so SSSE3 instructions require AVX support), and |
36 | // defines __AVX__ when AVX support is available. |
37 | #if defined(__SSSE3__) || defined(__AVX__) |
38 | #define SNAPPY_HAVE_SSSE3 1 |
39 | #else |
40 | #define SNAPPY_HAVE_SSSE3 0 |
41 | #endif |
42 | #endif // !defined(SNAPPY_HAVE_SSSE3) |
43 | |
44 | #if !defined(SNAPPY_HAVE_BMI2) |
45 | // __BMI2__ is defined by GCC and Clang. Visual Studio doesn't target BMI2 |
46 | // specifically, but it does define __AVX2__ when AVX2 support is available. |
47 | // Fortunately, AVX2 was introduced in Haswell, just like BMI2. |
48 | // |
49 | // BMI2 is not defined as a subset of AVX2 (unlike SSSE3 and AVX above). So, |
50 | // GCC and Clang can build code with AVX2 enabled but BMI2 disabled, in which |
51 | // case issuing BMI2 instructions results in a compiler error. |
52 | #if defined(__BMI2__) || (defined(_MSC_VER) && defined(__AVX2__)) |
53 | #define SNAPPY_HAVE_BMI2 1 |
54 | #else |
55 | #define SNAPPY_HAVE_BMI2 0 |
56 | #endif |
57 | #endif // !defined(SNAPPY_HAVE_BMI2) |
58 | |
59 | #if SNAPPY_HAVE_SSSE3 |
60 | // Please do not replace with <x86intrin.h>. or with headers that assume more |
61 | // advanced SSE versions without checking with all the OWNERS. |
62 | #include <tmmintrin.h> |
63 | #endif |
64 | |
65 | #if SNAPPY_HAVE_BMI2 |
66 | // Please do not replace with <x86intrin.h>. or with headers that assume more |
67 | // advanced SSE versions without checking with all the OWNERS. |
68 | #include <immintrin.h> |
69 | #endif |
70 | |
71 | #include <stdio.h> |
72 | |
73 | #include <algorithm> |
74 | #include <string> |
75 | #include <vector> |
76 | |
77 | namespace snappy { |
78 | |
79 | using internal::COPY_1_BYTE_OFFSET; |
80 | using internal::COPY_2_BYTE_OFFSET; |
81 | using internal::LITERAL; |
82 | using internal::char_table; |
83 | using internal::kMaximumTagLength; |
84 | |
85 | // Any hash function will produce a valid compressed bitstream, but a good |
86 | // hash function reduces the number of collisions and thus yields better |
87 | // compression for compressible input, and more speed for incompressible |
88 | // input. Of course, it doesn't hurt if the hash function is reasonably fast |
89 | // either, as it gets called a lot. |
90 | static inline uint32 HashBytes(uint32 bytes, int shift) { |
91 | uint32 kMul = 0x1e35a7bd; |
92 | return (bytes * kMul) >> shift; |
93 | } |
94 | static inline uint32 Hash(const char* p, int shift) { |
95 | return HashBytes(UNALIGNED_LOAD32(p), shift); |
96 | } |
97 | |
98 | size_t MaxCompressedLength(size_t source_len) { |
99 | // Compressed data can be defined as: |
100 | // compressed := item* literal* |
101 | // item := literal* copy |
102 | // |
103 | // The trailing literal sequence has a space blowup of at most 62/60 |
104 | // since a literal of length 60 needs one tag byte + one extra byte |
105 | // for length information. |
106 | // |
107 | // Item blowup is trickier to measure. Suppose the "copy" op copies |
108 | // 4 bytes of data. Because of a special check in the encoding code, |
109 | // we produce a 4-byte copy only if the offset is < 65536. Therefore |
110 | // the copy op takes 3 bytes to encode, and this type of item leads |
111 | // to at most the 62/60 blowup for representing literals. |
112 | // |
113 | // Suppose the "copy" op copies 5 bytes of data. If the offset is big |
114 | // enough, it will take 5 bytes to encode the copy op. Therefore the |
115 | // worst case here is a one-byte literal followed by a five-byte copy. |
116 | // I.e., 6 bytes of input turn into 7 bytes of "compressed" data. |
117 | // |
118 | // This last factor dominates the blowup, so the final estimate is: |
119 | return 32 + source_len + source_len/6; |
120 | } |
121 | |
122 | namespace { |
123 | |
124 | void UnalignedCopy64(const void* src, void* dst) { |
125 | char tmp[8]; |
126 | memcpy(tmp, src, 8); |
127 | memcpy(dst, tmp, 8); |
128 | } |
129 | |
130 | void UnalignedCopy128(const void* src, void* dst) { |
131 | // memcpy gets vectorized when the appropriate compiler options are used. |
132 | // For example, x86 compilers targeting SSE2+ will optimize to an SSE2 load |
133 | // and store. |
134 | char tmp[16]; |
135 | memcpy(tmp, src, 16); |
136 | memcpy(dst, tmp, 16); |
137 | } |
138 | |
139 | // Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) a byte at a time. Used |
140 | // for handling COPY operations where the input and output regions may overlap. |
141 | // For example, suppose: |
142 | // src == "ab" |
143 | // op == src + 2 |
144 | // op_limit == op + 20 |
145 | // After IncrementalCopySlow(src, op, op_limit), the result will have eleven |
146 | // copies of "ab" |
147 | // ababababababababababab |
148 | // Note that this does not match the semantics of either memcpy() or memmove(). |
149 | inline char* IncrementalCopySlow(const char* src, char* op, |
150 | char* const op_limit) { |
151 | // TODO: Remove pragma when LLVM is aware this |
152 | // function is only called in cold regions and when cold regions don't get |
153 | // vectorized or unrolled. |
154 | #ifdef __clang__ |
155 | #pragma clang loop unroll(disable) |
156 | #endif |
157 | while (op < op_limit) { |
158 | *op++ = *src++; |
159 | } |
160 | return op_limit; |
161 | } |
162 | |
163 | #if SNAPPY_HAVE_SSSE3 |
164 | |
165 | // This is a table of shuffle control masks that can be used as the source |
166 | // operand for PSHUFB to permute the contents of the destination XMM register |
167 | // into a repeating byte pattern. |
168 | alignas(16) const char pshufb_fill_patterns[7][16] = { |
169 | {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
170 | {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}, |
171 | {0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0}, |
172 | {0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3}, |
173 | {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0}, |
174 | {0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3}, |
175 | {0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1}, |
176 | }; |
177 | |
178 | #endif // SNAPPY_HAVE_SSSE3 |
179 | |
180 | // Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) but faster than |
181 | // IncrementalCopySlow. buf_limit is the address past the end of the writable |
182 | // region of the buffer. |
183 | inline char* IncrementalCopy(const char* src, char* op, char* const op_limit, |
184 | char* const buf_limit) { |
185 | // Terminology: |
186 | // |
187 | // slop = buf_limit - op |
188 | // pat = op - src |
189 | // len = limit - op |
190 | assert(src < op); |
191 | assert(op <= op_limit); |
192 | assert(op_limit <= buf_limit); |
193 | // NOTE: The compressor always emits 4 <= len <= 64. It is ok to assume that |
194 | // to optimize this function but we have to also handle other cases in case |
195 | // the input does not satisfy these conditions. |
196 | |
197 | size_t pattern_size = op - src; |
198 | // The cases are split into different branches to allow the branch predictor, |
199 | // FDO, and static prediction hints to work better. For each input we list the |
200 | // ratio of invocations that match each condition. |
201 | // |
202 | // input slop < 16 pat < 8 len > 16 |
203 | // ------------------------------------------ |
204 | // html|html4|cp 0% 1.01% 27.73% |
205 | // urls 0% 0.88% 14.79% |
206 | // jpg 0% 64.29% 7.14% |
207 | // pdf 0% 2.56% 58.06% |
208 | // txt[1-4] 0% 0.23% 0.97% |
209 | // pb 0% 0.96% 13.88% |
210 | // bin 0.01% 22.27% 41.17% |
211 | // |
212 | // It is very rare that we don't have enough slop for doing block copies. It |
213 | // is also rare that we need to expand a pattern. Small patterns are common |
214 | // for incompressible formats and for those we are plenty fast already. |
215 | // Lengths are normally not greater than 16 but they vary depending on the |
216 | // input. In general if we always predict len <= 16 it would be an ok |
217 | // prediction. |
218 | // |
219 | // In order to be fast we want a pattern >= 8 bytes and an unrolled loop |
220 | // copying 2x 8 bytes at a time. |
221 | |
222 | // Handle the uncommon case where pattern is less than 8 bytes. |
223 | if (SNAPPY_PREDICT_FALSE(pattern_size < 8)) { |
224 | #if SNAPPY_HAVE_SSSE3 |
225 | // Load the first eight bytes into an 128-bit XMM register, then use PSHUFB |
226 | // to permute the register's contents in-place into a repeating sequence of |
227 | // the first "pattern_size" bytes. |
228 | // For example, suppose: |
229 | // src == "abc" |
230 | // op == op + 3 |
231 | // After _mm_shuffle_epi8(), "pattern" will have five copies of "abc" |
232 | // followed by one byte of slop: abcabcabcabcabca. |
233 | // |
234 | // The non-SSE fallback implementation suffers from store-forwarding stalls |
235 | // because its loads and stores partly overlap. By expanding the pattern |
236 | // in-place, we avoid the penalty. |
237 | if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 16)) { |
238 | const __m128i shuffle_mask = _mm_load_si128( |
239 | reinterpret_cast<const __m128i*>(pshufb_fill_patterns) |
240 | + pattern_size - 1); |
241 | const __m128i pattern = _mm_shuffle_epi8( |
242 | _mm_loadl_epi64(reinterpret_cast<const __m128i*>(src)), shuffle_mask); |
243 | // Uninitialized bytes are masked out by the shuffle mask. |
244 | // TODO: remove annotation and macro defs once MSan is fixed. |
245 | SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(&pattern, sizeof(pattern)); |
246 | pattern_size *= 16 / pattern_size; |
247 | char* op_end = std::min(op_limit, buf_limit - 15); |
248 | while (op < op_end) { |
249 | _mm_storeu_si128(reinterpret_cast<__m128i*>(op), pattern); |
250 | op += pattern_size; |
251 | } |
252 | if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit; |
253 | } |
254 | return IncrementalCopySlow(src, op, op_limit); |
255 | #else // !SNAPPY_HAVE_SSSE3 |
256 | // If plenty of buffer space remains, expand the pattern to at least 8 |
257 | // bytes. The way the following loop is written, we need 8 bytes of buffer |
258 | // space if pattern_size >= 4, 11 bytes if pattern_size is 1 or 3, and 10 |
259 | // bytes if pattern_size is 2. Precisely encoding that is probably not |
260 | // worthwhile; instead, invoke the slow path if we cannot write 11 bytes |
261 | // (because 11 are required in the worst case). |
262 | if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 11)) { |
263 | while (pattern_size < 8) { |
264 | UnalignedCopy64(src, op); |
265 | op += pattern_size; |
266 | pattern_size *= 2; |
267 | } |
268 | if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit; |
269 | } else { |
270 | return IncrementalCopySlow(src, op, op_limit); |
271 | } |
272 | #endif // SNAPPY_HAVE_SSSE3 |
273 | } |
274 | assert(pattern_size >= 8); |
275 | |
276 | // Copy 2x 8 bytes at a time. Because op - src can be < 16, a single |
277 | // UnalignedCopy128 might overwrite data in op. UnalignedCopy64 is safe |
278 | // because expanding the pattern to at least 8 bytes guarantees that |
279 | // op - src >= 8. |
280 | // |
281 | // Typically, the op_limit is the gating factor so try to simplify the loop |
282 | // based on that. |
283 | if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 16)) { |
284 | // Factor the displacement from op to the source into a variable. This helps |
285 | // simplify the loop below by only varying the op pointer which we need to |
286 | // test for the end. Note that this was done after carefully examining the |
287 | // generated code to allow the addressing modes in the loop below to |
288 | // maximize micro-op fusion where possible on modern Intel processors. The |
289 | // generated code should be checked carefully for new processors or with |
290 | // major changes to the compiler. |
291 | // TODO: Simplify this code when the compiler reliably produces |
292 | // the correct x86 instruction sequence. |
293 | ptrdiff_t op_to_src = src - op; |
294 | |
295 | // The trip count of this loop is not large and so unrolling will only hurt |
296 | // code size without helping performance. |
297 | // |
298 | // TODO: Replace with loop trip count hint. |
299 | #ifdef __clang__ |
300 | #pragma clang loop unroll(disable) |
301 | #endif |
302 | do { |
303 | UnalignedCopy64(op + op_to_src, op); |
304 | UnalignedCopy64(op + op_to_src + 8, op + 8); |
305 | op += 16; |
306 | } while (op < op_limit); |
307 | return op_limit; |
308 | } |
309 | |
310 | // Fall back to doing as much as we can with the available slop in the |
311 | // buffer. This code path is relatively cold however so we save code size by |
312 | // avoiding unrolling and vectorizing. |
313 | // |
314 | // TODO: Remove pragma when when cold regions don't get vectorized |
315 | // or unrolled. |
316 | #ifdef __clang__ |
317 | #pragma clang loop unroll(disable) |
318 | #endif |
319 | for (char *op_end = buf_limit - 16; op < op_end; op += 16, src += 16) { |
320 | UnalignedCopy64(src, op); |
321 | UnalignedCopy64(src + 8, op + 8); |
322 | } |
323 | if (op >= op_limit) |
324 | return op_limit; |
325 | |
326 | // We only take this branch if we didn't have enough slop and we can do a |
327 | // single 8 byte copy. |
328 | if (SNAPPY_PREDICT_FALSE(op <= buf_limit - 8)) { |
329 | UnalignedCopy64(src, op); |
330 | src += 8; |
331 | op += 8; |
332 | } |
333 | return IncrementalCopySlow(src, op, op_limit); |
334 | } |
335 | |
336 | } // namespace |
337 | |
338 | template <bool allow_fast_path> |
339 | static inline char* EmitLiteral(char* op, |
340 | const char* literal, |
341 | int len) { |
342 | // The vast majority of copies are below 16 bytes, for which a |
343 | // call to memcpy is overkill. This fast path can sometimes |
344 | // copy up to 15 bytes too much, but that is okay in the |
345 | // main loop, since we have a bit to go on for both sides: |
346 | // |
347 | // - The input will always have kInputMarginBytes = 15 extra |
348 | // available bytes, as long as we're in the main loop, and |
349 | // if not, allow_fast_path = false. |
350 | // - The output will always have 32 spare bytes (see |
351 | // MaxCompressedLength). |
352 | assert(len > 0); // Zero-length literals are disallowed |
353 | int n = len - 1; |
354 | if (allow_fast_path && len <= 16) { |
355 | // Fits in tag byte |
356 | *op++ = LITERAL | (n << 2); |
357 | |
358 | UnalignedCopy128(literal, op); |
359 | return op + len; |
360 | } |
361 | |
362 | if (n < 60) { |
363 | // Fits in tag byte |
364 | *op++ = LITERAL | (n << 2); |
365 | } else { |
366 | int count = (Bits::Log2Floor(n) >> 3) + 1; |
367 | assert(count >= 1); |
368 | assert(count <= 4); |
369 | *op++ = LITERAL | ((59 + count) << 2); |
370 | // Encode in upcoming bytes. |
371 | // Write 4 bytes, though we may care about only 1 of them. The output buffer |
372 | // is guaranteed to have at least 3 more spaces left as 'len >= 61' holds |
373 | // here and there is a memcpy of size 'len' below. |
374 | LittleEndian::Store32(op, n); |
375 | op += count; |
376 | } |
377 | memcpy(op, literal, len); |
378 | return op + len; |
379 | } |
380 | |
381 | template <bool len_less_than_12> |
382 | static inline char* EmitCopyAtMost64(char* op, size_t offset, size_t len) { |
383 | assert(len <= 64); |
384 | assert(len >= 4); |
385 | assert(offset < 65536); |
386 | assert(len_less_than_12 == (len < 12)); |
387 | |
388 | if (len_less_than_12 && SNAPPY_PREDICT_TRUE(offset < 2048)) { |
389 | // offset fits in 11 bits. The 3 highest go in the top of the first byte, |
390 | // and the rest go in the second byte. |
391 | *op++ = COPY_1_BYTE_OFFSET + ((len - 4) << 2) + ((offset >> 3) & 0xe0); |
392 | *op++ = offset & 0xff; |
393 | } else { |
394 | // Write 4 bytes, though we only care about 3 of them. The output buffer |
395 | // is required to have some slack, so the extra byte won't overrun it. |
396 | uint32 u = COPY_2_BYTE_OFFSET + ((len - 1) << 2) + (offset << 8); |
397 | LittleEndian::Store32(op, u); |
398 | op += 3; |
399 | } |
400 | return op; |
401 | } |
402 | |
403 | template <bool len_less_than_12> |
404 | static inline char* EmitCopy(char* op, size_t offset, size_t len) { |
405 | assert(len_less_than_12 == (len < 12)); |
406 | if (len_less_than_12) { |
407 | return EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len); |
408 | } else { |
409 | // A special case for len <= 64 might help, but so far measurements suggest |
410 | // it's in the noise. |
411 | |
412 | // Emit 64 byte copies but make sure to keep at least four bytes reserved. |
413 | while (SNAPPY_PREDICT_FALSE(len >= 68)) { |
414 | op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 64); |
415 | len -= 64; |
416 | } |
417 | |
418 | // One or two copies will now finish the job. |
419 | if (len > 64) { |
420 | op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 60); |
421 | len -= 60; |
422 | } |
423 | |
424 | // Emit remainder. |
425 | if (len < 12) { |
426 | op = EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len); |
427 | } else { |
428 | op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, len); |
429 | } |
430 | return op; |
431 | } |
432 | } |
433 | |
434 | bool GetUncompressedLength(const char* start, size_t n, size_t* result) { |
435 | uint32 v = 0; |
436 | const char* limit = start + n; |
437 | if (Varint::Parse32WithLimit(start, limit, &v) != NULL) { |
438 | *result = v; |
439 | return true; |
440 | } else { |
441 | return false; |
442 | } |
443 | } |
444 | |
445 | namespace { |
446 | uint32 CalculateTableSize(uint32 input_size) { |
447 | assert(kMaxHashTableSize >= 256); |
448 | if (input_size > kMaxHashTableSize) { |
449 | return kMaxHashTableSize; |
450 | } |
451 | if (input_size < 256) { |
452 | return 256; |
453 | } |
454 | // This is equivalent to Log2Ceiling(input_size), assuming input_size > 1. |
455 | // 2 << Log2Floor(x - 1) is equivalent to 1 << (1 + Log2Floor(x - 1)). |
456 | return 2u << Bits::Log2Floor(input_size - 1); |
457 | } |
458 | } // namespace |
459 | |
460 | namespace internal { |
461 | WorkingMemory::WorkingMemory(size_t input_size) { |
462 | const size_t max_fragment_size = std::min(input_size, kBlockSize); |
463 | const size_t table_size = CalculateTableSize(max_fragment_size); |
464 | size_ = table_size * sizeof(*table_) + max_fragment_size + |
465 | MaxCompressedLength(max_fragment_size); |
466 | mem_ = std::allocator<char>().allocate(size_); |
467 | table_ = reinterpret_cast<uint16*>(mem_); |
468 | input_ = mem_ + table_size * sizeof(*table_); |
469 | output_ = input_ + max_fragment_size; |
470 | } |
471 | |
472 | WorkingMemory::~WorkingMemory() { |
473 | std::allocator<char>().deallocate(mem_, size_); |
474 | } |
475 | |
476 | uint16* WorkingMemory::GetHashTable(size_t fragment_size, |
477 | int* table_size) const { |
478 | const size_t htsize = CalculateTableSize(fragment_size); |
479 | memset(table_, 0, htsize * sizeof(*table_)); |
480 | *table_size = htsize; |
481 | return table_; |
482 | } |
483 | } // end namespace internal |
484 | |
485 | // For 0 <= offset <= 4, GetUint32AtOffset(GetEightBytesAt(p), offset) will |
486 | // equal UNALIGNED_LOAD32(p + offset). Motivation: On x86-64 hardware we have |
487 | // empirically found that overlapping loads such as |
488 | // UNALIGNED_LOAD32(p) ... UNALIGNED_LOAD32(p+1) ... UNALIGNED_LOAD32(p+2) |
489 | // are slower than UNALIGNED_LOAD64(p) followed by shifts and casts to uint32. |
490 | // |
491 | // We have different versions for 64- and 32-bit; ideally we would avoid the |
492 | // two functions and just inline the UNALIGNED_LOAD64 call into |
493 | // GetUint32AtOffset, but GCC (at least not as of 4.6) is seemingly not clever |
494 | // enough to avoid loading the value multiple times then. For 64-bit, the load |
495 | // is done when GetEightBytesAt() is called, whereas for 32-bit, the load is |
496 | // done at GetUint32AtOffset() time. |
497 | |
498 | #ifdef ARCH_K8 |
499 | |
500 | typedef uint64 EightBytesReference; |
501 | |
502 | static inline EightBytesReference GetEightBytesAt(const char* ptr) { |
503 | return UNALIGNED_LOAD64(ptr); |
504 | } |
505 | |
506 | static inline uint32 GetUint32AtOffset(uint64 v, int offset) { |
507 | assert(offset >= 0); |
508 | assert(offset <= 4); |
509 | return v >> (LittleEndian::IsLittleEndian() ? 8 * offset : 32 - 8 * offset); |
510 | } |
511 | |
512 | #else |
513 | |
514 | typedef const char* EightBytesReference; |
515 | |
516 | static inline EightBytesReference GetEightBytesAt(const char* ptr) { |
517 | return ptr; |
518 | } |
519 | |
520 | static inline uint32 GetUint32AtOffset(const char* v, int offset) { |
521 | assert(offset >= 0); |
522 | assert(offset <= 4); |
523 | return UNALIGNED_LOAD32(v + offset); |
524 | } |
525 | |
526 | #endif |
527 | |
528 | // Flat array compression that does not emit the "uncompressed length" |
529 | // prefix. Compresses "input" string to the "*op" buffer. |
530 | // |
531 | // REQUIRES: "input" is at most "kBlockSize" bytes long. |
532 | // REQUIRES: "op" points to an array of memory that is at least |
533 | // "MaxCompressedLength(input.size())" in size. |
534 | // REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero. |
535 | // REQUIRES: "table_size" is a power of two |
536 | // |
537 | // Returns an "end" pointer into "op" buffer. |
538 | // "end - op" is the compressed size of "input". |
539 | namespace internal { |
540 | char* CompressFragment(const char* input, |
541 | size_t input_size, |
542 | char* op, |
543 | uint16* table, |
544 | const int table_size) { |
545 | // "ip" is the input pointer, and "op" is the output pointer. |
546 | const char* ip = input; |
547 | assert(input_size <= kBlockSize); |
548 | assert((table_size & (table_size - 1)) == 0); // table must be power of two |
549 | const int shift = 32 - Bits::Log2Floor(table_size); |
550 | assert(static_cast<int>(kuint32max >> shift) == table_size - 1); |
551 | const char* ip_end = input + input_size; |
552 | const char* base_ip = ip; |
553 | // Bytes in [next_emit, ip) will be emitted as literal bytes. Or |
554 | // [next_emit, ip_end) after the main loop. |
555 | const char* next_emit = ip; |
556 | |
557 | const size_t kInputMarginBytes = 15; |
558 | if (SNAPPY_PREDICT_TRUE(input_size >= kInputMarginBytes)) { |
559 | const char* ip_limit = input + input_size - kInputMarginBytes; |
560 | |
561 | for (uint32 next_hash = Hash(++ip, shift); ; ) { |
562 | assert(next_emit < ip); |
563 | // The body of this loop calls EmitLiteral once and then EmitCopy one or |
564 | // more times. (The exception is that when we're close to exhausting |
565 | // the input we goto emit_remainder.) |
566 | // |
567 | // In the first iteration of this loop we're just starting, so |
568 | // there's nothing to copy, so calling EmitLiteral once is |
569 | // necessary. And we only start a new iteration when the |
570 | // current iteration has determined that a call to EmitLiteral will |
571 | // precede the next call to EmitCopy (if any). |
572 | // |
573 | // Step 1: Scan forward in the input looking for a 4-byte-long match. |
574 | // If we get close to exhausting the input then goto emit_remainder. |
575 | // |
576 | // Heuristic match skipping: If 32 bytes are scanned with no matches |
577 | // found, start looking only at every other byte. If 32 more bytes are |
578 | // scanned (or skipped), look at every third byte, etc.. When a match is |
579 | // found, immediately go back to looking at every byte. This is a small |
580 | // loss (~5% performance, ~0.1% density) for compressible data due to more |
581 | // bookkeeping, but for non-compressible data (such as JPEG) it's a huge |
582 | // win since the compressor quickly "realizes" the data is incompressible |
583 | // and doesn't bother looking for matches everywhere. |
584 | // |
585 | // The "skip" variable keeps track of how many bytes there are since the |
586 | // last match; dividing it by 32 (ie. right-shifting by five) gives the |
587 | // number of bytes to move ahead for each iteration. |
588 | uint32 skip = 32; |
589 | |
590 | const char* next_ip = ip; |
591 | const char* candidate; |
592 | do { |
593 | ip = next_ip; |
594 | uint32 hash = next_hash; |
595 | assert(hash == Hash(ip, shift)); |
596 | uint32 bytes_between_hash_lookups = skip >> 5; |
597 | skip += bytes_between_hash_lookups; |
598 | next_ip = ip + bytes_between_hash_lookups; |
599 | if (SNAPPY_PREDICT_FALSE(next_ip > ip_limit)) { |
600 | goto emit_remainder; |
601 | } |
602 | next_hash = Hash(next_ip, shift); |
603 | candidate = base_ip + table[hash]; |
604 | assert(candidate >= base_ip); |
605 | assert(candidate < ip); |
606 | |
607 | table[hash] = ip - base_ip; |
608 | } while (SNAPPY_PREDICT_TRUE(UNALIGNED_LOAD32(ip) != |
609 | UNALIGNED_LOAD32(candidate))); |
610 | |
611 | // Step 2: A 4-byte match has been found. We'll later see if more |
612 | // than 4 bytes match. But, prior to the match, input |
613 | // bytes [next_emit, ip) are unmatched. Emit them as "literal bytes." |
614 | assert(next_emit + 16 <= ip_end); |
615 | op = EmitLiteral</*allow_fast_path=*/true>(op, next_emit, ip - next_emit); |
616 | |
617 | // Step 3: Call EmitCopy, and then see if another EmitCopy could |
618 | // be our next move. Repeat until we find no match for the |
619 | // input immediately after what was consumed by the last EmitCopy call. |
620 | // |
621 | // If we exit this loop normally then we need to call EmitLiteral next, |
622 | // though we don't yet know how big the literal will be. We handle that |
623 | // by proceeding to the next iteration of the main loop. We also can exit |
624 | // this loop via goto if we get close to exhausting the input. |
625 | EightBytesReference input_bytes; |
626 | uint32 candidate_bytes = 0; |
627 | |
628 | do { |
629 | // We have a 4-byte match at ip, and no need to emit any |
630 | // "literal bytes" prior to ip. |
631 | const char* base = ip; |
632 | std::pair<size_t, bool> p = |
633 | FindMatchLength(candidate + 4, ip + 4, ip_end); |
634 | size_t matched = 4 + p.first; |
635 | ip += matched; |
636 | size_t offset = base - candidate; |
637 | assert(0 == memcmp(base, candidate, matched)); |
638 | if (p.second) { |
639 | op = EmitCopy</*len_less_than_12=*/true>(op, offset, matched); |
640 | } else { |
641 | op = EmitCopy</*len_less_than_12=*/false>(op, offset, matched); |
642 | } |
643 | next_emit = ip; |
644 | if (SNAPPY_PREDICT_FALSE(ip >= ip_limit)) { |
645 | goto emit_remainder; |
646 | } |
647 | // We are now looking for a 4-byte match again. We read |
648 | // table[Hash(ip, shift)] for that. To improve compression, |
649 | // we also update table[Hash(ip - 1, shift)] and table[Hash(ip, shift)]. |
650 | input_bytes = GetEightBytesAt(ip - 1); |
651 | uint32 prev_hash = HashBytes(GetUint32AtOffset(input_bytes, 0), shift); |
652 | table[prev_hash] = ip - base_ip - 1; |
653 | uint32 cur_hash = HashBytes(GetUint32AtOffset(input_bytes, 1), shift); |
654 | candidate = base_ip + table[cur_hash]; |
655 | candidate_bytes = UNALIGNED_LOAD32(candidate); |
656 | table[cur_hash] = ip - base_ip; |
657 | } while (GetUint32AtOffset(input_bytes, 1) == candidate_bytes); |
658 | |
659 | next_hash = HashBytes(GetUint32AtOffset(input_bytes, 2), shift); |
660 | ++ip; |
661 | } |
662 | } |
663 | |
664 | emit_remainder: |
665 | // Emit the remaining bytes as a literal |
666 | if (next_emit < ip_end) { |
667 | op = EmitLiteral</*allow_fast_path=*/false>(op, next_emit, |
668 | ip_end - next_emit); |
669 | } |
670 | |
671 | return op; |
672 | } |
673 | } // end namespace internal |
674 | |
675 | // Called back at avery compression call to trace parameters and sizes. |
676 | static inline void Report(const char *algorithm, size_t compressed_size, |
677 | size_t uncompressed_size) {} |
678 | |
679 | // Signature of output types needed by decompression code. |
680 | // The decompression code is templatized on a type that obeys this |
681 | // signature so that we do not pay virtual function call overhead in |
682 | // the middle of a tight decompression loop. |
683 | // |
684 | // class DecompressionWriter { |
685 | // public: |
686 | // // Called before decompression |
687 | // void SetExpectedLength(size_t length); |
688 | // |
689 | // // Called after decompression |
690 | // bool CheckLength() const; |
691 | // |
692 | // // Called repeatedly during decompression |
693 | // bool Append(const char* ip, size_t length); |
694 | // bool AppendFromSelf(uint32 offset, size_t length); |
695 | // |
696 | // // The rules for how TryFastAppend differs from Append are somewhat |
697 | // // convoluted: |
698 | // // |
699 | // // - TryFastAppend is allowed to decline (return false) at any |
700 | // // time, for any reason -- just "return false" would be |
701 | // // a perfectly legal implementation of TryFastAppend. |
702 | // // The intention is for TryFastAppend to allow a fast path |
703 | // // in the common case of a small append. |
704 | // // - TryFastAppend is allowed to read up to <available> bytes |
705 | // // from the input buffer, whereas Append is allowed to read |
706 | // // <length>. However, if it returns true, it must leave |
707 | // // at least five (kMaximumTagLength) bytes in the input buffer |
708 | // // afterwards, so that there is always enough space to read the |
709 | // // next tag without checking for a refill. |
710 | // // - TryFastAppend must always return decline (return false) |
711 | // // if <length> is 61 or more, as in this case the literal length is not |
712 | // // decoded fully. In practice, this should not be a big problem, |
713 | // // as it is unlikely that one would implement a fast path accepting |
714 | // // this much data. |
715 | // // |
716 | // bool TryFastAppend(const char* ip, size_t available, size_t length); |
717 | // }; |
718 | |
719 | static inline uint32 (uint32 v, int n) { |
720 | assert(n >= 0); |
721 | assert(n <= 4); |
722 | #if SNAPPY_HAVE_BMI2 |
723 | return _bzhi_u32(v, 8 * n); |
724 | #else |
725 | // This needs to be wider than uint32 otherwise `mask << 32` will be |
726 | // undefined. |
727 | uint64 mask = 0xffffffff; |
728 | return v & ~(mask << (8 * n)); |
729 | #endif |
730 | } |
731 | |
732 | static inline bool LeftShiftOverflows(uint8 value, uint32 shift) { |
733 | assert(shift < 32); |
734 | static const uint8 masks[] = { |
735 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // |
736 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // |
737 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // |
738 | 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe}; |
739 | return (value & masks[shift]) != 0; |
740 | } |
741 | |
742 | // Helper class for decompression |
743 | class SnappyDecompressor { |
744 | private: |
745 | Source* reader_; // Underlying source of bytes to decompress |
746 | const char* ip_; // Points to next buffered byte |
747 | const char* ip_limit_; // Points just past buffered bytes |
748 | uint32 peeked_; // Bytes peeked from reader (need to skip) |
749 | bool eof_; // Hit end of input without an error? |
750 | char scratch_[kMaximumTagLength]; // See RefillTag(). |
751 | |
752 | // Ensure that all of the tag metadata for the next tag is available |
753 | // in [ip_..ip_limit_-1]. Also ensures that [ip,ip+4] is readable even |
754 | // if (ip_limit_ - ip_ < 5). |
755 | // |
756 | // Returns true on success, false on error or end of input. |
757 | bool RefillTag(); |
758 | |
759 | public: |
760 | explicit SnappyDecompressor(Source* reader) |
761 | : reader_(reader), |
762 | ip_(NULL), |
763 | ip_limit_(NULL), |
764 | peeked_(0), |
765 | eof_(false) { |
766 | } |
767 | |
768 | ~SnappyDecompressor() { |
769 | // Advance past any bytes we peeked at from the reader |
770 | reader_->Skip(peeked_); |
771 | } |
772 | |
773 | // Returns true iff we have hit the end of the input without an error. |
774 | bool eof() const { |
775 | return eof_; |
776 | } |
777 | |
778 | // Read the uncompressed length stored at the start of the compressed data. |
779 | // On success, stores the length in *result and returns true. |
780 | // On failure, returns false. |
781 | bool ReadUncompressedLength(uint32* result) { |
782 | assert(ip_ == NULL); // Must not have read anything yet |
783 | // Length is encoded in 1..5 bytes |
784 | *result = 0; |
785 | uint32 shift = 0; |
786 | while (true) { |
787 | if (shift >= 32) return false; |
788 | size_t n; |
789 | const char* ip = reader_->Peek(&n); |
790 | if (n == 0) return false; |
791 | const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip)); |
792 | reader_->Skip(1); |
793 | uint32 val = c & 0x7f; |
794 | if (LeftShiftOverflows(static_cast<uint8>(val), shift)) return false; |
795 | *result |= val << shift; |
796 | if (c < 128) { |
797 | break; |
798 | } |
799 | shift += 7; |
800 | } |
801 | return true; |
802 | } |
803 | |
804 | // Process the next item found in the input. |
805 | // Returns true if successful, false on error or end of input. |
806 | template <class Writer> |
807 | #if defined(__GNUC__) && defined(__x86_64__) |
808 | __attribute__((aligned(32))) |
809 | #endif |
810 | void DecompressAllTags(Writer* writer) { |
811 | // In x86, pad the function body to start 16 bytes later. This function has |
812 | // a couple of hotspots that are highly sensitive to alignment: we have |
813 | // observed regressions by more than 20% in some metrics just by moving the |
814 | // exact same code to a different position in the benchmark binary. |
815 | // |
816 | // Putting this code on a 32-byte-aligned boundary + 16 bytes makes us hit |
817 | // the "lucky" case consistently. Unfortunately, this is a very brittle |
818 | // workaround, and future differences in code generation may reintroduce |
819 | // this regression. If you experience a big, difficult to explain, benchmark |
820 | // performance regression here, first try removing this hack. |
821 | #if defined(__GNUC__) && defined(__x86_64__) |
822 | // Two 8-byte "NOP DWORD ptr [EAX + EAX*1 + 00000000H]" instructions. |
823 | asm(".byte 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00" ); |
824 | asm(".byte 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00" ); |
825 | #endif |
826 | |
827 | const char* ip = ip_; |
828 | // We could have put this refill fragment only at the beginning of the loop. |
829 | // However, duplicating it at the end of each branch gives the compiler more |
830 | // scope to optimize the <ip_limit_ - ip> expression based on the local |
831 | // context, which overall increases speed. |
832 | #define MAYBE_REFILL() \ |
833 | if (ip_limit_ - ip < kMaximumTagLength) { \ |
834 | ip_ = ip; \ |
835 | if (!RefillTag()) return; \ |
836 | ip = ip_; \ |
837 | } |
838 | |
839 | MAYBE_REFILL(); |
840 | for ( ;; ) { |
841 | const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip++)); |
842 | |
843 | // Ratio of iterations that have LITERAL vs non-LITERAL for different |
844 | // inputs. |
845 | // |
846 | // input LITERAL NON_LITERAL |
847 | // ----------------------------------- |
848 | // html|html4|cp 23% 77% |
849 | // urls 36% 64% |
850 | // jpg 47% 53% |
851 | // pdf 19% 81% |
852 | // txt[1-4] 25% 75% |
853 | // pb 24% 76% |
854 | // bin 24% 76% |
855 | if (SNAPPY_PREDICT_FALSE((c & 0x3) == LITERAL)) { |
856 | size_t literal_length = (c >> 2) + 1u; |
857 | if (writer->TryFastAppend(ip, ip_limit_ - ip, literal_length)) { |
858 | assert(literal_length < 61); |
859 | ip += literal_length; |
860 | // NOTE: There is no MAYBE_REFILL() here, as TryFastAppend() |
861 | // will not return true unless there's already at least five spare |
862 | // bytes in addition to the literal. |
863 | continue; |
864 | } |
865 | if (SNAPPY_PREDICT_FALSE(literal_length >= 61)) { |
866 | // Long literal. |
867 | const size_t literal_length_length = literal_length - 60; |
868 | literal_length = |
869 | ExtractLowBytes(LittleEndian::Load32(ip), literal_length_length) + |
870 | 1; |
871 | ip += literal_length_length; |
872 | } |
873 | |
874 | size_t avail = ip_limit_ - ip; |
875 | while (avail < literal_length) { |
876 | if (!writer->Append(ip, avail)) return; |
877 | literal_length -= avail; |
878 | reader_->Skip(peeked_); |
879 | size_t n; |
880 | ip = reader_->Peek(&n); |
881 | avail = n; |
882 | peeked_ = avail; |
883 | if (avail == 0) return; // Premature end of input |
884 | ip_limit_ = ip + avail; |
885 | } |
886 | if (!writer->Append(ip, literal_length)) { |
887 | return; |
888 | } |
889 | ip += literal_length; |
890 | MAYBE_REFILL(); |
891 | } else { |
892 | const size_t entry = char_table[c]; |
893 | const size_t trailer = |
894 | ExtractLowBytes(LittleEndian::Load32(ip), entry >> 11); |
895 | const size_t length = entry & 0xff; |
896 | ip += entry >> 11; |
897 | |
898 | // copy_offset/256 is encoded in bits 8..10. By just fetching |
899 | // those bits, we get copy_offset (since the bit-field starts at |
900 | // bit 8). |
901 | const size_t copy_offset = entry & 0x700; |
902 | if (!writer->AppendFromSelf(copy_offset + trailer, length)) { |
903 | return; |
904 | } |
905 | MAYBE_REFILL(); |
906 | } |
907 | } |
908 | |
909 | #undef MAYBE_REFILL |
910 | } |
911 | }; |
912 | |
913 | bool SnappyDecompressor::RefillTag() { |
914 | const char* ip = ip_; |
915 | if (ip == ip_limit_) { |
916 | // Fetch a new fragment from the reader |
917 | reader_->Skip(peeked_); // All peeked bytes are used up |
918 | size_t n; |
919 | ip = reader_->Peek(&n); |
920 | peeked_ = n; |
921 | eof_ = (n == 0); |
922 | if (eof_) return false; |
923 | ip_limit_ = ip + n; |
924 | } |
925 | |
926 | // Read the tag character |
927 | assert(ip < ip_limit_); |
928 | const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip)); |
929 | const uint32 entry = char_table[c]; |
930 | const uint32 needed = (entry >> 11) + 1; // +1 byte for 'c' |
931 | assert(needed <= sizeof(scratch_)); |
932 | |
933 | // Read more bytes from reader if needed |
934 | uint32 nbuf = ip_limit_ - ip; |
935 | if (nbuf < needed) { |
936 | // Stitch together bytes from ip and reader to form the word |
937 | // contents. We store the needed bytes in "scratch_". They |
938 | // will be consumed immediately by the caller since we do not |
939 | // read more than we need. |
940 | memmove(scratch_, ip, nbuf); |
941 | reader_->Skip(peeked_); // All peeked bytes are used up |
942 | peeked_ = 0; |
943 | while (nbuf < needed) { |
944 | size_t length; |
945 | const char* src = reader_->Peek(&length); |
946 | if (length == 0) return false; |
947 | uint32 to_add = std::min<uint32>(needed - nbuf, length); |
948 | memcpy(scratch_ + nbuf, src, to_add); |
949 | nbuf += to_add; |
950 | reader_->Skip(to_add); |
951 | } |
952 | assert(nbuf == needed); |
953 | ip_ = scratch_; |
954 | ip_limit_ = scratch_ + needed; |
955 | } else if (nbuf < kMaximumTagLength) { |
956 | // Have enough bytes, but move into scratch_ so that we do not |
957 | // read past end of input |
958 | memmove(scratch_, ip, nbuf); |
959 | reader_->Skip(peeked_); // All peeked bytes are used up |
960 | peeked_ = 0; |
961 | ip_ = scratch_; |
962 | ip_limit_ = scratch_ + nbuf; |
963 | } else { |
964 | // Pass pointer to buffer returned by reader_. |
965 | ip_ = ip; |
966 | } |
967 | return true; |
968 | } |
969 | |
970 | template <typename Writer> |
971 | static bool InternalUncompress(Source* r, Writer* writer) { |
972 | // Read the uncompressed length from the front of the compressed input |
973 | SnappyDecompressor decompressor(r); |
974 | uint32 uncompressed_len = 0; |
975 | if (!decompressor.ReadUncompressedLength(&uncompressed_len)) return false; |
976 | |
977 | return InternalUncompressAllTags(&decompressor, writer, r->Available(), |
978 | uncompressed_len); |
979 | } |
980 | |
981 | template <typename Writer> |
982 | static bool InternalUncompressAllTags(SnappyDecompressor* decompressor, |
983 | Writer* writer, |
984 | uint32 compressed_len, |
985 | uint32 uncompressed_len) { |
986 | Report("snappy_uncompress" , compressed_len, uncompressed_len); |
987 | |
988 | writer->SetExpectedLength(uncompressed_len); |
989 | |
990 | // Process the entire input |
991 | decompressor->DecompressAllTags(writer); |
992 | writer->Flush(); |
993 | return (decompressor->eof() && writer->CheckLength()); |
994 | } |
995 | |
996 | bool GetUncompressedLength(Source* source, uint32* result) { |
997 | SnappyDecompressor decompressor(source); |
998 | return decompressor.ReadUncompressedLength(result); |
999 | } |
1000 | |
1001 | size_t Compress(Source* reader, Sink* writer) { |
1002 | size_t written = 0; |
1003 | size_t N = reader->Available(); |
1004 | const size_t uncompressed_size = N; |
1005 | char ulength[Varint::kMax32]; |
1006 | char* p = Varint::Encode32(ulength, N); |
1007 | writer->Append(ulength, p-ulength); |
1008 | written += (p - ulength); |
1009 | |
1010 | internal::WorkingMemory wmem(N); |
1011 | |
1012 | while (N > 0) { |
1013 | // Get next block to compress (without copying if possible) |
1014 | size_t fragment_size; |
1015 | const char* fragment = reader->Peek(&fragment_size); |
1016 | assert(fragment_size != 0); // premature end of input |
1017 | const size_t num_to_read = std::min(N, kBlockSize); |
1018 | size_t bytes_read = fragment_size; |
1019 | |
1020 | size_t pending_advance = 0; |
1021 | if (bytes_read >= num_to_read) { |
1022 | // Buffer returned by reader is large enough |
1023 | pending_advance = num_to_read; |
1024 | fragment_size = num_to_read; |
1025 | } else { |
1026 | char* scratch = wmem.GetScratchInput(); |
1027 | memcpy(scratch, fragment, bytes_read); |
1028 | reader->Skip(bytes_read); |
1029 | |
1030 | while (bytes_read < num_to_read) { |
1031 | fragment = reader->Peek(&fragment_size); |
1032 | size_t n = std::min<size_t>(fragment_size, num_to_read - bytes_read); |
1033 | memcpy(scratch + bytes_read, fragment, n); |
1034 | bytes_read += n; |
1035 | reader->Skip(n); |
1036 | } |
1037 | assert(bytes_read == num_to_read); |
1038 | fragment = scratch; |
1039 | fragment_size = num_to_read; |
1040 | } |
1041 | assert(fragment_size == num_to_read); |
1042 | |
1043 | // Get encoding table for compression |
1044 | int table_size; |
1045 | uint16* table = wmem.GetHashTable(num_to_read, &table_size); |
1046 | |
1047 | // Compress input_fragment and append to dest |
1048 | const int max_output = MaxCompressedLength(num_to_read); |
1049 | |
1050 | // Need a scratch buffer for the output, in case the byte sink doesn't |
1051 | // have room for us directly. |
1052 | |
1053 | // Since we encode kBlockSize regions followed by a region |
1054 | // which is <= kBlockSize in length, a previously allocated |
1055 | // scratch_output[] region is big enough for this iteration. |
1056 | char* dest = writer->GetAppendBuffer(max_output, wmem.GetScratchOutput()); |
1057 | char* end = internal::CompressFragment(fragment, fragment_size, dest, table, |
1058 | table_size); |
1059 | writer->Append(dest, end - dest); |
1060 | written += (end - dest); |
1061 | |
1062 | N -= num_to_read; |
1063 | reader->Skip(pending_advance); |
1064 | } |
1065 | |
1066 | Report("snappy_compress" , written, uncompressed_size); |
1067 | |
1068 | return written; |
1069 | } |
1070 | |
1071 | // ----------------------------------------------------------------------- |
1072 | // IOVec interfaces |
1073 | // ----------------------------------------------------------------------- |
1074 | |
1075 | // A type that writes to an iovec. |
1076 | // Note that this is not a "ByteSink", but a type that matches the |
1077 | // Writer template argument to SnappyDecompressor::DecompressAllTags(). |
1078 | class SnappyIOVecWriter { |
1079 | private: |
1080 | // output_iov_end_ is set to iov + count and used to determine when |
1081 | // the end of the iovs is reached. |
1082 | const struct iovec* output_iov_end_; |
1083 | |
1084 | #if !defined(NDEBUG) |
1085 | const struct iovec* output_iov_; |
1086 | #endif // !defined(NDEBUG) |
1087 | |
1088 | // Current iov that is being written into. |
1089 | const struct iovec* curr_iov_; |
1090 | |
1091 | // Pointer to current iov's write location. |
1092 | char* curr_iov_output_; |
1093 | |
1094 | // Remaining bytes to write into curr_iov_output. |
1095 | size_t curr_iov_remaining_; |
1096 | |
1097 | // Total bytes decompressed into output_iov_ so far. |
1098 | size_t total_written_; |
1099 | |
1100 | // Maximum number of bytes that will be decompressed into output_iov_. |
1101 | size_t output_limit_; |
1102 | |
1103 | static inline char* GetIOVecPointer(const struct iovec* iov, size_t offset) { |
1104 | return reinterpret_cast<char*>(iov->iov_base) + offset; |
1105 | } |
1106 | |
1107 | public: |
1108 | // Does not take ownership of iov. iov must be valid during the |
1109 | // entire lifetime of the SnappyIOVecWriter. |
1110 | inline SnappyIOVecWriter(const struct iovec* iov, size_t iov_count) |
1111 | : output_iov_end_(iov + iov_count), |
1112 | #if !defined(NDEBUG) |
1113 | output_iov_(iov), |
1114 | #endif // !defined(NDEBUG) |
1115 | curr_iov_(iov), |
1116 | curr_iov_output_(iov_count ? reinterpret_cast<char*>(iov->iov_base) |
1117 | : nullptr), |
1118 | curr_iov_remaining_(iov_count ? iov->iov_len : 0), |
1119 | total_written_(0), |
1120 | output_limit_(-1) {} |
1121 | |
1122 | inline void SetExpectedLength(size_t len) { |
1123 | output_limit_ = len; |
1124 | } |
1125 | |
1126 | inline bool CheckLength() const { |
1127 | return total_written_ == output_limit_; |
1128 | } |
1129 | |
1130 | inline bool Append(const char* ip, size_t len) { |
1131 | if (total_written_ + len > output_limit_) { |
1132 | return false; |
1133 | } |
1134 | |
1135 | return AppendNoCheck(ip, len); |
1136 | } |
1137 | |
1138 | inline bool AppendNoCheck(const char* ip, size_t len) { |
1139 | while (len > 0) { |
1140 | if (curr_iov_remaining_ == 0) { |
1141 | // This iovec is full. Go to the next one. |
1142 | if (curr_iov_ + 1 >= output_iov_end_) { |
1143 | return false; |
1144 | } |
1145 | ++curr_iov_; |
1146 | curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base); |
1147 | curr_iov_remaining_ = curr_iov_->iov_len; |
1148 | } |
1149 | |
1150 | const size_t to_write = std::min(len, curr_iov_remaining_); |
1151 | memcpy(curr_iov_output_, ip, to_write); |
1152 | curr_iov_output_ += to_write; |
1153 | curr_iov_remaining_ -= to_write; |
1154 | total_written_ += to_write; |
1155 | ip += to_write; |
1156 | len -= to_write; |
1157 | } |
1158 | |
1159 | return true; |
1160 | } |
1161 | |
1162 | inline bool TryFastAppend(const char* ip, size_t available, size_t len) { |
1163 | const size_t space_left = output_limit_ - total_written_; |
1164 | if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16 && |
1165 | curr_iov_remaining_ >= 16) { |
1166 | // Fast path, used for the majority (about 95%) of invocations. |
1167 | UnalignedCopy128(ip, curr_iov_output_); |
1168 | curr_iov_output_ += len; |
1169 | curr_iov_remaining_ -= len; |
1170 | total_written_ += len; |
1171 | return true; |
1172 | } |
1173 | |
1174 | return false; |
1175 | } |
1176 | |
1177 | inline bool AppendFromSelf(size_t offset, size_t len) { |
1178 | // See SnappyArrayWriter::AppendFromSelf for an explanation of |
1179 | // the "offset - 1u" trick. |
1180 | if (offset - 1u >= total_written_) { |
1181 | return false; |
1182 | } |
1183 | const size_t space_left = output_limit_ - total_written_; |
1184 | if (len > space_left) { |
1185 | return false; |
1186 | } |
1187 | |
1188 | // Locate the iovec from which we need to start the copy. |
1189 | const iovec* from_iov = curr_iov_; |
1190 | size_t from_iov_offset = curr_iov_->iov_len - curr_iov_remaining_; |
1191 | while (offset > 0) { |
1192 | if (from_iov_offset >= offset) { |
1193 | from_iov_offset -= offset; |
1194 | break; |
1195 | } |
1196 | |
1197 | offset -= from_iov_offset; |
1198 | --from_iov; |
1199 | #if !defined(NDEBUG) |
1200 | assert(from_iov >= output_iov_); |
1201 | #endif // !defined(NDEBUG) |
1202 | from_iov_offset = from_iov->iov_len; |
1203 | } |
1204 | |
1205 | // Copy <len> bytes starting from the iovec pointed to by from_iov_index to |
1206 | // the current iovec. |
1207 | while (len > 0) { |
1208 | assert(from_iov <= curr_iov_); |
1209 | if (from_iov != curr_iov_) { |
1210 | const size_t to_copy = |
1211 | std::min((unsigned long)(from_iov->iov_len - from_iov_offset), (unsigned long)len); |
1212 | AppendNoCheck(GetIOVecPointer(from_iov, from_iov_offset), to_copy); |
1213 | len -= to_copy; |
1214 | if (len > 0) { |
1215 | ++from_iov; |
1216 | from_iov_offset = 0; |
1217 | } |
1218 | } else { |
1219 | size_t to_copy = curr_iov_remaining_; |
1220 | if (to_copy == 0) { |
1221 | // This iovec is full. Go to the next one. |
1222 | if (curr_iov_ + 1 >= output_iov_end_) { |
1223 | return false; |
1224 | } |
1225 | ++curr_iov_; |
1226 | curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base); |
1227 | curr_iov_remaining_ = curr_iov_->iov_len; |
1228 | continue; |
1229 | } |
1230 | if (to_copy > len) { |
1231 | to_copy = len; |
1232 | } |
1233 | |
1234 | IncrementalCopy(GetIOVecPointer(from_iov, from_iov_offset), |
1235 | curr_iov_output_, curr_iov_output_ + to_copy, |
1236 | curr_iov_output_ + curr_iov_remaining_); |
1237 | curr_iov_output_ += to_copy; |
1238 | curr_iov_remaining_ -= to_copy; |
1239 | from_iov_offset += to_copy; |
1240 | total_written_ += to_copy; |
1241 | len -= to_copy; |
1242 | } |
1243 | } |
1244 | |
1245 | return true; |
1246 | } |
1247 | |
1248 | inline void Flush() {} |
1249 | }; |
1250 | |
1251 | bool RawUncompressToIOVec(const char* compressed, size_t compressed_length, |
1252 | const struct iovec* iov, size_t iov_cnt) { |
1253 | ByteArraySource reader(compressed, compressed_length); |
1254 | return RawUncompressToIOVec(&reader, iov, iov_cnt); |
1255 | } |
1256 | |
1257 | bool RawUncompressToIOVec(Source* compressed, const struct iovec* iov, |
1258 | size_t iov_cnt) { |
1259 | SnappyIOVecWriter output(iov, iov_cnt); |
1260 | return InternalUncompress(compressed, &output); |
1261 | } |
1262 | |
1263 | // ----------------------------------------------------------------------- |
1264 | // Flat array interfaces |
1265 | // ----------------------------------------------------------------------- |
1266 | |
1267 | // A type that writes to a flat array. |
1268 | // Note that this is not a "ByteSink", but a type that matches the |
1269 | // Writer template argument to SnappyDecompressor::DecompressAllTags(). |
1270 | class SnappyArrayWriter { |
1271 | private: |
1272 | char* base_; |
1273 | char* op_; |
1274 | char* op_limit_; |
1275 | |
1276 | public: |
1277 | inline explicit SnappyArrayWriter(char* dst) |
1278 | : base_(dst), |
1279 | op_(dst), |
1280 | op_limit_(dst) { |
1281 | } |
1282 | |
1283 | inline void SetExpectedLength(size_t len) { |
1284 | op_limit_ = op_ + len; |
1285 | } |
1286 | |
1287 | inline bool CheckLength() const { |
1288 | return op_ == op_limit_; |
1289 | } |
1290 | |
1291 | inline bool Append(const char* ip, size_t len) { |
1292 | char* op = op_; |
1293 | const size_t space_left = op_limit_ - op; |
1294 | if (space_left < len) { |
1295 | return false; |
1296 | } |
1297 | memcpy(op, ip, len); |
1298 | op_ = op + len; |
1299 | return true; |
1300 | } |
1301 | |
1302 | inline bool TryFastAppend(const char* ip, size_t available, size_t len) { |
1303 | char* op = op_; |
1304 | const size_t space_left = op_limit_ - op; |
1305 | if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16) { |
1306 | // Fast path, used for the majority (about 95%) of invocations. |
1307 | UnalignedCopy128(ip, op); |
1308 | op_ = op + len; |
1309 | return true; |
1310 | } else { |
1311 | return false; |
1312 | } |
1313 | } |
1314 | |
1315 | inline bool AppendFromSelf(size_t offset, size_t len) { |
1316 | char* const op_end = op_ + len; |
1317 | |
1318 | // Check if we try to append from before the start of the buffer. |
1319 | // Normally this would just be a check for "produced < offset", |
1320 | // but "produced <= offset - 1u" is equivalent for every case |
1321 | // except the one where offset==0, where the right side will wrap around |
1322 | // to a very big number. This is convenient, as offset==0 is another |
1323 | // invalid case that we also want to catch, so that we do not go |
1324 | // into an infinite loop. |
1325 | if (Produced() <= offset - 1u || op_end > op_limit_) return false; |
1326 | op_ = IncrementalCopy(op_ - offset, op_, op_end, op_limit_); |
1327 | |
1328 | return true; |
1329 | } |
1330 | inline size_t Produced() const { |
1331 | assert(op_ >= base_); |
1332 | return op_ - base_; |
1333 | } |
1334 | inline void Flush() {} |
1335 | }; |
1336 | |
1337 | bool RawUncompress(const char* compressed, size_t n, char* uncompressed) { |
1338 | ByteArraySource reader(compressed, n); |
1339 | return RawUncompress(&reader, uncompressed); |
1340 | } |
1341 | |
1342 | bool RawUncompress(Source* compressed, char* uncompressed) { |
1343 | SnappyArrayWriter output(uncompressed); |
1344 | return InternalUncompress(compressed, &output); |
1345 | } |
1346 | |
1347 | bool Uncompress(const char* compressed, size_t n, string* uncompressed) { |
1348 | size_t ulength; |
1349 | if (!GetUncompressedLength(compressed, n, &ulength)) { |
1350 | return false; |
1351 | } |
1352 | // On 32-bit builds: max_size() < kuint32max. Check for that instead |
1353 | // of crashing (e.g., consider externally specified compressed data). |
1354 | if (ulength > uncompressed->max_size()) { |
1355 | return false; |
1356 | } |
1357 | STLStringResizeUninitialized(uncompressed, ulength); |
1358 | return RawUncompress(compressed, n, string_as_array(uncompressed)); |
1359 | } |
1360 | |
1361 | // A Writer that drops everything on the floor and just does validation |
1362 | class SnappyDecompressionValidator { |
1363 | private: |
1364 | size_t expected_; |
1365 | size_t produced_; |
1366 | |
1367 | public: |
1368 | inline SnappyDecompressionValidator() : expected_(0), produced_(0) { } |
1369 | inline void SetExpectedLength(size_t len) { |
1370 | expected_ = len; |
1371 | } |
1372 | inline bool CheckLength() const { |
1373 | return expected_ == produced_; |
1374 | } |
1375 | inline bool Append(const char* ip, size_t len) { |
1376 | produced_ += len; |
1377 | return produced_ <= expected_; |
1378 | } |
1379 | inline bool TryFastAppend(const char* ip, size_t available, size_t length) { |
1380 | return false; |
1381 | } |
1382 | inline bool AppendFromSelf(size_t offset, size_t len) { |
1383 | // See SnappyArrayWriter::AppendFromSelf for an explanation of |
1384 | // the "offset - 1u" trick. |
1385 | if (produced_ <= offset - 1u) return false; |
1386 | produced_ += len; |
1387 | return produced_ <= expected_; |
1388 | } |
1389 | inline void Flush() {} |
1390 | }; |
1391 | |
1392 | bool IsValidCompressedBuffer(const char* compressed, size_t n) { |
1393 | ByteArraySource reader(compressed, n); |
1394 | SnappyDecompressionValidator writer; |
1395 | return InternalUncompress(&reader, &writer); |
1396 | } |
1397 | |
1398 | bool IsValidCompressed(Source* compressed) { |
1399 | SnappyDecompressionValidator writer; |
1400 | return InternalUncompress(compressed, &writer); |
1401 | } |
1402 | |
1403 | void RawCompress(const char* input, |
1404 | size_t input_length, |
1405 | char* compressed, |
1406 | size_t* compressed_length) { |
1407 | ByteArraySource reader(input, input_length); |
1408 | UncheckedByteArraySink writer(compressed); |
1409 | Compress(&reader, &writer); |
1410 | |
1411 | // Compute how many bytes were added |
1412 | *compressed_length = (writer.CurrentDestination() - compressed); |
1413 | } |
1414 | |
1415 | size_t Compress(const char* input, size_t input_length, string* compressed) { |
1416 | // Pre-grow the buffer to the max length of the compressed output |
1417 | STLStringResizeUninitialized(compressed, MaxCompressedLength(input_length)); |
1418 | |
1419 | size_t compressed_length; |
1420 | RawCompress(input, input_length, string_as_array(compressed), |
1421 | &compressed_length); |
1422 | compressed->resize(compressed_length); |
1423 | return compressed_length; |
1424 | } |
1425 | |
1426 | // ----------------------------------------------------------------------- |
1427 | // Sink interface |
1428 | // ----------------------------------------------------------------------- |
1429 | |
1430 | // A type that decompresses into a Sink. The template parameter |
1431 | // Allocator must export one method "char* Allocate(int size);", which |
1432 | // allocates a buffer of "size" and appends that to the destination. |
1433 | template <typename Allocator> |
1434 | class SnappyScatteredWriter { |
1435 | Allocator allocator_; |
1436 | |
1437 | // We need random access into the data generated so far. Therefore |
1438 | // we keep track of all of the generated data as an array of blocks. |
1439 | // All of the blocks except the last have length kBlockSize. |
1440 | std::vector<char*> blocks_; |
1441 | size_t expected_; |
1442 | |
1443 | // Total size of all fully generated blocks so far |
1444 | size_t full_size_; |
1445 | |
1446 | // Pointer into current output block |
1447 | char* op_base_; // Base of output block |
1448 | char* op_ptr_; // Pointer to next unfilled byte in block |
1449 | char* op_limit_; // Pointer just past block |
1450 | |
1451 | inline size_t Size() const { |
1452 | return full_size_ + (op_ptr_ - op_base_); |
1453 | } |
1454 | |
1455 | bool SlowAppend(const char* ip, size_t len); |
1456 | bool SlowAppendFromSelf(size_t offset, size_t len); |
1457 | |
1458 | public: |
1459 | inline explicit SnappyScatteredWriter(const Allocator& allocator) |
1460 | : allocator_(allocator), |
1461 | full_size_(0), |
1462 | op_base_(NULL), |
1463 | op_ptr_(NULL), |
1464 | op_limit_(NULL) { |
1465 | } |
1466 | |
1467 | inline void SetExpectedLength(size_t len) { |
1468 | assert(blocks_.empty()); |
1469 | expected_ = len; |
1470 | } |
1471 | |
1472 | inline bool CheckLength() const { |
1473 | return Size() == expected_; |
1474 | } |
1475 | |
1476 | // Return the number of bytes actually uncompressed so far |
1477 | inline size_t Produced() const { |
1478 | return Size(); |
1479 | } |
1480 | |
1481 | inline bool Append(const char* ip, size_t len) { |
1482 | size_t avail = op_limit_ - op_ptr_; |
1483 | if (len <= avail) { |
1484 | // Fast path |
1485 | memcpy(op_ptr_, ip, len); |
1486 | op_ptr_ += len; |
1487 | return true; |
1488 | } else { |
1489 | return SlowAppend(ip, len); |
1490 | } |
1491 | } |
1492 | |
1493 | inline bool TryFastAppend(const char* ip, size_t available, size_t length) { |
1494 | char* op = op_ptr_; |
1495 | const int space_left = op_limit_ - op; |
1496 | if (length <= 16 && available >= 16 + kMaximumTagLength && |
1497 | space_left >= 16) { |
1498 | // Fast path, used for the majority (about 95%) of invocations. |
1499 | UnalignedCopy128(ip, op); |
1500 | op_ptr_ = op + length; |
1501 | return true; |
1502 | } else { |
1503 | return false; |
1504 | } |
1505 | } |
1506 | |
1507 | inline bool AppendFromSelf(size_t offset, size_t len) { |
1508 | char* const op_end = op_ptr_ + len; |
1509 | // See SnappyArrayWriter::AppendFromSelf for an explanation of |
1510 | // the "offset - 1u" trick. |
1511 | if (SNAPPY_PREDICT_TRUE(offset - 1u < (size_t)(op_ptr_ - op_base_) && |
1512 | op_end <= op_limit_)) { |
1513 | // Fast path: src and dst in current block. |
1514 | op_ptr_ = IncrementalCopy(op_ptr_ - offset, op_ptr_, op_end, op_limit_); |
1515 | return true; |
1516 | } |
1517 | return SlowAppendFromSelf(offset, len); |
1518 | } |
1519 | |
1520 | // Called at the end of the decompress. We ask the allocator |
1521 | // write all blocks to the sink. |
1522 | inline void Flush() { allocator_.Flush(Produced()); } |
1523 | }; |
1524 | |
1525 | template<typename Allocator> |
1526 | bool SnappyScatteredWriter<Allocator>::SlowAppend(const char* ip, size_t len) { |
1527 | size_t avail = op_limit_ - op_ptr_; |
1528 | while (len > avail) { |
1529 | // Completely fill this block |
1530 | memcpy(op_ptr_, ip, avail); |
1531 | op_ptr_ += avail; |
1532 | assert(op_limit_ - op_ptr_ == 0); |
1533 | full_size_ += (op_ptr_ - op_base_); |
1534 | len -= avail; |
1535 | ip += avail; |
1536 | |
1537 | // Bounds check |
1538 | if (full_size_ + len > expected_) { |
1539 | return false; |
1540 | } |
1541 | |
1542 | // Make new block |
1543 | size_t bsize = std::min<size_t>(kBlockSize, expected_ - full_size_); |
1544 | op_base_ = allocator_.Allocate(bsize); |
1545 | op_ptr_ = op_base_; |
1546 | op_limit_ = op_base_ + bsize; |
1547 | blocks_.push_back(op_base_); |
1548 | avail = bsize; |
1549 | } |
1550 | |
1551 | memcpy(op_ptr_, ip, len); |
1552 | op_ptr_ += len; |
1553 | return true; |
1554 | } |
1555 | |
1556 | template<typename Allocator> |
1557 | bool SnappyScatteredWriter<Allocator>::SlowAppendFromSelf(size_t offset, |
1558 | size_t len) { |
1559 | // Overflow check |
1560 | // See SnappyArrayWriter::AppendFromSelf for an explanation of |
1561 | // the "offset - 1u" trick. |
1562 | const size_t cur = Size(); |
1563 | if (offset - 1u >= cur) return false; |
1564 | if (expected_ - cur < len) return false; |
1565 | |
1566 | // Currently we shouldn't ever hit this path because Compress() chops the |
1567 | // input into blocks and does not create cross-block copies. However, it is |
1568 | // nice if we do not rely on that, since we can get better compression if we |
1569 | // allow cross-block copies and thus might want to change the compressor in |
1570 | // the future. |
1571 | size_t src = cur - offset; |
1572 | while (len-- > 0) { |
1573 | char c = blocks_[src >> kBlockLog][src & (kBlockSize-1)]; |
1574 | Append(&c, 1); |
1575 | src++; |
1576 | } |
1577 | return true; |
1578 | } |
1579 | |
1580 | class SnappySinkAllocator { |
1581 | public: |
1582 | explicit SnappySinkAllocator(Sink* dest): dest_(dest) {} |
1583 | ~SnappySinkAllocator() {} |
1584 | |
1585 | char* Allocate(int size) { |
1586 | Datablock block(new char[size], size); |
1587 | blocks_.push_back(block); |
1588 | return block.data; |
1589 | } |
1590 | |
1591 | // We flush only at the end, because the writer wants |
1592 | // random access to the blocks and once we hand the |
1593 | // block over to the sink, we can't access it anymore. |
1594 | // Also we don't write more than has been actually written |
1595 | // to the blocks. |
1596 | void Flush(size_t size) { |
1597 | size_t size_written = 0; |
1598 | size_t block_size; |
1599 | for (size_t i = 0; i < blocks_.size(); ++i) { |
1600 | block_size = std::min<size_t>(blocks_[i].size, size - size_written); |
1601 | dest_->AppendAndTakeOwnership(blocks_[i].data, block_size, |
1602 | &SnappySinkAllocator::Deleter, NULL); |
1603 | size_written += block_size; |
1604 | } |
1605 | blocks_.clear(); |
1606 | } |
1607 | |
1608 | private: |
1609 | struct Datablock { |
1610 | char* data; |
1611 | size_t size; |
1612 | Datablock(char* p, size_t s) : data(p), size(s) {} |
1613 | }; |
1614 | |
1615 | static void Deleter(void* arg, const char* bytes, size_t size) { |
1616 | delete[] bytes; |
1617 | } |
1618 | |
1619 | Sink* dest_; |
1620 | std::vector<Datablock> blocks_; |
1621 | |
1622 | // Note: copying this object is allowed |
1623 | }; |
1624 | |
1625 | size_t UncompressAsMuchAsPossible(Source* compressed, Sink* uncompressed) { |
1626 | SnappySinkAllocator allocator(uncompressed); |
1627 | SnappyScatteredWriter<SnappySinkAllocator> writer(allocator); |
1628 | InternalUncompress(compressed, &writer); |
1629 | return writer.Produced(); |
1630 | } |
1631 | |
1632 | bool Uncompress(Source* compressed, Sink* uncompressed) { |
1633 | // Read the uncompressed length from the front of the compressed input |
1634 | SnappyDecompressor decompressor(compressed); |
1635 | uint32 uncompressed_len = 0; |
1636 | if (!decompressor.ReadUncompressedLength(&uncompressed_len)) { |
1637 | return false; |
1638 | } |
1639 | |
1640 | char c; |
1641 | size_t allocated_size; |
1642 | char* buf = uncompressed->GetAppendBufferVariable( |
1643 | 1, uncompressed_len, &c, 1, &allocated_size); |
1644 | |
1645 | const size_t compressed_len = compressed->Available(); |
1646 | // If we can get a flat buffer, then use it, otherwise do block by block |
1647 | // uncompression |
1648 | if (allocated_size >= uncompressed_len) { |
1649 | SnappyArrayWriter writer(buf); |
1650 | bool result = InternalUncompressAllTags(&decompressor, &writer, |
1651 | compressed_len, uncompressed_len); |
1652 | uncompressed->Append(buf, writer.Produced()); |
1653 | return result; |
1654 | } else { |
1655 | SnappySinkAllocator allocator(uncompressed); |
1656 | SnappyScatteredWriter<SnappySinkAllocator> writer(allocator); |
1657 | return InternalUncompressAllTags(&decompressor, &writer, compressed_len, |
1658 | uncompressed_len); |
1659 | } |
1660 | } |
1661 | |
1662 | } // namespace snappy |
1663 | |