| 1 | /* ==================================================================== |
| 2 | * Copyright (c) 2010 The OpenSSL Project. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * |
| 11 | * 2. Redistributions in binary form must reproduce the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer in |
| 13 | * the documentation and/or other materials provided with the |
| 14 | * distribution. |
| 15 | * |
| 16 | * 3. All advertising materials mentioning features or use of this |
| 17 | * software must display the following acknowledgment: |
| 18 | * "This product includes software developed by the OpenSSL Project |
| 19 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| 20 | * |
| 21 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| 22 | * endorse or promote products derived from this software without |
| 23 | * prior written permission. For written permission, please contact |
| 24 | * licensing@OpenSSL.org. |
| 25 | * |
| 26 | * 5. Products derived from this software may not be called "OpenSSL" |
| 27 | * nor may "OpenSSL" appear in their names without prior written |
| 28 | * permission of the OpenSSL Project. |
| 29 | * |
| 30 | * 6. Redistributions of any form whatsoever must retain the following |
| 31 | * acknowledgment: |
| 32 | * "This product includes software developed by the OpenSSL Project |
| 33 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| 34 | * |
| 35 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| 36 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 37 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 38 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| 39 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 40 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 41 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 42 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 43 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 44 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 45 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 46 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 47 | * ==================================================================== */ |
| 48 | |
| 49 | #include <openssl/cmac.h> |
| 50 | |
| 51 | #include <assert.h> |
| 52 | #include <string.h> |
| 53 | |
| 54 | #include <openssl/aes.h> |
| 55 | #include <openssl/cipher.h> |
| 56 | #include <openssl/mem.h> |
| 57 | |
| 58 | #include "../internal.h" |
| 59 | |
| 60 | |
| 61 | struct cmac_ctx_st { |
| 62 | EVP_CIPHER_CTX cipher_ctx; |
| 63 | // k1 and k2 are the CMAC subkeys. See |
| 64 | // https://tools.ietf.org/html/rfc4493#section-2.3 |
| 65 | uint8_t k1[AES_BLOCK_SIZE]; |
| 66 | uint8_t k2[AES_BLOCK_SIZE]; |
| 67 | // Last (possibly partial) scratch |
| 68 | uint8_t block[AES_BLOCK_SIZE]; |
| 69 | // block_used contains the number of valid bytes in |block|. |
| 70 | unsigned block_used; |
| 71 | }; |
| 72 | |
| 73 | static void CMAC_CTX_init(CMAC_CTX *ctx) { |
| 74 | EVP_CIPHER_CTX_init(&ctx->cipher_ctx); |
| 75 | } |
| 76 | |
| 77 | static void CMAC_CTX_cleanup(CMAC_CTX *ctx) { |
| 78 | EVP_CIPHER_CTX_cleanup(&ctx->cipher_ctx); |
| 79 | OPENSSL_cleanse(ctx->k1, sizeof(ctx->k1)); |
| 80 | OPENSSL_cleanse(ctx->k2, sizeof(ctx->k2)); |
| 81 | OPENSSL_cleanse(ctx->block, sizeof(ctx->block)); |
| 82 | } |
| 83 | |
| 84 | int AES_CMAC(uint8_t out[16], const uint8_t *key, size_t key_len, |
| 85 | const uint8_t *in, size_t in_len) { |
| 86 | const EVP_CIPHER *cipher; |
| 87 | switch (key_len) { |
| 88 | case 16: |
| 89 | cipher = EVP_aes_128_cbc(); |
| 90 | break; |
| 91 | case 32: |
| 92 | cipher = EVP_aes_256_cbc(); |
| 93 | break; |
| 94 | default: |
| 95 | return 0; |
| 96 | } |
| 97 | |
| 98 | size_t scratch_out_len; |
| 99 | CMAC_CTX ctx; |
| 100 | CMAC_CTX_init(&ctx); |
| 101 | |
| 102 | const int ok = CMAC_Init(&ctx, key, key_len, cipher, NULL /* engine */) && |
| 103 | CMAC_Update(&ctx, in, in_len) && |
| 104 | CMAC_Final(&ctx, out, &scratch_out_len); |
| 105 | |
| 106 | CMAC_CTX_cleanup(&ctx); |
| 107 | return ok; |
| 108 | } |
| 109 | |
| 110 | CMAC_CTX *CMAC_CTX_new(void) { |
| 111 | CMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx)); |
| 112 | if (ctx != NULL) { |
| 113 | CMAC_CTX_init(ctx); |
| 114 | } |
| 115 | return ctx; |
| 116 | } |
| 117 | |
| 118 | void CMAC_CTX_free(CMAC_CTX *ctx) { |
| 119 | if (ctx == NULL) { |
| 120 | return; |
| 121 | } |
| 122 | |
| 123 | CMAC_CTX_cleanup(ctx); |
| 124 | OPENSSL_free(ctx); |
| 125 | } |
| 126 | |
| 127 | int CMAC_CTX_copy(CMAC_CTX *out, const CMAC_CTX *in) { |
| 128 | if (!EVP_CIPHER_CTX_copy(&out->cipher_ctx, &in->cipher_ctx)) { |
| 129 | return 0; |
| 130 | } |
| 131 | OPENSSL_memcpy(out->k1, in->k1, AES_BLOCK_SIZE); |
| 132 | OPENSSL_memcpy(out->k2, in->k2, AES_BLOCK_SIZE); |
| 133 | OPENSSL_memcpy(out->block, in->block, AES_BLOCK_SIZE); |
| 134 | out->block_used = in->block_used; |
| 135 | return 1; |
| 136 | } |
| 137 | |
| 138 | // binary_field_mul_x_128 treats the 128 bits at |in| as an element of GF(2¹²⁸) |
| 139 | // with a hard-coded reduction polynomial and sets |out| as x times the input. |
| 140 | // |
| 141 | // See https://tools.ietf.org/html/rfc4493#section-2.3 |
| 142 | static void binary_field_mul_x_128(uint8_t out[16], const uint8_t in[16]) { |
| 143 | unsigned i; |
| 144 | |
| 145 | // Shift |in| to left, including carry. |
| 146 | for (i = 0; i < 15; i++) { |
| 147 | out[i] = (in[i] << 1) | (in[i+1] >> 7); |
| 148 | } |
| 149 | |
| 150 | // If MSB set fixup with R. |
| 151 | const uint8_t carry = in[0] >> 7; |
| 152 | out[i] = (in[i] << 1) ^ ((0 - carry) & 0x87); |
| 153 | } |
| 154 | |
| 155 | // binary_field_mul_x_64 behaves like |binary_field_mul_x_128| but acts on an |
| 156 | // element of GF(2⁶⁴). |
| 157 | // |
| 158 | // See https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf |
| 159 | static void binary_field_mul_x_64(uint8_t out[8], const uint8_t in[8]) { |
| 160 | unsigned i; |
| 161 | |
| 162 | // Shift |in| to left, including carry. |
| 163 | for (i = 0; i < 7; i++) { |
| 164 | out[i] = (in[i] << 1) | (in[i+1] >> 7); |
| 165 | } |
| 166 | |
| 167 | // If MSB set fixup with R. |
| 168 | const uint8_t carry = in[0] >> 7; |
| 169 | out[i] = (in[i] << 1) ^ ((0 - carry) & 0x1b); |
| 170 | } |
| 171 | |
| 172 | static const uint8_t kZeroIV[AES_BLOCK_SIZE] = {0}; |
| 173 | |
| 174 | int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t key_len, |
| 175 | const EVP_CIPHER *cipher, ENGINE *engine) { |
| 176 | uint8_t scratch[AES_BLOCK_SIZE]; |
| 177 | |
| 178 | size_t block_size = EVP_CIPHER_block_size(cipher); |
| 179 | if ((block_size != AES_BLOCK_SIZE && block_size != 8 /* 3-DES */) || |
| 180 | EVP_CIPHER_key_length(cipher) != key_len || |
| 181 | !EVP_EncryptInit_ex(&ctx->cipher_ctx, cipher, NULL, key, kZeroIV) || |
| 182 | !EVP_Cipher(&ctx->cipher_ctx, scratch, kZeroIV, block_size) || |
| 183 | // Reset context again ready for first data. |
| 184 | !EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV)) { |
| 185 | return 0; |
| 186 | } |
| 187 | |
| 188 | if (block_size == AES_BLOCK_SIZE) { |
| 189 | binary_field_mul_x_128(ctx->k1, scratch); |
| 190 | binary_field_mul_x_128(ctx->k2, ctx->k1); |
| 191 | } else { |
| 192 | binary_field_mul_x_64(ctx->k1, scratch); |
| 193 | binary_field_mul_x_64(ctx->k2, ctx->k1); |
| 194 | } |
| 195 | ctx->block_used = 0; |
| 196 | |
| 197 | return 1; |
| 198 | } |
| 199 | |
| 200 | int CMAC_Reset(CMAC_CTX *ctx) { |
| 201 | ctx->block_used = 0; |
| 202 | return EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV); |
| 203 | } |
| 204 | |
| 205 | int CMAC_Update(CMAC_CTX *ctx, const uint8_t *in, size_t in_len) { |
| 206 | size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx); |
| 207 | assert(block_size <= AES_BLOCK_SIZE); |
| 208 | uint8_t scratch[AES_BLOCK_SIZE]; |
| 209 | |
| 210 | if (ctx->block_used > 0) { |
| 211 | size_t todo = block_size - ctx->block_used; |
| 212 | if (in_len < todo) { |
| 213 | todo = in_len; |
| 214 | } |
| 215 | |
| 216 | OPENSSL_memcpy(ctx->block + ctx->block_used, in, todo); |
| 217 | in += todo; |
| 218 | in_len -= todo; |
| 219 | ctx->block_used += todo; |
| 220 | |
| 221 | // If |in_len| is zero then either |ctx->block_used| is less than |
| 222 | // |block_size|, in which case we can stop here, or |ctx->block_used| is |
| 223 | // exactly |block_size| but there's no more data to process. In the latter |
| 224 | // case we don't want to process this block now because it might be the last |
| 225 | // block and that block is treated specially. |
| 226 | if (in_len == 0) { |
| 227 | return 1; |
| 228 | } |
| 229 | |
| 230 | assert(ctx->block_used == block_size); |
| 231 | |
| 232 | if (!EVP_Cipher(&ctx->cipher_ctx, scratch, ctx->block, block_size)) { |
| 233 | return 0; |
| 234 | } |
| 235 | } |
| 236 | |
| 237 | // Encrypt all but one of the remaining blocks. |
| 238 | while (in_len > block_size) { |
| 239 | if (!EVP_Cipher(&ctx->cipher_ctx, scratch, in, block_size)) { |
| 240 | return 0; |
| 241 | } |
| 242 | in += block_size; |
| 243 | in_len -= block_size; |
| 244 | } |
| 245 | |
| 246 | OPENSSL_memcpy(ctx->block, in, in_len); |
| 247 | ctx->block_used = in_len; |
| 248 | |
| 249 | return 1; |
| 250 | } |
| 251 | |
| 252 | int CMAC_Final(CMAC_CTX *ctx, uint8_t *out, size_t *out_len) { |
| 253 | size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx); |
| 254 | assert(block_size <= AES_BLOCK_SIZE); |
| 255 | |
| 256 | *out_len = block_size; |
| 257 | if (out == NULL) { |
| 258 | return 1; |
| 259 | } |
| 260 | |
| 261 | const uint8_t *mask = ctx->k1; |
| 262 | |
| 263 | if (ctx->block_used != block_size) { |
| 264 | // If the last block is incomplete, terminate it with a single 'one' bit |
| 265 | // followed by zeros. |
| 266 | ctx->block[ctx->block_used] = 0x80; |
| 267 | OPENSSL_memset(ctx->block + ctx->block_used + 1, 0, |
| 268 | block_size - (ctx->block_used + 1)); |
| 269 | |
| 270 | mask = ctx->k2; |
| 271 | } |
| 272 | |
| 273 | for (unsigned i = 0; i < block_size; i++) { |
| 274 | out[i] = ctx->block[i] ^ mask[i]; |
| 275 | } |
| 276 | |
| 277 | return EVP_Cipher(&ctx->cipher_ctx, out, out, block_size); |
| 278 | } |
| 279 | |