1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
2 | * All rights reserved. |
3 | * |
4 | * This package is an SSL implementation written |
5 | * by Eric Young (eay@cryptsoft.com). |
6 | * The implementation was written so as to conform with Netscapes SSL. |
7 | * |
8 | * This library is free for commercial and non-commercial use as long as |
9 | * the following conditions are aheared to. The following conditions |
10 | * apply to all code found in this distribution, be it the RC4, RSA, |
11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
12 | * included with this distribution is covered by the same copyright terms |
13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
14 | * |
15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
16 | * the code are not to be removed. |
17 | * If this package is used in a product, Eric Young should be given attribution |
18 | * as the author of the parts of the library used. |
19 | * This can be in the form of a textual message at program startup or |
20 | * in documentation (online or textual) provided with the package. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 3. All advertising materials mentioning features or use of this software |
31 | * must display the following acknowledgement: |
32 | * "This product includes cryptographic software written by |
33 | * Eric Young (eay@cryptsoft.com)" |
34 | * The word 'cryptographic' can be left out if the rouines from the library |
35 | * being used are not cryptographic related :-). |
36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
37 | * the apps directory (application code) you must include an acknowledgement: |
38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
39 | * |
40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | * SUCH DAMAGE. |
51 | * |
52 | * The licence and distribution terms for any publically available version or |
53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
54 | * copied and put under another distribution licence |
55 | * [including the GNU Public Licence.] */ |
56 | |
57 | #include <openssl/obj.h> |
58 | |
59 | #include <inttypes.h> |
60 | #include <limits.h> |
61 | #include <string.h> |
62 | |
63 | #include <openssl/asn1.h> |
64 | #include <openssl/buf.h> |
65 | #include <openssl/bytestring.h> |
66 | #include <openssl/err.h> |
67 | #include <openssl/lhash.h> |
68 | #include <openssl/mem.h> |
69 | #include <openssl/thread.h> |
70 | |
71 | #include "obj_dat.h" |
72 | #include "../internal.h" |
73 | |
74 | |
75 | DEFINE_LHASH_OF(ASN1_OBJECT) |
76 | |
77 | static struct CRYPTO_STATIC_MUTEX global_added_lock = CRYPTO_STATIC_MUTEX_INIT; |
78 | // These globals are protected by |global_added_lock|. |
79 | static LHASH_OF(ASN1_OBJECT) *global_added_by_data = NULL; |
80 | static LHASH_OF(ASN1_OBJECT) *global_added_by_nid = NULL; |
81 | static LHASH_OF(ASN1_OBJECT) *global_added_by_short_name = NULL; |
82 | static LHASH_OF(ASN1_OBJECT) *global_added_by_long_name = NULL; |
83 | |
84 | static struct CRYPTO_STATIC_MUTEX global_next_nid_lock = |
85 | CRYPTO_STATIC_MUTEX_INIT; |
86 | static unsigned global_next_nid = NUM_NID; |
87 | |
88 | static int obj_next_nid(void) { |
89 | int ret; |
90 | |
91 | CRYPTO_STATIC_MUTEX_lock_write(&global_next_nid_lock); |
92 | ret = global_next_nid++; |
93 | CRYPTO_STATIC_MUTEX_unlock_write(&global_next_nid_lock); |
94 | |
95 | return ret; |
96 | } |
97 | |
98 | ASN1_OBJECT *OBJ_dup(const ASN1_OBJECT *o) { |
99 | ASN1_OBJECT *r; |
100 | unsigned char *data = NULL; |
101 | char *sn = NULL, *ln = NULL; |
102 | |
103 | if (o == NULL) { |
104 | return NULL; |
105 | } |
106 | |
107 | if (!(o->flags & ASN1_OBJECT_FLAG_DYNAMIC)) { |
108 | // TODO(fork): this is a little dangerous. |
109 | return (ASN1_OBJECT *)o; |
110 | } |
111 | |
112 | r = ASN1_OBJECT_new(); |
113 | if (r == NULL) { |
114 | OPENSSL_PUT_ERROR(OBJ, ERR_R_ASN1_LIB); |
115 | return NULL; |
116 | } |
117 | r->ln = r->sn = NULL; |
118 | |
119 | data = OPENSSL_malloc(o->length); |
120 | if (data == NULL) { |
121 | goto err; |
122 | } |
123 | if (o->data != NULL) { |
124 | OPENSSL_memcpy(data, o->data, o->length); |
125 | } |
126 | |
127 | // once data is attached to an object, it remains const |
128 | r->data = data; |
129 | r->length = o->length; |
130 | r->nid = o->nid; |
131 | |
132 | if (o->ln != NULL) { |
133 | ln = OPENSSL_strdup(o->ln); |
134 | if (ln == NULL) { |
135 | goto err; |
136 | } |
137 | } |
138 | |
139 | if (o->sn != NULL) { |
140 | sn = OPENSSL_strdup(o->sn); |
141 | if (sn == NULL) { |
142 | goto err; |
143 | } |
144 | } |
145 | |
146 | r->sn = sn; |
147 | r->ln = ln; |
148 | |
149 | r->flags = |
150 | o->flags | (ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS | |
151 | ASN1_OBJECT_FLAG_DYNAMIC_DATA); |
152 | return r; |
153 | |
154 | err: |
155 | OPENSSL_PUT_ERROR(OBJ, ERR_R_MALLOC_FAILURE); |
156 | OPENSSL_free(ln); |
157 | OPENSSL_free(sn); |
158 | OPENSSL_free(data); |
159 | OPENSSL_free(r); |
160 | return NULL; |
161 | } |
162 | |
163 | int OBJ_cmp(const ASN1_OBJECT *a, const ASN1_OBJECT *b) { |
164 | int ret; |
165 | |
166 | ret = a->length - b->length; |
167 | if (ret) { |
168 | return ret; |
169 | } |
170 | return OPENSSL_memcmp(a->data, b->data, a->length); |
171 | } |
172 | |
173 | const uint8_t *OBJ_get0_data(const ASN1_OBJECT *obj) { |
174 | if (obj == NULL) { |
175 | return NULL; |
176 | } |
177 | |
178 | return obj->data; |
179 | } |
180 | |
181 | size_t OBJ_length(const ASN1_OBJECT *obj) { |
182 | if (obj == NULL || obj->length < 0) { |
183 | return 0; |
184 | } |
185 | |
186 | return (size_t)obj->length; |
187 | } |
188 | |
189 | // obj_cmp is called to search the kNIDsInOIDOrder array. The |key| argument is |
190 | // an |ASN1_OBJECT|* that we're looking for and |element| is a pointer to an |
191 | // unsigned int in the array. |
192 | static int obj_cmp(const void *key, const void *element) { |
193 | unsigned nid = *((const unsigned*) element); |
194 | const ASN1_OBJECT *a = key; |
195 | const ASN1_OBJECT *b = &kObjects[nid]; |
196 | |
197 | if (a->length < b->length) { |
198 | return -1; |
199 | } else if (a->length > b->length) { |
200 | return 1; |
201 | } |
202 | return OPENSSL_memcmp(a->data, b->data, a->length); |
203 | } |
204 | |
205 | int OBJ_obj2nid(const ASN1_OBJECT *obj) { |
206 | const unsigned int *nid_ptr; |
207 | |
208 | if (obj == NULL) { |
209 | return NID_undef; |
210 | } |
211 | |
212 | if (obj->nid != 0) { |
213 | return obj->nid; |
214 | } |
215 | |
216 | CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock); |
217 | if (global_added_by_data != NULL) { |
218 | ASN1_OBJECT *match; |
219 | |
220 | match = lh_ASN1_OBJECT_retrieve(global_added_by_data, obj); |
221 | if (match != NULL) { |
222 | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); |
223 | return match->nid; |
224 | } |
225 | } |
226 | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); |
227 | |
228 | nid_ptr = bsearch(obj, kNIDsInOIDOrder, OPENSSL_ARRAY_SIZE(kNIDsInOIDOrder), |
229 | sizeof(kNIDsInOIDOrder[0]), obj_cmp); |
230 | if (nid_ptr == NULL) { |
231 | return NID_undef; |
232 | } |
233 | |
234 | return kObjects[*nid_ptr].nid; |
235 | } |
236 | |
237 | int OBJ_cbs2nid(const CBS *cbs) { |
238 | if (CBS_len(cbs) > INT_MAX) { |
239 | return NID_undef; |
240 | } |
241 | |
242 | ASN1_OBJECT obj; |
243 | OPENSSL_memset(&obj, 0, sizeof(obj)); |
244 | obj.data = CBS_data(cbs); |
245 | obj.length = (int)CBS_len(cbs); |
246 | |
247 | return OBJ_obj2nid(&obj); |
248 | } |
249 | |
250 | // short_name_cmp is called to search the kNIDsInShortNameOrder array. The |
251 | // |key| argument is name that we're looking for and |element| is a pointer to |
252 | // an unsigned int in the array. |
253 | static int short_name_cmp(const void *key, const void *element) { |
254 | const char *name = (const char *) key; |
255 | unsigned nid = *((unsigned*) element); |
256 | |
257 | return strcmp(name, kObjects[nid].sn); |
258 | } |
259 | |
260 | int OBJ_sn2nid(const char *short_name) { |
261 | const unsigned int *nid_ptr; |
262 | |
263 | CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock); |
264 | if (global_added_by_short_name != NULL) { |
265 | ASN1_OBJECT *match, template; |
266 | |
267 | template.sn = short_name; |
268 | match = lh_ASN1_OBJECT_retrieve(global_added_by_short_name, &template); |
269 | if (match != NULL) { |
270 | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); |
271 | return match->nid; |
272 | } |
273 | } |
274 | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); |
275 | |
276 | nid_ptr = bsearch(short_name, kNIDsInShortNameOrder, |
277 | OPENSSL_ARRAY_SIZE(kNIDsInShortNameOrder), |
278 | sizeof(kNIDsInShortNameOrder[0]), short_name_cmp); |
279 | if (nid_ptr == NULL) { |
280 | return NID_undef; |
281 | } |
282 | |
283 | return kObjects[*nid_ptr].nid; |
284 | } |
285 | |
286 | // long_name_cmp is called to search the kNIDsInLongNameOrder array. The |
287 | // |key| argument is name that we're looking for and |element| is a pointer to |
288 | // an unsigned int in the array. |
289 | static int long_name_cmp(const void *key, const void *element) { |
290 | const char *name = (const char *) key; |
291 | unsigned nid = *((unsigned*) element); |
292 | |
293 | return strcmp(name, kObjects[nid].ln); |
294 | } |
295 | |
296 | int OBJ_ln2nid(const char *long_name) { |
297 | const unsigned int *nid_ptr; |
298 | |
299 | CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock); |
300 | if (global_added_by_long_name != NULL) { |
301 | ASN1_OBJECT *match, template; |
302 | |
303 | template.ln = long_name; |
304 | match = lh_ASN1_OBJECT_retrieve(global_added_by_long_name, &template); |
305 | if (match != NULL) { |
306 | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); |
307 | return match->nid; |
308 | } |
309 | } |
310 | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); |
311 | |
312 | nid_ptr = bsearch(long_name, kNIDsInLongNameOrder, |
313 | OPENSSL_ARRAY_SIZE(kNIDsInLongNameOrder), |
314 | sizeof(kNIDsInLongNameOrder[0]), long_name_cmp); |
315 | if (nid_ptr == NULL) { |
316 | return NID_undef; |
317 | } |
318 | |
319 | return kObjects[*nid_ptr].nid; |
320 | } |
321 | |
322 | int OBJ_txt2nid(const char *s) { |
323 | ASN1_OBJECT *obj; |
324 | int nid; |
325 | |
326 | obj = OBJ_txt2obj(s, 0 /* search names */); |
327 | nid = OBJ_obj2nid(obj); |
328 | ASN1_OBJECT_free(obj); |
329 | return nid; |
330 | } |
331 | |
332 | OPENSSL_EXPORT int OBJ_nid2cbb(CBB *out, int nid) { |
333 | const ASN1_OBJECT *obj = OBJ_nid2obj(nid); |
334 | CBB oid; |
335 | |
336 | if (obj == NULL || |
337 | !CBB_add_asn1(out, &oid, CBS_ASN1_OBJECT) || |
338 | !CBB_add_bytes(&oid, obj->data, obj->length) || |
339 | !CBB_flush(out)) { |
340 | return 0; |
341 | } |
342 | |
343 | return 1; |
344 | } |
345 | |
346 | const ASN1_OBJECT *OBJ_nid2obj(int nid) { |
347 | if (nid >= 0 && nid < NUM_NID) { |
348 | if (nid != NID_undef && kObjects[nid].nid == NID_undef) { |
349 | goto err; |
350 | } |
351 | return &kObjects[nid]; |
352 | } |
353 | |
354 | CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock); |
355 | if (global_added_by_nid != NULL) { |
356 | ASN1_OBJECT *match, template; |
357 | |
358 | template.nid = nid; |
359 | match = lh_ASN1_OBJECT_retrieve(global_added_by_nid, &template); |
360 | if (match != NULL) { |
361 | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); |
362 | return match; |
363 | } |
364 | } |
365 | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); |
366 | |
367 | err: |
368 | OPENSSL_PUT_ERROR(OBJ, OBJ_R_UNKNOWN_NID); |
369 | return NULL; |
370 | } |
371 | |
372 | const char *OBJ_nid2sn(int nid) { |
373 | const ASN1_OBJECT *obj = OBJ_nid2obj(nid); |
374 | if (obj == NULL) { |
375 | return NULL; |
376 | } |
377 | |
378 | return obj->sn; |
379 | } |
380 | |
381 | const char *OBJ_nid2ln(int nid) { |
382 | const ASN1_OBJECT *obj = OBJ_nid2obj(nid); |
383 | if (obj == NULL) { |
384 | return NULL; |
385 | } |
386 | |
387 | return obj->ln; |
388 | } |
389 | |
390 | static ASN1_OBJECT *create_object_with_text_oid(int (*get_nid)(void), |
391 | const char *oid, |
392 | const char *short_name, |
393 | const char *long_name) { |
394 | uint8_t *buf; |
395 | size_t len; |
396 | CBB cbb; |
397 | if (!CBB_init(&cbb, 32) || |
398 | !CBB_add_asn1_oid_from_text(&cbb, oid, strlen(oid)) || |
399 | !CBB_finish(&cbb, &buf, &len)) { |
400 | OPENSSL_PUT_ERROR(OBJ, OBJ_R_INVALID_OID_STRING); |
401 | CBB_cleanup(&cbb); |
402 | return NULL; |
403 | } |
404 | |
405 | ASN1_OBJECT *ret = ASN1_OBJECT_create(get_nid ? get_nid() : NID_undef, buf, |
406 | len, short_name, long_name); |
407 | OPENSSL_free(buf); |
408 | return ret; |
409 | } |
410 | |
411 | ASN1_OBJECT *OBJ_txt2obj(const char *s, int dont_search_names) { |
412 | if (!dont_search_names) { |
413 | int nid = OBJ_sn2nid(s); |
414 | if (nid == NID_undef) { |
415 | nid = OBJ_ln2nid(s); |
416 | } |
417 | |
418 | if (nid != NID_undef) { |
419 | return (ASN1_OBJECT*) OBJ_nid2obj(nid); |
420 | } |
421 | } |
422 | |
423 | return create_object_with_text_oid(NULL, s, NULL, NULL); |
424 | } |
425 | |
426 | static int strlcpy_int(char *dst, const char *src, int dst_size) { |
427 | size_t ret = BUF_strlcpy(dst, src, dst_size < 0 ? 0 : (size_t)dst_size); |
428 | if (ret > INT_MAX) { |
429 | OPENSSL_PUT_ERROR(OBJ, ERR_R_OVERFLOW); |
430 | return -1; |
431 | } |
432 | return (int)ret; |
433 | } |
434 | |
435 | int OBJ_obj2txt(char *out, int out_len, const ASN1_OBJECT *obj, |
436 | int always_return_oid) { |
437 | // Python depends on the empty OID successfully encoding as the empty |
438 | // string. |
439 | if (obj == NULL || obj->length == 0) { |
440 | return strlcpy_int(out, "" , out_len); |
441 | } |
442 | |
443 | if (!always_return_oid) { |
444 | int nid = OBJ_obj2nid(obj); |
445 | if (nid != NID_undef) { |
446 | const char *name = OBJ_nid2ln(nid); |
447 | if (name == NULL) { |
448 | name = OBJ_nid2sn(nid); |
449 | } |
450 | if (name != NULL) { |
451 | return strlcpy_int(out, name, out_len); |
452 | } |
453 | } |
454 | } |
455 | |
456 | CBS cbs; |
457 | CBS_init(&cbs, obj->data, obj->length); |
458 | char *txt = CBS_asn1_oid_to_text(&cbs); |
459 | if (txt == NULL) { |
460 | if (out_len > 0) { |
461 | out[0] = '\0'; |
462 | } |
463 | return -1; |
464 | } |
465 | |
466 | int ret = strlcpy_int(out, txt, out_len); |
467 | OPENSSL_free(txt); |
468 | return ret; |
469 | } |
470 | |
471 | static uint32_t hash_nid(const ASN1_OBJECT *obj) { |
472 | return obj->nid; |
473 | } |
474 | |
475 | static int cmp_nid(const ASN1_OBJECT *a, const ASN1_OBJECT *b) { |
476 | return a->nid - b->nid; |
477 | } |
478 | |
479 | static uint32_t hash_data(const ASN1_OBJECT *obj) { |
480 | return OPENSSL_hash32(obj->data, obj->length); |
481 | } |
482 | |
483 | static int cmp_data(const ASN1_OBJECT *a, const ASN1_OBJECT *b) { |
484 | int i = a->length - b->length; |
485 | if (i) { |
486 | return i; |
487 | } |
488 | return OPENSSL_memcmp(a->data, b->data, a->length); |
489 | } |
490 | |
491 | static uint32_t hash_short_name(const ASN1_OBJECT *obj) { |
492 | return lh_strhash(obj->sn); |
493 | } |
494 | |
495 | static int cmp_short_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) { |
496 | return strcmp(a->sn, b->sn); |
497 | } |
498 | |
499 | static uint32_t hash_long_name(const ASN1_OBJECT *obj) { |
500 | return lh_strhash(obj->ln); |
501 | } |
502 | |
503 | static int cmp_long_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) { |
504 | return strcmp(a->ln, b->ln); |
505 | } |
506 | |
507 | // obj_add_object inserts |obj| into the various global hashes for run-time |
508 | // added objects. It returns one on success or zero otherwise. |
509 | static int obj_add_object(ASN1_OBJECT *obj) { |
510 | int ok; |
511 | ASN1_OBJECT *old_object; |
512 | |
513 | obj->flags &= ~(ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS | |
514 | ASN1_OBJECT_FLAG_DYNAMIC_DATA); |
515 | |
516 | CRYPTO_STATIC_MUTEX_lock_write(&global_added_lock); |
517 | if (global_added_by_nid == NULL) { |
518 | global_added_by_nid = lh_ASN1_OBJECT_new(hash_nid, cmp_nid); |
519 | global_added_by_data = lh_ASN1_OBJECT_new(hash_data, cmp_data); |
520 | global_added_by_short_name = lh_ASN1_OBJECT_new(hash_short_name, cmp_short_name); |
521 | global_added_by_long_name = lh_ASN1_OBJECT_new(hash_long_name, cmp_long_name); |
522 | } |
523 | |
524 | // We don't pay attention to |old_object| (which contains any previous object |
525 | // that was evicted from the hashes) because we don't have a reference count |
526 | // on ASN1_OBJECT values. Also, we should never have duplicates nids and so |
527 | // should always have objects in |global_added_by_nid|. |
528 | |
529 | ok = lh_ASN1_OBJECT_insert(global_added_by_nid, &old_object, obj); |
530 | if (obj->length != 0 && obj->data != NULL) { |
531 | ok &= lh_ASN1_OBJECT_insert(global_added_by_data, &old_object, obj); |
532 | } |
533 | if (obj->sn != NULL) { |
534 | ok &= lh_ASN1_OBJECT_insert(global_added_by_short_name, &old_object, obj); |
535 | } |
536 | if (obj->ln != NULL) { |
537 | ok &= lh_ASN1_OBJECT_insert(global_added_by_long_name, &old_object, obj); |
538 | } |
539 | CRYPTO_STATIC_MUTEX_unlock_write(&global_added_lock); |
540 | |
541 | return ok; |
542 | } |
543 | |
544 | int OBJ_create(const char *oid, const char *short_name, const char *long_name) { |
545 | ASN1_OBJECT *op = |
546 | create_object_with_text_oid(obj_next_nid, oid, short_name, long_name); |
547 | if (op == NULL || |
548 | !obj_add_object(op)) { |
549 | return NID_undef; |
550 | } |
551 | return op->nid; |
552 | } |
553 | |
554 | void OBJ_cleanup(void) {} |
555 | |