| 1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 2 | * All rights reserved. |
| 3 | * |
| 4 | * This package is an SSL implementation written |
| 5 | * by Eric Young (eay@cryptsoft.com). |
| 6 | * The implementation was written so as to conform with Netscapes SSL. |
| 7 | * |
| 8 | * This library is free for commercial and non-commercial use as long as |
| 9 | * the following conditions are aheared to. The following conditions |
| 10 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 12 | * included with this distribution is covered by the same copyright terms |
| 13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 14 | * |
| 15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 16 | * the code are not to be removed. |
| 17 | * If this package is used in a product, Eric Young should be given attribution |
| 18 | * as the author of the parts of the library used. |
| 19 | * This can be in the form of a textual message at program startup or |
| 20 | * in documentation (online or textual) provided with the package. |
| 21 | * |
| 22 | * Redistribution and use in source and binary forms, with or without |
| 23 | * modification, are permitted provided that the following conditions |
| 24 | * are met: |
| 25 | * 1. Redistributions of source code must retain the copyright |
| 26 | * notice, this list of conditions and the following disclaimer. |
| 27 | * 2. Redistributions in binary form must reproduce the above copyright |
| 28 | * notice, this list of conditions and the following disclaimer in the |
| 29 | * documentation and/or other materials provided with the distribution. |
| 30 | * 3. All advertising materials mentioning features or use of this software |
| 31 | * must display the following acknowledgement: |
| 32 | * "This product includes cryptographic software written by |
| 33 | * Eric Young (eay@cryptsoft.com)" |
| 34 | * The word 'cryptographic' can be left out if the rouines from the library |
| 35 | * being used are not cryptographic related :-). |
| 36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 37 | * the apps directory (application code) you must include an acknowledgement: |
| 38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 39 | * |
| 40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 50 | * SUCH DAMAGE. |
| 51 | * |
| 52 | * The licence and distribution terms for any publically available version or |
| 53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 54 | * copied and put under another distribution licence |
| 55 | * [including the GNU Public Licence.] */ |
| 56 | |
| 57 | #include <openssl/sha.h> |
| 58 | |
| 59 | #include <string.h> |
| 60 | |
| 61 | #include <openssl/mem.h> |
| 62 | |
| 63 | #include "internal.h" |
| 64 | #include "../../internal.h" |
| 65 | |
| 66 | |
| 67 | int SHA224_Init(SHA256_CTX *sha) { |
| 68 | OPENSSL_memset(sha, 0, sizeof(SHA256_CTX)); |
| 69 | sha->h[0] = 0xc1059ed8UL; |
| 70 | sha->h[1] = 0x367cd507UL; |
| 71 | sha->h[2] = 0x3070dd17UL; |
| 72 | sha->h[3] = 0xf70e5939UL; |
| 73 | sha->h[4] = 0xffc00b31UL; |
| 74 | sha->h[5] = 0x68581511UL; |
| 75 | sha->h[6] = 0x64f98fa7UL; |
| 76 | sha->h[7] = 0xbefa4fa4UL; |
| 77 | sha->md_len = SHA224_DIGEST_LENGTH; |
| 78 | return 1; |
| 79 | } |
| 80 | |
| 81 | int SHA256_Init(SHA256_CTX *sha) { |
| 82 | OPENSSL_memset(sha, 0, sizeof(SHA256_CTX)); |
| 83 | sha->h[0] = 0x6a09e667UL; |
| 84 | sha->h[1] = 0xbb67ae85UL; |
| 85 | sha->h[2] = 0x3c6ef372UL; |
| 86 | sha->h[3] = 0xa54ff53aUL; |
| 87 | sha->h[4] = 0x510e527fUL; |
| 88 | sha->h[5] = 0x9b05688cUL; |
| 89 | sha->h[6] = 0x1f83d9abUL; |
| 90 | sha->h[7] = 0x5be0cd19UL; |
| 91 | sha->md_len = SHA256_DIGEST_LENGTH; |
| 92 | return 1; |
| 93 | } |
| 94 | |
| 95 | uint8_t *SHA224(const uint8_t *data, size_t len, |
| 96 | uint8_t out[SHA224_DIGEST_LENGTH]) { |
| 97 | SHA256_CTX ctx; |
| 98 | SHA224_Init(&ctx); |
| 99 | SHA224_Update(&ctx, data, len); |
| 100 | SHA224_Final(out, &ctx); |
| 101 | OPENSSL_cleanse(&ctx, sizeof(ctx)); |
| 102 | return out; |
| 103 | } |
| 104 | |
| 105 | uint8_t *SHA256(const uint8_t *data, size_t len, |
| 106 | uint8_t out[SHA256_DIGEST_LENGTH]) { |
| 107 | SHA256_CTX ctx; |
| 108 | SHA256_Init(&ctx); |
| 109 | SHA256_Update(&ctx, data, len); |
| 110 | SHA256_Final(out, &ctx); |
| 111 | OPENSSL_cleanse(&ctx, sizeof(ctx)); |
| 112 | return out; |
| 113 | } |
| 114 | |
| 115 | int SHA224_Update(SHA256_CTX *ctx, const void *data, size_t len) { |
| 116 | return SHA256_Update(ctx, data, len); |
| 117 | } |
| 118 | |
| 119 | int SHA224_Final(uint8_t out[SHA224_DIGEST_LENGTH], SHA256_CTX *ctx) { |
| 120 | // SHA224_Init sets |ctx->md_len| to |SHA224_DIGEST_LENGTH|, so this has a |
| 121 | // smaller output. |
| 122 | return SHA256_Final(out, ctx); |
| 123 | } |
| 124 | |
| 125 | #define DATA_ORDER_IS_BIG_ENDIAN |
| 126 | |
| 127 | #define HASH_CTX SHA256_CTX |
| 128 | #define HASH_CBLOCK 64 |
| 129 | #define HASH_DIGEST_LENGTH 32 |
| 130 | |
| 131 | // Note that FIPS180-2 discusses "Truncation of the Hash Function Output." |
| 132 | // default: case below covers for it. It's not clear however if it's permitted |
| 133 | // to truncate to amount of bytes not divisible by 4. I bet not, but if it is, |
| 134 | // then default: case shall be extended. For reference. Idea behind separate |
| 135 | // cases for pre-defined lenghts is to let the compiler decide if it's |
| 136 | // appropriate to unroll small loops. |
| 137 | // |
| 138 | // TODO(davidben): The small |md_len| case is one of the few places a low-level |
| 139 | // hash 'final' function can fail. This should never happen. |
| 140 | #define HASH_MAKE_STRING(c, s) \ |
| 141 | do { \ |
| 142 | uint32_t ll; \ |
| 143 | unsigned int nn; \ |
| 144 | switch ((c)->md_len) { \ |
| 145 | case SHA224_DIGEST_LENGTH: \ |
| 146 | for (nn = 0; nn < SHA224_DIGEST_LENGTH / 4; nn++) { \ |
| 147 | ll = (c)->h[nn]; \ |
| 148 | HOST_l2c(ll, (s)); \ |
| 149 | } \ |
| 150 | break; \ |
| 151 | case SHA256_DIGEST_LENGTH: \ |
| 152 | for (nn = 0; nn < SHA256_DIGEST_LENGTH / 4; nn++) { \ |
| 153 | ll = (c)->h[nn]; \ |
| 154 | HOST_l2c(ll, (s)); \ |
| 155 | } \ |
| 156 | break; \ |
| 157 | default: \ |
| 158 | if ((c)->md_len > SHA256_DIGEST_LENGTH) { \ |
| 159 | return 0; \ |
| 160 | } \ |
| 161 | for (nn = 0; nn < (c)->md_len / 4; nn++) { \ |
| 162 | ll = (c)->h[nn]; \ |
| 163 | HOST_l2c(ll, (s)); \ |
| 164 | } \ |
| 165 | break; \ |
| 166 | } \ |
| 167 | } while (0) |
| 168 | |
| 169 | |
| 170 | #define HASH_UPDATE SHA256_Update |
| 171 | #define HASH_TRANSFORM SHA256_Transform |
| 172 | #define HASH_FINAL SHA256_Final |
| 173 | #define HASH_BLOCK_DATA_ORDER sha256_block_data_order |
| 174 | #ifndef SHA256_ASM |
| 175 | static void sha256_block_data_order(uint32_t *state, const uint8_t *in, |
| 176 | size_t num); |
| 177 | #endif |
| 178 | |
| 179 | #include "../digest/md32_common.h" |
| 180 | |
| 181 | #ifndef SHA256_ASM |
| 182 | static const uint32_t K256[64] = { |
| 183 | 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, |
| 184 | 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, |
| 185 | 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, |
| 186 | 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, |
| 187 | 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, |
| 188 | 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, |
| 189 | 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, |
| 190 | 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, |
| 191 | 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, |
| 192 | 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, |
| 193 | 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, |
| 194 | 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, |
| 195 | 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL}; |
| 196 | |
| 197 | #define ROTATE(a, n) (((a) << (n)) | ((a) >> (32 - (n)))) |
| 198 | |
| 199 | // FIPS specification refers to right rotations, while our ROTATE macro |
| 200 | // is left one. This is why you might notice that rotation coefficients |
| 201 | // differ from those observed in FIPS document by 32-N... |
| 202 | #define Sigma0(x) (ROTATE((x), 30) ^ ROTATE((x), 19) ^ ROTATE((x), 10)) |
| 203 | #define Sigma1(x) (ROTATE((x), 26) ^ ROTATE((x), 21) ^ ROTATE((x), 7)) |
| 204 | #define sigma0(x) (ROTATE((x), 25) ^ ROTATE((x), 14) ^ ((x) >> 3)) |
| 205 | #define sigma1(x) (ROTATE((x), 15) ^ ROTATE((x), 13) ^ ((x) >> 10)) |
| 206 | |
| 207 | #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z))) |
| 208 | #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
| 209 | |
| 210 | #define ROUND_00_15(i, a, b, c, d, e, f, g, h) \ |
| 211 | do { \ |
| 212 | T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i]; \ |
| 213 | h = Sigma0(a) + Maj(a, b, c); \ |
| 214 | d += T1; \ |
| 215 | h += T1; \ |
| 216 | } while (0) |
| 217 | |
| 218 | #define ROUND_16_63(i, a, b, c, d, e, f, g, h, X) \ |
| 219 | do { \ |
| 220 | s0 = X[(i + 1) & 0x0f]; \ |
| 221 | s0 = sigma0(s0); \ |
| 222 | s1 = X[(i + 14) & 0x0f]; \ |
| 223 | s1 = sigma1(s1); \ |
| 224 | T1 = X[(i) & 0x0f] += s0 + s1 + X[(i + 9) & 0x0f]; \ |
| 225 | ROUND_00_15(i, a, b, c, d, e, f, g, h); \ |
| 226 | } while (0) |
| 227 | |
| 228 | static void sha256_block_data_order(uint32_t *state, const uint8_t *data, |
| 229 | size_t num) { |
| 230 | uint32_t a, b, c, d, e, f, g, h, s0, s1, T1; |
| 231 | uint32_t X[16]; |
| 232 | int i; |
| 233 | |
| 234 | while (num--) { |
| 235 | a = state[0]; |
| 236 | b = state[1]; |
| 237 | c = state[2]; |
| 238 | d = state[3]; |
| 239 | e = state[4]; |
| 240 | f = state[5]; |
| 241 | g = state[6]; |
| 242 | h = state[7]; |
| 243 | |
| 244 | uint32_t l; |
| 245 | |
| 246 | HOST_c2l(data, l); |
| 247 | T1 = X[0] = l; |
| 248 | ROUND_00_15(0, a, b, c, d, e, f, g, h); |
| 249 | HOST_c2l(data, l); |
| 250 | T1 = X[1] = l; |
| 251 | ROUND_00_15(1, h, a, b, c, d, e, f, g); |
| 252 | HOST_c2l(data, l); |
| 253 | T1 = X[2] = l; |
| 254 | ROUND_00_15(2, g, h, a, b, c, d, e, f); |
| 255 | HOST_c2l(data, l); |
| 256 | T1 = X[3] = l; |
| 257 | ROUND_00_15(3, f, g, h, a, b, c, d, e); |
| 258 | HOST_c2l(data, l); |
| 259 | T1 = X[4] = l; |
| 260 | ROUND_00_15(4, e, f, g, h, a, b, c, d); |
| 261 | HOST_c2l(data, l); |
| 262 | T1 = X[5] = l; |
| 263 | ROUND_00_15(5, d, e, f, g, h, a, b, c); |
| 264 | HOST_c2l(data, l); |
| 265 | T1 = X[6] = l; |
| 266 | ROUND_00_15(6, c, d, e, f, g, h, a, b); |
| 267 | HOST_c2l(data, l); |
| 268 | T1 = X[7] = l; |
| 269 | ROUND_00_15(7, b, c, d, e, f, g, h, a); |
| 270 | HOST_c2l(data, l); |
| 271 | T1 = X[8] = l; |
| 272 | ROUND_00_15(8, a, b, c, d, e, f, g, h); |
| 273 | HOST_c2l(data, l); |
| 274 | T1 = X[9] = l; |
| 275 | ROUND_00_15(9, h, a, b, c, d, e, f, g); |
| 276 | HOST_c2l(data, l); |
| 277 | T1 = X[10] = l; |
| 278 | ROUND_00_15(10, g, h, a, b, c, d, e, f); |
| 279 | HOST_c2l(data, l); |
| 280 | T1 = X[11] = l; |
| 281 | ROUND_00_15(11, f, g, h, a, b, c, d, e); |
| 282 | HOST_c2l(data, l); |
| 283 | T1 = X[12] = l; |
| 284 | ROUND_00_15(12, e, f, g, h, a, b, c, d); |
| 285 | HOST_c2l(data, l); |
| 286 | T1 = X[13] = l; |
| 287 | ROUND_00_15(13, d, e, f, g, h, a, b, c); |
| 288 | HOST_c2l(data, l); |
| 289 | T1 = X[14] = l; |
| 290 | ROUND_00_15(14, c, d, e, f, g, h, a, b); |
| 291 | HOST_c2l(data, l); |
| 292 | T1 = X[15] = l; |
| 293 | ROUND_00_15(15, b, c, d, e, f, g, h, a); |
| 294 | |
| 295 | for (i = 16; i < 64; i += 8) { |
| 296 | ROUND_16_63(i + 0, a, b, c, d, e, f, g, h, X); |
| 297 | ROUND_16_63(i + 1, h, a, b, c, d, e, f, g, X); |
| 298 | ROUND_16_63(i + 2, g, h, a, b, c, d, e, f, X); |
| 299 | ROUND_16_63(i + 3, f, g, h, a, b, c, d, e, X); |
| 300 | ROUND_16_63(i + 4, e, f, g, h, a, b, c, d, X); |
| 301 | ROUND_16_63(i + 5, d, e, f, g, h, a, b, c, X); |
| 302 | ROUND_16_63(i + 6, c, d, e, f, g, h, a, b, X); |
| 303 | ROUND_16_63(i + 7, b, c, d, e, f, g, h, a, X); |
| 304 | } |
| 305 | |
| 306 | state[0] += a; |
| 307 | state[1] += b; |
| 308 | state[2] += c; |
| 309 | state[3] += d; |
| 310 | state[4] += e; |
| 311 | state[5] += f; |
| 312 | state[6] += g; |
| 313 | state[7] += h; |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | #endif // !SHA256_ASM |
| 318 | |
| 319 | void SHA256_TransformBlocks(uint32_t state[8], const uint8_t *data, |
| 320 | size_t num_blocks) { |
| 321 | sha256_block_data_order(state, data, num_blocks); |
| 322 | } |
| 323 | |
| 324 | #undef DATA_ORDER_IS_BIG_ENDIAN |
| 325 | #undef HASH_CTX |
| 326 | #undef HASH_CBLOCK |
| 327 | #undef HASH_DIGEST_LENGTH |
| 328 | #undef HASH_MAKE_STRING |
| 329 | #undef HASH_UPDATE |
| 330 | #undef HASH_TRANSFORM |
| 331 | #undef HASH_FINAL |
| 332 | #undef HASH_BLOCK_DATA_ORDER |
| 333 | #undef ROTATE |
| 334 | #undef Sigma0 |
| 335 | #undef Sigma1 |
| 336 | #undef sigma0 |
| 337 | #undef sigma1 |
| 338 | #undef Ch |
| 339 | #undef Maj |
| 340 | #undef ROUND_00_15 |
| 341 | #undef ROUND_16_63 |
| 342 | #undef HOST_c2l |
| 343 | #undef HOST_l2c |
| 344 | |