1 | /* |
2 | * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. |
3 | * |
4 | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | * this file except in compliance with the License. You can obtain a copy |
6 | * in the file LICENSE in the source distribution or at |
7 | * https://www.openssl.org/source/license.html |
8 | */ |
9 | |
10 | #include <openssl/evp.h> |
11 | |
12 | #include <assert.h> |
13 | |
14 | #include <openssl/err.h> |
15 | #include <openssl/mem.h> |
16 | #include <openssl/type_check.h> |
17 | |
18 | #include "../internal.h" |
19 | |
20 | |
21 | // This file implements scrypt, described in RFC 7914. |
22 | // |
23 | // Note scrypt refers to both "blocks" and a "block size" parameter, r. These |
24 | // are two different notions of blocks. A Salsa20 block is 64 bytes long, |
25 | // represented in this implementation by 16 |uint32_t|s. |r| determines the |
26 | // number of 64-byte Salsa20 blocks in a scryptBlockMix block, which is 2 * |r| |
27 | // Salsa20 blocks. This implementation refers to them as Salsa20 blocks and |
28 | // scrypt blocks, respectively. |
29 | |
30 | // A block_t is a Salsa20 block. |
31 | typedef struct { uint32_t words[16]; } block_t; |
32 | |
33 | OPENSSL_STATIC_ASSERT(sizeof(block_t) == 64, "block_t has padding" ); |
34 | |
35 | #define R(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) |
36 | |
37 | // salsa208_word_specification implements the Salsa20/8 core function, also |
38 | // described in RFC 7914, section 3. It modifies the block at |inout| |
39 | // in-place. |
40 | static void salsa208_word_specification(block_t *inout) { |
41 | block_t x; |
42 | OPENSSL_memcpy(&x, inout, sizeof(x)); |
43 | |
44 | for (int i = 8; i > 0; i -= 2) { |
45 | x.words[4] ^= R(x.words[0] + x.words[12], 7); |
46 | x.words[8] ^= R(x.words[4] + x.words[0], 9); |
47 | x.words[12] ^= R(x.words[8] + x.words[4], 13); |
48 | x.words[0] ^= R(x.words[12] + x.words[8], 18); |
49 | x.words[9] ^= R(x.words[5] + x.words[1], 7); |
50 | x.words[13] ^= R(x.words[9] + x.words[5], 9); |
51 | x.words[1] ^= R(x.words[13] + x.words[9], 13); |
52 | x.words[5] ^= R(x.words[1] + x.words[13], 18); |
53 | x.words[14] ^= R(x.words[10] + x.words[6], 7); |
54 | x.words[2] ^= R(x.words[14] + x.words[10], 9); |
55 | x.words[6] ^= R(x.words[2] + x.words[14], 13); |
56 | x.words[10] ^= R(x.words[6] + x.words[2], 18); |
57 | x.words[3] ^= R(x.words[15] + x.words[11], 7); |
58 | x.words[7] ^= R(x.words[3] + x.words[15], 9); |
59 | x.words[11] ^= R(x.words[7] + x.words[3], 13); |
60 | x.words[15] ^= R(x.words[11] + x.words[7], 18); |
61 | x.words[1] ^= R(x.words[0] + x.words[3], 7); |
62 | x.words[2] ^= R(x.words[1] + x.words[0], 9); |
63 | x.words[3] ^= R(x.words[2] + x.words[1], 13); |
64 | x.words[0] ^= R(x.words[3] + x.words[2], 18); |
65 | x.words[6] ^= R(x.words[5] + x.words[4], 7); |
66 | x.words[7] ^= R(x.words[6] + x.words[5], 9); |
67 | x.words[4] ^= R(x.words[7] + x.words[6], 13); |
68 | x.words[5] ^= R(x.words[4] + x.words[7], 18); |
69 | x.words[11] ^= R(x.words[10] + x.words[9], 7); |
70 | x.words[8] ^= R(x.words[11] + x.words[10], 9); |
71 | x.words[9] ^= R(x.words[8] + x.words[11], 13); |
72 | x.words[10] ^= R(x.words[9] + x.words[8], 18); |
73 | x.words[12] ^= R(x.words[15] + x.words[14], 7); |
74 | x.words[13] ^= R(x.words[12] + x.words[15], 9); |
75 | x.words[14] ^= R(x.words[13] + x.words[12], 13); |
76 | x.words[15] ^= R(x.words[14] + x.words[13], 18); |
77 | } |
78 | |
79 | for (int i = 0; i < 16; ++i) { |
80 | inout->words[i] += x.words[i]; |
81 | } |
82 | } |
83 | |
84 | // xor_block sets |*out| to be |*a| XOR |*b|. |
85 | static void xor_block(block_t *out, const block_t *a, const block_t *b) { |
86 | for (size_t i = 0; i < 16; i++) { |
87 | out->words[i] = a->words[i] ^ b->words[i]; |
88 | } |
89 | } |
90 | |
91 | // scryptBlockMix implements the function described in RFC 7914, section 4. B' |
92 | // is written to |out|. |out| and |B| may not alias and must be each one scrypt |
93 | // block (2 * |r| Salsa20 blocks) long. |
94 | static void scryptBlockMix(block_t *out, const block_t *B, uint64_t r) { |
95 | assert(out != B); |
96 | |
97 | block_t X; |
98 | OPENSSL_memcpy(&X, &B[r * 2 - 1], sizeof(X)); |
99 | for (uint64_t i = 0; i < r * 2; i++) { |
100 | xor_block(&X, &X, &B[i]); |
101 | salsa208_word_specification(&X); |
102 | |
103 | // This implements the permutation in step 3. |
104 | OPENSSL_memcpy(&out[i / 2 + (i & 1) * r], &X, sizeof(X)); |
105 | } |
106 | } |
107 | |
108 | // scryptROMix implements the function described in RFC 7914, section 5. |B| is |
109 | // an scrypt block (2 * |r| Salsa20 blocks) and is modified in-place. |T| and |
110 | // |V| are scratch space allocated by the caller. |T| must have space for one |
111 | // scrypt block (2 * |r| Salsa20 blocks). |V| must have space for |N| scrypt |
112 | // blocks (2 * |r| * |N| Salsa20 blocks). |
113 | static void scryptROMix(block_t *B, uint64_t r, uint64_t N, block_t *T, |
114 | block_t *V) { |
115 | // Steps 1 and 2. |
116 | OPENSSL_memcpy(V, B, 2 * r * sizeof(block_t)); |
117 | for (uint64_t i = 1; i < N; i++) { |
118 | scryptBlockMix(&V[2 * r * i /* scrypt block i */], |
119 | &V[2 * r * (i - 1) /* scrypt block i-1 */], r); |
120 | } |
121 | scryptBlockMix(B, &V[2 * r * (N - 1) /* scrypt block N-1 */], r); |
122 | |
123 | // Step 3. |
124 | for (uint64_t i = 0; i < N; i++) { |
125 | // Note this assumes |N| <= 2^32 and is a power of 2. |
126 | uint32_t j = B[2 * r - 1].words[0] & (N - 1); |
127 | for (size_t k = 0; k < 2 * r; k++) { |
128 | xor_block(&T[k], &B[k], &V[2 * r * j + k]); |
129 | } |
130 | scryptBlockMix(B, T, r); |
131 | } |
132 | } |
133 | |
134 | // SCRYPT_PR_MAX is the maximum value of p * r. This is equivalent to the |
135 | // bounds on p in section 6: |
136 | // |
137 | // p <= ((2^32-1) * hLen) / MFLen iff |
138 | // p <= ((2^32-1) * 32) / (128 * r) iff |
139 | // p * r <= (2^30-1) |
140 | #define SCRYPT_PR_MAX ((1 << 30) - 1) |
141 | |
142 | // SCRYPT_MAX_MEM is the default maximum memory that may be allocated by |
143 | // |EVP_PBE_scrypt|. |
144 | #define SCRYPT_MAX_MEM (1024 * 1024 * 32) |
145 | |
146 | int EVP_PBE_scrypt(const char *password, size_t password_len, |
147 | const uint8_t *salt, size_t salt_len, uint64_t N, uint64_t r, |
148 | uint64_t p, size_t max_mem, uint8_t *out_key, |
149 | size_t key_len) { |
150 | if (r == 0 || p == 0 || p > SCRYPT_PR_MAX / r || |
151 | // |N| must be a power of two. |
152 | N < 2 || (N & (N - 1)) || |
153 | // We only support |N| <= 2^32 in |scryptROMix|. |
154 | N > UINT64_C(1) << 32 || |
155 | // Check that |N| < 2^(128×r / 8). |
156 | (16 * r <= 63 && N >= UINT64_C(1) << (16 * r))) { |
157 | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PARAMETERS); |
158 | return 0; |
159 | } |
160 | |
161 | // Determine the amount of memory needed. B, T, and V are |p|, 1, and |N| |
162 | // scrypt blocks, respectively. Each scrypt block is 2*|r| |block_t|s. |
163 | if (max_mem == 0) { |
164 | max_mem = SCRYPT_MAX_MEM; |
165 | } |
166 | |
167 | size_t max_scrypt_blocks = max_mem / (2 * r * sizeof(block_t)); |
168 | if (max_scrypt_blocks < p + 1 || |
169 | max_scrypt_blocks - p - 1 < N) { |
170 | OPENSSL_PUT_ERROR(EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); |
171 | return 0; |
172 | } |
173 | |
174 | // Allocate and divide up the scratch space. |max_mem| fits in a size_t, which |
175 | // is no bigger than uint64_t, so none of these operations may overflow. |
176 | OPENSSL_STATIC_ASSERT(UINT64_MAX >= ((size_t)-1), "size_t exceeds uint64_t" ); |
177 | size_t B_blocks = p * 2 * r; |
178 | size_t B_bytes = B_blocks * sizeof(block_t); |
179 | size_t T_blocks = 2 * r; |
180 | size_t V_blocks = N * 2 * r; |
181 | block_t *B = OPENSSL_malloc((B_blocks + T_blocks + V_blocks) * sizeof(block_t)); |
182 | if (B == NULL) { |
183 | OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE); |
184 | return 0; |
185 | } |
186 | |
187 | int ret = 0; |
188 | block_t *T = B + B_blocks; |
189 | block_t *V = T + T_blocks; |
190 | |
191 | // NOTE: PKCS5_PBKDF2_HMAC can only fail due to allocation failure |
192 | // or |iterations| of 0 (we pass 1 here). This is consistent with |
193 | // the documented failure conditions of EVP_PBE_scrypt. |
194 | if (!PKCS5_PBKDF2_HMAC(password, password_len, salt, salt_len, 1, |
195 | EVP_sha256(), B_bytes, (uint8_t *)B)) { |
196 | goto err; |
197 | } |
198 | |
199 | for (uint64_t i = 0; i < p; i++) { |
200 | scryptROMix(B + 2 * r * i, r, N, T, V); |
201 | } |
202 | |
203 | if (!PKCS5_PBKDF2_HMAC(password, password_len, (const uint8_t *)B, B_bytes, 1, |
204 | EVP_sha256(), key_len, out_key)) { |
205 | goto err; |
206 | } |
207 | |
208 | ret = 1; |
209 | |
210 | err: |
211 | OPENSSL_free(B); |
212 | return ret; |
213 | } |
214 | |