1 | /* ==================================================================== |
2 | * Copyright (c) 2008 The OpenSSL Project. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * |
8 | * 1. Redistributions of source code must retain the above copyright |
9 | * notice, this list of conditions and the following disclaimer. |
10 | * |
11 | * 2. Redistributions in binary form must reproduce the above copyright |
12 | * notice, this list of conditions and the following disclaimer in |
13 | * the documentation and/or other materials provided with the |
14 | * distribution. |
15 | * |
16 | * 3. All advertising materials mentioning features or use of this |
17 | * software must display the following acknowledgment: |
18 | * "This product includes software developed by the OpenSSL Project |
19 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
20 | * |
21 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
22 | * endorse or promote products derived from this software without |
23 | * prior written permission. For written permission, please contact |
24 | * openssl-core@openssl.org. |
25 | * |
26 | * 5. Products derived from this software may not be called "OpenSSL" |
27 | * nor may "OpenSSL" appear in their names without prior written |
28 | * permission of the OpenSSL Project. |
29 | * |
30 | * 6. Redistributions of any form whatsoever must retain the following |
31 | * acknowledgment: |
32 | * "This product includes software developed by the OpenSSL Project |
33 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
34 | * |
35 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
36 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
37 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
38 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
39 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
40 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
41 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
42 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
43 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
44 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
45 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
46 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
47 | * ==================================================================== */ |
48 | |
49 | #ifndef OPENSSL_HEADER_MODES_INTERNAL_H |
50 | #define |
51 | |
52 | #include <openssl/base.h> |
53 | |
54 | #include <openssl/aes.h> |
55 | #include <openssl/cpu.h> |
56 | |
57 | #include <stdlib.h> |
58 | #include <string.h> |
59 | |
60 | #include "../../internal.h" |
61 | |
62 | #if defined(__cplusplus) |
63 | extern "C" { |
64 | #endif |
65 | |
66 | |
67 | static inline uint32_t GETU32(const void *in) { |
68 | uint32_t v; |
69 | OPENSSL_memcpy(&v, in, sizeof(v)); |
70 | return CRYPTO_bswap4(v); |
71 | } |
72 | |
73 | static inline void PUTU32(void *out, uint32_t v) { |
74 | v = CRYPTO_bswap4(v); |
75 | OPENSSL_memcpy(out, &v, sizeof(v)); |
76 | } |
77 | |
78 | static inline size_t load_word_le(const void *in) { |
79 | size_t v; |
80 | OPENSSL_memcpy(&v, in, sizeof(v)); |
81 | return v; |
82 | } |
83 | |
84 | static inline void store_word_le(void *out, size_t v) { |
85 | OPENSSL_memcpy(out, &v, sizeof(v)); |
86 | } |
87 | |
88 | // block128_f is the type of an AES block cipher implementation. |
89 | // |
90 | // Unlike upstream OpenSSL, it and the other functions in this file hard-code |
91 | // |AES_KEY|. It is undefined in C to call a function pointer with anything |
92 | // other than the original type. Thus we either must match |block128_f| to the |
93 | // type signature of |AES_encrypt| and friends or pass in |void*| wrapper |
94 | // functions. |
95 | // |
96 | // These functions are called exclusively with AES, so we use the former. |
97 | typedef void (*block128_f)(const uint8_t in[16], uint8_t out[16], |
98 | const AES_KEY *key); |
99 | |
100 | |
101 | // CTR. |
102 | |
103 | // ctr128_f is the type of a function that performs CTR-mode encryption. |
104 | typedef void (*ctr128_f)(const uint8_t *in, uint8_t *out, size_t blocks, |
105 | const AES_KEY *key, const uint8_t ivec[16]); |
106 | |
107 | // CRYPTO_ctr128_encrypt encrypts (or decrypts, it's the same in CTR mode) |
108 | // |len| bytes from |in| to |out| using |block| in counter mode. There's no |
109 | // requirement that |len| be a multiple of any value and any partial blocks are |
110 | // stored in |ecount_buf| and |*num|, which must be zeroed before the initial |
111 | // call. The counter is a 128-bit, big-endian value in |ivec| and is |
112 | // incremented by this function. |
113 | void CRYPTO_ctr128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
114 | const AES_KEY *key, uint8_t ivec[16], |
115 | uint8_t ecount_buf[16], unsigned *num, |
116 | block128_f block); |
117 | |
118 | // CRYPTO_ctr128_encrypt_ctr32 acts like |CRYPTO_ctr128_encrypt| but takes |
119 | // |ctr|, a function that performs CTR mode but only deals with the lower 32 |
120 | // bits of the counter. This is useful when |ctr| can be an optimised |
121 | // function. |
122 | void CRYPTO_ctr128_encrypt_ctr32(const uint8_t *in, uint8_t *out, size_t len, |
123 | const AES_KEY *key, uint8_t ivec[16], |
124 | uint8_t ecount_buf[16], unsigned *num, |
125 | ctr128_f ctr); |
126 | |
127 | |
128 | // GCM. |
129 | // |
130 | // This API differs from the upstream API slightly. The |GCM128_CONTEXT| does |
131 | // not have a |key| pointer that points to the key as upstream's version does. |
132 | // Instead, every function takes a |key| parameter. This way |GCM128_CONTEXT| |
133 | // can be safely copied. Additionally, |gcm_key| is split into a separate |
134 | // struct. |
135 | |
136 | typedef struct { uint64_t hi,lo; } u128; |
137 | |
138 | // gmult_func multiplies |Xi| by the GCM key and writes the result back to |
139 | // |Xi|. |
140 | typedef void (*gmult_func)(uint64_t Xi[2], const u128 Htable[16]); |
141 | |
142 | // ghash_func repeatedly multiplies |Xi| by the GCM key and adds in blocks from |
143 | // |inp|. The result is written back to |Xi| and the |len| argument must be a |
144 | // multiple of 16. |
145 | typedef void (*ghash_func)(uint64_t Xi[2], const u128 Htable[16], |
146 | const uint8_t *inp, size_t len); |
147 | |
148 | typedef struct gcm128_key_st { |
149 | // Note the MOVBE-based, x86-64, GHASH assembly requires |H| and |Htable| to |
150 | // be the first two elements of this struct. Additionally, some assembly |
151 | // routines require a 16-byte-aligned |Htable| when hashing data, but not |
152 | // initialization. |GCM128_KEY| is not itself aligned to simplify embedding in |
153 | // |EVP_AEAD_CTX|, but |Htable|'s offset must be a multiple of 16. |
154 | u128 H; |
155 | u128 Htable[16]; |
156 | gmult_func gmult; |
157 | ghash_func ghash; |
158 | |
159 | block128_f block; |
160 | |
161 | // use_aesni_gcm_crypt is true if this context should use the assembly |
162 | // functions |aesni_gcm_encrypt| and |aesni_gcm_decrypt| to process data. |
163 | unsigned use_aesni_gcm_crypt:1; |
164 | } GCM128_KEY; |
165 | |
166 | // GCM128_CONTEXT contains state for a single GCM operation. The structure |
167 | // should be zero-initialized before use. |
168 | typedef struct { |
169 | // The following 5 names follow names in GCM specification |
170 | union { |
171 | uint64_t u[2]; |
172 | uint32_t d[4]; |
173 | uint8_t c[16]; |
174 | size_t t[16 / sizeof(size_t)]; |
175 | } Yi, EKi, EK0, len, Xi; |
176 | |
177 | // Note that the order of |Xi| and |gcm_key| is fixed by the MOVBE-based, |
178 | // x86-64, GHASH assembly. Additionally, some assembly routines require |
179 | // |gcm_key| to be 16-byte aligned. |GCM128_KEY| is not itself aligned to |
180 | // simplify embedding in |EVP_AEAD_CTX|. |
181 | alignas(16) GCM128_KEY gcm_key; |
182 | |
183 | unsigned mres, ares; |
184 | } GCM128_CONTEXT; |
185 | |
186 | #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
187 | // crypto_gcm_clmul_enabled returns one if the CLMUL implementation of GCM is |
188 | // used. |
189 | int crypto_gcm_clmul_enabled(void); |
190 | #endif |
191 | |
192 | // CRYPTO_ghash_init writes a precomputed table of powers of |gcm_key| to |
193 | // |out_table| and sets |*out_mult| and |*out_hash| to (potentially hardware |
194 | // accelerated) functions for performing operations in the GHASH field. If the |
195 | // AVX implementation was used |*out_is_avx| will be true. |
196 | void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash, |
197 | u128 *out_key, u128 out_table[16], int *out_is_avx, |
198 | const uint8_t gcm_key[16]); |
199 | |
200 | // CRYPTO_gcm128_init_key initialises |gcm_key| to use |block| (typically AES) |
201 | // with the given key. |block_is_hwaes| is one if |block| is |aes_hw_encrypt|. |
202 | OPENSSL_EXPORT void CRYPTO_gcm128_init_key(GCM128_KEY *gcm_key, |
203 | const AES_KEY *key, block128_f block, |
204 | int block_is_hwaes); |
205 | |
206 | // CRYPTO_gcm128_setiv sets the IV (nonce) for |ctx|. The |key| must be the |
207 | // same key that was passed to |CRYPTO_gcm128_init|. |
208 | OPENSSL_EXPORT void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const AES_KEY *key, |
209 | const uint8_t *iv, size_t iv_len); |
210 | |
211 | // CRYPTO_gcm128_aad sets the authenticated data for an instance of GCM. |
212 | // This must be called before and data is encrypted. It returns one on success |
213 | // and zero otherwise. |
214 | OPENSSL_EXPORT int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad, |
215 | size_t len); |
216 | |
217 | // CRYPTO_gcm128_encrypt encrypts |len| bytes from |in| to |out|. The |key| |
218 | // must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one |
219 | // on success and zero otherwise. |
220 | OPENSSL_EXPORT int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, |
221 | const AES_KEY *key, const uint8_t *in, |
222 | uint8_t *out, size_t len); |
223 | |
224 | // CRYPTO_gcm128_decrypt decrypts |len| bytes from |in| to |out|. The |key| |
225 | // must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one |
226 | // on success and zero otherwise. |
227 | OPENSSL_EXPORT int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, |
228 | const AES_KEY *key, const uint8_t *in, |
229 | uint8_t *out, size_t len); |
230 | |
231 | // CRYPTO_gcm128_encrypt_ctr32 encrypts |len| bytes from |in| to |out| using |
232 | // a CTR function that only handles the bottom 32 bits of the nonce, like |
233 | // |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was |
234 | // passed to |CRYPTO_gcm128_init|. It returns one on success and zero |
235 | // otherwise. |
236 | OPENSSL_EXPORT int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, |
237 | const AES_KEY *key, |
238 | const uint8_t *in, uint8_t *out, |
239 | size_t len, ctr128_f stream); |
240 | |
241 | // CRYPTO_gcm128_decrypt_ctr32 decrypts |len| bytes from |in| to |out| using |
242 | // a CTR function that only handles the bottom 32 bits of the nonce, like |
243 | // |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was |
244 | // passed to |CRYPTO_gcm128_init|. It returns one on success and zero |
245 | // otherwise. |
246 | OPENSSL_EXPORT int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, |
247 | const AES_KEY *key, |
248 | const uint8_t *in, uint8_t *out, |
249 | size_t len, ctr128_f stream); |
250 | |
251 | // CRYPTO_gcm128_finish calculates the authenticator and compares it against |
252 | // |len| bytes of |tag|. It returns one on success and zero otherwise. |
253 | OPENSSL_EXPORT int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag, |
254 | size_t len); |
255 | |
256 | // CRYPTO_gcm128_tag calculates the authenticator and copies it into |tag|. |
257 | // The minimum of |len| and 16 bytes are copied into |tag|. |
258 | OPENSSL_EXPORT void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, uint8_t *tag, |
259 | size_t len); |
260 | |
261 | |
262 | // GCM assembly. |
263 | |
264 | #if !defined(OPENSSL_NO_ASM) && \ |
265 | (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \ |
266 | defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) || \ |
267 | defined(OPENSSL_PPC64LE)) |
268 | #define GHASH_ASM |
269 | #endif |
270 | |
271 | void gcm_init_4bit(u128 Htable[16], const uint64_t H[2]); |
272 | void gcm_gmult_4bit(uint64_t Xi[2], const u128 Htable[16]); |
273 | void gcm_ghash_4bit(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
274 | size_t len); |
275 | |
276 | #if defined(GHASH_ASM) |
277 | |
278 | #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
279 | #define GCM_FUNCREF_4BIT |
280 | void gcm_init_clmul(u128 Htable[16], const uint64_t Xi[2]); |
281 | void gcm_gmult_clmul(uint64_t Xi[2], const u128 Htable[16]); |
282 | void gcm_ghash_clmul(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
283 | size_t len); |
284 | |
285 | OPENSSL_INLINE char gcm_ssse3_capable(void) { |
286 | return (OPENSSL_ia32cap_get()[1] & (1 << (41 - 32))) != 0; |
287 | } |
288 | |
289 | // |gcm_gmult_ssse3| and |gcm_ghash_ssse3| require |Htable| to be |
290 | // 16-byte-aligned, but |gcm_init_ssse3| does not. |
291 | void gcm_init_ssse3(u128 Htable[16], const uint64_t Xi[2]); |
292 | void gcm_gmult_ssse3(uint64_t Xi[2], const u128 Htable[16]); |
293 | void gcm_ghash_ssse3(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in, |
294 | size_t len); |
295 | |
296 | #if defined(OPENSSL_X86_64) |
297 | #define GHASH_ASM_X86_64 |
298 | void gcm_init_avx(u128 Htable[16], const uint64_t Xi[2]); |
299 | void gcm_gmult_avx(uint64_t Xi[2], const u128 Htable[16]); |
300 | void gcm_ghash_avx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in, |
301 | size_t len); |
302 | |
303 | #define AESNI_GCM |
304 | size_t aesni_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
305 | const AES_KEY *key, uint8_t ivec[16], uint64_t *Xi); |
306 | size_t aesni_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len, |
307 | const AES_KEY *key, uint8_t ivec[16], uint64_t *Xi); |
308 | #endif // OPENSSL_X86_64 |
309 | |
310 | #if defined(OPENSSL_X86) |
311 | #define GHASH_ASM_X86 |
312 | void gcm_gmult_4bit_mmx(uint64_t Xi[2], const u128 Htable[16]); |
313 | void gcm_ghash_4bit_mmx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
314 | size_t len); |
315 | #endif // OPENSSL_X86 |
316 | |
317 | #elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) |
318 | #define GHASH_ASM_ARM |
319 | #define GCM_FUNCREF_4BIT |
320 | |
321 | OPENSSL_INLINE int gcm_pmull_capable(void) { |
322 | return CRYPTO_is_ARMv8_PMULL_capable(); |
323 | } |
324 | |
325 | void gcm_init_v8(u128 Htable[16], const uint64_t Xi[2]); |
326 | void gcm_gmult_v8(uint64_t Xi[2], const u128 Htable[16]); |
327 | void gcm_ghash_v8(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
328 | size_t len); |
329 | |
330 | OPENSSL_INLINE int gcm_neon_capable(void) { return CRYPTO_is_NEON_capable(); } |
331 | |
332 | void gcm_init_neon(u128 Htable[16], const uint64_t Xi[2]); |
333 | void gcm_gmult_neon(uint64_t Xi[2], const u128 Htable[16]); |
334 | void gcm_ghash_neon(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
335 | size_t len); |
336 | |
337 | #elif defined(OPENSSL_PPC64LE) |
338 | #define GHASH_ASM_PPC64LE |
339 | #define GCM_FUNCREF_4BIT |
340 | void gcm_init_p8(u128 Htable[16], const uint64_t Xi[2]); |
341 | void gcm_gmult_p8(uint64_t Xi[2], const u128 Htable[16]); |
342 | void gcm_ghash_p8(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
343 | size_t len); |
344 | #endif |
345 | #endif // GHASH_ASM |
346 | |
347 | |
348 | // CCM. |
349 | |
350 | typedef struct ccm128_context { |
351 | block128_f block; |
352 | ctr128_f ctr; |
353 | unsigned M, L; |
354 | } CCM128_CONTEXT; |
355 | |
356 | // CRYPTO_ccm128_init initialises |ctx| to use |block| (typically AES) with the |
357 | // specified |M| and |L| parameters. It returns one on success and zero if |M| |
358 | // or |L| is invalid. |
359 | int CRYPTO_ccm128_init(CCM128_CONTEXT *ctx, const AES_KEY *key, |
360 | block128_f block, ctr128_f ctr, unsigned M, unsigned L); |
361 | |
362 | // CRYPTO_ccm128_max_input returns the maximum input length accepted by |ctx|. |
363 | size_t CRYPTO_ccm128_max_input(const CCM128_CONTEXT *ctx); |
364 | |
365 | // CRYPTO_ccm128_encrypt encrypts |len| bytes from |in| to |out| writing the tag |
366 | // to |out_tag|. |key| must be the same key that was passed to |
367 | // |CRYPTO_ccm128_init|. It returns one on success and zero otherwise. |
368 | int CRYPTO_ccm128_encrypt(const CCM128_CONTEXT *ctx, const AES_KEY *key, |
369 | uint8_t *out, uint8_t *out_tag, size_t tag_len, |
370 | const uint8_t *nonce, size_t nonce_len, |
371 | const uint8_t *in, size_t len, const uint8_t *aad, |
372 | size_t aad_len); |
373 | |
374 | // CRYPTO_ccm128_decrypt decrypts |len| bytes from |in| to |out|, writing the |
375 | // expected tag to |out_tag|. |key| must be the same key that was passed to |
376 | // |CRYPTO_ccm128_init|. It returns one on success and zero otherwise. |
377 | int CRYPTO_ccm128_decrypt(const CCM128_CONTEXT *ctx, const AES_KEY *key, |
378 | uint8_t *out, uint8_t *out_tag, size_t tag_len, |
379 | const uint8_t *nonce, size_t nonce_len, |
380 | const uint8_t *in, size_t len, const uint8_t *aad, |
381 | size_t aad_len); |
382 | |
383 | |
384 | // CBC. |
385 | |
386 | // cbc128_f is the type of a function that performs CBC-mode encryption. |
387 | typedef void (*cbc128_f)(const uint8_t *in, uint8_t *out, size_t len, |
388 | const AES_KEY *key, uint8_t ivec[16], int enc); |
389 | |
390 | // CRYPTO_cbc128_encrypt encrypts |len| bytes from |in| to |out| using the |
391 | // given IV and block cipher in CBC mode. The input need not be a multiple of |
392 | // 128 bits long, but the output will round up to the nearest 128 bit multiple, |
393 | // zero padding the input if needed. The IV will be updated on return. |
394 | void CRYPTO_cbc128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
395 | const AES_KEY *key, uint8_t ivec[16], |
396 | block128_f block); |
397 | |
398 | // CRYPTO_cbc128_decrypt decrypts |len| bytes from |in| to |out| using the |
399 | // given IV and block cipher in CBC mode. If |len| is not a multiple of 128 |
400 | // bits then only that many bytes will be written, but a multiple of 128 bits |
401 | // is always read from |in|. The IV will be updated on return. |
402 | void CRYPTO_cbc128_decrypt(const uint8_t *in, uint8_t *out, size_t len, |
403 | const AES_KEY *key, uint8_t ivec[16], |
404 | block128_f block); |
405 | |
406 | |
407 | // OFB. |
408 | |
409 | // CRYPTO_ofb128_encrypt encrypts (or decrypts, it's the same with OFB mode) |
410 | // |len| bytes from |in| to |out| using |block| in OFB mode. There's no |
411 | // requirement that |len| be a multiple of any value and any partial blocks are |
412 | // stored in |ivec| and |*num|, the latter must be zero before the initial |
413 | // call. |
414 | void CRYPTO_ofb128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
415 | const AES_KEY *key, uint8_t ivec[16], unsigned *num, |
416 | block128_f block); |
417 | |
418 | |
419 | // CFB. |
420 | |
421 | // CRYPTO_cfb128_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes |
422 | // from |in| to |out| using |block| in CFB mode. There's no requirement that |
423 | // |len| be a multiple of any value and any partial blocks are stored in |ivec| |
424 | // and |*num|, the latter must be zero before the initial call. |
425 | void CRYPTO_cfb128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
426 | const AES_KEY *key, uint8_t ivec[16], unsigned *num, |
427 | int enc, block128_f block); |
428 | |
429 | // CRYPTO_cfb128_8_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes |
430 | // from |in| to |out| using |block| in CFB-8 mode. Prior to the first call |
431 | // |num| should be set to zero. |
432 | void CRYPTO_cfb128_8_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
433 | const AES_KEY *key, uint8_t ivec[16], |
434 | unsigned *num, int enc, block128_f block); |
435 | |
436 | // CRYPTO_cfb128_1_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes |
437 | // from |in| to |out| using |block| in CFB-1 mode. Prior to the first call |
438 | // |num| should be set to zero. |
439 | void CRYPTO_cfb128_1_encrypt(const uint8_t *in, uint8_t *out, size_t bits, |
440 | const AES_KEY *key, uint8_t ivec[16], |
441 | unsigned *num, int enc, block128_f block); |
442 | |
443 | size_t CRYPTO_cts128_encrypt_block(const uint8_t *in, uint8_t *out, size_t len, |
444 | const AES_KEY *key, uint8_t ivec[16], |
445 | block128_f block); |
446 | |
447 | |
448 | // POLYVAL. |
449 | // |
450 | // POLYVAL is a polynomial authenticator that operates over a field very |
451 | // similar to the one that GHASH uses. See |
452 | // https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02#section-3. |
453 | |
454 | typedef union { |
455 | uint64_t u[2]; |
456 | uint8_t c[16]; |
457 | } polyval_block; |
458 | |
459 | struct polyval_ctx { |
460 | // Note that the order of |S|, |H| and |Htable| is fixed by the MOVBE-based, |
461 | // x86-64, GHASH assembly. Additionally, some assembly routines require |
462 | // |Htable| to be 16-byte aligned. |
463 | polyval_block S; |
464 | u128 H; |
465 | alignas(16) u128 Htable[16]; |
466 | gmult_func gmult; |
467 | ghash_func ghash; |
468 | }; |
469 | |
470 | // CRYPTO_POLYVAL_init initialises |ctx| using |key|. |
471 | void CRYPTO_POLYVAL_init(struct polyval_ctx *ctx, const uint8_t key[16]); |
472 | |
473 | // CRYPTO_POLYVAL_update_blocks updates the accumulator in |ctx| given the |
474 | // blocks from |in|. Only a whole number of blocks can be processed so |in_len| |
475 | // must be a multiple of 16. |
476 | void CRYPTO_POLYVAL_update_blocks(struct polyval_ctx *ctx, const uint8_t *in, |
477 | size_t in_len); |
478 | |
479 | // CRYPTO_POLYVAL_finish writes the accumulator from |ctx| to |out|. |
480 | void CRYPTO_POLYVAL_finish(const struct polyval_ctx *ctx, uint8_t out[16]); |
481 | |
482 | |
483 | #if defined(__cplusplus) |
484 | } // extern C |
485 | #endif |
486 | |
487 | #endif // OPENSSL_HEADER_MODES_INTERNAL_H |
488 | |