1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
2 | * All rights reserved. |
3 | * |
4 | * This package is an SSL implementation written |
5 | * by Eric Young (eay@cryptsoft.com). |
6 | * The implementation was written so as to conform with Netscapes SSL. |
7 | * |
8 | * This library is free for commercial and non-commercial use as long as |
9 | * the following conditions are aheared to. The following conditions |
10 | * apply to all code found in this distribution, be it the RC4, RSA, |
11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
12 | * included with this distribution is covered by the same copyright terms |
13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
14 | * |
15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
16 | * the code are not to be removed. |
17 | * If this package is used in a product, Eric Young should be given attribution |
18 | * as the author of the parts of the library used. |
19 | * This can be in the form of a textual message at program startup or |
20 | * in documentation (online or textual) provided with the package. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 3. All advertising materials mentioning features or use of this software |
31 | * must display the following acknowledgement: |
32 | * "This product includes cryptographic software written by |
33 | * Eric Young (eay@cryptsoft.com)" |
34 | * The word 'cryptographic' can be left out if the rouines from the library |
35 | * being used are not cryptographic related :-). |
36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
37 | * the apps directory (application code) you must include an acknowledgement: |
38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
39 | * |
40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | * SUCH DAMAGE. |
51 | * |
52 | * The licence and distribution terms for any publically available version or |
53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
54 | * copied and put under another distribution licence |
55 | * [including the GNU Public Licence.] */ |
56 | |
57 | #include <openssl/sha.h> |
58 | |
59 | #include <string.h> |
60 | |
61 | #include <openssl/mem.h> |
62 | |
63 | #include "internal.h" |
64 | #include "../../internal.h" |
65 | |
66 | |
67 | // The 32-bit hash algorithms share a common byte-order neutral collector and |
68 | // padding function implementations that operate on unaligned data, |
69 | // ../digest/md32_common.h. SHA-512 is the only 64-bit hash algorithm, as of |
70 | // this writing, so there is no need for a common collector/padding |
71 | // implementation yet. |
72 | |
73 | int SHA384_Init(SHA512_CTX *sha) { |
74 | sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8); |
75 | sha->h[1] = UINT64_C(0x629a292a367cd507); |
76 | sha->h[2] = UINT64_C(0x9159015a3070dd17); |
77 | sha->h[3] = UINT64_C(0x152fecd8f70e5939); |
78 | sha->h[4] = UINT64_C(0x67332667ffc00b31); |
79 | sha->h[5] = UINT64_C(0x8eb44a8768581511); |
80 | sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7); |
81 | sha->h[7] = UINT64_C(0x47b5481dbefa4fa4); |
82 | |
83 | sha->Nl = 0; |
84 | sha->Nh = 0; |
85 | sha->num = 0; |
86 | sha->md_len = SHA384_DIGEST_LENGTH; |
87 | return 1; |
88 | } |
89 | |
90 | |
91 | int SHA512_Init(SHA512_CTX *sha) { |
92 | sha->h[0] = UINT64_C(0x6a09e667f3bcc908); |
93 | sha->h[1] = UINT64_C(0xbb67ae8584caa73b); |
94 | sha->h[2] = UINT64_C(0x3c6ef372fe94f82b); |
95 | sha->h[3] = UINT64_C(0xa54ff53a5f1d36f1); |
96 | sha->h[4] = UINT64_C(0x510e527fade682d1); |
97 | sha->h[5] = UINT64_C(0x9b05688c2b3e6c1f); |
98 | sha->h[6] = UINT64_C(0x1f83d9abfb41bd6b); |
99 | sha->h[7] = UINT64_C(0x5be0cd19137e2179); |
100 | |
101 | sha->Nl = 0; |
102 | sha->Nh = 0; |
103 | sha->num = 0; |
104 | sha->md_len = SHA512_DIGEST_LENGTH; |
105 | return 1; |
106 | } |
107 | |
108 | uint8_t *SHA384(const uint8_t *data, size_t len, |
109 | uint8_t out[SHA384_DIGEST_LENGTH]) { |
110 | SHA512_CTX ctx; |
111 | SHA384_Init(&ctx); |
112 | SHA384_Update(&ctx, data, len); |
113 | SHA384_Final(out, &ctx); |
114 | OPENSSL_cleanse(&ctx, sizeof(ctx)); |
115 | return out; |
116 | } |
117 | |
118 | uint8_t *SHA512(const uint8_t *data, size_t len, |
119 | uint8_t out[SHA512_DIGEST_LENGTH]) { |
120 | SHA512_CTX ctx; |
121 | SHA512_Init(&ctx); |
122 | SHA512_Update(&ctx, data, len); |
123 | SHA512_Final(out, &ctx); |
124 | OPENSSL_cleanse(&ctx, sizeof(ctx)); |
125 | return out; |
126 | } |
127 | |
128 | #if !defined(SHA512_ASM) |
129 | static void sha512_block_data_order(uint64_t *state, const uint8_t *in, |
130 | size_t num_blocks); |
131 | #endif |
132 | |
133 | |
134 | int SHA384_Final(uint8_t out[SHA384_DIGEST_LENGTH], SHA512_CTX *sha) { |
135 | // |SHA384_Init| sets |sha->md_len| to |SHA384_DIGEST_LENGTH|, so this has a |
136 | // |smaller output. |
137 | return SHA512_Final(out, sha); |
138 | } |
139 | |
140 | int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) { |
141 | return SHA512_Update(sha, data, len); |
142 | } |
143 | |
144 | void SHA512_Transform(SHA512_CTX *c, const uint8_t block[SHA512_CBLOCK]) { |
145 | sha512_block_data_order(c->h, block, 1); |
146 | } |
147 | |
148 | int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) { |
149 | uint64_t l; |
150 | uint8_t *p = c->p; |
151 | const uint8_t *data = in_data; |
152 | |
153 | if (len == 0) { |
154 | return 1; |
155 | } |
156 | |
157 | l = (c->Nl + (((uint64_t)len) << 3)) & UINT64_C(0xffffffffffffffff); |
158 | if (l < c->Nl) { |
159 | c->Nh++; |
160 | } |
161 | if (sizeof(len) >= 8) { |
162 | c->Nh += (((uint64_t)len) >> 61); |
163 | } |
164 | c->Nl = l; |
165 | |
166 | if (c->num != 0) { |
167 | size_t n = sizeof(c->p) - c->num; |
168 | |
169 | if (len < n) { |
170 | OPENSSL_memcpy(p + c->num, data, len); |
171 | c->num += (unsigned int)len; |
172 | return 1; |
173 | } else { |
174 | OPENSSL_memcpy(p + c->num, data, n), c->num = 0; |
175 | len -= n; |
176 | data += n; |
177 | sha512_block_data_order(c->h, p, 1); |
178 | } |
179 | } |
180 | |
181 | if (len >= sizeof(c->p)) { |
182 | sha512_block_data_order(c->h, data, len / sizeof(c->p)); |
183 | data += len; |
184 | len %= sizeof(c->p); |
185 | data -= len; |
186 | } |
187 | |
188 | if (len != 0) { |
189 | OPENSSL_memcpy(p, data, len); |
190 | c->num = (int)len; |
191 | } |
192 | |
193 | return 1; |
194 | } |
195 | |
196 | int SHA512_Final(uint8_t out[SHA512_DIGEST_LENGTH], SHA512_CTX *sha) { |
197 | uint8_t *p = sha->p; |
198 | size_t n = sha->num; |
199 | |
200 | p[n] = 0x80; // There always is a room for one |
201 | n++; |
202 | if (n > (sizeof(sha->p) - 16)) { |
203 | OPENSSL_memset(p + n, 0, sizeof(sha->p) - n); |
204 | n = 0; |
205 | sha512_block_data_order(sha->h, p, 1); |
206 | } |
207 | |
208 | OPENSSL_memset(p + n, 0, sizeof(sha->p) - 16 - n); |
209 | p[sizeof(sha->p) - 1] = (uint8_t)(sha->Nl); |
210 | p[sizeof(sha->p) - 2] = (uint8_t)(sha->Nl >> 8); |
211 | p[sizeof(sha->p) - 3] = (uint8_t)(sha->Nl >> 16); |
212 | p[sizeof(sha->p) - 4] = (uint8_t)(sha->Nl >> 24); |
213 | p[sizeof(sha->p) - 5] = (uint8_t)(sha->Nl >> 32); |
214 | p[sizeof(sha->p) - 6] = (uint8_t)(sha->Nl >> 40); |
215 | p[sizeof(sha->p) - 7] = (uint8_t)(sha->Nl >> 48); |
216 | p[sizeof(sha->p) - 8] = (uint8_t)(sha->Nl >> 56); |
217 | p[sizeof(sha->p) - 9] = (uint8_t)(sha->Nh); |
218 | p[sizeof(sha->p) - 10] = (uint8_t)(sha->Nh >> 8); |
219 | p[sizeof(sha->p) - 11] = (uint8_t)(sha->Nh >> 16); |
220 | p[sizeof(sha->p) - 12] = (uint8_t)(sha->Nh >> 24); |
221 | p[sizeof(sha->p) - 13] = (uint8_t)(sha->Nh >> 32); |
222 | p[sizeof(sha->p) - 14] = (uint8_t)(sha->Nh >> 40); |
223 | p[sizeof(sha->p) - 15] = (uint8_t)(sha->Nh >> 48); |
224 | p[sizeof(sha->p) - 16] = (uint8_t)(sha->Nh >> 56); |
225 | |
226 | sha512_block_data_order(sha->h, p, 1); |
227 | |
228 | if (out == NULL) { |
229 | // TODO(davidben): This NULL check is absent in other low-level hash 'final' |
230 | // functions and is one of the few places one can fail. |
231 | return 0; |
232 | } |
233 | |
234 | switch (sha->md_len) { |
235 | // Let compiler decide if it's appropriate to unroll... |
236 | case SHA384_DIGEST_LENGTH: |
237 | for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) { |
238 | uint64_t t = sha->h[n]; |
239 | |
240 | *(out++) = (uint8_t)(t >> 56); |
241 | *(out++) = (uint8_t)(t >> 48); |
242 | *(out++) = (uint8_t)(t >> 40); |
243 | *(out++) = (uint8_t)(t >> 32); |
244 | *(out++) = (uint8_t)(t >> 24); |
245 | *(out++) = (uint8_t)(t >> 16); |
246 | *(out++) = (uint8_t)(t >> 8); |
247 | *(out++) = (uint8_t)(t); |
248 | } |
249 | break; |
250 | case SHA512_DIGEST_LENGTH: |
251 | for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) { |
252 | uint64_t t = sha->h[n]; |
253 | |
254 | *(out++) = (uint8_t)(t >> 56); |
255 | *(out++) = (uint8_t)(t >> 48); |
256 | *(out++) = (uint8_t)(t >> 40); |
257 | *(out++) = (uint8_t)(t >> 32); |
258 | *(out++) = (uint8_t)(t >> 24); |
259 | *(out++) = (uint8_t)(t >> 16); |
260 | *(out++) = (uint8_t)(t >> 8); |
261 | *(out++) = (uint8_t)(t); |
262 | } |
263 | break; |
264 | // ... as well as make sure md_len is not abused. |
265 | default: |
266 | // TODO(davidben): This bad |md_len| case is one of the few places a |
267 | // low-level hash 'final' function can fail. This should never happen. |
268 | return 0; |
269 | } |
270 | |
271 | return 1; |
272 | } |
273 | |
274 | #ifndef SHA512_ASM |
275 | static const uint64_t K512[80] = { |
276 | UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd), |
277 | UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc), |
278 | UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019), |
279 | UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118), |
280 | UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe), |
281 | UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2), |
282 | UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1), |
283 | UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694), |
284 | UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3), |
285 | UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65), |
286 | UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483), |
287 | UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5), |
288 | UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210), |
289 | UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4), |
290 | UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725), |
291 | UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70), |
292 | UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926), |
293 | UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df), |
294 | UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8), |
295 | UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b), |
296 | UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001), |
297 | UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30), |
298 | UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910), |
299 | UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8), |
300 | UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53), |
301 | UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8), |
302 | UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb), |
303 | UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3), |
304 | UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60), |
305 | UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec), |
306 | UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9), |
307 | UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b), |
308 | UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207), |
309 | UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178), |
310 | UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6), |
311 | UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b), |
312 | UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493), |
313 | UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c), |
314 | UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a), |
315 | UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817), |
316 | }; |
317 | |
318 | #if defined(__GNUC__) && __GNUC__ >= 2 && !defined(OPENSSL_NO_ASM) |
319 | #if defined(__x86_64) || defined(__x86_64__) |
320 | #define ROTR(a, n) \ |
321 | ({ \ |
322 | uint64_t ret; \ |
323 | __asm__("rorq %1, %0" : "=r"(ret) : "J"(n), "0"(a) : "cc"); \ |
324 | ret; \ |
325 | }) |
326 | #elif(defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64) |
327 | #define ROTR(a, n) \ |
328 | ({ \ |
329 | uint64_t ret; \ |
330 | __asm__("rotrdi %0, %1, %2" : "=r"(ret) : "r"(a), "K"(n)); \ |
331 | ret; \ |
332 | }) |
333 | #elif defined(__aarch64__) |
334 | #define ROTR(a, n) \ |
335 | ({ \ |
336 | uint64_t ret; \ |
337 | __asm__("ror %0, %1, %2" : "=r"(ret) : "r"(a), "I"(n)); \ |
338 | ret; \ |
339 | }) |
340 | #endif |
341 | #elif defined(_MSC_VER) && defined(_WIN64) |
342 | #pragma intrinsic(_rotr64) |
343 | #define ROTR(a, n) _rotr64((a), n) |
344 | #endif |
345 | |
346 | #ifndef ROTR |
347 | #define ROTR(x, s) (((x) >> s) | (x) << (64 - s)) |
348 | #endif |
349 | |
350 | static inline uint64_t load_u64_be(const void *ptr) { |
351 | uint64_t ret; |
352 | OPENSSL_memcpy(&ret, ptr, sizeof(ret)); |
353 | return CRYPTO_bswap8(ret); |
354 | } |
355 | |
356 | #define Sigma0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39)) |
357 | #define Sigma1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41)) |
358 | #define sigma0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ ((x) >> 7)) |
359 | #define sigma1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ ((x) >> 6)) |
360 | |
361 | #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z))) |
362 | #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
363 | |
364 | |
365 | #if defined(__i386) || defined(__i386__) || defined(_M_IX86) |
366 | // This code should give better results on 32-bit CPU with less than |
367 | // ~24 registers, both size and performance wise... |
368 | static void sha512_block_data_order(uint64_t *state, const uint8_t *in, |
369 | size_t num) { |
370 | uint64_t A, E, T; |
371 | uint64_t X[9 + 80], *F; |
372 | int i; |
373 | |
374 | while (num--) { |
375 | F = X + 80; |
376 | A = state[0]; |
377 | F[1] = state[1]; |
378 | F[2] = state[2]; |
379 | F[3] = state[3]; |
380 | E = state[4]; |
381 | F[5] = state[5]; |
382 | F[6] = state[6]; |
383 | F[7] = state[7]; |
384 | |
385 | for (i = 0; i < 16; i++, F--) { |
386 | T = load_u64_be(in + i * 8); |
387 | F[0] = A; |
388 | F[4] = E; |
389 | F[8] = T; |
390 | T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i]; |
391 | E = F[3] + T; |
392 | A = T + Sigma0(A) + Maj(A, F[1], F[2]); |
393 | } |
394 | |
395 | for (; i < 80; i++, F--) { |
396 | T = sigma0(F[8 + 16 - 1]); |
397 | T += sigma1(F[8 + 16 - 14]); |
398 | T += F[8 + 16] + F[8 + 16 - 9]; |
399 | |
400 | F[0] = A; |
401 | F[4] = E; |
402 | F[8] = T; |
403 | T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i]; |
404 | E = F[3] + T; |
405 | A = T + Sigma0(A) + Maj(A, F[1], F[2]); |
406 | } |
407 | |
408 | state[0] += A; |
409 | state[1] += F[1]; |
410 | state[2] += F[2]; |
411 | state[3] += F[3]; |
412 | state[4] += E; |
413 | state[5] += F[5]; |
414 | state[6] += F[6]; |
415 | state[7] += F[7]; |
416 | |
417 | in += 16 * 8; |
418 | } |
419 | } |
420 | |
421 | #else |
422 | |
423 | #define ROUND_00_15(i, a, b, c, d, e, f, g, h) \ |
424 | do { \ |
425 | T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \ |
426 | h = Sigma0(a) + Maj(a, b, c); \ |
427 | d += T1; \ |
428 | h += T1; \ |
429 | } while (0) |
430 | |
431 | #define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X) \ |
432 | do { \ |
433 | s0 = X[(j + 1) & 0x0f]; \ |
434 | s0 = sigma0(s0); \ |
435 | s1 = X[(j + 14) & 0x0f]; \ |
436 | s1 = sigma1(s1); \ |
437 | T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \ |
438 | ROUND_00_15(i + j, a, b, c, d, e, f, g, h); \ |
439 | } while (0) |
440 | |
441 | static void sha512_block_data_order(uint64_t *state, const uint8_t *in, |
442 | size_t num) { |
443 | uint64_t a, b, c, d, e, f, g, h, s0, s1, T1; |
444 | uint64_t X[16]; |
445 | int i; |
446 | |
447 | while (num--) { |
448 | |
449 | a = state[0]; |
450 | b = state[1]; |
451 | c = state[2]; |
452 | d = state[3]; |
453 | e = state[4]; |
454 | f = state[5]; |
455 | g = state[6]; |
456 | h = state[7]; |
457 | |
458 | T1 = X[0] = load_u64_be(in); |
459 | ROUND_00_15(0, a, b, c, d, e, f, g, h); |
460 | T1 = X[1] = load_u64_be(in + 8); |
461 | ROUND_00_15(1, h, a, b, c, d, e, f, g); |
462 | T1 = X[2] = load_u64_be(in + 2 * 8); |
463 | ROUND_00_15(2, g, h, a, b, c, d, e, f); |
464 | T1 = X[3] = load_u64_be(in + 3 * 8); |
465 | ROUND_00_15(3, f, g, h, a, b, c, d, e); |
466 | T1 = X[4] = load_u64_be(in + 4 * 8); |
467 | ROUND_00_15(4, e, f, g, h, a, b, c, d); |
468 | T1 = X[5] = load_u64_be(in + 5 * 8); |
469 | ROUND_00_15(5, d, e, f, g, h, a, b, c); |
470 | T1 = X[6] = load_u64_be(in + 6 * 8); |
471 | ROUND_00_15(6, c, d, e, f, g, h, a, b); |
472 | T1 = X[7] = load_u64_be(in + 7 * 8); |
473 | ROUND_00_15(7, b, c, d, e, f, g, h, a); |
474 | T1 = X[8] = load_u64_be(in + 8 * 8); |
475 | ROUND_00_15(8, a, b, c, d, e, f, g, h); |
476 | T1 = X[9] = load_u64_be(in + 9 * 8); |
477 | ROUND_00_15(9, h, a, b, c, d, e, f, g); |
478 | T1 = X[10] = load_u64_be(in + 10 * 8); |
479 | ROUND_00_15(10, g, h, a, b, c, d, e, f); |
480 | T1 = X[11] = load_u64_be(in + 11 * 8); |
481 | ROUND_00_15(11, f, g, h, a, b, c, d, e); |
482 | T1 = X[12] = load_u64_be(in + 12 * 8); |
483 | ROUND_00_15(12, e, f, g, h, a, b, c, d); |
484 | T1 = X[13] = load_u64_be(in + 13 * 8); |
485 | ROUND_00_15(13, d, e, f, g, h, a, b, c); |
486 | T1 = X[14] = load_u64_be(in + 14 * 8); |
487 | ROUND_00_15(14, c, d, e, f, g, h, a, b); |
488 | T1 = X[15] = load_u64_be(in + 15 * 8); |
489 | ROUND_00_15(15, b, c, d, e, f, g, h, a); |
490 | |
491 | for (i = 16; i < 80; i += 16) { |
492 | ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X); |
493 | ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X); |
494 | ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X); |
495 | ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X); |
496 | ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X); |
497 | ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X); |
498 | ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X); |
499 | ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X); |
500 | ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X); |
501 | ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X); |
502 | ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X); |
503 | ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X); |
504 | ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X); |
505 | ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X); |
506 | ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X); |
507 | ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X); |
508 | } |
509 | |
510 | state[0] += a; |
511 | state[1] += b; |
512 | state[2] += c; |
513 | state[3] += d; |
514 | state[4] += e; |
515 | state[5] += f; |
516 | state[6] += g; |
517 | state[7] += h; |
518 | |
519 | in += 16 * 8; |
520 | } |
521 | } |
522 | |
523 | #endif |
524 | |
525 | #endif // !SHA512_ASM |
526 | |
527 | #undef ROTR |
528 | #undef Sigma0 |
529 | #undef Sigma1 |
530 | #undef sigma0 |
531 | #undef sigma1 |
532 | #undef Ch |
533 | #undef Maj |
534 | #undef ROUND_00_15 |
535 | #undef ROUND_16_80 |
536 | |