1 | // Copyright (c) Microsoft Corporation. All rights reserved. |
2 | // Licensed under the MIT license. |
3 | |
4 | #pragma once |
5 | |
6 | #include <atomic> |
7 | #include <chrono> |
8 | #include <cstdint> |
9 | #include <cstring> |
10 | #include <functional> |
11 | #include <memory> |
12 | #include <thread> |
13 | |
14 | #include "alloc.h" |
15 | #include "async.h" |
16 | #include "constants.h" |
17 | #include "phase.h" |
18 | #include "thread.h" |
19 | #include "utility.h" |
20 | |
21 | namespace FASTER { |
22 | namespace core { |
23 | |
24 | class LightEpoch { |
25 | private: |
26 | /// Entry in epoch table |
27 | struct alignas(Constants::kCacheLineBytes) Entry { |
28 | Entry() |
29 | : local_current_epoch{ 0 } |
30 | , reentrant{ 0 } |
31 | , phase_finished{ Phase::REST } { |
32 | } |
33 | |
34 | uint64_t local_current_epoch; |
35 | uint32_t reentrant; |
36 | std::atomic<Phase> phase_finished; |
37 | }; |
38 | static_assert(sizeof(Entry) == 64, "sizeof(Entry) != 64" ); |
39 | |
40 | struct EpochAction { |
41 | typedef void(*callback_t)(IAsyncContext*); |
42 | |
43 | static constexpr uint64_t kFree = UINT64_MAX; |
44 | static constexpr uint64_t kLocked = UINT64_MAX - 1; |
45 | |
46 | EpochAction() |
47 | : epoch{ kFree } |
48 | , callback{ nullptr } |
49 | , context{ nullptr } { |
50 | } |
51 | |
52 | void Initialize() { |
53 | callback = nullptr; |
54 | context = nullptr; |
55 | epoch = kFree; |
56 | } |
57 | |
58 | bool IsFree() const { |
59 | return epoch.load() == kFree; |
60 | } |
61 | |
62 | bool TryPop(uint64_t expected_epoch) { |
63 | bool retval = epoch.compare_exchange_strong(expected_epoch, kLocked); |
64 | if(retval) { |
65 | callback_t callback_ = callback; |
66 | IAsyncContext* context_ = context; |
67 | callback = nullptr; |
68 | context = nullptr; |
69 | // Release the lock. |
70 | epoch.store(kFree); |
71 | // Perform the action. |
72 | callback_(context_); |
73 | } |
74 | return retval; |
75 | } |
76 | |
77 | bool TryPush(uint64_t prior_epoch, callback_t new_callback, IAsyncContext* new_context) { |
78 | uint64_t expected_epoch = kFree; |
79 | bool retval = epoch.compare_exchange_strong(expected_epoch, kLocked); |
80 | if(retval) { |
81 | callback = new_callback; |
82 | context = new_context; |
83 | // Release the lock. |
84 | epoch.store(prior_epoch); |
85 | } |
86 | return retval; |
87 | } |
88 | |
89 | bool TrySwap(uint64_t expected_epoch, uint64_t prior_epoch, callback_t new_callback, |
90 | IAsyncContext* new_context) { |
91 | bool retval = epoch.compare_exchange_strong(expected_epoch, kLocked); |
92 | if(retval) { |
93 | callback_t existing_callback = callback; |
94 | IAsyncContext* existing_context = context; |
95 | callback = new_callback; |
96 | context = new_context; |
97 | // Release the lock. |
98 | epoch.store(prior_epoch); |
99 | // Perform the action. |
100 | existing_callback(existing_context); |
101 | } |
102 | return retval; |
103 | } |
104 | |
105 | /// The epoch field is atomic--always read it first and write it last. |
106 | std::atomic<uint64_t> epoch; |
107 | |
108 | void(*callback)(IAsyncContext* context); |
109 | IAsyncContext* context; |
110 | }; |
111 | |
112 | public: |
113 | /// Default invalid page_index entry. |
114 | static constexpr uint32_t kInvalidIndex = 0; |
115 | /// This thread is not protecting any epoch. |
116 | static constexpr uint64_t kUnprotected = 0; |
117 | |
118 | private: |
119 | /// Default number of entries in the entries table |
120 | static constexpr uint32_t kTableSize = Thread::kMaxNumThreads; |
121 | /// Default drainlist size |
122 | static constexpr uint32_t kDrainListSize = 256; |
123 | /// Epoch table |
124 | Entry* table_; |
125 | /// Number of entries in epoch table. |
126 | uint32_t num_entries_; |
127 | |
128 | /// List of action, epoch pairs containing actions to performed when an epoch becomes |
129 | /// safe to reclaim. |
130 | EpochAction drain_list_[kDrainListSize]; |
131 | /// Count of drain actions |
132 | std::atomic<uint32_t> drain_count_; |
133 | |
134 | public: |
135 | /// Current system epoch (global state) |
136 | std::atomic<uint64_t> current_epoch; |
137 | /// Cached value of epoch that is safe to reclaim |
138 | std::atomic<uint64_t> safe_to_reclaim_epoch; |
139 | |
140 | LightEpoch(uint32_t size = kTableSize) |
141 | : table_{ nullptr } |
142 | , num_entries_{ 0 } |
143 | , drain_count_{ 0 } |
144 | , drain_list_{} { |
145 | Initialize(size); |
146 | } |
147 | |
148 | ~LightEpoch() { |
149 | Uninitialize(); |
150 | } |
151 | |
152 | private: |
153 | void Initialize(uint32_t size) { |
154 | num_entries_ = size; |
155 | // do cache-line alignment |
156 | table_ = reinterpret_cast<Entry*>(aligned_alloc(Constants::kCacheLineBytes, |
157 | (size + 2) * sizeof(Entry))); |
158 | new(table_) Entry[size + 2]; |
159 | current_epoch = 1; |
160 | safe_to_reclaim_epoch = 0; |
161 | for(uint32_t idx = 0; idx < kDrainListSize; ++idx) { |
162 | drain_list_[idx].Initialize(); |
163 | } |
164 | drain_count_ = 0; |
165 | } |
166 | |
167 | void Uninitialize() { |
168 | aligned_free(table_); |
169 | table_ = nullptr; |
170 | num_entries_ = 0; |
171 | current_epoch = 1; |
172 | safe_to_reclaim_epoch = 0; |
173 | } |
174 | |
175 | public: |
176 | /// Enter the thread into the protected code region |
177 | inline uint64_t Protect() { |
178 | uint32_t entry = Thread::id(); |
179 | table_[entry].local_current_epoch = current_epoch.load(); |
180 | return table_[entry].local_current_epoch; |
181 | } |
182 | |
183 | /// Enter the thread into the protected code region |
184 | /// Process entries in drain list if possible |
185 | inline uint64_t ProtectAndDrain() { |
186 | uint32_t entry = Thread::id(); |
187 | table_[entry].local_current_epoch = current_epoch.load(); |
188 | if(drain_count_.load() > 0) { |
189 | Drain(table_[entry].local_current_epoch); |
190 | } |
191 | return table_[entry].local_current_epoch; |
192 | } |
193 | |
194 | uint64_t ReentrantProtect() { |
195 | uint32_t entry = Thread::id(); |
196 | if(table_[entry].local_current_epoch != kUnprotected) |
197 | return table_[entry].local_current_epoch; |
198 | table_[entry].local_current_epoch = current_epoch.load(); |
199 | table_[entry].reentrant++; |
200 | return table_[entry].local_current_epoch; |
201 | } |
202 | |
203 | inline bool IsProtected() { |
204 | uint32_t entry = Thread::id(); |
205 | return table_[entry].local_current_epoch != kUnprotected; |
206 | } |
207 | |
208 | /// Exit the thread from the protected code region. |
209 | void Unprotect() { |
210 | table_[Thread::id()].local_current_epoch = kUnprotected; |
211 | } |
212 | |
213 | void ReentrantUnprotect() { |
214 | uint32_t entry = Thread::id(); |
215 | if(--(table_[entry].reentrant) == 0) { |
216 | table_[entry].local_current_epoch = kUnprotected; |
217 | } |
218 | } |
219 | |
220 | void Drain(uint64_t nextEpoch) { |
221 | ComputeNewSafeToReclaimEpoch(nextEpoch); |
222 | for(uint32_t idx = 0; idx < kDrainListSize; ++idx) { |
223 | uint64_t trigger_epoch = drain_list_[idx].epoch.load(); |
224 | if(trigger_epoch <= safe_to_reclaim_epoch) { |
225 | if(drain_list_[idx].TryPop(trigger_epoch)) { |
226 | if(--drain_count_ == 0) { |
227 | break; |
228 | } |
229 | } |
230 | } |
231 | } |
232 | } |
233 | |
234 | /// Increment the current epoch (global system state) |
235 | uint64_t BumpCurrentEpoch() { |
236 | uint64_t nextEpoch = ++current_epoch; |
237 | if(drain_count_ > 0) { |
238 | Drain(nextEpoch); |
239 | } |
240 | return nextEpoch; |
241 | } |
242 | |
243 | /// Increment the current epoch (global system state) and register |
244 | /// a trigger action for when older epoch becomes safe to reclaim |
245 | uint64_t BumpCurrentEpoch(EpochAction::callback_t callback, IAsyncContext* context) { |
246 | uint64_t prior_epoch = BumpCurrentEpoch() - 1; |
247 | uint32_t i = 0, j = 0; |
248 | while(true) { |
249 | uint64_t trigger_epoch = drain_list_[i].epoch.load(); |
250 | if(trigger_epoch == EpochAction::kFree) { |
251 | if(drain_list_[i].TryPush(prior_epoch, callback, context)) { |
252 | ++drain_count_; |
253 | break; |
254 | } |
255 | } else if(trigger_epoch <= safe_to_reclaim_epoch.load()) { |
256 | if(drain_list_[i].TrySwap(trigger_epoch, prior_epoch, callback, context)) { |
257 | break; |
258 | } |
259 | } |
260 | if(++i == kDrainListSize) { |
261 | i = 0; |
262 | if(++j == 500) { |
263 | j = 0; |
264 | std::this_thread::sleep_for(std::chrono::seconds(1)); |
265 | fprintf(stderr, "Slowdown: Unable to add trigger to epoch\n" ); |
266 | } |
267 | } |
268 | } |
269 | return prior_epoch + 1; |
270 | } |
271 | |
272 | /// Compute latest epoch that is safe to reclaim, by scanning the epoch table |
273 | uint64_t ComputeNewSafeToReclaimEpoch(uint64_t current_epoch_) { |
274 | uint64_t oldest_ongoing_call = current_epoch_; |
275 | for(uint32_t index = 1; index <= num_entries_; ++index) { |
276 | uint64_t entry_epoch = table_[index].local_current_epoch; |
277 | if(entry_epoch != kUnprotected && entry_epoch < oldest_ongoing_call) { |
278 | oldest_ongoing_call = entry_epoch; |
279 | } |
280 | } |
281 | safe_to_reclaim_epoch = oldest_ongoing_call - 1; |
282 | return safe_to_reclaim_epoch; |
283 | } |
284 | |
285 | void SpinWaitForSafeToReclaim(uint64_t current_epoch_, uint64_t safe_to_reclaim_epoch_) { |
286 | do { |
287 | ComputeNewSafeToReclaimEpoch(current_epoch_); |
288 | } while(safe_to_reclaim_epoch_ > safe_to_reclaim_epoch); |
289 | } |
290 | |
291 | bool IsSafeToReclaim(uint64_t epoch) const { |
292 | return (epoch <= safe_to_reclaim_epoch); |
293 | } |
294 | |
295 | /// CPR checkpoint functions. |
296 | inline void ResetPhaseFinished() { |
297 | for(uint32_t idx = 1; idx <= num_entries_; ++idx) { |
298 | assert(table_[idx].phase_finished.load() == Phase::REST || |
299 | table_[idx].phase_finished.load() == Phase::INDEX_CHKPT || |
300 | table_[idx].phase_finished.load() == Phase::PERSISTENCE_CALLBACK || |
301 | table_[idx].phase_finished.load() == Phase::GC_IN_PROGRESS || |
302 | table_[idx].phase_finished.load() == Phase::GROW_IN_PROGRESS); |
303 | table_[idx].phase_finished.store(Phase::REST); |
304 | } |
305 | } |
306 | /// This thread has completed the specified phase. |
307 | inline bool FinishThreadPhase(Phase phase) { |
308 | uint32_t entry = Thread::id(); |
309 | table_[entry].phase_finished = phase; |
310 | // Check if other threads have reported complete. |
311 | for(uint32_t idx = 1; idx <= num_entries_; ++idx) { |
312 | Phase entry_phase = table_[idx].phase_finished.load(); |
313 | uint64_t entry_epoch = table_[idx].local_current_epoch; |
314 | if(entry_epoch != 0 && entry_phase != phase) { |
315 | return false; |
316 | } |
317 | } |
318 | return true; |
319 | } |
320 | /// Has this thread completed the specified phase (i.e., is it waiting for other threads to |
321 | /// finish the specified phase, before it can advance the global phase)? |
322 | inline bool HasThreadFinishedPhase(Phase phase) const { |
323 | uint32_t entry = Thread::id(); |
324 | return table_[entry].phase_finished == phase; |
325 | } |
326 | }; |
327 | |
328 | } |
329 | } // namespace FASTER::core |
330 | |