1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
2 | * All rights reserved. |
3 | * |
4 | * This package is an SSL implementation written |
5 | * by Eric Young (eay@cryptsoft.com). |
6 | * The implementation was written so as to conform with Netscapes SSL. |
7 | * |
8 | * This library is free for commercial and non-commercial use as long as |
9 | * the following conditions are aheared to. The following conditions |
10 | * apply to all code found in this distribution, be it the RC4, RSA, |
11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
12 | * included with this distribution is covered by the same copyright terms |
13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
14 | * |
15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
16 | * the code are not to be removed. |
17 | * If this package is used in a product, Eric Young should be given attribution |
18 | * as the author of the parts of the library used. |
19 | * This can be in the form of a textual message at program startup or |
20 | * in documentation (online or textual) provided with the package. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 3. All advertising materials mentioning features or use of this software |
31 | * must display the following acknowledgement: |
32 | * "This product includes cryptographic software written by |
33 | * Eric Young (eay@cryptsoft.com)" |
34 | * The word 'cryptographic' can be left out if the rouines from the library |
35 | * being used are not cryptographic related :-). |
36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
37 | * the apps directory (application code) you must include an acknowledgement: |
38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
39 | * |
40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | * SUCH DAMAGE. |
51 | * |
52 | * The licence and distribution terms for any publically available version or |
53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
54 | * copied and put under another distribution licence |
55 | * [including the GNU Public Licence.] */ |
56 | |
57 | #include <openssl/cipher.h> |
58 | #include <openssl/nid.h> |
59 | |
60 | #include "../internal.h" |
61 | |
62 | |
63 | #define c2l(c, l) \ |
64 | do { \ |
65 | (l) = ((uint32_t)(*((c)++))); \ |
66 | (l) |= ((uint32_t)(*((c)++))) << 8L; \ |
67 | (l) |= ((uint32_t)(*((c)++))) << 16L; \ |
68 | (l) |= ((uint32_t)(*((c)++))) << 24L; \ |
69 | } while (0) |
70 | |
71 | #define c2ln(c, l1, l2, n) \ |
72 | do { \ |
73 | (c) += (n); \ |
74 | (l1) = (l2) = 0; \ |
75 | switch (n) { \ |
76 | case 8: \ |
77 | (l2) = ((uint32_t)(*(--(c)))) << 24L; \ |
78 | OPENSSL_FALLTHROUGH; \ |
79 | case 7: \ |
80 | (l2) |= ((uint32_t)(*(--(c)))) << 16L; \ |
81 | OPENSSL_FALLTHROUGH; \ |
82 | case 6: \ |
83 | (l2) |= ((uint32_t)(*(--(c)))) << 8L; \ |
84 | OPENSSL_FALLTHROUGH; \ |
85 | case 5: \ |
86 | (l2) |= ((uint32_t)(*(--(c)))); \ |
87 | OPENSSL_FALLTHROUGH; \ |
88 | case 4: \ |
89 | (l1) = ((uint32_t)(*(--(c)))) << 24L; \ |
90 | OPENSSL_FALLTHROUGH; \ |
91 | case 3: \ |
92 | (l1) |= ((uint32_t)(*(--(c)))) << 16L; \ |
93 | OPENSSL_FALLTHROUGH; \ |
94 | case 2: \ |
95 | (l1) |= ((uint32_t)(*(--(c)))) << 8L; \ |
96 | OPENSSL_FALLTHROUGH; \ |
97 | case 1: \ |
98 | (l1) |= ((uint32_t)(*(--(c)))); \ |
99 | } \ |
100 | } while (0) |
101 | |
102 | #define l2c(l, c) \ |
103 | do { \ |
104 | *((c)++) = (uint8_t)(((l)) & 0xff); \ |
105 | *((c)++) = (uint8_t)(((l) >> 8L) & 0xff); \ |
106 | *((c)++) = (uint8_t)(((l) >> 16L) & 0xff); \ |
107 | *((c)++) = (uint8_t)(((l) >> 24L) & 0xff); \ |
108 | } while (0) |
109 | |
110 | #define l2cn(l1, l2, c, n) \ |
111 | do { \ |
112 | (c) += (n); \ |
113 | switch (n) { \ |
114 | case 8: \ |
115 | *(--(c)) = (uint8_t)(((l2) >> 24L) & 0xff); \ |
116 | OPENSSL_FALLTHROUGH; \ |
117 | case 7: \ |
118 | *(--(c)) = (uint8_t)(((l2) >> 16L) & 0xff); \ |
119 | OPENSSL_FALLTHROUGH; \ |
120 | case 6: \ |
121 | *(--(c)) = (uint8_t)(((l2) >> 8L) & 0xff); \ |
122 | OPENSSL_FALLTHROUGH; \ |
123 | case 5: \ |
124 | *(--(c)) = (uint8_t)(((l2)) & 0xff); \ |
125 | OPENSSL_FALLTHROUGH; \ |
126 | case 4: \ |
127 | *(--(c)) = (uint8_t)(((l1) >> 24L) & 0xff); \ |
128 | OPENSSL_FALLTHROUGH; \ |
129 | case 3: \ |
130 | *(--(c)) = (uint8_t)(((l1) >> 16L) & 0xff); \ |
131 | OPENSSL_FALLTHROUGH; \ |
132 | case 2: \ |
133 | *(--(c)) = (uint8_t)(((l1) >> 8L) & 0xff); \ |
134 | OPENSSL_FALLTHROUGH; \ |
135 | case 1: \ |
136 | *(--(c)) = (uint8_t)(((l1)) & 0xff); \ |
137 | } \ |
138 | } while (0) |
139 | |
140 | typedef struct rc2_key_st { uint16_t data[64]; } RC2_KEY; |
141 | |
142 | static void RC2_encrypt(uint32_t *d, RC2_KEY *key) { |
143 | int i, n; |
144 | uint16_t *p0, *p1; |
145 | uint16_t x0, x1, x2, x3, t; |
146 | uint32_t l; |
147 | |
148 | l = d[0]; |
149 | x0 = (uint16_t)l & 0xffff; |
150 | x1 = (uint16_t)(l >> 16L); |
151 | l = d[1]; |
152 | x2 = (uint16_t)l & 0xffff; |
153 | x3 = (uint16_t)(l >> 16L); |
154 | |
155 | n = 3; |
156 | i = 5; |
157 | |
158 | p0 = p1 = &key->data[0]; |
159 | for (;;) { |
160 | t = (x0 + (x1 & ~x3) + (x2 & x3) + *(p0++)) & 0xffff; |
161 | x0 = (t << 1) | (t >> 15); |
162 | t = (x1 + (x2 & ~x0) + (x3 & x0) + *(p0++)) & 0xffff; |
163 | x1 = (t << 2) | (t >> 14); |
164 | t = (x2 + (x3 & ~x1) + (x0 & x1) + *(p0++)) & 0xffff; |
165 | x2 = (t << 3) | (t >> 13); |
166 | t = (x3 + (x0 & ~x2) + (x1 & x2) + *(p0++)) & 0xffff; |
167 | x3 = (t << 5) | (t >> 11); |
168 | |
169 | if (--i == 0) { |
170 | if (--n == 0) { |
171 | break; |
172 | } |
173 | i = (n == 2) ? 6 : 5; |
174 | |
175 | x0 += p1[x3 & 0x3f]; |
176 | x1 += p1[x0 & 0x3f]; |
177 | x2 += p1[x1 & 0x3f]; |
178 | x3 += p1[x2 & 0x3f]; |
179 | } |
180 | } |
181 | |
182 | d[0] = (uint32_t)(x0 & 0xffff) | ((uint32_t)(x1 & 0xffff) << 16L); |
183 | d[1] = (uint32_t)(x2 & 0xffff) | ((uint32_t)(x3 & 0xffff) << 16L); |
184 | } |
185 | |
186 | static void RC2_decrypt(uint32_t *d, RC2_KEY *key) { |
187 | int i, n; |
188 | uint16_t *p0, *p1; |
189 | uint16_t x0, x1, x2, x3, t; |
190 | uint32_t l; |
191 | |
192 | l = d[0]; |
193 | x0 = (uint16_t)l & 0xffff; |
194 | x1 = (uint16_t)(l >> 16L); |
195 | l = d[1]; |
196 | x2 = (uint16_t)l & 0xffff; |
197 | x3 = (uint16_t)(l >> 16L); |
198 | |
199 | n = 3; |
200 | i = 5; |
201 | |
202 | p0 = &key->data[63]; |
203 | p1 = &key->data[0]; |
204 | for (;;) { |
205 | t = ((x3 << 11) | (x3 >> 5)) & 0xffff; |
206 | x3 = (t - (x0 & ~x2) - (x1 & x2) - *(p0--)) & 0xffff; |
207 | t = ((x2 << 13) | (x2 >> 3)) & 0xffff; |
208 | x2 = (t - (x3 & ~x1) - (x0 & x1) - *(p0--)) & 0xffff; |
209 | t = ((x1 << 14) | (x1 >> 2)) & 0xffff; |
210 | x1 = (t - (x2 & ~x0) - (x3 & x0) - *(p0--)) & 0xffff; |
211 | t = ((x0 << 15) | (x0 >> 1)) & 0xffff; |
212 | x0 = (t - (x1 & ~x3) - (x2 & x3) - *(p0--)) & 0xffff; |
213 | |
214 | if (--i == 0) { |
215 | if (--n == 0) { |
216 | break; |
217 | } |
218 | i = (n == 2) ? 6 : 5; |
219 | |
220 | x3 = (x3 - p1[x2 & 0x3f]) & 0xffff; |
221 | x2 = (x2 - p1[x1 & 0x3f]) & 0xffff; |
222 | x1 = (x1 - p1[x0 & 0x3f]) & 0xffff; |
223 | x0 = (x0 - p1[x3 & 0x3f]) & 0xffff; |
224 | } |
225 | } |
226 | |
227 | d[0] = (uint32_t)(x0 & 0xffff) | ((uint32_t)(x1 & 0xffff) << 16L); |
228 | d[1] = (uint32_t)(x2 & 0xffff) | ((uint32_t)(x3 & 0xffff) << 16L); |
229 | } |
230 | |
231 | static void RC2_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, |
232 | RC2_KEY *ks, uint8_t *iv, int encrypt) { |
233 | uint32_t tin0, tin1; |
234 | uint32_t tout0, tout1, xor0, xor1; |
235 | long l = length; |
236 | uint32_t tin[2]; |
237 | |
238 | if (encrypt) { |
239 | c2l(iv, tout0); |
240 | c2l(iv, tout1); |
241 | iv -= 8; |
242 | for (l -= 8; l >= 0; l -= 8) { |
243 | c2l(in, tin0); |
244 | c2l(in, tin1); |
245 | tin0 ^= tout0; |
246 | tin1 ^= tout1; |
247 | tin[0] = tin0; |
248 | tin[1] = tin1; |
249 | RC2_encrypt(tin, ks); |
250 | tout0 = tin[0]; |
251 | l2c(tout0, out); |
252 | tout1 = tin[1]; |
253 | l2c(tout1, out); |
254 | } |
255 | if (l != -8) { |
256 | c2ln(in, tin0, tin1, l + 8); |
257 | tin0 ^= tout0; |
258 | tin1 ^= tout1; |
259 | tin[0] = tin0; |
260 | tin[1] = tin1; |
261 | RC2_encrypt(tin, ks); |
262 | tout0 = tin[0]; |
263 | l2c(tout0, out); |
264 | tout1 = tin[1]; |
265 | l2c(tout1, out); |
266 | } |
267 | l2c(tout0, iv); |
268 | l2c(tout1, iv); |
269 | } else { |
270 | c2l(iv, xor0); |
271 | c2l(iv, xor1); |
272 | iv -= 8; |
273 | for (l -= 8; l >= 0; l -= 8) { |
274 | c2l(in, tin0); |
275 | tin[0] = tin0; |
276 | c2l(in, tin1); |
277 | tin[1] = tin1; |
278 | RC2_decrypt(tin, ks); |
279 | tout0 = tin[0] ^ xor0; |
280 | tout1 = tin[1] ^ xor1; |
281 | l2c(tout0, out); |
282 | l2c(tout1, out); |
283 | xor0 = tin0; |
284 | xor1 = tin1; |
285 | } |
286 | if (l != -8) { |
287 | c2l(in, tin0); |
288 | tin[0] = tin0; |
289 | c2l(in, tin1); |
290 | tin[1] = tin1; |
291 | RC2_decrypt(tin, ks); |
292 | tout0 = tin[0] ^ xor0; |
293 | tout1 = tin[1] ^ xor1; |
294 | l2cn(tout0, tout1, out, l + 8); |
295 | xor0 = tin0; |
296 | xor1 = tin1; |
297 | } |
298 | l2c(xor0, iv); |
299 | l2c(xor1, iv); |
300 | } |
301 | tin[0] = tin[1] = 0; |
302 | } |
303 | |
304 | static const uint8_t key_table[256] = { |
305 | 0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed, 0x28, 0xe9, 0xfd, 0x79, |
306 | 0x4a, 0xa0, 0xd8, 0x9d, 0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e, |
307 | 0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2, 0x17, 0x9a, 0x59, 0xf5, |
308 | 0x87, 0xb3, 0x4f, 0x13, 0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32, |
309 | 0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b, 0xf0, 0x95, 0x21, 0x22, |
310 | 0x5c, 0x6b, 0x4e, 0x82, 0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c, |
311 | 0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc, 0x12, 0x75, 0xca, 0x1f, |
312 | 0x3b, 0xbe, 0xe4, 0xd1, 0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26, |
313 | 0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57, 0x27, 0xf2, 0x1d, 0x9b, |
314 | 0xbc, 0x94, 0x43, 0x03, 0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7, |
315 | 0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7, 0x08, 0xe8, 0xea, 0xde, |
316 | 0x80, 0x52, 0xee, 0xf7, 0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a, |
317 | 0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74, 0x4b, 0x9f, 0xd0, 0x5e, |
318 | 0x04, 0x18, 0xa4, 0xec, 0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc, |
319 | 0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39, 0x99, 0x7c, 0x3a, 0x85, |
320 | 0x23, 0xb8, 0xb4, 0x7a, 0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31, |
321 | 0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae, 0x05, 0xdf, 0x29, 0x10, |
322 | 0x67, 0x6c, 0xba, 0xc9, 0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c, |
323 | 0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9, 0x0d, 0x38, 0x34, 0x1b, |
324 | 0xab, 0x33, 0xff, 0xb0, 0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e, |
325 | 0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77, 0x0a, 0xa6, 0x20, 0x68, |
326 | 0xfe, 0x7f, 0xc1, 0xad, |
327 | }; |
328 | |
329 | static void RC2_set_key(RC2_KEY *key, int len, const uint8_t *data, int bits) { |
330 | int i, j; |
331 | uint8_t *k; |
332 | uint16_t *ki; |
333 | unsigned int c, d; |
334 | |
335 | k = (uint8_t *)&key->data[0]; |
336 | *k = 0; // for if there is a zero length key |
337 | |
338 | if (len > 128) { |
339 | len = 128; |
340 | } |
341 | if (bits <= 0) { |
342 | bits = 1024; |
343 | } |
344 | if (bits > 1024) { |
345 | bits = 1024; |
346 | } |
347 | |
348 | for (i = 0; i < len; i++) { |
349 | k[i] = data[i]; |
350 | } |
351 | |
352 | // expand table |
353 | d = k[len - 1]; |
354 | j = 0; |
355 | for (i = len; i < 128; i++, j++) { |
356 | d = key_table[(k[j] + d) & 0xff]; |
357 | k[i] = d; |
358 | } |
359 | |
360 | // hmm.... key reduction to 'bits' bits |
361 | |
362 | j = (bits + 7) >> 3; |
363 | i = 128 - j; |
364 | c = (0xff >> (-bits & 0x07)); |
365 | |
366 | d = key_table[k[i] & c]; |
367 | k[i] = d; |
368 | while (i--) { |
369 | d = key_table[k[i + j] ^ d]; |
370 | k[i] = d; |
371 | } |
372 | |
373 | // copy from bytes into uint16_t's |
374 | ki = &(key->data[63]); |
375 | for (i = 127; i >= 0; i -= 2) { |
376 | *(ki--) = ((k[i] << 8) | k[i - 1]) & 0xffff; |
377 | } |
378 | } |
379 | |
380 | typedef struct { |
381 | int key_bits; // effective key bits |
382 | RC2_KEY ks; // key schedule |
383 | } EVP_RC2_KEY; |
384 | |
385 | static int rc2_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, |
386 | const uint8_t *iv, int enc) { |
387 | EVP_RC2_KEY *rc2_key = (EVP_RC2_KEY *)ctx->cipher_data; |
388 | RC2_set_key(&rc2_key->ks, EVP_CIPHER_CTX_key_length(ctx), key, |
389 | rc2_key->key_bits); |
390 | return 1; |
391 | } |
392 | |
393 | static int rc2_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
394 | size_t inl) { |
395 | EVP_RC2_KEY *key = (EVP_RC2_KEY *)ctx->cipher_data; |
396 | static const size_t kChunkSize = 0x10000; |
397 | |
398 | while (inl >= kChunkSize) { |
399 | RC2_cbc_encrypt(in, out, kChunkSize, &key->ks, ctx->iv, ctx->encrypt); |
400 | inl -= kChunkSize; |
401 | in += kChunkSize; |
402 | out += kChunkSize; |
403 | } |
404 | if (inl) { |
405 | RC2_cbc_encrypt(in, out, inl, &key->ks, ctx->iv, ctx->encrypt); |
406 | } |
407 | return 1; |
408 | } |
409 | |
410 | static int rc2_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr) { |
411 | EVP_RC2_KEY *key = (EVP_RC2_KEY *)ctx->cipher_data; |
412 | |
413 | switch (type) { |
414 | case EVP_CTRL_INIT: |
415 | key->key_bits = EVP_CIPHER_CTX_key_length(ctx) * 8; |
416 | return 1; |
417 | case EVP_CTRL_SET_RC2_KEY_BITS: |
418 | // Should be overridden by later call to |EVP_CTRL_INIT|, but |
419 | // people call it, so it may as well work. |
420 | key->key_bits = arg; |
421 | return 1; |
422 | |
423 | default: |
424 | return -1; |
425 | } |
426 | } |
427 | |
428 | static const EVP_CIPHER rc2_40_cbc = { |
429 | NID_rc2_40_cbc, |
430 | 8 /* block size */, |
431 | 5 /* 40 bit */, |
432 | 8 /* iv len */, |
433 | sizeof(EVP_RC2_KEY), |
434 | EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CTRL_INIT, |
435 | NULL /* app_data */, |
436 | rc2_init_key, |
437 | rc2_cbc_cipher, |
438 | NULL, |
439 | rc2_ctrl, |
440 | }; |
441 | |
442 | const EVP_CIPHER *EVP_rc2_40_cbc(void) { |
443 | return &rc2_40_cbc; |
444 | } |
445 | |
446 | static const EVP_CIPHER rc2_cbc = { |
447 | NID_rc2_cbc, |
448 | 8 /* block size */, |
449 | 16 /* 128 bit */, |
450 | 8 /* iv len */, |
451 | sizeof(EVP_RC2_KEY), |
452 | EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CTRL_INIT, |
453 | NULL /* app_data */, |
454 | rc2_init_key, |
455 | rc2_cbc_cipher, |
456 | NULL, |
457 | rc2_ctrl, |
458 | }; |
459 | |
460 | const EVP_CIPHER *EVP_rc2_cbc(void) { |
461 | return &rc2_cbc; |
462 | } |
463 | |