1 | /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
2 | * project 1999-2004. |
3 | */ |
4 | /* ==================================================================== |
5 | * Copyright (c) 1999 The OpenSSL Project. All rights reserved. |
6 | * |
7 | * Redistribution and use in source and binary forms, with or without |
8 | * modification, are permitted provided that the following conditions |
9 | * are met: |
10 | * |
11 | * 1. Redistributions of source code must retain the above copyright |
12 | * notice, this list of conditions and the following disclaimer. |
13 | * |
14 | * 2. Redistributions in binary form must reproduce the above copyright |
15 | * notice, this list of conditions and the following disclaimer in |
16 | * the documentation and/or other materials provided with the |
17 | * distribution. |
18 | * |
19 | * 3. All advertising materials mentioning features or use of this |
20 | * software must display the following acknowledgment: |
21 | * "This product includes software developed by the OpenSSL Project |
22 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
23 | * |
24 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
25 | * endorse or promote products derived from this software without |
26 | * prior written permission. For written permission, please contact |
27 | * licensing@OpenSSL.org. |
28 | * |
29 | * 5. Products derived from this software may not be called "OpenSSL" |
30 | * nor may "OpenSSL" appear in their names without prior written |
31 | * permission of the OpenSSL Project. |
32 | * |
33 | * 6. Redistributions of any form whatsoever must retain the following |
34 | * acknowledgment: |
35 | * "This product includes software developed by the OpenSSL Project |
36 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
37 | * |
38 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
39 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
40 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
41 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
42 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
43 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
44 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
45 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
46 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
47 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
48 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
49 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
50 | * ==================================================================== |
51 | * |
52 | * This product includes cryptographic software written by Eric Young |
53 | * (eay@cryptsoft.com). This product includes software written by Tim |
54 | * Hudson (tjh@cryptsoft.com). */ |
55 | |
56 | #include <openssl/pkcs8.h> |
57 | |
58 | #include <limits.h> |
59 | #include <string.h> |
60 | |
61 | #include <openssl/bytestring.h> |
62 | #include <openssl/cipher.h> |
63 | #include <openssl/err.h> |
64 | #include <openssl/mem.h> |
65 | #include <openssl/nid.h> |
66 | #include <openssl/rand.h> |
67 | |
68 | #include "internal.h" |
69 | #include "../internal.h" |
70 | |
71 | |
72 | // 1.2.840.113549.1.5.12 |
73 | static const uint8_t kPBKDF2[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
74 | 0x0d, 0x01, 0x05, 0x0c}; |
75 | |
76 | // 1.2.840.113549.1.5.13 |
77 | static const uint8_t kPBES2[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
78 | 0x0d, 0x01, 0x05, 0x0d}; |
79 | |
80 | // 1.2.840.113549.2.7 |
81 | static const uint8_t kHMACWithSHA1[] = {0x2a, 0x86, 0x48, 0x86, |
82 | 0xf7, 0x0d, 0x02, 0x07}; |
83 | |
84 | // 1.2.840.113549.2.9 |
85 | static const uint8_t kHMACWithSHA256[] = {0x2a, 0x86, 0x48, 0x86, |
86 | 0xf7, 0x0d, 0x02, 0x09}; |
87 | |
88 | static const struct { |
89 | uint8_t oid[9]; |
90 | uint8_t oid_len; |
91 | int nid; |
92 | const EVP_CIPHER *(*cipher_func)(void); |
93 | } kCipherOIDs[] = { |
94 | // 1.2.840.113549.3.2 |
95 | {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x02}, |
96 | 8, |
97 | NID_rc2_cbc, |
98 | &EVP_rc2_cbc}, |
99 | // 1.2.840.113549.3.7 |
100 | {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x07}, |
101 | 8, |
102 | NID_des_ede3_cbc, |
103 | &EVP_des_ede3_cbc}, |
104 | // 2.16.840.1.101.3.4.1.2 |
105 | {{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x02}, |
106 | 9, |
107 | NID_aes_128_cbc, |
108 | &EVP_aes_128_cbc}, |
109 | // 2.16.840.1.101.3.4.1.22 |
110 | {{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x16}, |
111 | 9, |
112 | NID_aes_192_cbc, |
113 | &EVP_aes_192_cbc}, |
114 | // 2.16.840.1.101.3.4.1.42 |
115 | {{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x2a}, |
116 | 9, |
117 | NID_aes_256_cbc, |
118 | &EVP_aes_256_cbc}, |
119 | }; |
120 | |
121 | static const EVP_CIPHER *cbs_to_cipher(const CBS *cbs) { |
122 | for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kCipherOIDs); i++) { |
123 | if (CBS_mem_equal(cbs, kCipherOIDs[i].oid, kCipherOIDs[i].oid_len)) { |
124 | return kCipherOIDs[i].cipher_func(); |
125 | } |
126 | } |
127 | |
128 | return NULL; |
129 | } |
130 | |
131 | static int add_cipher_oid(CBB *out, int nid) { |
132 | for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kCipherOIDs); i++) { |
133 | if (kCipherOIDs[i].nid == nid) { |
134 | CBB child; |
135 | return CBB_add_asn1(out, &child, CBS_ASN1_OBJECT) && |
136 | CBB_add_bytes(&child, kCipherOIDs[i].oid, |
137 | kCipherOIDs[i].oid_len) && |
138 | CBB_flush(out); |
139 | } |
140 | } |
141 | |
142 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_CIPHER); |
143 | return 0; |
144 | } |
145 | |
146 | static int pkcs5_pbe2_cipher_init(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
147 | const EVP_MD *pbkdf2_md, unsigned iterations, |
148 | const char *pass, size_t pass_len, |
149 | const uint8_t *salt, size_t salt_len, |
150 | const uint8_t *iv, size_t iv_len, int enc) { |
151 | if (iv_len != EVP_CIPHER_iv_length(cipher)) { |
152 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ERROR_SETTING_CIPHER_PARAMS); |
153 | return 0; |
154 | } |
155 | |
156 | uint8_t key[EVP_MAX_KEY_LENGTH]; |
157 | int ret = PKCS5_PBKDF2_HMAC(pass, pass_len, salt, salt_len, iterations, |
158 | pbkdf2_md, EVP_CIPHER_key_length(cipher), key) && |
159 | EVP_CipherInit_ex(ctx, cipher, NULL /* engine */, key, iv, enc); |
160 | OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH); |
161 | return ret; |
162 | } |
163 | |
164 | int PKCS5_pbe2_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx, |
165 | const EVP_CIPHER *cipher, unsigned iterations, |
166 | const char *pass, size_t pass_len, |
167 | const uint8_t *salt, size_t salt_len) { |
168 | int cipher_nid = EVP_CIPHER_nid(cipher); |
169 | if (cipher_nid == NID_undef) { |
170 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER); |
171 | return 0; |
172 | } |
173 | |
174 | // Generate a random IV. |
175 | uint8_t iv[EVP_MAX_IV_LENGTH]; |
176 | if (!RAND_bytes(iv, EVP_CIPHER_iv_length(cipher))) { |
177 | return 0; |
178 | } |
179 | |
180 | // See RFC 2898, appendix A. |
181 | CBB algorithm, oid, param, kdf, kdf_oid, kdf_param, salt_cbb, cipher_cbb, |
182 | iv_cbb; |
183 | if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) || |
184 | !CBB_add_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) || |
185 | !CBB_add_bytes(&oid, kPBES2, sizeof(kPBES2)) || |
186 | !CBB_add_asn1(&algorithm, ¶m, CBS_ASN1_SEQUENCE) || |
187 | !CBB_add_asn1(¶m, &kdf, CBS_ASN1_SEQUENCE) || |
188 | !CBB_add_asn1(&kdf, &kdf_oid, CBS_ASN1_OBJECT) || |
189 | !CBB_add_bytes(&kdf_oid, kPBKDF2, sizeof(kPBKDF2)) || |
190 | !CBB_add_asn1(&kdf, &kdf_param, CBS_ASN1_SEQUENCE) || |
191 | !CBB_add_asn1(&kdf_param, &salt_cbb, CBS_ASN1_OCTETSTRING) || |
192 | !CBB_add_bytes(&salt_cbb, salt, salt_len) || |
193 | !CBB_add_asn1_uint64(&kdf_param, iterations) || |
194 | // Specify a key length for RC2. |
195 | (cipher_nid == NID_rc2_cbc && |
196 | !CBB_add_asn1_uint64(&kdf_param, EVP_CIPHER_key_length(cipher))) || |
197 | // Omit the PRF. We use the default hmacWithSHA1. |
198 | !CBB_add_asn1(¶m, &cipher_cbb, CBS_ASN1_SEQUENCE) || |
199 | !add_cipher_oid(&cipher_cbb, cipher_nid) || |
200 | // RFC 2898 says RC2-CBC and RC5-CBC-Pad use a SEQUENCE with version and |
201 | // IV, but OpenSSL always uses an OCTET STRING IV, so we do the same. |
202 | !CBB_add_asn1(&cipher_cbb, &iv_cbb, CBS_ASN1_OCTETSTRING) || |
203 | !CBB_add_bytes(&iv_cbb, iv, EVP_CIPHER_iv_length(cipher)) || |
204 | !CBB_flush(out)) { |
205 | return 0; |
206 | } |
207 | |
208 | return pkcs5_pbe2_cipher_init(ctx, cipher, EVP_sha1(), iterations, pass, |
209 | pass_len, salt, salt_len, iv, |
210 | EVP_CIPHER_iv_length(cipher), 1 /* encrypt */); |
211 | } |
212 | |
213 | int PKCS5_pbe2_decrypt_init(const struct pbe_suite *suite, EVP_CIPHER_CTX *ctx, |
214 | const char *pass, size_t pass_len, CBS *param) { |
215 | CBS pbe_param, kdf, kdf_obj, enc_scheme, enc_obj; |
216 | if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) || |
217 | CBS_len(param) != 0 || |
218 | !CBS_get_asn1(&pbe_param, &kdf, CBS_ASN1_SEQUENCE) || |
219 | !CBS_get_asn1(&pbe_param, &enc_scheme, CBS_ASN1_SEQUENCE) || |
220 | CBS_len(&pbe_param) != 0 || |
221 | !CBS_get_asn1(&kdf, &kdf_obj, CBS_ASN1_OBJECT) || |
222 | !CBS_get_asn1(&enc_scheme, &enc_obj, CBS_ASN1_OBJECT)) { |
223 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
224 | return 0; |
225 | } |
226 | |
227 | // Only PBKDF2 is supported. |
228 | if (!CBS_mem_equal(&kdf_obj, kPBKDF2, sizeof(kPBKDF2))) { |
229 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION); |
230 | return 0; |
231 | } |
232 | |
233 | // See if we recognise the encryption algorithm. |
234 | const EVP_CIPHER *cipher = cbs_to_cipher(&enc_obj); |
235 | if (cipher == NULL) { |
236 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_CIPHER); |
237 | return 0; |
238 | } |
239 | |
240 | // Parse the KDF parameters. See RFC 8018, appendix A.2. |
241 | CBS pbkdf2_params, salt; |
242 | uint64_t iterations; |
243 | if (!CBS_get_asn1(&kdf, &pbkdf2_params, CBS_ASN1_SEQUENCE) || |
244 | CBS_len(&kdf) != 0 || |
245 | !CBS_get_asn1(&pbkdf2_params, &salt, CBS_ASN1_OCTETSTRING) || |
246 | !CBS_get_asn1_uint64(&pbkdf2_params, &iterations)) { |
247 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
248 | return 0; |
249 | } |
250 | |
251 | if (!pkcs12_iterations_acceptable(iterations)) { |
252 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT); |
253 | return 0; |
254 | } |
255 | |
256 | // The optional keyLength parameter, if present, must match the key length of |
257 | // the cipher. |
258 | if (CBS_peek_asn1_tag(&pbkdf2_params, CBS_ASN1_INTEGER)) { |
259 | uint64_t key_len; |
260 | if (!CBS_get_asn1_uint64(&pbkdf2_params, &key_len)) { |
261 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
262 | return 0; |
263 | } |
264 | |
265 | if (key_len != EVP_CIPHER_key_length(cipher)) { |
266 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEYLENGTH); |
267 | return 0; |
268 | } |
269 | } |
270 | |
271 | const EVP_MD *md = EVP_sha1(); |
272 | if (CBS_len(&pbkdf2_params) != 0) { |
273 | CBS alg_id, prf; |
274 | if (!CBS_get_asn1(&pbkdf2_params, &alg_id, CBS_ASN1_SEQUENCE) || |
275 | !CBS_get_asn1(&alg_id, &prf, CBS_ASN1_OBJECT) || |
276 | CBS_len(&pbkdf2_params) != 0) { |
277 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
278 | return 0; |
279 | } |
280 | |
281 | if (CBS_mem_equal(&prf, kHMACWithSHA1, sizeof(kHMACWithSHA1))) { |
282 | // hmacWithSHA1 is the DEFAULT, so DER requires it be omitted, but we |
283 | // match OpenSSL in tolerating it being present. |
284 | md = EVP_sha1(); |
285 | } else if (CBS_mem_equal(&prf, kHMACWithSHA256, sizeof(kHMACWithSHA256))) { |
286 | md = EVP_sha256(); |
287 | } else { |
288 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_PRF); |
289 | return 0; |
290 | } |
291 | |
292 | // All supported PRFs use a NULL parameter. |
293 | CBS null; |
294 | if (!CBS_get_asn1(&alg_id, &null, CBS_ASN1_NULL) || |
295 | CBS_len(&null) != 0 || |
296 | CBS_len(&alg_id) != 0) { |
297 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
298 | return 0; |
299 | } |
300 | } |
301 | |
302 | // Parse the encryption scheme parameters. Note OpenSSL does not match the |
303 | // specification. Per RFC 2898, this should depend on the encryption scheme. |
304 | // In particular, RC2-CBC uses a SEQUENCE with version and IV. We align with |
305 | // OpenSSL. |
306 | CBS iv; |
307 | if (!CBS_get_asn1(&enc_scheme, &iv, CBS_ASN1_OCTETSTRING) || |
308 | CBS_len(&enc_scheme) != 0) { |
309 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_PRF); |
310 | return 0; |
311 | } |
312 | |
313 | return pkcs5_pbe2_cipher_init(ctx, cipher, md, (unsigned)iterations, pass, |
314 | pass_len, CBS_data(&salt), CBS_len(&salt), |
315 | CBS_data(&iv), CBS_len(&iv), 0 /* decrypt */); |
316 | } |
317 | |