1 | /* ==================================================================== |
2 | * Copyright (c) 2010 The OpenSSL Project. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * |
8 | * 1. Redistributions of source code must retain the above copyright |
9 | * notice, this list of conditions and the following disclaimer. |
10 | * |
11 | * 2. Redistributions in binary form must reproduce the above copyright |
12 | * notice, this list of conditions and the following disclaimer in |
13 | * the documentation and/or other materials provided with the |
14 | * distribution. |
15 | * |
16 | * 3. All advertising materials mentioning features or use of this |
17 | * software must display the following acknowledgment: |
18 | * "This product includes software developed by the OpenSSL Project |
19 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
20 | * |
21 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
22 | * endorse or promote products derived from this software without |
23 | * prior written permission. For written permission, please contact |
24 | * licensing@OpenSSL.org. |
25 | * |
26 | * 5. Products derived from this software may not be called "OpenSSL" |
27 | * nor may "OpenSSL" appear in their names without prior written |
28 | * permission of the OpenSSL Project. |
29 | * |
30 | * 6. Redistributions of any form whatsoever must retain the following |
31 | * acknowledgment: |
32 | * "This product includes software developed by the OpenSSL Project |
33 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
34 | * |
35 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
36 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
37 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
38 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
39 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
40 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
41 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
42 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
43 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
44 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
45 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
46 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
47 | * ==================================================================== */ |
48 | |
49 | #include <openssl/cmac.h> |
50 | |
51 | #include <assert.h> |
52 | #include <string.h> |
53 | |
54 | #include <openssl/aes.h> |
55 | #include <openssl/cipher.h> |
56 | #include <openssl/mem.h> |
57 | |
58 | #include "../internal.h" |
59 | |
60 | |
61 | struct cmac_ctx_st { |
62 | EVP_CIPHER_CTX cipher_ctx; |
63 | // k1 and k2 are the CMAC subkeys. See |
64 | // https://tools.ietf.org/html/rfc4493#section-2.3 |
65 | uint8_t k1[AES_BLOCK_SIZE]; |
66 | uint8_t k2[AES_BLOCK_SIZE]; |
67 | // Last (possibly partial) scratch |
68 | uint8_t block[AES_BLOCK_SIZE]; |
69 | // block_used contains the number of valid bytes in |block|. |
70 | unsigned block_used; |
71 | }; |
72 | |
73 | static void CMAC_CTX_init(CMAC_CTX *ctx) { |
74 | EVP_CIPHER_CTX_init(&ctx->cipher_ctx); |
75 | } |
76 | |
77 | static void CMAC_CTX_cleanup(CMAC_CTX *ctx) { |
78 | EVP_CIPHER_CTX_cleanup(&ctx->cipher_ctx); |
79 | OPENSSL_cleanse(ctx->k1, sizeof(ctx->k1)); |
80 | OPENSSL_cleanse(ctx->k2, sizeof(ctx->k2)); |
81 | OPENSSL_cleanse(ctx->block, sizeof(ctx->block)); |
82 | } |
83 | |
84 | int AES_CMAC(uint8_t out[16], const uint8_t *key, size_t key_len, |
85 | const uint8_t *in, size_t in_len) { |
86 | const EVP_CIPHER *cipher; |
87 | switch (key_len) { |
88 | case 16: |
89 | cipher = EVP_aes_128_cbc(); |
90 | break; |
91 | case 32: |
92 | cipher = EVP_aes_256_cbc(); |
93 | break; |
94 | default: |
95 | return 0; |
96 | } |
97 | |
98 | size_t scratch_out_len; |
99 | CMAC_CTX ctx; |
100 | CMAC_CTX_init(&ctx); |
101 | |
102 | const int ok = CMAC_Init(&ctx, key, key_len, cipher, NULL /* engine */) && |
103 | CMAC_Update(&ctx, in, in_len) && |
104 | CMAC_Final(&ctx, out, &scratch_out_len); |
105 | |
106 | CMAC_CTX_cleanup(&ctx); |
107 | return ok; |
108 | } |
109 | |
110 | CMAC_CTX *CMAC_CTX_new(void) { |
111 | CMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx)); |
112 | if (ctx != NULL) { |
113 | CMAC_CTX_init(ctx); |
114 | } |
115 | return ctx; |
116 | } |
117 | |
118 | void CMAC_CTX_free(CMAC_CTX *ctx) { |
119 | if (ctx == NULL) { |
120 | return; |
121 | } |
122 | |
123 | CMAC_CTX_cleanup(ctx); |
124 | OPENSSL_free(ctx); |
125 | } |
126 | |
127 | int CMAC_CTX_copy(CMAC_CTX *out, const CMAC_CTX *in) { |
128 | if (!EVP_CIPHER_CTX_copy(&out->cipher_ctx, &in->cipher_ctx)) { |
129 | return 0; |
130 | } |
131 | OPENSSL_memcpy(out->k1, in->k1, AES_BLOCK_SIZE); |
132 | OPENSSL_memcpy(out->k2, in->k2, AES_BLOCK_SIZE); |
133 | OPENSSL_memcpy(out->block, in->block, AES_BLOCK_SIZE); |
134 | out->block_used = in->block_used; |
135 | return 1; |
136 | } |
137 | |
138 | // binary_field_mul_x_128 treats the 128 bits at |in| as an element of GF(2¹²⁸) |
139 | // with a hard-coded reduction polynomial and sets |out| as x times the input. |
140 | // |
141 | // See https://tools.ietf.org/html/rfc4493#section-2.3 |
142 | static void binary_field_mul_x_128(uint8_t out[16], const uint8_t in[16]) { |
143 | unsigned i; |
144 | |
145 | // Shift |in| to left, including carry. |
146 | for (i = 0; i < 15; i++) { |
147 | out[i] = (in[i] << 1) | (in[i+1] >> 7); |
148 | } |
149 | |
150 | // If MSB set fixup with R. |
151 | const uint8_t carry = in[0] >> 7; |
152 | out[i] = (in[i] << 1) ^ ((0 - carry) & 0x87); |
153 | } |
154 | |
155 | // binary_field_mul_x_64 behaves like |binary_field_mul_x_128| but acts on an |
156 | // element of GF(2⁶⁴). |
157 | // |
158 | // See https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf |
159 | static void binary_field_mul_x_64(uint8_t out[8], const uint8_t in[8]) { |
160 | unsigned i; |
161 | |
162 | // Shift |in| to left, including carry. |
163 | for (i = 0; i < 7; i++) { |
164 | out[i] = (in[i] << 1) | (in[i+1] >> 7); |
165 | } |
166 | |
167 | // If MSB set fixup with R. |
168 | const uint8_t carry = in[0] >> 7; |
169 | out[i] = (in[i] << 1) ^ ((0 - carry) & 0x1b); |
170 | } |
171 | |
172 | static const uint8_t kZeroIV[AES_BLOCK_SIZE] = {0}; |
173 | |
174 | int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t key_len, |
175 | const EVP_CIPHER *cipher, ENGINE *engine) { |
176 | uint8_t scratch[AES_BLOCK_SIZE]; |
177 | |
178 | size_t block_size = EVP_CIPHER_block_size(cipher); |
179 | if ((block_size != AES_BLOCK_SIZE && block_size != 8 /* 3-DES */) || |
180 | EVP_CIPHER_key_length(cipher) != key_len || |
181 | !EVP_EncryptInit_ex(&ctx->cipher_ctx, cipher, NULL, key, kZeroIV) || |
182 | !EVP_Cipher(&ctx->cipher_ctx, scratch, kZeroIV, block_size) || |
183 | // Reset context again ready for first data. |
184 | !EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV)) { |
185 | return 0; |
186 | } |
187 | |
188 | if (block_size == AES_BLOCK_SIZE) { |
189 | binary_field_mul_x_128(ctx->k1, scratch); |
190 | binary_field_mul_x_128(ctx->k2, ctx->k1); |
191 | } else { |
192 | binary_field_mul_x_64(ctx->k1, scratch); |
193 | binary_field_mul_x_64(ctx->k2, ctx->k1); |
194 | } |
195 | ctx->block_used = 0; |
196 | |
197 | return 1; |
198 | } |
199 | |
200 | int CMAC_Reset(CMAC_CTX *ctx) { |
201 | ctx->block_used = 0; |
202 | return EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV); |
203 | } |
204 | |
205 | int CMAC_Update(CMAC_CTX *ctx, const uint8_t *in, size_t in_len) { |
206 | size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx); |
207 | assert(block_size <= AES_BLOCK_SIZE); |
208 | uint8_t scratch[AES_BLOCK_SIZE]; |
209 | |
210 | if (ctx->block_used > 0) { |
211 | size_t todo = block_size - ctx->block_used; |
212 | if (in_len < todo) { |
213 | todo = in_len; |
214 | } |
215 | |
216 | OPENSSL_memcpy(ctx->block + ctx->block_used, in, todo); |
217 | in += todo; |
218 | in_len -= todo; |
219 | ctx->block_used += todo; |
220 | |
221 | // If |in_len| is zero then either |ctx->block_used| is less than |
222 | // |block_size|, in which case we can stop here, or |ctx->block_used| is |
223 | // exactly |block_size| but there's no more data to process. In the latter |
224 | // case we don't want to process this block now because it might be the last |
225 | // block and that block is treated specially. |
226 | if (in_len == 0) { |
227 | return 1; |
228 | } |
229 | |
230 | assert(ctx->block_used == block_size); |
231 | |
232 | if (!EVP_Cipher(&ctx->cipher_ctx, scratch, ctx->block, block_size)) { |
233 | return 0; |
234 | } |
235 | } |
236 | |
237 | // Encrypt all but one of the remaining blocks. |
238 | while (in_len > block_size) { |
239 | if (!EVP_Cipher(&ctx->cipher_ctx, scratch, in, block_size)) { |
240 | return 0; |
241 | } |
242 | in += block_size; |
243 | in_len -= block_size; |
244 | } |
245 | |
246 | OPENSSL_memcpy(ctx->block, in, in_len); |
247 | ctx->block_used = in_len; |
248 | |
249 | return 1; |
250 | } |
251 | |
252 | int CMAC_Final(CMAC_CTX *ctx, uint8_t *out, size_t *out_len) { |
253 | size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx); |
254 | assert(block_size <= AES_BLOCK_SIZE); |
255 | |
256 | *out_len = block_size; |
257 | if (out == NULL) { |
258 | return 1; |
259 | } |
260 | |
261 | const uint8_t *mask = ctx->k1; |
262 | |
263 | if (ctx->block_used != block_size) { |
264 | // If the last block is incomplete, terminate it with a single 'one' bit |
265 | // followed by zeros. |
266 | ctx->block[ctx->block_used] = 0x80; |
267 | OPENSSL_memset(ctx->block + ctx->block_used + 1, 0, |
268 | block_size - (ctx->block_used + 1)); |
269 | |
270 | mask = ctx->k2; |
271 | } |
272 | |
273 | for (unsigned i = 0; i < block_size; i++) { |
274 | out[i] = ctx->block[i] ^ mask[i]; |
275 | } |
276 | |
277 | return EVP_Cipher(&ctx->cipher_ctx, out, out, block_size); |
278 | } |
279 | |