1 | // Copyright 2007, Google Inc. |
2 | // All rights reserved. |
3 | // |
4 | // Redistribution and use in source and binary forms, with or without |
5 | // modification, are permitted provided that the following conditions are |
6 | // met: |
7 | // |
8 | // * Redistributions of source code must retain the above copyright |
9 | // notice, this list of conditions and the following disclaimer. |
10 | // * Redistributions in binary form must reproduce the above |
11 | // copyright notice, this list of conditions and the following disclaimer |
12 | // in the documentation and/or other materials provided with the |
13 | // distribution. |
14 | // * Neither the name of Google Inc. nor the names of its |
15 | // contributors may be used to endorse or promote products derived from |
16 | // this software without specific prior written permission. |
17 | // |
18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | |
30 | |
31 | // Google Mock - a framework for writing C++ mock classes. |
32 | // |
33 | // This file implements Matcher<const string&>, Matcher<string>, and |
34 | // utilities for defining matchers. |
35 | |
36 | #include "gmock/gmock-matchers.h" |
37 | #include "gmock/gmock-generated-matchers.h" |
38 | |
39 | #include <string.h> |
40 | #include <iostream> |
41 | #include <sstream> |
42 | #include <string> |
43 | |
44 | namespace testing { |
45 | namespace internal { |
46 | |
47 | // Returns the description for a matcher defined using the MATCHER*() |
48 | // macro where the user-supplied description string is "", if |
49 | // 'negation' is false; otherwise returns the description of the |
50 | // negation of the matcher. 'param_values' contains a list of strings |
51 | // that are the print-out of the matcher's parameters. |
52 | GTEST_API_ std::string FormatMatcherDescription(bool negation, |
53 | const char* matcher_name, |
54 | const Strings& param_values) { |
55 | std::string result = ConvertIdentifierNameToWords(matcher_name); |
56 | if (param_values.size() >= 1) result += " " + JoinAsTuple(param_values); |
57 | return negation ? "not (" + result + ")" : result; |
58 | } |
59 | |
60 | // FindMaxBipartiteMatching and its helper class. |
61 | // |
62 | // Uses the well-known Ford-Fulkerson max flow method to find a maximum |
63 | // bipartite matching. Flow is considered to be from left to right. |
64 | // There is an implicit source node that is connected to all of the left |
65 | // nodes, and an implicit sink node that is connected to all of the |
66 | // right nodes. All edges have unit capacity. |
67 | // |
68 | // Neither the flow graph nor the residual flow graph are represented |
69 | // explicitly. Instead, they are implied by the information in 'graph' and |
70 | // a vector<int> called 'left_' whose elements are initialized to the |
71 | // value kUnused. This represents the initial state of the algorithm, |
72 | // where the flow graph is empty, and the residual flow graph has the |
73 | // following edges: |
74 | // - An edge from source to each left_ node |
75 | // - An edge from each right_ node to sink |
76 | // - An edge from each left_ node to each right_ node, if the |
77 | // corresponding edge exists in 'graph'. |
78 | // |
79 | // When the TryAugment() method adds a flow, it sets left_[l] = r for some |
80 | // nodes l and r. This induces the following changes: |
81 | // - The edges (source, l), (l, r), and (r, sink) are added to the |
82 | // flow graph. |
83 | // - The same three edges are removed from the residual flow graph. |
84 | // - The reverse edges (l, source), (r, l), and (sink, r) are added |
85 | // to the residual flow graph, which is a directional graph |
86 | // representing unused flow capacity. |
87 | // |
88 | // When the method augments a flow (moving left_[l] from some r1 to some |
89 | // other r2), this can be thought of as "undoing" the above steps with |
90 | // respect to r1 and "redoing" them with respect to r2. |
91 | // |
92 | // It bears repeating that the flow graph and residual flow graph are |
93 | // never represented explicitly, but can be derived by looking at the |
94 | // information in 'graph' and in left_. |
95 | // |
96 | // As an optimization, there is a second vector<int> called right_ which |
97 | // does not provide any new information. Instead, it enables more |
98 | // efficient queries about edges entering or leaving the right-side nodes |
99 | // of the flow or residual flow graphs. The following invariants are |
100 | // maintained: |
101 | // |
102 | // left[l] == kUnused or right[left[l]] == l |
103 | // right[r] == kUnused or left[right[r]] == r |
104 | // |
105 | // . [ source ] . |
106 | // . ||| . |
107 | // . ||| . |
108 | // . ||\--> left[0]=1 ---\ right[0]=-1 ----\ . |
109 | // . || | | . |
110 | // . |\---> left[1]=-1 \--> right[1]=0 ---\| . |
111 | // . | || . |
112 | // . \----> left[2]=2 ------> right[2]=2 --\|| . |
113 | // . ||| . |
114 | // . elements matchers vvv . |
115 | // . [ sink ] . |
116 | // |
117 | // See Also: |
118 | // [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method". |
119 | // "Introduction to Algorithms (Second ed.)", pp. 651-664. |
120 | // [2] "Ford-Fulkerson algorithm", Wikipedia, |
121 | // 'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm' |
122 | class MaxBipartiteMatchState { |
123 | public: |
124 | explicit MaxBipartiteMatchState(const MatchMatrix& graph) |
125 | : graph_(&graph), |
126 | left_(graph_->LhsSize(), kUnused), |
127 | right_(graph_->RhsSize(), kUnused) {} |
128 | |
129 | // Returns the edges of a maximal match, each in the form {left, right}. |
130 | ElementMatcherPairs Compute() { |
131 | // 'seen' is used for path finding { 0: unseen, 1: seen }. |
132 | ::std::vector<char> seen; |
133 | // Searches the residual flow graph for a path from each left node to |
134 | // the sink in the residual flow graph, and if one is found, add flow |
135 | // to the graph. It's okay to search through the left nodes once. The |
136 | // edge from the implicit source node to each previously-visited left |
137 | // node will have flow if that left node has any path to the sink |
138 | // whatsoever. Subsequent augmentations can only add flow to the |
139 | // network, and cannot take away that previous flow unit from the source. |
140 | // Since the source-to-left edge can only carry one flow unit (or, |
141 | // each element can be matched to only one matcher), there is no need |
142 | // to visit the left nodes more than once looking for augmented paths. |
143 | // The flow is known to be possible or impossible by looking at the |
144 | // node once. |
145 | for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) { |
146 | // Reset the path-marking vector and try to find a path from |
147 | // source to sink starting at the left_[ilhs] node. |
148 | GTEST_CHECK_(left_[ilhs] == kUnused) |
149 | << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs]; |
150 | // 'seen' initialized to 'graph_->RhsSize()' copies of 0. |
151 | seen.assign(graph_->RhsSize(), 0); |
152 | TryAugment(ilhs, &seen); |
153 | } |
154 | ElementMatcherPairs result; |
155 | for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) { |
156 | size_t irhs = left_[ilhs]; |
157 | if (irhs == kUnused) continue; |
158 | result.push_back(ElementMatcherPair(ilhs, irhs)); |
159 | } |
160 | return result; |
161 | } |
162 | |
163 | private: |
164 | static const size_t kUnused = static_cast<size_t>(-1); |
165 | |
166 | // Perform a depth-first search from left node ilhs to the sink. If a |
167 | // path is found, flow is added to the network by linking the left and |
168 | // right vector elements corresponding each segment of the path. |
169 | // Returns true if a path to sink was found, which means that a unit of |
170 | // flow was added to the network. The 'seen' vector elements correspond |
171 | // to right nodes and are marked to eliminate cycles from the search. |
172 | // |
173 | // Left nodes will only be explored at most once because they |
174 | // are accessible from at most one right node in the residual flow |
175 | // graph. |
176 | // |
177 | // Note that left_[ilhs] is the only element of left_ that TryAugment will |
178 | // potentially transition from kUnused to another value. Any other |
179 | // left_ element holding kUnused before TryAugment will be holding it |
180 | // when TryAugment returns. |
181 | // |
182 | bool TryAugment(size_t ilhs, ::std::vector<char>* seen) { |
183 | for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) { |
184 | if ((*seen)[irhs]) continue; |
185 | if (!graph_->HasEdge(ilhs, irhs)) continue; |
186 | // There's an available edge from ilhs to irhs. |
187 | (*seen)[irhs] = 1; |
188 | // Next a search is performed to determine whether |
189 | // this edge is a dead end or leads to the sink. |
190 | // |
191 | // right_[irhs] == kUnused means that there is residual flow from |
192 | // right node irhs to the sink, so we can use that to finish this |
193 | // flow path and return success. |
194 | // |
195 | // Otherwise there is residual flow to some ilhs. We push flow |
196 | // along that path and call ourselves recursively to see if this |
197 | // ultimately leads to sink. |
198 | if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) { |
199 | // Add flow from left_[ilhs] to right_[irhs]. |
200 | left_[ilhs] = irhs; |
201 | right_[irhs] = ilhs; |
202 | return true; |
203 | } |
204 | } |
205 | return false; |
206 | } |
207 | |
208 | const MatchMatrix* graph_; // not owned |
209 | // Each element of the left_ vector represents a left hand side node |
210 | // (i.e. an element) and each element of right_ is a right hand side |
211 | // node (i.e. a matcher). The values in the left_ vector indicate |
212 | // outflow from that node to a node on the right_ side. The values |
213 | // in the right_ indicate inflow, and specify which left_ node is |
214 | // feeding that right_ node, if any. For example, left_[3] == 1 means |
215 | // there's a flow from element #3 to matcher #1. Such a flow would also |
216 | // be redundantly represented in the right_ vector as right_[1] == 3. |
217 | // Elements of left_ and right_ are either kUnused or mutually |
218 | // referent. Mutually referent means that left_[right_[i]] = i and |
219 | // right_[left_[i]] = i. |
220 | ::std::vector<size_t> left_; |
221 | ::std::vector<size_t> right_; |
222 | |
223 | GTEST_DISALLOW_ASSIGN_(MaxBipartiteMatchState); |
224 | }; |
225 | |
226 | const size_t MaxBipartiteMatchState::kUnused; |
227 | |
228 | GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) { |
229 | return MaxBipartiteMatchState(g).Compute(); |
230 | } |
231 | |
232 | static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs, |
233 | ::std::ostream* stream) { |
234 | typedef ElementMatcherPairs::const_iterator Iter; |
235 | ::std::ostream& os = *stream; |
236 | os << "{" ; |
237 | const char* sep = "" ; |
238 | for (Iter it = pairs.begin(); it != pairs.end(); ++it) { |
239 | os << sep << "\n (" |
240 | << "element #" << it->first << ", " |
241 | << "matcher #" << it->second << ")" ; |
242 | sep = "," ; |
243 | } |
244 | os << "\n}" ; |
245 | } |
246 | |
247 | bool MatchMatrix::NextGraph() { |
248 | for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { |
249 | for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { |
250 | char& b = matched_[SpaceIndex(ilhs, irhs)]; |
251 | if (!b) { |
252 | b = 1; |
253 | return true; |
254 | } |
255 | b = 0; |
256 | } |
257 | } |
258 | return false; |
259 | } |
260 | |
261 | void MatchMatrix::Randomize() { |
262 | for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { |
263 | for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { |
264 | char& b = matched_[SpaceIndex(ilhs, irhs)]; |
265 | b = static_cast<char>(rand() & 1); // NOLINT |
266 | } |
267 | } |
268 | } |
269 | |
270 | std::string MatchMatrix::DebugString() const { |
271 | ::std::stringstream ss; |
272 | const char* sep = "" ; |
273 | for (size_t i = 0; i < LhsSize(); ++i) { |
274 | ss << sep; |
275 | for (size_t j = 0; j < RhsSize(); ++j) { |
276 | ss << HasEdge(i, j); |
277 | } |
278 | sep = ";" ; |
279 | } |
280 | return ss.str(); |
281 | } |
282 | |
283 | void UnorderedElementsAreMatcherImplBase::DescribeToImpl( |
284 | ::std::ostream* os) const { |
285 | switch (match_flags()) { |
286 | case UnorderedMatcherRequire::ExactMatch: |
287 | if (matcher_describers_.empty()) { |
288 | *os << "is empty" ; |
289 | return; |
290 | } |
291 | if (matcher_describers_.size() == 1) { |
292 | *os << "has " << Elements(1) << " and that element " ; |
293 | matcher_describers_[0]->DescribeTo(os); |
294 | return; |
295 | } |
296 | *os << "has " << Elements(matcher_describers_.size()) |
297 | << " and there exists some permutation of elements such that:\n" ; |
298 | break; |
299 | case UnorderedMatcherRequire::Superset: |
300 | *os << "a surjection from elements to requirements exists such that:\n" ; |
301 | break; |
302 | case UnorderedMatcherRequire::Subset: |
303 | *os << "an injection from elements to requirements exists such that:\n" ; |
304 | break; |
305 | } |
306 | |
307 | const char* sep = "" ; |
308 | for (size_t i = 0; i != matcher_describers_.size(); ++i) { |
309 | *os << sep; |
310 | if (match_flags() == UnorderedMatcherRequire::ExactMatch) { |
311 | *os << " - element #" << i << " " ; |
312 | } else { |
313 | *os << " - an element " ; |
314 | } |
315 | matcher_describers_[i]->DescribeTo(os); |
316 | if (match_flags() == UnorderedMatcherRequire::ExactMatch) { |
317 | sep = ", and\n" ; |
318 | } else { |
319 | sep = "\n" ; |
320 | } |
321 | } |
322 | } |
323 | |
324 | void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl( |
325 | ::std::ostream* os) const { |
326 | switch (match_flags()) { |
327 | case UnorderedMatcherRequire::ExactMatch: |
328 | if (matcher_describers_.empty()) { |
329 | *os << "isn't empty" ; |
330 | return; |
331 | } |
332 | if (matcher_describers_.size() == 1) { |
333 | *os << "doesn't have " << Elements(1) << ", or has " << Elements(1) |
334 | << " that " ; |
335 | matcher_describers_[0]->DescribeNegationTo(os); |
336 | return; |
337 | } |
338 | *os << "doesn't have " << Elements(matcher_describers_.size()) |
339 | << ", or there exists no permutation of elements such that:\n" ; |
340 | break; |
341 | case UnorderedMatcherRequire::Superset: |
342 | *os << "no surjection from elements to requirements exists such that:\n" ; |
343 | break; |
344 | case UnorderedMatcherRequire::Subset: |
345 | *os << "no injection from elements to requirements exists such that:\n" ; |
346 | break; |
347 | } |
348 | const char* sep = "" ; |
349 | for (size_t i = 0; i != matcher_describers_.size(); ++i) { |
350 | *os << sep; |
351 | if (match_flags() == UnorderedMatcherRequire::ExactMatch) { |
352 | *os << " - element #" << i << " " ; |
353 | } else { |
354 | *os << " - an element " ; |
355 | } |
356 | matcher_describers_[i]->DescribeTo(os); |
357 | if (match_flags() == UnorderedMatcherRequire::ExactMatch) { |
358 | sep = ", and\n" ; |
359 | } else { |
360 | sep = "\n" ; |
361 | } |
362 | } |
363 | } |
364 | |
365 | // Checks that all matchers match at least one element, and that all |
366 | // elements match at least one matcher. This enables faster matching |
367 | // and better error reporting. |
368 | // Returns false, writing an explanation to 'listener', if and only |
369 | // if the success criteria are not met. |
370 | bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix( |
371 | const ::std::vector<std::string>& element_printouts, |
372 | const MatchMatrix& matrix, MatchResultListener* listener) const { |
373 | bool result = true; |
374 | ::std::vector<char> element_matched(matrix.LhsSize(), 0); |
375 | ::std::vector<char> matcher_matched(matrix.RhsSize(), 0); |
376 | |
377 | for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) { |
378 | for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) { |
379 | char matched = matrix.HasEdge(ilhs, irhs); |
380 | element_matched[ilhs] |= matched; |
381 | matcher_matched[irhs] |= matched; |
382 | } |
383 | } |
384 | |
385 | if (match_flags() & UnorderedMatcherRequire::Superset) { |
386 | const char* sep = |
387 | "where the following matchers don't match any elements:\n" ; |
388 | for (size_t mi = 0; mi < matcher_matched.size(); ++mi) { |
389 | if (matcher_matched[mi]) continue; |
390 | result = false; |
391 | if (listener->IsInterested()) { |
392 | *listener << sep << "matcher #" << mi << ": " ; |
393 | matcher_describers_[mi]->DescribeTo(listener->stream()); |
394 | sep = ",\n" ; |
395 | } |
396 | } |
397 | } |
398 | |
399 | if (match_flags() & UnorderedMatcherRequire::Subset) { |
400 | const char* sep = |
401 | "where the following elements don't match any matchers:\n" ; |
402 | const char* outer_sep = "" ; |
403 | if (!result) { |
404 | outer_sep = "\nand " ; |
405 | } |
406 | for (size_t ei = 0; ei < element_matched.size(); ++ei) { |
407 | if (element_matched[ei]) continue; |
408 | result = false; |
409 | if (listener->IsInterested()) { |
410 | *listener << outer_sep << sep << "element #" << ei << ": " |
411 | << element_printouts[ei]; |
412 | sep = ",\n" ; |
413 | outer_sep = "" ; |
414 | } |
415 | } |
416 | } |
417 | return result; |
418 | } |
419 | |
420 | bool UnorderedElementsAreMatcherImplBase::FindPairing( |
421 | const MatchMatrix& matrix, MatchResultListener* listener) const { |
422 | ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix); |
423 | |
424 | size_t max_flow = matches.size(); |
425 | if ((match_flags() & UnorderedMatcherRequire::Superset) && |
426 | max_flow < matrix.RhsSize()) { |
427 | if (listener->IsInterested()) { |
428 | *listener << "where no permutation of the elements can satisfy all " |
429 | "matchers, and the closest match is " |
430 | << max_flow << " of " << matrix.RhsSize() |
431 | << " matchers with the pairings:\n" ; |
432 | LogElementMatcherPairVec(matches, listener->stream()); |
433 | } |
434 | return false; |
435 | } |
436 | if ((match_flags() & UnorderedMatcherRequire::Subset) && |
437 | max_flow < matrix.LhsSize()) { |
438 | if (listener->IsInterested()) { |
439 | *listener |
440 | << "where not all elements can be matched, and the closest match is " |
441 | << max_flow << " of " << matrix.RhsSize() |
442 | << " matchers with the pairings:\n" ; |
443 | LogElementMatcherPairVec(matches, listener->stream()); |
444 | } |
445 | return false; |
446 | } |
447 | |
448 | if (matches.size() > 1) { |
449 | if (listener->IsInterested()) { |
450 | const char* sep = "where:\n" ; |
451 | for (size_t mi = 0; mi < matches.size(); ++mi) { |
452 | *listener << sep << " - element #" << matches[mi].first |
453 | << " is matched by matcher #" << matches[mi].second; |
454 | sep = ",\n" ; |
455 | } |
456 | } |
457 | } |
458 | return true; |
459 | } |
460 | |
461 | } // namespace internal |
462 | } // namespace testing |
463 | |