| 1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 2 | * All rights reserved. |
| 3 | * |
| 4 | * This package is an SSL implementation written |
| 5 | * by Eric Young (eay@cryptsoft.com). |
| 6 | * The implementation was written so as to conform with Netscapes SSL. |
| 7 | * |
| 8 | * This library is free for commercial and non-commercial use as long as |
| 9 | * the following conditions are aheared to. The following conditions |
| 10 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 12 | * included with this distribution is covered by the same copyright terms |
| 13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 14 | * |
| 15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 16 | * the code are not to be removed. |
| 17 | * If this package is used in a product, Eric Young should be given attribution |
| 18 | * as the author of the parts of the library used. |
| 19 | * This can be in the form of a textual message at program startup or |
| 20 | * in documentation (online or textual) provided with the package. |
| 21 | * |
| 22 | * Redistribution and use in source and binary forms, with or without |
| 23 | * modification, are permitted provided that the following conditions |
| 24 | * are met: |
| 25 | * 1. Redistributions of source code must retain the copyright |
| 26 | * notice, this list of conditions and the following disclaimer. |
| 27 | * 2. Redistributions in binary form must reproduce the above copyright |
| 28 | * notice, this list of conditions and the following disclaimer in the |
| 29 | * documentation and/or other materials provided with the distribution. |
| 30 | * 3. All advertising materials mentioning features or use of this software |
| 31 | * must display the following acknowledgement: |
| 32 | * "This product includes cryptographic software written by |
| 33 | * Eric Young (eay@cryptsoft.com)" |
| 34 | * The word 'cryptographic' can be left out if the rouines from the library |
| 35 | * being used are not cryptographic related :-). |
| 36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 37 | * the apps directory (application code) you must include an acknowledgement: |
| 38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 39 | * |
| 40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 50 | * SUCH DAMAGE. |
| 51 | * |
| 52 | * The licence and distribution terms for any publically available version or |
| 53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 54 | * copied and put under another distribution licence |
| 55 | * [including the GNU Public Licence.] */ |
| 56 | |
| 57 | #include <openssl/obj.h> |
| 58 | |
| 59 | #include <inttypes.h> |
| 60 | #include <limits.h> |
| 61 | #include <string.h> |
| 62 | |
| 63 | #include <openssl/asn1.h> |
| 64 | #include <openssl/buf.h> |
| 65 | #include <openssl/bytestring.h> |
| 66 | #include <openssl/err.h> |
| 67 | #include <openssl/lhash.h> |
| 68 | #include <openssl/mem.h> |
| 69 | #include <openssl/thread.h> |
| 70 | |
| 71 | #include "obj_dat.h" |
| 72 | #include "../internal.h" |
| 73 | |
| 74 | |
| 75 | DEFINE_LHASH_OF(ASN1_OBJECT) |
| 76 | |
| 77 | static struct CRYPTO_STATIC_MUTEX global_added_lock = CRYPTO_STATIC_MUTEX_INIT; |
| 78 | // These globals are protected by |global_added_lock|. |
| 79 | static LHASH_OF(ASN1_OBJECT) *global_added_by_data = NULL; |
| 80 | static LHASH_OF(ASN1_OBJECT) *global_added_by_nid = NULL; |
| 81 | static LHASH_OF(ASN1_OBJECT) *global_added_by_short_name = NULL; |
| 82 | static LHASH_OF(ASN1_OBJECT) *global_added_by_long_name = NULL; |
| 83 | |
| 84 | static struct CRYPTO_STATIC_MUTEX global_next_nid_lock = |
| 85 | CRYPTO_STATIC_MUTEX_INIT; |
| 86 | static unsigned global_next_nid = NUM_NID; |
| 87 | |
| 88 | static int obj_next_nid(void) { |
| 89 | int ret; |
| 90 | |
| 91 | CRYPTO_STATIC_MUTEX_lock_write(&global_next_nid_lock); |
| 92 | ret = global_next_nid++; |
| 93 | CRYPTO_STATIC_MUTEX_unlock_write(&global_next_nid_lock); |
| 94 | |
| 95 | return ret; |
| 96 | } |
| 97 | |
| 98 | ASN1_OBJECT *OBJ_dup(const ASN1_OBJECT *o) { |
| 99 | ASN1_OBJECT *r; |
| 100 | unsigned char *data = NULL; |
| 101 | char *sn = NULL, *ln = NULL; |
| 102 | |
| 103 | if (o == NULL) { |
| 104 | return NULL; |
| 105 | } |
| 106 | |
| 107 | if (!(o->flags & ASN1_OBJECT_FLAG_DYNAMIC)) { |
| 108 | // TODO(fork): this is a little dangerous. |
| 109 | return (ASN1_OBJECT *)o; |
| 110 | } |
| 111 | |
| 112 | r = ASN1_OBJECT_new(); |
| 113 | if (r == NULL) { |
| 114 | OPENSSL_PUT_ERROR(OBJ, ERR_R_ASN1_LIB); |
| 115 | return NULL; |
| 116 | } |
| 117 | r->ln = r->sn = NULL; |
| 118 | |
| 119 | data = OPENSSL_malloc(o->length); |
| 120 | if (data == NULL) { |
| 121 | goto err; |
| 122 | } |
| 123 | if (o->data != NULL) { |
| 124 | OPENSSL_memcpy(data, o->data, o->length); |
| 125 | } |
| 126 | |
| 127 | // once data is attached to an object, it remains const |
| 128 | r->data = data; |
| 129 | r->length = o->length; |
| 130 | r->nid = o->nid; |
| 131 | |
| 132 | if (o->ln != NULL) { |
| 133 | ln = OPENSSL_strdup(o->ln); |
| 134 | if (ln == NULL) { |
| 135 | goto err; |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | if (o->sn != NULL) { |
| 140 | sn = OPENSSL_strdup(o->sn); |
| 141 | if (sn == NULL) { |
| 142 | goto err; |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | r->sn = sn; |
| 147 | r->ln = ln; |
| 148 | |
| 149 | r->flags = |
| 150 | o->flags | (ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS | |
| 151 | ASN1_OBJECT_FLAG_DYNAMIC_DATA); |
| 152 | return r; |
| 153 | |
| 154 | err: |
| 155 | OPENSSL_PUT_ERROR(OBJ, ERR_R_MALLOC_FAILURE); |
| 156 | OPENSSL_free(ln); |
| 157 | OPENSSL_free(sn); |
| 158 | OPENSSL_free(data); |
| 159 | OPENSSL_free(r); |
| 160 | return NULL; |
| 161 | } |
| 162 | |
| 163 | int OBJ_cmp(const ASN1_OBJECT *a, const ASN1_OBJECT *b) { |
| 164 | int ret; |
| 165 | |
| 166 | ret = a->length - b->length; |
| 167 | if (ret) { |
| 168 | return ret; |
| 169 | } |
| 170 | return OPENSSL_memcmp(a->data, b->data, a->length); |
| 171 | } |
| 172 | |
| 173 | const uint8_t *OBJ_get0_data(const ASN1_OBJECT *obj) { |
| 174 | if (obj == NULL) { |
| 175 | return NULL; |
| 176 | } |
| 177 | |
| 178 | return obj->data; |
| 179 | } |
| 180 | |
| 181 | size_t OBJ_length(const ASN1_OBJECT *obj) { |
| 182 | if (obj == NULL || obj->length < 0) { |
| 183 | return 0; |
| 184 | } |
| 185 | |
| 186 | return (size_t)obj->length; |
| 187 | } |
| 188 | |
| 189 | // obj_cmp is called to search the kNIDsInOIDOrder array. The |key| argument is |
| 190 | // an |ASN1_OBJECT|* that we're looking for and |element| is a pointer to an |
| 191 | // unsigned int in the array. |
| 192 | static int obj_cmp(const void *key, const void *element) { |
| 193 | unsigned nid = *((const unsigned*) element); |
| 194 | const ASN1_OBJECT *a = key; |
| 195 | const ASN1_OBJECT *b = &kObjects[nid]; |
| 196 | |
| 197 | if (a->length < b->length) { |
| 198 | return -1; |
| 199 | } else if (a->length > b->length) { |
| 200 | return 1; |
| 201 | } |
| 202 | return OPENSSL_memcmp(a->data, b->data, a->length); |
| 203 | } |
| 204 | |
| 205 | int OBJ_obj2nid(const ASN1_OBJECT *obj) { |
| 206 | const unsigned int *nid_ptr; |
| 207 | |
| 208 | if (obj == NULL) { |
| 209 | return NID_undef; |
| 210 | } |
| 211 | |
| 212 | if (obj->nid != 0) { |
| 213 | return obj->nid; |
| 214 | } |
| 215 | |
| 216 | CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock); |
| 217 | if (global_added_by_data != NULL) { |
| 218 | ASN1_OBJECT *match; |
| 219 | |
| 220 | match = lh_ASN1_OBJECT_retrieve(global_added_by_data, obj); |
| 221 | if (match != NULL) { |
| 222 | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); |
| 223 | return match->nid; |
| 224 | } |
| 225 | } |
| 226 | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); |
| 227 | |
| 228 | nid_ptr = bsearch(obj, kNIDsInOIDOrder, OPENSSL_ARRAY_SIZE(kNIDsInOIDOrder), |
| 229 | sizeof(kNIDsInOIDOrder[0]), obj_cmp); |
| 230 | if (nid_ptr == NULL) { |
| 231 | return NID_undef; |
| 232 | } |
| 233 | |
| 234 | return kObjects[*nid_ptr].nid; |
| 235 | } |
| 236 | |
| 237 | int OBJ_cbs2nid(const CBS *cbs) { |
| 238 | if (CBS_len(cbs) > INT_MAX) { |
| 239 | return NID_undef; |
| 240 | } |
| 241 | |
| 242 | ASN1_OBJECT obj; |
| 243 | OPENSSL_memset(&obj, 0, sizeof(obj)); |
| 244 | obj.data = CBS_data(cbs); |
| 245 | obj.length = (int)CBS_len(cbs); |
| 246 | |
| 247 | return OBJ_obj2nid(&obj); |
| 248 | } |
| 249 | |
| 250 | // short_name_cmp is called to search the kNIDsInShortNameOrder array. The |
| 251 | // |key| argument is name that we're looking for and |element| is a pointer to |
| 252 | // an unsigned int in the array. |
| 253 | static int short_name_cmp(const void *key, const void *element) { |
| 254 | const char *name = (const char *) key; |
| 255 | unsigned nid = *((unsigned*) element); |
| 256 | |
| 257 | return strcmp(name, kObjects[nid].sn); |
| 258 | } |
| 259 | |
| 260 | int OBJ_sn2nid(const char *short_name) { |
| 261 | const unsigned int *nid_ptr; |
| 262 | |
| 263 | CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock); |
| 264 | if (global_added_by_short_name != NULL) { |
| 265 | ASN1_OBJECT *match, template; |
| 266 | |
| 267 | template.sn = short_name; |
| 268 | match = lh_ASN1_OBJECT_retrieve(global_added_by_short_name, &template); |
| 269 | if (match != NULL) { |
| 270 | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); |
| 271 | return match->nid; |
| 272 | } |
| 273 | } |
| 274 | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); |
| 275 | |
| 276 | nid_ptr = bsearch(short_name, kNIDsInShortNameOrder, |
| 277 | OPENSSL_ARRAY_SIZE(kNIDsInShortNameOrder), |
| 278 | sizeof(kNIDsInShortNameOrder[0]), short_name_cmp); |
| 279 | if (nid_ptr == NULL) { |
| 280 | return NID_undef; |
| 281 | } |
| 282 | |
| 283 | return kObjects[*nid_ptr].nid; |
| 284 | } |
| 285 | |
| 286 | // long_name_cmp is called to search the kNIDsInLongNameOrder array. The |
| 287 | // |key| argument is name that we're looking for and |element| is a pointer to |
| 288 | // an unsigned int in the array. |
| 289 | static int long_name_cmp(const void *key, const void *element) { |
| 290 | const char *name = (const char *) key; |
| 291 | unsigned nid = *((unsigned*) element); |
| 292 | |
| 293 | return strcmp(name, kObjects[nid].ln); |
| 294 | } |
| 295 | |
| 296 | int OBJ_ln2nid(const char *long_name) { |
| 297 | const unsigned int *nid_ptr; |
| 298 | |
| 299 | CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock); |
| 300 | if (global_added_by_long_name != NULL) { |
| 301 | ASN1_OBJECT *match, template; |
| 302 | |
| 303 | template.ln = long_name; |
| 304 | match = lh_ASN1_OBJECT_retrieve(global_added_by_long_name, &template); |
| 305 | if (match != NULL) { |
| 306 | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); |
| 307 | return match->nid; |
| 308 | } |
| 309 | } |
| 310 | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); |
| 311 | |
| 312 | nid_ptr = bsearch(long_name, kNIDsInLongNameOrder, |
| 313 | OPENSSL_ARRAY_SIZE(kNIDsInLongNameOrder), |
| 314 | sizeof(kNIDsInLongNameOrder[0]), long_name_cmp); |
| 315 | if (nid_ptr == NULL) { |
| 316 | return NID_undef; |
| 317 | } |
| 318 | |
| 319 | return kObjects[*nid_ptr].nid; |
| 320 | } |
| 321 | |
| 322 | int OBJ_txt2nid(const char *s) { |
| 323 | ASN1_OBJECT *obj; |
| 324 | int nid; |
| 325 | |
| 326 | obj = OBJ_txt2obj(s, 0 /* search names */); |
| 327 | nid = OBJ_obj2nid(obj); |
| 328 | ASN1_OBJECT_free(obj); |
| 329 | return nid; |
| 330 | } |
| 331 | |
| 332 | OPENSSL_EXPORT int OBJ_nid2cbb(CBB *out, int nid) { |
| 333 | const ASN1_OBJECT *obj = OBJ_nid2obj(nid); |
| 334 | CBB oid; |
| 335 | |
| 336 | if (obj == NULL || |
| 337 | !CBB_add_asn1(out, &oid, CBS_ASN1_OBJECT) || |
| 338 | !CBB_add_bytes(&oid, obj->data, obj->length) || |
| 339 | !CBB_flush(out)) { |
| 340 | return 0; |
| 341 | } |
| 342 | |
| 343 | return 1; |
| 344 | } |
| 345 | |
| 346 | const ASN1_OBJECT *OBJ_nid2obj(int nid) { |
| 347 | if (nid >= 0 && nid < NUM_NID) { |
| 348 | if (nid != NID_undef && kObjects[nid].nid == NID_undef) { |
| 349 | goto err; |
| 350 | } |
| 351 | return &kObjects[nid]; |
| 352 | } |
| 353 | |
| 354 | CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock); |
| 355 | if (global_added_by_nid != NULL) { |
| 356 | ASN1_OBJECT *match, template; |
| 357 | |
| 358 | template.nid = nid; |
| 359 | match = lh_ASN1_OBJECT_retrieve(global_added_by_nid, &template); |
| 360 | if (match != NULL) { |
| 361 | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); |
| 362 | return match; |
| 363 | } |
| 364 | } |
| 365 | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); |
| 366 | |
| 367 | err: |
| 368 | OPENSSL_PUT_ERROR(OBJ, OBJ_R_UNKNOWN_NID); |
| 369 | return NULL; |
| 370 | } |
| 371 | |
| 372 | const char *OBJ_nid2sn(int nid) { |
| 373 | const ASN1_OBJECT *obj = OBJ_nid2obj(nid); |
| 374 | if (obj == NULL) { |
| 375 | return NULL; |
| 376 | } |
| 377 | |
| 378 | return obj->sn; |
| 379 | } |
| 380 | |
| 381 | const char *OBJ_nid2ln(int nid) { |
| 382 | const ASN1_OBJECT *obj = OBJ_nid2obj(nid); |
| 383 | if (obj == NULL) { |
| 384 | return NULL; |
| 385 | } |
| 386 | |
| 387 | return obj->ln; |
| 388 | } |
| 389 | |
| 390 | static ASN1_OBJECT *create_object_with_text_oid(int (*get_nid)(void), |
| 391 | const char *oid, |
| 392 | const char *short_name, |
| 393 | const char *long_name) { |
| 394 | uint8_t *buf; |
| 395 | size_t len; |
| 396 | CBB cbb; |
| 397 | if (!CBB_init(&cbb, 32) || |
| 398 | !CBB_add_asn1_oid_from_text(&cbb, oid, strlen(oid)) || |
| 399 | !CBB_finish(&cbb, &buf, &len)) { |
| 400 | OPENSSL_PUT_ERROR(OBJ, OBJ_R_INVALID_OID_STRING); |
| 401 | CBB_cleanup(&cbb); |
| 402 | return NULL; |
| 403 | } |
| 404 | |
| 405 | ASN1_OBJECT *ret = ASN1_OBJECT_create(get_nid ? get_nid() : NID_undef, buf, |
| 406 | len, short_name, long_name); |
| 407 | OPENSSL_free(buf); |
| 408 | return ret; |
| 409 | } |
| 410 | |
| 411 | ASN1_OBJECT *OBJ_txt2obj(const char *s, int dont_search_names) { |
| 412 | if (!dont_search_names) { |
| 413 | int nid = OBJ_sn2nid(s); |
| 414 | if (nid == NID_undef) { |
| 415 | nid = OBJ_ln2nid(s); |
| 416 | } |
| 417 | |
| 418 | if (nid != NID_undef) { |
| 419 | return (ASN1_OBJECT*) OBJ_nid2obj(nid); |
| 420 | } |
| 421 | } |
| 422 | |
| 423 | return create_object_with_text_oid(NULL, s, NULL, NULL); |
| 424 | } |
| 425 | |
| 426 | static int strlcpy_int(char *dst, const char *src, int dst_size) { |
| 427 | size_t ret = BUF_strlcpy(dst, src, dst_size < 0 ? 0 : (size_t)dst_size); |
| 428 | if (ret > INT_MAX) { |
| 429 | OPENSSL_PUT_ERROR(OBJ, ERR_R_OVERFLOW); |
| 430 | return -1; |
| 431 | } |
| 432 | return (int)ret; |
| 433 | } |
| 434 | |
| 435 | int OBJ_obj2txt(char *out, int out_len, const ASN1_OBJECT *obj, |
| 436 | int always_return_oid) { |
| 437 | // Python depends on the empty OID successfully encoding as the empty |
| 438 | // string. |
| 439 | if (obj == NULL || obj->length == 0) { |
| 440 | return strlcpy_int(out, "" , out_len); |
| 441 | } |
| 442 | |
| 443 | if (!always_return_oid) { |
| 444 | int nid = OBJ_obj2nid(obj); |
| 445 | if (nid != NID_undef) { |
| 446 | const char *name = OBJ_nid2ln(nid); |
| 447 | if (name == NULL) { |
| 448 | name = OBJ_nid2sn(nid); |
| 449 | } |
| 450 | if (name != NULL) { |
| 451 | return strlcpy_int(out, name, out_len); |
| 452 | } |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | CBS cbs; |
| 457 | CBS_init(&cbs, obj->data, obj->length); |
| 458 | char *txt = CBS_asn1_oid_to_text(&cbs); |
| 459 | if (txt == NULL) { |
| 460 | if (out_len > 0) { |
| 461 | out[0] = '\0'; |
| 462 | } |
| 463 | return -1; |
| 464 | } |
| 465 | |
| 466 | int ret = strlcpy_int(out, txt, out_len); |
| 467 | OPENSSL_free(txt); |
| 468 | return ret; |
| 469 | } |
| 470 | |
| 471 | static uint32_t hash_nid(const ASN1_OBJECT *obj) { |
| 472 | return obj->nid; |
| 473 | } |
| 474 | |
| 475 | static int cmp_nid(const ASN1_OBJECT *a, const ASN1_OBJECT *b) { |
| 476 | return a->nid - b->nid; |
| 477 | } |
| 478 | |
| 479 | static uint32_t hash_data(const ASN1_OBJECT *obj) { |
| 480 | return OPENSSL_hash32(obj->data, obj->length); |
| 481 | } |
| 482 | |
| 483 | static int cmp_data(const ASN1_OBJECT *a, const ASN1_OBJECT *b) { |
| 484 | int i = a->length - b->length; |
| 485 | if (i) { |
| 486 | return i; |
| 487 | } |
| 488 | return OPENSSL_memcmp(a->data, b->data, a->length); |
| 489 | } |
| 490 | |
| 491 | static uint32_t hash_short_name(const ASN1_OBJECT *obj) { |
| 492 | return lh_strhash(obj->sn); |
| 493 | } |
| 494 | |
| 495 | static int cmp_short_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) { |
| 496 | return strcmp(a->sn, b->sn); |
| 497 | } |
| 498 | |
| 499 | static uint32_t hash_long_name(const ASN1_OBJECT *obj) { |
| 500 | return lh_strhash(obj->ln); |
| 501 | } |
| 502 | |
| 503 | static int cmp_long_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) { |
| 504 | return strcmp(a->ln, b->ln); |
| 505 | } |
| 506 | |
| 507 | // obj_add_object inserts |obj| into the various global hashes for run-time |
| 508 | // added objects. It returns one on success or zero otherwise. |
| 509 | static int obj_add_object(ASN1_OBJECT *obj) { |
| 510 | int ok; |
| 511 | ASN1_OBJECT *old_object; |
| 512 | |
| 513 | obj->flags &= ~(ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS | |
| 514 | ASN1_OBJECT_FLAG_DYNAMIC_DATA); |
| 515 | |
| 516 | CRYPTO_STATIC_MUTEX_lock_write(&global_added_lock); |
| 517 | if (global_added_by_nid == NULL) { |
| 518 | global_added_by_nid = lh_ASN1_OBJECT_new(hash_nid, cmp_nid); |
| 519 | global_added_by_data = lh_ASN1_OBJECT_new(hash_data, cmp_data); |
| 520 | global_added_by_short_name = lh_ASN1_OBJECT_new(hash_short_name, cmp_short_name); |
| 521 | global_added_by_long_name = lh_ASN1_OBJECT_new(hash_long_name, cmp_long_name); |
| 522 | } |
| 523 | |
| 524 | // We don't pay attention to |old_object| (which contains any previous object |
| 525 | // that was evicted from the hashes) because we don't have a reference count |
| 526 | // on ASN1_OBJECT values. Also, we should never have duplicates nids and so |
| 527 | // should always have objects in |global_added_by_nid|. |
| 528 | |
| 529 | ok = lh_ASN1_OBJECT_insert(global_added_by_nid, &old_object, obj); |
| 530 | if (obj->length != 0 && obj->data != NULL) { |
| 531 | ok &= lh_ASN1_OBJECT_insert(global_added_by_data, &old_object, obj); |
| 532 | } |
| 533 | if (obj->sn != NULL) { |
| 534 | ok &= lh_ASN1_OBJECT_insert(global_added_by_short_name, &old_object, obj); |
| 535 | } |
| 536 | if (obj->ln != NULL) { |
| 537 | ok &= lh_ASN1_OBJECT_insert(global_added_by_long_name, &old_object, obj); |
| 538 | } |
| 539 | CRYPTO_STATIC_MUTEX_unlock_write(&global_added_lock); |
| 540 | |
| 541 | return ok; |
| 542 | } |
| 543 | |
| 544 | int OBJ_create(const char *oid, const char *short_name, const char *long_name) { |
| 545 | ASN1_OBJECT *op = |
| 546 | create_object_with_text_oid(obj_next_nid, oid, short_name, long_name); |
| 547 | if (op == NULL || |
| 548 | !obj_add_object(op)) { |
| 549 | return NID_undef; |
| 550 | } |
| 551 | return op->nid; |
| 552 | } |
| 553 | |
| 554 | void OBJ_cleanup(void) {} |
| 555 | |