| 1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 2 | * All rights reserved. |
| 3 | * |
| 4 | * This package is an SSL implementation written |
| 5 | * by Eric Young (eay@cryptsoft.com). |
| 6 | * The implementation was written so as to conform with Netscapes SSL. |
| 7 | * |
| 8 | * This library is free for commercial and non-commercial use as long as |
| 9 | * the following conditions are aheared to. The following conditions |
| 10 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 12 | * included with this distribution is covered by the same copyright terms |
| 13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 14 | * |
| 15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 16 | * the code are not to be removed. |
| 17 | * If this package is used in a product, Eric Young should be given attribution |
| 18 | * as the author of the parts of the library used. |
| 19 | * This can be in the form of a textual message at program startup or |
| 20 | * in documentation (online or textual) provided with the package. |
| 21 | * |
| 22 | * Redistribution and use in source and binary forms, with or without |
| 23 | * modification, are permitted provided that the following conditions |
| 24 | * are met: |
| 25 | * 1. Redistributions of source code must retain the copyright |
| 26 | * notice, this list of conditions and the following disclaimer. |
| 27 | * 2. Redistributions in binary form must reproduce the above copyright |
| 28 | * notice, this list of conditions and the following disclaimer in the |
| 29 | * documentation and/or other materials provided with the distribution. |
| 30 | * 3. All advertising materials mentioning features or use of this software |
| 31 | * must display the following acknowledgement: |
| 32 | * "This product includes cryptographic software written by |
| 33 | * Eric Young (eay@cryptsoft.com)" |
| 34 | * The word 'cryptographic' can be left out if the rouines from the library |
| 35 | * being used are not cryptographic related :-). |
| 36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 37 | * the apps directory (application code) you must include an acknowledgement: |
| 38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 39 | * |
| 40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 50 | * SUCH DAMAGE. |
| 51 | * |
| 52 | * The licence and distribution terms for any publically available version or |
| 53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 54 | * copied and put under another distribution licence |
| 55 | * [including the GNU Public Licence.] */ |
| 56 | |
| 57 | #include <openssl/base64.h> |
| 58 | |
| 59 | #include <assert.h> |
| 60 | #include <limits.h> |
| 61 | #include <string.h> |
| 62 | |
| 63 | #include <openssl/type_check.h> |
| 64 | |
| 65 | #include "../internal.h" |
| 66 | |
| 67 | |
| 68 | // constant_time_lt_args_8 behaves like |constant_time_lt_8| but takes |uint8_t| |
| 69 | // arguments for a slightly simpler implementation. |
| 70 | static inline uint8_t constant_time_lt_args_8(uint8_t a, uint8_t b) { |
| 71 | crypto_word_t aw = a; |
| 72 | crypto_word_t bw = b; |
| 73 | // |crypto_word_t| is larger than |uint8_t|, so |aw| and |bw| have the same |
| 74 | // MSB. |aw| < |bw| iff MSB(|aw| - |bw|) is 1. |
| 75 | return constant_time_msb_w(aw - bw); |
| 76 | } |
| 77 | |
| 78 | // constant_time_in_range_8 returns |CONSTTIME_TRUE_8| if |min| <= |a| <= |max| |
| 79 | // and |CONSTTIME_FALSE_8| otherwise. |
| 80 | static inline uint8_t constant_time_in_range_8(uint8_t a, uint8_t min, |
| 81 | uint8_t max) { |
| 82 | a -= min; |
| 83 | return constant_time_lt_args_8(a, max - min + 1); |
| 84 | } |
| 85 | |
| 86 | // Encoding. |
| 87 | |
| 88 | static uint8_t conv_bin2ascii(uint8_t a) { |
| 89 | // Since PEM is sometimes used to carry private keys, we encode base64 data |
| 90 | // itself in constant-time. |
| 91 | a &= 0x3f; |
| 92 | uint8_t ret = constant_time_select_8(constant_time_eq_8(a, 62), '+', '/'); |
| 93 | ret = |
| 94 | constant_time_select_8(constant_time_lt_args_8(a, 62), a - 52 + '0', ret); |
| 95 | ret = |
| 96 | constant_time_select_8(constant_time_lt_args_8(a, 52), a - 26 + 'a', ret); |
| 97 | ret = constant_time_select_8(constant_time_lt_args_8(a, 26), a + 'A', ret); |
| 98 | return ret; |
| 99 | } |
| 100 | |
| 101 | OPENSSL_STATIC_ASSERT(sizeof(((EVP_ENCODE_CTX *)(NULL))->data) % 3 == 0, |
| 102 | "data length must be a multiple of base64 chunk size" ); |
| 103 | |
| 104 | int EVP_EncodedLength(size_t *out_len, size_t len) { |
| 105 | if (len + 2 < len) { |
| 106 | return 0; |
| 107 | } |
| 108 | len += 2; |
| 109 | len /= 3; |
| 110 | |
| 111 | if (((len << 2) >> 2) != len) { |
| 112 | return 0; |
| 113 | } |
| 114 | len <<= 2; |
| 115 | |
| 116 | if (len + 1 < len) { |
| 117 | return 0; |
| 118 | } |
| 119 | len++; |
| 120 | |
| 121 | *out_len = len; |
| 122 | return 1; |
| 123 | } |
| 124 | |
| 125 | void EVP_EncodeInit(EVP_ENCODE_CTX *ctx) { |
| 126 | OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX)); |
| 127 | } |
| 128 | |
| 129 | void EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len, |
| 130 | const uint8_t *in, size_t in_len) { |
| 131 | size_t total = 0; |
| 132 | |
| 133 | *out_len = 0; |
| 134 | if (in_len == 0) { |
| 135 | return; |
| 136 | } |
| 137 | |
| 138 | assert(ctx->data_used < sizeof(ctx->data)); |
| 139 | |
| 140 | if (sizeof(ctx->data) - ctx->data_used > in_len) { |
| 141 | OPENSSL_memcpy(&ctx->data[ctx->data_used], in, in_len); |
| 142 | ctx->data_used += (unsigned)in_len; |
| 143 | return; |
| 144 | } |
| 145 | |
| 146 | if (ctx->data_used != 0) { |
| 147 | const size_t todo = sizeof(ctx->data) - ctx->data_used; |
| 148 | OPENSSL_memcpy(&ctx->data[ctx->data_used], in, todo); |
| 149 | in += todo; |
| 150 | in_len -= todo; |
| 151 | |
| 152 | size_t encoded = EVP_EncodeBlock(out, ctx->data, sizeof(ctx->data)); |
| 153 | ctx->data_used = 0; |
| 154 | |
| 155 | out += encoded; |
| 156 | *(out++) = '\n'; |
| 157 | *out = '\0'; |
| 158 | |
| 159 | total = encoded + 1; |
| 160 | } |
| 161 | |
| 162 | while (in_len >= sizeof(ctx->data)) { |
| 163 | size_t encoded = EVP_EncodeBlock(out, in, sizeof(ctx->data)); |
| 164 | in += sizeof(ctx->data); |
| 165 | in_len -= sizeof(ctx->data); |
| 166 | |
| 167 | out += encoded; |
| 168 | *(out++) = '\n'; |
| 169 | *out = '\0'; |
| 170 | |
| 171 | if (total + encoded + 1 < total) { |
| 172 | *out_len = 0; |
| 173 | return; |
| 174 | } |
| 175 | |
| 176 | total += encoded + 1; |
| 177 | } |
| 178 | |
| 179 | if (in_len != 0) { |
| 180 | OPENSSL_memcpy(ctx->data, in, in_len); |
| 181 | } |
| 182 | |
| 183 | ctx->data_used = (unsigned)in_len; |
| 184 | |
| 185 | if (total > INT_MAX) { |
| 186 | // We cannot signal an error, but we can at least avoid making *out_len |
| 187 | // negative. |
| 188 | total = 0; |
| 189 | } |
| 190 | *out_len = (int)total; |
| 191 | } |
| 192 | |
| 193 | void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) { |
| 194 | if (ctx->data_used == 0) { |
| 195 | *out_len = 0; |
| 196 | return; |
| 197 | } |
| 198 | |
| 199 | size_t encoded = EVP_EncodeBlock(out, ctx->data, ctx->data_used); |
| 200 | out[encoded++] = '\n'; |
| 201 | out[encoded] = '\0'; |
| 202 | ctx->data_used = 0; |
| 203 | |
| 204 | // ctx->data_used is bounded by sizeof(ctx->data), so this does not |
| 205 | // overflow. |
| 206 | assert(encoded <= INT_MAX); |
| 207 | *out_len = (int)encoded; |
| 208 | } |
| 209 | |
| 210 | size_t EVP_EncodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) { |
| 211 | uint32_t l; |
| 212 | size_t remaining = src_len, ret = 0; |
| 213 | |
| 214 | while (remaining) { |
| 215 | if (remaining >= 3) { |
| 216 | l = (((uint32_t)src[0]) << 16L) | (((uint32_t)src[1]) << 8L) | src[2]; |
| 217 | *(dst++) = conv_bin2ascii(l >> 18L); |
| 218 | *(dst++) = conv_bin2ascii(l >> 12L); |
| 219 | *(dst++) = conv_bin2ascii(l >> 6L); |
| 220 | *(dst++) = conv_bin2ascii(l); |
| 221 | remaining -= 3; |
| 222 | } else { |
| 223 | l = ((uint32_t)src[0]) << 16L; |
| 224 | if (remaining == 2) { |
| 225 | l |= ((uint32_t)src[1] << 8L); |
| 226 | } |
| 227 | |
| 228 | *(dst++) = conv_bin2ascii(l >> 18L); |
| 229 | *(dst++) = conv_bin2ascii(l >> 12L); |
| 230 | *(dst++) = (remaining == 1) ? '=' : conv_bin2ascii(l >> 6L); |
| 231 | *(dst++) = '='; |
| 232 | remaining = 0; |
| 233 | } |
| 234 | ret += 4; |
| 235 | src += 3; |
| 236 | } |
| 237 | |
| 238 | *dst = '\0'; |
| 239 | return ret; |
| 240 | } |
| 241 | |
| 242 | |
| 243 | // Decoding. |
| 244 | |
| 245 | int EVP_DecodedLength(size_t *out_len, size_t len) { |
| 246 | if (len % 4 != 0) { |
| 247 | return 0; |
| 248 | } |
| 249 | |
| 250 | *out_len = (len / 4) * 3; |
| 251 | return 1; |
| 252 | } |
| 253 | |
| 254 | void EVP_DecodeInit(EVP_ENCODE_CTX *ctx) { |
| 255 | OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX)); |
| 256 | } |
| 257 | |
| 258 | static uint8_t base64_ascii_to_bin(uint8_t a) { |
| 259 | // Since PEM is sometimes used to carry private keys, we decode base64 data |
| 260 | // itself in constant-time. |
| 261 | const uint8_t is_upper = constant_time_in_range_8(a, 'A', 'Z'); |
| 262 | const uint8_t is_lower = constant_time_in_range_8(a, 'a', 'z'); |
| 263 | const uint8_t is_digit = constant_time_in_range_8(a, '0', '9'); |
| 264 | const uint8_t is_plus = constant_time_eq_8(a, '+'); |
| 265 | const uint8_t is_slash = constant_time_eq_8(a, '/'); |
| 266 | const uint8_t is_equals = constant_time_eq_8(a, '='); |
| 267 | |
| 268 | uint8_t ret = 0xff; // 0xff signals invalid. |
| 269 | ret = constant_time_select_8(is_upper, a - 'A', ret); // [0,26) |
| 270 | ret = constant_time_select_8(is_lower, a - 'a' + 26, ret); // [26,52) |
| 271 | ret = constant_time_select_8(is_digit, a - '0' + 52, ret); // [52,62) |
| 272 | ret = constant_time_select_8(is_plus, 62, ret); |
| 273 | ret = constant_time_select_8(is_slash, 63, ret); |
| 274 | // Padding maps to zero, to be further handled by the caller. |
| 275 | ret = constant_time_select_8(is_equals, 0, ret); |
| 276 | return ret; |
| 277 | } |
| 278 | |
| 279 | // base64_decode_quad decodes a single “quad” (i.e. four characters) of base64 |
| 280 | // data and writes up to three bytes to |out|. It sets |*out_num_bytes| to the |
| 281 | // number of bytes written, which will be less than three if the quad ended |
| 282 | // with padding. It returns one on success or zero on error. |
| 283 | static int base64_decode_quad(uint8_t *out, size_t *out_num_bytes, |
| 284 | const uint8_t *in) { |
| 285 | const uint8_t a = base64_ascii_to_bin(in[0]); |
| 286 | const uint8_t b = base64_ascii_to_bin(in[1]); |
| 287 | const uint8_t c = base64_ascii_to_bin(in[2]); |
| 288 | const uint8_t d = base64_ascii_to_bin(in[3]); |
| 289 | if (a == 0xff || b == 0xff || c == 0xff || d == 0xff) { |
| 290 | return 0; |
| 291 | } |
| 292 | |
| 293 | const uint32_t v = ((uint32_t)a) << 18 | ((uint32_t)b) << 12 | |
| 294 | ((uint32_t)c) << 6 | (uint32_t)d; |
| 295 | |
| 296 | const unsigned padding_pattern = (in[0] == '=') << 3 | |
| 297 | (in[1] == '=') << 2 | |
| 298 | (in[2] == '=') << 1 | |
| 299 | (in[3] == '='); |
| 300 | |
| 301 | switch (padding_pattern) { |
| 302 | case 0: |
| 303 | // The common case of no padding. |
| 304 | *out_num_bytes = 3; |
| 305 | out[0] = v >> 16; |
| 306 | out[1] = v >> 8; |
| 307 | out[2] = v; |
| 308 | break; |
| 309 | |
| 310 | case 1: // xxx= |
| 311 | *out_num_bytes = 2; |
| 312 | out[0] = v >> 16; |
| 313 | out[1] = v >> 8; |
| 314 | break; |
| 315 | |
| 316 | case 3: // xx== |
| 317 | *out_num_bytes = 1; |
| 318 | out[0] = v >> 16; |
| 319 | break; |
| 320 | |
| 321 | default: |
| 322 | return 0; |
| 323 | } |
| 324 | |
| 325 | return 1; |
| 326 | } |
| 327 | |
| 328 | int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len, |
| 329 | const uint8_t *in, size_t in_len) { |
| 330 | *out_len = 0; |
| 331 | |
| 332 | if (ctx->error_encountered) { |
| 333 | return -1; |
| 334 | } |
| 335 | |
| 336 | size_t bytes_out = 0, i; |
| 337 | for (i = 0; i < in_len; i++) { |
| 338 | const char c = in[i]; |
| 339 | switch (c) { |
| 340 | case ' ': |
| 341 | case '\t': |
| 342 | case '\r': |
| 343 | case '\n': |
| 344 | continue; |
| 345 | } |
| 346 | |
| 347 | if (ctx->eof_seen) { |
| 348 | ctx->error_encountered = 1; |
| 349 | return -1; |
| 350 | } |
| 351 | |
| 352 | ctx->data[ctx->data_used++] = c; |
| 353 | if (ctx->data_used == 4) { |
| 354 | size_t num_bytes_resulting; |
| 355 | if (!base64_decode_quad(out, &num_bytes_resulting, ctx->data)) { |
| 356 | ctx->error_encountered = 1; |
| 357 | return -1; |
| 358 | } |
| 359 | |
| 360 | ctx->data_used = 0; |
| 361 | bytes_out += num_bytes_resulting; |
| 362 | out += num_bytes_resulting; |
| 363 | |
| 364 | if (num_bytes_resulting < 3) { |
| 365 | ctx->eof_seen = 1; |
| 366 | } |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | if (bytes_out > INT_MAX) { |
| 371 | ctx->error_encountered = 1; |
| 372 | *out_len = 0; |
| 373 | return -1; |
| 374 | } |
| 375 | *out_len = (int)bytes_out; |
| 376 | |
| 377 | if (ctx->eof_seen) { |
| 378 | return 0; |
| 379 | } |
| 380 | |
| 381 | return 1; |
| 382 | } |
| 383 | |
| 384 | int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) { |
| 385 | *out_len = 0; |
| 386 | if (ctx->error_encountered || ctx->data_used != 0) { |
| 387 | return -1; |
| 388 | } |
| 389 | |
| 390 | return 1; |
| 391 | } |
| 392 | |
| 393 | int EVP_DecodeBase64(uint8_t *out, size_t *out_len, size_t max_out, |
| 394 | const uint8_t *in, size_t in_len) { |
| 395 | *out_len = 0; |
| 396 | |
| 397 | if (in_len % 4 != 0) { |
| 398 | return 0; |
| 399 | } |
| 400 | |
| 401 | size_t max_len; |
| 402 | if (!EVP_DecodedLength(&max_len, in_len) || |
| 403 | max_out < max_len) { |
| 404 | return 0; |
| 405 | } |
| 406 | |
| 407 | size_t i, bytes_out = 0; |
| 408 | for (i = 0; i < in_len; i += 4) { |
| 409 | size_t num_bytes_resulting; |
| 410 | |
| 411 | if (!base64_decode_quad(out, &num_bytes_resulting, &in[i])) { |
| 412 | return 0; |
| 413 | } |
| 414 | |
| 415 | bytes_out += num_bytes_resulting; |
| 416 | out += num_bytes_resulting; |
| 417 | if (num_bytes_resulting != 3 && i != in_len - 4) { |
| 418 | return 0; |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | *out_len = bytes_out; |
| 423 | return 1; |
| 424 | } |
| 425 | |
| 426 | int EVP_DecodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) { |
| 427 | // Trim spaces and tabs from the beginning of the input. |
| 428 | while (src_len > 0) { |
| 429 | if (src[0] != ' ' && src[0] != '\t') { |
| 430 | break; |
| 431 | } |
| 432 | |
| 433 | src++; |
| 434 | src_len--; |
| 435 | } |
| 436 | |
| 437 | // Trim newlines, spaces and tabs from the end of the line. |
| 438 | while (src_len > 0) { |
| 439 | switch (src[src_len-1]) { |
| 440 | case ' ': |
| 441 | case '\t': |
| 442 | case '\r': |
| 443 | case '\n': |
| 444 | src_len--; |
| 445 | continue; |
| 446 | } |
| 447 | |
| 448 | break; |
| 449 | } |
| 450 | |
| 451 | size_t dst_len; |
| 452 | if (!EVP_DecodedLength(&dst_len, src_len) || |
| 453 | dst_len > INT_MAX || |
| 454 | !EVP_DecodeBase64(dst, &dst_len, dst_len, src, src_len)) { |
| 455 | return -1; |
| 456 | } |
| 457 | |
| 458 | // EVP_DecodeBlock does not take padding into account, so put the |
| 459 | // NULs back in... so the caller can strip them back out. |
| 460 | while (dst_len % 3 != 0) { |
| 461 | dst[dst_len++] = '\0'; |
| 462 | } |
| 463 | assert(dst_len <= INT_MAX); |
| 464 | |
| 465 | return (int)dst_len; |
| 466 | } |
| 467 | |