| 1 | /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
| 2 | * project 1999. |
| 3 | */ |
| 4 | /* ==================================================================== |
| 5 | * Copyright (c) 1999 The OpenSSL Project. All rights reserved. |
| 6 | * |
| 7 | * Redistribution and use in source and binary forms, with or without |
| 8 | * modification, are permitted provided that the following conditions |
| 9 | * are met: |
| 10 | * |
| 11 | * 1. Redistributions of source code must retain the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer. |
| 13 | * |
| 14 | * 2. Redistributions in binary form must reproduce the above copyright |
| 15 | * notice, this list of conditions and the following disclaimer in |
| 16 | * the documentation and/or other materials provided with the |
| 17 | * distribution. |
| 18 | * |
| 19 | * 3. All advertising materials mentioning features or use of this |
| 20 | * software must display the following acknowledgment: |
| 21 | * "This product includes software developed by the OpenSSL Project |
| 22 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| 23 | * |
| 24 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| 25 | * endorse or promote products derived from this software without |
| 26 | * prior written permission. For written permission, please contact |
| 27 | * licensing@OpenSSL.org. |
| 28 | * |
| 29 | * 5. Products derived from this software may not be called "OpenSSL" |
| 30 | * nor may "OpenSSL" appear in their names without prior written |
| 31 | * permission of the OpenSSL Project. |
| 32 | * |
| 33 | * 6. Redistributions of any form whatsoever must retain the following |
| 34 | * acknowledgment: |
| 35 | * "This product includes software developed by the OpenSSL Project |
| 36 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| 37 | * |
| 38 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| 39 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 40 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 41 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| 42 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 43 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 44 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 45 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 46 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 47 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 48 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 49 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 50 | * ==================================================================== |
| 51 | * |
| 52 | * This product includes cryptographic software written by Eric Young |
| 53 | * (eay@cryptsoft.com). This product includes software written by Tim |
| 54 | * Hudson (tjh@cryptsoft.com). */ |
| 55 | |
| 56 | #include <openssl/pkcs8.h> |
| 57 | |
| 58 | #include <limits.h> |
| 59 | |
| 60 | #include <openssl/asn1t.h> |
| 61 | #include <openssl/asn1.h> |
| 62 | #include <openssl/bio.h> |
| 63 | #include <openssl/buf.h> |
| 64 | #include <openssl/bytestring.h> |
| 65 | #include <openssl/err.h> |
| 66 | #include <openssl/evp.h> |
| 67 | #include <openssl/digest.h> |
| 68 | #include <openssl/hmac.h> |
| 69 | #include <openssl/mem.h> |
| 70 | #include <openssl/rand.h> |
| 71 | #include <openssl/x509.h> |
| 72 | |
| 73 | #include "internal.h" |
| 74 | #include "../bytestring/internal.h" |
| 75 | #include "../internal.h" |
| 76 | |
| 77 | |
| 78 | int pkcs12_iterations_acceptable(uint64_t iterations) { |
| 79 | #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
| 80 | static const uint64_t kIterationsLimit = 2048; |
| 81 | #else |
| 82 | // Windows imposes a limit of 600K. Mozilla say: “so them increasing |
| 83 | // maximum to something like 100M or 1G (to have few decades of breathing |
| 84 | // room) would be very welcome”[1]. So here we set the limit to 100M. |
| 85 | // |
| 86 | // [1] https://bugzilla.mozilla.org/show_bug.cgi?id=1436873#c14 |
| 87 | static const uint64_t kIterationsLimit = 100 * 1000000; |
| 88 | #endif |
| 89 | |
| 90 | return 0 < iterations && iterations <= kIterationsLimit; |
| 91 | } |
| 92 | |
| 93 | // Minor tweak to operation: zero private key data |
| 94 | static int pkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, |
| 95 | void *exarg) { |
| 96 | // Since the structure must still be valid use ASN1_OP_FREE_PRE |
| 97 | if (operation == ASN1_OP_FREE_PRE) { |
| 98 | PKCS8_PRIV_KEY_INFO *key = (PKCS8_PRIV_KEY_INFO *)*pval; |
| 99 | if (key->pkey && key->pkey->type == V_ASN1_OCTET_STRING && |
| 100 | key->pkey->value.octet_string) { |
| 101 | OPENSSL_cleanse(key->pkey->value.octet_string->data, |
| 102 | key->pkey->value.octet_string->length); |
| 103 | } |
| 104 | } |
| 105 | return 1; |
| 106 | } |
| 107 | |
| 108 | ASN1_SEQUENCE_cb(PKCS8_PRIV_KEY_INFO, pkey_cb) = { |
| 109 | ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, version, ASN1_INTEGER), |
| 110 | ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkeyalg, X509_ALGOR), |
| 111 | ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkey, ASN1_ANY), |
| 112 | ASN1_IMP_SET_OF_OPT(PKCS8_PRIV_KEY_INFO, attributes, X509_ATTRIBUTE, 0) |
| 113 | } ASN1_SEQUENCE_END_cb(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO) |
| 114 | |
| 115 | IMPLEMENT_ASN1_FUNCTIONS(PKCS8_PRIV_KEY_INFO) |
| 116 | |
| 117 | EVP_PKEY *EVP_PKCS82PKEY(PKCS8_PRIV_KEY_INFO *p8) { |
| 118 | uint8_t *der = NULL; |
| 119 | int der_len = i2d_PKCS8_PRIV_KEY_INFO(p8, &der); |
| 120 | if (der_len < 0) { |
| 121 | return NULL; |
| 122 | } |
| 123 | |
| 124 | CBS cbs; |
| 125 | CBS_init(&cbs, der, (size_t)der_len); |
| 126 | EVP_PKEY *ret = EVP_parse_private_key(&cbs); |
| 127 | if (ret == NULL || CBS_len(&cbs) != 0) { |
| 128 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| 129 | EVP_PKEY_free(ret); |
| 130 | OPENSSL_free(der); |
| 131 | return NULL; |
| 132 | } |
| 133 | |
| 134 | OPENSSL_free(der); |
| 135 | return ret; |
| 136 | } |
| 137 | |
| 138 | PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(EVP_PKEY *pkey) { |
| 139 | CBB cbb; |
| 140 | uint8_t *der = NULL; |
| 141 | size_t der_len; |
| 142 | if (!CBB_init(&cbb, 0) || |
| 143 | !EVP_marshal_private_key(&cbb, pkey) || |
| 144 | !CBB_finish(&cbb, &der, &der_len) || |
| 145 | der_len > LONG_MAX) { |
| 146 | CBB_cleanup(&cbb); |
| 147 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ENCODE_ERROR); |
| 148 | goto err; |
| 149 | } |
| 150 | |
| 151 | const uint8_t *p = der; |
| 152 | PKCS8_PRIV_KEY_INFO *p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, (long)der_len); |
| 153 | if (p8 == NULL || p != der + der_len) { |
| 154 | PKCS8_PRIV_KEY_INFO_free(p8); |
| 155 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| 156 | goto err; |
| 157 | } |
| 158 | |
| 159 | OPENSSL_free(der); |
| 160 | return p8; |
| 161 | |
| 162 | err: |
| 163 | OPENSSL_free(der); |
| 164 | return NULL; |
| 165 | } |
| 166 | |
| 167 | PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass, |
| 168 | int pass_len_in) { |
| 169 | size_t pass_len; |
| 170 | if (pass_len_in == -1 && pass != NULL) { |
| 171 | pass_len = strlen(pass); |
| 172 | } else { |
| 173 | pass_len = (size_t)pass_len_in; |
| 174 | } |
| 175 | |
| 176 | PKCS8_PRIV_KEY_INFO *ret = NULL; |
| 177 | EVP_PKEY *pkey = NULL; |
| 178 | uint8_t *in = NULL; |
| 179 | |
| 180 | // Convert the legacy ASN.1 object to a byte string. |
| 181 | int in_len = i2d_X509_SIG(pkcs8, &in); |
| 182 | if (in_len < 0) { |
| 183 | goto err; |
| 184 | } |
| 185 | |
| 186 | CBS cbs; |
| 187 | CBS_init(&cbs, in, in_len); |
| 188 | pkey = PKCS8_parse_encrypted_private_key(&cbs, pass, pass_len); |
| 189 | if (pkey == NULL || CBS_len(&cbs) != 0) { |
| 190 | goto err; |
| 191 | } |
| 192 | |
| 193 | ret = EVP_PKEY2PKCS8(pkey); |
| 194 | |
| 195 | err: |
| 196 | OPENSSL_free(in); |
| 197 | EVP_PKEY_free(pkey); |
| 198 | return ret; |
| 199 | } |
| 200 | |
| 201 | X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass, |
| 202 | int pass_len_in, const uint8_t *salt, size_t salt_len, |
| 203 | int iterations, PKCS8_PRIV_KEY_INFO *p8inf) { |
| 204 | size_t pass_len; |
| 205 | if (pass_len_in == -1 && pass != NULL) { |
| 206 | pass_len = strlen(pass); |
| 207 | } else { |
| 208 | pass_len = (size_t)pass_len_in; |
| 209 | } |
| 210 | |
| 211 | // Parse out the private key. |
| 212 | EVP_PKEY *pkey = EVP_PKCS82PKEY(p8inf); |
| 213 | if (pkey == NULL) { |
| 214 | return NULL; |
| 215 | } |
| 216 | |
| 217 | X509_SIG *ret = NULL; |
| 218 | uint8_t *der = NULL; |
| 219 | size_t der_len; |
| 220 | CBB cbb; |
| 221 | if (!CBB_init(&cbb, 128) || |
| 222 | !PKCS8_marshal_encrypted_private_key(&cbb, pbe_nid, cipher, pass, |
| 223 | pass_len, salt, salt_len, iterations, |
| 224 | pkey) || |
| 225 | !CBB_finish(&cbb, &der, &der_len)) { |
| 226 | CBB_cleanup(&cbb); |
| 227 | goto err; |
| 228 | } |
| 229 | |
| 230 | // Convert back to legacy ASN.1 objects. |
| 231 | const uint8_t *ptr = der; |
| 232 | ret = d2i_X509_SIG(NULL, &ptr, der_len); |
| 233 | if (ret == NULL || ptr != der + der_len) { |
| 234 | OPENSSL_PUT_ERROR(PKCS8, ERR_R_INTERNAL_ERROR); |
| 235 | X509_SIG_free(ret); |
| 236 | ret = NULL; |
| 237 | } |
| 238 | |
| 239 | err: |
| 240 | OPENSSL_free(der); |
| 241 | EVP_PKEY_free(pkey); |
| 242 | return ret; |
| 243 | } |
| 244 | |
| 245 | struct pkcs12_context { |
| 246 | EVP_PKEY **out_key; |
| 247 | STACK_OF(X509) *out_certs; |
| 248 | const char *password; |
| 249 | size_t password_len; |
| 250 | }; |
| 251 | |
| 252 | // PKCS12_handle_sequence parses a BER-encoded SEQUENCE of elements in a PKCS#12 |
| 253 | // structure. |
| 254 | static int PKCS12_handle_sequence( |
| 255 | CBS *sequence, struct pkcs12_context *ctx, |
| 256 | int (*handle_element)(CBS *cbs, struct pkcs12_context *ctx)) { |
| 257 | uint8_t *storage = NULL; |
| 258 | CBS in; |
| 259 | int ret = 0; |
| 260 | |
| 261 | // Although a BER->DER conversion is done at the beginning of |PKCS12_parse|, |
| 262 | // the ASN.1 data gets wrapped in OCTETSTRINGs and/or encrypted and the |
| 263 | // conversion cannot see through those wrappings. So each time we step |
| 264 | // through one we need to convert to DER again. |
| 265 | if (!CBS_asn1_ber_to_der(sequence, &in, &storage)) { |
| 266 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 267 | return 0; |
| 268 | } |
| 269 | |
| 270 | CBS child; |
| 271 | if (!CBS_get_asn1(&in, &child, CBS_ASN1_SEQUENCE) || |
| 272 | CBS_len(&in) != 0) { |
| 273 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 274 | goto err; |
| 275 | } |
| 276 | |
| 277 | while (CBS_len(&child) > 0) { |
| 278 | CBS element; |
| 279 | if (!CBS_get_asn1(&child, &element, CBS_ASN1_SEQUENCE)) { |
| 280 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 281 | goto err; |
| 282 | } |
| 283 | |
| 284 | if (!handle_element(&element, ctx)) { |
| 285 | goto err; |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | ret = 1; |
| 290 | |
| 291 | err: |
| 292 | OPENSSL_free(storage); |
| 293 | return ret; |
| 294 | } |
| 295 | |
| 296 | // 1.2.840.113549.1.12.10.1.1 |
| 297 | static const uint8_t kKeyBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, |
| 298 | 0x01, 0x0c, 0x0a, 0x01, 0x01}; |
| 299 | |
| 300 | // 1.2.840.113549.1.12.10.1.2 |
| 301 | static const uint8_t kPKCS8ShroudedKeyBag[] = { |
| 302 | 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x0a, 0x01, 0x02}; |
| 303 | |
| 304 | // 1.2.840.113549.1.12.10.1.3 |
| 305 | static const uint8_t kCertBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, |
| 306 | 0x01, 0x0c, 0x0a, 0x01, 0x03}; |
| 307 | |
| 308 | // 1.2.840.113549.1.9.20 |
| 309 | static const uint8_t kFriendlyName[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 310 | 0x0d, 0x01, 0x09, 0x14}; |
| 311 | |
| 312 | // 1.2.840.113549.1.9.21 |
| 313 | static const uint8_t kLocalKeyID[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 314 | 0x0d, 0x01, 0x09, 0x15}; |
| 315 | |
| 316 | // 1.2.840.113549.1.9.22.1 |
| 317 | static const uint8_t kX509Certificate[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 318 | 0x0d, 0x01, 0x09, 0x16, 0x01}; |
| 319 | |
| 320 | // parse_bag_attributes parses the bagAttributes field of a SafeBag structure. |
| 321 | // It sets |*out_friendly_name| to a newly-allocated copy of the friendly name, |
| 322 | // encoded as a UTF-8 string, or NULL if there is none. It returns one on |
| 323 | // success and zero on error. |
| 324 | static int parse_bag_attributes(CBS *attrs, uint8_t **out_friendly_name, |
| 325 | size_t *out_friendly_name_len) { |
| 326 | *out_friendly_name = NULL; |
| 327 | *out_friendly_name_len = 0; |
| 328 | |
| 329 | // See https://tools.ietf.org/html/rfc7292#section-4.2. |
| 330 | while (CBS_len(attrs) != 0) { |
| 331 | CBS attr, oid, values; |
| 332 | if (!CBS_get_asn1(attrs, &attr, CBS_ASN1_SEQUENCE) || |
| 333 | !CBS_get_asn1(&attr, &oid, CBS_ASN1_OBJECT) || |
| 334 | !CBS_get_asn1(&attr, &values, CBS_ASN1_SET) || |
| 335 | CBS_len(&attr) != 0) { |
| 336 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 337 | goto err; |
| 338 | } |
| 339 | if (CBS_mem_equal(&oid, kFriendlyName, sizeof(kFriendlyName))) { |
| 340 | // See https://tools.ietf.org/html/rfc2985, section 5.5.1. |
| 341 | CBS value; |
| 342 | if (*out_friendly_name != NULL || |
| 343 | !CBS_get_asn1(&values, &value, CBS_ASN1_BMPSTRING) || |
| 344 | CBS_len(&values) != 0 || |
| 345 | CBS_len(&value) == 0) { |
| 346 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 347 | goto err; |
| 348 | } |
| 349 | // Convert the friendly name to UTF-8. |
| 350 | CBB cbb; |
| 351 | if (!CBB_init(&cbb, CBS_len(&value))) { |
| 352 | OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); |
| 353 | goto err; |
| 354 | } |
| 355 | while (CBS_len(&value) != 0) { |
| 356 | uint32_t c; |
| 357 | if (!cbs_get_ucs2_be(&value, &c) || |
| 358 | !cbb_add_utf8(&cbb, c)) { |
| 359 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS); |
| 360 | CBB_cleanup(&cbb); |
| 361 | goto err; |
| 362 | } |
| 363 | } |
| 364 | if (!CBB_finish(&cbb, out_friendly_name, out_friendly_name_len)) { |
| 365 | OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); |
| 366 | CBB_cleanup(&cbb); |
| 367 | goto err; |
| 368 | } |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | return 1; |
| 373 | |
| 374 | err: |
| 375 | OPENSSL_free(*out_friendly_name); |
| 376 | *out_friendly_name = NULL; |
| 377 | *out_friendly_name_len = 0; |
| 378 | return 0; |
| 379 | } |
| 380 | |
| 381 | // PKCS12_handle_safe_bag parses a single SafeBag element in a PKCS#12 |
| 382 | // structure. |
| 383 | static int PKCS12_handle_safe_bag(CBS *safe_bag, struct pkcs12_context *ctx) { |
| 384 | CBS bag_id, wrapped_value, bag_attrs; |
| 385 | if (!CBS_get_asn1(safe_bag, &bag_id, CBS_ASN1_OBJECT) || |
| 386 | !CBS_get_asn1(safe_bag, &wrapped_value, |
| 387 | CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) { |
| 388 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 389 | return 0; |
| 390 | } |
| 391 | if (CBS_len(safe_bag) == 0) { |
| 392 | CBS_init(&bag_attrs, NULL, 0); |
| 393 | } else if (!CBS_get_asn1(safe_bag, &bag_attrs, CBS_ASN1_SET) || |
| 394 | CBS_len(safe_bag) != 0) { |
| 395 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 396 | return 0; |
| 397 | } |
| 398 | |
| 399 | const int is_key_bag = CBS_mem_equal(&bag_id, kKeyBag, sizeof(kKeyBag)); |
| 400 | const int is_shrouded_key_bag = CBS_mem_equal(&bag_id, kPKCS8ShroudedKeyBag, |
| 401 | sizeof(kPKCS8ShroudedKeyBag)); |
| 402 | if (is_key_bag || is_shrouded_key_bag) { |
| 403 | // See RFC 7292, section 4.2.1 and 4.2.2. |
| 404 | if (*ctx->out_key) { |
| 405 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MULTIPLE_PRIVATE_KEYS_IN_PKCS12); |
| 406 | return 0; |
| 407 | } |
| 408 | |
| 409 | EVP_PKEY *pkey = |
| 410 | is_key_bag ? EVP_parse_private_key(&wrapped_value) |
| 411 | : PKCS8_parse_encrypted_private_key( |
| 412 | &wrapped_value, ctx->password, ctx->password_len); |
| 413 | if (pkey == NULL) { |
| 414 | return 0; |
| 415 | } |
| 416 | |
| 417 | if (CBS_len(&wrapped_value) != 0) { |
| 418 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 419 | EVP_PKEY_free(pkey); |
| 420 | return 0; |
| 421 | } |
| 422 | |
| 423 | *ctx->out_key = pkey; |
| 424 | return 1; |
| 425 | } |
| 426 | |
| 427 | if (CBS_mem_equal(&bag_id, kCertBag, sizeof(kCertBag))) { |
| 428 | // See RFC 7292, section 4.2.3. |
| 429 | CBS cert_bag, cert_type, wrapped_cert, cert; |
| 430 | if (!CBS_get_asn1(&wrapped_value, &cert_bag, CBS_ASN1_SEQUENCE) || |
| 431 | !CBS_get_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) || |
| 432 | !CBS_get_asn1(&cert_bag, &wrapped_cert, |
| 433 | CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || |
| 434 | !CBS_get_asn1(&wrapped_cert, &cert, CBS_ASN1_OCTETSTRING)) { |
| 435 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 436 | return 0; |
| 437 | } |
| 438 | |
| 439 | // Skip unknown certificate types. |
| 440 | if (!CBS_mem_equal(&cert_type, kX509Certificate, |
| 441 | sizeof(kX509Certificate))) { |
| 442 | return 1; |
| 443 | } |
| 444 | |
| 445 | if (CBS_len(&cert) > LONG_MAX) { |
| 446 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 447 | return 0; |
| 448 | } |
| 449 | |
| 450 | const uint8_t *inp = CBS_data(&cert); |
| 451 | X509 *x509 = d2i_X509(NULL, &inp, (long)CBS_len(&cert)); |
| 452 | if (!x509) { |
| 453 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 454 | return 0; |
| 455 | } |
| 456 | |
| 457 | if (inp != CBS_data(&cert) + CBS_len(&cert)) { |
| 458 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 459 | X509_free(x509); |
| 460 | return 0; |
| 461 | } |
| 462 | |
| 463 | uint8_t *friendly_name; |
| 464 | size_t friendly_name_len; |
| 465 | if (!parse_bag_attributes(&bag_attrs, &friendly_name, &friendly_name_len)) { |
| 466 | X509_free(x509); |
| 467 | return 0; |
| 468 | } |
| 469 | int ok = friendly_name_len == 0 || |
| 470 | X509_alias_set1(x509, friendly_name, friendly_name_len); |
| 471 | OPENSSL_free(friendly_name); |
| 472 | if (!ok || |
| 473 | 0 == sk_X509_push(ctx->out_certs, x509)) { |
| 474 | X509_free(x509); |
| 475 | return 0; |
| 476 | } |
| 477 | |
| 478 | return 1; |
| 479 | } |
| 480 | |
| 481 | // Unknown element type - ignore it. |
| 482 | return 1; |
| 483 | } |
| 484 | |
| 485 | // 1.2.840.113549.1.7.1 |
| 486 | static const uint8_t kPKCS7Data[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 487 | 0x0d, 0x01, 0x07, 0x01}; |
| 488 | |
| 489 | // 1.2.840.113549.1.7.6 |
| 490 | static const uint8_t kPKCS7EncryptedData[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 491 | 0x0d, 0x01, 0x07, 0x06}; |
| 492 | |
| 493 | // PKCS12_handle_content_info parses a single PKCS#7 ContentInfo element in a |
| 494 | // PKCS#12 structure. |
| 495 | static int PKCS12_handle_content_info(CBS *content_info, |
| 496 | struct pkcs12_context *ctx) { |
| 497 | CBS content_type, wrapped_contents, contents; |
| 498 | int ret = 0; |
| 499 | uint8_t *storage = NULL; |
| 500 | |
| 501 | if (!CBS_get_asn1(content_info, &content_type, CBS_ASN1_OBJECT) || |
| 502 | !CBS_get_asn1(content_info, &wrapped_contents, |
| 503 | CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || |
| 504 | CBS_len(content_info) != 0) { |
| 505 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 506 | goto err; |
| 507 | } |
| 508 | |
| 509 | if (CBS_mem_equal(&content_type, kPKCS7EncryptedData, |
| 510 | sizeof(kPKCS7EncryptedData))) { |
| 511 | // See https://tools.ietf.org/html/rfc2315#section-13. |
| 512 | // |
| 513 | // PKCS#7 encrypted data inside a PKCS#12 structure is generally an |
| 514 | // encrypted certificate bag and it's generally encrypted with 40-bit |
| 515 | // RC2-CBC. |
| 516 | CBS version_bytes, eci, contents_type, ai, encrypted_contents; |
| 517 | uint8_t *out; |
| 518 | size_t out_len; |
| 519 | |
| 520 | if (!CBS_get_asn1(&wrapped_contents, &contents, CBS_ASN1_SEQUENCE) || |
| 521 | !CBS_get_asn1(&contents, &version_bytes, CBS_ASN1_INTEGER) || |
| 522 | // EncryptedContentInfo, see |
| 523 | // https://tools.ietf.org/html/rfc2315#section-10.1 |
| 524 | !CBS_get_asn1(&contents, &eci, CBS_ASN1_SEQUENCE) || |
| 525 | !CBS_get_asn1(&eci, &contents_type, CBS_ASN1_OBJECT) || |
| 526 | // AlgorithmIdentifier, see |
| 527 | // https://tools.ietf.org/html/rfc5280#section-4.1.1.2 |
| 528 | !CBS_get_asn1(&eci, &ai, CBS_ASN1_SEQUENCE) || |
| 529 | !CBS_get_asn1_implicit_string( |
| 530 | &eci, &encrypted_contents, &storage, |
| 531 | CBS_ASN1_CONTEXT_SPECIFIC | 0, CBS_ASN1_OCTETSTRING)) { |
| 532 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 533 | goto err; |
| 534 | } |
| 535 | |
| 536 | if (!CBS_mem_equal(&contents_type, kPKCS7Data, sizeof(kPKCS7Data))) { |
| 537 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 538 | goto err; |
| 539 | } |
| 540 | |
| 541 | if (!pkcs8_pbe_decrypt(&out, &out_len, &ai, ctx->password, |
| 542 | ctx->password_len, CBS_data(&encrypted_contents), |
| 543 | CBS_len(&encrypted_contents))) { |
| 544 | goto err; |
| 545 | } |
| 546 | |
| 547 | CBS safe_contents; |
| 548 | CBS_init(&safe_contents, out, out_len); |
| 549 | ret = PKCS12_handle_sequence(&safe_contents, ctx, PKCS12_handle_safe_bag); |
| 550 | OPENSSL_free(out); |
| 551 | } else if (CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) { |
| 552 | CBS octet_string_contents; |
| 553 | |
| 554 | if (!CBS_get_asn1(&wrapped_contents, &octet_string_contents, |
| 555 | CBS_ASN1_OCTETSTRING)) { |
| 556 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 557 | goto err; |
| 558 | } |
| 559 | |
| 560 | ret = PKCS12_handle_sequence(&octet_string_contents, ctx, |
| 561 | PKCS12_handle_safe_bag); |
| 562 | } else { |
| 563 | // Unknown element type - ignore it. |
| 564 | ret = 1; |
| 565 | } |
| 566 | |
| 567 | err: |
| 568 | OPENSSL_free(storage); |
| 569 | return ret; |
| 570 | } |
| 571 | |
| 572 | static int pkcs12_check_mac(int *out_mac_ok, const char *password, |
| 573 | size_t password_len, const CBS *salt, |
| 574 | unsigned iterations, const EVP_MD *md, |
| 575 | const CBS *authsafes, const CBS *expected_mac) { |
| 576 | int ret = 0; |
| 577 | uint8_t hmac_key[EVP_MAX_MD_SIZE]; |
| 578 | if (!pkcs12_key_gen(password, password_len, CBS_data(salt), CBS_len(salt), |
| 579 | PKCS12_MAC_ID, iterations, EVP_MD_size(md), hmac_key, |
| 580 | md)) { |
| 581 | goto err; |
| 582 | } |
| 583 | |
| 584 | uint8_t hmac[EVP_MAX_MD_SIZE]; |
| 585 | unsigned hmac_len; |
| 586 | if (NULL == HMAC(md, hmac_key, EVP_MD_size(md), CBS_data(authsafes), |
| 587 | CBS_len(authsafes), hmac, &hmac_len)) { |
| 588 | goto err; |
| 589 | } |
| 590 | |
| 591 | *out_mac_ok = CBS_mem_equal(expected_mac, hmac, hmac_len); |
| 592 | #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
| 593 | *out_mac_ok = 1; |
| 594 | #endif |
| 595 | ret = 1; |
| 596 | |
| 597 | err: |
| 598 | OPENSSL_cleanse(hmac_key, sizeof(hmac_key)); |
| 599 | return ret; |
| 600 | } |
| 601 | |
| 602 | |
| 603 | int PKCS12_get_key_and_certs(EVP_PKEY **out_key, STACK_OF(X509) *out_certs, |
| 604 | CBS *ber_in, const char *password) { |
| 605 | uint8_t *storage = NULL; |
| 606 | CBS in, pfx, mac_data, authsafe, content_type, wrapped_authsafes, authsafes; |
| 607 | uint64_t version; |
| 608 | int ret = 0; |
| 609 | struct pkcs12_context ctx; |
| 610 | const size_t original_out_certs_len = sk_X509_num(out_certs); |
| 611 | |
| 612 | // The input may be in BER format. |
| 613 | if (!CBS_asn1_ber_to_der(ber_in, &in, &storage)) { |
| 614 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 615 | return 0; |
| 616 | } |
| 617 | |
| 618 | *out_key = NULL; |
| 619 | OPENSSL_memset(&ctx, 0, sizeof(ctx)); |
| 620 | |
| 621 | // See ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1.pdf, section |
| 622 | // four. |
| 623 | if (!CBS_get_asn1(&in, &pfx, CBS_ASN1_SEQUENCE) || |
| 624 | CBS_len(&in) != 0 || |
| 625 | !CBS_get_asn1_uint64(&pfx, &version)) { |
| 626 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 627 | goto err; |
| 628 | } |
| 629 | |
| 630 | if (version < 3) { |
| 631 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_VERSION); |
| 632 | goto err; |
| 633 | } |
| 634 | |
| 635 | if (!CBS_get_asn1(&pfx, &authsafe, CBS_ASN1_SEQUENCE)) { |
| 636 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 637 | goto err; |
| 638 | } |
| 639 | |
| 640 | if (CBS_len(&pfx) == 0) { |
| 641 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MISSING_MAC); |
| 642 | goto err; |
| 643 | } |
| 644 | |
| 645 | if (!CBS_get_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE)) { |
| 646 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 647 | goto err; |
| 648 | } |
| 649 | |
| 650 | // authsafe is a PKCS#7 ContentInfo. See |
| 651 | // https://tools.ietf.org/html/rfc2315#section-7. |
| 652 | if (!CBS_get_asn1(&authsafe, &content_type, CBS_ASN1_OBJECT) || |
| 653 | !CBS_get_asn1(&authsafe, &wrapped_authsafes, |
| 654 | CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) { |
| 655 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 656 | goto err; |
| 657 | } |
| 658 | |
| 659 | // The content type can either be data or signedData. The latter indicates |
| 660 | // that it's signed by a public key, which isn't supported. |
| 661 | if (!CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) { |
| 662 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_PKCS12_PUBLIC_KEY_INTEGRITY_NOT_SUPPORTED); |
| 663 | goto err; |
| 664 | } |
| 665 | |
| 666 | if (!CBS_get_asn1(&wrapped_authsafes, &authsafes, CBS_ASN1_OCTETSTRING)) { |
| 667 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 668 | goto err; |
| 669 | } |
| 670 | |
| 671 | ctx.out_key = out_key; |
| 672 | ctx.out_certs = out_certs; |
| 673 | ctx.password = password; |
| 674 | ctx.password_len = password != NULL ? strlen(password) : 0; |
| 675 | |
| 676 | // Verify the MAC. |
| 677 | { |
| 678 | CBS mac, salt, expected_mac; |
| 679 | if (!CBS_get_asn1(&mac_data, &mac, CBS_ASN1_SEQUENCE)) { |
| 680 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 681 | goto err; |
| 682 | } |
| 683 | |
| 684 | const EVP_MD *md = EVP_parse_digest_algorithm(&mac); |
| 685 | if (md == NULL) { |
| 686 | goto err; |
| 687 | } |
| 688 | |
| 689 | if (!CBS_get_asn1(&mac, &expected_mac, CBS_ASN1_OCTETSTRING) || |
| 690 | !CBS_get_asn1(&mac_data, &salt, CBS_ASN1_OCTETSTRING)) { |
| 691 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 692 | goto err; |
| 693 | } |
| 694 | |
| 695 | // The iteration count is optional and the default is one. |
| 696 | uint64_t iterations = 1; |
| 697 | if (CBS_len(&mac_data) > 0) { |
| 698 | if (!CBS_get_asn1_uint64(&mac_data, &iterations) || |
| 699 | !pkcs12_iterations_acceptable(iterations)) { |
| 700 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| 701 | goto err; |
| 702 | } |
| 703 | } |
| 704 | |
| 705 | int mac_ok; |
| 706 | if (!pkcs12_check_mac(&mac_ok, ctx.password, ctx.password_len, &salt, |
| 707 | iterations, md, &authsafes, &expected_mac)) { |
| 708 | goto err; |
| 709 | } |
| 710 | if (!mac_ok && ctx.password_len == 0) { |
| 711 | // PKCS#12 encodes passwords as NUL-terminated UCS-2, so the empty |
| 712 | // password is encoded as {0, 0}. Some implementations use the empty byte |
| 713 | // array for "no password". OpenSSL considers a non-NULL password as {0, |
| 714 | // 0} and a NULL password as {}. It then, in high-level PKCS#12 parsing |
| 715 | // code, tries both options. We match this behavior. |
| 716 | ctx.password = ctx.password != NULL ? NULL : "" ; |
| 717 | if (!pkcs12_check_mac(&mac_ok, ctx.password, ctx.password_len, &salt, |
| 718 | iterations, md, &authsafes, &expected_mac)) { |
| 719 | goto err; |
| 720 | } |
| 721 | } |
| 722 | if (!mac_ok) { |
| 723 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INCORRECT_PASSWORD); |
| 724 | goto err; |
| 725 | } |
| 726 | } |
| 727 | |
| 728 | // authsafes contains a series of PKCS#7 ContentInfos. |
| 729 | if (!PKCS12_handle_sequence(&authsafes, &ctx, PKCS12_handle_content_info)) { |
| 730 | goto err; |
| 731 | } |
| 732 | |
| 733 | ret = 1; |
| 734 | |
| 735 | err: |
| 736 | OPENSSL_free(storage); |
| 737 | if (!ret) { |
| 738 | EVP_PKEY_free(*out_key); |
| 739 | *out_key = NULL; |
| 740 | while (sk_X509_num(out_certs) > original_out_certs_len) { |
| 741 | X509 *x509 = sk_X509_pop(out_certs); |
| 742 | X509_free(x509); |
| 743 | } |
| 744 | } |
| 745 | |
| 746 | return ret; |
| 747 | } |
| 748 | |
| 749 | void PKCS12_PBE_add(void) {} |
| 750 | |
| 751 | struct pkcs12_st { |
| 752 | uint8_t *ber_bytes; |
| 753 | size_t ber_len; |
| 754 | }; |
| 755 | |
| 756 | PKCS12 *d2i_PKCS12(PKCS12 **out_p12, const uint8_t **ber_bytes, |
| 757 | size_t ber_len) { |
| 758 | PKCS12 *p12; |
| 759 | |
| 760 | p12 = OPENSSL_malloc(sizeof(PKCS12)); |
| 761 | if (!p12) { |
| 762 | return NULL; |
| 763 | } |
| 764 | |
| 765 | p12->ber_bytes = OPENSSL_malloc(ber_len); |
| 766 | if (!p12->ber_bytes) { |
| 767 | OPENSSL_free(p12); |
| 768 | return NULL; |
| 769 | } |
| 770 | |
| 771 | OPENSSL_memcpy(p12->ber_bytes, *ber_bytes, ber_len); |
| 772 | p12->ber_len = ber_len; |
| 773 | *ber_bytes += ber_len; |
| 774 | |
| 775 | if (out_p12) { |
| 776 | PKCS12_free(*out_p12); |
| 777 | |
| 778 | *out_p12 = p12; |
| 779 | } |
| 780 | |
| 781 | return p12; |
| 782 | } |
| 783 | |
| 784 | PKCS12* d2i_PKCS12_bio(BIO *bio, PKCS12 **out_p12) { |
| 785 | size_t used = 0; |
| 786 | BUF_MEM *buf; |
| 787 | const uint8_t *dummy; |
| 788 | static const size_t kMaxSize = 256 * 1024; |
| 789 | PKCS12 *ret = NULL; |
| 790 | |
| 791 | buf = BUF_MEM_new(); |
| 792 | if (buf == NULL) { |
| 793 | return NULL; |
| 794 | } |
| 795 | if (BUF_MEM_grow(buf, 8192) == 0) { |
| 796 | goto out; |
| 797 | } |
| 798 | |
| 799 | for (;;) { |
| 800 | int n = BIO_read(bio, &buf->data[used], buf->length - used); |
| 801 | if (n < 0) { |
| 802 | if (used == 0) { |
| 803 | goto out; |
| 804 | } |
| 805 | // Workaround a bug in node.js. It uses a memory BIO for this in the wrong |
| 806 | // mode. |
| 807 | n = 0; |
| 808 | } |
| 809 | |
| 810 | if (n == 0) { |
| 811 | break; |
| 812 | } |
| 813 | used += n; |
| 814 | |
| 815 | if (used < buf->length) { |
| 816 | continue; |
| 817 | } |
| 818 | |
| 819 | if (buf->length > kMaxSize || |
| 820 | BUF_MEM_grow(buf, buf->length * 2) == 0) { |
| 821 | goto out; |
| 822 | } |
| 823 | } |
| 824 | |
| 825 | dummy = (uint8_t*) buf->data; |
| 826 | ret = d2i_PKCS12(out_p12, &dummy, used); |
| 827 | |
| 828 | out: |
| 829 | BUF_MEM_free(buf); |
| 830 | return ret; |
| 831 | } |
| 832 | |
| 833 | PKCS12* d2i_PKCS12_fp(FILE *fp, PKCS12 **out_p12) { |
| 834 | BIO *bio; |
| 835 | PKCS12 *ret; |
| 836 | |
| 837 | bio = BIO_new_fp(fp, 0 /* don't take ownership */); |
| 838 | if (!bio) { |
| 839 | return NULL; |
| 840 | } |
| 841 | |
| 842 | ret = d2i_PKCS12_bio(bio, out_p12); |
| 843 | BIO_free(bio); |
| 844 | return ret; |
| 845 | } |
| 846 | |
| 847 | int i2d_PKCS12(const PKCS12 *p12, uint8_t **out) { |
| 848 | if (p12->ber_len > INT_MAX) { |
| 849 | OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); |
| 850 | return -1; |
| 851 | } |
| 852 | |
| 853 | if (out == NULL) { |
| 854 | return (int)p12->ber_len; |
| 855 | } |
| 856 | |
| 857 | if (*out == NULL) { |
| 858 | *out = OPENSSL_malloc(p12->ber_len); |
| 859 | if (*out == NULL) { |
| 860 | OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); |
| 861 | return -1; |
| 862 | } |
| 863 | OPENSSL_memcpy(*out, p12->ber_bytes, p12->ber_len); |
| 864 | } else { |
| 865 | OPENSSL_memcpy(*out, p12->ber_bytes, p12->ber_len); |
| 866 | *out += p12->ber_len; |
| 867 | } |
| 868 | return (int)p12->ber_len; |
| 869 | } |
| 870 | |
| 871 | int i2d_PKCS12_bio(BIO *bio, const PKCS12 *p12) { |
| 872 | return BIO_write_all(bio, p12->ber_bytes, p12->ber_len); |
| 873 | } |
| 874 | |
| 875 | int i2d_PKCS12_fp(FILE *fp, const PKCS12 *p12) { |
| 876 | BIO *bio = BIO_new_fp(fp, 0 /* don't take ownership */); |
| 877 | if (bio == NULL) { |
| 878 | return 0; |
| 879 | } |
| 880 | |
| 881 | int ret = i2d_PKCS12_bio(bio, p12); |
| 882 | BIO_free(bio); |
| 883 | return ret; |
| 884 | } |
| 885 | |
| 886 | int PKCS12_parse(const PKCS12 *p12, const char *password, EVP_PKEY **out_pkey, |
| 887 | X509 **out_cert, STACK_OF(X509) **out_ca_certs) { |
| 888 | CBS ber_bytes; |
| 889 | STACK_OF(X509) *ca_certs = NULL; |
| 890 | char ca_certs_alloced = 0; |
| 891 | |
| 892 | if (out_ca_certs != NULL && *out_ca_certs != NULL) { |
| 893 | ca_certs = *out_ca_certs; |
| 894 | } |
| 895 | |
| 896 | if (!ca_certs) { |
| 897 | ca_certs = sk_X509_new_null(); |
| 898 | if (ca_certs == NULL) { |
| 899 | OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); |
| 900 | return 0; |
| 901 | } |
| 902 | ca_certs_alloced = 1; |
| 903 | } |
| 904 | |
| 905 | CBS_init(&ber_bytes, p12->ber_bytes, p12->ber_len); |
| 906 | if (!PKCS12_get_key_and_certs(out_pkey, ca_certs, &ber_bytes, password)) { |
| 907 | if (ca_certs_alloced) { |
| 908 | sk_X509_free(ca_certs); |
| 909 | } |
| 910 | return 0; |
| 911 | } |
| 912 | |
| 913 | // OpenSSL selects the last certificate which matches the private key as |
| 914 | // |out_cert|. |
| 915 | // |
| 916 | // TODO(davidben): OpenSSL additionally reverses the order of the |
| 917 | // certificates, which was likely originally a bug, but may be a feature by |
| 918 | // now. See https://crbug.com/boringssl/250 and |
| 919 | // https://github.com/openssl/openssl/issues/6698. |
| 920 | *out_cert = NULL; |
| 921 | size_t num_certs = sk_X509_num(ca_certs); |
| 922 | if (*out_pkey != NULL && num_certs > 0) { |
| 923 | for (size_t i = num_certs - 1; i < num_certs; i--) { |
| 924 | X509 *cert = sk_X509_value(ca_certs, i); |
| 925 | if (X509_check_private_key(cert, *out_pkey)) { |
| 926 | *out_cert = cert; |
| 927 | sk_X509_delete(ca_certs, i); |
| 928 | break; |
| 929 | } |
| 930 | ERR_clear_error(); |
| 931 | } |
| 932 | } |
| 933 | |
| 934 | if (out_ca_certs) { |
| 935 | *out_ca_certs = ca_certs; |
| 936 | } else { |
| 937 | sk_X509_pop_free(ca_certs, X509_free); |
| 938 | } |
| 939 | |
| 940 | return 1; |
| 941 | } |
| 942 | |
| 943 | int PKCS12_verify_mac(const PKCS12 *p12, const char *password, |
| 944 | int password_len) { |
| 945 | if (password == NULL) { |
| 946 | if (password_len != 0) { |
| 947 | return 0; |
| 948 | } |
| 949 | } else if (password_len != -1 && |
| 950 | (password[password_len] != 0 || |
| 951 | OPENSSL_memchr(password, 0, password_len) != NULL)) { |
| 952 | return 0; |
| 953 | } |
| 954 | |
| 955 | EVP_PKEY *pkey = NULL; |
| 956 | X509 *cert = NULL; |
| 957 | if (!PKCS12_parse(p12, password, &pkey, &cert, NULL)) { |
| 958 | ERR_clear_error(); |
| 959 | return 0; |
| 960 | } |
| 961 | |
| 962 | EVP_PKEY_free(pkey); |
| 963 | X509_free(cert); |
| 964 | |
| 965 | return 1; |
| 966 | } |
| 967 | |
| 968 | // add_bag_attributes adds the bagAttributes field of a SafeBag structure, |
| 969 | // containing the specified friendlyName and localKeyId attributes. |
| 970 | static int add_bag_attributes(CBB *bag, const char *name, const uint8_t *key_id, |
| 971 | size_t key_id_len) { |
| 972 | if (name == NULL && key_id_len == 0) { |
| 973 | return 1; // Omit the OPTIONAL SET. |
| 974 | } |
| 975 | // See https://tools.ietf.org/html/rfc7292#section-4.2. |
| 976 | CBB attrs, attr, oid, values, value; |
| 977 | if (!CBB_add_asn1(bag, &attrs, CBS_ASN1_SET)) { |
| 978 | return 0; |
| 979 | } |
| 980 | if (name != NULL) { |
| 981 | // See https://tools.ietf.org/html/rfc2985, section 5.5.1. |
| 982 | if (!CBB_add_asn1(&attrs, &attr, CBS_ASN1_SEQUENCE) || |
| 983 | !CBB_add_asn1(&attr, &oid, CBS_ASN1_OBJECT) || |
| 984 | !CBB_add_bytes(&oid, kFriendlyName, sizeof(kFriendlyName)) || |
| 985 | !CBB_add_asn1(&attr, &values, CBS_ASN1_SET) || |
| 986 | !CBB_add_asn1(&values, &value, CBS_ASN1_BMPSTRING)) { |
| 987 | return 0; |
| 988 | } |
| 989 | // Convert the friendly name to a BMPString. |
| 990 | CBS name_cbs; |
| 991 | CBS_init(&name_cbs, (const uint8_t *)name, strlen(name)); |
| 992 | while (CBS_len(&name_cbs) != 0) { |
| 993 | uint32_t c; |
| 994 | if (!cbs_get_utf8(&name_cbs, &c) || |
| 995 | !cbb_add_ucs2_be(&value, c)) { |
| 996 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS); |
| 997 | return 0; |
| 998 | } |
| 999 | } |
| 1000 | } |
| 1001 | if (key_id_len != 0) { |
| 1002 | // See https://tools.ietf.org/html/rfc2985, section 5.5.2. |
| 1003 | if (!CBB_add_asn1(&attrs, &attr, CBS_ASN1_SEQUENCE) || |
| 1004 | !CBB_add_asn1(&attr, &oid, CBS_ASN1_OBJECT) || |
| 1005 | !CBB_add_bytes(&oid, kLocalKeyID, sizeof(kLocalKeyID)) || |
| 1006 | !CBB_add_asn1(&attr, &values, CBS_ASN1_SET) || |
| 1007 | !CBB_add_asn1(&values, &value, CBS_ASN1_OCTETSTRING) || |
| 1008 | !CBB_add_bytes(&value, key_id, key_id_len)) { |
| 1009 | return 0; |
| 1010 | } |
| 1011 | } |
| 1012 | return CBB_flush_asn1_set_of(&attrs) && |
| 1013 | CBB_flush(bag); |
| 1014 | } |
| 1015 | |
| 1016 | static int add_cert_bag(CBB *cbb, X509 *cert, const char *name, |
| 1017 | const uint8_t *key_id, size_t key_id_len) { |
| 1018 | CBB bag, bag_oid, bag_contents, cert_bag, cert_type, wrapped_cert, cert_value; |
| 1019 | if (// See https://tools.ietf.org/html/rfc7292#section-4.2. |
| 1020 | !CBB_add_asn1(cbb, &bag, CBS_ASN1_SEQUENCE) || |
| 1021 | !CBB_add_asn1(&bag, &bag_oid, CBS_ASN1_OBJECT) || |
| 1022 | !CBB_add_bytes(&bag_oid, kCertBag, sizeof(kCertBag)) || |
| 1023 | !CBB_add_asn1(&bag, &bag_contents, |
| 1024 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| 1025 | // See https://tools.ietf.org/html/rfc7292#section-4.2.3. |
| 1026 | !CBB_add_asn1(&bag_contents, &cert_bag, CBS_ASN1_SEQUENCE) || |
| 1027 | !CBB_add_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) || |
| 1028 | !CBB_add_bytes(&cert_type, kX509Certificate, sizeof(kX509Certificate)) || |
| 1029 | !CBB_add_asn1(&cert_bag, &wrapped_cert, |
| 1030 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| 1031 | !CBB_add_asn1(&wrapped_cert, &cert_value, CBS_ASN1_OCTETSTRING)) { |
| 1032 | return 0; |
| 1033 | } |
| 1034 | uint8_t *buf; |
| 1035 | int len = i2d_X509(cert, NULL); |
| 1036 | if (len < 0 || |
| 1037 | !CBB_add_space(&cert_value, &buf, (size_t)len) || |
| 1038 | i2d_X509(cert, &buf) < 0 || |
| 1039 | !add_bag_attributes(&bag, name, key_id, key_id_len) || |
| 1040 | !CBB_flush(cbb)) { |
| 1041 | return 0; |
| 1042 | } |
| 1043 | return 1; |
| 1044 | } |
| 1045 | |
| 1046 | static int make_cert_safe_contents(uint8_t **out_data, size_t *out_len, |
| 1047 | X509 *cert, const STACK_OF(X509) *chain, |
| 1048 | const char *name, const uint8_t *key_id, |
| 1049 | size_t key_id_len) { |
| 1050 | int ret = 0; |
| 1051 | CBB cbb, safe_contents; |
| 1052 | if (!CBB_init(&cbb, 0) || |
| 1053 | !CBB_add_asn1(&cbb, &safe_contents, CBS_ASN1_SEQUENCE) || |
| 1054 | (cert != NULL && |
| 1055 | !add_cert_bag(&safe_contents, cert, name, key_id, key_id_len))) { |
| 1056 | goto err; |
| 1057 | } |
| 1058 | |
| 1059 | for (size_t i = 0; i < sk_X509_num(chain); i++) { |
| 1060 | // Only the leaf certificate gets attributes. |
| 1061 | if (!add_cert_bag(&safe_contents, sk_X509_value(chain, i), NULL, NULL, 0)) { |
| 1062 | goto err; |
| 1063 | } |
| 1064 | } |
| 1065 | |
| 1066 | ret = CBB_finish(&cbb, out_data, out_len); |
| 1067 | |
| 1068 | err: |
| 1069 | CBB_cleanup(&cbb); |
| 1070 | return ret; |
| 1071 | } |
| 1072 | |
| 1073 | static int add_encrypted_data(CBB *out, int pbe_nid, const char *password, |
| 1074 | size_t password_len, unsigned iterations, |
| 1075 | const uint8_t *in, size_t in_len) { |
| 1076 | uint8_t salt[PKCS5_SALT_LEN]; |
| 1077 | if (!RAND_bytes(salt, sizeof(salt))) { |
| 1078 | return 0; |
| 1079 | } |
| 1080 | |
| 1081 | int ret = 0; |
| 1082 | EVP_CIPHER_CTX ctx; |
| 1083 | EVP_CIPHER_CTX_init(&ctx); |
| 1084 | CBB content_info, type, wrapper, encrypted_data, encrypted_content_info, |
| 1085 | inner_type, encrypted_content; |
| 1086 | if (// Add the ContentInfo wrapping. |
| 1087 | !CBB_add_asn1(out, &content_info, CBS_ASN1_SEQUENCE) || |
| 1088 | !CBB_add_asn1(&content_info, &type, CBS_ASN1_OBJECT) || |
| 1089 | !CBB_add_bytes(&type, kPKCS7EncryptedData, sizeof(kPKCS7EncryptedData)) || |
| 1090 | !CBB_add_asn1(&content_info, &wrapper, |
| 1091 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| 1092 | // See https://tools.ietf.org/html/rfc2315#section-13. |
| 1093 | !CBB_add_asn1(&wrapper, &encrypted_data, CBS_ASN1_SEQUENCE) || |
| 1094 | !CBB_add_asn1_uint64(&encrypted_data, 0 /* version */) || |
| 1095 | // See https://tools.ietf.org/html/rfc2315#section-10.1. |
| 1096 | !CBB_add_asn1(&encrypted_data, &encrypted_content_info, |
| 1097 | CBS_ASN1_SEQUENCE) || |
| 1098 | !CBB_add_asn1(&encrypted_content_info, &inner_type, CBS_ASN1_OBJECT) || |
| 1099 | !CBB_add_bytes(&inner_type, kPKCS7Data, sizeof(kPKCS7Data)) || |
| 1100 | // Set up encryption and fill in contentEncryptionAlgorithm. |
| 1101 | !pkcs12_pbe_encrypt_init(&encrypted_content_info, &ctx, pbe_nid, |
| 1102 | iterations, password, password_len, salt, |
| 1103 | sizeof(salt)) || |
| 1104 | // Note this tag is primitive. It is an implicitly-tagged OCTET_STRING, so |
| 1105 | // it inherits the inner tag's constructed bit. |
| 1106 | !CBB_add_asn1(&encrypted_content_info, &encrypted_content, |
| 1107 | CBS_ASN1_CONTEXT_SPECIFIC | 0)) { |
| 1108 | goto err; |
| 1109 | } |
| 1110 | |
| 1111 | size_t max_out = in_len + EVP_CIPHER_CTX_block_size(&ctx); |
| 1112 | if (max_out < in_len) { |
| 1113 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG); |
| 1114 | goto err; |
| 1115 | } |
| 1116 | |
| 1117 | uint8_t *ptr; |
| 1118 | int n1, n2; |
| 1119 | if (!CBB_reserve(&encrypted_content, &ptr, max_out) || |
| 1120 | !EVP_CipherUpdate(&ctx, ptr, &n1, in, in_len) || |
| 1121 | !EVP_CipherFinal_ex(&ctx, ptr + n1, &n2) || |
| 1122 | !CBB_did_write(&encrypted_content, n1 + n2) || |
| 1123 | !CBB_flush(out)) { |
| 1124 | goto err; |
| 1125 | } |
| 1126 | |
| 1127 | ret = 1; |
| 1128 | |
| 1129 | err: |
| 1130 | EVP_CIPHER_CTX_cleanup(&ctx); |
| 1131 | return ret; |
| 1132 | } |
| 1133 | |
| 1134 | PKCS12 *PKCS12_create(const char *password, const char *name, |
| 1135 | const EVP_PKEY *pkey, X509 *cert, |
| 1136 | const STACK_OF(X509)* chain, int key_nid, int cert_nid, |
| 1137 | int iterations, int mac_iterations, int key_type) { |
| 1138 | if (key_nid == 0) { |
| 1139 | key_nid = NID_pbe_WithSHA1And3_Key_TripleDES_CBC; |
| 1140 | } |
| 1141 | if (cert_nid == 0) { |
| 1142 | cert_nid = NID_pbe_WithSHA1And40BitRC2_CBC; |
| 1143 | } |
| 1144 | if (iterations == 0) { |
| 1145 | iterations = PKCS5_DEFAULT_ITERATIONS; |
| 1146 | } |
| 1147 | if (mac_iterations == 0) { |
| 1148 | mac_iterations = 1; |
| 1149 | } |
| 1150 | if (// In OpenSSL, this specifies a non-standard Microsoft key usage extension |
| 1151 | // which we do not currently support. |
| 1152 | key_type != 0 || |
| 1153 | // In OpenSSL, -1 here means to use no encryption, which we do not |
| 1154 | // currently support. |
| 1155 | key_nid < 0 || cert_nid < 0 || |
| 1156 | // In OpenSSL, -1 here means to omit the MAC, which we do not |
| 1157 | // currently support. Omitting it is also invalid for a password-based |
| 1158 | // PKCS#12 file. |
| 1159 | mac_iterations < 0 || |
| 1160 | // Don't encode empty objects. |
| 1161 | (pkey == NULL && cert == NULL && sk_X509_num(chain) == 0)) { |
| 1162 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_OPTIONS); |
| 1163 | return 0; |
| 1164 | } |
| 1165 | |
| 1166 | // Note that |password| may be NULL to specify no password, rather than the |
| 1167 | // empty string. They are encoded differently in PKCS#12. (One is the empty |
| 1168 | // byte array and the other is NUL-terminated UCS-2.) |
| 1169 | size_t password_len = password != NULL ? strlen(password) : 0; |
| 1170 | |
| 1171 | uint8_t key_id[EVP_MAX_MD_SIZE]; |
| 1172 | unsigned key_id_len = 0; |
| 1173 | if (cert != NULL && pkey != NULL) { |
| 1174 | if (!X509_check_private_key(cert, pkey) || |
| 1175 | // Matching OpenSSL, use the SHA-1 hash of the certificate as the local |
| 1176 | // key ID. Some PKCS#12 consumers require one to connect the private key |
| 1177 | // and certificate. |
| 1178 | !X509_digest(cert, EVP_sha1(), key_id, &key_id_len)) { |
| 1179 | return 0; |
| 1180 | } |
| 1181 | } |
| 1182 | |
| 1183 | // See https://tools.ietf.org/html/rfc7292#section-4. |
| 1184 | PKCS12 *ret = NULL; |
| 1185 | CBB cbb, pfx, auth_safe, auth_safe_oid, auth_safe_wrapper, auth_safe_data, |
| 1186 | content_infos; |
| 1187 | uint8_t mac_key[EVP_MAX_MD_SIZE]; |
| 1188 | if (!CBB_init(&cbb, 0) || |
| 1189 | !CBB_add_asn1(&cbb, &pfx, CBS_ASN1_SEQUENCE) || |
| 1190 | !CBB_add_asn1_uint64(&pfx, 3) || |
| 1191 | // auth_safe is a data ContentInfo. |
| 1192 | !CBB_add_asn1(&pfx, &auth_safe, CBS_ASN1_SEQUENCE) || |
| 1193 | !CBB_add_asn1(&auth_safe, &auth_safe_oid, CBS_ASN1_OBJECT) || |
| 1194 | !CBB_add_bytes(&auth_safe_oid, kPKCS7Data, sizeof(kPKCS7Data)) || |
| 1195 | !CBB_add_asn1(&auth_safe, &auth_safe_wrapper, |
| 1196 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| 1197 | !CBB_add_asn1(&auth_safe_wrapper, &auth_safe_data, |
| 1198 | CBS_ASN1_OCTETSTRING) || |
| 1199 | // See https://tools.ietf.org/html/rfc7292#section-4.1. |auth_safe|'s |
| 1200 | // contains a SEQUENCE of ContentInfos. |
| 1201 | !CBB_add_asn1(&auth_safe_data, &content_infos, CBS_ASN1_SEQUENCE)) { |
| 1202 | goto err; |
| 1203 | } |
| 1204 | |
| 1205 | // If there are any certificates, place them in CertBags wrapped in a single |
| 1206 | // encrypted ContentInfo. |
| 1207 | if (cert != NULL || sk_X509_num(chain) > 0) { |
| 1208 | uint8_t *data; |
| 1209 | size_t len; |
| 1210 | if (!make_cert_safe_contents(&data, &len, cert, chain, name, key_id, |
| 1211 | key_id_len)) { |
| 1212 | goto err; |
| 1213 | } |
| 1214 | int ok = add_encrypted_data(&content_infos, cert_nid, password, |
| 1215 | password_len, iterations, data, len); |
| 1216 | OPENSSL_free(data); |
| 1217 | if (!ok) { |
| 1218 | goto err; |
| 1219 | } |
| 1220 | } |
| 1221 | |
| 1222 | // If there is a key, place it in a single PKCS8ShroudedKeyBag wrapped in an |
| 1223 | // unencrypted ContentInfo. (One could also place it in a KeyBag inside an |
| 1224 | // encrypted ContentInfo, but OpenSSL does not do this and some PKCS#12 |
| 1225 | // consumers do not support KeyBags.) |
| 1226 | if (pkey != NULL) { |
| 1227 | CBB content_info, oid, wrapper, data, safe_contents, bag, bag_oid, |
| 1228 | bag_contents; |
| 1229 | if (// Add another data ContentInfo. |
| 1230 | !CBB_add_asn1(&content_infos, &content_info, CBS_ASN1_SEQUENCE) || |
| 1231 | !CBB_add_asn1(&content_info, &oid, CBS_ASN1_OBJECT) || |
| 1232 | !CBB_add_bytes(&oid, kPKCS7Data, sizeof(kPKCS7Data)) || |
| 1233 | !CBB_add_asn1(&content_info, &wrapper, |
| 1234 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| 1235 | !CBB_add_asn1(&wrapper, &data, CBS_ASN1_OCTETSTRING) || |
| 1236 | !CBB_add_asn1(&data, &safe_contents, CBS_ASN1_SEQUENCE) || |
| 1237 | // Add a SafeBag containing a PKCS8ShroudedKeyBag. |
| 1238 | !CBB_add_asn1(&safe_contents, &bag, CBS_ASN1_SEQUENCE) || |
| 1239 | !CBB_add_asn1(&bag, &bag_oid, CBS_ASN1_OBJECT) || |
| 1240 | !CBB_add_bytes(&bag_oid, kPKCS8ShroudedKeyBag, |
| 1241 | sizeof(kPKCS8ShroudedKeyBag)) || |
| 1242 | !CBB_add_asn1(&bag, &bag_contents, |
| 1243 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| 1244 | !PKCS8_marshal_encrypted_private_key( |
| 1245 | &bag_contents, key_nid, NULL, password, password_len, |
| 1246 | NULL /* generate a random salt */, 0 /* use default salt length */, |
| 1247 | iterations, pkey) || |
| 1248 | !add_bag_attributes(&bag, name, key_id, key_id_len) || |
| 1249 | !CBB_flush(&content_infos)) { |
| 1250 | goto err; |
| 1251 | } |
| 1252 | } |
| 1253 | |
| 1254 | // Compute the MAC. Match OpenSSL in using SHA-1 as the hash function. The MAC |
| 1255 | // covers |auth_safe_data|. |
| 1256 | const EVP_MD *mac_md = EVP_sha1(); |
| 1257 | uint8_t mac_salt[PKCS5_SALT_LEN]; |
| 1258 | uint8_t mac[EVP_MAX_MD_SIZE]; |
| 1259 | unsigned mac_len; |
| 1260 | if (!CBB_flush(&auth_safe_data) || |
| 1261 | !RAND_bytes(mac_salt, sizeof(mac_salt)) || |
| 1262 | !pkcs12_key_gen(password, password_len, mac_salt, sizeof(mac_salt), |
| 1263 | PKCS12_MAC_ID, mac_iterations, EVP_MD_size(mac_md), |
| 1264 | mac_key, mac_md) || |
| 1265 | !HMAC(mac_md, mac_key, EVP_MD_size(mac_md), CBB_data(&auth_safe_data), |
| 1266 | CBB_len(&auth_safe_data), mac, &mac_len)) { |
| 1267 | goto err; |
| 1268 | } |
| 1269 | |
| 1270 | CBB mac_data, digest_info, mac_cbb, mac_salt_cbb; |
| 1271 | if (!CBB_add_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE) || |
| 1272 | !CBB_add_asn1(&mac_data, &digest_info, CBS_ASN1_SEQUENCE) || |
| 1273 | !EVP_marshal_digest_algorithm(&digest_info, mac_md) || |
| 1274 | !CBB_add_asn1(&digest_info, &mac_cbb, CBS_ASN1_OCTETSTRING) || |
| 1275 | !CBB_add_bytes(&mac_cbb, mac, mac_len) || |
| 1276 | !CBB_add_asn1(&mac_data, &mac_salt_cbb, CBS_ASN1_OCTETSTRING) || |
| 1277 | !CBB_add_bytes(&mac_salt_cbb, mac_salt, sizeof(mac_salt)) || |
| 1278 | // The iteration count has a DEFAULT of 1, but RFC 7292 says "The default |
| 1279 | // is for historical reasons and its use is deprecated." Thus we |
| 1280 | // explicitly encode the iteration count, though it is not valid DER. |
| 1281 | !CBB_add_asn1_uint64(&mac_data, mac_iterations)) { |
| 1282 | goto err; |
| 1283 | } |
| 1284 | |
| 1285 | ret = OPENSSL_malloc(sizeof(PKCS12)); |
| 1286 | if (ret == NULL || |
| 1287 | !CBB_finish(&cbb, &ret->ber_bytes, &ret->ber_len)) { |
| 1288 | OPENSSL_free(ret); |
| 1289 | ret = NULL; |
| 1290 | goto err; |
| 1291 | } |
| 1292 | |
| 1293 | err: |
| 1294 | OPENSSL_cleanse(mac_key, sizeof(mac_key)); |
| 1295 | CBB_cleanup(&cbb); |
| 1296 | return ret; |
| 1297 | } |
| 1298 | |
| 1299 | void PKCS12_free(PKCS12 *p12) { |
| 1300 | if (p12 == NULL) { |
| 1301 | return; |
| 1302 | } |
| 1303 | OPENSSL_free(p12->ber_bytes); |
| 1304 | OPENSSL_free(p12); |
| 1305 | } |
| 1306 | |