| 1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 2 | * All rights reserved. |
| 3 | * |
| 4 | * This package is an SSL implementation written |
| 5 | * by Eric Young (eay@cryptsoft.com). |
| 6 | * The implementation was written so as to conform with Netscapes SSL. |
| 7 | * |
| 8 | * This library is free for commercial and non-commercial use as long as |
| 9 | * the following conditions are aheared to. The following conditions |
| 10 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 12 | * included with this distribution is covered by the same copyright terms |
| 13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 14 | * |
| 15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 16 | * the code are not to be removed. |
| 17 | * If this package is used in a product, Eric Young should be given attribution |
| 18 | * as the author of the parts of the library used. |
| 19 | * This can be in the form of a textual message at program startup or |
| 20 | * in documentation (online or textual) provided with the package. |
| 21 | * |
| 22 | * Redistribution and use in source and binary forms, with or without |
| 23 | * modification, are permitted provided that the following conditions |
| 24 | * are met: |
| 25 | * 1. Redistributions of source code must retain the copyright |
| 26 | * notice, this list of conditions and the following disclaimer. |
| 27 | * 2. Redistributions in binary form must reproduce the above copyright |
| 28 | * notice, this list of conditions and the following disclaimer in the |
| 29 | * documentation and/or other materials provided with the distribution. |
| 30 | * 3. All advertising materials mentioning features or use of this software |
| 31 | * must display the following acknowledgement: |
| 32 | * "This product includes cryptographic software written by |
| 33 | * Eric Young (eay@cryptsoft.com)" |
| 34 | * The word 'cryptographic' can be left out if the rouines from the library |
| 35 | * being used are not cryptographic related :-). |
| 36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 37 | * the apps directory (application code) you must include an acknowledgement: |
| 38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 39 | * |
| 40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 50 | * SUCH DAMAGE. |
| 51 | * |
| 52 | * The licence and distribution terms for any publically available version or |
| 53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 54 | * copied and put under another distribution licence |
| 55 | * [including the GNU Public Licence.] */ |
| 56 | |
| 57 | #include <openssl/mem.h> |
| 58 | |
| 59 | #include <assert.h> |
| 60 | #include <stdarg.h> |
| 61 | #include <stdio.h> |
| 62 | |
| 63 | #if defined(OPENSSL_WINDOWS) |
| 64 | OPENSSL_MSVC_PRAGMA(warning(push, 3)) |
| 65 | #include <windows.h> |
| 66 | OPENSSL_MSVC_PRAGMA(warning(pop)) |
| 67 | #endif |
| 68 | |
| 69 | #include "internal.h" |
| 70 | |
| 71 | |
| 72 | #define OPENSSL_MALLOC_PREFIX 8 |
| 73 | |
| 74 | #if defined(OPENSSL_ASAN) |
| 75 | void __asan_poison_memory_region(const volatile void *addr, size_t size); |
| 76 | void __asan_unpoison_memory_region(const volatile void *addr, size_t size); |
| 77 | #else |
| 78 | static void __asan_poison_memory_region(const void *addr, size_t size) {} |
| 79 | static void __asan_unpoison_memory_region(const void *addr, size_t size) {} |
| 80 | #endif |
| 81 | |
| 82 | // Windows doesn't really support weak symbols as of May 2019, and Clang on |
| 83 | // Windows will emit strong symbols instead. See |
| 84 | // https://bugs.llvm.org/show_bug.cgi?id=37598 |
| 85 | #if defined(__GNUC__) || (defined(__clang__) && !defined(_MSC_VER)) |
| 86 | // sdallocx is a sized |free| function. By passing the size (which we happen to |
| 87 | // always know in BoringSSL), the malloc implementation can save work. We cannot |
| 88 | // depend on |sdallocx| being available so we declare a wrapper that falls back |
| 89 | // to |free| as a weak symbol. |
| 90 | // |
| 91 | // This will always be safe, but will only be overridden if the malloc |
| 92 | // implementation is statically linked with BoringSSL. So, if |sdallocx| is |
| 93 | // provided in, say, libc.so, we still won't use it because that's dynamically |
| 94 | // linked. This isn't an ideal result, but its helps in some cases. |
| 95 | void sdallocx(void *ptr, size_t size, int flags); |
| 96 | |
| 97 | __attribute((weak, noinline)) |
| 98 | #else |
| 99 | static |
| 100 | #endif |
| 101 | void sdallocx(void *ptr, size_t size, int flags) { |
| 102 | free(ptr); |
| 103 | } |
| 104 | |
| 105 | void *OPENSSL_malloc(size_t size) { |
| 106 | void *ptr = malloc(size + OPENSSL_MALLOC_PREFIX); |
| 107 | if (ptr == NULL) { |
| 108 | return NULL; |
| 109 | } |
| 110 | |
| 111 | *(size_t *)ptr = size; |
| 112 | |
| 113 | __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); |
| 114 | return ((uint8_t *)ptr) + OPENSSL_MALLOC_PREFIX; |
| 115 | } |
| 116 | |
| 117 | void OPENSSL_free(void *orig_ptr) { |
| 118 | if (orig_ptr == NULL) { |
| 119 | return; |
| 120 | } |
| 121 | |
| 122 | void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX; |
| 123 | __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); |
| 124 | |
| 125 | size_t size = *(size_t *)ptr; |
| 126 | OPENSSL_cleanse(ptr, size + OPENSSL_MALLOC_PREFIX); |
| 127 | sdallocx(ptr, size + OPENSSL_MALLOC_PREFIX, 0 /* flags */); |
| 128 | } |
| 129 | |
| 130 | void *OPENSSL_realloc(void *orig_ptr, size_t new_size) { |
| 131 | if (orig_ptr == NULL) { |
| 132 | return OPENSSL_malloc(new_size); |
| 133 | } |
| 134 | |
| 135 | void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX; |
| 136 | __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); |
| 137 | size_t old_size = *(size_t *)ptr; |
| 138 | __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); |
| 139 | |
| 140 | void *ret = OPENSSL_malloc(new_size); |
| 141 | if (ret == NULL) { |
| 142 | return NULL; |
| 143 | } |
| 144 | |
| 145 | size_t to_copy = new_size; |
| 146 | if (old_size < to_copy) { |
| 147 | to_copy = old_size; |
| 148 | } |
| 149 | |
| 150 | memcpy(ret, orig_ptr, to_copy); |
| 151 | OPENSSL_free(orig_ptr); |
| 152 | |
| 153 | return ret; |
| 154 | } |
| 155 | |
| 156 | void OPENSSL_cleanse(void *ptr, size_t len) { |
| 157 | #if defined(OPENSSL_WINDOWS) |
| 158 | SecureZeroMemory(ptr, len); |
| 159 | #else |
| 160 | OPENSSL_memset(ptr, 0, len); |
| 161 | |
| 162 | #if !defined(OPENSSL_NO_ASM) |
| 163 | /* As best as we can tell, this is sufficient to break any optimisations that |
| 164 | might try to eliminate "superfluous" memsets. If there's an easy way to |
| 165 | detect memset_s, it would be better to use that. */ |
| 166 | __asm__ __volatile__("" : : "r" (ptr) : "memory" ); |
| 167 | #endif |
| 168 | #endif // !OPENSSL_NO_ASM |
| 169 | } |
| 170 | |
| 171 | void OPENSSL_clear_free(void *ptr, size_t unused) { |
| 172 | OPENSSL_free(ptr); |
| 173 | } |
| 174 | |
| 175 | int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) { |
| 176 | const uint8_t *a = in_a; |
| 177 | const uint8_t *b = in_b; |
| 178 | uint8_t x = 0; |
| 179 | |
| 180 | for (size_t i = 0; i < len; i++) { |
| 181 | x |= a[i] ^ b[i]; |
| 182 | } |
| 183 | |
| 184 | return x; |
| 185 | } |
| 186 | |
| 187 | uint32_t OPENSSL_hash32(const void *ptr, size_t len) { |
| 188 | // These are the FNV-1a parameters for 32 bits. |
| 189 | static const uint32_t kPrime = 16777619u; |
| 190 | static const uint32_t kOffsetBasis = 2166136261u; |
| 191 | |
| 192 | const uint8_t *in = ptr; |
| 193 | uint32_t h = kOffsetBasis; |
| 194 | |
| 195 | for (size_t i = 0; i < len; i++) { |
| 196 | h ^= in[i]; |
| 197 | h *= kPrime; |
| 198 | } |
| 199 | |
| 200 | return h; |
| 201 | } |
| 202 | |
| 203 | size_t OPENSSL_strnlen(const char *s, size_t len) { |
| 204 | for (size_t i = 0; i < len; i++) { |
| 205 | if (s[i] == 0) { |
| 206 | return i; |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | return len; |
| 211 | } |
| 212 | |
| 213 | char *OPENSSL_strdup(const char *s) { |
| 214 | const size_t len = strlen(s) + 1; |
| 215 | char *ret = OPENSSL_malloc(len); |
| 216 | if (ret == NULL) { |
| 217 | return NULL; |
| 218 | } |
| 219 | OPENSSL_memcpy(ret, s, len); |
| 220 | return ret; |
| 221 | } |
| 222 | |
| 223 | int OPENSSL_tolower(int c) { |
| 224 | if (c >= 'A' && c <= 'Z') { |
| 225 | return c + ('a' - 'A'); |
| 226 | } |
| 227 | return c; |
| 228 | } |
| 229 | |
| 230 | int OPENSSL_strcasecmp(const char *a, const char *b) { |
| 231 | for (size_t i = 0;; i++) { |
| 232 | const int aa = OPENSSL_tolower(a[i]); |
| 233 | const int bb = OPENSSL_tolower(b[i]); |
| 234 | |
| 235 | if (aa < bb) { |
| 236 | return -1; |
| 237 | } else if (aa > bb) { |
| 238 | return 1; |
| 239 | } else if (aa == 0) { |
| 240 | return 0; |
| 241 | } |
| 242 | } |
| 243 | } |
| 244 | |
| 245 | int OPENSSL_strncasecmp(const char *a, const char *b, size_t n) { |
| 246 | for (size_t i = 0; i < n; i++) { |
| 247 | const int aa = OPENSSL_tolower(a[i]); |
| 248 | const int bb = OPENSSL_tolower(b[i]); |
| 249 | |
| 250 | if (aa < bb) { |
| 251 | return -1; |
| 252 | } else if (aa > bb) { |
| 253 | return 1; |
| 254 | } else if (aa == 0) { |
| 255 | return 0; |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | return 0; |
| 260 | } |
| 261 | |
| 262 | int BIO_snprintf(char *buf, size_t n, const char *format, ...) { |
| 263 | va_list args; |
| 264 | va_start(args, format); |
| 265 | int ret = BIO_vsnprintf(buf, n, format, args); |
| 266 | va_end(args); |
| 267 | return ret; |
| 268 | } |
| 269 | |
| 270 | int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args) { |
| 271 | return vsnprintf(buf, n, format, args); |
| 272 | } |
| 273 | |