| 1 | /* | 
| 2 |  * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. | 
| 3 |  * | 
| 4 |  * Licensed under the OpenSSL license (the "License").  You may not use | 
| 5 |  * this file except in compliance with the License.  You can obtain a copy | 
| 6 |  * in the file LICENSE in the source distribution or at | 
| 7 |  * https://www.openssl.org/source/license.html | 
| 8 |  */ | 
| 9 |  | 
| 10 | #include <openssl/evp.h> | 
| 11 |  | 
| 12 | #include <assert.h> | 
| 13 |  | 
| 14 | #include <openssl/err.h> | 
| 15 | #include <openssl/mem.h> | 
| 16 | #include <openssl/type_check.h> | 
| 17 |  | 
| 18 | #include "../internal.h" | 
| 19 |  | 
| 20 |  | 
| 21 | // This file implements scrypt, described in RFC 7914. | 
| 22 | // | 
| 23 | // Note scrypt refers to both "blocks" and a "block size" parameter, r. These | 
| 24 | // are two different notions of blocks. A Salsa20 block is 64 bytes long, | 
| 25 | // represented in this implementation by 16 |uint32_t|s. |r| determines the | 
| 26 | // number of 64-byte Salsa20 blocks in a scryptBlockMix block, which is 2 * |r| | 
| 27 | // Salsa20 blocks. This implementation refers to them as Salsa20 blocks and | 
| 28 | // scrypt blocks, respectively. | 
| 29 |  | 
| 30 | // A block_t is a Salsa20 block. | 
| 31 | typedef struct { uint32_t words[16]; } block_t; | 
| 32 |  | 
| 33 | OPENSSL_STATIC_ASSERT(sizeof(block_t) == 64, "block_t has padding" ); | 
| 34 |  | 
| 35 | #define R(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) | 
| 36 |  | 
| 37 | // salsa208_word_specification implements the Salsa20/8 core function, also | 
| 38 | // described in RFC 7914, section 3. It modifies the block at |inout| | 
| 39 | // in-place. | 
| 40 | static void salsa208_word_specification(block_t *inout) { | 
| 41 |   block_t x; | 
| 42 |   OPENSSL_memcpy(&x, inout, sizeof(x)); | 
| 43 |  | 
| 44 |   for (int i = 8; i > 0; i -= 2) { | 
| 45 |     x.words[4] ^= R(x.words[0] + x.words[12], 7); | 
| 46 |     x.words[8] ^= R(x.words[4] + x.words[0], 9); | 
| 47 |     x.words[12] ^= R(x.words[8] + x.words[4], 13); | 
| 48 |     x.words[0] ^= R(x.words[12] + x.words[8], 18); | 
| 49 |     x.words[9] ^= R(x.words[5] + x.words[1], 7); | 
| 50 |     x.words[13] ^= R(x.words[9] + x.words[5], 9); | 
| 51 |     x.words[1] ^= R(x.words[13] + x.words[9], 13); | 
| 52 |     x.words[5] ^= R(x.words[1] + x.words[13], 18); | 
| 53 |     x.words[14] ^= R(x.words[10] + x.words[6], 7); | 
| 54 |     x.words[2] ^= R(x.words[14] + x.words[10], 9); | 
| 55 |     x.words[6] ^= R(x.words[2] + x.words[14], 13); | 
| 56 |     x.words[10] ^= R(x.words[6] + x.words[2], 18); | 
| 57 |     x.words[3] ^= R(x.words[15] + x.words[11], 7); | 
| 58 |     x.words[7] ^= R(x.words[3] + x.words[15], 9); | 
| 59 |     x.words[11] ^= R(x.words[7] + x.words[3], 13); | 
| 60 |     x.words[15] ^= R(x.words[11] + x.words[7], 18); | 
| 61 |     x.words[1] ^= R(x.words[0] + x.words[3], 7); | 
| 62 |     x.words[2] ^= R(x.words[1] + x.words[0], 9); | 
| 63 |     x.words[3] ^= R(x.words[2] + x.words[1], 13); | 
| 64 |     x.words[0] ^= R(x.words[3] + x.words[2], 18); | 
| 65 |     x.words[6] ^= R(x.words[5] + x.words[4], 7); | 
| 66 |     x.words[7] ^= R(x.words[6] + x.words[5], 9); | 
| 67 |     x.words[4] ^= R(x.words[7] + x.words[6], 13); | 
| 68 |     x.words[5] ^= R(x.words[4] + x.words[7], 18); | 
| 69 |     x.words[11] ^= R(x.words[10] + x.words[9], 7); | 
| 70 |     x.words[8] ^= R(x.words[11] + x.words[10], 9); | 
| 71 |     x.words[9] ^= R(x.words[8] + x.words[11], 13); | 
| 72 |     x.words[10] ^= R(x.words[9] + x.words[8], 18); | 
| 73 |     x.words[12] ^= R(x.words[15] + x.words[14], 7); | 
| 74 |     x.words[13] ^= R(x.words[12] + x.words[15], 9); | 
| 75 |     x.words[14] ^= R(x.words[13] + x.words[12], 13); | 
| 76 |     x.words[15] ^= R(x.words[14] + x.words[13], 18); | 
| 77 |   } | 
| 78 |  | 
| 79 |   for (int i = 0; i < 16; ++i) { | 
| 80 |     inout->words[i] += x.words[i]; | 
| 81 |   } | 
| 82 | } | 
| 83 |  | 
| 84 | // xor_block sets |*out| to be |*a| XOR |*b|. | 
| 85 | static void xor_block(block_t *out, const block_t *a, const block_t *b) { | 
| 86 |   for (size_t i = 0; i < 16; i++) { | 
| 87 |     out->words[i] = a->words[i] ^ b->words[i]; | 
| 88 |   } | 
| 89 | } | 
| 90 |  | 
| 91 | // scryptBlockMix implements the function described in RFC 7914, section 4. B' | 
| 92 | // is written to |out|. |out| and |B| may not alias and must be each one scrypt | 
| 93 | // block (2 * |r| Salsa20 blocks) long. | 
| 94 | static void scryptBlockMix(block_t *out, const block_t *B, uint64_t r) { | 
| 95 |   assert(out != B); | 
| 96 |  | 
| 97 |   block_t X; | 
| 98 |   OPENSSL_memcpy(&X, &B[r * 2 - 1], sizeof(X)); | 
| 99 |   for (uint64_t i = 0; i < r * 2; i++) { | 
| 100 |     xor_block(&X, &X, &B[i]); | 
| 101 |     salsa208_word_specification(&X); | 
| 102 |  | 
| 103 |     // This implements the permutation in step 3. | 
| 104 |     OPENSSL_memcpy(&out[i / 2 + (i & 1) * r], &X, sizeof(X)); | 
| 105 |   } | 
| 106 | } | 
| 107 |  | 
| 108 | // scryptROMix implements the function described in RFC 7914, section 5.  |B| is | 
| 109 | // an scrypt block (2 * |r| Salsa20 blocks) and is modified in-place. |T| and | 
| 110 | // |V| are scratch space allocated by the caller. |T| must have space for one | 
| 111 | // scrypt block (2 * |r| Salsa20 blocks). |V| must have space for |N| scrypt | 
| 112 | // blocks (2 * |r| * |N| Salsa20 blocks). | 
| 113 | static void scryptROMix(block_t *B, uint64_t r, uint64_t N, block_t *T, | 
| 114 |                         block_t *V) { | 
| 115 |   // Steps 1 and 2. | 
| 116 |   OPENSSL_memcpy(V, B, 2 * r * sizeof(block_t)); | 
| 117 |   for (uint64_t i = 1; i < N; i++) { | 
| 118 |     scryptBlockMix(&V[2 * r * i /* scrypt block i */], | 
| 119 |                    &V[2 * r * (i - 1) /* scrypt block i-1 */], r); | 
| 120 |   } | 
| 121 |   scryptBlockMix(B, &V[2 * r * (N - 1) /* scrypt block N-1 */], r); | 
| 122 |  | 
| 123 |   // Step 3. | 
| 124 |   for (uint64_t i = 0; i < N; i++) { | 
| 125 |     // Note this assumes |N| <= 2^32 and is a power of 2. | 
| 126 |     uint32_t j = B[2 * r - 1].words[0] & (N - 1); | 
| 127 |     for (size_t k = 0; k < 2 * r; k++) { | 
| 128 |       xor_block(&T[k], &B[k], &V[2 * r * j + k]); | 
| 129 |     } | 
| 130 |     scryptBlockMix(B, T, r); | 
| 131 |   } | 
| 132 | } | 
| 133 |  | 
| 134 | // SCRYPT_PR_MAX is the maximum value of p * r. This is equivalent to the | 
| 135 | // bounds on p in section 6: | 
| 136 | // | 
| 137 | //   p <= ((2^32-1) * hLen) / MFLen iff | 
| 138 | //   p <= ((2^32-1) * 32) / (128 * r) iff | 
| 139 | //   p * r <= (2^30-1) | 
| 140 | #define SCRYPT_PR_MAX ((1 << 30) - 1) | 
| 141 |  | 
| 142 | // SCRYPT_MAX_MEM is the default maximum memory that may be allocated by | 
| 143 | // |EVP_PBE_scrypt|. | 
| 144 | #define SCRYPT_MAX_MEM (1024 * 1024 * 32) | 
| 145 |  | 
| 146 | int EVP_PBE_scrypt(const char *password, size_t password_len, | 
| 147 |                    const uint8_t *salt, size_t salt_len, uint64_t N, uint64_t r, | 
| 148 |                    uint64_t p, size_t max_mem, uint8_t *out_key, | 
| 149 |                    size_t key_len) { | 
| 150 |   if (r == 0 || p == 0 || p > SCRYPT_PR_MAX / r || | 
| 151 |       // |N| must be a power of two. | 
| 152 |       N < 2 || (N & (N - 1)) || | 
| 153 |       // We only support |N| <= 2^32 in |scryptROMix|. | 
| 154 |       N > UINT64_C(1) << 32 || | 
| 155 |       // Check that |N| < 2^(128×r / 8). | 
| 156 |       (16 * r <= 63 && N >= UINT64_C(1) << (16 * r))) { | 
| 157 |     OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PARAMETERS); | 
| 158 |     return 0; | 
| 159 |   } | 
| 160 |  | 
| 161 |   // Determine the amount of memory needed. B, T, and V are |p|, 1, and |N| | 
| 162 |   // scrypt blocks, respectively. Each scrypt block is 2*|r| |block_t|s. | 
| 163 |   if (max_mem == 0) { | 
| 164 |     max_mem = SCRYPT_MAX_MEM; | 
| 165 |   } | 
| 166 |  | 
| 167 |   size_t max_scrypt_blocks = max_mem / (2 * r * sizeof(block_t)); | 
| 168 |   if (max_scrypt_blocks < p + 1 || | 
| 169 |       max_scrypt_blocks - p - 1 < N) { | 
| 170 |     OPENSSL_PUT_ERROR(EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); | 
| 171 |     return 0; | 
| 172 |   } | 
| 173 |  | 
| 174 |   // Allocate and divide up the scratch space. |max_mem| fits in a size_t, which | 
| 175 |   // is no bigger than uint64_t, so none of these operations may overflow. | 
| 176 |   OPENSSL_STATIC_ASSERT(UINT64_MAX >= ((size_t)-1), "size_t exceeds uint64_t" ); | 
| 177 |   size_t B_blocks = p * 2 * r; | 
| 178 |   size_t B_bytes = B_blocks * sizeof(block_t); | 
| 179 |   size_t T_blocks = 2 * r; | 
| 180 |   size_t V_blocks = N * 2 * r; | 
| 181 |   block_t *B = OPENSSL_malloc((B_blocks + T_blocks + V_blocks) * sizeof(block_t)); | 
| 182 |   if (B == NULL) { | 
| 183 |     OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE); | 
| 184 |     return 0; | 
| 185 |   } | 
| 186 |  | 
| 187 |   int ret = 0; | 
| 188 |   block_t *T = B + B_blocks; | 
| 189 |   block_t *V = T + T_blocks; | 
| 190 |  | 
| 191 |   // NOTE: PKCS5_PBKDF2_HMAC can only fail due to allocation failure | 
| 192 |   // or |iterations| of 0 (we pass 1 here). This is consistent with | 
| 193 |   // the documented failure conditions of EVP_PBE_scrypt. | 
| 194 |   if (!PKCS5_PBKDF2_HMAC(password, password_len, salt, salt_len, 1, | 
| 195 |                          EVP_sha256(), B_bytes, (uint8_t *)B)) { | 
| 196 |     goto err; | 
| 197 |   } | 
| 198 |  | 
| 199 |   for (uint64_t i = 0; i < p; i++) { | 
| 200 |     scryptROMix(B + 2 * r * i, r, N, T, V); | 
| 201 |   } | 
| 202 |  | 
| 203 |   if (!PKCS5_PBKDF2_HMAC(password, password_len, (const uint8_t *)B, B_bytes, 1, | 
| 204 |                          EVP_sha256(), key_len, out_key)) { | 
| 205 |     goto err; | 
| 206 |   } | 
| 207 |  | 
| 208 |   ret = 1; | 
| 209 |  | 
| 210 | err: | 
| 211 |   OPENSSL_free(B); | 
| 212 |   return ret; | 
| 213 | } | 
| 214 |  |