| 1 | /* crypto/pem/pem_lib.c */ |
| 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * This package is an SSL implementation written |
| 6 | * by Eric Young (eay@cryptsoft.com). |
| 7 | * The implementation was written so as to conform with Netscapes SSL. |
| 8 | * |
| 9 | * This library is free for commercial and non-commercial use as long as |
| 10 | * the following conditions are aheared to. The following conditions |
| 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 13 | * included with this distribution is covered by the same copyright terms |
| 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 15 | * |
| 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 17 | * the code are not to be removed. |
| 18 | * If this package is used in a product, Eric Young should be given attribution |
| 19 | * as the author of the parts of the library used. |
| 20 | * This can be in the form of a textual message at program startup or |
| 21 | * in documentation (online or textual) provided with the package. |
| 22 | * |
| 23 | * Redistribution and use in source and binary forms, with or without |
| 24 | * modification, are permitted provided that the following conditions |
| 25 | * are met: |
| 26 | * 1. Redistributions of source code must retain the copyright |
| 27 | * notice, this list of conditions and the following disclaimer. |
| 28 | * 2. Redistributions in binary form must reproduce the above copyright |
| 29 | * notice, this list of conditions and the following disclaimer in the |
| 30 | * documentation and/or other materials provided with the distribution. |
| 31 | * 3. All advertising materials mentioning features or use of this software |
| 32 | * must display the following acknowledgement: |
| 33 | * "This product includes cryptographic software written by |
| 34 | * Eric Young (eay@cryptsoft.com)" |
| 35 | * The word 'cryptographic' can be left out if the rouines from the library |
| 36 | * being used are not cryptographic related :-). |
| 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 38 | * the apps directory (application code) you must include an acknowledgement: |
| 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 40 | * |
| 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 51 | * SUCH DAMAGE. |
| 52 | * |
| 53 | * The licence and distribution terms for any publically available version or |
| 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 55 | * copied and put under another distribution licence |
| 56 | * [including the GNU Public Licence.] */ |
| 57 | |
| 58 | #include <assert.h> |
| 59 | #include <ctype.h> |
| 60 | #include <stdio.h> |
| 61 | #include <string.h> |
| 62 | |
| 63 | #include <openssl/base64.h> |
| 64 | #include <openssl/buf.h> |
| 65 | #include <openssl/des.h> |
| 66 | #include <openssl/err.h> |
| 67 | #include <openssl/evp.h> |
| 68 | #include <openssl/mem.h> |
| 69 | #include <openssl/obj.h> |
| 70 | #include <openssl/pem.h> |
| 71 | #include <openssl/rand.h> |
| 72 | #include <openssl/x509.h> |
| 73 | |
| 74 | #include "../internal.h" |
| 75 | |
| 76 | |
| 77 | #define MIN_LENGTH 4 |
| 78 | |
| 79 | static int load_iv(char **fromp, unsigned char *to, int num); |
| 80 | static int check_pem(const char *nm, const char *name); |
| 81 | |
| 82 | void PEM_proc_type(char *buf, int type) |
| 83 | { |
| 84 | const char *str; |
| 85 | |
| 86 | if (type == PEM_TYPE_ENCRYPTED) |
| 87 | str = "ENCRYPTED" ; |
| 88 | else if (type == PEM_TYPE_MIC_CLEAR) |
| 89 | str = "MIC-CLEAR" ; |
| 90 | else if (type == PEM_TYPE_MIC_ONLY) |
| 91 | str = "MIC-ONLY" ; |
| 92 | else |
| 93 | str = "BAD-TYPE" ; |
| 94 | |
| 95 | BUF_strlcat(buf, "Proc-Type: 4," , PEM_BUFSIZE); |
| 96 | BUF_strlcat(buf, str, PEM_BUFSIZE); |
| 97 | BUF_strlcat(buf, "\n" , PEM_BUFSIZE); |
| 98 | } |
| 99 | |
| 100 | void PEM_dek_info(char *buf, const char *type, int len, char *str) |
| 101 | { |
| 102 | static const unsigned char map[17] = "0123456789ABCDEF" ; |
| 103 | long i; |
| 104 | int j; |
| 105 | |
| 106 | BUF_strlcat(buf, "DEK-Info: " , PEM_BUFSIZE); |
| 107 | BUF_strlcat(buf, type, PEM_BUFSIZE); |
| 108 | BUF_strlcat(buf, "," , PEM_BUFSIZE); |
| 109 | j = strlen(buf); |
| 110 | if (j + (len * 2) + 1 > PEM_BUFSIZE) |
| 111 | return; |
| 112 | for (i = 0; i < len; i++) { |
| 113 | buf[j + i * 2] = map[(str[i] >> 4) & 0x0f]; |
| 114 | buf[j + i * 2 + 1] = map[(str[i]) & 0x0f]; |
| 115 | } |
| 116 | buf[j + i * 2] = '\n'; |
| 117 | buf[j + i * 2 + 1] = '\0'; |
| 118 | } |
| 119 | |
| 120 | #ifndef OPENSSL_NO_FP_API |
| 121 | void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x, |
| 122 | pem_password_cb *cb, void *u) |
| 123 | { |
| 124 | BIO *b = BIO_new_fp(fp, BIO_NOCLOSE); |
| 125 | if (b == NULL) { |
| 126 | OPENSSL_PUT_ERROR(PEM, ERR_R_BUF_LIB); |
| 127 | return NULL; |
| 128 | } |
| 129 | void *ret = PEM_ASN1_read_bio(d2i, name, b, x, cb, u); |
| 130 | BIO_free(b); |
| 131 | return ret; |
| 132 | } |
| 133 | #endif |
| 134 | |
| 135 | static int check_pem(const char *nm, const char *name) |
| 136 | { |
| 137 | /* Normal matching nm and name */ |
| 138 | if (!strcmp(nm, name)) |
| 139 | return 1; |
| 140 | |
| 141 | /* Make PEM_STRING_EVP_PKEY match any private key */ |
| 142 | |
| 143 | if (!strcmp(name, PEM_STRING_EVP_PKEY)) { |
| 144 | return !strcmp(nm, PEM_STRING_PKCS8) || |
| 145 | !strcmp(nm, PEM_STRING_PKCS8INF) || |
| 146 | !strcmp(nm, PEM_STRING_RSA) || |
| 147 | !strcmp(nm, PEM_STRING_EC) || |
| 148 | !strcmp(nm, PEM_STRING_DSA); |
| 149 | } |
| 150 | |
| 151 | /* Permit older strings */ |
| 152 | |
| 153 | if (!strcmp(nm, PEM_STRING_X509_OLD) && !strcmp(name, PEM_STRING_X509)) |
| 154 | return 1; |
| 155 | |
| 156 | if (!strcmp(nm, PEM_STRING_X509_REQ_OLD) && |
| 157 | !strcmp(name, PEM_STRING_X509_REQ)) |
| 158 | return 1; |
| 159 | |
| 160 | /* Allow normal certs to be read as trusted certs */ |
| 161 | if (!strcmp(nm, PEM_STRING_X509) && |
| 162 | !strcmp(name, PEM_STRING_X509_TRUSTED)) |
| 163 | return 1; |
| 164 | |
| 165 | if (!strcmp(nm, PEM_STRING_X509_OLD) && |
| 166 | !strcmp(name, PEM_STRING_X509_TRUSTED)) |
| 167 | return 1; |
| 168 | |
| 169 | /* Some CAs use PKCS#7 with CERTIFICATE headers */ |
| 170 | if (!strcmp(nm, PEM_STRING_X509) && !strcmp(name, PEM_STRING_PKCS7)) |
| 171 | return 1; |
| 172 | |
| 173 | if (!strcmp(nm, PEM_STRING_PKCS7_SIGNED) && |
| 174 | !strcmp(name, PEM_STRING_PKCS7)) |
| 175 | return 1; |
| 176 | |
| 177 | #ifndef OPENSSL_NO_CMS |
| 178 | if (!strcmp(nm, PEM_STRING_X509) && !strcmp(name, PEM_STRING_CMS)) |
| 179 | return 1; |
| 180 | /* Allow CMS to be read from PKCS#7 headers */ |
| 181 | if (!strcmp(nm, PEM_STRING_PKCS7) && !strcmp(name, PEM_STRING_CMS)) |
| 182 | return 1; |
| 183 | #endif |
| 184 | |
| 185 | return 0; |
| 186 | } |
| 187 | |
| 188 | static const EVP_CIPHER *cipher_by_name(const char *name) |
| 189 | { |
| 190 | /* This is similar to the (deprecated) function |EVP_get_cipherbyname|. Note |
| 191 | * the PEM code assumes that ciphers have at least 8 bytes of IV, at most 20 |
| 192 | * bytes of overhead and generally behave like CBC mode. */ |
| 193 | if (0 == strcmp(name, SN_des_cbc)) { |
| 194 | return EVP_des_cbc(); |
| 195 | } else if (0 == strcmp(name, SN_des_ede3_cbc)) { |
| 196 | return EVP_des_ede3_cbc(); |
| 197 | } else if (0 == strcmp(name, SN_aes_128_cbc)) { |
| 198 | return EVP_aes_128_cbc(); |
| 199 | } else if (0 == strcmp(name, SN_aes_192_cbc)) { |
| 200 | return EVP_aes_192_cbc(); |
| 201 | } else if (0 == strcmp(name, SN_aes_256_cbc)) { |
| 202 | return EVP_aes_256_cbc(); |
| 203 | } else { |
| 204 | return NULL; |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, |
| 209 | const char *name, BIO *bp, pem_password_cb *cb, |
| 210 | void *u) |
| 211 | { |
| 212 | EVP_CIPHER_INFO cipher; |
| 213 | char *nm = NULL, * = NULL; |
| 214 | unsigned char *data = NULL; |
| 215 | long len; |
| 216 | int ret = 0; |
| 217 | |
| 218 | for (;;) { |
| 219 | if (!PEM_read_bio(bp, &nm, &header, &data, &len)) { |
| 220 | uint32_t error = ERR_peek_error(); |
| 221 | if (ERR_GET_LIB(error) == ERR_LIB_PEM && |
| 222 | ERR_GET_REASON(error) == PEM_R_NO_START_LINE) { |
| 223 | ERR_add_error_data(2, "Expecting: " , name); |
| 224 | } |
| 225 | return 0; |
| 226 | } |
| 227 | if (check_pem(nm, name)) |
| 228 | break; |
| 229 | OPENSSL_free(nm); |
| 230 | OPENSSL_free(header); |
| 231 | OPENSSL_free(data); |
| 232 | } |
| 233 | if (!PEM_get_EVP_CIPHER_INFO(header, &cipher)) |
| 234 | goto err; |
| 235 | if (!PEM_do_header(&cipher, data, &len, cb, u)) |
| 236 | goto err; |
| 237 | |
| 238 | *pdata = data; |
| 239 | *plen = len; |
| 240 | |
| 241 | if (pnm) |
| 242 | *pnm = nm; |
| 243 | |
| 244 | ret = 1; |
| 245 | |
| 246 | err: |
| 247 | if (!ret || !pnm) |
| 248 | OPENSSL_free(nm); |
| 249 | OPENSSL_free(header); |
| 250 | if (!ret) |
| 251 | OPENSSL_free(data); |
| 252 | return ret; |
| 253 | } |
| 254 | |
| 255 | #ifndef OPENSSL_NO_FP_API |
| 256 | int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp, |
| 257 | void *x, const EVP_CIPHER *enc, unsigned char *kstr, |
| 258 | int klen, pem_password_cb *callback, void *u) |
| 259 | { |
| 260 | BIO *b = BIO_new_fp(fp, BIO_NOCLOSE); |
| 261 | if (b == NULL) { |
| 262 | OPENSSL_PUT_ERROR(PEM, ERR_R_BUF_LIB); |
| 263 | return 0; |
| 264 | } |
| 265 | int ret = PEM_ASN1_write_bio(i2d, name, b, x, enc, kstr, klen, callback, u); |
| 266 | BIO_free(b); |
| 267 | return ret; |
| 268 | } |
| 269 | #endif |
| 270 | |
| 271 | int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp, |
| 272 | void *x, const EVP_CIPHER *enc, unsigned char *kstr, |
| 273 | int klen, pem_password_cb *callback, void *u) |
| 274 | { |
| 275 | EVP_CIPHER_CTX ctx; |
| 276 | int dsize = 0, i, j, ret = 0; |
| 277 | unsigned char *p, *data = NULL; |
| 278 | const char *objstr = NULL; |
| 279 | char buf[PEM_BUFSIZE]; |
| 280 | unsigned char key[EVP_MAX_KEY_LENGTH]; |
| 281 | unsigned char iv[EVP_MAX_IV_LENGTH]; |
| 282 | |
| 283 | if (enc != NULL) { |
| 284 | objstr = OBJ_nid2sn(EVP_CIPHER_nid(enc)); |
| 285 | if (objstr == NULL || |
| 286 | cipher_by_name(objstr) == NULL || |
| 287 | EVP_CIPHER_iv_length(enc) < 8) { |
| 288 | OPENSSL_PUT_ERROR(PEM, PEM_R_UNSUPPORTED_CIPHER); |
| 289 | goto err; |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | if ((dsize = i2d(x, NULL)) < 0) { |
| 294 | OPENSSL_PUT_ERROR(PEM, ERR_R_ASN1_LIB); |
| 295 | dsize = 0; |
| 296 | goto err; |
| 297 | } |
| 298 | /* dzise + 8 bytes are needed */ |
| 299 | /* actually it needs the cipher block size extra... */ |
| 300 | data = (unsigned char *)OPENSSL_malloc((unsigned int)dsize + 20); |
| 301 | if (data == NULL) { |
| 302 | OPENSSL_PUT_ERROR(PEM, ERR_R_MALLOC_FAILURE); |
| 303 | goto err; |
| 304 | } |
| 305 | p = data; |
| 306 | i = i2d(x, &p); |
| 307 | |
| 308 | if (enc != NULL) { |
| 309 | const unsigned iv_len = EVP_CIPHER_iv_length(enc); |
| 310 | |
| 311 | if (kstr == NULL) { |
| 312 | klen = 0; |
| 313 | if (!callback) |
| 314 | callback = PEM_def_callback; |
| 315 | klen = (*callback) (buf, PEM_BUFSIZE, 1, u); |
| 316 | if (klen <= 0) { |
| 317 | OPENSSL_PUT_ERROR(PEM, PEM_R_READ_KEY); |
| 318 | goto err; |
| 319 | } |
| 320 | kstr = (unsigned char *)buf; |
| 321 | } |
| 322 | assert(iv_len <= (int)sizeof(iv)); |
| 323 | if (!RAND_bytes(iv, iv_len)) /* Generate a salt */ |
| 324 | goto err; |
| 325 | /* |
| 326 | * The 'iv' is used as the iv and as a salt. It is NOT taken from |
| 327 | * the BytesToKey function |
| 328 | */ |
| 329 | if (!EVP_BytesToKey(enc, EVP_md5(), iv, kstr, klen, 1, key, NULL)) |
| 330 | goto err; |
| 331 | |
| 332 | if (kstr == (unsigned char *)buf) |
| 333 | OPENSSL_cleanse(buf, PEM_BUFSIZE); |
| 334 | |
| 335 | assert(strlen(objstr) + 23 + 2 * iv_len + 13 <= sizeof buf); |
| 336 | |
| 337 | buf[0] = '\0'; |
| 338 | PEM_proc_type(buf, PEM_TYPE_ENCRYPTED); |
| 339 | PEM_dek_info(buf, objstr, iv_len, (char *)iv); |
| 340 | /* k=strlen(buf); */ |
| 341 | |
| 342 | EVP_CIPHER_CTX_init(&ctx); |
| 343 | ret = 1; |
| 344 | if (!EVP_EncryptInit_ex(&ctx, enc, NULL, key, iv) |
| 345 | || !EVP_EncryptUpdate(&ctx, data, &j, data, i) |
| 346 | || !EVP_EncryptFinal_ex(&ctx, &(data[j]), &i)) |
| 347 | ret = 0; |
| 348 | else |
| 349 | i += j; |
| 350 | EVP_CIPHER_CTX_cleanup(&ctx); |
| 351 | if (ret == 0) |
| 352 | goto err; |
| 353 | } else { |
| 354 | ret = 1; |
| 355 | buf[0] = '\0'; |
| 356 | } |
| 357 | i = PEM_write_bio(bp, name, buf, data, i); |
| 358 | if (i <= 0) |
| 359 | ret = 0; |
| 360 | err: |
| 361 | OPENSSL_cleanse(key, sizeof(key)); |
| 362 | OPENSSL_cleanse(iv, sizeof(iv)); |
| 363 | OPENSSL_cleanse((char *)&ctx, sizeof(ctx)); |
| 364 | OPENSSL_cleanse(buf, PEM_BUFSIZE); |
| 365 | OPENSSL_free(data); |
| 366 | return (ret); |
| 367 | } |
| 368 | |
| 369 | int (EVP_CIPHER_INFO *cipher, unsigned char *data, long *plen, |
| 370 | pem_password_cb *callback, void *u) |
| 371 | { |
| 372 | int i = 0, j, o, klen; |
| 373 | long len; |
| 374 | EVP_CIPHER_CTX ctx; |
| 375 | unsigned char key[EVP_MAX_KEY_LENGTH]; |
| 376 | char buf[PEM_BUFSIZE]; |
| 377 | |
| 378 | len = *plen; |
| 379 | |
| 380 | if (cipher->cipher == NULL) |
| 381 | return (1); |
| 382 | |
| 383 | klen = 0; |
| 384 | if (!callback) |
| 385 | callback = PEM_def_callback; |
| 386 | klen = callback(buf, PEM_BUFSIZE, 0, u); |
| 387 | if (klen <= 0) { |
| 388 | OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_PASSWORD_READ); |
| 389 | return (0); |
| 390 | } |
| 391 | |
| 392 | if (!EVP_BytesToKey(cipher->cipher, EVP_md5(), &(cipher->iv[0]), |
| 393 | (unsigned char *)buf, klen, 1, key, NULL)) |
| 394 | return 0; |
| 395 | |
| 396 | j = (int)len; |
| 397 | EVP_CIPHER_CTX_init(&ctx); |
| 398 | o = EVP_DecryptInit_ex(&ctx, cipher->cipher, NULL, key, &(cipher->iv[0])); |
| 399 | if (o) |
| 400 | o = EVP_DecryptUpdate(&ctx, data, &i, data, j); |
| 401 | if (o) |
| 402 | o = EVP_DecryptFinal_ex(&ctx, &(data[i]), &j); |
| 403 | EVP_CIPHER_CTX_cleanup(&ctx); |
| 404 | OPENSSL_cleanse((char *)buf, sizeof(buf)); |
| 405 | OPENSSL_cleanse((char *)key, sizeof(key)); |
| 406 | if (!o) { |
| 407 | OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_DECRYPT); |
| 408 | return (0); |
| 409 | } |
| 410 | j += i; |
| 411 | *plen = j; |
| 412 | return (1); |
| 413 | } |
| 414 | |
| 415 | int PEM_get_EVP_CIPHER_INFO(char *, EVP_CIPHER_INFO *cipher) |
| 416 | { |
| 417 | const EVP_CIPHER *enc = NULL; |
| 418 | char *p, c; |
| 419 | char ** = &header; |
| 420 | |
| 421 | cipher->cipher = NULL; |
| 422 | OPENSSL_memset(cipher->iv, 0, sizeof(cipher->iv)); |
| 423 | if ((header == NULL) || (*header == '\0') || (*header == '\n')) |
| 424 | return (1); |
| 425 | if (strncmp(header, "Proc-Type: " , 11) != 0) { |
| 426 | OPENSSL_PUT_ERROR(PEM, PEM_R_NOT_PROC_TYPE); |
| 427 | return (0); |
| 428 | } |
| 429 | header += 11; |
| 430 | if (*header != '4') |
| 431 | return (0); |
| 432 | header++; |
| 433 | if (*header != ',') |
| 434 | return (0); |
| 435 | header++; |
| 436 | if (strncmp(header, "ENCRYPTED" , 9) != 0) { |
| 437 | OPENSSL_PUT_ERROR(PEM, PEM_R_NOT_ENCRYPTED); |
| 438 | return (0); |
| 439 | } |
| 440 | for (; (*header != '\n') && (*header != '\0'); header++) ; |
| 441 | if (*header == '\0') { |
| 442 | OPENSSL_PUT_ERROR(PEM, PEM_R_SHORT_HEADER); |
| 443 | return (0); |
| 444 | } |
| 445 | header++; |
| 446 | if (strncmp(header, "DEK-Info: " , 10) != 0) { |
| 447 | OPENSSL_PUT_ERROR(PEM, PEM_R_NOT_DEK_INFO); |
| 448 | return (0); |
| 449 | } |
| 450 | header += 10; |
| 451 | |
| 452 | p = header; |
| 453 | for (;;) { |
| 454 | c = *header; |
| 455 | if (!(((c >= 'A') && (c <= 'Z')) || (c == '-') || |
| 456 | ((c >= '0') && (c <= '9')))) |
| 457 | break; |
| 458 | header++; |
| 459 | } |
| 460 | *header = '\0'; |
| 461 | cipher->cipher = enc = cipher_by_name(p); |
| 462 | *header = c; |
| 463 | header++; |
| 464 | |
| 465 | if (enc == NULL) { |
| 466 | OPENSSL_PUT_ERROR(PEM, PEM_R_UNSUPPORTED_ENCRYPTION); |
| 467 | return (0); |
| 468 | } |
| 469 | // The IV parameter must be at least 8 bytes long to be used as the salt in |
| 470 | // the KDF. (This should not happen given |cipher_by_name|.) |
| 471 | if (EVP_CIPHER_iv_length(enc) < 8) { |
| 472 | assert(0); |
| 473 | OPENSSL_PUT_ERROR(PEM, PEM_R_UNSUPPORTED_ENCRYPTION); |
| 474 | return 0; |
| 475 | } |
| 476 | if (!load_iv(header_pp, &(cipher->iv[0]), EVP_CIPHER_iv_length(enc))) |
| 477 | return (0); |
| 478 | |
| 479 | return (1); |
| 480 | } |
| 481 | |
| 482 | static int load_iv(char **fromp, unsigned char *to, int num) |
| 483 | { |
| 484 | int v, i; |
| 485 | char *from; |
| 486 | |
| 487 | from = *fromp; |
| 488 | for (i = 0; i < num; i++) |
| 489 | to[i] = 0; |
| 490 | num *= 2; |
| 491 | for (i = 0; i < num; i++) { |
| 492 | if ((*from >= '0') && (*from <= '9')) |
| 493 | v = *from - '0'; |
| 494 | else if ((*from >= 'A') && (*from <= 'F')) |
| 495 | v = *from - 'A' + 10; |
| 496 | else if ((*from >= 'a') && (*from <= 'f')) |
| 497 | v = *from - 'a' + 10; |
| 498 | else { |
| 499 | OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_IV_CHARS); |
| 500 | return (0); |
| 501 | } |
| 502 | from++; |
| 503 | to[i / 2] |= v << (long)((!(i & 1)) * 4); |
| 504 | } |
| 505 | |
| 506 | *fromp = from; |
| 507 | return (1); |
| 508 | } |
| 509 | |
| 510 | #ifndef OPENSSL_NO_FP_API |
| 511 | int PEM_write(FILE *fp, const char *name, const char *, |
| 512 | const unsigned char *data, long len) |
| 513 | { |
| 514 | BIO *b = BIO_new_fp(fp, BIO_NOCLOSE); |
| 515 | if (b == NULL) { |
| 516 | OPENSSL_PUT_ERROR(PEM, ERR_R_BUF_LIB); |
| 517 | return 0; |
| 518 | } |
| 519 | int ret = PEM_write_bio(b, name, header, data, len); |
| 520 | BIO_free(b); |
| 521 | return (ret); |
| 522 | } |
| 523 | #endif |
| 524 | |
| 525 | int PEM_write_bio(BIO *bp, const char *name, const char *, |
| 526 | const unsigned char *data, long len) |
| 527 | { |
| 528 | int nlen, n, i, j, outl; |
| 529 | unsigned char *buf = NULL; |
| 530 | EVP_ENCODE_CTX ctx; |
| 531 | int reason = ERR_R_BUF_LIB; |
| 532 | |
| 533 | EVP_EncodeInit(&ctx); |
| 534 | nlen = strlen(name); |
| 535 | |
| 536 | if ((BIO_write(bp, "-----BEGIN " , 11) != 11) || |
| 537 | (BIO_write(bp, name, nlen) != nlen) || |
| 538 | (BIO_write(bp, "-----\n" , 6) != 6)) |
| 539 | goto err; |
| 540 | |
| 541 | i = strlen(header); |
| 542 | if (i > 0) { |
| 543 | if ((BIO_write(bp, header, i) != i) || (BIO_write(bp, "\n" , 1) != 1)) |
| 544 | goto err; |
| 545 | } |
| 546 | |
| 547 | buf = OPENSSL_malloc(PEM_BUFSIZE * 8); |
| 548 | if (buf == NULL) { |
| 549 | reason = ERR_R_MALLOC_FAILURE; |
| 550 | goto err; |
| 551 | } |
| 552 | |
| 553 | i = j = 0; |
| 554 | while (len > 0) { |
| 555 | n = (int)((len > (PEM_BUFSIZE * 5)) ? (PEM_BUFSIZE * 5) : len); |
| 556 | EVP_EncodeUpdate(&ctx, buf, &outl, &(data[j]), n); |
| 557 | if ((outl) && (BIO_write(bp, (char *)buf, outl) != outl)) |
| 558 | goto err; |
| 559 | i += outl; |
| 560 | len -= n; |
| 561 | j += n; |
| 562 | } |
| 563 | EVP_EncodeFinal(&ctx, buf, &outl); |
| 564 | if ((outl > 0) && (BIO_write(bp, (char *)buf, outl) != outl)) |
| 565 | goto err; |
| 566 | OPENSSL_free(buf); |
| 567 | buf = NULL; |
| 568 | if ((BIO_write(bp, "-----END " , 9) != 9) || |
| 569 | (BIO_write(bp, name, nlen) != nlen) || |
| 570 | (BIO_write(bp, "-----\n" , 6) != 6)) |
| 571 | goto err; |
| 572 | return (i + outl); |
| 573 | err: |
| 574 | if (buf) { |
| 575 | OPENSSL_free(buf); |
| 576 | } |
| 577 | OPENSSL_PUT_ERROR(PEM, reason); |
| 578 | return (0); |
| 579 | } |
| 580 | |
| 581 | #ifndef OPENSSL_NO_FP_API |
| 582 | int PEM_read(FILE *fp, char **name, char **, unsigned char **data, |
| 583 | long *len) |
| 584 | { |
| 585 | BIO *b = BIO_new_fp(fp, BIO_NOCLOSE); |
| 586 | if (b == NULL) { |
| 587 | OPENSSL_PUT_ERROR(PEM, ERR_R_BUF_LIB); |
| 588 | return 0; |
| 589 | } |
| 590 | int ret = PEM_read_bio(b, name, header, data, len); |
| 591 | BIO_free(b); |
| 592 | return (ret); |
| 593 | } |
| 594 | #endif |
| 595 | |
| 596 | int PEM_read_bio(BIO *bp, char **name, char **, unsigned char **data, |
| 597 | long *len) |
| 598 | { |
| 599 | EVP_ENCODE_CTX ctx; |
| 600 | int end = 0, i, k, bl = 0, hl = 0, nohead = 0; |
| 601 | char buf[256]; |
| 602 | BUF_MEM *nameB; |
| 603 | BUF_MEM *; |
| 604 | BUF_MEM *dataB, *tmpB; |
| 605 | |
| 606 | nameB = BUF_MEM_new(); |
| 607 | headerB = BUF_MEM_new(); |
| 608 | dataB = BUF_MEM_new(); |
| 609 | if ((nameB == NULL) || (headerB == NULL) || (dataB == NULL)) { |
| 610 | BUF_MEM_free(nameB); |
| 611 | BUF_MEM_free(headerB); |
| 612 | BUF_MEM_free(dataB); |
| 613 | OPENSSL_PUT_ERROR(PEM, ERR_R_MALLOC_FAILURE); |
| 614 | return (0); |
| 615 | } |
| 616 | |
| 617 | buf[254] = '\0'; |
| 618 | for (;;) { |
| 619 | i = BIO_gets(bp, buf, 254); |
| 620 | |
| 621 | if (i <= 0) { |
| 622 | OPENSSL_PUT_ERROR(PEM, PEM_R_NO_START_LINE); |
| 623 | goto err; |
| 624 | } |
| 625 | |
| 626 | while ((i >= 0) && (buf[i] <= ' ')) |
| 627 | i--; |
| 628 | buf[++i] = '\n'; |
| 629 | buf[++i] = '\0'; |
| 630 | |
| 631 | if (strncmp(buf, "-----BEGIN " , 11) == 0) { |
| 632 | i = strlen(&(buf[11])); |
| 633 | |
| 634 | if (strncmp(&(buf[11 + i - 6]), "-----\n" , 6) != 0) |
| 635 | continue; |
| 636 | if (!BUF_MEM_grow(nameB, i + 9)) { |
| 637 | OPENSSL_PUT_ERROR(PEM, ERR_R_MALLOC_FAILURE); |
| 638 | goto err; |
| 639 | } |
| 640 | OPENSSL_memcpy(nameB->data, &(buf[11]), i - 6); |
| 641 | nameB->data[i - 6] = '\0'; |
| 642 | break; |
| 643 | } |
| 644 | } |
| 645 | hl = 0; |
| 646 | if (!BUF_MEM_grow(headerB, 256)) { |
| 647 | OPENSSL_PUT_ERROR(PEM, ERR_R_MALLOC_FAILURE); |
| 648 | goto err; |
| 649 | } |
| 650 | headerB->data[0] = '\0'; |
| 651 | for (;;) { |
| 652 | i = BIO_gets(bp, buf, 254); |
| 653 | if (i <= 0) |
| 654 | break; |
| 655 | |
| 656 | while ((i >= 0) && (buf[i] <= ' ')) |
| 657 | i--; |
| 658 | buf[++i] = '\n'; |
| 659 | buf[++i] = '\0'; |
| 660 | |
| 661 | if (buf[0] == '\n') |
| 662 | break; |
| 663 | if (!BUF_MEM_grow(headerB, hl + i + 9)) { |
| 664 | OPENSSL_PUT_ERROR(PEM, ERR_R_MALLOC_FAILURE); |
| 665 | goto err; |
| 666 | } |
| 667 | if (strncmp(buf, "-----END " , 9) == 0) { |
| 668 | nohead = 1; |
| 669 | break; |
| 670 | } |
| 671 | OPENSSL_memcpy(&(headerB->data[hl]), buf, i); |
| 672 | headerB->data[hl + i] = '\0'; |
| 673 | hl += i; |
| 674 | } |
| 675 | |
| 676 | bl = 0; |
| 677 | if (!BUF_MEM_grow(dataB, 1024)) { |
| 678 | OPENSSL_PUT_ERROR(PEM, ERR_R_MALLOC_FAILURE); |
| 679 | goto err; |
| 680 | } |
| 681 | dataB->data[0] = '\0'; |
| 682 | if (!nohead) { |
| 683 | for (;;) { |
| 684 | i = BIO_gets(bp, buf, 254); |
| 685 | if (i <= 0) |
| 686 | break; |
| 687 | |
| 688 | while ((i >= 0) && (buf[i] <= ' ')) |
| 689 | i--; |
| 690 | buf[++i] = '\n'; |
| 691 | buf[++i] = '\0'; |
| 692 | |
| 693 | if (i != 65) |
| 694 | end = 1; |
| 695 | if (strncmp(buf, "-----END " , 9) == 0) |
| 696 | break; |
| 697 | if (i > 65) |
| 698 | break; |
| 699 | if (!BUF_MEM_grow_clean(dataB, i + bl + 9)) { |
| 700 | OPENSSL_PUT_ERROR(PEM, ERR_R_MALLOC_FAILURE); |
| 701 | goto err; |
| 702 | } |
| 703 | OPENSSL_memcpy(&(dataB->data[bl]), buf, i); |
| 704 | dataB->data[bl + i] = '\0'; |
| 705 | bl += i; |
| 706 | if (end) { |
| 707 | buf[0] = '\0'; |
| 708 | i = BIO_gets(bp, buf, 254); |
| 709 | if (i <= 0) |
| 710 | break; |
| 711 | |
| 712 | while ((i >= 0) && (buf[i] <= ' ')) |
| 713 | i--; |
| 714 | buf[++i] = '\n'; |
| 715 | buf[++i] = '\0'; |
| 716 | |
| 717 | break; |
| 718 | } |
| 719 | } |
| 720 | } else { |
| 721 | tmpB = headerB; |
| 722 | headerB = dataB; |
| 723 | dataB = tmpB; |
| 724 | bl = hl; |
| 725 | } |
| 726 | i = strlen(nameB->data); |
| 727 | if ((strncmp(buf, "-----END " , 9) != 0) || |
| 728 | (strncmp(nameB->data, &(buf[9]), i) != 0) || |
| 729 | (strncmp(&(buf[9 + i]), "-----\n" , 6) != 0)) { |
| 730 | OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_END_LINE); |
| 731 | goto err; |
| 732 | } |
| 733 | |
| 734 | EVP_DecodeInit(&ctx); |
| 735 | i = EVP_DecodeUpdate(&ctx, |
| 736 | (unsigned char *)dataB->data, &bl, |
| 737 | (unsigned char *)dataB->data, bl); |
| 738 | if (i < 0) { |
| 739 | OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_BASE64_DECODE); |
| 740 | goto err; |
| 741 | } |
| 742 | i = EVP_DecodeFinal(&ctx, (unsigned char *)&(dataB->data[bl]), &k); |
| 743 | if (i < 0) { |
| 744 | OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_BASE64_DECODE); |
| 745 | goto err; |
| 746 | } |
| 747 | bl += k; |
| 748 | |
| 749 | if (bl == 0) |
| 750 | goto err; |
| 751 | *name = nameB->data; |
| 752 | *header = headerB->data; |
| 753 | *data = (unsigned char *)dataB->data; |
| 754 | *len = bl; |
| 755 | OPENSSL_free(nameB); |
| 756 | OPENSSL_free(headerB); |
| 757 | OPENSSL_free(dataB); |
| 758 | return (1); |
| 759 | err: |
| 760 | BUF_MEM_free(nameB); |
| 761 | BUF_MEM_free(headerB); |
| 762 | BUF_MEM_free(dataB); |
| 763 | return (0); |
| 764 | } |
| 765 | |
| 766 | int PEM_def_callback(char *buf, int size, int rwflag, void *userdata) |
| 767 | { |
| 768 | if (!buf || !userdata || size < 0) { |
| 769 | return 0; |
| 770 | } |
| 771 | size_t len = strlen((char *)userdata); |
| 772 | if (len >= (size_t)size) { |
| 773 | return 0; |
| 774 | } |
| 775 | BUF_strlcpy(buf, userdata, (size_t)size); |
| 776 | return len; |
| 777 | } |
| 778 | |