1/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57#include <openssl/sha.h>
58
59#include <string.h>
60
61#include <openssl/mem.h>
62
63#include "internal.h"
64#include "../../internal.h"
65
66
67// The 32-bit hash algorithms share a common byte-order neutral collector and
68// padding function implementations that operate on unaligned data,
69// ../digest/md32_common.h. SHA-512 is the only 64-bit hash algorithm, as of
70// this writing, so there is no need for a common collector/padding
71// implementation yet.
72
73int SHA384_Init(SHA512_CTX *sha) {
74 sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8);
75 sha->h[1] = UINT64_C(0x629a292a367cd507);
76 sha->h[2] = UINT64_C(0x9159015a3070dd17);
77 sha->h[3] = UINT64_C(0x152fecd8f70e5939);
78 sha->h[4] = UINT64_C(0x67332667ffc00b31);
79 sha->h[5] = UINT64_C(0x8eb44a8768581511);
80 sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7);
81 sha->h[7] = UINT64_C(0x47b5481dbefa4fa4);
82
83 sha->Nl = 0;
84 sha->Nh = 0;
85 sha->num = 0;
86 sha->md_len = SHA384_DIGEST_LENGTH;
87 return 1;
88}
89
90
91int SHA512_Init(SHA512_CTX *sha) {
92 sha->h[0] = UINT64_C(0x6a09e667f3bcc908);
93 sha->h[1] = UINT64_C(0xbb67ae8584caa73b);
94 sha->h[2] = UINT64_C(0x3c6ef372fe94f82b);
95 sha->h[3] = UINT64_C(0xa54ff53a5f1d36f1);
96 sha->h[4] = UINT64_C(0x510e527fade682d1);
97 sha->h[5] = UINT64_C(0x9b05688c2b3e6c1f);
98 sha->h[6] = UINT64_C(0x1f83d9abfb41bd6b);
99 sha->h[7] = UINT64_C(0x5be0cd19137e2179);
100
101 sha->Nl = 0;
102 sha->Nh = 0;
103 sha->num = 0;
104 sha->md_len = SHA512_DIGEST_LENGTH;
105 return 1;
106}
107
108uint8_t *SHA384(const uint8_t *data, size_t len,
109 uint8_t out[SHA384_DIGEST_LENGTH]) {
110 SHA512_CTX ctx;
111 SHA384_Init(&ctx);
112 SHA384_Update(&ctx, data, len);
113 SHA384_Final(out, &ctx);
114 OPENSSL_cleanse(&ctx, sizeof(ctx));
115 return out;
116}
117
118uint8_t *SHA512(const uint8_t *data, size_t len,
119 uint8_t out[SHA512_DIGEST_LENGTH]) {
120 SHA512_CTX ctx;
121 SHA512_Init(&ctx);
122 SHA512_Update(&ctx, data, len);
123 SHA512_Final(out, &ctx);
124 OPENSSL_cleanse(&ctx, sizeof(ctx));
125 return out;
126}
127
128#if !defined(SHA512_ASM)
129static void sha512_block_data_order(uint64_t *state, const uint8_t *in,
130 size_t num_blocks);
131#endif
132
133
134int SHA384_Final(uint8_t out[SHA384_DIGEST_LENGTH], SHA512_CTX *sha) {
135 // |SHA384_Init| sets |sha->md_len| to |SHA384_DIGEST_LENGTH|, so this has a
136 // |smaller output.
137 return SHA512_Final(out, sha);
138}
139
140int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) {
141 return SHA512_Update(sha, data, len);
142}
143
144void SHA512_Transform(SHA512_CTX *c, const uint8_t block[SHA512_CBLOCK]) {
145 sha512_block_data_order(c->h, block, 1);
146}
147
148int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) {
149 uint64_t l;
150 uint8_t *p = c->p;
151 const uint8_t *data = in_data;
152
153 if (len == 0) {
154 return 1;
155 }
156
157 l = (c->Nl + (((uint64_t)len) << 3)) & UINT64_C(0xffffffffffffffff);
158 if (l < c->Nl) {
159 c->Nh++;
160 }
161 if (sizeof(len) >= 8) {
162 c->Nh += (((uint64_t)len) >> 61);
163 }
164 c->Nl = l;
165
166 if (c->num != 0) {
167 size_t n = sizeof(c->p) - c->num;
168
169 if (len < n) {
170 OPENSSL_memcpy(p + c->num, data, len);
171 c->num += (unsigned int)len;
172 return 1;
173 } else {
174 OPENSSL_memcpy(p + c->num, data, n), c->num = 0;
175 len -= n;
176 data += n;
177 sha512_block_data_order(c->h, p, 1);
178 }
179 }
180
181 if (len >= sizeof(c->p)) {
182 sha512_block_data_order(c->h, data, len / sizeof(c->p));
183 data += len;
184 len %= sizeof(c->p);
185 data -= len;
186 }
187
188 if (len != 0) {
189 OPENSSL_memcpy(p, data, len);
190 c->num = (int)len;
191 }
192
193 return 1;
194}
195
196int SHA512_Final(uint8_t out[SHA512_DIGEST_LENGTH], SHA512_CTX *sha) {
197 uint8_t *p = sha->p;
198 size_t n = sha->num;
199
200 p[n] = 0x80; // There always is a room for one
201 n++;
202 if (n > (sizeof(sha->p) - 16)) {
203 OPENSSL_memset(p + n, 0, sizeof(sha->p) - n);
204 n = 0;
205 sha512_block_data_order(sha->h, p, 1);
206 }
207
208 OPENSSL_memset(p + n, 0, sizeof(sha->p) - 16 - n);
209 p[sizeof(sha->p) - 1] = (uint8_t)(sha->Nl);
210 p[sizeof(sha->p) - 2] = (uint8_t)(sha->Nl >> 8);
211 p[sizeof(sha->p) - 3] = (uint8_t)(sha->Nl >> 16);
212 p[sizeof(sha->p) - 4] = (uint8_t)(sha->Nl >> 24);
213 p[sizeof(sha->p) - 5] = (uint8_t)(sha->Nl >> 32);
214 p[sizeof(sha->p) - 6] = (uint8_t)(sha->Nl >> 40);
215 p[sizeof(sha->p) - 7] = (uint8_t)(sha->Nl >> 48);
216 p[sizeof(sha->p) - 8] = (uint8_t)(sha->Nl >> 56);
217 p[sizeof(sha->p) - 9] = (uint8_t)(sha->Nh);
218 p[sizeof(sha->p) - 10] = (uint8_t)(sha->Nh >> 8);
219 p[sizeof(sha->p) - 11] = (uint8_t)(sha->Nh >> 16);
220 p[sizeof(sha->p) - 12] = (uint8_t)(sha->Nh >> 24);
221 p[sizeof(sha->p) - 13] = (uint8_t)(sha->Nh >> 32);
222 p[sizeof(sha->p) - 14] = (uint8_t)(sha->Nh >> 40);
223 p[sizeof(sha->p) - 15] = (uint8_t)(sha->Nh >> 48);
224 p[sizeof(sha->p) - 16] = (uint8_t)(sha->Nh >> 56);
225
226 sha512_block_data_order(sha->h, p, 1);
227
228 if (out == NULL) {
229 // TODO(davidben): This NULL check is absent in other low-level hash 'final'
230 // functions and is one of the few places one can fail.
231 return 0;
232 }
233
234 switch (sha->md_len) {
235 // Let compiler decide if it's appropriate to unroll...
236 case SHA384_DIGEST_LENGTH:
237 for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) {
238 uint64_t t = sha->h[n];
239
240 *(out++) = (uint8_t)(t >> 56);
241 *(out++) = (uint8_t)(t >> 48);
242 *(out++) = (uint8_t)(t >> 40);
243 *(out++) = (uint8_t)(t >> 32);
244 *(out++) = (uint8_t)(t >> 24);
245 *(out++) = (uint8_t)(t >> 16);
246 *(out++) = (uint8_t)(t >> 8);
247 *(out++) = (uint8_t)(t);
248 }
249 break;
250 case SHA512_DIGEST_LENGTH:
251 for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) {
252 uint64_t t = sha->h[n];
253
254 *(out++) = (uint8_t)(t >> 56);
255 *(out++) = (uint8_t)(t >> 48);
256 *(out++) = (uint8_t)(t >> 40);
257 *(out++) = (uint8_t)(t >> 32);
258 *(out++) = (uint8_t)(t >> 24);
259 *(out++) = (uint8_t)(t >> 16);
260 *(out++) = (uint8_t)(t >> 8);
261 *(out++) = (uint8_t)(t);
262 }
263 break;
264 // ... as well as make sure md_len is not abused.
265 default:
266 // TODO(davidben): This bad |md_len| case is one of the few places a
267 // low-level hash 'final' function can fail. This should never happen.
268 return 0;
269 }
270
271 return 1;
272}
273
274#ifndef SHA512_ASM
275static const uint64_t K512[80] = {
276 UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
277 UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
278 UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
279 UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
280 UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
281 UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
282 UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
283 UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
284 UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
285 UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
286 UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
287 UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
288 UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
289 UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
290 UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
291 UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
292 UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
293 UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
294 UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
295 UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
296 UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
297 UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
298 UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
299 UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
300 UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
301 UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
302 UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
303 UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
304 UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
305 UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
306 UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
307 UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
308 UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
309 UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
310 UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
311 UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
312 UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
313 UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
314 UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
315 UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817),
316};
317
318#if defined(__GNUC__) && __GNUC__ >= 2 && !defined(OPENSSL_NO_ASM)
319#if defined(__x86_64) || defined(__x86_64__)
320#define ROTR(a, n) \
321 ({ \
322 uint64_t ret; \
323 __asm__("rorq %1, %0" : "=r"(ret) : "J"(n), "0"(a) : "cc"); \
324 ret; \
325 })
326#elif(defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
327#define ROTR(a, n) \
328 ({ \
329 uint64_t ret; \
330 __asm__("rotrdi %0, %1, %2" : "=r"(ret) : "r"(a), "K"(n)); \
331 ret; \
332 })
333#elif defined(__aarch64__)
334#define ROTR(a, n) \
335 ({ \
336 uint64_t ret; \
337 __asm__("ror %0, %1, %2" : "=r"(ret) : "r"(a), "I"(n)); \
338 ret; \
339 })
340#endif
341#elif defined(_MSC_VER) && defined(_WIN64)
342#pragma intrinsic(_rotr64)
343#define ROTR(a, n) _rotr64((a), n)
344#endif
345
346#ifndef ROTR
347#define ROTR(x, s) (((x) >> s) | (x) << (64 - s))
348#endif
349
350static inline uint64_t load_u64_be(const void *ptr) {
351 uint64_t ret;
352 OPENSSL_memcpy(&ret, ptr, sizeof(ret));
353 return CRYPTO_bswap8(ret);
354}
355
356#define Sigma0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
357#define Sigma1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
358#define sigma0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ ((x) >> 7))
359#define sigma1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ ((x) >> 6))
360
361#define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
362#define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
363
364
365#if defined(__i386) || defined(__i386__) || defined(_M_IX86)
366// This code should give better results on 32-bit CPU with less than
367// ~24 registers, both size and performance wise...
368static void sha512_block_data_order(uint64_t *state, const uint8_t *in,
369 size_t num) {
370 uint64_t A, E, T;
371 uint64_t X[9 + 80], *F;
372 int i;
373
374 while (num--) {
375 F = X + 80;
376 A = state[0];
377 F[1] = state[1];
378 F[2] = state[2];
379 F[3] = state[3];
380 E = state[4];
381 F[5] = state[5];
382 F[6] = state[6];
383 F[7] = state[7];
384
385 for (i = 0; i < 16; i++, F--) {
386 T = load_u64_be(in + i * 8);
387 F[0] = A;
388 F[4] = E;
389 F[8] = T;
390 T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
391 E = F[3] + T;
392 A = T + Sigma0(A) + Maj(A, F[1], F[2]);
393 }
394
395 for (; i < 80; i++, F--) {
396 T = sigma0(F[8 + 16 - 1]);
397 T += sigma1(F[8 + 16 - 14]);
398 T += F[8 + 16] + F[8 + 16 - 9];
399
400 F[0] = A;
401 F[4] = E;
402 F[8] = T;
403 T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
404 E = F[3] + T;
405 A = T + Sigma0(A) + Maj(A, F[1], F[2]);
406 }
407
408 state[0] += A;
409 state[1] += F[1];
410 state[2] += F[2];
411 state[3] += F[3];
412 state[4] += E;
413 state[5] += F[5];
414 state[6] += F[6];
415 state[7] += F[7];
416
417 in += 16 * 8;
418 }
419}
420
421#else
422
423#define ROUND_00_15(i, a, b, c, d, e, f, g, h) \
424 do { \
425 T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \
426 h = Sigma0(a) + Maj(a, b, c); \
427 d += T1; \
428 h += T1; \
429 } while (0)
430
431#define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X) \
432 do { \
433 s0 = X[(j + 1) & 0x0f]; \
434 s0 = sigma0(s0); \
435 s1 = X[(j + 14) & 0x0f]; \
436 s1 = sigma1(s1); \
437 T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \
438 ROUND_00_15(i + j, a, b, c, d, e, f, g, h); \
439 } while (0)
440
441static void sha512_block_data_order(uint64_t *state, const uint8_t *in,
442 size_t num) {
443 uint64_t a, b, c, d, e, f, g, h, s0, s1, T1;
444 uint64_t X[16];
445 int i;
446
447 while (num--) {
448
449 a = state[0];
450 b = state[1];
451 c = state[2];
452 d = state[3];
453 e = state[4];
454 f = state[5];
455 g = state[6];
456 h = state[7];
457
458 T1 = X[0] = load_u64_be(in);
459 ROUND_00_15(0, a, b, c, d, e, f, g, h);
460 T1 = X[1] = load_u64_be(in + 8);
461 ROUND_00_15(1, h, a, b, c, d, e, f, g);
462 T1 = X[2] = load_u64_be(in + 2 * 8);
463 ROUND_00_15(2, g, h, a, b, c, d, e, f);
464 T1 = X[3] = load_u64_be(in + 3 * 8);
465 ROUND_00_15(3, f, g, h, a, b, c, d, e);
466 T1 = X[4] = load_u64_be(in + 4 * 8);
467 ROUND_00_15(4, e, f, g, h, a, b, c, d);
468 T1 = X[5] = load_u64_be(in + 5 * 8);
469 ROUND_00_15(5, d, e, f, g, h, a, b, c);
470 T1 = X[6] = load_u64_be(in + 6 * 8);
471 ROUND_00_15(6, c, d, e, f, g, h, a, b);
472 T1 = X[7] = load_u64_be(in + 7 * 8);
473 ROUND_00_15(7, b, c, d, e, f, g, h, a);
474 T1 = X[8] = load_u64_be(in + 8 * 8);
475 ROUND_00_15(8, a, b, c, d, e, f, g, h);
476 T1 = X[9] = load_u64_be(in + 9 * 8);
477 ROUND_00_15(9, h, a, b, c, d, e, f, g);
478 T1 = X[10] = load_u64_be(in + 10 * 8);
479 ROUND_00_15(10, g, h, a, b, c, d, e, f);
480 T1 = X[11] = load_u64_be(in + 11 * 8);
481 ROUND_00_15(11, f, g, h, a, b, c, d, e);
482 T1 = X[12] = load_u64_be(in + 12 * 8);
483 ROUND_00_15(12, e, f, g, h, a, b, c, d);
484 T1 = X[13] = load_u64_be(in + 13 * 8);
485 ROUND_00_15(13, d, e, f, g, h, a, b, c);
486 T1 = X[14] = load_u64_be(in + 14 * 8);
487 ROUND_00_15(14, c, d, e, f, g, h, a, b);
488 T1 = X[15] = load_u64_be(in + 15 * 8);
489 ROUND_00_15(15, b, c, d, e, f, g, h, a);
490
491 for (i = 16; i < 80; i += 16) {
492 ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
493 ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
494 ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
495 ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
496 ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
497 ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
498 ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
499 ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
500 ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
501 ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
502 ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
503 ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
504 ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
505 ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
506 ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
507 ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
508 }
509
510 state[0] += a;
511 state[1] += b;
512 state[2] += c;
513 state[3] += d;
514 state[4] += e;
515 state[5] += f;
516 state[6] += g;
517 state[7] += h;
518
519 in += 16 * 8;
520 }
521}
522
523#endif
524
525#endif // !SHA512_ASM
526
527#undef ROTR
528#undef Sigma0
529#undef Sigma1
530#undef sigma0
531#undef sigma1
532#undef Ch
533#undef Maj
534#undef ROUND_00_15
535#undef ROUND_16_80
536