1 | // Copyright 2007, Google Inc. |
2 | // All rights reserved. |
3 | // |
4 | // Redistribution and use in source and binary forms, with or without |
5 | // modification, are permitted provided that the following conditions are |
6 | // met: |
7 | // |
8 | // * Redistributions of source code must retain the above copyright |
9 | // notice, this list of conditions and the following disclaimer. |
10 | // * Redistributions in binary form must reproduce the above |
11 | // copyright notice, this list of conditions and the following disclaimer |
12 | // in the documentation and/or other materials provided with the |
13 | // distribution. |
14 | // * Neither the name of Google Inc. nor the names of its |
15 | // contributors may be used to endorse or promote products derived from |
16 | // this software without specific prior written permission. |
17 | // |
18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | |
30 | |
31 | // Google Mock - a framework for writing C++ mock classes. |
32 | // |
33 | // This file implements some commonly used argument matchers. More |
34 | // matchers can be defined by the user implementing the |
35 | // MatcherInterface<T> interface if necessary. |
36 | // |
37 | // See googletest/include/gtest/gtest-matchers.h for the definition of class |
38 | // Matcher, class MatcherInterface, and others. |
39 | |
40 | // GOOGLETEST_CM0002 DO NOT DELETE |
41 | |
42 | #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
43 | #define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
44 | |
45 | #include <math.h> |
46 | #include <algorithm> |
47 | #include <initializer_list> |
48 | #include <iterator> |
49 | #include <limits> |
50 | #include <memory> |
51 | #include <ostream> // NOLINT |
52 | #include <sstream> |
53 | #include <string> |
54 | #include <type_traits> |
55 | #include <utility> |
56 | #include <vector> |
57 | #include "gmock/internal/gmock-internal-utils.h" |
58 | #include "gmock/internal/gmock-port.h" |
59 | #include "gtest/gtest.h" |
60 | |
61 | // MSVC warning C5046 is new as of VS2017 version 15.8. |
62 | #if defined(_MSC_VER) && _MSC_VER >= 1915 |
63 | #define GMOCK_MAYBE_5046_ 5046 |
64 | #else |
65 | #define GMOCK_MAYBE_5046_ |
66 | #endif |
67 | |
68 | GTEST_DISABLE_MSC_WARNINGS_PUSH_( |
69 | 4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by |
70 | clients of class B */ |
71 | /* Symbol involving type with internal linkage not defined */) |
72 | |
73 | namespace testing { |
74 | |
75 | // To implement a matcher Foo for type T, define: |
76 | // 1. a class FooMatcherImpl that implements the |
77 | // MatcherInterface<T> interface, and |
78 | // 2. a factory function that creates a Matcher<T> object from a |
79 | // FooMatcherImpl*. |
80 | // |
81 | // The two-level delegation design makes it possible to allow a user |
82 | // to write "v" instead of "Eq(v)" where a Matcher is expected, which |
83 | // is impossible if we pass matchers by pointers. It also eases |
84 | // ownership management as Matcher objects can now be copied like |
85 | // plain values. |
86 | |
87 | // A match result listener that stores the explanation in a string. |
88 | class StringMatchResultListener : public MatchResultListener { |
89 | public: |
90 | StringMatchResultListener() : MatchResultListener(&ss_) {} |
91 | |
92 | // Returns the explanation accumulated so far. |
93 | std::string str() const { return ss_.str(); } |
94 | |
95 | // Clears the explanation accumulated so far. |
96 | void Clear() { ss_.str("" ); } |
97 | |
98 | private: |
99 | ::std::stringstream ss_; |
100 | |
101 | GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); |
102 | }; |
103 | |
104 | // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
105 | // and MUST NOT BE USED IN USER CODE!!! |
106 | namespace internal { |
107 | |
108 | // The MatcherCastImpl class template is a helper for implementing |
109 | // MatcherCast(). We need this helper in order to partially |
110 | // specialize the implementation of MatcherCast() (C++ allows |
111 | // class/struct templates to be partially specialized, but not |
112 | // function templates.). |
113 | |
114 | // This general version is used when MatcherCast()'s argument is a |
115 | // polymorphic matcher (i.e. something that can be converted to a |
116 | // Matcher but is not one yet; for example, Eq(value)) or a value (for |
117 | // example, "hello"). |
118 | template <typename T, typename M> |
119 | class MatcherCastImpl { |
120 | public: |
121 | static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { |
122 | // M can be a polymorphic matcher, in which case we want to use |
123 | // its conversion operator to create Matcher<T>. Or it can be a value |
124 | // that should be passed to the Matcher<T>'s constructor. |
125 | // |
126 | // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a |
127 | // polymorphic matcher because it'll be ambiguous if T has an implicit |
128 | // constructor from M (this usually happens when T has an implicit |
129 | // constructor from any type). |
130 | // |
131 | // It won't work to unconditionally implict_cast |
132 | // polymorphic_matcher_or_value to Matcher<T> because it won't trigger |
133 | // a user-defined conversion from M to T if one exists (assuming M is |
134 | // a value). |
135 | return CastImpl( |
136 | polymorphic_matcher_or_value, |
137 | BooleanConstant< |
138 | std::is_convertible<M, Matcher<T> >::value>(), |
139 | BooleanConstant< |
140 | std::is_convertible<M, T>::value>()); |
141 | } |
142 | |
143 | private: |
144 | template <bool Ignore> |
145 | static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, |
146 | BooleanConstant<true> /* convertible_to_matcher */, |
147 | BooleanConstant<Ignore>) { |
148 | // M is implicitly convertible to Matcher<T>, which means that either |
149 | // M is a polymorphic matcher or Matcher<T> has an implicit constructor |
150 | // from M. In both cases using the implicit conversion will produce a |
151 | // matcher. |
152 | // |
153 | // Even if T has an implicit constructor from M, it won't be called because |
154 | // creating Matcher<T> would require a chain of two user-defined conversions |
155 | // (first to create T from M and then to create Matcher<T> from T). |
156 | return polymorphic_matcher_or_value; |
157 | } |
158 | |
159 | // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic |
160 | // matcher. It's a value of a type implicitly convertible to T. Use direct |
161 | // initialization to create a matcher. |
162 | static Matcher<T> CastImpl( |
163 | const M& value, BooleanConstant<false> /* convertible_to_matcher */, |
164 | BooleanConstant<true> /* convertible_to_T */) { |
165 | return Matcher<T>(ImplicitCast_<T>(value)); |
166 | } |
167 | |
168 | // M can't be implicitly converted to either Matcher<T> or T. Attempt to use |
169 | // polymorphic matcher Eq(value) in this case. |
170 | // |
171 | // Note that we first attempt to perform an implicit cast on the value and |
172 | // only fall back to the polymorphic Eq() matcher afterwards because the |
173 | // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end |
174 | // which might be undefined even when Rhs is implicitly convertible to Lhs |
175 | // (e.g. std::pair<const int, int> vs. std::pair<int, int>). |
176 | // |
177 | // We don't define this method inline as we need the declaration of Eq(). |
178 | static Matcher<T> CastImpl( |
179 | const M& value, BooleanConstant<false> /* convertible_to_matcher */, |
180 | BooleanConstant<false> /* convertible_to_T */); |
181 | }; |
182 | |
183 | // This more specialized version is used when MatcherCast()'s argument |
184 | // is already a Matcher. This only compiles when type T can be |
185 | // statically converted to type U. |
186 | template <typename T, typename U> |
187 | class MatcherCastImpl<T, Matcher<U> > { |
188 | public: |
189 | static Matcher<T> Cast(const Matcher<U>& source_matcher) { |
190 | return Matcher<T>(new Impl(source_matcher)); |
191 | } |
192 | |
193 | private: |
194 | class Impl : public MatcherInterface<T> { |
195 | public: |
196 | explicit Impl(const Matcher<U>& source_matcher) |
197 | : source_matcher_(source_matcher) {} |
198 | |
199 | // We delegate the matching logic to the source matcher. |
200 | bool MatchAndExplain(T x, MatchResultListener* listener) const override { |
201 | using FromType = typename std::remove_cv<typename std::remove_pointer< |
202 | typename std::remove_reference<T>::type>::type>::type; |
203 | using ToType = typename std::remove_cv<typename std::remove_pointer< |
204 | typename std::remove_reference<U>::type>::type>::type; |
205 | // Do not allow implicitly converting base*/& to derived*/&. |
206 | static_assert( |
207 | // Do not trigger if only one of them is a pointer. That implies a |
208 | // regular conversion and not a down_cast. |
209 | (std::is_pointer<typename std::remove_reference<T>::type>::value != |
210 | std::is_pointer<typename std::remove_reference<U>::type>::value) || |
211 | std::is_same<FromType, ToType>::value || |
212 | !std::is_base_of<FromType, ToType>::value, |
213 | "Can't implicitly convert from <base> to <derived>" ); |
214 | |
215 | return source_matcher_.MatchAndExplain(static_cast<U>(x), listener); |
216 | } |
217 | |
218 | void DescribeTo(::std::ostream* os) const override { |
219 | source_matcher_.DescribeTo(os); |
220 | } |
221 | |
222 | void DescribeNegationTo(::std::ostream* os) const override { |
223 | source_matcher_.DescribeNegationTo(os); |
224 | } |
225 | |
226 | private: |
227 | const Matcher<U> source_matcher_; |
228 | |
229 | GTEST_DISALLOW_ASSIGN_(Impl); |
230 | }; |
231 | }; |
232 | |
233 | // This even more specialized version is used for efficiently casting |
234 | // a matcher to its own type. |
235 | template <typename T> |
236 | class MatcherCastImpl<T, Matcher<T> > { |
237 | public: |
238 | static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } |
239 | }; |
240 | |
241 | } // namespace internal |
242 | |
243 | // In order to be safe and clear, casting between different matcher |
244 | // types is done explicitly via MatcherCast<T>(m), which takes a |
245 | // matcher m and returns a Matcher<T>. It compiles only when T can be |
246 | // statically converted to the argument type of m. |
247 | template <typename T, typename M> |
248 | inline Matcher<T> MatcherCast(const M& matcher) { |
249 | return internal::MatcherCastImpl<T, M>::Cast(matcher); |
250 | } |
251 | |
252 | // Implements SafeMatcherCast(). |
253 | // |
254 | // FIXME: The intermediate SafeMatcherCastImpl class was introduced as a |
255 | // workaround for a compiler bug, and can now be removed. |
256 | template <typename T> |
257 | class SafeMatcherCastImpl { |
258 | public: |
259 | // This overload handles polymorphic matchers and values only since |
260 | // monomorphic matchers are handled by the next one. |
261 | template <typename M> |
262 | static inline Matcher<T> Cast(const M& polymorphic_matcher_or_value) { |
263 | return internal::MatcherCastImpl<T, M>::Cast(polymorphic_matcher_or_value); |
264 | } |
265 | |
266 | // This overload handles monomorphic matchers. |
267 | // |
268 | // In general, if type T can be implicitly converted to type U, we can |
269 | // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is |
270 | // contravariant): just keep a copy of the original Matcher<U>, convert the |
271 | // argument from type T to U, and then pass it to the underlying Matcher<U>. |
272 | // The only exception is when U is a reference and T is not, as the |
273 | // underlying Matcher<U> may be interested in the argument's address, which |
274 | // is not preserved in the conversion from T to U. |
275 | template <typename U> |
276 | static inline Matcher<T> Cast(const Matcher<U>& matcher) { |
277 | // Enforce that T can be implicitly converted to U. |
278 | GTEST_COMPILE_ASSERT_((std::is_convertible<T, U>::value), |
279 | "T must be implicitly convertible to U" ); |
280 | // Enforce that we are not converting a non-reference type T to a reference |
281 | // type U. |
282 | GTEST_COMPILE_ASSERT_( |
283 | internal::is_reference<T>::value || !internal::is_reference<U>::value, |
284 | cannot_convert_non_reference_arg_to_reference); |
285 | // In case both T and U are arithmetic types, enforce that the |
286 | // conversion is not lossy. |
287 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; |
288 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; |
289 | const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; |
290 | const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; |
291 | GTEST_COMPILE_ASSERT_( |
292 | kTIsOther || kUIsOther || |
293 | (internal::LosslessArithmeticConvertible<RawT, RawU>::value), |
294 | conversion_of_arithmetic_types_must_be_lossless); |
295 | return MatcherCast<T>(matcher); |
296 | } |
297 | }; |
298 | |
299 | template <typename T, typename M> |
300 | inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) { |
301 | return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher); |
302 | } |
303 | |
304 | // A<T>() returns a matcher that matches any value of type T. |
305 | template <typename T> |
306 | Matcher<T> A(); |
307 | |
308 | // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
309 | // and MUST NOT BE USED IN USER CODE!!! |
310 | namespace internal { |
311 | |
312 | // If the explanation is not empty, prints it to the ostream. |
313 | inline void PrintIfNotEmpty(const std::string& explanation, |
314 | ::std::ostream* os) { |
315 | if (explanation != "" && os != nullptr) { |
316 | *os << ", " << explanation; |
317 | } |
318 | } |
319 | |
320 | // Returns true if the given type name is easy to read by a human. |
321 | // This is used to decide whether printing the type of a value might |
322 | // be helpful. |
323 | inline bool IsReadableTypeName(const std::string& type_name) { |
324 | // We consider a type name readable if it's short or doesn't contain |
325 | // a template or function type. |
326 | return (type_name.length() <= 20 || |
327 | type_name.find_first_of("<(" ) == std::string::npos); |
328 | } |
329 | |
330 | // Matches the value against the given matcher, prints the value and explains |
331 | // the match result to the listener. Returns the match result. |
332 | // 'listener' must not be NULL. |
333 | // Value cannot be passed by const reference, because some matchers take a |
334 | // non-const argument. |
335 | template <typename Value, typename T> |
336 | bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, |
337 | MatchResultListener* listener) { |
338 | if (!listener->IsInterested()) { |
339 | // If the listener is not interested, we do not need to construct the |
340 | // inner explanation. |
341 | return matcher.Matches(value); |
342 | } |
343 | |
344 | StringMatchResultListener inner_listener; |
345 | const bool match = matcher.MatchAndExplain(value, &inner_listener); |
346 | |
347 | UniversalPrint(value, listener->stream()); |
348 | #if GTEST_HAS_RTTI |
349 | const std::string& type_name = GetTypeName<Value>(); |
350 | if (IsReadableTypeName(type_name)) |
351 | *listener->stream() << " (of type " << type_name << ")" ; |
352 | #endif |
353 | PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
354 | |
355 | return match; |
356 | } |
357 | |
358 | // An internal helper class for doing compile-time loop on a tuple's |
359 | // fields. |
360 | template <size_t N> |
361 | class TuplePrefix { |
362 | public: |
363 | // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true |
364 | // iff the first N fields of matcher_tuple matches the first N |
365 | // fields of value_tuple, respectively. |
366 | template <typename MatcherTuple, typename ValueTuple> |
367 | static bool Matches(const MatcherTuple& matcher_tuple, |
368 | const ValueTuple& value_tuple) { |
369 | return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) && |
370 | std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple)); |
371 | } |
372 | |
373 | // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) |
374 | // describes failures in matching the first N fields of matchers |
375 | // against the first N fields of values. If there is no failure, |
376 | // nothing will be streamed to os. |
377 | template <typename MatcherTuple, typename ValueTuple> |
378 | static void ExplainMatchFailuresTo(const MatcherTuple& matchers, |
379 | const ValueTuple& values, |
380 | ::std::ostream* os) { |
381 | // First, describes failures in the first N - 1 fields. |
382 | TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); |
383 | |
384 | // Then describes the failure (if any) in the (N - 1)-th (0-based) |
385 | // field. |
386 | typename std::tuple_element<N - 1, MatcherTuple>::type matcher = |
387 | std::get<N - 1>(matchers); |
388 | typedef typename std::tuple_element<N - 1, ValueTuple>::type Value; |
389 | const Value& value = std::get<N - 1>(values); |
390 | StringMatchResultListener listener; |
391 | if (!matcher.MatchAndExplain(value, &listener)) { |
392 | *os << " Expected arg #" << N - 1 << ": " ; |
393 | std::get<N - 1>(matchers).DescribeTo(os); |
394 | *os << "\n Actual: " ; |
395 | // We remove the reference in type Value to prevent the |
396 | // universal printer from printing the address of value, which |
397 | // isn't interesting to the user most of the time. The |
398 | // matcher's MatchAndExplain() method handles the case when |
399 | // the address is interesting. |
400 | internal::UniversalPrint(value, os); |
401 | PrintIfNotEmpty(listener.str(), os); |
402 | *os << "\n" ; |
403 | } |
404 | } |
405 | }; |
406 | |
407 | // The base case. |
408 | template <> |
409 | class TuplePrefix<0> { |
410 | public: |
411 | template <typename MatcherTuple, typename ValueTuple> |
412 | static bool Matches(const MatcherTuple& /* matcher_tuple */, |
413 | const ValueTuple& /* value_tuple */) { |
414 | return true; |
415 | } |
416 | |
417 | template <typename MatcherTuple, typename ValueTuple> |
418 | static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, |
419 | const ValueTuple& /* values */, |
420 | ::std::ostream* /* os */) {} |
421 | }; |
422 | |
423 | // TupleMatches(matcher_tuple, value_tuple) returns true iff all |
424 | // matchers in matcher_tuple match the corresponding fields in |
425 | // value_tuple. It is a compiler error if matcher_tuple and |
426 | // value_tuple have different number of fields or incompatible field |
427 | // types. |
428 | template <typename MatcherTuple, typename ValueTuple> |
429 | bool TupleMatches(const MatcherTuple& matcher_tuple, |
430 | const ValueTuple& value_tuple) { |
431 | // Makes sure that matcher_tuple and value_tuple have the same |
432 | // number of fields. |
433 | GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value == |
434 | std::tuple_size<ValueTuple>::value, |
435 | matcher_and_value_have_different_numbers_of_fields); |
436 | return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple, |
437 | value_tuple); |
438 | } |
439 | |
440 | // Describes failures in matching matchers against values. If there |
441 | // is no failure, nothing will be streamed to os. |
442 | template <typename MatcherTuple, typename ValueTuple> |
443 | void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, |
444 | const ValueTuple& values, |
445 | ::std::ostream* os) { |
446 | TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( |
447 | matchers, values, os); |
448 | } |
449 | |
450 | // TransformTupleValues and its helper. |
451 | // |
452 | // TransformTupleValuesHelper hides the internal machinery that |
453 | // TransformTupleValues uses to implement a tuple traversal. |
454 | template <typename Tuple, typename Func, typename OutIter> |
455 | class TransformTupleValuesHelper { |
456 | private: |
457 | typedef ::std::tuple_size<Tuple> TupleSize; |
458 | |
459 | public: |
460 | // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. |
461 | // Returns the final value of 'out' in case the caller needs it. |
462 | static OutIter Run(Func f, const Tuple& t, OutIter out) { |
463 | return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); |
464 | } |
465 | |
466 | private: |
467 | template <typename Tup, size_t kRemainingSize> |
468 | struct IterateOverTuple { |
469 | OutIter operator() (Func f, const Tup& t, OutIter out) const { |
470 | *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t)); |
471 | return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); |
472 | } |
473 | }; |
474 | template <typename Tup> |
475 | struct IterateOverTuple<Tup, 0> { |
476 | OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const { |
477 | return out; |
478 | } |
479 | }; |
480 | }; |
481 | |
482 | // Successively invokes 'f(element)' on each element of the tuple 't', |
483 | // appending each result to the 'out' iterator. Returns the final value |
484 | // of 'out'. |
485 | template <typename Tuple, typename Func, typename OutIter> |
486 | OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { |
487 | return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); |
488 | } |
489 | |
490 | // Implements A<T>(). |
491 | template <typename T> |
492 | class AnyMatcherImpl : public MatcherInterface<const T&> { |
493 | public: |
494 | bool MatchAndExplain(const T& /* x */, |
495 | MatchResultListener* /* listener */) const override { |
496 | return true; |
497 | } |
498 | void DescribeTo(::std::ostream* os) const override { *os << "is anything" ; } |
499 | void DescribeNegationTo(::std::ostream* os) const override { |
500 | // This is mostly for completeness' safe, as it's not very useful |
501 | // to write Not(A<bool>()). However we cannot completely rule out |
502 | // such a possibility, and it doesn't hurt to be prepared. |
503 | *os << "never matches" ; |
504 | } |
505 | }; |
506 | |
507 | // Implements _, a matcher that matches any value of any |
508 | // type. This is a polymorphic matcher, so we need a template type |
509 | // conversion operator to make it appearing as a Matcher<T> for any |
510 | // type T. |
511 | class AnythingMatcher { |
512 | public: |
513 | template <typename T> |
514 | operator Matcher<T>() const { return A<T>(); } |
515 | }; |
516 | |
517 | // Implements the polymorphic IsNull() matcher, which matches any raw or smart |
518 | // pointer that is NULL. |
519 | class IsNullMatcher { |
520 | public: |
521 | template <typename Pointer> |
522 | bool MatchAndExplain(const Pointer& p, |
523 | MatchResultListener* /* listener */) const { |
524 | return p == nullptr; |
525 | } |
526 | |
527 | void DescribeTo(::std::ostream* os) const { *os << "is NULL" ; } |
528 | void DescribeNegationTo(::std::ostream* os) const { |
529 | *os << "isn't NULL" ; |
530 | } |
531 | }; |
532 | |
533 | // Implements the polymorphic NotNull() matcher, which matches any raw or smart |
534 | // pointer that is not NULL. |
535 | class NotNullMatcher { |
536 | public: |
537 | template <typename Pointer> |
538 | bool MatchAndExplain(const Pointer& p, |
539 | MatchResultListener* /* listener */) const { |
540 | return p != nullptr; |
541 | } |
542 | |
543 | void DescribeTo(::std::ostream* os) const { *os << "isn't NULL" ; } |
544 | void DescribeNegationTo(::std::ostream* os) const { |
545 | *os << "is NULL" ; |
546 | } |
547 | }; |
548 | |
549 | // Ref(variable) matches any argument that is a reference to |
550 | // 'variable'. This matcher is polymorphic as it can match any |
551 | // super type of the type of 'variable'. |
552 | // |
553 | // The RefMatcher template class implements Ref(variable). It can |
554 | // only be instantiated with a reference type. This prevents a user |
555 | // from mistakenly using Ref(x) to match a non-reference function |
556 | // argument. For example, the following will righteously cause a |
557 | // compiler error: |
558 | // |
559 | // int n; |
560 | // Matcher<int> m1 = Ref(n); // This won't compile. |
561 | // Matcher<int&> m2 = Ref(n); // This will compile. |
562 | template <typename T> |
563 | class RefMatcher; |
564 | |
565 | template <typename T> |
566 | class RefMatcher<T&> { |
567 | // Google Mock is a generic framework and thus needs to support |
568 | // mocking any function types, including those that take non-const |
569 | // reference arguments. Therefore the template parameter T (and |
570 | // Super below) can be instantiated to either a const type or a |
571 | // non-const type. |
572 | public: |
573 | // RefMatcher() takes a T& instead of const T&, as we want the |
574 | // compiler to catch using Ref(const_value) as a matcher for a |
575 | // non-const reference. |
576 | explicit RefMatcher(T& x) : object_(x) {} // NOLINT |
577 | |
578 | template <typename Super> |
579 | operator Matcher<Super&>() const { |
580 | // By passing object_ (type T&) to Impl(), which expects a Super&, |
581 | // we make sure that Super is a super type of T. In particular, |
582 | // this catches using Ref(const_value) as a matcher for a |
583 | // non-const reference, as you cannot implicitly convert a const |
584 | // reference to a non-const reference. |
585 | return MakeMatcher(new Impl<Super>(object_)); |
586 | } |
587 | |
588 | private: |
589 | template <typename Super> |
590 | class Impl : public MatcherInterface<Super&> { |
591 | public: |
592 | explicit Impl(Super& x) : object_(x) {} // NOLINT |
593 | |
594 | // MatchAndExplain() takes a Super& (as opposed to const Super&) |
595 | // in order to match the interface MatcherInterface<Super&>. |
596 | bool MatchAndExplain(Super& x, |
597 | MatchResultListener* listener) const override { |
598 | *listener << "which is located @" << static_cast<const void*>(&x); |
599 | return &x == &object_; |
600 | } |
601 | |
602 | void DescribeTo(::std::ostream* os) const override { |
603 | *os << "references the variable " ; |
604 | UniversalPrinter<Super&>::Print(object_, os); |
605 | } |
606 | |
607 | void DescribeNegationTo(::std::ostream* os) const override { |
608 | *os << "does not reference the variable " ; |
609 | UniversalPrinter<Super&>::Print(object_, os); |
610 | } |
611 | |
612 | private: |
613 | const Super& object_; |
614 | |
615 | GTEST_DISALLOW_ASSIGN_(Impl); |
616 | }; |
617 | |
618 | T& object_; |
619 | |
620 | GTEST_DISALLOW_ASSIGN_(RefMatcher); |
621 | }; |
622 | |
623 | // Polymorphic helper functions for narrow and wide string matchers. |
624 | inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { |
625 | return String::CaseInsensitiveCStringEquals(lhs, rhs); |
626 | } |
627 | |
628 | inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, |
629 | const wchar_t* rhs) { |
630 | return String::CaseInsensitiveWideCStringEquals(lhs, rhs); |
631 | } |
632 | |
633 | // String comparison for narrow or wide strings that can have embedded NUL |
634 | // characters. |
635 | template <typename StringType> |
636 | bool CaseInsensitiveStringEquals(const StringType& s1, |
637 | const StringType& s2) { |
638 | // Are the heads equal? |
639 | if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { |
640 | return false; |
641 | } |
642 | |
643 | // Skip the equal heads. |
644 | const typename StringType::value_type nul = 0; |
645 | const size_t i1 = s1.find(nul), i2 = s2.find(nul); |
646 | |
647 | // Are we at the end of either s1 or s2? |
648 | if (i1 == StringType::npos || i2 == StringType::npos) { |
649 | return i1 == i2; |
650 | } |
651 | |
652 | // Are the tails equal? |
653 | return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); |
654 | } |
655 | |
656 | // String matchers. |
657 | |
658 | // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. |
659 | template <typename StringType> |
660 | class StrEqualityMatcher { |
661 | public: |
662 | StrEqualityMatcher(const StringType& str, bool expect_eq, |
663 | bool case_sensitive) |
664 | : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {} |
665 | |
666 | #if GTEST_HAS_ABSL |
667 | bool MatchAndExplain(const absl::string_view& s, |
668 | MatchResultListener* listener) const { |
669 | // This should fail to compile if absl::string_view is used with wide |
670 | // strings. |
671 | const StringType& str = std::string(s); |
672 | return MatchAndExplain(str, listener); |
673 | } |
674 | #endif // GTEST_HAS_ABSL |
675 | |
676 | // Accepts pointer types, particularly: |
677 | // const char* |
678 | // char* |
679 | // const wchar_t* |
680 | // wchar_t* |
681 | template <typename CharType> |
682 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
683 | if (s == nullptr) { |
684 | return !expect_eq_; |
685 | } |
686 | return MatchAndExplain(StringType(s), listener); |
687 | } |
688 | |
689 | // Matches anything that can convert to StringType. |
690 | // |
691 | // This is a template, not just a plain function with const StringType&, |
692 | // because absl::string_view has some interfering non-explicit constructors. |
693 | template <typename MatcheeStringType> |
694 | bool MatchAndExplain(const MatcheeStringType& s, |
695 | MatchResultListener* /* listener */) const { |
696 | const StringType& s2(s); |
697 | const bool eq = case_sensitive_ ? s2 == string_ : |
698 | CaseInsensitiveStringEquals(s2, string_); |
699 | return expect_eq_ == eq; |
700 | } |
701 | |
702 | void DescribeTo(::std::ostream* os) const { |
703 | DescribeToHelper(expect_eq_, os); |
704 | } |
705 | |
706 | void DescribeNegationTo(::std::ostream* os) const { |
707 | DescribeToHelper(!expect_eq_, os); |
708 | } |
709 | |
710 | private: |
711 | void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { |
712 | *os << (expect_eq ? "is " : "isn't " ); |
713 | *os << "equal to " ; |
714 | if (!case_sensitive_) { |
715 | *os << "(ignoring case) " ; |
716 | } |
717 | UniversalPrint(string_, os); |
718 | } |
719 | |
720 | const StringType string_; |
721 | const bool expect_eq_; |
722 | const bool case_sensitive_; |
723 | |
724 | GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher); |
725 | }; |
726 | |
727 | // Implements the polymorphic HasSubstr(substring) matcher, which |
728 | // can be used as a Matcher<T> as long as T can be converted to a |
729 | // string. |
730 | template <typename StringType> |
731 | class HasSubstrMatcher { |
732 | public: |
733 | explicit HasSubstrMatcher(const StringType& substring) |
734 | : substring_(substring) {} |
735 | |
736 | #if GTEST_HAS_ABSL |
737 | bool MatchAndExplain(const absl::string_view& s, |
738 | MatchResultListener* listener) const { |
739 | // This should fail to compile if absl::string_view is used with wide |
740 | // strings. |
741 | const StringType& str = std::string(s); |
742 | return MatchAndExplain(str, listener); |
743 | } |
744 | #endif // GTEST_HAS_ABSL |
745 | |
746 | // Accepts pointer types, particularly: |
747 | // const char* |
748 | // char* |
749 | // const wchar_t* |
750 | // wchar_t* |
751 | template <typename CharType> |
752 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
753 | return s != nullptr && MatchAndExplain(StringType(s), listener); |
754 | } |
755 | |
756 | // Matches anything that can convert to StringType. |
757 | // |
758 | // This is a template, not just a plain function with const StringType&, |
759 | // because absl::string_view has some interfering non-explicit constructors. |
760 | template <typename MatcheeStringType> |
761 | bool MatchAndExplain(const MatcheeStringType& s, |
762 | MatchResultListener* /* listener */) const { |
763 | const StringType& s2(s); |
764 | return s2.find(substring_) != StringType::npos; |
765 | } |
766 | |
767 | // Describes what this matcher matches. |
768 | void DescribeTo(::std::ostream* os) const { |
769 | *os << "has substring " ; |
770 | UniversalPrint(substring_, os); |
771 | } |
772 | |
773 | void DescribeNegationTo(::std::ostream* os) const { |
774 | *os << "has no substring " ; |
775 | UniversalPrint(substring_, os); |
776 | } |
777 | |
778 | private: |
779 | const StringType substring_; |
780 | |
781 | GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher); |
782 | }; |
783 | |
784 | // Implements the polymorphic StartsWith(substring) matcher, which |
785 | // can be used as a Matcher<T> as long as T can be converted to a |
786 | // string. |
787 | template <typename StringType> |
788 | class StartsWithMatcher { |
789 | public: |
790 | explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { |
791 | } |
792 | |
793 | #if GTEST_HAS_ABSL |
794 | bool MatchAndExplain(const absl::string_view& s, |
795 | MatchResultListener* listener) const { |
796 | // This should fail to compile if absl::string_view is used with wide |
797 | // strings. |
798 | const StringType& str = std::string(s); |
799 | return MatchAndExplain(str, listener); |
800 | } |
801 | #endif // GTEST_HAS_ABSL |
802 | |
803 | // Accepts pointer types, particularly: |
804 | // const char* |
805 | // char* |
806 | // const wchar_t* |
807 | // wchar_t* |
808 | template <typename CharType> |
809 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
810 | return s != nullptr && MatchAndExplain(StringType(s), listener); |
811 | } |
812 | |
813 | // Matches anything that can convert to StringType. |
814 | // |
815 | // This is a template, not just a plain function with const StringType&, |
816 | // because absl::string_view has some interfering non-explicit constructors. |
817 | template <typename MatcheeStringType> |
818 | bool MatchAndExplain(const MatcheeStringType& s, |
819 | MatchResultListener* /* listener */) const { |
820 | const StringType& s2(s); |
821 | return s2.length() >= prefix_.length() && |
822 | s2.substr(0, prefix_.length()) == prefix_; |
823 | } |
824 | |
825 | void DescribeTo(::std::ostream* os) const { |
826 | *os << "starts with " ; |
827 | UniversalPrint(prefix_, os); |
828 | } |
829 | |
830 | void DescribeNegationTo(::std::ostream* os) const { |
831 | *os << "doesn't start with " ; |
832 | UniversalPrint(prefix_, os); |
833 | } |
834 | |
835 | private: |
836 | const StringType prefix_; |
837 | |
838 | GTEST_DISALLOW_ASSIGN_(StartsWithMatcher); |
839 | }; |
840 | |
841 | // Implements the polymorphic EndsWith(substring) matcher, which |
842 | // can be used as a Matcher<T> as long as T can be converted to a |
843 | // string. |
844 | template <typename StringType> |
845 | class EndsWithMatcher { |
846 | public: |
847 | explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} |
848 | |
849 | #if GTEST_HAS_ABSL |
850 | bool MatchAndExplain(const absl::string_view& s, |
851 | MatchResultListener* listener) const { |
852 | // This should fail to compile if absl::string_view is used with wide |
853 | // strings. |
854 | const StringType& str = std::string(s); |
855 | return MatchAndExplain(str, listener); |
856 | } |
857 | #endif // GTEST_HAS_ABSL |
858 | |
859 | // Accepts pointer types, particularly: |
860 | // const char* |
861 | // char* |
862 | // const wchar_t* |
863 | // wchar_t* |
864 | template <typename CharType> |
865 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
866 | return s != nullptr && MatchAndExplain(StringType(s), listener); |
867 | } |
868 | |
869 | // Matches anything that can convert to StringType. |
870 | // |
871 | // This is a template, not just a plain function with const StringType&, |
872 | // because absl::string_view has some interfering non-explicit constructors. |
873 | template <typename MatcheeStringType> |
874 | bool MatchAndExplain(const MatcheeStringType& s, |
875 | MatchResultListener* /* listener */) const { |
876 | const StringType& s2(s); |
877 | return s2.length() >= suffix_.length() && |
878 | s2.substr(s2.length() - suffix_.length()) == suffix_; |
879 | } |
880 | |
881 | void DescribeTo(::std::ostream* os) const { |
882 | *os << "ends with " ; |
883 | UniversalPrint(suffix_, os); |
884 | } |
885 | |
886 | void DescribeNegationTo(::std::ostream* os) const { |
887 | *os << "doesn't end with " ; |
888 | UniversalPrint(suffix_, os); |
889 | } |
890 | |
891 | private: |
892 | const StringType suffix_; |
893 | |
894 | GTEST_DISALLOW_ASSIGN_(EndsWithMatcher); |
895 | }; |
896 | |
897 | // Implements a matcher that compares the two fields of a 2-tuple |
898 | // using one of the ==, <=, <, etc, operators. The two fields being |
899 | // compared don't have to have the same type. |
900 | // |
901 | // The matcher defined here is polymorphic (for example, Eq() can be |
902 | // used to match a std::tuple<int, short>, a std::tuple<const long&, double>, |
903 | // etc). Therefore we use a template type conversion operator in the |
904 | // implementation. |
905 | template <typename D, typename Op> |
906 | class PairMatchBase { |
907 | public: |
908 | template <typename T1, typename T2> |
909 | operator Matcher<::std::tuple<T1, T2>>() const { |
910 | return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>); |
911 | } |
912 | template <typename T1, typename T2> |
913 | operator Matcher<const ::std::tuple<T1, T2>&>() const { |
914 | return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>); |
915 | } |
916 | |
917 | private: |
918 | static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
919 | return os << D::Desc(); |
920 | } |
921 | |
922 | template <typename Tuple> |
923 | class Impl : public MatcherInterface<Tuple> { |
924 | public: |
925 | bool MatchAndExplain(Tuple args, |
926 | MatchResultListener* /* listener */) const override { |
927 | return Op()(::std::get<0>(args), ::std::get<1>(args)); |
928 | } |
929 | void DescribeTo(::std::ostream* os) const override { |
930 | *os << "are " << GetDesc; |
931 | } |
932 | void DescribeNegationTo(::std::ostream* os) const override { |
933 | *os << "aren't " << GetDesc; |
934 | } |
935 | }; |
936 | }; |
937 | |
938 | class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> { |
939 | public: |
940 | static const char* Desc() { return "an equal pair" ; } |
941 | }; |
942 | class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> { |
943 | public: |
944 | static const char* Desc() { return "an unequal pair" ; } |
945 | }; |
946 | class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> { |
947 | public: |
948 | static const char* Desc() { return "a pair where the first < the second" ; } |
949 | }; |
950 | class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> { |
951 | public: |
952 | static const char* Desc() { return "a pair where the first > the second" ; } |
953 | }; |
954 | class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> { |
955 | public: |
956 | static const char* Desc() { return "a pair where the first <= the second" ; } |
957 | }; |
958 | class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> { |
959 | public: |
960 | static const char* Desc() { return "a pair where the first >= the second" ; } |
961 | }; |
962 | |
963 | // Implements the Not(...) matcher for a particular argument type T. |
964 | // We do not nest it inside the NotMatcher class template, as that |
965 | // will prevent different instantiations of NotMatcher from sharing |
966 | // the same NotMatcherImpl<T> class. |
967 | template <typename T> |
968 | class NotMatcherImpl : public MatcherInterface<const T&> { |
969 | public: |
970 | explicit NotMatcherImpl(const Matcher<T>& matcher) |
971 | : matcher_(matcher) {} |
972 | |
973 | bool MatchAndExplain(const T& x, |
974 | MatchResultListener* listener) const override { |
975 | return !matcher_.MatchAndExplain(x, listener); |
976 | } |
977 | |
978 | void DescribeTo(::std::ostream* os) const override { |
979 | matcher_.DescribeNegationTo(os); |
980 | } |
981 | |
982 | void DescribeNegationTo(::std::ostream* os) const override { |
983 | matcher_.DescribeTo(os); |
984 | } |
985 | |
986 | private: |
987 | const Matcher<T> matcher_; |
988 | |
989 | GTEST_DISALLOW_ASSIGN_(NotMatcherImpl); |
990 | }; |
991 | |
992 | // Implements the Not(m) matcher, which matches a value that doesn't |
993 | // match matcher m. |
994 | template <typename InnerMatcher> |
995 | class NotMatcher { |
996 | public: |
997 | explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} |
998 | |
999 | // This template type conversion operator allows Not(m) to be used |
1000 | // to match any type m can match. |
1001 | template <typename T> |
1002 | operator Matcher<T>() const { |
1003 | return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); |
1004 | } |
1005 | |
1006 | private: |
1007 | InnerMatcher matcher_; |
1008 | |
1009 | GTEST_DISALLOW_ASSIGN_(NotMatcher); |
1010 | }; |
1011 | |
1012 | // Implements the AllOf(m1, m2) matcher for a particular argument type |
1013 | // T. We do not nest it inside the BothOfMatcher class template, as |
1014 | // that will prevent different instantiations of BothOfMatcher from |
1015 | // sharing the same BothOfMatcherImpl<T> class. |
1016 | template <typename T> |
1017 | class AllOfMatcherImpl : public MatcherInterface<const T&> { |
1018 | public: |
1019 | explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers) |
1020 | : matchers_(std::move(matchers)) {} |
1021 | |
1022 | void DescribeTo(::std::ostream* os) const override { |
1023 | *os << "(" ; |
1024 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1025 | if (i != 0) *os << ") and (" ; |
1026 | matchers_[i].DescribeTo(os); |
1027 | } |
1028 | *os << ")" ; |
1029 | } |
1030 | |
1031 | void DescribeNegationTo(::std::ostream* os) const override { |
1032 | *os << "(" ; |
1033 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1034 | if (i != 0) *os << ") or (" ; |
1035 | matchers_[i].DescribeNegationTo(os); |
1036 | } |
1037 | *os << ")" ; |
1038 | } |
1039 | |
1040 | bool MatchAndExplain(const T& x, |
1041 | MatchResultListener* listener) const override { |
1042 | // If either matcher1_ or matcher2_ doesn't match x, we only need |
1043 | // to explain why one of them fails. |
1044 | std::string all_match_result; |
1045 | |
1046 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1047 | StringMatchResultListener slistener; |
1048 | if (matchers_[i].MatchAndExplain(x, &slistener)) { |
1049 | if (all_match_result.empty()) { |
1050 | all_match_result = slistener.str(); |
1051 | } else { |
1052 | std::string result = slistener.str(); |
1053 | if (!result.empty()) { |
1054 | all_match_result += ", and " ; |
1055 | all_match_result += result; |
1056 | } |
1057 | } |
1058 | } else { |
1059 | *listener << slistener.str(); |
1060 | return false; |
1061 | } |
1062 | } |
1063 | |
1064 | // Otherwise we need to explain why *both* of them match. |
1065 | *listener << all_match_result; |
1066 | return true; |
1067 | } |
1068 | |
1069 | private: |
1070 | const std::vector<Matcher<T> > matchers_; |
1071 | |
1072 | GTEST_DISALLOW_ASSIGN_(AllOfMatcherImpl); |
1073 | }; |
1074 | |
1075 | // VariadicMatcher is used for the variadic implementation of |
1076 | // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). |
1077 | // CombiningMatcher<T> is used to recursively combine the provided matchers |
1078 | // (of type Args...). |
1079 | template <template <typename T> class CombiningMatcher, typename... Args> |
1080 | class VariadicMatcher { |
1081 | public: |
1082 | VariadicMatcher(const Args&... matchers) // NOLINT |
1083 | : matchers_(matchers...) { |
1084 | static_assert(sizeof...(Args) > 0, "Must have at least one matcher." ); |
1085 | } |
1086 | |
1087 | // This template type conversion operator allows an |
1088 | // VariadicMatcher<Matcher1, Matcher2...> object to match any type that |
1089 | // all of the provided matchers (Matcher1, Matcher2, ...) can match. |
1090 | template <typename T> |
1091 | operator Matcher<T>() const { |
1092 | std::vector<Matcher<T> > values; |
1093 | CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>()); |
1094 | return Matcher<T>(new CombiningMatcher<T>(std::move(values))); |
1095 | } |
1096 | |
1097 | private: |
1098 | template <typename T, size_t I> |
1099 | void CreateVariadicMatcher(std::vector<Matcher<T> >* values, |
1100 | std::integral_constant<size_t, I>) const { |
1101 | values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_))); |
1102 | CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>()); |
1103 | } |
1104 | |
1105 | template <typename T> |
1106 | void CreateVariadicMatcher( |
1107 | std::vector<Matcher<T> >*, |
1108 | std::integral_constant<size_t, sizeof...(Args)>) const {} |
1109 | |
1110 | std::tuple<Args...> matchers_; |
1111 | |
1112 | GTEST_DISALLOW_ASSIGN_(VariadicMatcher); |
1113 | }; |
1114 | |
1115 | template <typename... Args> |
1116 | using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>; |
1117 | |
1118 | // Implements the AnyOf(m1, m2) matcher for a particular argument type |
1119 | // T. We do not nest it inside the AnyOfMatcher class template, as |
1120 | // that will prevent different instantiations of AnyOfMatcher from |
1121 | // sharing the same EitherOfMatcherImpl<T> class. |
1122 | template <typename T> |
1123 | class AnyOfMatcherImpl : public MatcherInterface<const T&> { |
1124 | public: |
1125 | explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers) |
1126 | : matchers_(std::move(matchers)) {} |
1127 | |
1128 | void DescribeTo(::std::ostream* os) const override { |
1129 | *os << "(" ; |
1130 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1131 | if (i != 0) *os << ") or (" ; |
1132 | matchers_[i].DescribeTo(os); |
1133 | } |
1134 | *os << ")" ; |
1135 | } |
1136 | |
1137 | void DescribeNegationTo(::std::ostream* os) const override { |
1138 | *os << "(" ; |
1139 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1140 | if (i != 0) *os << ") and (" ; |
1141 | matchers_[i].DescribeNegationTo(os); |
1142 | } |
1143 | *os << ")" ; |
1144 | } |
1145 | |
1146 | bool MatchAndExplain(const T& x, |
1147 | MatchResultListener* listener) const override { |
1148 | std::string no_match_result; |
1149 | |
1150 | // If either matcher1_ or matcher2_ matches x, we just need to |
1151 | // explain why *one* of them matches. |
1152 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1153 | StringMatchResultListener slistener; |
1154 | if (matchers_[i].MatchAndExplain(x, &slistener)) { |
1155 | *listener << slistener.str(); |
1156 | return true; |
1157 | } else { |
1158 | if (no_match_result.empty()) { |
1159 | no_match_result = slistener.str(); |
1160 | } else { |
1161 | std::string result = slistener.str(); |
1162 | if (!result.empty()) { |
1163 | no_match_result += ", and " ; |
1164 | no_match_result += result; |
1165 | } |
1166 | } |
1167 | } |
1168 | } |
1169 | |
1170 | // Otherwise we need to explain why *both* of them fail. |
1171 | *listener << no_match_result; |
1172 | return false; |
1173 | } |
1174 | |
1175 | private: |
1176 | const std::vector<Matcher<T> > matchers_; |
1177 | |
1178 | GTEST_DISALLOW_ASSIGN_(AnyOfMatcherImpl); |
1179 | }; |
1180 | |
1181 | // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). |
1182 | template <typename... Args> |
1183 | using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>; |
1184 | |
1185 | // Wrapper for implementation of Any/AllOfArray(). |
1186 | template <template <class> class MatcherImpl, typename T> |
1187 | class SomeOfArrayMatcher { |
1188 | public: |
1189 | // Constructs the matcher from a sequence of element values or |
1190 | // element matchers. |
1191 | template <typename Iter> |
1192 | SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
1193 | |
1194 | template <typename U> |
1195 | operator Matcher<U>() const { // NOLINT |
1196 | using RawU = typename std::decay<U>::type; |
1197 | std::vector<Matcher<RawU>> matchers; |
1198 | for (const auto& matcher : matchers_) { |
1199 | matchers.push_back(MatcherCast<RawU>(matcher)); |
1200 | } |
1201 | return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers))); |
1202 | } |
1203 | |
1204 | private: |
1205 | const ::std::vector<T> matchers_; |
1206 | |
1207 | GTEST_DISALLOW_ASSIGN_(SomeOfArrayMatcher); |
1208 | }; |
1209 | |
1210 | template <typename T> |
1211 | using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>; |
1212 | |
1213 | template <typename T> |
1214 | using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>; |
1215 | |
1216 | // Used for implementing Truly(pred), which turns a predicate into a |
1217 | // matcher. |
1218 | template <typename Predicate> |
1219 | class TrulyMatcher { |
1220 | public: |
1221 | explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} |
1222 | |
1223 | // This method template allows Truly(pred) to be used as a matcher |
1224 | // for type T where T is the argument type of predicate 'pred'. The |
1225 | // argument is passed by reference as the predicate may be |
1226 | // interested in the address of the argument. |
1227 | template <typename T> |
1228 | bool MatchAndExplain(T& x, // NOLINT |
1229 | MatchResultListener* /* listener */) const { |
1230 | // Without the if-statement, MSVC sometimes warns about converting |
1231 | // a value to bool (warning 4800). |
1232 | // |
1233 | // We cannot write 'return !!predicate_(x);' as that doesn't work |
1234 | // when predicate_(x) returns a class convertible to bool but |
1235 | // having no operator!(). |
1236 | if (predicate_(x)) |
1237 | return true; |
1238 | return false; |
1239 | } |
1240 | |
1241 | void DescribeTo(::std::ostream* os) const { |
1242 | *os << "satisfies the given predicate" ; |
1243 | } |
1244 | |
1245 | void DescribeNegationTo(::std::ostream* os) const { |
1246 | *os << "doesn't satisfy the given predicate" ; |
1247 | } |
1248 | |
1249 | private: |
1250 | Predicate predicate_; |
1251 | |
1252 | GTEST_DISALLOW_ASSIGN_(TrulyMatcher); |
1253 | }; |
1254 | |
1255 | // Used for implementing Matches(matcher), which turns a matcher into |
1256 | // a predicate. |
1257 | template <typename M> |
1258 | class MatcherAsPredicate { |
1259 | public: |
1260 | explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} |
1261 | |
1262 | // This template operator() allows Matches(m) to be used as a |
1263 | // predicate on type T where m is a matcher on type T. |
1264 | // |
1265 | // The argument x is passed by reference instead of by value, as |
1266 | // some matcher may be interested in its address (e.g. as in |
1267 | // Matches(Ref(n))(x)). |
1268 | template <typename T> |
1269 | bool operator()(const T& x) const { |
1270 | // We let matcher_ commit to a particular type here instead of |
1271 | // when the MatcherAsPredicate object was constructed. This |
1272 | // allows us to write Matches(m) where m is a polymorphic matcher |
1273 | // (e.g. Eq(5)). |
1274 | // |
1275 | // If we write Matcher<T>(matcher_).Matches(x) here, it won't |
1276 | // compile when matcher_ has type Matcher<const T&>; if we write |
1277 | // Matcher<const T&>(matcher_).Matches(x) here, it won't compile |
1278 | // when matcher_ has type Matcher<T>; if we just write |
1279 | // matcher_.Matches(x), it won't compile when matcher_ is |
1280 | // polymorphic, e.g. Eq(5). |
1281 | // |
1282 | // MatcherCast<const T&>() is necessary for making the code work |
1283 | // in all of the above situations. |
1284 | return MatcherCast<const T&>(matcher_).Matches(x); |
1285 | } |
1286 | |
1287 | private: |
1288 | M matcher_; |
1289 | |
1290 | GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate); |
1291 | }; |
1292 | |
1293 | // For implementing ASSERT_THAT() and EXPECT_THAT(). The template |
1294 | // argument M must be a type that can be converted to a matcher. |
1295 | template <typename M> |
1296 | class PredicateFormatterFromMatcher { |
1297 | public: |
1298 | explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {} |
1299 | |
1300 | // This template () operator allows a PredicateFormatterFromMatcher |
1301 | // object to act as a predicate-formatter suitable for using with |
1302 | // Google Test's EXPECT_PRED_FORMAT1() macro. |
1303 | template <typename T> |
1304 | AssertionResult operator()(const char* value_text, const T& x) const { |
1305 | // We convert matcher_ to a Matcher<const T&> *now* instead of |
1306 | // when the PredicateFormatterFromMatcher object was constructed, |
1307 | // as matcher_ may be polymorphic (e.g. NotNull()) and we won't |
1308 | // know which type to instantiate it to until we actually see the |
1309 | // type of x here. |
1310 | // |
1311 | // We write SafeMatcherCast<const T&>(matcher_) instead of |
1312 | // Matcher<const T&>(matcher_), as the latter won't compile when |
1313 | // matcher_ has type Matcher<T> (e.g. An<int>()). |
1314 | // We don't write MatcherCast<const T&> either, as that allows |
1315 | // potentially unsafe downcasting of the matcher argument. |
1316 | const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_); |
1317 | |
1318 | // The expected path here is that the matcher should match (i.e. that most |
1319 | // tests pass) so optimize for this case. |
1320 | if (matcher.Matches(x)) { |
1321 | return AssertionSuccess(); |
1322 | } |
1323 | |
1324 | ::std::stringstream ss; |
1325 | ss << "Value of: " << value_text << "\n" |
1326 | << "Expected: " ; |
1327 | matcher.DescribeTo(&ss); |
1328 | |
1329 | // Rerun the matcher to "PrintAndExain" the failure. |
1330 | StringMatchResultListener listener; |
1331 | if (MatchPrintAndExplain(x, matcher, &listener)) { |
1332 | ss << "\n The matcher failed on the initial attempt; but passed when " |
1333 | "rerun to generate the explanation." ; |
1334 | } |
1335 | ss << "\n Actual: " << listener.str(); |
1336 | return AssertionFailure() << ss.str(); |
1337 | } |
1338 | |
1339 | private: |
1340 | const M matcher_; |
1341 | |
1342 | GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher); |
1343 | }; |
1344 | |
1345 | // A helper function for converting a matcher to a predicate-formatter |
1346 | // without the user needing to explicitly write the type. This is |
1347 | // used for implementing ASSERT_THAT() and EXPECT_THAT(). |
1348 | // Implementation detail: 'matcher' is received by-value to force decaying. |
1349 | template <typename M> |
1350 | inline PredicateFormatterFromMatcher<M> |
1351 | MakePredicateFormatterFromMatcher(M matcher) { |
1352 | return PredicateFormatterFromMatcher<M>(std::move(matcher)); |
1353 | } |
1354 | |
1355 | // Implements the polymorphic floating point equality matcher, which matches |
1356 | // two float values using ULP-based approximation or, optionally, a |
1357 | // user-specified epsilon. The template is meant to be instantiated with |
1358 | // FloatType being either float or double. |
1359 | template <typename FloatType> |
1360 | class FloatingEqMatcher { |
1361 | public: |
1362 | // Constructor for FloatingEqMatcher. |
1363 | // The matcher's input will be compared with expected. The matcher treats two |
1364 | // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards, |
1365 | // equality comparisons between NANs will always return false. We specify a |
1366 | // negative max_abs_error_ term to indicate that ULP-based approximation will |
1367 | // be used for comparison. |
1368 | FloatingEqMatcher(FloatType expected, bool nan_eq_nan) : |
1369 | expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) { |
1370 | } |
1371 | |
1372 | // Constructor that supports a user-specified max_abs_error that will be used |
1373 | // for comparison instead of ULP-based approximation. The max absolute |
1374 | // should be non-negative. |
1375 | FloatingEqMatcher(FloatType expected, bool nan_eq_nan, |
1376 | FloatType max_abs_error) |
1377 | : expected_(expected), |
1378 | nan_eq_nan_(nan_eq_nan), |
1379 | max_abs_error_(max_abs_error) { |
1380 | GTEST_CHECK_(max_abs_error >= 0) |
1381 | << ", where max_abs_error is" << max_abs_error; |
1382 | } |
1383 | |
1384 | // Implements floating point equality matcher as a Matcher<T>. |
1385 | template <typename T> |
1386 | class Impl : public MatcherInterface<T> { |
1387 | public: |
1388 | Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) |
1389 | : expected_(expected), |
1390 | nan_eq_nan_(nan_eq_nan), |
1391 | max_abs_error_(max_abs_error) {} |
1392 | |
1393 | bool MatchAndExplain(T value, |
1394 | MatchResultListener* listener) const override { |
1395 | const FloatingPoint<FloatType> actual(value), expected(expected_); |
1396 | |
1397 | // Compares NaNs first, if nan_eq_nan_ is true. |
1398 | if (actual.is_nan() || expected.is_nan()) { |
1399 | if (actual.is_nan() && expected.is_nan()) { |
1400 | return nan_eq_nan_; |
1401 | } |
1402 | // One is nan; the other is not nan. |
1403 | return false; |
1404 | } |
1405 | if (HasMaxAbsError()) { |
1406 | // We perform an equality check so that inf will match inf, regardless |
1407 | // of error bounds. If the result of value - expected_ would result in |
1408 | // overflow or if either value is inf, the default result is infinity, |
1409 | // which should only match if max_abs_error_ is also infinity. |
1410 | if (value == expected_) { |
1411 | return true; |
1412 | } |
1413 | |
1414 | const FloatType diff = value - expected_; |
1415 | if (fabs(diff) <= max_abs_error_) { |
1416 | return true; |
1417 | } |
1418 | |
1419 | if (listener->IsInterested()) { |
1420 | *listener << "which is " << diff << " from " << expected_; |
1421 | } |
1422 | return false; |
1423 | } else { |
1424 | return actual.AlmostEquals(expected); |
1425 | } |
1426 | } |
1427 | |
1428 | void DescribeTo(::std::ostream* os) const override { |
1429 | // os->precision() returns the previously set precision, which we |
1430 | // store to restore the ostream to its original configuration |
1431 | // after outputting. |
1432 | const ::std::streamsize old_precision = os->precision( |
1433 | ::std::numeric_limits<FloatType>::digits10 + 2); |
1434 | if (FloatingPoint<FloatType>(expected_).is_nan()) { |
1435 | if (nan_eq_nan_) { |
1436 | *os << "is NaN" ; |
1437 | } else { |
1438 | *os << "never matches" ; |
1439 | } |
1440 | } else { |
1441 | *os << "is approximately " << expected_; |
1442 | if (HasMaxAbsError()) { |
1443 | *os << " (absolute error <= " << max_abs_error_ << ")" ; |
1444 | } |
1445 | } |
1446 | os->precision(old_precision); |
1447 | } |
1448 | |
1449 | void DescribeNegationTo(::std::ostream* os) const override { |
1450 | // As before, get original precision. |
1451 | const ::std::streamsize old_precision = os->precision( |
1452 | ::std::numeric_limits<FloatType>::digits10 + 2); |
1453 | if (FloatingPoint<FloatType>(expected_).is_nan()) { |
1454 | if (nan_eq_nan_) { |
1455 | *os << "isn't NaN" ; |
1456 | } else { |
1457 | *os << "is anything" ; |
1458 | } |
1459 | } else { |
1460 | *os << "isn't approximately " << expected_; |
1461 | if (HasMaxAbsError()) { |
1462 | *os << " (absolute error > " << max_abs_error_ << ")" ; |
1463 | } |
1464 | } |
1465 | // Restore original precision. |
1466 | os->precision(old_precision); |
1467 | } |
1468 | |
1469 | private: |
1470 | bool HasMaxAbsError() const { |
1471 | return max_abs_error_ >= 0; |
1472 | } |
1473 | |
1474 | const FloatType expected_; |
1475 | const bool nan_eq_nan_; |
1476 | // max_abs_error will be used for value comparison when >= 0. |
1477 | const FloatType max_abs_error_; |
1478 | |
1479 | GTEST_DISALLOW_ASSIGN_(Impl); |
1480 | }; |
1481 | |
1482 | // The following 3 type conversion operators allow FloatEq(expected) and |
1483 | // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a |
1484 | // Matcher<const float&>, or a Matcher<float&>, but nothing else. |
1485 | // (While Google's C++ coding style doesn't allow arguments passed |
1486 | // by non-const reference, we may see them in code not conforming to |
1487 | // the style. Therefore Google Mock needs to support them.) |
1488 | operator Matcher<FloatType>() const { |
1489 | return MakeMatcher( |
1490 | new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_)); |
1491 | } |
1492 | |
1493 | operator Matcher<const FloatType&>() const { |
1494 | return MakeMatcher( |
1495 | new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
1496 | } |
1497 | |
1498 | operator Matcher<FloatType&>() const { |
1499 | return MakeMatcher( |
1500 | new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
1501 | } |
1502 | |
1503 | private: |
1504 | const FloatType expected_; |
1505 | const bool nan_eq_nan_; |
1506 | // max_abs_error will be used for value comparison when >= 0. |
1507 | const FloatType max_abs_error_; |
1508 | |
1509 | GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher); |
1510 | }; |
1511 | |
1512 | // A 2-tuple ("binary") wrapper around FloatingEqMatcher: |
1513 | // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false) |
1514 | // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e) |
1515 | // against y. The former implements "Eq", the latter "Near". At present, there |
1516 | // is no version that compares NaNs as equal. |
1517 | template <typename FloatType> |
1518 | class FloatingEq2Matcher { |
1519 | public: |
1520 | FloatingEq2Matcher() { Init(-1, false); } |
1521 | |
1522 | explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); } |
1523 | |
1524 | explicit FloatingEq2Matcher(FloatType max_abs_error) { |
1525 | Init(max_abs_error, false); |
1526 | } |
1527 | |
1528 | FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) { |
1529 | Init(max_abs_error, nan_eq_nan); |
1530 | } |
1531 | |
1532 | template <typename T1, typename T2> |
1533 | operator Matcher<::std::tuple<T1, T2>>() const { |
1534 | return MakeMatcher( |
1535 | new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_)); |
1536 | } |
1537 | template <typename T1, typename T2> |
1538 | operator Matcher<const ::std::tuple<T1, T2>&>() const { |
1539 | return MakeMatcher( |
1540 | new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_)); |
1541 | } |
1542 | |
1543 | private: |
1544 | static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
1545 | return os << "an almost-equal pair" ; |
1546 | } |
1547 | |
1548 | template <typename Tuple> |
1549 | class Impl : public MatcherInterface<Tuple> { |
1550 | public: |
1551 | Impl(FloatType max_abs_error, bool nan_eq_nan) : |
1552 | max_abs_error_(max_abs_error), |
1553 | nan_eq_nan_(nan_eq_nan) {} |
1554 | |
1555 | bool MatchAndExplain(Tuple args, |
1556 | MatchResultListener* listener) const override { |
1557 | if (max_abs_error_ == -1) { |
1558 | FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_); |
1559 | return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( |
1560 | ::std::get<1>(args), listener); |
1561 | } else { |
1562 | FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_, |
1563 | max_abs_error_); |
1564 | return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( |
1565 | ::std::get<1>(args), listener); |
1566 | } |
1567 | } |
1568 | void DescribeTo(::std::ostream* os) const override { |
1569 | *os << "are " << GetDesc; |
1570 | } |
1571 | void DescribeNegationTo(::std::ostream* os) const override { |
1572 | *os << "aren't " << GetDesc; |
1573 | } |
1574 | |
1575 | private: |
1576 | FloatType max_abs_error_; |
1577 | const bool nan_eq_nan_; |
1578 | }; |
1579 | |
1580 | void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) { |
1581 | max_abs_error_ = max_abs_error_val; |
1582 | nan_eq_nan_ = nan_eq_nan_val; |
1583 | } |
1584 | FloatType max_abs_error_; |
1585 | bool nan_eq_nan_; |
1586 | }; |
1587 | |
1588 | // Implements the Pointee(m) matcher for matching a pointer whose |
1589 | // pointee matches matcher m. The pointer can be either raw or smart. |
1590 | template <typename InnerMatcher> |
1591 | class PointeeMatcher { |
1592 | public: |
1593 | explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} |
1594 | |
1595 | // This type conversion operator template allows Pointee(m) to be |
1596 | // used as a matcher for any pointer type whose pointee type is |
1597 | // compatible with the inner matcher, where type Pointer can be |
1598 | // either a raw pointer or a smart pointer. |
1599 | // |
1600 | // The reason we do this instead of relying on |
1601 | // MakePolymorphicMatcher() is that the latter is not flexible |
1602 | // enough for implementing the DescribeTo() method of Pointee(). |
1603 | template <typename Pointer> |
1604 | operator Matcher<Pointer>() const { |
1605 | return Matcher<Pointer>(new Impl<const Pointer&>(matcher_)); |
1606 | } |
1607 | |
1608 | private: |
1609 | // The monomorphic implementation that works for a particular pointer type. |
1610 | template <typename Pointer> |
1611 | class Impl : public MatcherInterface<Pointer> { |
1612 | public: |
1613 | typedef typename PointeeOf<GTEST_REMOVE_CONST_( // NOLINT |
1614 | GTEST_REMOVE_REFERENCE_(Pointer))>::type Pointee; |
1615 | |
1616 | explicit Impl(const InnerMatcher& matcher) |
1617 | : matcher_(MatcherCast<const Pointee&>(matcher)) {} |
1618 | |
1619 | void DescribeTo(::std::ostream* os) const override { |
1620 | *os << "points to a value that " ; |
1621 | matcher_.DescribeTo(os); |
1622 | } |
1623 | |
1624 | void DescribeNegationTo(::std::ostream* os) const override { |
1625 | *os << "does not point to a value that " ; |
1626 | matcher_.DescribeTo(os); |
1627 | } |
1628 | |
1629 | bool MatchAndExplain(Pointer pointer, |
1630 | MatchResultListener* listener) const override { |
1631 | if (GetRawPointer(pointer) == nullptr) return false; |
1632 | |
1633 | *listener << "which points to " ; |
1634 | return MatchPrintAndExplain(*pointer, matcher_, listener); |
1635 | } |
1636 | |
1637 | private: |
1638 | const Matcher<const Pointee&> matcher_; |
1639 | |
1640 | GTEST_DISALLOW_ASSIGN_(Impl); |
1641 | }; |
1642 | |
1643 | const InnerMatcher matcher_; |
1644 | |
1645 | GTEST_DISALLOW_ASSIGN_(PointeeMatcher); |
1646 | }; |
1647 | |
1648 | #if GTEST_HAS_RTTI |
1649 | // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or |
1650 | // reference that matches inner_matcher when dynamic_cast<T> is applied. |
1651 | // The result of dynamic_cast<To> is forwarded to the inner matcher. |
1652 | // If To is a pointer and the cast fails, the inner matcher will receive NULL. |
1653 | // If To is a reference and the cast fails, this matcher returns false |
1654 | // immediately. |
1655 | template <typename To> |
1656 | class WhenDynamicCastToMatcherBase { |
1657 | public: |
1658 | explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher) |
1659 | : matcher_(matcher) {} |
1660 | |
1661 | void DescribeTo(::std::ostream* os) const { |
1662 | GetCastTypeDescription(os); |
1663 | matcher_.DescribeTo(os); |
1664 | } |
1665 | |
1666 | void DescribeNegationTo(::std::ostream* os) const { |
1667 | GetCastTypeDescription(os); |
1668 | matcher_.DescribeNegationTo(os); |
1669 | } |
1670 | |
1671 | protected: |
1672 | const Matcher<To> matcher_; |
1673 | |
1674 | static std::string GetToName() { |
1675 | return GetTypeName<To>(); |
1676 | } |
1677 | |
1678 | private: |
1679 | static void GetCastTypeDescription(::std::ostream* os) { |
1680 | *os << "when dynamic_cast to " << GetToName() << ", " ; |
1681 | } |
1682 | |
1683 | GTEST_DISALLOW_ASSIGN_(WhenDynamicCastToMatcherBase); |
1684 | }; |
1685 | |
1686 | // Primary template. |
1687 | // To is a pointer. Cast and forward the result. |
1688 | template <typename To> |
1689 | class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> { |
1690 | public: |
1691 | explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher) |
1692 | : WhenDynamicCastToMatcherBase<To>(matcher) {} |
1693 | |
1694 | template <typename From> |
1695 | bool MatchAndExplain(From from, MatchResultListener* listener) const { |
1696 | To to = dynamic_cast<To>(from); |
1697 | return MatchPrintAndExplain(to, this->matcher_, listener); |
1698 | } |
1699 | }; |
1700 | |
1701 | // Specialize for references. |
1702 | // In this case we return false if the dynamic_cast fails. |
1703 | template <typename To> |
1704 | class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> { |
1705 | public: |
1706 | explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher) |
1707 | : WhenDynamicCastToMatcherBase<To&>(matcher) {} |
1708 | |
1709 | template <typename From> |
1710 | bool MatchAndExplain(From& from, MatchResultListener* listener) const { |
1711 | // We don't want an std::bad_cast here, so do the cast with pointers. |
1712 | To* to = dynamic_cast<To*>(&from); |
1713 | if (to == nullptr) { |
1714 | *listener << "which cannot be dynamic_cast to " << this->GetToName(); |
1715 | return false; |
1716 | } |
1717 | return MatchPrintAndExplain(*to, this->matcher_, listener); |
1718 | } |
1719 | }; |
1720 | #endif // GTEST_HAS_RTTI |
1721 | |
1722 | // Implements the Field() matcher for matching a field (i.e. member |
1723 | // variable) of an object. |
1724 | template <typename Class, typename FieldType> |
1725 | class FieldMatcher { |
1726 | public: |
1727 | FieldMatcher(FieldType Class::*field, |
1728 | const Matcher<const FieldType&>& matcher) |
1729 | : field_(field), matcher_(matcher), whose_field_("whose given field " ) {} |
1730 | |
1731 | FieldMatcher(const std::string& field_name, FieldType Class::*field, |
1732 | const Matcher<const FieldType&>& matcher) |
1733 | : field_(field), |
1734 | matcher_(matcher), |
1735 | whose_field_("whose field `" + field_name + "` " ) {} |
1736 | |
1737 | void DescribeTo(::std::ostream* os) const { |
1738 | *os << "is an object " << whose_field_; |
1739 | matcher_.DescribeTo(os); |
1740 | } |
1741 | |
1742 | void DescribeNegationTo(::std::ostream* os) const { |
1743 | *os << "is an object " << whose_field_; |
1744 | matcher_.DescribeNegationTo(os); |
1745 | } |
1746 | |
1747 | template <typename T> |
1748 | bool MatchAndExplain(const T& value, MatchResultListener* listener) const { |
1749 | // FIXME: The dispatch on std::is_pointer was introduced as a workaround for |
1750 | // a compiler bug, and can now be removed. |
1751 | return MatchAndExplainImpl( |
1752 | typename std::is_pointer<GTEST_REMOVE_CONST_(T)>::type(), value, |
1753 | listener); |
1754 | } |
1755 | |
1756 | private: |
1757 | bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, |
1758 | const Class& obj, |
1759 | MatchResultListener* listener) const { |
1760 | *listener << whose_field_ << "is " ; |
1761 | return MatchPrintAndExplain(obj.*field_, matcher_, listener); |
1762 | } |
1763 | |
1764 | bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, |
1765 | MatchResultListener* listener) const { |
1766 | if (p == nullptr) return false; |
1767 | |
1768 | *listener << "which points to an object " ; |
1769 | // Since *p has a field, it must be a class/struct/union type and |
1770 | // thus cannot be a pointer. Therefore we pass false_type() as |
1771 | // the first argument. |
1772 | return MatchAndExplainImpl(std::false_type(), *p, listener); |
1773 | } |
1774 | |
1775 | const FieldType Class::*field_; |
1776 | const Matcher<const FieldType&> matcher_; |
1777 | |
1778 | // Contains either "whose given field " if the name of the field is unknown |
1779 | // or "whose field `name_of_field` " if the name is known. |
1780 | const std::string whose_field_; |
1781 | |
1782 | GTEST_DISALLOW_ASSIGN_(FieldMatcher); |
1783 | }; |
1784 | |
1785 | // Implements the Property() matcher for matching a property |
1786 | // (i.e. return value of a getter method) of an object. |
1787 | // |
1788 | // Property is a const-qualified member function of Class returning |
1789 | // PropertyType. |
1790 | template <typename Class, typename PropertyType, typename Property> |
1791 | class PropertyMatcher { |
1792 | public: |
1793 | typedef const PropertyType& RefToConstProperty; |
1794 | |
1795 | PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher) |
1796 | : property_(property), |
1797 | matcher_(matcher), |
1798 | whose_property_("whose given property " ) {} |
1799 | |
1800 | PropertyMatcher(const std::string& property_name, Property property, |
1801 | const Matcher<RefToConstProperty>& matcher) |
1802 | : property_(property), |
1803 | matcher_(matcher), |
1804 | whose_property_("whose property `" + property_name + "` " ) {} |
1805 | |
1806 | void DescribeTo(::std::ostream* os) const { |
1807 | *os << "is an object " << whose_property_; |
1808 | matcher_.DescribeTo(os); |
1809 | } |
1810 | |
1811 | void DescribeNegationTo(::std::ostream* os) const { |
1812 | *os << "is an object " << whose_property_; |
1813 | matcher_.DescribeNegationTo(os); |
1814 | } |
1815 | |
1816 | template <typename T> |
1817 | bool MatchAndExplain(const T&value, MatchResultListener* listener) const { |
1818 | return MatchAndExplainImpl( |
1819 | typename std::is_pointer<GTEST_REMOVE_CONST_(T)>::type(), value, |
1820 | listener); |
1821 | } |
1822 | |
1823 | private: |
1824 | bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, |
1825 | const Class& obj, |
1826 | MatchResultListener* listener) const { |
1827 | *listener << whose_property_ << "is " ; |
1828 | // Cannot pass the return value (for example, int) to MatchPrintAndExplain, |
1829 | // which takes a non-const reference as argument. |
1830 | RefToConstProperty result = (obj.*property_)(); |
1831 | return MatchPrintAndExplain(result, matcher_, listener); |
1832 | } |
1833 | |
1834 | bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, |
1835 | MatchResultListener* listener) const { |
1836 | if (p == nullptr) return false; |
1837 | |
1838 | *listener << "which points to an object " ; |
1839 | // Since *p has a property method, it must be a class/struct/union |
1840 | // type and thus cannot be a pointer. Therefore we pass |
1841 | // false_type() as the first argument. |
1842 | return MatchAndExplainImpl(std::false_type(), *p, listener); |
1843 | } |
1844 | |
1845 | Property property_; |
1846 | const Matcher<RefToConstProperty> matcher_; |
1847 | |
1848 | // Contains either "whose given property " if the name of the property is |
1849 | // unknown or "whose property `name_of_property` " if the name is known. |
1850 | const std::string whose_property_; |
1851 | |
1852 | GTEST_DISALLOW_ASSIGN_(PropertyMatcher); |
1853 | }; |
1854 | |
1855 | // Type traits specifying various features of different functors for ResultOf. |
1856 | // The default template specifies features for functor objects. |
1857 | template <typename Functor> |
1858 | struct CallableTraits { |
1859 | typedef Functor StorageType; |
1860 | |
1861 | static void CheckIsValid(Functor /* functor */) {} |
1862 | |
1863 | template <typename T> |
1864 | static auto Invoke(Functor f, T arg) -> decltype(f(arg)) { return f(arg); } |
1865 | }; |
1866 | |
1867 | // Specialization for function pointers. |
1868 | template <typename ArgType, typename ResType> |
1869 | struct CallableTraits<ResType(*)(ArgType)> { |
1870 | typedef ResType ResultType; |
1871 | typedef ResType(*StorageType)(ArgType); |
1872 | |
1873 | static void CheckIsValid(ResType(*f)(ArgType)) { |
1874 | GTEST_CHECK_(f != nullptr) |
1875 | << "NULL function pointer is passed into ResultOf()." ; |
1876 | } |
1877 | template <typename T> |
1878 | static ResType Invoke(ResType(*f)(ArgType), T arg) { |
1879 | return (*f)(arg); |
1880 | } |
1881 | }; |
1882 | |
1883 | // Implements the ResultOf() matcher for matching a return value of a |
1884 | // unary function of an object. |
1885 | template <typename Callable, typename InnerMatcher> |
1886 | class ResultOfMatcher { |
1887 | public: |
1888 | ResultOfMatcher(Callable callable, InnerMatcher matcher) |
1889 | : callable_(std::move(callable)), matcher_(std::move(matcher)) { |
1890 | CallableTraits<Callable>::CheckIsValid(callable_); |
1891 | } |
1892 | |
1893 | template <typename T> |
1894 | operator Matcher<T>() const { |
1895 | return Matcher<T>(new Impl<T>(callable_, matcher_)); |
1896 | } |
1897 | |
1898 | private: |
1899 | typedef typename CallableTraits<Callable>::StorageType CallableStorageType; |
1900 | |
1901 | template <typename T> |
1902 | class Impl : public MatcherInterface<T> { |
1903 | using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>( |
1904 | std::declval<CallableStorageType>(), std::declval<T>())); |
1905 | |
1906 | public: |
1907 | template <typename M> |
1908 | Impl(const CallableStorageType& callable, const M& matcher) |
1909 | : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {} |
1910 | |
1911 | void DescribeTo(::std::ostream* os) const override { |
1912 | *os << "is mapped by the given callable to a value that " ; |
1913 | matcher_.DescribeTo(os); |
1914 | } |
1915 | |
1916 | void DescribeNegationTo(::std::ostream* os) const override { |
1917 | *os << "is mapped by the given callable to a value that " ; |
1918 | matcher_.DescribeNegationTo(os); |
1919 | } |
1920 | |
1921 | bool MatchAndExplain(T obj, MatchResultListener* listener) const override { |
1922 | *listener << "which is mapped by the given callable to " ; |
1923 | // Cannot pass the return value directly to MatchPrintAndExplain, which |
1924 | // takes a non-const reference as argument. |
1925 | // Also, specifying template argument explicitly is needed because T could |
1926 | // be a non-const reference (e.g. Matcher<Uncopyable&>). |
1927 | ResultType result = |
1928 | CallableTraits<Callable>::template Invoke<T>(callable_, obj); |
1929 | return MatchPrintAndExplain(result, matcher_, listener); |
1930 | } |
1931 | |
1932 | private: |
1933 | // Functors often define operator() as non-const method even though |
1934 | // they are actually stateless. But we need to use them even when |
1935 | // 'this' is a const pointer. It's the user's responsibility not to |
1936 | // use stateful callables with ResultOf(), which doesn't guarantee |
1937 | // how many times the callable will be invoked. |
1938 | mutable CallableStorageType callable_; |
1939 | const Matcher<ResultType> matcher_; |
1940 | |
1941 | GTEST_DISALLOW_ASSIGN_(Impl); |
1942 | }; // class Impl |
1943 | |
1944 | const CallableStorageType callable_; |
1945 | const InnerMatcher matcher_; |
1946 | |
1947 | GTEST_DISALLOW_ASSIGN_(ResultOfMatcher); |
1948 | }; |
1949 | |
1950 | // Implements a matcher that checks the size of an STL-style container. |
1951 | template <typename SizeMatcher> |
1952 | class SizeIsMatcher { |
1953 | public: |
1954 | explicit SizeIsMatcher(const SizeMatcher& size_matcher) |
1955 | : size_matcher_(size_matcher) { |
1956 | } |
1957 | |
1958 | template <typename Container> |
1959 | operator Matcher<Container>() const { |
1960 | return Matcher<Container>(new Impl<const Container&>(size_matcher_)); |
1961 | } |
1962 | |
1963 | template <typename Container> |
1964 | class Impl : public MatcherInterface<Container> { |
1965 | public: |
1966 | using SizeType = decltype(std::declval<Container>().size()); |
1967 | explicit Impl(const SizeMatcher& size_matcher) |
1968 | : size_matcher_(MatcherCast<SizeType>(size_matcher)) {} |
1969 | |
1970 | void DescribeTo(::std::ostream* os) const override { |
1971 | *os << "size " ; |
1972 | size_matcher_.DescribeTo(os); |
1973 | } |
1974 | void DescribeNegationTo(::std::ostream* os) const override { |
1975 | *os << "size " ; |
1976 | size_matcher_.DescribeNegationTo(os); |
1977 | } |
1978 | |
1979 | bool MatchAndExplain(Container container, |
1980 | MatchResultListener* listener) const override { |
1981 | SizeType size = container.size(); |
1982 | StringMatchResultListener size_listener; |
1983 | const bool result = size_matcher_.MatchAndExplain(size, &size_listener); |
1984 | *listener |
1985 | << "whose size " << size << (result ? " matches" : " doesn't match" ); |
1986 | PrintIfNotEmpty(size_listener.str(), listener->stream()); |
1987 | return result; |
1988 | } |
1989 | |
1990 | private: |
1991 | const Matcher<SizeType> size_matcher_; |
1992 | GTEST_DISALLOW_ASSIGN_(Impl); |
1993 | }; |
1994 | |
1995 | private: |
1996 | const SizeMatcher size_matcher_; |
1997 | GTEST_DISALLOW_ASSIGN_(SizeIsMatcher); |
1998 | }; |
1999 | |
2000 | // Implements a matcher that checks the begin()..end() distance of an STL-style |
2001 | // container. |
2002 | template <typename DistanceMatcher> |
2003 | class BeginEndDistanceIsMatcher { |
2004 | public: |
2005 | explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher) |
2006 | : distance_matcher_(distance_matcher) {} |
2007 | |
2008 | template <typename Container> |
2009 | operator Matcher<Container>() const { |
2010 | return Matcher<Container>(new Impl<const Container&>(distance_matcher_)); |
2011 | } |
2012 | |
2013 | template <typename Container> |
2014 | class Impl : public MatcherInterface<Container> { |
2015 | public: |
2016 | typedef internal::StlContainerView< |
2017 | GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView; |
2018 | typedef typename std::iterator_traits< |
2019 | typename ContainerView::type::const_iterator>::difference_type |
2020 | DistanceType; |
2021 | explicit Impl(const DistanceMatcher& distance_matcher) |
2022 | : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {} |
2023 | |
2024 | void DescribeTo(::std::ostream* os) const override { |
2025 | *os << "distance between begin() and end() " ; |
2026 | distance_matcher_.DescribeTo(os); |
2027 | } |
2028 | void DescribeNegationTo(::std::ostream* os) const override { |
2029 | *os << "distance between begin() and end() " ; |
2030 | distance_matcher_.DescribeNegationTo(os); |
2031 | } |
2032 | |
2033 | bool MatchAndExplain(Container container, |
2034 | MatchResultListener* listener) const override { |
2035 | using std::begin; |
2036 | using std::end; |
2037 | DistanceType distance = std::distance(begin(container), end(container)); |
2038 | StringMatchResultListener distance_listener; |
2039 | const bool result = |
2040 | distance_matcher_.MatchAndExplain(distance, &distance_listener); |
2041 | *listener << "whose distance between begin() and end() " << distance |
2042 | << (result ? " matches" : " doesn't match" ); |
2043 | PrintIfNotEmpty(distance_listener.str(), listener->stream()); |
2044 | return result; |
2045 | } |
2046 | |
2047 | private: |
2048 | const Matcher<DistanceType> distance_matcher_; |
2049 | GTEST_DISALLOW_ASSIGN_(Impl); |
2050 | }; |
2051 | |
2052 | private: |
2053 | const DistanceMatcher distance_matcher_; |
2054 | GTEST_DISALLOW_ASSIGN_(BeginEndDistanceIsMatcher); |
2055 | }; |
2056 | |
2057 | // Implements an equality matcher for any STL-style container whose elements |
2058 | // support ==. This matcher is like Eq(), but its failure explanations provide |
2059 | // more detailed information that is useful when the container is used as a set. |
2060 | // The failure message reports elements that are in one of the operands but not |
2061 | // the other. The failure messages do not report duplicate or out-of-order |
2062 | // elements in the containers (which don't properly matter to sets, but can |
2063 | // occur if the containers are vectors or lists, for example). |
2064 | // |
2065 | // Uses the container's const_iterator, value_type, operator ==, |
2066 | // begin(), and end(). |
2067 | template <typename Container> |
2068 | class ContainerEqMatcher { |
2069 | public: |
2070 | typedef internal::StlContainerView<Container> View; |
2071 | typedef typename View::type StlContainer; |
2072 | typedef typename View::const_reference StlContainerReference; |
2073 | |
2074 | // We make a copy of expected in case the elements in it are modified |
2075 | // after this matcher is created. |
2076 | explicit ContainerEqMatcher(const Container& expected) |
2077 | : expected_(View::Copy(expected)) { |
2078 | // Makes sure the user doesn't instantiate this class template |
2079 | // with a const or reference type. |
2080 | (void)testing::StaticAssertTypeEq<Container, |
2081 | GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>(); |
2082 | } |
2083 | |
2084 | void DescribeTo(::std::ostream* os) const { |
2085 | *os << "equals " ; |
2086 | UniversalPrint(expected_, os); |
2087 | } |
2088 | void DescribeNegationTo(::std::ostream* os) const { |
2089 | *os << "does not equal " ; |
2090 | UniversalPrint(expected_, os); |
2091 | } |
2092 | |
2093 | template <typename LhsContainer> |
2094 | bool MatchAndExplain(const LhsContainer& lhs, |
2095 | MatchResultListener* listener) const { |
2096 | // GTEST_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug |
2097 | // that causes LhsContainer to be a const type sometimes. |
2098 | typedef internal::StlContainerView<GTEST_REMOVE_CONST_(LhsContainer)> |
2099 | LhsView; |
2100 | typedef typename LhsView::type LhsStlContainer; |
2101 | StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
2102 | if (lhs_stl_container == expected_) |
2103 | return true; |
2104 | |
2105 | ::std::ostream* const os = listener->stream(); |
2106 | if (os != nullptr) { |
2107 | // Something is different. Check for extra values first. |
2108 | bool = false; |
2109 | for (typename LhsStlContainer::const_iterator it = |
2110 | lhs_stl_container.begin(); |
2111 | it != lhs_stl_container.end(); ++it) { |
2112 | if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) == |
2113 | expected_.end()) { |
2114 | if (printed_header) { |
2115 | *os << ", " ; |
2116 | } else { |
2117 | *os << "which has these unexpected elements: " ; |
2118 | printed_header = true; |
2119 | } |
2120 | UniversalPrint(*it, os); |
2121 | } |
2122 | } |
2123 | |
2124 | // Now check for missing values. |
2125 | bool = false; |
2126 | for (typename StlContainer::const_iterator it = expected_.begin(); |
2127 | it != expected_.end(); ++it) { |
2128 | if (internal::ArrayAwareFind( |
2129 | lhs_stl_container.begin(), lhs_stl_container.end(), *it) == |
2130 | lhs_stl_container.end()) { |
2131 | if (printed_header2) { |
2132 | *os << ", " ; |
2133 | } else { |
2134 | *os << (printed_header ? ",\nand" : "which" ) |
2135 | << " doesn't have these expected elements: " ; |
2136 | printed_header2 = true; |
2137 | } |
2138 | UniversalPrint(*it, os); |
2139 | } |
2140 | } |
2141 | } |
2142 | |
2143 | return false; |
2144 | } |
2145 | |
2146 | private: |
2147 | const StlContainer expected_; |
2148 | |
2149 | GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher); |
2150 | }; |
2151 | |
2152 | // A comparator functor that uses the < operator to compare two values. |
2153 | struct LessComparator { |
2154 | template <typename T, typename U> |
2155 | bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; } |
2156 | }; |
2157 | |
2158 | // Implements WhenSortedBy(comparator, container_matcher). |
2159 | template <typename Comparator, typename ContainerMatcher> |
2160 | class WhenSortedByMatcher { |
2161 | public: |
2162 | WhenSortedByMatcher(const Comparator& comparator, |
2163 | const ContainerMatcher& matcher) |
2164 | : comparator_(comparator), matcher_(matcher) {} |
2165 | |
2166 | template <typename LhsContainer> |
2167 | operator Matcher<LhsContainer>() const { |
2168 | return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); |
2169 | } |
2170 | |
2171 | template <typename LhsContainer> |
2172 | class Impl : public MatcherInterface<LhsContainer> { |
2173 | public: |
2174 | typedef internal::StlContainerView< |
2175 | GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; |
2176 | typedef typename LhsView::type LhsStlContainer; |
2177 | typedef typename LhsView::const_reference LhsStlContainerReference; |
2178 | // Transforms std::pair<const Key, Value> into std::pair<Key, Value> |
2179 | // so that we can match associative containers. |
2180 | typedef typename RemoveConstFromKey< |
2181 | typename LhsStlContainer::value_type>::type LhsValue; |
2182 | |
2183 | Impl(const Comparator& comparator, const ContainerMatcher& matcher) |
2184 | : comparator_(comparator), matcher_(matcher) {} |
2185 | |
2186 | void DescribeTo(::std::ostream* os) const override { |
2187 | *os << "(when sorted) " ; |
2188 | matcher_.DescribeTo(os); |
2189 | } |
2190 | |
2191 | void DescribeNegationTo(::std::ostream* os) const override { |
2192 | *os << "(when sorted) " ; |
2193 | matcher_.DescribeNegationTo(os); |
2194 | } |
2195 | |
2196 | bool MatchAndExplain(LhsContainer lhs, |
2197 | MatchResultListener* listener) const override { |
2198 | LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
2199 | ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), |
2200 | lhs_stl_container.end()); |
2201 | ::std::sort( |
2202 | sorted_container.begin(), sorted_container.end(), comparator_); |
2203 | |
2204 | if (!listener->IsInterested()) { |
2205 | // If the listener is not interested, we do not need to |
2206 | // construct the inner explanation. |
2207 | return matcher_.Matches(sorted_container); |
2208 | } |
2209 | |
2210 | *listener << "which is " ; |
2211 | UniversalPrint(sorted_container, listener->stream()); |
2212 | *listener << " when sorted" ; |
2213 | |
2214 | StringMatchResultListener inner_listener; |
2215 | const bool match = matcher_.MatchAndExplain(sorted_container, |
2216 | &inner_listener); |
2217 | PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
2218 | return match; |
2219 | } |
2220 | |
2221 | private: |
2222 | const Comparator comparator_; |
2223 | const Matcher<const ::std::vector<LhsValue>&> matcher_; |
2224 | |
2225 | GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); |
2226 | }; |
2227 | |
2228 | private: |
2229 | const Comparator comparator_; |
2230 | const ContainerMatcher matcher_; |
2231 | |
2232 | GTEST_DISALLOW_ASSIGN_(WhenSortedByMatcher); |
2233 | }; |
2234 | |
2235 | // Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher |
2236 | // must be able to be safely cast to Matcher<std::tuple<const T1&, const |
2237 | // T2&> >, where T1 and T2 are the types of elements in the LHS |
2238 | // container and the RHS container respectively. |
2239 | template <typename TupleMatcher, typename RhsContainer> |
2240 | class PointwiseMatcher { |
2241 | GTEST_COMPILE_ASSERT_( |
2242 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value, |
2243 | use_UnorderedPointwise_with_hash_tables); |
2244 | |
2245 | public: |
2246 | typedef internal::StlContainerView<RhsContainer> RhsView; |
2247 | typedef typename RhsView::type RhsStlContainer; |
2248 | typedef typename RhsStlContainer::value_type RhsValue; |
2249 | |
2250 | // Like ContainerEq, we make a copy of rhs in case the elements in |
2251 | // it are modified after this matcher is created. |
2252 | PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) |
2253 | : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) { |
2254 | // Makes sure the user doesn't instantiate this class template |
2255 | // with a const or reference type. |
2256 | (void)testing::StaticAssertTypeEq<RhsContainer, |
2257 | GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>(); |
2258 | } |
2259 | |
2260 | template <typename LhsContainer> |
2261 | operator Matcher<LhsContainer>() const { |
2262 | GTEST_COMPILE_ASSERT_( |
2263 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value, |
2264 | use_UnorderedPointwise_with_hash_tables); |
2265 | |
2266 | return Matcher<LhsContainer>( |
2267 | new Impl<const LhsContainer&>(tuple_matcher_, rhs_)); |
2268 | } |
2269 | |
2270 | template <typename LhsContainer> |
2271 | class Impl : public MatcherInterface<LhsContainer> { |
2272 | public: |
2273 | typedef internal::StlContainerView< |
2274 | GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; |
2275 | typedef typename LhsView::type LhsStlContainer; |
2276 | typedef typename LhsView::const_reference LhsStlContainerReference; |
2277 | typedef typename LhsStlContainer::value_type LhsValue; |
2278 | // We pass the LHS value and the RHS value to the inner matcher by |
2279 | // reference, as they may be expensive to copy. We must use tuple |
2280 | // instead of pair here, as a pair cannot hold references (C++ 98, |
2281 | // 20.2.2 [lib.pairs]). |
2282 | typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg; |
2283 | |
2284 | Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) |
2285 | // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. |
2286 | : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), |
2287 | rhs_(rhs) {} |
2288 | |
2289 | void DescribeTo(::std::ostream* os) const override { |
2290 | *os << "contains " << rhs_.size() |
2291 | << " values, where each value and its corresponding value in " ; |
2292 | UniversalPrinter<RhsStlContainer>::Print(rhs_, os); |
2293 | *os << " " ; |
2294 | mono_tuple_matcher_.DescribeTo(os); |
2295 | } |
2296 | void DescribeNegationTo(::std::ostream* os) const override { |
2297 | *os << "doesn't contain exactly " << rhs_.size() |
2298 | << " values, or contains a value x at some index i" |
2299 | << " where x and the i-th value of " ; |
2300 | UniversalPrint(rhs_, os); |
2301 | *os << " " ; |
2302 | mono_tuple_matcher_.DescribeNegationTo(os); |
2303 | } |
2304 | |
2305 | bool MatchAndExplain(LhsContainer lhs, |
2306 | MatchResultListener* listener) const override { |
2307 | LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
2308 | const size_t actual_size = lhs_stl_container.size(); |
2309 | if (actual_size != rhs_.size()) { |
2310 | *listener << "which contains " << actual_size << " values" ; |
2311 | return false; |
2312 | } |
2313 | |
2314 | typename LhsStlContainer::const_iterator left = lhs_stl_container.begin(); |
2315 | typename RhsStlContainer::const_iterator right = rhs_.begin(); |
2316 | for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { |
2317 | if (listener->IsInterested()) { |
2318 | StringMatchResultListener inner_listener; |
2319 | // Create InnerMatcherArg as a temporarily object to avoid it outlives |
2320 | // *left and *right. Dereference or the conversion to `const T&` may |
2321 | // return temp objects, e.g for vector<bool>. |
2322 | if (!mono_tuple_matcher_.MatchAndExplain( |
2323 | InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
2324 | ImplicitCast_<const RhsValue&>(*right)), |
2325 | &inner_listener)) { |
2326 | *listener << "where the value pair (" ; |
2327 | UniversalPrint(*left, listener->stream()); |
2328 | *listener << ", " ; |
2329 | UniversalPrint(*right, listener->stream()); |
2330 | *listener << ") at index #" << i << " don't match" ; |
2331 | PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
2332 | return false; |
2333 | } |
2334 | } else { |
2335 | if (!mono_tuple_matcher_.Matches( |
2336 | InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
2337 | ImplicitCast_<const RhsValue&>(*right)))) |
2338 | return false; |
2339 | } |
2340 | } |
2341 | |
2342 | return true; |
2343 | } |
2344 | |
2345 | private: |
2346 | const Matcher<InnerMatcherArg> mono_tuple_matcher_; |
2347 | const RhsStlContainer rhs_; |
2348 | |
2349 | GTEST_DISALLOW_ASSIGN_(Impl); |
2350 | }; |
2351 | |
2352 | private: |
2353 | const TupleMatcher tuple_matcher_; |
2354 | const RhsStlContainer rhs_; |
2355 | |
2356 | GTEST_DISALLOW_ASSIGN_(PointwiseMatcher); |
2357 | }; |
2358 | |
2359 | // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. |
2360 | template <typename Container> |
2361 | class QuantifierMatcherImpl : public MatcherInterface<Container> { |
2362 | public: |
2363 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
2364 | typedef StlContainerView<RawContainer> View; |
2365 | typedef typename View::type StlContainer; |
2366 | typedef typename View::const_reference StlContainerReference; |
2367 | typedef typename StlContainer::value_type Element; |
2368 | |
2369 | template <typename InnerMatcher> |
2370 | explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) |
2371 | : inner_matcher_( |
2372 | testing::SafeMatcherCast<const Element&>(inner_matcher)) {} |
2373 | |
2374 | // Checks whether: |
2375 | // * All elements in the container match, if all_elements_should_match. |
2376 | // * Any element in the container matches, if !all_elements_should_match. |
2377 | bool MatchAndExplainImpl(bool all_elements_should_match, |
2378 | Container container, |
2379 | MatchResultListener* listener) const { |
2380 | StlContainerReference stl_container = View::ConstReference(container); |
2381 | size_t i = 0; |
2382 | for (typename StlContainer::const_iterator it = stl_container.begin(); |
2383 | it != stl_container.end(); ++it, ++i) { |
2384 | StringMatchResultListener inner_listener; |
2385 | const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); |
2386 | |
2387 | if (matches != all_elements_should_match) { |
2388 | *listener << "whose element #" << i |
2389 | << (matches ? " matches" : " doesn't match" ); |
2390 | PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
2391 | return !all_elements_should_match; |
2392 | } |
2393 | } |
2394 | return all_elements_should_match; |
2395 | } |
2396 | |
2397 | protected: |
2398 | const Matcher<const Element&> inner_matcher_; |
2399 | |
2400 | GTEST_DISALLOW_ASSIGN_(QuantifierMatcherImpl); |
2401 | }; |
2402 | |
2403 | // Implements Contains(element_matcher) for the given argument type Container. |
2404 | // Symmetric to EachMatcherImpl. |
2405 | template <typename Container> |
2406 | class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { |
2407 | public: |
2408 | template <typename InnerMatcher> |
2409 | explicit ContainsMatcherImpl(InnerMatcher inner_matcher) |
2410 | : QuantifierMatcherImpl<Container>(inner_matcher) {} |
2411 | |
2412 | // Describes what this matcher does. |
2413 | void DescribeTo(::std::ostream* os) const override { |
2414 | *os << "contains at least one element that " ; |
2415 | this->inner_matcher_.DescribeTo(os); |
2416 | } |
2417 | |
2418 | void DescribeNegationTo(::std::ostream* os) const override { |
2419 | *os << "doesn't contain any element that " ; |
2420 | this->inner_matcher_.DescribeTo(os); |
2421 | } |
2422 | |
2423 | bool MatchAndExplain(Container container, |
2424 | MatchResultListener* listener) const override { |
2425 | return this->MatchAndExplainImpl(false, container, listener); |
2426 | } |
2427 | |
2428 | private: |
2429 | GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl); |
2430 | }; |
2431 | |
2432 | // Implements Each(element_matcher) for the given argument type Container. |
2433 | // Symmetric to ContainsMatcherImpl. |
2434 | template <typename Container> |
2435 | class EachMatcherImpl : public QuantifierMatcherImpl<Container> { |
2436 | public: |
2437 | template <typename InnerMatcher> |
2438 | explicit EachMatcherImpl(InnerMatcher inner_matcher) |
2439 | : QuantifierMatcherImpl<Container>(inner_matcher) {} |
2440 | |
2441 | // Describes what this matcher does. |
2442 | void DescribeTo(::std::ostream* os) const override { |
2443 | *os << "only contains elements that " ; |
2444 | this->inner_matcher_.DescribeTo(os); |
2445 | } |
2446 | |
2447 | void DescribeNegationTo(::std::ostream* os) const override { |
2448 | *os << "contains some element that " ; |
2449 | this->inner_matcher_.DescribeNegationTo(os); |
2450 | } |
2451 | |
2452 | bool MatchAndExplain(Container container, |
2453 | MatchResultListener* listener) const override { |
2454 | return this->MatchAndExplainImpl(true, container, listener); |
2455 | } |
2456 | |
2457 | private: |
2458 | GTEST_DISALLOW_ASSIGN_(EachMatcherImpl); |
2459 | }; |
2460 | |
2461 | // Implements polymorphic Contains(element_matcher). |
2462 | template <typename M> |
2463 | class ContainsMatcher { |
2464 | public: |
2465 | explicit ContainsMatcher(M m) : inner_matcher_(m) {} |
2466 | |
2467 | template <typename Container> |
2468 | operator Matcher<Container>() const { |
2469 | return Matcher<Container>( |
2470 | new ContainsMatcherImpl<const Container&>(inner_matcher_)); |
2471 | } |
2472 | |
2473 | private: |
2474 | const M inner_matcher_; |
2475 | |
2476 | GTEST_DISALLOW_ASSIGN_(ContainsMatcher); |
2477 | }; |
2478 | |
2479 | // Implements polymorphic Each(element_matcher). |
2480 | template <typename M> |
2481 | class EachMatcher { |
2482 | public: |
2483 | explicit EachMatcher(M m) : inner_matcher_(m) {} |
2484 | |
2485 | template <typename Container> |
2486 | operator Matcher<Container>() const { |
2487 | return Matcher<Container>( |
2488 | new EachMatcherImpl<const Container&>(inner_matcher_)); |
2489 | } |
2490 | |
2491 | private: |
2492 | const M inner_matcher_; |
2493 | |
2494 | GTEST_DISALLOW_ASSIGN_(EachMatcher); |
2495 | }; |
2496 | |
2497 | struct Rank1 {}; |
2498 | struct Rank0 : Rank1 {}; |
2499 | |
2500 | namespace pair_getters { |
2501 | using std::get; |
2502 | template <typename T> |
2503 | auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT |
2504 | return get<0>(x); |
2505 | } |
2506 | template <typename T> |
2507 | auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT |
2508 | return x.first; |
2509 | } |
2510 | |
2511 | template <typename T> |
2512 | auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT |
2513 | return get<1>(x); |
2514 | } |
2515 | template <typename T> |
2516 | auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT |
2517 | return x.second; |
2518 | } |
2519 | } // namespace pair_getters |
2520 | |
2521 | // Implements Key(inner_matcher) for the given argument pair type. |
2522 | // Key(inner_matcher) matches an std::pair whose 'first' field matches |
2523 | // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
2524 | // std::map that contains at least one element whose key is >= 5. |
2525 | template <typename PairType> |
2526 | class KeyMatcherImpl : public MatcherInterface<PairType> { |
2527 | public: |
2528 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
2529 | typedef typename RawPairType::first_type KeyType; |
2530 | |
2531 | template <typename InnerMatcher> |
2532 | explicit KeyMatcherImpl(InnerMatcher inner_matcher) |
2533 | : inner_matcher_( |
2534 | testing::SafeMatcherCast<const KeyType&>(inner_matcher)) { |
2535 | } |
2536 | |
2537 | // Returns true iff 'key_value.first' (the key) matches the inner matcher. |
2538 | bool MatchAndExplain(PairType key_value, |
2539 | MatchResultListener* listener) const override { |
2540 | StringMatchResultListener inner_listener; |
2541 | const bool match = inner_matcher_.MatchAndExplain( |
2542 | pair_getters::First(key_value, Rank0()), &inner_listener); |
2543 | const std::string explanation = inner_listener.str(); |
2544 | if (explanation != "" ) { |
2545 | *listener << "whose first field is a value " << explanation; |
2546 | } |
2547 | return match; |
2548 | } |
2549 | |
2550 | // Describes what this matcher does. |
2551 | void DescribeTo(::std::ostream* os) const override { |
2552 | *os << "has a key that " ; |
2553 | inner_matcher_.DescribeTo(os); |
2554 | } |
2555 | |
2556 | // Describes what the negation of this matcher does. |
2557 | void DescribeNegationTo(::std::ostream* os) const override { |
2558 | *os << "doesn't have a key that " ; |
2559 | inner_matcher_.DescribeTo(os); |
2560 | } |
2561 | |
2562 | private: |
2563 | const Matcher<const KeyType&> inner_matcher_; |
2564 | |
2565 | GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl); |
2566 | }; |
2567 | |
2568 | // Implements polymorphic Key(matcher_for_key). |
2569 | template <typename M> |
2570 | class KeyMatcher { |
2571 | public: |
2572 | explicit KeyMatcher(M m) : matcher_for_key_(m) {} |
2573 | |
2574 | template <typename PairType> |
2575 | operator Matcher<PairType>() const { |
2576 | return Matcher<PairType>( |
2577 | new KeyMatcherImpl<const PairType&>(matcher_for_key_)); |
2578 | } |
2579 | |
2580 | private: |
2581 | const M matcher_for_key_; |
2582 | |
2583 | GTEST_DISALLOW_ASSIGN_(KeyMatcher); |
2584 | }; |
2585 | |
2586 | // Implements Pair(first_matcher, second_matcher) for the given argument pair |
2587 | // type with its two matchers. See Pair() function below. |
2588 | template <typename PairType> |
2589 | class PairMatcherImpl : public MatcherInterface<PairType> { |
2590 | public: |
2591 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
2592 | typedef typename RawPairType::first_type FirstType; |
2593 | typedef typename RawPairType::second_type SecondType; |
2594 | |
2595 | template <typename FirstMatcher, typename SecondMatcher> |
2596 | PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) |
2597 | : first_matcher_( |
2598 | testing::SafeMatcherCast<const FirstType&>(first_matcher)), |
2599 | second_matcher_( |
2600 | testing::SafeMatcherCast<const SecondType&>(second_matcher)) { |
2601 | } |
2602 | |
2603 | // Describes what this matcher does. |
2604 | void DescribeTo(::std::ostream* os) const override { |
2605 | *os << "has a first field that " ; |
2606 | first_matcher_.DescribeTo(os); |
2607 | *os << ", and has a second field that " ; |
2608 | second_matcher_.DescribeTo(os); |
2609 | } |
2610 | |
2611 | // Describes what the negation of this matcher does. |
2612 | void DescribeNegationTo(::std::ostream* os) const override { |
2613 | *os << "has a first field that " ; |
2614 | first_matcher_.DescribeNegationTo(os); |
2615 | *os << ", or has a second field that " ; |
2616 | second_matcher_.DescribeNegationTo(os); |
2617 | } |
2618 | |
2619 | // Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second' |
2620 | // matches second_matcher. |
2621 | bool MatchAndExplain(PairType a_pair, |
2622 | MatchResultListener* listener) const override { |
2623 | if (!listener->IsInterested()) { |
2624 | // If the listener is not interested, we don't need to construct the |
2625 | // explanation. |
2626 | return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) && |
2627 | second_matcher_.Matches(pair_getters::Second(a_pair, Rank0())); |
2628 | } |
2629 | StringMatchResultListener first_inner_listener; |
2630 | if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()), |
2631 | &first_inner_listener)) { |
2632 | *listener << "whose first field does not match" ; |
2633 | PrintIfNotEmpty(first_inner_listener.str(), listener->stream()); |
2634 | return false; |
2635 | } |
2636 | StringMatchResultListener second_inner_listener; |
2637 | if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()), |
2638 | &second_inner_listener)) { |
2639 | *listener << "whose second field does not match" ; |
2640 | PrintIfNotEmpty(second_inner_listener.str(), listener->stream()); |
2641 | return false; |
2642 | } |
2643 | ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(), |
2644 | listener); |
2645 | return true; |
2646 | } |
2647 | |
2648 | private: |
2649 | void ExplainSuccess(const std::string& first_explanation, |
2650 | const std::string& second_explanation, |
2651 | MatchResultListener* listener) const { |
2652 | *listener << "whose both fields match" ; |
2653 | if (first_explanation != "" ) { |
2654 | *listener << ", where the first field is a value " << first_explanation; |
2655 | } |
2656 | if (second_explanation != "" ) { |
2657 | *listener << ", " ; |
2658 | if (first_explanation != "" ) { |
2659 | *listener << "and " ; |
2660 | } else { |
2661 | *listener << "where " ; |
2662 | } |
2663 | *listener << "the second field is a value " << second_explanation; |
2664 | } |
2665 | } |
2666 | |
2667 | const Matcher<const FirstType&> first_matcher_; |
2668 | const Matcher<const SecondType&> second_matcher_; |
2669 | |
2670 | GTEST_DISALLOW_ASSIGN_(PairMatcherImpl); |
2671 | }; |
2672 | |
2673 | // Implements polymorphic Pair(first_matcher, second_matcher). |
2674 | template <typename FirstMatcher, typename SecondMatcher> |
2675 | class PairMatcher { |
2676 | public: |
2677 | PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) |
2678 | : first_matcher_(first_matcher), second_matcher_(second_matcher) {} |
2679 | |
2680 | template <typename PairType> |
2681 | operator Matcher<PairType> () const { |
2682 | return Matcher<PairType>( |
2683 | new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_)); |
2684 | } |
2685 | |
2686 | private: |
2687 | const FirstMatcher first_matcher_; |
2688 | const SecondMatcher second_matcher_; |
2689 | |
2690 | GTEST_DISALLOW_ASSIGN_(PairMatcher); |
2691 | }; |
2692 | |
2693 | // Implements ElementsAre() and ElementsAreArray(). |
2694 | template <typename Container> |
2695 | class ElementsAreMatcherImpl : public MatcherInterface<Container> { |
2696 | public: |
2697 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
2698 | typedef internal::StlContainerView<RawContainer> View; |
2699 | typedef typename View::type StlContainer; |
2700 | typedef typename View::const_reference StlContainerReference; |
2701 | typedef typename StlContainer::value_type Element; |
2702 | |
2703 | // Constructs the matcher from a sequence of element values or |
2704 | // element matchers. |
2705 | template <typename InputIter> |
2706 | ElementsAreMatcherImpl(InputIter first, InputIter last) { |
2707 | while (first != last) { |
2708 | matchers_.push_back(MatcherCast<const Element&>(*first++)); |
2709 | } |
2710 | } |
2711 | |
2712 | // Describes what this matcher does. |
2713 | void DescribeTo(::std::ostream* os) const override { |
2714 | if (count() == 0) { |
2715 | *os << "is empty" ; |
2716 | } else if (count() == 1) { |
2717 | *os << "has 1 element that " ; |
2718 | matchers_[0].DescribeTo(os); |
2719 | } else { |
2720 | *os << "has " << Elements(count()) << " where\n" ; |
2721 | for (size_t i = 0; i != count(); ++i) { |
2722 | *os << "element #" << i << " " ; |
2723 | matchers_[i].DescribeTo(os); |
2724 | if (i + 1 < count()) { |
2725 | *os << ",\n" ; |
2726 | } |
2727 | } |
2728 | } |
2729 | } |
2730 | |
2731 | // Describes what the negation of this matcher does. |
2732 | void DescribeNegationTo(::std::ostream* os) const override { |
2733 | if (count() == 0) { |
2734 | *os << "isn't empty" ; |
2735 | return; |
2736 | } |
2737 | |
2738 | *os << "doesn't have " << Elements(count()) << ", or\n" ; |
2739 | for (size_t i = 0; i != count(); ++i) { |
2740 | *os << "element #" << i << " " ; |
2741 | matchers_[i].DescribeNegationTo(os); |
2742 | if (i + 1 < count()) { |
2743 | *os << ", or\n" ; |
2744 | } |
2745 | } |
2746 | } |
2747 | |
2748 | bool MatchAndExplain(Container container, |
2749 | MatchResultListener* listener) const override { |
2750 | // To work with stream-like "containers", we must only walk |
2751 | // through the elements in one pass. |
2752 | |
2753 | const bool listener_interested = listener->IsInterested(); |
2754 | |
2755 | // explanations[i] is the explanation of the element at index i. |
2756 | ::std::vector<std::string> explanations(count()); |
2757 | StlContainerReference stl_container = View::ConstReference(container); |
2758 | typename StlContainer::const_iterator it = stl_container.begin(); |
2759 | size_t exam_pos = 0; |
2760 | bool mismatch_found = false; // Have we found a mismatched element yet? |
2761 | |
2762 | // Go through the elements and matchers in pairs, until we reach |
2763 | // the end of either the elements or the matchers, or until we find a |
2764 | // mismatch. |
2765 | for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { |
2766 | bool match; // Does the current element match the current matcher? |
2767 | if (listener_interested) { |
2768 | StringMatchResultListener s; |
2769 | match = matchers_[exam_pos].MatchAndExplain(*it, &s); |
2770 | explanations[exam_pos] = s.str(); |
2771 | } else { |
2772 | match = matchers_[exam_pos].Matches(*it); |
2773 | } |
2774 | |
2775 | if (!match) { |
2776 | mismatch_found = true; |
2777 | break; |
2778 | } |
2779 | } |
2780 | // If mismatch_found is true, 'exam_pos' is the index of the mismatch. |
2781 | |
2782 | // Find how many elements the actual container has. We avoid |
2783 | // calling size() s.t. this code works for stream-like "containers" |
2784 | // that don't define size(). |
2785 | size_t actual_count = exam_pos; |
2786 | for (; it != stl_container.end(); ++it) { |
2787 | ++actual_count; |
2788 | } |
2789 | |
2790 | if (actual_count != count()) { |
2791 | // The element count doesn't match. If the container is empty, |
2792 | // there's no need to explain anything as Google Mock already |
2793 | // prints the empty container. Otherwise we just need to show |
2794 | // how many elements there actually are. |
2795 | if (listener_interested && (actual_count != 0)) { |
2796 | *listener << "which has " << Elements(actual_count); |
2797 | } |
2798 | return false; |
2799 | } |
2800 | |
2801 | if (mismatch_found) { |
2802 | // The element count matches, but the exam_pos-th element doesn't match. |
2803 | if (listener_interested) { |
2804 | *listener << "whose element #" << exam_pos << " doesn't match" ; |
2805 | PrintIfNotEmpty(explanations[exam_pos], listener->stream()); |
2806 | } |
2807 | return false; |
2808 | } |
2809 | |
2810 | // Every element matches its expectation. We need to explain why |
2811 | // (the obvious ones can be skipped). |
2812 | if (listener_interested) { |
2813 | bool reason_printed = false; |
2814 | for (size_t i = 0; i != count(); ++i) { |
2815 | const std::string& s = explanations[i]; |
2816 | if (!s.empty()) { |
2817 | if (reason_printed) { |
2818 | *listener << ",\nand " ; |
2819 | } |
2820 | *listener << "whose element #" << i << " matches, " << s; |
2821 | reason_printed = true; |
2822 | } |
2823 | } |
2824 | } |
2825 | return true; |
2826 | } |
2827 | |
2828 | private: |
2829 | static Message Elements(size_t count) { |
2830 | return Message() << count << (count == 1 ? " element" : " elements" ); |
2831 | } |
2832 | |
2833 | size_t count() const { return matchers_.size(); } |
2834 | |
2835 | ::std::vector<Matcher<const Element&> > matchers_; |
2836 | |
2837 | GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl); |
2838 | }; |
2839 | |
2840 | // Connectivity matrix of (elements X matchers), in element-major order. |
2841 | // Initially, there are no edges. |
2842 | // Use NextGraph() to iterate over all possible edge configurations. |
2843 | // Use Randomize() to generate a random edge configuration. |
2844 | class GTEST_API_ MatchMatrix { |
2845 | public: |
2846 | MatchMatrix(size_t num_elements, size_t num_matchers) |
2847 | : num_elements_(num_elements), |
2848 | num_matchers_(num_matchers), |
2849 | matched_(num_elements_* num_matchers_, 0) { |
2850 | } |
2851 | |
2852 | size_t LhsSize() const { return num_elements_; } |
2853 | size_t RhsSize() const { return num_matchers_; } |
2854 | bool HasEdge(size_t ilhs, size_t irhs) const { |
2855 | return matched_[SpaceIndex(ilhs, irhs)] == 1; |
2856 | } |
2857 | void SetEdge(size_t ilhs, size_t irhs, bool b) { |
2858 | matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; |
2859 | } |
2860 | |
2861 | // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number, |
2862 | // adds 1 to that number; returns false if incrementing the graph left it |
2863 | // empty. |
2864 | bool NextGraph(); |
2865 | |
2866 | void Randomize(); |
2867 | |
2868 | std::string DebugString() const; |
2869 | |
2870 | private: |
2871 | size_t SpaceIndex(size_t ilhs, size_t irhs) const { |
2872 | return ilhs * num_matchers_ + irhs; |
2873 | } |
2874 | |
2875 | size_t num_elements_; |
2876 | size_t num_matchers_; |
2877 | |
2878 | // Each element is a char interpreted as bool. They are stored as a |
2879 | // flattened array in lhs-major order, use 'SpaceIndex()' to translate |
2880 | // a (ilhs, irhs) matrix coordinate into an offset. |
2881 | ::std::vector<char> matched_; |
2882 | }; |
2883 | |
2884 | typedef ::std::pair<size_t, size_t> ElementMatcherPair; |
2885 | typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs; |
2886 | |
2887 | // Returns a maximum bipartite matching for the specified graph 'g'. |
2888 | // The matching is represented as a vector of {element, matcher} pairs. |
2889 | GTEST_API_ ElementMatcherPairs |
2890 | FindMaxBipartiteMatching(const MatchMatrix& g); |
2891 | |
2892 | struct UnorderedMatcherRequire { |
2893 | enum Flags { |
2894 | Superset = 1 << 0, |
2895 | Subset = 1 << 1, |
2896 | ExactMatch = Superset | Subset, |
2897 | }; |
2898 | }; |
2899 | |
2900 | // Untyped base class for implementing UnorderedElementsAre. By |
2901 | // putting logic that's not specific to the element type here, we |
2902 | // reduce binary bloat and increase compilation speed. |
2903 | class GTEST_API_ UnorderedElementsAreMatcherImplBase { |
2904 | protected: |
2905 | explicit UnorderedElementsAreMatcherImplBase( |
2906 | UnorderedMatcherRequire::Flags matcher_flags) |
2907 | : match_flags_(matcher_flags) {} |
2908 | |
2909 | // A vector of matcher describers, one for each element matcher. |
2910 | // Does not own the describers (and thus can be used only when the |
2911 | // element matchers are alive). |
2912 | typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec; |
2913 | |
2914 | // Describes this UnorderedElementsAre matcher. |
2915 | void DescribeToImpl(::std::ostream* os) const; |
2916 | |
2917 | // Describes the negation of this UnorderedElementsAre matcher. |
2918 | void DescribeNegationToImpl(::std::ostream* os) const; |
2919 | |
2920 | bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts, |
2921 | const MatchMatrix& matrix, |
2922 | MatchResultListener* listener) const; |
2923 | |
2924 | bool FindPairing(const MatchMatrix& matrix, |
2925 | MatchResultListener* listener) const; |
2926 | |
2927 | MatcherDescriberVec& matcher_describers() { |
2928 | return matcher_describers_; |
2929 | } |
2930 | |
2931 | static Message Elements(size_t n) { |
2932 | return Message() << n << " element" << (n == 1 ? "" : "s" ); |
2933 | } |
2934 | |
2935 | UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; } |
2936 | |
2937 | private: |
2938 | UnorderedMatcherRequire::Flags match_flags_; |
2939 | MatcherDescriberVec matcher_describers_; |
2940 | |
2941 | GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImplBase); |
2942 | }; |
2943 | |
2944 | // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and |
2945 | // IsSupersetOf. |
2946 | template <typename Container> |
2947 | class UnorderedElementsAreMatcherImpl |
2948 | : public MatcherInterface<Container>, |
2949 | public UnorderedElementsAreMatcherImplBase { |
2950 | public: |
2951 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
2952 | typedef internal::StlContainerView<RawContainer> View; |
2953 | typedef typename View::type StlContainer; |
2954 | typedef typename View::const_reference StlContainerReference; |
2955 | typedef typename StlContainer::const_iterator StlContainerConstIterator; |
2956 | typedef typename StlContainer::value_type Element; |
2957 | |
2958 | template <typename InputIter> |
2959 | UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags, |
2960 | InputIter first, InputIter last) |
2961 | : UnorderedElementsAreMatcherImplBase(matcher_flags) { |
2962 | for (; first != last; ++first) { |
2963 | matchers_.push_back(MatcherCast<const Element&>(*first)); |
2964 | matcher_describers().push_back(matchers_.back().GetDescriber()); |
2965 | } |
2966 | } |
2967 | |
2968 | // Describes what this matcher does. |
2969 | void DescribeTo(::std::ostream* os) const override { |
2970 | return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); |
2971 | } |
2972 | |
2973 | // Describes what the negation of this matcher does. |
2974 | void DescribeNegationTo(::std::ostream* os) const override { |
2975 | return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); |
2976 | } |
2977 | |
2978 | bool MatchAndExplain(Container container, |
2979 | MatchResultListener* listener) const override { |
2980 | StlContainerReference stl_container = View::ConstReference(container); |
2981 | ::std::vector<std::string> element_printouts; |
2982 | MatchMatrix matrix = |
2983 | AnalyzeElements(stl_container.begin(), stl_container.end(), |
2984 | &element_printouts, listener); |
2985 | |
2986 | if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) { |
2987 | return true; |
2988 | } |
2989 | |
2990 | if (match_flags() == UnorderedMatcherRequire::ExactMatch) { |
2991 | if (matrix.LhsSize() != matrix.RhsSize()) { |
2992 | // The element count doesn't match. If the container is empty, |
2993 | // there's no need to explain anything as Google Mock already |
2994 | // prints the empty container. Otherwise we just need to show |
2995 | // how many elements there actually are. |
2996 | if (matrix.LhsSize() != 0 && listener->IsInterested()) { |
2997 | *listener << "which has " << Elements(matrix.LhsSize()); |
2998 | } |
2999 | return false; |
3000 | } |
3001 | } |
3002 | |
3003 | return VerifyMatchMatrix(element_printouts, matrix, listener) && |
3004 | FindPairing(matrix, listener); |
3005 | } |
3006 | |
3007 | private: |
3008 | template <typename ElementIter> |
3009 | MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, |
3010 | ::std::vector<std::string>* element_printouts, |
3011 | MatchResultListener* listener) const { |
3012 | element_printouts->clear(); |
3013 | ::std::vector<char> did_match; |
3014 | size_t num_elements = 0; |
3015 | for (; elem_first != elem_last; ++num_elements, ++elem_first) { |
3016 | if (listener->IsInterested()) { |
3017 | element_printouts->push_back(PrintToString(*elem_first)); |
3018 | } |
3019 | for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
3020 | did_match.push_back(Matches(matchers_[irhs])(*elem_first)); |
3021 | } |
3022 | } |
3023 | |
3024 | MatchMatrix matrix(num_elements, matchers_.size()); |
3025 | ::std::vector<char>::const_iterator did_match_iter = did_match.begin(); |
3026 | for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { |
3027 | for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
3028 | matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0); |
3029 | } |
3030 | } |
3031 | return matrix; |
3032 | } |
3033 | |
3034 | ::std::vector<Matcher<const Element&> > matchers_; |
3035 | |
3036 | GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImpl); |
3037 | }; |
3038 | |
3039 | // Functor for use in TransformTuple. |
3040 | // Performs MatcherCast<Target> on an input argument of any type. |
3041 | template <typename Target> |
3042 | struct CastAndAppendTransform { |
3043 | template <typename Arg> |
3044 | Matcher<Target> operator()(const Arg& a) const { |
3045 | return MatcherCast<Target>(a); |
3046 | } |
3047 | }; |
3048 | |
3049 | // Implements UnorderedElementsAre. |
3050 | template <typename MatcherTuple> |
3051 | class UnorderedElementsAreMatcher { |
3052 | public: |
3053 | explicit UnorderedElementsAreMatcher(const MatcherTuple& args) |
3054 | : matchers_(args) {} |
3055 | |
3056 | template <typename Container> |
3057 | operator Matcher<Container>() const { |
3058 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
3059 | typedef typename internal::StlContainerView<RawContainer>::type View; |
3060 | typedef typename View::value_type Element; |
3061 | typedef ::std::vector<Matcher<const Element&> > MatcherVec; |
3062 | MatcherVec matchers; |
3063 | matchers.reserve(::std::tuple_size<MatcherTuple>::value); |
3064 | TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
3065 | ::std::back_inserter(matchers)); |
3066 | return Matcher<Container>( |
3067 | new UnorderedElementsAreMatcherImpl<const Container&>( |
3068 | UnorderedMatcherRequire::ExactMatch, matchers.begin(), |
3069 | matchers.end())); |
3070 | } |
3071 | |
3072 | private: |
3073 | const MatcherTuple matchers_; |
3074 | GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcher); |
3075 | }; |
3076 | |
3077 | // Implements ElementsAre. |
3078 | template <typename MatcherTuple> |
3079 | class ElementsAreMatcher { |
3080 | public: |
3081 | explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} |
3082 | |
3083 | template <typename Container> |
3084 | operator Matcher<Container>() const { |
3085 | GTEST_COMPILE_ASSERT_( |
3086 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value || |
3087 | ::std::tuple_size<MatcherTuple>::value < 2, |
3088 | use_UnorderedElementsAre_with_hash_tables); |
3089 | |
3090 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
3091 | typedef typename internal::StlContainerView<RawContainer>::type View; |
3092 | typedef typename View::value_type Element; |
3093 | typedef ::std::vector<Matcher<const Element&> > MatcherVec; |
3094 | MatcherVec matchers; |
3095 | matchers.reserve(::std::tuple_size<MatcherTuple>::value); |
3096 | TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
3097 | ::std::back_inserter(matchers)); |
3098 | return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( |
3099 | matchers.begin(), matchers.end())); |
3100 | } |
3101 | |
3102 | private: |
3103 | const MatcherTuple matchers_; |
3104 | GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher); |
3105 | }; |
3106 | |
3107 | // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf(). |
3108 | template <typename T> |
3109 | class UnorderedElementsAreArrayMatcher { |
3110 | public: |
3111 | template <typename Iter> |
3112 | UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags, |
3113 | Iter first, Iter last) |
3114 | : match_flags_(match_flags), matchers_(first, last) {} |
3115 | |
3116 | template <typename Container> |
3117 | operator Matcher<Container>() const { |
3118 | return Matcher<Container>( |
3119 | new UnorderedElementsAreMatcherImpl<const Container&>( |
3120 | match_flags_, matchers_.begin(), matchers_.end())); |
3121 | } |
3122 | |
3123 | private: |
3124 | UnorderedMatcherRequire::Flags match_flags_; |
3125 | ::std::vector<T> matchers_; |
3126 | |
3127 | GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreArrayMatcher); |
3128 | }; |
3129 | |
3130 | // Implements ElementsAreArray(). |
3131 | template <typename T> |
3132 | class ElementsAreArrayMatcher { |
3133 | public: |
3134 | template <typename Iter> |
3135 | ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
3136 | |
3137 | template <typename Container> |
3138 | operator Matcher<Container>() const { |
3139 | GTEST_COMPILE_ASSERT_( |
3140 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value, |
3141 | use_UnorderedElementsAreArray_with_hash_tables); |
3142 | |
3143 | return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( |
3144 | matchers_.begin(), matchers_.end())); |
3145 | } |
3146 | |
3147 | private: |
3148 | const ::std::vector<T> matchers_; |
3149 | |
3150 | GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher); |
3151 | }; |
3152 | |
3153 | // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second |
3154 | // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm, |
3155 | // second) is a polymorphic matcher that matches a value x iff tm |
3156 | // matches tuple (x, second). Useful for implementing |
3157 | // UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
3158 | // |
3159 | // BoundSecondMatcher is copyable and assignable, as we need to put |
3160 | // instances of this class in a vector when implementing |
3161 | // UnorderedPointwise(). |
3162 | template <typename Tuple2Matcher, typename Second> |
3163 | class BoundSecondMatcher { |
3164 | public: |
3165 | BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second) |
3166 | : tuple2_matcher_(tm), second_value_(second) {} |
3167 | |
3168 | template <typename T> |
3169 | operator Matcher<T>() const { |
3170 | return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_)); |
3171 | } |
3172 | |
3173 | // We have to define this for UnorderedPointwise() to compile in |
3174 | // C++98 mode, as it puts BoundSecondMatcher instances in a vector, |
3175 | // which requires the elements to be assignable in C++98. The |
3176 | // compiler cannot generate the operator= for us, as Tuple2Matcher |
3177 | // and Second may not be assignable. |
3178 | // |
3179 | // However, this should never be called, so the implementation just |
3180 | // need to assert. |
3181 | void operator=(const BoundSecondMatcher& /*rhs*/) { |
3182 | GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned." ; |
3183 | } |
3184 | |
3185 | private: |
3186 | template <typename T> |
3187 | class Impl : public MatcherInterface<T> { |
3188 | public: |
3189 | typedef ::std::tuple<T, Second> ArgTuple; |
3190 | |
3191 | Impl(const Tuple2Matcher& tm, const Second& second) |
3192 | : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)), |
3193 | second_value_(second) {} |
3194 | |
3195 | void DescribeTo(::std::ostream* os) const override { |
3196 | *os << "and " ; |
3197 | UniversalPrint(second_value_, os); |
3198 | *os << " " ; |
3199 | mono_tuple2_matcher_.DescribeTo(os); |
3200 | } |
3201 | |
3202 | bool MatchAndExplain(T x, MatchResultListener* listener) const override { |
3203 | return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_), |
3204 | listener); |
3205 | } |
3206 | |
3207 | private: |
3208 | const Matcher<const ArgTuple&> mono_tuple2_matcher_; |
3209 | const Second second_value_; |
3210 | |
3211 | GTEST_DISALLOW_ASSIGN_(Impl); |
3212 | }; |
3213 | |
3214 | const Tuple2Matcher tuple2_matcher_; |
3215 | const Second second_value_; |
3216 | }; |
3217 | |
3218 | // Given a 2-tuple matcher tm and a value second, |
3219 | // MatcherBindSecond(tm, second) returns a matcher that matches a |
3220 | // value x iff tm matches tuple (x, second). Useful for implementing |
3221 | // UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
3222 | template <typename Tuple2Matcher, typename Second> |
3223 | BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond( |
3224 | const Tuple2Matcher& tm, const Second& second) { |
3225 | return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second); |
3226 | } |
3227 | |
3228 | // Returns the description for a matcher defined using the MATCHER*() |
3229 | // macro where the user-supplied description string is "", if |
3230 | // 'negation' is false; otherwise returns the description of the |
3231 | // negation of the matcher. 'param_values' contains a list of strings |
3232 | // that are the print-out of the matcher's parameters. |
3233 | GTEST_API_ std::string FormatMatcherDescription(bool negation, |
3234 | const char* matcher_name, |
3235 | const Strings& param_values); |
3236 | |
3237 | // Implements a matcher that checks the value of a optional<> type variable. |
3238 | template <typename ValueMatcher> |
3239 | class OptionalMatcher { |
3240 | public: |
3241 | explicit OptionalMatcher(const ValueMatcher& value_matcher) |
3242 | : value_matcher_(value_matcher) {} |
3243 | |
3244 | template <typename Optional> |
3245 | operator Matcher<Optional>() const { |
3246 | return Matcher<Optional>(new Impl<const Optional&>(value_matcher_)); |
3247 | } |
3248 | |
3249 | template <typename Optional> |
3250 | class Impl : public MatcherInterface<Optional> { |
3251 | public: |
3252 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView; |
3253 | typedef typename OptionalView::value_type ValueType; |
3254 | explicit Impl(const ValueMatcher& value_matcher) |
3255 | : value_matcher_(MatcherCast<ValueType>(value_matcher)) {} |
3256 | |
3257 | void DescribeTo(::std::ostream* os) const override { |
3258 | *os << "value " ; |
3259 | value_matcher_.DescribeTo(os); |
3260 | } |
3261 | |
3262 | void DescribeNegationTo(::std::ostream* os) const override { |
3263 | *os << "value " ; |
3264 | value_matcher_.DescribeNegationTo(os); |
3265 | } |
3266 | |
3267 | bool MatchAndExplain(Optional optional, |
3268 | MatchResultListener* listener) const override { |
3269 | if (!optional) { |
3270 | *listener << "which is not engaged" ; |
3271 | return false; |
3272 | } |
3273 | const ValueType& value = *optional; |
3274 | StringMatchResultListener value_listener; |
3275 | const bool match = value_matcher_.MatchAndExplain(value, &value_listener); |
3276 | *listener << "whose value " << PrintToString(value) |
3277 | << (match ? " matches" : " doesn't match" ); |
3278 | PrintIfNotEmpty(value_listener.str(), listener->stream()); |
3279 | return match; |
3280 | } |
3281 | |
3282 | private: |
3283 | const Matcher<ValueType> value_matcher_; |
3284 | GTEST_DISALLOW_ASSIGN_(Impl); |
3285 | }; |
3286 | |
3287 | private: |
3288 | const ValueMatcher value_matcher_; |
3289 | GTEST_DISALLOW_ASSIGN_(OptionalMatcher); |
3290 | }; |
3291 | |
3292 | namespace variant_matcher { |
3293 | // Overloads to allow VariantMatcher to do proper ADL lookup. |
3294 | template <typename T> |
3295 | void holds_alternative() {} |
3296 | template <typename T> |
3297 | void get() {} |
3298 | |
3299 | // Implements a matcher that checks the value of a variant<> type variable. |
3300 | template <typename T> |
3301 | class VariantMatcher { |
3302 | public: |
3303 | explicit VariantMatcher(::testing::Matcher<const T&> matcher) |
3304 | : matcher_(std::move(matcher)) {} |
3305 | |
3306 | template <typename Variant> |
3307 | bool MatchAndExplain(const Variant& value, |
3308 | ::testing::MatchResultListener* listener) const { |
3309 | using std::get; |
3310 | if (!listener->IsInterested()) { |
3311 | return holds_alternative<T>(value) && matcher_.Matches(get<T>(value)); |
3312 | } |
3313 | |
3314 | if (!holds_alternative<T>(value)) { |
3315 | *listener << "whose value is not of type '" << GetTypeName() << "'" ; |
3316 | return false; |
3317 | } |
3318 | |
3319 | const T& elem = get<T>(value); |
3320 | StringMatchResultListener elem_listener; |
3321 | const bool match = matcher_.MatchAndExplain(elem, &elem_listener); |
3322 | *listener << "whose value " << PrintToString(elem) |
3323 | << (match ? " matches" : " doesn't match" ); |
3324 | PrintIfNotEmpty(elem_listener.str(), listener->stream()); |
3325 | return match; |
3326 | } |
3327 | |
3328 | void DescribeTo(std::ostream* os) const { |
3329 | *os << "is a variant<> with value of type '" << GetTypeName() |
3330 | << "' and the value " ; |
3331 | matcher_.DescribeTo(os); |
3332 | } |
3333 | |
3334 | void DescribeNegationTo(std::ostream* os) const { |
3335 | *os << "is a variant<> with value of type other than '" << GetTypeName() |
3336 | << "' or the value " ; |
3337 | matcher_.DescribeNegationTo(os); |
3338 | } |
3339 | |
3340 | private: |
3341 | static std::string GetTypeName() { |
3342 | #if GTEST_HAS_RTTI |
3343 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
3344 | return internal::GetTypeName<T>()); |
3345 | #endif |
3346 | return "the element type" ; |
3347 | } |
3348 | |
3349 | const ::testing::Matcher<const T&> matcher_; |
3350 | }; |
3351 | |
3352 | } // namespace variant_matcher |
3353 | |
3354 | namespace any_cast_matcher { |
3355 | |
3356 | // Overloads to allow AnyCastMatcher to do proper ADL lookup. |
3357 | template <typename T> |
3358 | void any_cast() {} |
3359 | |
3360 | // Implements a matcher that any_casts the value. |
3361 | template <typename T> |
3362 | class AnyCastMatcher { |
3363 | public: |
3364 | explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher) |
3365 | : matcher_(matcher) {} |
3366 | |
3367 | template <typename AnyType> |
3368 | bool MatchAndExplain(const AnyType& value, |
3369 | ::testing::MatchResultListener* listener) const { |
3370 | if (!listener->IsInterested()) { |
3371 | const T* ptr = any_cast<T>(&value); |
3372 | return ptr != nullptr && matcher_.Matches(*ptr); |
3373 | } |
3374 | |
3375 | const T* elem = any_cast<T>(&value); |
3376 | if (elem == nullptr) { |
3377 | *listener << "whose value is not of type '" << GetTypeName() << "'" ; |
3378 | return false; |
3379 | } |
3380 | |
3381 | StringMatchResultListener elem_listener; |
3382 | const bool match = matcher_.MatchAndExplain(*elem, &elem_listener); |
3383 | *listener << "whose value " << PrintToString(*elem) |
3384 | << (match ? " matches" : " doesn't match" ); |
3385 | PrintIfNotEmpty(elem_listener.str(), listener->stream()); |
3386 | return match; |
3387 | } |
3388 | |
3389 | void DescribeTo(std::ostream* os) const { |
3390 | *os << "is an 'any' type with value of type '" << GetTypeName() |
3391 | << "' and the value " ; |
3392 | matcher_.DescribeTo(os); |
3393 | } |
3394 | |
3395 | void DescribeNegationTo(std::ostream* os) const { |
3396 | *os << "is an 'any' type with value of type other than '" << GetTypeName() |
3397 | << "' or the value " ; |
3398 | matcher_.DescribeNegationTo(os); |
3399 | } |
3400 | |
3401 | private: |
3402 | static std::string GetTypeName() { |
3403 | #if GTEST_HAS_RTTI |
3404 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
3405 | return internal::GetTypeName<T>()); |
3406 | #endif |
3407 | return "the element type" ; |
3408 | } |
3409 | |
3410 | const ::testing::Matcher<const T&> matcher_; |
3411 | }; |
3412 | |
3413 | } // namespace any_cast_matcher |
3414 | |
3415 | // Implements the Args() matcher. |
3416 | template <class ArgsTuple, size_t... k> |
3417 | class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> { |
3418 | public: |
3419 | using RawArgsTuple = typename std::decay<ArgsTuple>::type; |
3420 | using SelectedArgs = |
3421 | std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>; |
3422 | using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>; |
3423 | |
3424 | template <typename InnerMatcher> |
3425 | explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher) |
3426 | : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {} |
3427 | |
3428 | bool MatchAndExplain(ArgsTuple args, |
3429 | MatchResultListener* listener) const override { |
3430 | // Workaround spurious C4100 on MSVC<=15.7 when k is empty. |
3431 | (void)args; |
3432 | const SelectedArgs& selected_args = |
3433 | std::forward_as_tuple(std::get<k>(args)...); |
3434 | if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args); |
3435 | |
3436 | PrintIndices(listener->stream()); |
3437 | *listener << "are " << PrintToString(selected_args); |
3438 | |
3439 | StringMatchResultListener inner_listener; |
3440 | const bool match = |
3441 | inner_matcher_.MatchAndExplain(selected_args, &inner_listener); |
3442 | PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
3443 | return match; |
3444 | } |
3445 | |
3446 | void DescribeTo(::std::ostream* os) const override { |
3447 | *os << "are a tuple " ; |
3448 | PrintIndices(os); |
3449 | inner_matcher_.DescribeTo(os); |
3450 | } |
3451 | |
3452 | void DescribeNegationTo(::std::ostream* os) const override { |
3453 | *os << "are a tuple " ; |
3454 | PrintIndices(os); |
3455 | inner_matcher_.DescribeNegationTo(os); |
3456 | } |
3457 | |
3458 | private: |
3459 | // Prints the indices of the selected fields. |
3460 | static void PrintIndices(::std::ostream* os) { |
3461 | *os << "whose fields (" ; |
3462 | const char* sep = "" ; |
3463 | // Workaround spurious C4189 on MSVC<=15.7 when k is empty. |
3464 | (void)sep; |
3465 | const char* dummy[] = {"" , (*os << sep << "#" << k, sep = ", " )...}; |
3466 | (void)dummy; |
3467 | *os << ") " ; |
3468 | } |
3469 | |
3470 | MonomorphicInnerMatcher inner_matcher_; |
3471 | }; |
3472 | |
3473 | template <class InnerMatcher, size_t... k> |
3474 | class ArgsMatcher { |
3475 | public: |
3476 | explicit ArgsMatcher(InnerMatcher inner_matcher) |
3477 | : inner_matcher_(std::move(inner_matcher)) {} |
3478 | |
3479 | template <typename ArgsTuple> |
3480 | operator Matcher<ArgsTuple>() const { // NOLINT |
3481 | return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_)); |
3482 | } |
3483 | |
3484 | private: |
3485 | InnerMatcher inner_matcher_; |
3486 | }; |
3487 | |
3488 | } // namespace internal |
3489 | |
3490 | // ElementsAreArray(iterator_first, iterator_last) |
3491 | // ElementsAreArray(pointer, count) |
3492 | // ElementsAreArray(array) |
3493 | // ElementsAreArray(container) |
3494 | // ElementsAreArray({ e1, e2, ..., en }) |
3495 | // |
3496 | // The ElementsAreArray() functions are like ElementsAre(...), except |
3497 | // that they are given a homogeneous sequence rather than taking each |
3498 | // element as a function argument. The sequence can be specified as an |
3499 | // array, a pointer and count, a vector, an initializer list, or an |
3500 | // STL iterator range. In each of these cases, the underlying sequence |
3501 | // can be either a sequence of values or a sequence of matchers. |
3502 | // |
3503 | // All forms of ElementsAreArray() make a copy of the input matcher sequence. |
3504 | |
3505 | template <typename Iter> |
3506 | inline internal::ElementsAreArrayMatcher< |
3507 | typename ::std::iterator_traits<Iter>::value_type> |
3508 | ElementsAreArray(Iter first, Iter last) { |
3509 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
3510 | return internal::ElementsAreArrayMatcher<T>(first, last); |
3511 | } |
3512 | |
3513 | template <typename T> |
3514 | inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( |
3515 | const T* pointer, size_t count) { |
3516 | return ElementsAreArray(pointer, pointer + count); |
3517 | } |
3518 | |
3519 | template <typename T, size_t N> |
3520 | inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( |
3521 | const T (&array)[N]) { |
3522 | return ElementsAreArray(array, N); |
3523 | } |
3524 | |
3525 | template <typename Container> |
3526 | inline internal::ElementsAreArrayMatcher<typename Container::value_type> |
3527 | ElementsAreArray(const Container& container) { |
3528 | return ElementsAreArray(container.begin(), container.end()); |
3529 | } |
3530 | |
3531 | template <typename T> |
3532 | inline internal::ElementsAreArrayMatcher<T> |
3533 | ElementsAreArray(::std::initializer_list<T> xs) { |
3534 | return ElementsAreArray(xs.begin(), xs.end()); |
3535 | } |
3536 | |
3537 | // UnorderedElementsAreArray(iterator_first, iterator_last) |
3538 | // UnorderedElementsAreArray(pointer, count) |
3539 | // UnorderedElementsAreArray(array) |
3540 | // UnorderedElementsAreArray(container) |
3541 | // UnorderedElementsAreArray({ e1, e2, ..., en }) |
3542 | // |
3543 | // UnorderedElementsAreArray() verifies that a bijective mapping onto a |
3544 | // collection of matchers exists. |
3545 | // |
3546 | // The matchers can be specified as an array, a pointer and count, a container, |
3547 | // an initializer list, or an STL iterator range. In each of these cases, the |
3548 | // underlying matchers can be either values or matchers. |
3549 | |
3550 | template <typename Iter> |
3551 | inline internal::UnorderedElementsAreArrayMatcher< |
3552 | typename ::std::iterator_traits<Iter>::value_type> |
3553 | UnorderedElementsAreArray(Iter first, Iter last) { |
3554 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
3555 | return internal::UnorderedElementsAreArrayMatcher<T>( |
3556 | internal::UnorderedMatcherRequire::ExactMatch, first, last); |
3557 | } |
3558 | |
3559 | template <typename T> |
3560 | inline internal::UnorderedElementsAreArrayMatcher<T> |
3561 | UnorderedElementsAreArray(const T* pointer, size_t count) { |
3562 | return UnorderedElementsAreArray(pointer, pointer + count); |
3563 | } |
3564 | |
3565 | template <typename T, size_t N> |
3566 | inline internal::UnorderedElementsAreArrayMatcher<T> |
3567 | UnorderedElementsAreArray(const T (&array)[N]) { |
3568 | return UnorderedElementsAreArray(array, N); |
3569 | } |
3570 | |
3571 | template <typename Container> |
3572 | inline internal::UnorderedElementsAreArrayMatcher< |
3573 | typename Container::value_type> |
3574 | UnorderedElementsAreArray(const Container& container) { |
3575 | return UnorderedElementsAreArray(container.begin(), container.end()); |
3576 | } |
3577 | |
3578 | template <typename T> |
3579 | inline internal::UnorderedElementsAreArrayMatcher<T> |
3580 | UnorderedElementsAreArray(::std::initializer_list<T> xs) { |
3581 | return UnorderedElementsAreArray(xs.begin(), xs.end()); |
3582 | } |
3583 | |
3584 | // _ is a matcher that matches anything of any type. |
3585 | // |
3586 | // This definition is fine as: |
3587 | // |
3588 | // 1. The C++ standard permits using the name _ in a namespace that |
3589 | // is not the global namespace or ::std. |
3590 | // 2. The AnythingMatcher class has no data member or constructor, |
3591 | // so it's OK to create global variables of this type. |
3592 | // 3. c-style has approved of using _ in this case. |
3593 | const internal::AnythingMatcher _ = {}; |
3594 | // Creates a matcher that matches any value of the given type T. |
3595 | template <typename T> |
3596 | inline Matcher<T> A() { |
3597 | return Matcher<T>(new internal::AnyMatcherImpl<T>()); |
3598 | } |
3599 | |
3600 | // Creates a matcher that matches any value of the given type T. |
3601 | template <typename T> |
3602 | inline Matcher<T> An() { return A<T>(); } |
3603 | |
3604 | template <typename T, typename M> |
3605 | Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl( |
3606 | const M& value, |
3607 | internal::BooleanConstant<false> /* convertible_to_matcher */, |
3608 | internal::BooleanConstant<false> /* convertible_to_T */) { |
3609 | return Eq(value); |
3610 | } |
3611 | |
3612 | // Creates a polymorphic matcher that matches any NULL pointer. |
3613 | inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() { |
3614 | return MakePolymorphicMatcher(internal::IsNullMatcher()); |
3615 | } |
3616 | |
3617 | // Creates a polymorphic matcher that matches any non-NULL pointer. |
3618 | // This is convenient as Not(NULL) doesn't compile (the compiler |
3619 | // thinks that that expression is comparing a pointer with an integer). |
3620 | inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() { |
3621 | return MakePolymorphicMatcher(internal::NotNullMatcher()); |
3622 | } |
3623 | |
3624 | // Creates a polymorphic matcher that matches any argument that |
3625 | // references variable x. |
3626 | template <typename T> |
3627 | inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT |
3628 | return internal::RefMatcher<T&>(x); |
3629 | } |
3630 | |
3631 | // Creates a matcher that matches any double argument approximately |
3632 | // equal to rhs, where two NANs are considered unequal. |
3633 | inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { |
3634 | return internal::FloatingEqMatcher<double>(rhs, false); |
3635 | } |
3636 | |
3637 | // Creates a matcher that matches any double argument approximately |
3638 | // equal to rhs, including NaN values when rhs is NaN. |
3639 | inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { |
3640 | return internal::FloatingEqMatcher<double>(rhs, true); |
3641 | } |
3642 | |
3643 | // Creates a matcher that matches any double argument approximately equal to |
3644 | // rhs, up to the specified max absolute error bound, where two NANs are |
3645 | // considered unequal. The max absolute error bound must be non-negative. |
3646 | inline internal::FloatingEqMatcher<double> DoubleNear( |
3647 | double rhs, double max_abs_error) { |
3648 | return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); |
3649 | } |
3650 | |
3651 | // Creates a matcher that matches any double argument approximately equal to |
3652 | // rhs, up to the specified max absolute error bound, including NaN values when |
3653 | // rhs is NaN. The max absolute error bound must be non-negative. |
3654 | inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( |
3655 | double rhs, double max_abs_error) { |
3656 | return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); |
3657 | } |
3658 | |
3659 | // Creates a matcher that matches any float argument approximately |
3660 | // equal to rhs, where two NANs are considered unequal. |
3661 | inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { |
3662 | return internal::FloatingEqMatcher<float>(rhs, false); |
3663 | } |
3664 | |
3665 | // Creates a matcher that matches any float argument approximately |
3666 | // equal to rhs, including NaN values when rhs is NaN. |
3667 | inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { |
3668 | return internal::FloatingEqMatcher<float>(rhs, true); |
3669 | } |
3670 | |
3671 | // Creates a matcher that matches any float argument approximately equal to |
3672 | // rhs, up to the specified max absolute error bound, where two NANs are |
3673 | // considered unequal. The max absolute error bound must be non-negative. |
3674 | inline internal::FloatingEqMatcher<float> FloatNear( |
3675 | float rhs, float max_abs_error) { |
3676 | return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); |
3677 | } |
3678 | |
3679 | // Creates a matcher that matches any float argument approximately equal to |
3680 | // rhs, up to the specified max absolute error bound, including NaN values when |
3681 | // rhs is NaN. The max absolute error bound must be non-negative. |
3682 | inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( |
3683 | float rhs, float max_abs_error) { |
3684 | return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); |
3685 | } |
3686 | |
3687 | // Creates a matcher that matches a pointer (raw or smart) that points |
3688 | // to a value that matches inner_matcher. |
3689 | template <typename InnerMatcher> |
3690 | inline internal::PointeeMatcher<InnerMatcher> Pointee( |
3691 | const InnerMatcher& inner_matcher) { |
3692 | return internal::PointeeMatcher<InnerMatcher>(inner_matcher); |
3693 | } |
3694 | |
3695 | #if GTEST_HAS_RTTI |
3696 | // Creates a matcher that matches a pointer or reference that matches |
3697 | // inner_matcher when dynamic_cast<To> is applied. |
3698 | // The result of dynamic_cast<To> is forwarded to the inner matcher. |
3699 | // If To is a pointer and the cast fails, the inner matcher will receive NULL. |
3700 | // If To is a reference and the cast fails, this matcher returns false |
3701 | // immediately. |
3702 | template <typename To> |
3703 | inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> > |
3704 | WhenDynamicCastTo(const Matcher<To>& inner_matcher) { |
3705 | return MakePolymorphicMatcher( |
3706 | internal::WhenDynamicCastToMatcher<To>(inner_matcher)); |
3707 | } |
3708 | #endif // GTEST_HAS_RTTI |
3709 | |
3710 | // Creates a matcher that matches an object whose given field matches |
3711 | // 'matcher'. For example, |
3712 | // Field(&Foo::number, Ge(5)) |
3713 | // matches a Foo object x iff x.number >= 5. |
3714 | template <typename Class, typename FieldType, typename FieldMatcher> |
3715 | inline PolymorphicMatcher< |
3716 | internal::FieldMatcher<Class, FieldType> > Field( |
3717 | FieldType Class::*field, const FieldMatcher& matcher) { |
3718 | return MakePolymorphicMatcher( |
3719 | internal::FieldMatcher<Class, FieldType>( |
3720 | field, MatcherCast<const FieldType&>(matcher))); |
3721 | // The call to MatcherCast() is required for supporting inner |
3722 | // matchers of compatible types. For example, it allows |
3723 | // Field(&Foo::bar, m) |
3724 | // to compile where bar is an int32 and m is a matcher for int64. |
3725 | } |
3726 | |
3727 | // Same as Field() but also takes the name of the field to provide better error |
3728 | // messages. |
3729 | template <typename Class, typename FieldType, typename FieldMatcher> |
3730 | inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field( |
3731 | const std::string& field_name, FieldType Class::*field, |
3732 | const FieldMatcher& matcher) { |
3733 | return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( |
3734 | field_name, field, MatcherCast<const FieldType&>(matcher))); |
3735 | } |
3736 | |
3737 | // Creates a matcher that matches an object whose given property |
3738 | // matches 'matcher'. For example, |
3739 | // Property(&Foo::str, StartsWith("hi")) |
3740 | // matches a Foo object x iff x.str() starts with "hi". |
3741 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
3742 | inline PolymorphicMatcher<internal::PropertyMatcher< |
3743 | Class, PropertyType, PropertyType (Class::*)() const> > |
3744 | Property(PropertyType (Class::*property)() const, |
3745 | const PropertyMatcher& matcher) { |
3746 | return MakePolymorphicMatcher( |
3747 | internal::PropertyMatcher<Class, PropertyType, |
3748 | PropertyType (Class::*)() const>( |
3749 | property, MatcherCast<const PropertyType&>(matcher))); |
3750 | // The call to MatcherCast() is required for supporting inner |
3751 | // matchers of compatible types. For example, it allows |
3752 | // Property(&Foo::bar, m) |
3753 | // to compile where bar() returns an int32 and m is a matcher for int64. |
3754 | } |
3755 | |
3756 | // Same as Property() above, but also takes the name of the property to provide |
3757 | // better error messages. |
3758 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
3759 | inline PolymorphicMatcher<internal::PropertyMatcher< |
3760 | Class, PropertyType, PropertyType (Class::*)() const> > |
3761 | Property(const std::string& property_name, |
3762 | PropertyType (Class::*property)() const, |
3763 | const PropertyMatcher& matcher) { |
3764 | return MakePolymorphicMatcher( |
3765 | internal::PropertyMatcher<Class, PropertyType, |
3766 | PropertyType (Class::*)() const>( |
3767 | property_name, property, MatcherCast<const PropertyType&>(matcher))); |
3768 | } |
3769 | |
3770 | // The same as above but for reference-qualified member functions. |
3771 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
3772 | inline PolymorphicMatcher<internal::PropertyMatcher< |
3773 | Class, PropertyType, PropertyType (Class::*)() const &> > |
3774 | Property(PropertyType (Class::*property)() const &, |
3775 | const PropertyMatcher& matcher) { |
3776 | return MakePolymorphicMatcher( |
3777 | internal::PropertyMatcher<Class, PropertyType, |
3778 | PropertyType (Class::*)() const&>( |
3779 | property, MatcherCast<const PropertyType&>(matcher))); |
3780 | } |
3781 | |
3782 | // Three-argument form for reference-qualified member functions. |
3783 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
3784 | inline PolymorphicMatcher<internal::PropertyMatcher< |
3785 | Class, PropertyType, PropertyType (Class::*)() const &> > |
3786 | Property(const std::string& property_name, |
3787 | PropertyType (Class::*property)() const &, |
3788 | const PropertyMatcher& matcher) { |
3789 | return MakePolymorphicMatcher( |
3790 | internal::PropertyMatcher<Class, PropertyType, |
3791 | PropertyType (Class::*)() const&>( |
3792 | property_name, property, MatcherCast<const PropertyType&>(matcher))); |
3793 | } |
3794 | |
3795 | // Creates a matcher that matches an object iff the result of applying |
3796 | // a callable to x matches 'matcher'. |
3797 | // For example, |
3798 | // ResultOf(f, StartsWith("hi")) |
3799 | // matches a Foo object x iff f(x) starts with "hi". |
3800 | // `callable` parameter can be a function, function pointer, or a functor. It is |
3801 | // required to keep no state affecting the results of the calls on it and make |
3802 | // no assumptions about how many calls will be made. Any state it keeps must be |
3803 | // protected from the concurrent access. |
3804 | template <typename Callable, typename InnerMatcher> |
3805 | internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( |
3806 | Callable callable, InnerMatcher matcher) { |
3807 | return internal::ResultOfMatcher<Callable, InnerMatcher>( |
3808 | std::move(callable), std::move(matcher)); |
3809 | } |
3810 | |
3811 | // String matchers. |
3812 | |
3813 | // Matches a string equal to str. |
3814 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq( |
3815 | const std::string& str) { |
3816 | return MakePolymorphicMatcher( |
3817 | internal::StrEqualityMatcher<std::string>(str, true, true)); |
3818 | } |
3819 | |
3820 | // Matches a string not equal to str. |
3821 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe( |
3822 | const std::string& str) { |
3823 | return MakePolymorphicMatcher( |
3824 | internal::StrEqualityMatcher<std::string>(str, false, true)); |
3825 | } |
3826 | |
3827 | // Matches a string equal to str, ignoring case. |
3828 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq( |
3829 | const std::string& str) { |
3830 | return MakePolymorphicMatcher( |
3831 | internal::StrEqualityMatcher<std::string>(str, true, false)); |
3832 | } |
3833 | |
3834 | // Matches a string not equal to str, ignoring case. |
3835 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe( |
3836 | const std::string& str) { |
3837 | return MakePolymorphicMatcher( |
3838 | internal::StrEqualityMatcher<std::string>(str, false, false)); |
3839 | } |
3840 | |
3841 | // Creates a matcher that matches any string, std::string, or C string |
3842 | // that contains the given substring. |
3843 | inline PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr( |
3844 | const std::string& substring) { |
3845 | return MakePolymorphicMatcher( |
3846 | internal::HasSubstrMatcher<std::string>(substring)); |
3847 | } |
3848 | |
3849 | // Matches a string that starts with 'prefix' (case-sensitive). |
3850 | inline PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith( |
3851 | const std::string& prefix) { |
3852 | return MakePolymorphicMatcher( |
3853 | internal::StartsWithMatcher<std::string>(prefix)); |
3854 | } |
3855 | |
3856 | // Matches a string that ends with 'suffix' (case-sensitive). |
3857 | inline PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith( |
3858 | const std::string& suffix) { |
3859 | return MakePolymorphicMatcher(internal::EndsWithMatcher<std::string>(suffix)); |
3860 | } |
3861 | |
3862 | #if GTEST_HAS_STD_WSTRING |
3863 | // Wide string matchers. |
3864 | |
3865 | // Matches a string equal to str. |
3866 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq( |
3867 | const std::wstring& str) { |
3868 | return MakePolymorphicMatcher( |
3869 | internal::StrEqualityMatcher<std::wstring>(str, true, true)); |
3870 | } |
3871 | |
3872 | // Matches a string not equal to str. |
3873 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe( |
3874 | const std::wstring& str) { |
3875 | return MakePolymorphicMatcher( |
3876 | internal::StrEqualityMatcher<std::wstring>(str, false, true)); |
3877 | } |
3878 | |
3879 | // Matches a string equal to str, ignoring case. |
3880 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > |
3881 | StrCaseEq(const std::wstring& str) { |
3882 | return MakePolymorphicMatcher( |
3883 | internal::StrEqualityMatcher<std::wstring>(str, true, false)); |
3884 | } |
3885 | |
3886 | // Matches a string not equal to str, ignoring case. |
3887 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > |
3888 | StrCaseNe(const std::wstring& str) { |
3889 | return MakePolymorphicMatcher( |
3890 | internal::StrEqualityMatcher<std::wstring>(str, false, false)); |
3891 | } |
3892 | |
3893 | // Creates a matcher that matches any ::wstring, std::wstring, or C wide string |
3894 | // that contains the given substring. |
3895 | inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr( |
3896 | const std::wstring& substring) { |
3897 | return MakePolymorphicMatcher( |
3898 | internal::HasSubstrMatcher<std::wstring>(substring)); |
3899 | } |
3900 | |
3901 | // Matches a string that starts with 'prefix' (case-sensitive). |
3902 | inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> > |
3903 | StartsWith(const std::wstring& prefix) { |
3904 | return MakePolymorphicMatcher( |
3905 | internal::StartsWithMatcher<std::wstring>(prefix)); |
3906 | } |
3907 | |
3908 | // Matches a string that ends with 'suffix' (case-sensitive). |
3909 | inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith( |
3910 | const std::wstring& suffix) { |
3911 | return MakePolymorphicMatcher( |
3912 | internal::EndsWithMatcher<std::wstring>(suffix)); |
3913 | } |
3914 | |
3915 | #endif // GTEST_HAS_STD_WSTRING |
3916 | |
3917 | // Creates a polymorphic matcher that matches a 2-tuple where the |
3918 | // first field == the second field. |
3919 | inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } |
3920 | |
3921 | // Creates a polymorphic matcher that matches a 2-tuple where the |
3922 | // first field >= the second field. |
3923 | inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } |
3924 | |
3925 | // Creates a polymorphic matcher that matches a 2-tuple where the |
3926 | // first field > the second field. |
3927 | inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } |
3928 | |
3929 | // Creates a polymorphic matcher that matches a 2-tuple where the |
3930 | // first field <= the second field. |
3931 | inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } |
3932 | |
3933 | // Creates a polymorphic matcher that matches a 2-tuple where the |
3934 | // first field < the second field. |
3935 | inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } |
3936 | |
3937 | // Creates a polymorphic matcher that matches a 2-tuple where the |
3938 | // first field != the second field. |
3939 | inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } |
3940 | |
3941 | // Creates a polymorphic matcher that matches a 2-tuple where |
3942 | // FloatEq(first field) matches the second field. |
3943 | inline internal::FloatingEq2Matcher<float> FloatEq() { |
3944 | return internal::FloatingEq2Matcher<float>(); |
3945 | } |
3946 | |
3947 | // Creates a polymorphic matcher that matches a 2-tuple where |
3948 | // DoubleEq(first field) matches the second field. |
3949 | inline internal::FloatingEq2Matcher<double> DoubleEq() { |
3950 | return internal::FloatingEq2Matcher<double>(); |
3951 | } |
3952 | |
3953 | // Creates a polymorphic matcher that matches a 2-tuple where |
3954 | // FloatEq(first field) matches the second field with NaN equality. |
3955 | inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() { |
3956 | return internal::FloatingEq2Matcher<float>(true); |
3957 | } |
3958 | |
3959 | // Creates a polymorphic matcher that matches a 2-tuple where |
3960 | // DoubleEq(first field) matches the second field with NaN equality. |
3961 | inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() { |
3962 | return internal::FloatingEq2Matcher<double>(true); |
3963 | } |
3964 | |
3965 | // Creates a polymorphic matcher that matches a 2-tuple where |
3966 | // FloatNear(first field, max_abs_error) matches the second field. |
3967 | inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) { |
3968 | return internal::FloatingEq2Matcher<float>(max_abs_error); |
3969 | } |
3970 | |
3971 | // Creates a polymorphic matcher that matches a 2-tuple where |
3972 | // DoubleNear(first field, max_abs_error) matches the second field. |
3973 | inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) { |
3974 | return internal::FloatingEq2Matcher<double>(max_abs_error); |
3975 | } |
3976 | |
3977 | // Creates a polymorphic matcher that matches a 2-tuple where |
3978 | // FloatNear(first field, max_abs_error) matches the second field with NaN |
3979 | // equality. |
3980 | inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear( |
3981 | float max_abs_error) { |
3982 | return internal::FloatingEq2Matcher<float>(max_abs_error, true); |
3983 | } |
3984 | |
3985 | // Creates a polymorphic matcher that matches a 2-tuple where |
3986 | // DoubleNear(first field, max_abs_error) matches the second field with NaN |
3987 | // equality. |
3988 | inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear( |
3989 | double max_abs_error) { |
3990 | return internal::FloatingEq2Matcher<double>(max_abs_error, true); |
3991 | } |
3992 | |
3993 | // Creates a matcher that matches any value of type T that m doesn't |
3994 | // match. |
3995 | template <typename InnerMatcher> |
3996 | inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { |
3997 | return internal::NotMatcher<InnerMatcher>(m); |
3998 | } |
3999 | |
4000 | // Returns a matcher that matches anything that satisfies the given |
4001 | // predicate. The predicate can be any unary function or functor |
4002 | // whose return type can be implicitly converted to bool. |
4003 | template <typename Predicate> |
4004 | inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> > |
4005 | Truly(Predicate pred) { |
4006 | return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); |
4007 | } |
4008 | |
4009 | // Returns a matcher that matches the container size. The container must |
4010 | // support both size() and size_type which all STL-like containers provide. |
4011 | // Note that the parameter 'size' can be a value of type size_type as well as |
4012 | // matcher. For instance: |
4013 | // EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements. |
4014 | // EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2. |
4015 | template <typename SizeMatcher> |
4016 | inline internal::SizeIsMatcher<SizeMatcher> |
4017 | SizeIs(const SizeMatcher& size_matcher) { |
4018 | return internal::SizeIsMatcher<SizeMatcher>(size_matcher); |
4019 | } |
4020 | |
4021 | // Returns a matcher that matches the distance between the container's begin() |
4022 | // iterator and its end() iterator, i.e. the size of the container. This matcher |
4023 | // can be used instead of SizeIs with containers such as std::forward_list which |
4024 | // do not implement size(). The container must provide const_iterator (with |
4025 | // valid iterator_traits), begin() and end(). |
4026 | template <typename DistanceMatcher> |
4027 | inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> |
4028 | BeginEndDistanceIs(const DistanceMatcher& distance_matcher) { |
4029 | return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher); |
4030 | } |
4031 | |
4032 | // Returns a matcher that matches an equal container. |
4033 | // This matcher behaves like Eq(), but in the event of mismatch lists the |
4034 | // values that are included in one container but not the other. (Duplicate |
4035 | // values and order differences are not explained.) |
4036 | template <typename Container> |
4037 | inline PolymorphicMatcher<internal::ContainerEqMatcher< // NOLINT |
4038 | GTEST_REMOVE_CONST_(Container)> > |
4039 | ContainerEq(const Container& rhs) { |
4040 | // This following line is for working around a bug in MSVC 8.0, |
4041 | // which causes Container to be a const type sometimes. |
4042 | typedef GTEST_REMOVE_CONST_(Container) RawContainer; |
4043 | return MakePolymorphicMatcher( |
4044 | internal::ContainerEqMatcher<RawContainer>(rhs)); |
4045 | } |
4046 | |
4047 | // Returns a matcher that matches a container that, when sorted using |
4048 | // the given comparator, matches container_matcher. |
4049 | template <typename Comparator, typename ContainerMatcher> |
4050 | inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> |
4051 | WhenSortedBy(const Comparator& comparator, |
4052 | const ContainerMatcher& container_matcher) { |
4053 | return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( |
4054 | comparator, container_matcher); |
4055 | } |
4056 | |
4057 | // Returns a matcher that matches a container that, when sorted using |
4058 | // the < operator, matches container_matcher. |
4059 | template <typename ContainerMatcher> |
4060 | inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> |
4061 | WhenSorted(const ContainerMatcher& container_matcher) { |
4062 | return |
4063 | internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>( |
4064 | internal::LessComparator(), container_matcher); |
4065 | } |
4066 | |
4067 | // Matches an STL-style container or a native array that contains the |
4068 | // same number of elements as in rhs, where its i-th element and rhs's |
4069 | // i-th element (as a pair) satisfy the given pair matcher, for all i. |
4070 | // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const |
4071 | // T1&, const T2&> >, where T1 and T2 are the types of elements in the |
4072 | // LHS container and the RHS container respectively. |
4073 | template <typename TupleMatcher, typename Container> |
4074 | inline internal::PointwiseMatcher<TupleMatcher, |
4075 | GTEST_REMOVE_CONST_(Container)> |
4076 | Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { |
4077 | // This following line is for working around a bug in MSVC 8.0, |
4078 | // which causes Container to be a const type sometimes (e.g. when |
4079 | // rhs is a const int[]).. |
4080 | typedef GTEST_REMOVE_CONST_(Container) RawContainer; |
4081 | return internal::PointwiseMatcher<TupleMatcher, RawContainer>( |
4082 | tuple_matcher, rhs); |
4083 | } |
4084 | |
4085 | |
4086 | // Supports the Pointwise(m, {a, b, c}) syntax. |
4087 | template <typename TupleMatcher, typename T> |
4088 | inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise( |
4089 | const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) { |
4090 | return Pointwise(tuple_matcher, std::vector<T>(rhs)); |
4091 | } |
4092 | |
4093 | |
4094 | // UnorderedPointwise(pair_matcher, rhs) matches an STL-style |
4095 | // container or a native array that contains the same number of |
4096 | // elements as in rhs, where in some permutation of the container, its |
4097 | // i-th element and rhs's i-th element (as a pair) satisfy the given |
4098 | // pair matcher, for all i. Tuple2Matcher must be able to be safely |
4099 | // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are |
4100 | // the types of elements in the LHS container and the RHS container |
4101 | // respectively. |
4102 | // |
4103 | // This is like Pointwise(pair_matcher, rhs), except that the element |
4104 | // order doesn't matter. |
4105 | template <typename Tuple2Matcher, typename RhsContainer> |
4106 | inline internal::UnorderedElementsAreArrayMatcher< |
4107 | typename internal::BoundSecondMatcher< |
4108 | Tuple2Matcher, typename internal::StlContainerView<GTEST_REMOVE_CONST_( |
4109 | RhsContainer)>::type::value_type> > |
4110 | UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
4111 | const RhsContainer& rhs_container) { |
4112 | // This following line is for working around a bug in MSVC 8.0, |
4113 | // which causes RhsContainer to be a const type sometimes (e.g. when |
4114 | // rhs_container is a const int[]). |
4115 | typedef GTEST_REMOVE_CONST_(RhsContainer) RawRhsContainer; |
4116 | |
4117 | // RhsView allows the same code to handle RhsContainer being a |
4118 | // STL-style container and it being a native C-style array. |
4119 | typedef typename internal::StlContainerView<RawRhsContainer> RhsView; |
4120 | typedef typename RhsView::type RhsStlContainer; |
4121 | typedef typename RhsStlContainer::value_type Second; |
4122 | const RhsStlContainer& rhs_stl_container = |
4123 | RhsView::ConstReference(rhs_container); |
4124 | |
4125 | // Create a matcher for each element in rhs_container. |
4126 | ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers; |
4127 | for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin(); |
4128 | it != rhs_stl_container.end(); ++it) { |
4129 | matchers.push_back( |
4130 | internal::MatcherBindSecond(tuple2_matcher, *it)); |
4131 | } |
4132 | |
4133 | // Delegate the work to UnorderedElementsAreArray(). |
4134 | return UnorderedElementsAreArray(matchers); |
4135 | } |
4136 | |
4137 | |
4138 | // Supports the UnorderedPointwise(m, {a, b, c}) syntax. |
4139 | template <typename Tuple2Matcher, typename T> |
4140 | inline internal::UnorderedElementsAreArrayMatcher< |
4141 | typename internal::BoundSecondMatcher<Tuple2Matcher, T> > |
4142 | UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
4143 | std::initializer_list<T> rhs) { |
4144 | return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs)); |
4145 | } |
4146 | |
4147 | |
4148 | // Matches an STL-style container or a native array that contains at |
4149 | // least one element matching the given value or matcher. |
4150 | // |
4151 | // Examples: |
4152 | // ::std::set<int> page_ids; |
4153 | // page_ids.insert(3); |
4154 | // page_ids.insert(1); |
4155 | // EXPECT_THAT(page_ids, Contains(1)); |
4156 | // EXPECT_THAT(page_ids, Contains(Gt(2))); |
4157 | // EXPECT_THAT(page_ids, Not(Contains(4))); |
4158 | // |
4159 | // ::std::map<int, size_t> page_lengths; |
4160 | // page_lengths[1] = 100; |
4161 | // EXPECT_THAT(page_lengths, |
4162 | // Contains(::std::pair<const int, size_t>(1, 100))); |
4163 | // |
4164 | // const char* user_ids[] = { "joe", "mike", "tom" }; |
4165 | // EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); |
4166 | template <typename M> |
4167 | inline internal::ContainsMatcher<M> Contains(M matcher) { |
4168 | return internal::ContainsMatcher<M>(matcher); |
4169 | } |
4170 | |
4171 | // IsSupersetOf(iterator_first, iterator_last) |
4172 | // IsSupersetOf(pointer, count) |
4173 | // IsSupersetOf(array) |
4174 | // IsSupersetOf(container) |
4175 | // IsSupersetOf({e1, e2, ..., en}) |
4176 | // |
4177 | // IsSupersetOf() verifies that a surjective partial mapping onto a collection |
4178 | // of matchers exists. In other words, a container matches |
4179 | // IsSupersetOf({e1, ..., en}) if and only if there is a permutation |
4180 | // {y1, ..., yn} of some of the container's elements where y1 matches e1, |
4181 | // ..., and yn matches en. Obviously, the size of the container must be >= n |
4182 | // in order to have a match. Examples: |
4183 | // |
4184 | // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and |
4185 | // 1 matches Ne(0). |
4186 | // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches |
4187 | // both Eq(1) and Lt(2). The reason is that different matchers must be used |
4188 | // for elements in different slots of the container. |
4189 | // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches |
4190 | // Eq(1) and (the second) 1 matches Lt(2). |
4191 | // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first) |
4192 | // Gt(1) and 3 matches (the second) Gt(1). |
4193 | // |
4194 | // The matchers can be specified as an array, a pointer and count, a container, |
4195 | // an initializer list, or an STL iterator range. In each of these cases, the |
4196 | // underlying matchers can be either values or matchers. |
4197 | |
4198 | template <typename Iter> |
4199 | inline internal::UnorderedElementsAreArrayMatcher< |
4200 | typename ::std::iterator_traits<Iter>::value_type> |
4201 | IsSupersetOf(Iter first, Iter last) { |
4202 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
4203 | return internal::UnorderedElementsAreArrayMatcher<T>( |
4204 | internal::UnorderedMatcherRequire::Superset, first, last); |
4205 | } |
4206 | |
4207 | template <typename T> |
4208 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
4209 | const T* pointer, size_t count) { |
4210 | return IsSupersetOf(pointer, pointer + count); |
4211 | } |
4212 | |
4213 | template <typename T, size_t N> |
4214 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
4215 | const T (&array)[N]) { |
4216 | return IsSupersetOf(array, N); |
4217 | } |
4218 | |
4219 | template <typename Container> |
4220 | inline internal::UnorderedElementsAreArrayMatcher< |
4221 | typename Container::value_type> |
4222 | IsSupersetOf(const Container& container) { |
4223 | return IsSupersetOf(container.begin(), container.end()); |
4224 | } |
4225 | |
4226 | template <typename T> |
4227 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
4228 | ::std::initializer_list<T> xs) { |
4229 | return IsSupersetOf(xs.begin(), xs.end()); |
4230 | } |
4231 | |
4232 | // IsSubsetOf(iterator_first, iterator_last) |
4233 | // IsSubsetOf(pointer, count) |
4234 | // IsSubsetOf(array) |
4235 | // IsSubsetOf(container) |
4236 | // IsSubsetOf({e1, e2, ..., en}) |
4237 | // |
4238 | // IsSubsetOf() verifies that an injective mapping onto a collection of matchers |
4239 | // exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and |
4240 | // only if there is a subset of matchers {m1, ..., mk} which would match the |
4241 | // container using UnorderedElementsAre. Obviously, the size of the container |
4242 | // must be <= n in order to have a match. Examples: |
4243 | // |
4244 | // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0). |
4245 | // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1 |
4246 | // matches Lt(0). |
4247 | // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both |
4248 | // match Gt(0). The reason is that different matchers must be used for |
4249 | // elements in different slots of the container. |
4250 | // |
4251 | // The matchers can be specified as an array, a pointer and count, a container, |
4252 | // an initializer list, or an STL iterator range. In each of these cases, the |
4253 | // underlying matchers can be either values or matchers. |
4254 | |
4255 | template <typename Iter> |
4256 | inline internal::UnorderedElementsAreArrayMatcher< |
4257 | typename ::std::iterator_traits<Iter>::value_type> |
4258 | IsSubsetOf(Iter first, Iter last) { |
4259 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
4260 | return internal::UnorderedElementsAreArrayMatcher<T>( |
4261 | internal::UnorderedMatcherRequire::Subset, first, last); |
4262 | } |
4263 | |
4264 | template <typename T> |
4265 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
4266 | const T* pointer, size_t count) { |
4267 | return IsSubsetOf(pointer, pointer + count); |
4268 | } |
4269 | |
4270 | template <typename T, size_t N> |
4271 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
4272 | const T (&array)[N]) { |
4273 | return IsSubsetOf(array, N); |
4274 | } |
4275 | |
4276 | template <typename Container> |
4277 | inline internal::UnorderedElementsAreArrayMatcher< |
4278 | typename Container::value_type> |
4279 | IsSubsetOf(const Container& container) { |
4280 | return IsSubsetOf(container.begin(), container.end()); |
4281 | } |
4282 | |
4283 | template <typename T> |
4284 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
4285 | ::std::initializer_list<T> xs) { |
4286 | return IsSubsetOf(xs.begin(), xs.end()); |
4287 | } |
4288 | |
4289 | // Matches an STL-style container or a native array that contains only |
4290 | // elements matching the given value or matcher. |
4291 | // |
4292 | // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only |
4293 | // the messages are different. |
4294 | // |
4295 | // Examples: |
4296 | // ::std::set<int> page_ids; |
4297 | // // Each(m) matches an empty container, regardless of what m is. |
4298 | // EXPECT_THAT(page_ids, Each(Eq(1))); |
4299 | // EXPECT_THAT(page_ids, Each(Eq(77))); |
4300 | // |
4301 | // page_ids.insert(3); |
4302 | // EXPECT_THAT(page_ids, Each(Gt(0))); |
4303 | // EXPECT_THAT(page_ids, Not(Each(Gt(4)))); |
4304 | // page_ids.insert(1); |
4305 | // EXPECT_THAT(page_ids, Not(Each(Lt(2)))); |
4306 | // |
4307 | // ::std::map<int, size_t> page_lengths; |
4308 | // page_lengths[1] = 100; |
4309 | // page_lengths[2] = 200; |
4310 | // page_lengths[3] = 300; |
4311 | // EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); |
4312 | // EXPECT_THAT(page_lengths, Each(Key(Le(3)))); |
4313 | // |
4314 | // const char* user_ids[] = { "joe", "mike", "tom" }; |
4315 | // EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); |
4316 | template <typename M> |
4317 | inline internal::EachMatcher<M> Each(M matcher) { |
4318 | return internal::EachMatcher<M>(matcher); |
4319 | } |
4320 | |
4321 | // Key(inner_matcher) matches an std::pair whose 'first' field matches |
4322 | // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
4323 | // std::map that contains at least one element whose key is >= 5. |
4324 | template <typename M> |
4325 | inline internal::KeyMatcher<M> Key(M inner_matcher) { |
4326 | return internal::KeyMatcher<M>(inner_matcher); |
4327 | } |
4328 | |
4329 | // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field |
4330 | // matches first_matcher and whose 'second' field matches second_matcher. For |
4331 | // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used |
4332 | // to match a std::map<int, string> that contains exactly one element whose key |
4333 | // is >= 5 and whose value equals "foo". |
4334 | template <typename FirstMatcher, typename SecondMatcher> |
4335 | inline internal::PairMatcher<FirstMatcher, SecondMatcher> |
4336 | Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) { |
4337 | return internal::PairMatcher<FirstMatcher, SecondMatcher>( |
4338 | first_matcher, second_matcher); |
4339 | } |
4340 | |
4341 | // Returns a predicate that is satisfied by anything that matches the |
4342 | // given matcher. |
4343 | template <typename M> |
4344 | inline internal::MatcherAsPredicate<M> Matches(M matcher) { |
4345 | return internal::MatcherAsPredicate<M>(matcher); |
4346 | } |
4347 | |
4348 | // Returns true iff the value matches the matcher. |
4349 | template <typename T, typename M> |
4350 | inline bool Value(const T& value, M matcher) { |
4351 | return testing::Matches(matcher)(value); |
4352 | } |
4353 | |
4354 | // Matches the value against the given matcher and explains the match |
4355 | // result to listener. |
4356 | template <typename T, typename M> |
4357 | inline bool ExplainMatchResult( |
4358 | M matcher, const T& value, MatchResultListener* listener) { |
4359 | return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); |
4360 | } |
4361 | |
4362 | // Returns a string representation of the given matcher. Useful for description |
4363 | // strings of matchers defined using MATCHER_P* macros that accept matchers as |
4364 | // their arguments. For example: |
4365 | // |
4366 | // MATCHER_P(XAndYThat, matcher, |
4367 | // "X that " + DescribeMatcher<int>(matcher, negation) + |
4368 | // " and Y that " + DescribeMatcher<double>(matcher, negation)) { |
4369 | // return ExplainMatchResult(matcher, arg.x(), result_listener) && |
4370 | // ExplainMatchResult(matcher, arg.y(), result_listener); |
4371 | // } |
4372 | template <typename T, typename M> |
4373 | std::string DescribeMatcher(const M& matcher, bool negation = false) { |
4374 | ::std::stringstream ss; |
4375 | Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher); |
4376 | if (negation) { |
4377 | monomorphic_matcher.DescribeNegationTo(&ss); |
4378 | } else { |
4379 | monomorphic_matcher.DescribeTo(&ss); |
4380 | } |
4381 | return ss.str(); |
4382 | } |
4383 | |
4384 | template <typename... Args> |
4385 | internal::ElementsAreMatcher< |
4386 | std::tuple<typename std::decay<const Args&>::type...>> |
4387 | ElementsAre(const Args&... matchers) { |
4388 | return internal::ElementsAreMatcher< |
4389 | std::tuple<typename std::decay<const Args&>::type...>>( |
4390 | std::make_tuple(matchers...)); |
4391 | } |
4392 | |
4393 | template <typename... Args> |
4394 | internal::UnorderedElementsAreMatcher< |
4395 | std::tuple<typename std::decay<const Args&>::type...>> |
4396 | UnorderedElementsAre(const Args&... matchers) { |
4397 | return internal::UnorderedElementsAreMatcher< |
4398 | std::tuple<typename std::decay<const Args&>::type...>>( |
4399 | std::make_tuple(matchers...)); |
4400 | } |
4401 | |
4402 | // Define variadic matcher versions. |
4403 | template <typename... Args> |
4404 | internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf( |
4405 | const Args&... matchers) { |
4406 | return internal::AllOfMatcher<typename std::decay<const Args&>::type...>( |
4407 | matchers...); |
4408 | } |
4409 | |
4410 | template <typename... Args> |
4411 | internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf( |
4412 | const Args&... matchers) { |
4413 | return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>( |
4414 | matchers...); |
4415 | } |
4416 | |
4417 | // AnyOfArray(array) |
4418 | // AnyOfArray(pointer, count) |
4419 | // AnyOfArray(container) |
4420 | // AnyOfArray({ e1, e2, ..., en }) |
4421 | // AnyOfArray(iterator_first, iterator_last) |
4422 | // |
4423 | // AnyOfArray() verifies whether a given value matches any member of a |
4424 | // collection of matchers. |
4425 | // |
4426 | // AllOfArray(array) |
4427 | // AllOfArray(pointer, count) |
4428 | // AllOfArray(container) |
4429 | // AllOfArray({ e1, e2, ..., en }) |
4430 | // AllOfArray(iterator_first, iterator_last) |
4431 | // |
4432 | // AllOfArray() verifies whether a given value matches all members of a |
4433 | // collection of matchers. |
4434 | // |
4435 | // The matchers can be specified as an array, a pointer and count, a container, |
4436 | // an initializer list, or an STL iterator range. In each of these cases, the |
4437 | // underlying matchers can be either values or matchers. |
4438 | |
4439 | template <typename Iter> |
4440 | inline internal::AnyOfArrayMatcher< |
4441 | typename ::std::iterator_traits<Iter>::value_type> |
4442 | AnyOfArray(Iter first, Iter last) { |
4443 | return internal::AnyOfArrayMatcher< |
4444 | typename ::std::iterator_traits<Iter>::value_type>(first, last); |
4445 | } |
4446 | |
4447 | template <typename Iter> |
4448 | inline internal::AllOfArrayMatcher< |
4449 | typename ::std::iterator_traits<Iter>::value_type> |
4450 | AllOfArray(Iter first, Iter last) { |
4451 | return internal::AllOfArrayMatcher< |
4452 | typename ::std::iterator_traits<Iter>::value_type>(first, last); |
4453 | } |
4454 | |
4455 | template <typename T> |
4456 | inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) { |
4457 | return AnyOfArray(ptr, ptr + count); |
4458 | } |
4459 | |
4460 | template <typename T> |
4461 | inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) { |
4462 | return AllOfArray(ptr, ptr + count); |
4463 | } |
4464 | |
4465 | template <typename T, size_t N> |
4466 | inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) { |
4467 | return AnyOfArray(array, N); |
4468 | } |
4469 | |
4470 | template <typename T, size_t N> |
4471 | inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) { |
4472 | return AllOfArray(array, N); |
4473 | } |
4474 | |
4475 | template <typename Container> |
4476 | inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray( |
4477 | const Container& container) { |
4478 | return AnyOfArray(container.begin(), container.end()); |
4479 | } |
4480 | |
4481 | template <typename Container> |
4482 | inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray( |
4483 | const Container& container) { |
4484 | return AllOfArray(container.begin(), container.end()); |
4485 | } |
4486 | |
4487 | template <typename T> |
4488 | inline internal::AnyOfArrayMatcher<T> AnyOfArray( |
4489 | ::std::initializer_list<T> xs) { |
4490 | return AnyOfArray(xs.begin(), xs.end()); |
4491 | } |
4492 | |
4493 | template <typename T> |
4494 | inline internal::AllOfArrayMatcher<T> AllOfArray( |
4495 | ::std::initializer_list<T> xs) { |
4496 | return AllOfArray(xs.begin(), xs.end()); |
4497 | } |
4498 | |
4499 | // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected |
4500 | // fields of it matches a_matcher. C++ doesn't support default |
4501 | // arguments for function templates, so we have to overload it. |
4502 | template <size_t... k, typename InnerMatcher> |
4503 | internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args( |
4504 | InnerMatcher&& matcher) { |
4505 | return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>( |
4506 | std::forward<InnerMatcher>(matcher)); |
4507 | } |
4508 | |
4509 | // AllArgs(m) is a synonym of m. This is useful in |
4510 | // |
4511 | // EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); |
4512 | // |
4513 | // which is easier to read than |
4514 | // |
4515 | // EXPECT_CALL(foo, Bar(_, _)).With(Eq()); |
4516 | template <typename InnerMatcher> |
4517 | inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; } |
4518 | |
4519 | // Returns a matcher that matches the value of an optional<> type variable. |
4520 | // The matcher implementation only uses '!arg' and requires that the optional<> |
4521 | // type has a 'value_type' member type and that '*arg' is of type 'value_type' |
4522 | // and is printable using 'PrintToString'. It is compatible with |
4523 | // std::optional/std::experimental::optional. |
4524 | // Note that to compare an optional type variable against nullopt you should |
4525 | // use Eq(nullopt) and not Optional(Eq(nullopt)). The latter implies that the |
4526 | // optional value contains an optional itself. |
4527 | template <typename ValueMatcher> |
4528 | inline internal::OptionalMatcher<ValueMatcher> Optional( |
4529 | const ValueMatcher& value_matcher) { |
4530 | return internal::OptionalMatcher<ValueMatcher>(value_matcher); |
4531 | } |
4532 | |
4533 | // Returns a matcher that matches the value of a absl::any type variable. |
4534 | template <typename T> |
4535 | PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith( |
4536 | const Matcher<const T&>& matcher) { |
4537 | return MakePolymorphicMatcher( |
4538 | internal::any_cast_matcher::AnyCastMatcher<T>(matcher)); |
4539 | } |
4540 | |
4541 | // Returns a matcher that matches the value of a variant<> type variable. |
4542 | // The matcher implementation uses ADL to find the holds_alternative and get |
4543 | // functions. |
4544 | // It is compatible with std::variant. |
4545 | template <typename T> |
4546 | PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith( |
4547 | const Matcher<const T&>& matcher) { |
4548 | return MakePolymorphicMatcher( |
4549 | internal::variant_matcher::VariantMatcher<T>(matcher)); |
4550 | } |
4551 | |
4552 | // These macros allow using matchers to check values in Google Test |
4553 | // tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) |
4554 | // succeed iff the value matches the matcher. If the assertion fails, |
4555 | // the value and the description of the matcher will be printed. |
4556 | #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\ |
4557 | ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
4558 | #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\ |
4559 | ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
4560 | |
4561 | } // namespace testing |
4562 | |
4563 | GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046 |
4564 | |
4565 | // Include any custom callback matchers added by the local installation. |
4566 | // We must include this header at the end to make sure it can use the |
4567 | // declarations from this file. |
4568 | #include "gmock/internal/custom/gmock-matchers.h" |
4569 | |
4570 | #endif // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
4571 | |