1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
2 | * All rights reserved. |
3 | * |
4 | * This package is an SSL implementation written |
5 | * by Eric Young (eay@cryptsoft.com). |
6 | * The implementation was written so as to conform with Netscapes SSL. |
7 | * |
8 | * This library is free for commercial and non-commercial use as long as |
9 | * the following conditions are aheared to. The following conditions |
10 | * apply to all code found in this distribution, be it the RC4, RSA, |
11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
12 | * included with this distribution is covered by the same copyright terms |
13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
14 | * |
15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
16 | * the code are not to be removed. |
17 | * If this package is used in a product, Eric Young should be given attribution |
18 | * as the author of the parts of the library used. |
19 | * This can be in the form of a textual message at program startup or |
20 | * in documentation (online or textual) provided with the package. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 3. All advertising materials mentioning features or use of this software |
31 | * must display the following acknowledgement: |
32 | * "This product includes cryptographic software written by |
33 | * Eric Young (eay@cryptsoft.com)" |
34 | * The word 'cryptographic' can be left out if the rouines from the library |
35 | * being used are not cryptographic related :-). |
36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
37 | * the apps directory (application code) you must include an acknowledgement: |
38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
39 | * |
40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | * SUCH DAMAGE. |
51 | * |
52 | * The licence and distribution terms for any publically available version or |
53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
54 | * copied and put under another distribution licence |
55 | * [including the GNU Public Licence.] */ |
56 | |
57 | #include <openssl/cipher.h> |
58 | |
59 | #include <assert.h> |
60 | #include <string.h> |
61 | |
62 | #include <openssl/err.h> |
63 | #include <openssl/mem.h> |
64 | #include <openssl/nid.h> |
65 | |
66 | #include "internal.h" |
67 | #include "../../internal.h" |
68 | |
69 | |
70 | void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *ctx) { |
71 | OPENSSL_memset(ctx, 0, sizeof(EVP_CIPHER_CTX)); |
72 | } |
73 | |
74 | EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void) { |
75 | EVP_CIPHER_CTX *ctx = OPENSSL_malloc(sizeof(EVP_CIPHER_CTX)); |
76 | if (ctx) { |
77 | EVP_CIPHER_CTX_init(ctx); |
78 | } |
79 | return ctx; |
80 | } |
81 | |
82 | int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *c) { |
83 | if (c->cipher != NULL && c->cipher->cleanup) { |
84 | c->cipher->cleanup(c); |
85 | } |
86 | OPENSSL_free(c->cipher_data); |
87 | |
88 | OPENSSL_memset(c, 0, sizeof(EVP_CIPHER_CTX)); |
89 | return 1; |
90 | } |
91 | |
92 | void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx) { |
93 | if (ctx) { |
94 | EVP_CIPHER_CTX_cleanup(ctx); |
95 | OPENSSL_free(ctx); |
96 | } |
97 | } |
98 | |
99 | int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in) { |
100 | if (in == NULL || in->cipher == NULL) { |
101 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INPUT_NOT_INITIALIZED); |
102 | return 0; |
103 | } |
104 | |
105 | EVP_CIPHER_CTX_cleanup(out); |
106 | OPENSSL_memcpy(out, in, sizeof(EVP_CIPHER_CTX)); |
107 | |
108 | if (in->cipher_data && in->cipher->ctx_size) { |
109 | out->cipher_data = OPENSSL_malloc(in->cipher->ctx_size); |
110 | if (!out->cipher_data) { |
111 | out->cipher = NULL; |
112 | OPENSSL_PUT_ERROR(CIPHER, ERR_R_MALLOC_FAILURE); |
113 | return 0; |
114 | } |
115 | OPENSSL_memcpy(out->cipher_data, in->cipher_data, in->cipher->ctx_size); |
116 | } |
117 | |
118 | if (in->cipher->flags & EVP_CIPH_CUSTOM_COPY) { |
119 | if (!in->cipher->ctrl((EVP_CIPHER_CTX *)in, EVP_CTRL_COPY, 0, out)) { |
120 | out->cipher = NULL; |
121 | return 0; |
122 | } |
123 | } |
124 | |
125 | return 1; |
126 | } |
127 | |
128 | void EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *ctx) { |
129 | EVP_CIPHER_CTX_cleanup(ctx); |
130 | EVP_CIPHER_CTX_init(ctx); |
131 | } |
132 | |
133 | int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
134 | ENGINE *engine, const uint8_t *key, const uint8_t *iv, |
135 | int enc) { |
136 | if (enc == -1) { |
137 | enc = ctx->encrypt; |
138 | } else { |
139 | if (enc) { |
140 | enc = 1; |
141 | } |
142 | ctx->encrypt = enc; |
143 | } |
144 | |
145 | if (cipher) { |
146 | // Ensure a context left from last time is cleared (the previous check |
147 | // attempted to avoid this if the same ENGINE and EVP_CIPHER could be |
148 | // used). |
149 | if (ctx->cipher) { |
150 | EVP_CIPHER_CTX_cleanup(ctx); |
151 | // Restore encrypt and flags |
152 | ctx->encrypt = enc; |
153 | } |
154 | |
155 | ctx->cipher = cipher; |
156 | if (ctx->cipher->ctx_size) { |
157 | ctx->cipher_data = OPENSSL_malloc(ctx->cipher->ctx_size); |
158 | if (!ctx->cipher_data) { |
159 | ctx->cipher = NULL; |
160 | OPENSSL_PUT_ERROR(CIPHER, ERR_R_MALLOC_FAILURE); |
161 | return 0; |
162 | } |
163 | } else { |
164 | ctx->cipher_data = NULL; |
165 | } |
166 | |
167 | ctx->key_len = cipher->key_len; |
168 | ctx->flags = 0; |
169 | |
170 | if (ctx->cipher->flags & EVP_CIPH_CTRL_INIT) { |
171 | if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, NULL)) { |
172 | ctx->cipher = NULL; |
173 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INITIALIZATION_ERROR); |
174 | return 0; |
175 | } |
176 | } |
177 | } else if (!ctx->cipher) { |
178 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET); |
179 | return 0; |
180 | } |
181 | |
182 | // we assume block size is a power of 2 in *cryptUpdate |
183 | assert(ctx->cipher->block_size == 1 || ctx->cipher->block_size == 8 || |
184 | ctx->cipher->block_size == 16); |
185 | |
186 | if (!(EVP_CIPHER_CTX_flags(ctx) & EVP_CIPH_CUSTOM_IV)) { |
187 | switch (EVP_CIPHER_CTX_mode(ctx)) { |
188 | case EVP_CIPH_STREAM_CIPHER: |
189 | case EVP_CIPH_ECB_MODE: |
190 | break; |
191 | |
192 | case EVP_CIPH_CFB_MODE: |
193 | ctx->num = 0; |
194 | // fall-through |
195 | |
196 | case EVP_CIPH_CBC_MODE: |
197 | assert(EVP_CIPHER_CTX_iv_length(ctx) <= sizeof(ctx->iv)); |
198 | if (iv) { |
199 | OPENSSL_memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx)); |
200 | } |
201 | OPENSSL_memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx)); |
202 | break; |
203 | |
204 | case EVP_CIPH_CTR_MODE: |
205 | case EVP_CIPH_OFB_MODE: |
206 | ctx->num = 0; |
207 | // Don't reuse IV for CTR mode |
208 | if (iv) { |
209 | OPENSSL_memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx)); |
210 | } |
211 | break; |
212 | |
213 | default: |
214 | return 0; |
215 | } |
216 | } |
217 | |
218 | if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT)) { |
219 | if (!ctx->cipher->init(ctx, key, iv, enc)) { |
220 | return 0; |
221 | } |
222 | } |
223 | |
224 | ctx->buf_len = 0; |
225 | ctx->final_used = 0; |
226 | ctx->block_mask = ctx->cipher->block_size - 1; |
227 | return 1; |
228 | } |
229 | |
230 | int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
231 | ENGINE *impl, const uint8_t *key, const uint8_t *iv) { |
232 | return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 1); |
233 | } |
234 | |
235 | int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
236 | ENGINE *impl, const uint8_t *key, const uint8_t *iv) { |
237 | return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 0); |
238 | } |
239 | |
240 | int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len, |
241 | const uint8_t *in, int in_len) { |
242 | int i, j, bl; |
243 | |
244 | if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { |
245 | i = ctx->cipher->cipher(ctx, out, in, in_len); |
246 | if (i < 0) { |
247 | return 0; |
248 | } else { |
249 | *out_len = i; |
250 | } |
251 | return 1; |
252 | } |
253 | |
254 | if (in_len <= 0) { |
255 | *out_len = 0; |
256 | return in_len == 0; |
257 | } |
258 | |
259 | if (ctx->buf_len == 0 && (in_len & ctx->block_mask) == 0) { |
260 | if (ctx->cipher->cipher(ctx, out, in, in_len)) { |
261 | *out_len = in_len; |
262 | return 1; |
263 | } else { |
264 | *out_len = 0; |
265 | return 0; |
266 | } |
267 | } |
268 | |
269 | i = ctx->buf_len; |
270 | bl = ctx->cipher->block_size; |
271 | assert(bl <= (int)sizeof(ctx->buf)); |
272 | if (i != 0) { |
273 | if (bl - i > in_len) { |
274 | OPENSSL_memcpy(&ctx->buf[i], in, in_len); |
275 | ctx->buf_len += in_len; |
276 | *out_len = 0; |
277 | return 1; |
278 | } else { |
279 | j = bl - i; |
280 | OPENSSL_memcpy(&ctx->buf[i], in, j); |
281 | if (!ctx->cipher->cipher(ctx, out, ctx->buf, bl)) { |
282 | return 0; |
283 | } |
284 | in_len -= j; |
285 | in += j; |
286 | out += bl; |
287 | *out_len = bl; |
288 | } |
289 | } else { |
290 | *out_len = 0; |
291 | } |
292 | |
293 | i = in_len & ctx->block_mask; |
294 | in_len -= i; |
295 | if (in_len > 0) { |
296 | if (!ctx->cipher->cipher(ctx, out, in, in_len)) { |
297 | return 0; |
298 | } |
299 | *out_len += in_len; |
300 | } |
301 | |
302 | if (i != 0) { |
303 | OPENSSL_memcpy(ctx->buf, &in[in_len], i); |
304 | } |
305 | ctx->buf_len = i; |
306 | return 1; |
307 | } |
308 | |
309 | int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { |
310 | int n, ret; |
311 | unsigned int i, b, bl; |
312 | |
313 | if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { |
314 | ret = ctx->cipher->cipher(ctx, out, NULL, 0); |
315 | if (ret < 0) { |
316 | return 0; |
317 | } else { |
318 | *out_len = ret; |
319 | } |
320 | return 1; |
321 | } |
322 | |
323 | b = ctx->cipher->block_size; |
324 | assert(b <= sizeof(ctx->buf)); |
325 | if (b == 1) { |
326 | *out_len = 0; |
327 | return 1; |
328 | } |
329 | |
330 | bl = ctx->buf_len; |
331 | if (ctx->flags & EVP_CIPH_NO_PADDING) { |
332 | if (bl) { |
333 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH); |
334 | return 0; |
335 | } |
336 | *out_len = 0; |
337 | return 1; |
338 | } |
339 | |
340 | n = b - bl; |
341 | for (i = bl; i < b; i++) { |
342 | ctx->buf[i] = n; |
343 | } |
344 | ret = ctx->cipher->cipher(ctx, out, ctx->buf, b); |
345 | |
346 | if (ret) { |
347 | *out_len = b; |
348 | } |
349 | |
350 | return ret; |
351 | } |
352 | |
353 | int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len, |
354 | const uint8_t *in, int in_len) { |
355 | int fix_len; |
356 | unsigned int b; |
357 | |
358 | if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { |
359 | int r = ctx->cipher->cipher(ctx, out, in, in_len); |
360 | if (r < 0) { |
361 | *out_len = 0; |
362 | return 0; |
363 | } else { |
364 | *out_len = r; |
365 | } |
366 | return 1; |
367 | } |
368 | |
369 | if (in_len <= 0) { |
370 | *out_len = 0; |
371 | return in_len == 0; |
372 | } |
373 | |
374 | if (ctx->flags & EVP_CIPH_NO_PADDING) { |
375 | return EVP_EncryptUpdate(ctx, out, out_len, in, in_len); |
376 | } |
377 | |
378 | b = ctx->cipher->block_size; |
379 | assert(b <= sizeof(ctx->final)); |
380 | |
381 | if (ctx->final_used) { |
382 | OPENSSL_memcpy(out, ctx->final, b); |
383 | out += b; |
384 | fix_len = 1; |
385 | } else { |
386 | fix_len = 0; |
387 | } |
388 | |
389 | if (!EVP_EncryptUpdate(ctx, out, out_len, in, in_len)) { |
390 | return 0; |
391 | } |
392 | |
393 | // if we have 'decrypted' a multiple of block size, make sure |
394 | // we have a copy of this last block |
395 | if (b > 1 && !ctx->buf_len) { |
396 | *out_len -= b; |
397 | ctx->final_used = 1; |
398 | OPENSSL_memcpy(ctx->final, &out[*out_len], b); |
399 | } else { |
400 | ctx->final_used = 0; |
401 | } |
402 | |
403 | if (fix_len) { |
404 | *out_len += b; |
405 | } |
406 | |
407 | return 1; |
408 | } |
409 | |
410 | int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len) { |
411 | int i, n; |
412 | unsigned int b; |
413 | *out_len = 0; |
414 | |
415 | if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { |
416 | i = ctx->cipher->cipher(ctx, out, NULL, 0); |
417 | if (i < 0) { |
418 | return 0; |
419 | } else { |
420 | *out_len = i; |
421 | } |
422 | return 1; |
423 | } |
424 | |
425 | b = ctx->cipher->block_size; |
426 | if (ctx->flags & EVP_CIPH_NO_PADDING) { |
427 | if (ctx->buf_len) { |
428 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH); |
429 | return 0; |
430 | } |
431 | *out_len = 0; |
432 | return 1; |
433 | } |
434 | |
435 | if (b > 1) { |
436 | if (ctx->buf_len || !ctx->final_used) { |
437 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_WRONG_FINAL_BLOCK_LENGTH); |
438 | return 0; |
439 | } |
440 | assert(b <= sizeof(ctx->final)); |
441 | |
442 | // The following assumes that the ciphertext has been authenticated. |
443 | // Otherwise it provides a padding oracle. |
444 | n = ctx->final[b - 1]; |
445 | if (n == 0 || n > (int)b) { |
446 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
447 | return 0; |
448 | } |
449 | |
450 | for (i = 0; i < n; i++) { |
451 | if (ctx->final[--b] != n) { |
452 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
453 | return 0; |
454 | } |
455 | } |
456 | |
457 | n = ctx->cipher->block_size - n; |
458 | for (i = 0; i < n; i++) { |
459 | out[i] = ctx->final[i]; |
460 | } |
461 | *out_len = n; |
462 | } else { |
463 | *out_len = 0; |
464 | } |
465 | |
466 | return 1; |
467 | } |
468 | |
469 | int EVP_Cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
470 | size_t in_len) { |
471 | return ctx->cipher->cipher(ctx, out, in, in_len); |
472 | } |
473 | |
474 | int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len, |
475 | const uint8_t *in, int in_len) { |
476 | if (ctx->encrypt) { |
477 | return EVP_EncryptUpdate(ctx, out, out_len, in, in_len); |
478 | } else { |
479 | return EVP_DecryptUpdate(ctx, out, out_len, in, in_len); |
480 | } |
481 | } |
482 | |
483 | int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { |
484 | if (ctx->encrypt) { |
485 | return EVP_EncryptFinal_ex(ctx, out, out_len); |
486 | } else { |
487 | return EVP_DecryptFinal_ex(ctx, out, out_len); |
488 | } |
489 | } |
490 | |
491 | const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx) { |
492 | return ctx->cipher; |
493 | } |
494 | |
495 | int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx) { |
496 | return ctx->cipher->nid; |
497 | } |
498 | |
499 | int EVP_CIPHER_CTX_encrypting(const EVP_CIPHER_CTX *ctx) { |
500 | return ctx->encrypt; |
501 | } |
502 | |
503 | unsigned EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx) { |
504 | return ctx->cipher->block_size; |
505 | } |
506 | |
507 | unsigned EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx) { |
508 | return ctx->key_len; |
509 | } |
510 | |
511 | unsigned EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx) { |
512 | return ctx->cipher->iv_len; |
513 | } |
514 | |
515 | void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx) { |
516 | return ctx->app_data; |
517 | } |
518 | |
519 | void EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data) { |
520 | ctx->app_data = data; |
521 | } |
522 | |
523 | uint32_t EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx) { |
524 | return ctx->cipher->flags & ~EVP_CIPH_MODE_MASK; |
525 | } |
526 | |
527 | uint32_t EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx) { |
528 | return ctx->cipher->flags & EVP_CIPH_MODE_MASK; |
529 | } |
530 | |
531 | int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int command, int arg, void *ptr) { |
532 | int ret; |
533 | if (!ctx->cipher) { |
534 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET); |
535 | return 0; |
536 | } |
537 | |
538 | if (!ctx->cipher->ctrl) { |
539 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_NOT_IMPLEMENTED); |
540 | return 0; |
541 | } |
542 | |
543 | ret = ctx->cipher->ctrl(ctx, command, arg, ptr); |
544 | if (ret == -1) { |
545 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_OPERATION_NOT_IMPLEMENTED); |
546 | return 0; |
547 | } |
548 | |
549 | return ret; |
550 | } |
551 | |
552 | int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad) { |
553 | if (pad) { |
554 | ctx->flags &= ~EVP_CIPH_NO_PADDING; |
555 | } else { |
556 | ctx->flags |= EVP_CIPH_NO_PADDING; |
557 | } |
558 | return 1; |
559 | } |
560 | |
561 | int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, unsigned key_len) { |
562 | if (c->key_len == key_len) { |
563 | return 1; |
564 | } |
565 | |
566 | if (key_len == 0 || !(c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH)) { |
567 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_KEY_LENGTH); |
568 | return 0; |
569 | } |
570 | |
571 | c->key_len = key_len; |
572 | return 1; |
573 | } |
574 | |
575 | int EVP_CIPHER_nid(const EVP_CIPHER *cipher) { return cipher->nid; } |
576 | |
577 | unsigned EVP_CIPHER_block_size(const EVP_CIPHER *cipher) { |
578 | return cipher->block_size; |
579 | } |
580 | |
581 | unsigned EVP_CIPHER_key_length(const EVP_CIPHER *cipher) { |
582 | return cipher->key_len; |
583 | } |
584 | |
585 | unsigned EVP_CIPHER_iv_length(const EVP_CIPHER *cipher) { |
586 | return cipher->iv_len; |
587 | } |
588 | |
589 | uint32_t EVP_CIPHER_flags(const EVP_CIPHER *cipher) { |
590 | return cipher->flags & ~EVP_CIPH_MODE_MASK; |
591 | } |
592 | |
593 | uint32_t EVP_CIPHER_mode(const EVP_CIPHER *cipher) { |
594 | return cipher->flags & EVP_CIPH_MODE_MASK; |
595 | } |
596 | |
597 | int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
598 | const uint8_t *key, const uint8_t *iv, int enc) { |
599 | if (cipher) { |
600 | EVP_CIPHER_CTX_init(ctx); |
601 | } |
602 | return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, enc); |
603 | } |
604 | |
605 | int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
606 | const uint8_t *key, const uint8_t *iv) { |
607 | return EVP_CipherInit(ctx, cipher, key, iv, 1); |
608 | } |
609 | |
610 | int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
611 | const uint8_t *key, const uint8_t *iv) { |
612 | return EVP_CipherInit(ctx, cipher, key, iv, 0); |
613 | } |
614 | |
615 | int EVP_add_cipher_alias(const char *a, const char *b) { |
616 | return 1; |
617 | } |
618 | |
619 | void EVP_CIPHER_CTX_set_flags(const EVP_CIPHER_CTX *ctx, uint32_t flags) {} |
620 | |