1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
2 | * All rights reserved. |
3 | * |
4 | * This package is an SSL implementation written |
5 | * by Eric Young (eay@cryptsoft.com). |
6 | * The implementation was written so as to conform with Netscapes SSL. |
7 | * |
8 | * This library is free for commercial and non-commercial use as long as |
9 | * the following conditions are aheared to. The following conditions |
10 | * apply to all code found in this distribution, be it the RC4, RSA, |
11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
12 | * included with this distribution is covered by the same copyright terms |
13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
14 | * |
15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
16 | * the code are not to be removed. |
17 | * If this package is used in a product, Eric Young should be given attribution |
18 | * as the author of the parts of the library used. |
19 | * This can be in the form of a textual message at program startup or |
20 | * in documentation (online or textual) provided with the package. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 3. All advertising materials mentioning features or use of this software |
31 | * must display the following acknowledgement: |
32 | * "This product includes cryptographic software written by |
33 | * Eric Young (eay@cryptsoft.com)" |
34 | * The word 'cryptographic' can be left out if the rouines from the library |
35 | * being used are not cryptographic related :-). |
36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
37 | * the apps directory (application code) you must include an acknowledgement: |
38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
39 | * |
40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | * SUCH DAMAGE. |
51 | * |
52 | * The licence and distribution terms for any publically available version or |
53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
54 | * copied and put under another distribution licence |
55 | * [including the GNU Public Licence.] */ |
56 | |
57 | #include <openssl/evp.h> |
58 | |
59 | #include <string.h> |
60 | |
61 | #include <openssl/bytestring.h> |
62 | #include <openssl/dsa.h> |
63 | #include <openssl/ec_key.h> |
64 | #include <openssl/err.h> |
65 | #include <openssl/rsa.h> |
66 | |
67 | #include "internal.h" |
68 | #include "../internal.h" |
69 | |
70 | |
71 | static const EVP_PKEY_ASN1_METHOD *const kASN1Methods[] = { |
72 | &rsa_asn1_meth, |
73 | &ec_asn1_meth, |
74 | &dsa_asn1_meth, |
75 | &ed25519_asn1_meth, |
76 | }; |
77 | |
78 | static int parse_key_type(CBS *cbs, int *out_type) { |
79 | CBS oid; |
80 | if (!CBS_get_asn1(cbs, &oid, CBS_ASN1_OBJECT)) { |
81 | return 0; |
82 | } |
83 | |
84 | for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kASN1Methods); i++) { |
85 | const EVP_PKEY_ASN1_METHOD *method = kASN1Methods[i]; |
86 | if (CBS_len(&oid) == method->oid_len && |
87 | OPENSSL_memcmp(CBS_data(&oid), method->oid, method->oid_len) == 0) { |
88 | *out_type = method->pkey_id; |
89 | return 1; |
90 | } |
91 | } |
92 | |
93 | return 0; |
94 | } |
95 | |
96 | EVP_PKEY *EVP_parse_public_key(CBS *cbs) { |
97 | // Parse the SubjectPublicKeyInfo. |
98 | CBS spki, algorithm, key; |
99 | int type; |
100 | uint8_t padding; |
101 | if (!CBS_get_asn1(cbs, &spki, CBS_ASN1_SEQUENCE) || |
102 | !CBS_get_asn1(&spki, &algorithm, CBS_ASN1_SEQUENCE) || |
103 | !CBS_get_asn1(&spki, &key, CBS_ASN1_BITSTRING) || |
104 | CBS_len(&spki) != 0) { |
105 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
106 | return NULL; |
107 | } |
108 | if (!parse_key_type(&algorithm, &type)) { |
109 | OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); |
110 | return NULL; |
111 | } |
112 | if (// Every key type defined encodes the key as a byte string with the same |
113 | // conversion to BIT STRING. |
114 | !CBS_get_u8(&key, &padding) || |
115 | padding != 0) { |
116 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
117 | return NULL; |
118 | } |
119 | |
120 | // Set up an |EVP_PKEY| of the appropriate type. |
121 | EVP_PKEY *ret = EVP_PKEY_new(); |
122 | if (ret == NULL || |
123 | !EVP_PKEY_set_type(ret, type)) { |
124 | goto err; |
125 | } |
126 | |
127 | // Call into the type-specific SPKI decoding function. |
128 | if (ret->ameth->pub_decode == NULL) { |
129 | OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); |
130 | goto err; |
131 | } |
132 | if (!ret->ameth->pub_decode(ret, &algorithm, &key)) { |
133 | goto err; |
134 | } |
135 | |
136 | return ret; |
137 | |
138 | err: |
139 | EVP_PKEY_free(ret); |
140 | return NULL; |
141 | } |
142 | |
143 | int EVP_marshal_public_key(CBB *cbb, const EVP_PKEY *key) { |
144 | if (key->ameth == NULL || key->ameth->pub_encode == NULL) { |
145 | OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); |
146 | return 0; |
147 | } |
148 | |
149 | return key->ameth->pub_encode(cbb, key); |
150 | } |
151 | |
152 | EVP_PKEY *EVP_parse_private_key(CBS *cbs) { |
153 | // Parse the PrivateKeyInfo. |
154 | CBS pkcs8, algorithm, key; |
155 | uint64_t version; |
156 | int type; |
157 | if (!CBS_get_asn1(cbs, &pkcs8, CBS_ASN1_SEQUENCE) || |
158 | !CBS_get_asn1_uint64(&pkcs8, &version) || |
159 | version != 0 || |
160 | !CBS_get_asn1(&pkcs8, &algorithm, CBS_ASN1_SEQUENCE) || |
161 | !CBS_get_asn1(&pkcs8, &key, CBS_ASN1_OCTETSTRING)) { |
162 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
163 | return NULL; |
164 | } |
165 | if (!parse_key_type(&algorithm, &type)) { |
166 | OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); |
167 | return NULL; |
168 | } |
169 | |
170 | // A PrivateKeyInfo ends with a SET of Attributes which we ignore. |
171 | |
172 | // Set up an |EVP_PKEY| of the appropriate type. |
173 | EVP_PKEY *ret = EVP_PKEY_new(); |
174 | if (ret == NULL || |
175 | !EVP_PKEY_set_type(ret, type)) { |
176 | goto err; |
177 | } |
178 | |
179 | // Call into the type-specific PrivateKeyInfo decoding function. |
180 | if (ret->ameth->priv_decode == NULL) { |
181 | OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); |
182 | goto err; |
183 | } |
184 | if (!ret->ameth->priv_decode(ret, &algorithm, &key)) { |
185 | goto err; |
186 | } |
187 | |
188 | return ret; |
189 | |
190 | err: |
191 | EVP_PKEY_free(ret); |
192 | return NULL; |
193 | } |
194 | |
195 | int EVP_marshal_private_key(CBB *cbb, const EVP_PKEY *key) { |
196 | if (key->ameth == NULL || key->ameth->priv_encode == NULL) { |
197 | OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); |
198 | return 0; |
199 | } |
200 | |
201 | return key->ameth->priv_encode(cbb, key); |
202 | } |
203 | |
204 | static EVP_PKEY *old_priv_decode(CBS *cbs, int type) { |
205 | EVP_PKEY *ret = EVP_PKEY_new(); |
206 | if (ret == NULL) { |
207 | return NULL; |
208 | } |
209 | |
210 | switch (type) { |
211 | case EVP_PKEY_EC: { |
212 | EC_KEY *ec_key = EC_KEY_parse_private_key(cbs, NULL); |
213 | if (ec_key == NULL || !EVP_PKEY_assign_EC_KEY(ret, ec_key)) { |
214 | EC_KEY_free(ec_key); |
215 | goto err; |
216 | } |
217 | return ret; |
218 | } |
219 | case EVP_PKEY_DSA: { |
220 | DSA *dsa = DSA_parse_private_key(cbs); |
221 | if (dsa == NULL || !EVP_PKEY_assign_DSA(ret, dsa)) { |
222 | DSA_free(dsa); |
223 | goto err; |
224 | } |
225 | return ret; |
226 | } |
227 | case EVP_PKEY_RSA: { |
228 | RSA *rsa = RSA_parse_private_key(cbs); |
229 | if (rsa == NULL || !EVP_PKEY_assign_RSA(ret, rsa)) { |
230 | RSA_free(rsa); |
231 | goto err; |
232 | } |
233 | return ret; |
234 | } |
235 | default: |
236 | OPENSSL_PUT_ERROR(EVP, EVP_R_UNKNOWN_PUBLIC_KEY_TYPE); |
237 | goto err; |
238 | } |
239 | |
240 | err: |
241 | EVP_PKEY_free(ret); |
242 | return NULL; |
243 | } |
244 | |
245 | EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **out, const uint8_t **inp, |
246 | long len) { |
247 | if (len < 0) { |
248 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
249 | return NULL; |
250 | } |
251 | |
252 | // Parse with the legacy format. |
253 | CBS cbs; |
254 | CBS_init(&cbs, *inp, (size_t)len); |
255 | EVP_PKEY *ret = old_priv_decode(&cbs, type); |
256 | if (ret == NULL) { |
257 | // Try again with PKCS#8. |
258 | ERR_clear_error(); |
259 | CBS_init(&cbs, *inp, (size_t)len); |
260 | ret = EVP_parse_private_key(&cbs); |
261 | if (ret == NULL) { |
262 | return NULL; |
263 | } |
264 | if (ret->type != type) { |
265 | OPENSSL_PUT_ERROR(EVP, EVP_R_DIFFERENT_KEY_TYPES); |
266 | EVP_PKEY_free(ret); |
267 | return NULL; |
268 | } |
269 | } |
270 | |
271 | if (out != NULL) { |
272 | EVP_PKEY_free(*out); |
273 | *out = ret; |
274 | } |
275 | *inp = CBS_data(&cbs); |
276 | return ret; |
277 | } |
278 | |
279 | // num_elements parses one SEQUENCE from |in| and returns the number of elements |
280 | // in it. On parse error, it returns zero. |
281 | static size_t num_elements(const uint8_t *in, size_t in_len) { |
282 | CBS cbs, sequence; |
283 | CBS_init(&cbs, in, (size_t)in_len); |
284 | |
285 | if (!CBS_get_asn1(&cbs, &sequence, CBS_ASN1_SEQUENCE)) { |
286 | return 0; |
287 | } |
288 | |
289 | size_t count = 0; |
290 | while (CBS_len(&sequence) > 0) { |
291 | if (!CBS_get_any_asn1_element(&sequence, NULL, NULL, NULL)) { |
292 | return 0; |
293 | } |
294 | |
295 | count++; |
296 | } |
297 | |
298 | return count; |
299 | } |
300 | |
301 | EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **out, const uint8_t **inp, long len) { |
302 | if (len < 0) { |
303 | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
304 | return NULL; |
305 | } |
306 | |
307 | // Parse the input as a PKCS#8 PrivateKeyInfo. |
308 | CBS cbs; |
309 | CBS_init(&cbs, *inp, (size_t)len); |
310 | EVP_PKEY *ret = EVP_parse_private_key(&cbs); |
311 | if (ret != NULL) { |
312 | if (out != NULL) { |
313 | EVP_PKEY_free(*out); |
314 | *out = ret; |
315 | } |
316 | *inp = CBS_data(&cbs); |
317 | return ret; |
318 | } |
319 | ERR_clear_error(); |
320 | |
321 | // Count the elements to determine the legacy key format. |
322 | switch (num_elements(*inp, (size_t)len)) { |
323 | case 4: |
324 | return d2i_PrivateKey(EVP_PKEY_EC, out, inp, len); |
325 | |
326 | case 6: |
327 | return d2i_PrivateKey(EVP_PKEY_DSA, out, inp, len); |
328 | |
329 | default: |
330 | return d2i_PrivateKey(EVP_PKEY_RSA, out, inp, len); |
331 | } |
332 | } |
333 | |
334 | int i2d_PublicKey(const EVP_PKEY *key, uint8_t **outp) { |
335 | switch (key->type) { |
336 | case EVP_PKEY_RSA: |
337 | return i2d_RSAPublicKey(key->pkey.rsa, outp); |
338 | case EVP_PKEY_DSA: |
339 | return i2d_DSAPublicKey(key->pkey.dsa, outp); |
340 | case EVP_PKEY_EC: |
341 | return i2o_ECPublicKey(key->pkey.ec, outp); |
342 | default: |
343 | OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE); |
344 | return -1; |
345 | } |
346 | } |
347 | |
348 | EVP_PKEY *d2i_PublicKey(int type, EVP_PKEY **out, const uint8_t **inp, |
349 | long len) { |
350 | EVP_PKEY *ret = EVP_PKEY_new(); |
351 | if (ret == NULL) { |
352 | return NULL; |
353 | } |
354 | |
355 | CBS cbs; |
356 | CBS_init(&cbs, *inp, len < 0 ? 0 : (size_t)len); |
357 | switch (type) { |
358 | case EVP_PKEY_RSA: { |
359 | RSA *rsa = RSA_parse_public_key(&cbs); |
360 | if (rsa == NULL || !EVP_PKEY_assign_RSA(ret, rsa)) { |
361 | RSA_free(rsa); |
362 | goto err; |
363 | } |
364 | break; |
365 | } |
366 | |
367 | // Unlike OpenSSL, we do not support EC keys with this API. The raw EC |
368 | // public key serialization requires knowing the group. In OpenSSL, calling |
369 | // this function with |EVP_PKEY_EC| and setting |out| to NULL does not work. |
370 | // It requires |*out| to include a partially-initiazed |EVP_PKEY| to extract |
371 | // the group. |
372 | default: |
373 | OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE); |
374 | goto err; |
375 | } |
376 | |
377 | *inp = CBS_data(&cbs); |
378 | if (out != NULL) { |
379 | EVP_PKEY_free(*out); |
380 | *out = ret; |
381 | } |
382 | return ret; |
383 | |
384 | err: |
385 | EVP_PKEY_free(ret); |
386 | return NULL; |
387 | } |
388 | |