1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
2 | * All rights reserved. |
3 | * |
4 | * This package is an SSL implementation written |
5 | * by Eric Young (eay@cryptsoft.com). |
6 | * The implementation was written so as to conform with Netscapes SSL. |
7 | * |
8 | * This library is free for commercial and non-commercial use as long as |
9 | * the following conditions are aheared to. The following conditions |
10 | * apply to all code found in this distribution, be it the RC4, RSA, |
11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
12 | * included with this distribution is covered by the same copyright terms |
13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
14 | * |
15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
16 | * the code are not to be removed. |
17 | * If this package is used in a product, Eric Young should be given attribution |
18 | * as the author of the parts of the library used. |
19 | * This can be in the form of a textual message at program startup or |
20 | * in documentation (online or textual) provided with the package. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 3. All advertising materials mentioning features or use of this software |
31 | * must display the following acknowledgement: |
32 | * "This product includes cryptographic software written by |
33 | * Eric Young (eay@cryptsoft.com)" |
34 | * The word 'cryptographic' can be left out if the rouines from the library |
35 | * being used are not cryptographic related :-). |
36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
37 | * the apps directory (application code) you must include an acknowledgement: |
38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
39 | * |
40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | * SUCH DAMAGE. |
51 | * |
52 | * The licence and distribution terms for any publically available version or |
53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
54 | * copied and put under another distribution licence |
55 | * [including the GNU Public Licence.] */ |
56 | |
57 | #include <openssl/sha.h> |
58 | |
59 | #include <string.h> |
60 | |
61 | #include <openssl/mem.h> |
62 | |
63 | #include "internal.h" |
64 | #include "../../internal.h" |
65 | |
66 | |
67 | int SHA224_Init(SHA256_CTX *sha) { |
68 | OPENSSL_memset(sha, 0, sizeof(SHA256_CTX)); |
69 | sha->h[0] = 0xc1059ed8UL; |
70 | sha->h[1] = 0x367cd507UL; |
71 | sha->h[2] = 0x3070dd17UL; |
72 | sha->h[3] = 0xf70e5939UL; |
73 | sha->h[4] = 0xffc00b31UL; |
74 | sha->h[5] = 0x68581511UL; |
75 | sha->h[6] = 0x64f98fa7UL; |
76 | sha->h[7] = 0xbefa4fa4UL; |
77 | sha->md_len = SHA224_DIGEST_LENGTH; |
78 | return 1; |
79 | } |
80 | |
81 | int SHA256_Init(SHA256_CTX *sha) { |
82 | OPENSSL_memset(sha, 0, sizeof(SHA256_CTX)); |
83 | sha->h[0] = 0x6a09e667UL; |
84 | sha->h[1] = 0xbb67ae85UL; |
85 | sha->h[2] = 0x3c6ef372UL; |
86 | sha->h[3] = 0xa54ff53aUL; |
87 | sha->h[4] = 0x510e527fUL; |
88 | sha->h[5] = 0x9b05688cUL; |
89 | sha->h[6] = 0x1f83d9abUL; |
90 | sha->h[7] = 0x5be0cd19UL; |
91 | sha->md_len = SHA256_DIGEST_LENGTH; |
92 | return 1; |
93 | } |
94 | |
95 | uint8_t *SHA224(const uint8_t *data, size_t len, |
96 | uint8_t out[SHA224_DIGEST_LENGTH]) { |
97 | SHA256_CTX ctx; |
98 | SHA224_Init(&ctx); |
99 | SHA224_Update(&ctx, data, len); |
100 | SHA224_Final(out, &ctx); |
101 | OPENSSL_cleanse(&ctx, sizeof(ctx)); |
102 | return out; |
103 | } |
104 | |
105 | uint8_t *SHA256(const uint8_t *data, size_t len, |
106 | uint8_t out[SHA256_DIGEST_LENGTH]) { |
107 | SHA256_CTX ctx; |
108 | SHA256_Init(&ctx); |
109 | SHA256_Update(&ctx, data, len); |
110 | SHA256_Final(out, &ctx); |
111 | OPENSSL_cleanse(&ctx, sizeof(ctx)); |
112 | return out; |
113 | } |
114 | |
115 | int SHA224_Update(SHA256_CTX *ctx, const void *data, size_t len) { |
116 | return SHA256_Update(ctx, data, len); |
117 | } |
118 | |
119 | int SHA224_Final(uint8_t out[SHA224_DIGEST_LENGTH], SHA256_CTX *ctx) { |
120 | // SHA224_Init sets |ctx->md_len| to |SHA224_DIGEST_LENGTH|, so this has a |
121 | // smaller output. |
122 | return SHA256_Final(out, ctx); |
123 | } |
124 | |
125 | #define DATA_ORDER_IS_BIG_ENDIAN |
126 | |
127 | #define HASH_CTX SHA256_CTX |
128 | #define HASH_CBLOCK 64 |
129 | #define HASH_DIGEST_LENGTH 32 |
130 | |
131 | // Note that FIPS180-2 discusses "Truncation of the Hash Function Output." |
132 | // default: case below covers for it. It's not clear however if it's permitted |
133 | // to truncate to amount of bytes not divisible by 4. I bet not, but if it is, |
134 | // then default: case shall be extended. For reference. Idea behind separate |
135 | // cases for pre-defined lenghts is to let the compiler decide if it's |
136 | // appropriate to unroll small loops. |
137 | // |
138 | // TODO(davidben): The small |md_len| case is one of the few places a low-level |
139 | // hash 'final' function can fail. This should never happen. |
140 | #define HASH_MAKE_STRING(c, s) \ |
141 | do { \ |
142 | uint32_t ll; \ |
143 | unsigned int nn; \ |
144 | switch ((c)->md_len) { \ |
145 | case SHA224_DIGEST_LENGTH: \ |
146 | for (nn = 0; nn < SHA224_DIGEST_LENGTH / 4; nn++) { \ |
147 | ll = (c)->h[nn]; \ |
148 | HOST_l2c(ll, (s)); \ |
149 | } \ |
150 | break; \ |
151 | case SHA256_DIGEST_LENGTH: \ |
152 | for (nn = 0; nn < SHA256_DIGEST_LENGTH / 4; nn++) { \ |
153 | ll = (c)->h[nn]; \ |
154 | HOST_l2c(ll, (s)); \ |
155 | } \ |
156 | break; \ |
157 | default: \ |
158 | if ((c)->md_len > SHA256_DIGEST_LENGTH) { \ |
159 | return 0; \ |
160 | } \ |
161 | for (nn = 0; nn < (c)->md_len / 4; nn++) { \ |
162 | ll = (c)->h[nn]; \ |
163 | HOST_l2c(ll, (s)); \ |
164 | } \ |
165 | break; \ |
166 | } \ |
167 | } while (0) |
168 | |
169 | |
170 | #define HASH_UPDATE SHA256_Update |
171 | #define HASH_TRANSFORM SHA256_Transform |
172 | #define HASH_FINAL SHA256_Final |
173 | #define HASH_BLOCK_DATA_ORDER sha256_block_data_order |
174 | #ifndef SHA256_ASM |
175 | static void sha256_block_data_order(uint32_t *state, const uint8_t *in, |
176 | size_t num); |
177 | #endif |
178 | |
179 | #include "../digest/md32_common.h" |
180 | |
181 | #ifndef SHA256_ASM |
182 | static const uint32_t K256[64] = { |
183 | 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, |
184 | 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, |
185 | 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, |
186 | 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, |
187 | 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, |
188 | 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, |
189 | 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, |
190 | 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, |
191 | 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, |
192 | 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, |
193 | 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, |
194 | 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, |
195 | 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL}; |
196 | |
197 | #define ROTATE(a, n) (((a) << (n)) | ((a) >> (32 - (n)))) |
198 | |
199 | // FIPS specification refers to right rotations, while our ROTATE macro |
200 | // is left one. This is why you might notice that rotation coefficients |
201 | // differ from those observed in FIPS document by 32-N... |
202 | #define Sigma0(x) (ROTATE((x), 30) ^ ROTATE((x), 19) ^ ROTATE((x), 10)) |
203 | #define Sigma1(x) (ROTATE((x), 26) ^ ROTATE((x), 21) ^ ROTATE((x), 7)) |
204 | #define sigma0(x) (ROTATE((x), 25) ^ ROTATE((x), 14) ^ ((x) >> 3)) |
205 | #define sigma1(x) (ROTATE((x), 15) ^ ROTATE((x), 13) ^ ((x) >> 10)) |
206 | |
207 | #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z))) |
208 | #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
209 | |
210 | #define ROUND_00_15(i, a, b, c, d, e, f, g, h) \ |
211 | do { \ |
212 | T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i]; \ |
213 | h = Sigma0(a) + Maj(a, b, c); \ |
214 | d += T1; \ |
215 | h += T1; \ |
216 | } while (0) |
217 | |
218 | #define ROUND_16_63(i, a, b, c, d, e, f, g, h, X) \ |
219 | do { \ |
220 | s0 = X[(i + 1) & 0x0f]; \ |
221 | s0 = sigma0(s0); \ |
222 | s1 = X[(i + 14) & 0x0f]; \ |
223 | s1 = sigma1(s1); \ |
224 | T1 = X[(i) & 0x0f] += s0 + s1 + X[(i + 9) & 0x0f]; \ |
225 | ROUND_00_15(i, a, b, c, d, e, f, g, h); \ |
226 | } while (0) |
227 | |
228 | static void sha256_block_data_order(uint32_t *state, const uint8_t *data, |
229 | size_t num) { |
230 | uint32_t a, b, c, d, e, f, g, h, s0, s1, T1; |
231 | uint32_t X[16]; |
232 | int i; |
233 | |
234 | while (num--) { |
235 | a = state[0]; |
236 | b = state[1]; |
237 | c = state[2]; |
238 | d = state[3]; |
239 | e = state[4]; |
240 | f = state[5]; |
241 | g = state[6]; |
242 | h = state[7]; |
243 | |
244 | uint32_t l; |
245 | |
246 | HOST_c2l(data, l); |
247 | T1 = X[0] = l; |
248 | ROUND_00_15(0, a, b, c, d, e, f, g, h); |
249 | HOST_c2l(data, l); |
250 | T1 = X[1] = l; |
251 | ROUND_00_15(1, h, a, b, c, d, e, f, g); |
252 | HOST_c2l(data, l); |
253 | T1 = X[2] = l; |
254 | ROUND_00_15(2, g, h, a, b, c, d, e, f); |
255 | HOST_c2l(data, l); |
256 | T1 = X[3] = l; |
257 | ROUND_00_15(3, f, g, h, a, b, c, d, e); |
258 | HOST_c2l(data, l); |
259 | T1 = X[4] = l; |
260 | ROUND_00_15(4, e, f, g, h, a, b, c, d); |
261 | HOST_c2l(data, l); |
262 | T1 = X[5] = l; |
263 | ROUND_00_15(5, d, e, f, g, h, a, b, c); |
264 | HOST_c2l(data, l); |
265 | T1 = X[6] = l; |
266 | ROUND_00_15(6, c, d, e, f, g, h, a, b); |
267 | HOST_c2l(data, l); |
268 | T1 = X[7] = l; |
269 | ROUND_00_15(7, b, c, d, e, f, g, h, a); |
270 | HOST_c2l(data, l); |
271 | T1 = X[8] = l; |
272 | ROUND_00_15(8, a, b, c, d, e, f, g, h); |
273 | HOST_c2l(data, l); |
274 | T1 = X[9] = l; |
275 | ROUND_00_15(9, h, a, b, c, d, e, f, g); |
276 | HOST_c2l(data, l); |
277 | T1 = X[10] = l; |
278 | ROUND_00_15(10, g, h, a, b, c, d, e, f); |
279 | HOST_c2l(data, l); |
280 | T1 = X[11] = l; |
281 | ROUND_00_15(11, f, g, h, a, b, c, d, e); |
282 | HOST_c2l(data, l); |
283 | T1 = X[12] = l; |
284 | ROUND_00_15(12, e, f, g, h, a, b, c, d); |
285 | HOST_c2l(data, l); |
286 | T1 = X[13] = l; |
287 | ROUND_00_15(13, d, e, f, g, h, a, b, c); |
288 | HOST_c2l(data, l); |
289 | T1 = X[14] = l; |
290 | ROUND_00_15(14, c, d, e, f, g, h, a, b); |
291 | HOST_c2l(data, l); |
292 | T1 = X[15] = l; |
293 | ROUND_00_15(15, b, c, d, e, f, g, h, a); |
294 | |
295 | for (i = 16; i < 64; i += 8) { |
296 | ROUND_16_63(i + 0, a, b, c, d, e, f, g, h, X); |
297 | ROUND_16_63(i + 1, h, a, b, c, d, e, f, g, X); |
298 | ROUND_16_63(i + 2, g, h, a, b, c, d, e, f, X); |
299 | ROUND_16_63(i + 3, f, g, h, a, b, c, d, e, X); |
300 | ROUND_16_63(i + 4, e, f, g, h, a, b, c, d, X); |
301 | ROUND_16_63(i + 5, d, e, f, g, h, a, b, c, X); |
302 | ROUND_16_63(i + 6, c, d, e, f, g, h, a, b, X); |
303 | ROUND_16_63(i + 7, b, c, d, e, f, g, h, a, X); |
304 | } |
305 | |
306 | state[0] += a; |
307 | state[1] += b; |
308 | state[2] += c; |
309 | state[3] += d; |
310 | state[4] += e; |
311 | state[5] += f; |
312 | state[6] += g; |
313 | state[7] += h; |
314 | } |
315 | } |
316 | |
317 | #endif // !SHA256_ASM |
318 | |
319 | void SHA256_TransformBlocks(uint32_t state[8], const uint8_t *data, |
320 | size_t num_blocks) { |
321 | sha256_block_data_order(state, data, num_blocks); |
322 | } |
323 | |
324 | #undef DATA_ORDER_IS_BIG_ENDIAN |
325 | #undef HASH_CTX |
326 | #undef HASH_CBLOCK |
327 | #undef HASH_DIGEST_LENGTH |
328 | #undef HASH_MAKE_STRING |
329 | #undef HASH_UPDATE |
330 | #undef HASH_TRANSFORM |
331 | #undef HASH_FINAL |
332 | #undef HASH_BLOCK_DATA_ORDER |
333 | #undef ROTATE |
334 | #undef Sigma0 |
335 | #undef Sigma1 |
336 | #undef sigma0 |
337 | #undef sigma1 |
338 | #undef Ch |
339 | #undef Maj |
340 | #undef ROUND_00_15 |
341 | #undef ROUND_16_63 |
342 | #undef HOST_c2l |
343 | #undef HOST_l2c |
344 | |