1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
2 | * All rights reserved. |
3 | * |
4 | * This package is an SSL implementation written |
5 | * by Eric Young (eay@cryptsoft.com). |
6 | * The implementation was written so as to conform with Netscapes SSL. |
7 | * |
8 | * This library is free for commercial and non-commercial use as long as |
9 | * the following conditions are aheared to. The following conditions |
10 | * apply to all code found in this distribution, be it the RC4, RSA, |
11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
12 | * included with this distribution is covered by the same copyright terms |
13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
14 | * |
15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
16 | * the code are not to be removed. |
17 | * If this package is used in a product, Eric Young should be given attribution |
18 | * as the author of the parts of the library used. |
19 | * This can be in the form of a textual message at program startup or |
20 | * in documentation (online or textual) provided with the package. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 3. All advertising materials mentioning features or use of this software |
31 | * must display the following acknowledgement: |
32 | * "This product includes cryptographic software written by |
33 | * Eric Young (eay@cryptsoft.com)" |
34 | * The word 'cryptographic' can be left out if the rouines from the library |
35 | * being used are not cryptographic related :-). |
36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
37 | * the apps directory (application code) you must include an acknowledgement: |
38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
39 | * |
40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | * SUCH DAMAGE. |
51 | * |
52 | * The licence and distribution terms for any publically available version or |
53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
54 | * copied and put under another distribution licence |
55 | * [including the GNU Public Licence.] */ |
56 | |
57 | #include <openssl/base64.h> |
58 | |
59 | #include <assert.h> |
60 | #include <limits.h> |
61 | #include <string.h> |
62 | |
63 | #include <openssl/type_check.h> |
64 | |
65 | #include "../internal.h" |
66 | |
67 | |
68 | // constant_time_lt_args_8 behaves like |constant_time_lt_8| but takes |uint8_t| |
69 | // arguments for a slightly simpler implementation. |
70 | static inline uint8_t constant_time_lt_args_8(uint8_t a, uint8_t b) { |
71 | crypto_word_t aw = a; |
72 | crypto_word_t bw = b; |
73 | // |crypto_word_t| is larger than |uint8_t|, so |aw| and |bw| have the same |
74 | // MSB. |aw| < |bw| iff MSB(|aw| - |bw|) is 1. |
75 | return constant_time_msb_w(aw - bw); |
76 | } |
77 | |
78 | // constant_time_in_range_8 returns |CONSTTIME_TRUE_8| if |min| <= |a| <= |max| |
79 | // and |CONSTTIME_FALSE_8| otherwise. |
80 | static inline uint8_t constant_time_in_range_8(uint8_t a, uint8_t min, |
81 | uint8_t max) { |
82 | a -= min; |
83 | return constant_time_lt_args_8(a, max - min + 1); |
84 | } |
85 | |
86 | // Encoding. |
87 | |
88 | static uint8_t conv_bin2ascii(uint8_t a) { |
89 | // Since PEM is sometimes used to carry private keys, we encode base64 data |
90 | // itself in constant-time. |
91 | a &= 0x3f; |
92 | uint8_t ret = constant_time_select_8(constant_time_eq_8(a, 62), '+', '/'); |
93 | ret = |
94 | constant_time_select_8(constant_time_lt_args_8(a, 62), a - 52 + '0', ret); |
95 | ret = |
96 | constant_time_select_8(constant_time_lt_args_8(a, 52), a - 26 + 'a', ret); |
97 | ret = constant_time_select_8(constant_time_lt_args_8(a, 26), a + 'A', ret); |
98 | return ret; |
99 | } |
100 | |
101 | OPENSSL_STATIC_ASSERT(sizeof(((EVP_ENCODE_CTX *)(NULL))->data) % 3 == 0, |
102 | "data length must be a multiple of base64 chunk size" ); |
103 | |
104 | int EVP_EncodedLength(size_t *out_len, size_t len) { |
105 | if (len + 2 < len) { |
106 | return 0; |
107 | } |
108 | len += 2; |
109 | len /= 3; |
110 | |
111 | if (((len << 2) >> 2) != len) { |
112 | return 0; |
113 | } |
114 | len <<= 2; |
115 | |
116 | if (len + 1 < len) { |
117 | return 0; |
118 | } |
119 | len++; |
120 | |
121 | *out_len = len; |
122 | return 1; |
123 | } |
124 | |
125 | void EVP_EncodeInit(EVP_ENCODE_CTX *ctx) { |
126 | OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX)); |
127 | } |
128 | |
129 | void EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len, |
130 | const uint8_t *in, size_t in_len) { |
131 | size_t total = 0; |
132 | |
133 | *out_len = 0; |
134 | if (in_len == 0) { |
135 | return; |
136 | } |
137 | |
138 | assert(ctx->data_used < sizeof(ctx->data)); |
139 | |
140 | if (sizeof(ctx->data) - ctx->data_used > in_len) { |
141 | OPENSSL_memcpy(&ctx->data[ctx->data_used], in, in_len); |
142 | ctx->data_used += (unsigned)in_len; |
143 | return; |
144 | } |
145 | |
146 | if (ctx->data_used != 0) { |
147 | const size_t todo = sizeof(ctx->data) - ctx->data_used; |
148 | OPENSSL_memcpy(&ctx->data[ctx->data_used], in, todo); |
149 | in += todo; |
150 | in_len -= todo; |
151 | |
152 | size_t encoded = EVP_EncodeBlock(out, ctx->data, sizeof(ctx->data)); |
153 | ctx->data_used = 0; |
154 | |
155 | out += encoded; |
156 | *(out++) = '\n'; |
157 | *out = '\0'; |
158 | |
159 | total = encoded + 1; |
160 | } |
161 | |
162 | while (in_len >= sizeof(ctx->data)) { |
163 | size_t encoded = EVP_EncodeBlock(out, in, sizeof(ctx->data)); |
164 | in += sizeof(ctx->data); |
165 | in_len -= sizeof(ctx->data); |
166 | |
167 | out += encoded; |
168 | *(out++) = '\n'; |
169 | *out = '\0'; |
170 | |
171 | if (total + encoded + 1 < total) { |
172 | *out_len = 0; |
173 | return; |
174 | } |
175 | |
176 | total += encoded + 1; |
177 | } |
178 | |
179 | if (in_len != 0) { |
180 | OPENSSL_memcpy(ctx->data, in, in_len); |
181 | } |
182 | |
183 | ctx->data_used = (unsigned)in_len; |
184 | |
185 | if (total > INT_MAX) { |
186 | // We cannot signal an error, but we can at least avoid making *out_len |
187 | // negative. |
188 | total = 0; |
189 | } |
190 | *out_len = (int)total; |
191 | } |
192 | |
193 | void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) { |
194 | if (ctx->data_used == 0) { |
195 | *out_len = 0; |
196 | return; |
197 | } |
198 | |
199 | size_t encoded = EVP_EncodeBlock(out, ctx->data, ctx->data_used); |
200 | out[encoded++] = '\n'; |
201 | out[encoded] = '\0'; |
202 | ctx->data_used = 0; |
203 | |
204 | // ctx->data_used is bounded by sizeof(ctx->data), so this does not |
205 | // overflow. |
206 | assert(encoded <= INT_MAX); |
207 | *out_len = (int)encoded; |
208 | } |
209 | |
210 | size_t EVP_EncodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) { |
211 | uint32_t l; |
212 | size_t remaining = src_len, ret = 0; |
213 | |
214 | while (remaining) { |
215 | if (remaining >= 3) { |
216 | l = (((uint32_t)src[0]) << 16L) | (((uint32_t)src[1]) << 8L) | src[2]; |
217 | *(dst++) = conv_bin2ascii(l >> 18L); |
218 | *(dst++) = conv_bin2ascii(l >> 12L); |
219 | *(dst++) = conv_bin2ascii(l >> 6L); |
220 | *(dst++) = conv_bin2ascii(l); |
221 | remaining -= 3; |
222 | } else { |
223 | l = ((uint32_t)src[0]) << 16L; |
224 | if (remaining == 2) { |
225 | l |= ((uint32_t)src[1] << 8L); |
226 | } |
227 | |
228 | *(dst++) = conv_bin2ascii(l >> 18L); |
229 | *(dst++) = conv_bin2ascii(l >> 12L); |
230 | *(dst++) = (remaining == 1) ? '=' : conv_bin2ascii(l >> 6L); |
231 | *(dst++) = '='; |
232 | remaining = 0; |
233 | } |
234 | ret += 4; |
235 | src += 3; |
236 | } |
237 | |
238 | *dst = '\0'; |
239 | return ret; |
240 | } |
241 | |
242 | |
243 | // Decoding. |
244 | |
245 | int EVP_DecodedLength(size_t *out_len, size_t len) { |
246 | if (len % 4 != 0) { |
247 | return 0; |
248 | } |
249 | |
250 | *out_len = (len / 4) * 3; |
251 | return 1; |
252 | } |
253 | |
254 | void EVP_DecodeInit(EVP_ENCODE_CTX *ctx) { |
255 | OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX)); |
256 | } |
257 | |
258 | static uint8_t base64_ascii_to_bin(uint8_t a) { |
259 | // Since PEM is sometimes used to carry private keys, we decode base64 data |
260 | // itself in constant-time. |
261 | const uint8_t is_upper = constant_time_in_range_8(a, 'A', 'Z'); |
262 | const uint8_t is_lower = constant_time_in_range_8(a, 'a', 'z'); |
263 | const uint8_t is_digit = constant_time_in_range_8(a, '0', '9'); |
264 | const uint8_t is_plus = constant_time_eq_8(a, '+'); |
265 | const uint8_t is_slash = constant_time_eq_8(a, '/'); |
266 | const uint8_t is_equals = constant_time_eq_8(a, '='); |
267 | |
268 | uint8_t ret = 0xff; // 0xff signals invalid. |
269 | ret = constant_time_select_8(is_upper, a - 'A', ret); // [0,26) |
270 | ret = constant_time_select_8(is_lower, a - 'a' + 26, ret); // [26,52) |
271 | ret = constant_time_select_8(is_digit, a - '0' + 52, ret); // [52,62) |
272 | ret = constant_time_select_8(is_plus, 62, ret); |
273 | ret = constant_time_select_8(is_slash, 63, ret); |
274 | // Padding maps to zero, to be further handled by the caller. |
275 | ret = constant_time_select_8(is_equals, 0, ret); |
276 | return ret; |
277 | } |
278 | |
279 | // base64_decode_quad decodes a single “quad” (i.e. four characters) of base64 |
280 | // data and writes up to three bytes to |out|. It sets |*out_num_bytes| to the |
281 | // number of bytes written, which will be less than three if the quad ended |
282 | // with padding. It returns one on success or zero on error. |
283 | static int base64_decode_quad(uint8_t *out, size_t *out_num_bytes, |
284 | const uint8_t *in) { |
285 | const uint8_t a = base64_ascii_to_bin(in[0]); |
286 | const uint8_t b = base64_ascii_to_bin(in[1]); |
287 | const uint8_t c = base64_ascii_to_bin(in[2]); |
288 | const uint8_t d = base64_ascii_to_bin(in[3]); |
289 | if (a == 0xff || b == 0xff || c == 0xff || d == 0xff) { |
290 | return 0; |
291 | } |
292 | |
293 | const uint32_t v = ((uint32_t)a) << 18 | ((uint32_t)b) << 12 | |
294 | ((uint32_t)c) << 6 | (uint32_t)d; |
295 | |
296 | const unsigned padding_pattern = (in[0] == '=') << 3 | |
297 | (in[1] == '=') << 2 | |
298 | (in[2] == '=') << 1 | |
299 | (in[3] == '='); |
300 | |
301 | switch (padding_pattern) { |
302 | case 0: |
303 | // The common case of no padding. |
304 | *out_num_bytes = 3; |
305 | out[0] = v >> 16; |
306 | out[1] = v >> 8; |
307 | out[2] = v; |
308 | break; |
309 | |
310 | case 1: // xxx= |
311 | *out_num_bytes = 2; |
312 | out[0] = v >> 16; |
313 | out[1] = v >> 8; |
314 | break; |
315 | |
316 | case 3: // xx== |
317 | *out_num_bytes = 1; |
318 | out[0] = v >> 16; |
319 | break; |
320 | |
321 | default: |
322 | return 0; |
323 | } |
324 | |
325 | return 1; |
326 | } |
327 | |
328 | int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len, |
329 | const uint8_t *in, size_t in_len) { |
330 | *out_len = 0; |
331 | |
332 | if (ctx->error_encountered) { |
333 | return -1; |
334 | } |
335 | |
336 | size_t bytes_out = 0, i; |
337 | for (i = 0; i < in_len; i++) { |
338 | const char c = in[i]; |
339 | switch (c) { |
340 | case ' ': |
341 | case '\t': |
342 | case '\r': |
343 | case '\n': |
344 | continue; |
345 | } |
346 | |
347 | if (ctx->eof_seen) { |
348 | ctx->error_encountered = 1; |
349 | return -1; |
350 | } |
351 | |
352 | ctx->data[ctx->data_used++] = c; |
353 | if (ctx->data_used == 4) { |
354 | size_t num_bytes_resulting; |
355 | if (!base64_decode_quad(out, &num_bytes_resulting, ctx->data)) { |
356 | ctx->error_encountered = 1; |
357 | return -1; |
358 | } |
359 | |
360 | ctx->data_used = 0; |
361 | bytes_out += num_bytes_resulting; |
362 | out += num_bytes_resulting; |
363 | |
364 | if (num_bytes_resulting < 3) { |
365 | ctx->eof_seen = 1; |
366 | } |
367 | } |
368 | } |
369 | |
370 | if (bytes_out > INT_MAX) { |
371 | ctx->error_encountered = 1; |
372 | *out_len = 0; |
373 | return -1; |
374 | } |
375 | *out_len = (int)bytes_out; |
376 | |
377 | if (ctx->eof_seen) { |
378 | return 0; |
379 | } |
380 | |
381 | return 1; |
382 | } |
383 | |
384 | int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) { |
385 | *out_len = 0; |
386 | if (ctx->error_encountered || ctx->data_used != 0) { |
387 | return -1; |
388 | } |
389 | |
390 | return 1; |
391 | } |
392 | |
393 | int EVP_DecodeBase64(uint8_t *out, size_t *out_len, size_t max_out, |
394 | const uint8_t *in, size_t in_len) { |
395 | *out_len = 0; |
396 | |
397 | if (in_len % 4 != 0) { |
398 | return 0; |
399 | } |
400 | |
401 | size_t max_len; |
402 | if (!EVP_DecodedLength(&max_len, in_len) || |
403 | max_out < max_len) { |
404 | return 0; |
405 | } |
406 | |
407 | size_t i, bytes_out = 0; |
408 | for (i = 0; i < in_len; i += 4) { |
409 | size_t num_bytes_resulting; |
410 | |
411 | if (!base64_decode_quad(out, &num_bytes_resulting, &in[i])) { |
412 | return 0; |
413 | } |
414 | |
415 | bytes_out += num_bytes_resulting; |
416 | out += num_bytes_resulting; |
417 | if (num_bytes_resulting != 3 && i != in_len - 4) { |
418 | return 0; |
419 | } |
420 | } |
421 | |
422 | *out_len = bytes_out; |
423 | return 1; |
424 | } |
425 | |
426 | int EVP_DecodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) { |
427 | // Trim spaces and tabs from the beginning of the input. |
428 | while (src_len > 0) { |
429 | if (src[0] != ' ' && src[0] != '\t') { |
430 | break; |
431 | } |
432 | |
433 | src++; |
434 | src_len--; |
435 | } |
436 | |
437 | // Trim newlines, spaces and tabs from the end of the line. |
438 | while (src_len > 0) { |
439 | switch (src[src_len-1]) { |
440 | case ' ': |
441 | case '\t': |
442 | case '\r': |
443 | case '\n': |
444 | src_len--; |
445 | continue; |
446 | } |
447 | |
448 | break; |
449 | } |
450 | |
451 | size_t dst_len; |
452 | if (!EVP_DecodedLength(&dst_len, src_len) || |
453 | dst_len > INT_MAX || |
454 | !EVP_DecodeBase64(dst, &dst_len, dst_len, src, src_len)) { |
455 | return -1; |
456 | } |
457 | |
458 | // EVP_DecodeBlock does not take padding into account, so put the |
459 | // NULs back in... so the caller can strip them back out. |
460 | while (dst_len % 3 != 0) { |
461 | dst[dst_len++] = '\0'; |
462 | } |
463 | assert(dst_len <= INT_MAX); |
464 | |
465 | return (int)dst_len; |
466 | } |
467 | |