1 | /* Copyright (c) 2014, Google Inc. |
2 | * |
3 | * Permission to use, copy, modify, and/or distribute this software for any |
4 | * purpose with or without fee is hereby granted, provided that the above |
5 | * copyright notice and this permission notice appear in all copies. |
6 | * |
7 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
8 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
9 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
10 | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
11 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
12 | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
13 | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
14 | |
15 | // This implementation of poly1305 is by Andrew Moon |
16 | // (https://github.com/floodyberry/poly1305-donna) and released as public |
17 | // domain. It implements SIMD vectorization based on the algorithm described in |
18 | // http://cr.yp.to/papers.html#neoncrypto. Unrolled to 2 powers, i.e. 64 byte |
19 | // block size |
20 | |
21 | #include <openssl/poly1305.h> |
22 | |
23 | #include "../internal.h" |
24 | |
25 | |
26 | #if !defined(OPENSSL_WINDOWS) && defined(OPENSSL_X86_64) |
27 | |
28 | #include <emmintrin.h> |
29 | |
30 | #define U8TO64_LE(m) (*(const uint64_t *)(m)) |
31 | #define U8TO32_LE(m) (*(const uint32_t *)(m)) |
32 | #define U64TO8_LE(m, v) (*(uint64_t *)(m)) = v |
33 | |
34 | typedef __m128i xmmi; |
35 | |
36 | static const alignas(16) uint32_t poly1305_x64_sse2_message_mask[4] = { |
37 | (1 << 26) - 1, 0, (1 << 26) - 1, 0}; |
38 | static const alignas(16) uint32_t poly1305_x64_sse2_5[4] = {5, 0, 5, 0}; |
39 | static const alignas(16) uint32_t poly1305_x64_sse2_1shl128[4] = { |
40 | (1 << 24), 0, (1 << 24), 0}; |
41 | |
42 | static inline uint128_t add128(uint128_t a, uint128_t b) { return a + b; } |
43 | |
44 | static inline uint128_t add128_64(uint128_t a, uint64_t b) { return a + b; } |
45 | |
46 | static inline uint128_t mul64x64_128(uint64_t a, uint64_t b) { |
47 | return (uint128_t)a * b; |
48 | } |
49 | |
50 | static inline uint64_t lo128(uint128_t a) { return (uint64_t)a; } |
51 | |
52 | static inline uint64_t shr128(uint128_t v, const int shift) { |
53 | return (uint64_t)(v >> shift); |
54 | } |
55 | |
56 | static inline uint64_t shr128_pair(uint64_t hi, uint64_t lo, const int shift) { |
57 | return (uint64_t)((((uint128_t)hi << 64) | lo) >> shift); |
58 | } |
59 | |
60 | typedef struct poly1305_power_t { |
61 | union { |
62 | xmmi v; |
63 | uint64_t u[2]; |
64 | uint32_t d[4]; |
65 | } R20, R21, R22, R23, R24, S21, S22, S23, S24; |
66 | } poly1305_power; |
67 | |
68 | typedef struct poly1305_state_internal_t { |
69 | poly1305_power P[2]; /* 288 bytes, top 32 bit halves unused = 144 |
70 | bytes of free storage */ |
71 | union { |
72 | xmmi H[5]; // 80 bytes |
73 | uint64_t HH[10]; |
74 | }; |
75 | // uint64_t r0,r1,r2; [24 bytes] |
76 | // uint64_t pad0,pad1; [16 bytes] |
77 | uint64_t started; // 8 bytes |
78 | uint64_t leftover; // 8 bytes |
79 | uint8_t buffer[64]; // 64 bytes |
80 | } poly1305_state_internal; /* 448 bytes total + 63 bytes for |
81 | alignment = 511 bytes raw */ |
82 | |
83 | static inline poly1305_state_internal *poly1305_aligned_state( |
84 | poly1305_state *state) { |
85 | return (poly1305_state_internal *)(((uint64_t)state + 63) & ~63); |
86 | } |
87 | |
88 | static inline size_t poly1305_min(size_t a, size_t b) { |
89 | return (a < b) ? a : b; |
90 | } |
91 | |
92 | void CRYPTO_poly1305_init(poly1305_state *state, const uint8_t key[32]) { |
93 | poly1305_state_internal *st = poly1305_aligned_state(state); |
94 | poly1305_power *p; |
95 | uint64_t r0, r1, r2; |
96 | uint64_t t0, t1; |
97 | |
98 | // clamp key |
99 | t0 = U8TO64_LE(key + 0); |
100 | t1 = U8TO64_LE(key + 8); |
101 | r0 = t0 & 0xffc0fffffff; |
102 | t0 >>= 44; |
103 | t0 |= t1 << 20; |
104 | r1 = t0 & 0xfffffc0ffff; |
105 | t1 >>= 24; |
106 | r2 = t1 & 0x00ffffffc0f; |
107 | |
108 | // store r in un-used space of st->P[1] |
109 | p = &st->P[1]; |
110 | p->R20.d[1] = (uint32_t)(r0); |
111 | p->R20.d[3] = (uint32_t)(r0 >> 32); |
112 | p->R21.d[1] = (uint32_t)(r1); |
113 | p->R21.d[3] = (uint32_t)(r1 >> 32); |
114 | p->R22.d[1] = (uint32_t)(r2); |
115 | p->R22.d[3] = (uint32_t)(r2 >> 32); |
116 | |
117 | // store pad |
118 | p->R23.d[1] = U8TO32_LE(key + 16); |
119 | p->R23.d[3] = U8TO32_LE(key + 20); |
120 | p->R24.d[1] = U8TO32_LE(key + 24); |
121 | p->R24.d[3] = U8TO32_LE(key + 28); |
122 | |
123 | // H = 0 |
124 | st->H[0] = _mm_setzero_si128(); |
125 | st->H[1] = _mm_setzero_si128(); |
126 | st->H[2] = _mm_setzero_si128(); |
127 | st->H[3] = _mm_setzero_si128(); |
128 | st->H[4] = _mm_setzero_si128(); |
129 | |
130 | st->started = 0; |
131 | st->leftover = 0; |
132 | } |
133 | |
134 | static void poly1305_first_block(poly1305_state_internal *st, |
135 | const uint8_t *m) { |
136 | const xmmi MMASK = _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask); |
137 | const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5); |
138 | const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128); |
139 | xmmi T5, T6; |
140 | poly1305_power *p; |
141 | uint128_t d[3]; |
142 | uint64_t r0, r1, r2; |
143 | uint64_t r20, r21, r22, s22; |
144 | uint64_t pad0, pad1; |
145 | uint64_t c; |
146 | uint64_t i; |
147 | |
148 | // pull out stored info |
149 | p = &st->P[1]; |
150 | |
151 | r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1]; |
152 | r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1]; |
153 | r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1]; |
154 | pad0 = ((uint64_t)p->R23.d[3] << 32) | (uint64_t)p->R23.d[1]; |
155 | pad1 = ((uint64_t)p->R24.d[3] << 32) | (uint64_t)p->R24.d[1]; |
156 | |
157 | // compute powers r^2,r^4 |
158 | r20 = r0; |
159 | r21 = r1; |
160 | r22 = r2; |
161 | for (i = 0; i < 2; i++) { |
162 | s22 = r22 * (5 << 2); |
163 | |
164 | d[0] = add128(mul64x64_128(r20, r20), mul64x64_128(r21 * 2, s22)); |
165 | d[1] = add128(mul64x64_128(r22, s22), mul64x64_128(r20 * 2, r21)); |
166 | d[2] = add128(mul64x64_128(r21, r21), mul64x64_128(r22 * 2, r20)); |
167 | |
168 | r20 = lo128(d[0]) & 0xfffffffffff; |
169 | c = shr128(d[0], 44); |
170 | d[1] = add128_64(d[1], c); |
171 | r21 = lo128(d[1]) & 0xfffffffffff; |
172 | c = shr128(d[1], 44); |
173 | d[2] = add128_64(d[2], c); |
174 | r22 = lo128(d[2]) & 0x3ffffffffff; |
175 | c = shr128(d[2], 42); |
176 | r20 += c * 5; |
177 | c = (r20 >> 44); |
178 | r20 = r20 & 0xfffffffffff; |
179 | r21 += c; |
180 | |
181 | p->R20.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)(r20)&0x3ffffff), |
182 | _MM_SHUFFLE(1, 0, 1, 0)); |
183 | p->R21.v = _mm_shuffle_epi32( |
184 | _mm_cvtsi32_si128((uint32_t)((r20 >> 26) | (r21 << 18)) & 0x3ffffff), |
185 | _MM_SHUFFLE(1, 0, 1, 0)); |
186 | p->R22.v = |
187 | _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r21 >> 8)) & 0x3ffffff), |
188 | _MM_SHUFFLE(1, 0, 1, 0)); |
189 | p->R23.v = _mm_shuffle_epi32( |
190 | _mm_cvtsi32_si128((uint32_t)((r21 >> 34) | (r22 << 10)) & 0x3ffffff), |
191 | _MM_SHUFFLE(1, 0, 1, 0)); |
192 | p->R24.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r22 >> 16))), |
193 | _MM_SHUFFLE(1, 0, 1, 0)); |
194 | p->S21.v = _mm_mul_epu32(p->R21.v, FIVE); |
195 | p->S22.v = _mm_mul_epu32(p->R22.v, FIVE); |
196 | p->S23.v = _mm_mul_epu32(p->R23.v, FIVE); |
197 | p->S24.v = _mm_mul_epu32(p->R24.v, FIVE); |
198 | p--; |
199 | } |
200 | |
201 | // put saved info back |
202 | p = &st->P[1]; |
203 | p->R20.d[1] = (uint32_t)(r0); |
204 | p->R20.d[3] = (uint32_t)(r0 >> 32); |
205 | p->R21.d[1] = (uint32_t)(r1); |
206 | p->R21.d[3] = (uint32_t)(r1 >> 32); |
207 | p->R22.d[1] = (uint32_t)(r2); |
208 | p->R22.d[3] = (uint32_t)(r2 >> 32); |
209 | p->R23.d[1] = (uint32_t)(pad0); |
210 | p->R23.d[3] = (uint32_t)(pad0 >> 32); |
211 | p->R24.d[1] = (uint32_t)(pad1); |
212 | p->R24.d[3] = (uint32_t)(pad1 >> 32); |
213 | |
214 | // H = [Mx,My] |
215 | T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)), |
216 | _mm_loadl_epi64((const xmmi *)(m + 16))); |
217 | T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)), |
218 | _mm_loadl_epi64((const xmmi *)(m + 24))); |
219 | st->H[0] = _mm_and_si128(MMASK, T5); |
220 | st->H[1] = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
221 | T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12)); |
222 | st->H[2] = _mm_and_si128(MMASK, T5); |
223 | st->H[3] = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
224 | st->H[4] = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT); |
225 | } |
226 | |
227 | static void poly1305_blocks(poly1305_state_internal *st, const uint8_t *m, |
228 | size_t bytes) { |
229 | const xmmi MMASK = _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask); |
230 | const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5); |
231 | const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128); |
232 | |
233 | poly1305_power *p; |
234 | xmmi H0, H1, H2, H3, H4; |
235 | xmmi T0, T1, T2, T3, T4, T5, T6; |
236 | xmmi M0, M1, M2, M3, M4; |
237 | xmmi C1, C2; |
238 | |
239 | H0 = st->H[0]; |
240 | H1 = st->H[1]; |
241 | H2 = st->H[2]; |
242 | H3 = st->H[3]; |
243 | H4 = st->H[4]; |
244 | |
245 | while (bytes >= 64) { |
246 | // H *= [r^4,r^4] |
247 | p = &st->P[0]; |
248 | T0 = _mm_mul_epu32(H0, p->R20.v); |
249 | T1 = _mm_mul_epu32(H0, p->R21.v); |
250 | T2 = _mm_mul_epu32(H0, p->R22.v); |
251 | T3 = _mm_mul_epu32(H0, p->R23.v); |
252 | T4 = _mm_mul_epu32(H0, p->R24.v); |
253 | T5 = _mm_mul_epu32(H1, p->S24.v); |
254 | T6 = _mm_mul_epu32(H1, p->R20.v); |
255 | T0 = _mm_add_epi64(T0, T5); |
256 | T1 = _mm_add_epi64(T1, T6); |
257 | T5 = _mm_mul_epu32(H2, p->S23.v); |
258 | T6 = _mm_mul_epu32(H2, p->S24.v); |
259 | T0 = _mm_add_epi64(T0, T5); |
260 | T1 = _mm_add_epi64(T1, T6); |
261 | T5 = _mm_mul_epu32(H3, p->S22.v); |
262 | T6 = _mm_mul_epu32(H3, p->S23.v); |
263 | T0 = _mm_add_epi64(T0, T5); |
264 | T1 = _mm_add_epi64(T1, T6); |
265 | T5 = _mm_mul_epu32(H4, p->S21.v); |
266 | T6 = _mm_mul_epu32(H4, p->S22.v); |
267 | T0 = _mm_add_epi64(T0, T5); |
268 | T1 = _mm_add_epi64(T1, T6); |
269 | T5 = _mm_mul_epu32(H1, p->R21.v); |
270 | T6 = _mm_mul_epu32(H1, p->R22.v); |
271 | T2 = _mm_add_epi64(T2, T5); |
272 | T3 = _mm_add_epi64(T3, T6); |
273 | T5 = _mm_mul_epu32(H2, p->R20.v); |
274 | T6 = _mm_mul_epu32(H2, p->R21.v); |
275 | T2 = _mm_add_epi64(T2, T5); |
276 | T3 = _mm_add_epi64(T3, T6); |
277 | T5 = _mm_mul_epu32(H3, p->S24.v); |
278 | T6 = _mm_mul_epu32(H3, p->R20.v); |
279 | T2 = _mm_add_epi64(T2, T5); |
280 | T3 = _mm_add_epi64(T3, T6); |
281 | T5 = _mm_mul_epu32(H4, p->S23.v); |
282 | T6 = _mm_mul_epu32(H4, p->S24.v); |
283 | T2 = _mm_add_epi64(T2, T5); |
284 | T3 = _mm_add_epi64(T3, T6); |
285 | T5 = _mm_mul_epu32(H1, p->R23.v); |
286 | T4 = _mm_add_epi64(T4, T5); |
287 | T5 = _mm_mul_epu32(H2, p->R22.v); |
288 | T4 = _mm_add_epi64(T4, T5); |
289 | T5 = _mm_mul_epu32(H3, p->R21.v); |
290 | T4 = _mm_add_epi64(T4, T5); |
291 | T5 = _mm_mul_epu32(H4, p->R20.v); |
292 | T4 = _mm_add_epi64(T4, T5); |
293 | |
294 | // H += [Mx,My]*[r^2,r^2] |
295 | T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)), |
296 | _mm_loadl_epi64((const xmmi *)(m + 16))); |
297 | T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)), |
298 | _mm_loadl_epi64((const xmmi *)(m + 24))); |
299 | M0 = _mm_and_si128(MMASK, T5); |
300 | M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
301 | T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12)); |
302 | M2 = _mm_and_si128(MMASK, T5); |
303 | M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
304 | M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT); |
305 | |
306 | p = &st->P[1]; |
307 | T5 = _mm_mul_epu32(M0, p->R20.v); |
308 | T6 = _mm_mul_epu32(M0, p->R21.v); |
309 | T0 = _mm_add_epi64(T0, T5); |
310 | T1 = _mm_add_epi64(T1, T6); |
311 | T5 = _mm_mul_epu32(M1, p->S24.v); |
312 | T6 = _mm_mul_epu32(M1, p->R20.v); |
313 | T0 = _mm_add_epi64(T0, T5); |
314 | T1 = _mm_add_epi64(T1, T6); |
315 | T5 = _mm_mul_epu32(M2, p->S23.v); |
316 | T6 = _mm_mul_epu32(M2, p->S24.v); |
317 | T0 = _mm_add_epi64(T0, T5); |
318 | T1 = _mm_add_epi64(T1, T6); |
319 | T5 = _mm_mul_epu32(M3, p->S22.v); |
320 | T6 = _mm_mul_epu32(M3, p->S23.v); |
321 | T0 = _mm_add_epi64(T0, T5); |
322 | T1 = _mm_add_epi64(T1, T6); |
323 | T5 = _mm_mul_epu32(M4, p->S21.v); |
324 | T6 = _mm_mul_epu32(M4, p->S22.v); |
325 | T0 = _mm_add_epi64(T0, T5); |
326 | T1 = _mm_add_epi64(T1, T6); |
327 | T5 = _mm_mul_epu32(M0, p->R22.v); |
328 | T6 = _mm_mul_epu32(M0, p->R23.v); |
329 | T2 = _mm_add_epi64(T2, T5); |
330 | T3 = _mm_add_epi64(T3, T6); |
331 | T5 = _mm_mul_epu32(M1, p->R21.v); |
332 | T6 = _mm_mul_epu32(M1, p->R22.v); |
333 | T2 = _mm_add_epi64(T2, T5); |
334 | T3 = _mm_add_epi64(T3, T6); |
335 | T5 = _mm_mul_epu32(M2, p->R20.v); |
336 | T6 = _mm_mul_epu32(M2, p->R21.v); |
337 | T2 = _mm_add_epi64(T2, T5); |
338 | T3 = _mm_add_epi64(T3, T6); |
339 | T5 = _mm_mul_epu32(M3, p->S24.v); |
340 | T6 = _mm_mul_epu32(M3, p->R20.v); |
341 | T2 = _mm_add_epi64(T2, T5); |
342 | T3 = _mm_add_epi64(T3, T6); |
343 | T5 = _mm_mul_epu32(M4, p->S23.v); |
344 | T6 = _mm_mul_epu32(M4, p->S24.v); |
345 | T2 = _mm_add_epi64(T2, T5); |
346 | T3 = _mm_add_epi64(T3, T6); |
347 | T5 = _mm_mul_epu32(M0, p->R24.v); |
348 | T4 = _mm_add_epi64(T4, T5); |
349 | T5 = _mm_mul_epu32(M1, p->R23.v); |
350 | T4 = _mm_add_epi64(T4, T5); |
351 | T5 = _mm_mul_epu32(M2, p->R22.v); |
352 | T4 = _mm_add_epi64(T4, T5); |
353 | T5 = _mm_mul_epu32(M3, p->R21.v); |
354 | T4 = _mm_add_epi64(T4, T5); |
355 | T5 = _mm_mul_epu32(M4, p->R20.v); |
356 | T4 = _mm_add_epi64(T4, T5); |
357 | |
358 | // H += [Mx,My] |
359 | T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 32)), |
360 | _mm_loadl_epi64((const xmmi *)(m + 48))); |
361 | T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 40)), |
362 | _mm_loadl_epi64((const xmmi *)(m + 56))); |
363 | M0 = _mm_and_si128(MMASK, T5); |
364 | M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
365 | T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12)); |
366 | M2 = _mm_and_si128(MMASK, T5); |
367 | M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
368 | M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT); |
369 | |
370 | T0 = _mm_add_epi64(T0, M0); |
371 | T1 = _mm_add_epi64(T1, M1); |
372 | T2 = _mm_add_epi64(T2, M2); |
373 | T3 = _mm_add_epi64(T3, M3); |
374 | T4 = _mm_add_epi64(T4, M4); |
375 | |
376 | // reduce |
377 | C1 = _mm_srli_epi64(T0, 26); |
378 | C2 = _mm_srli_epi64(T3, 26); |
379 | T0 = _mm_and_si128(T0, MMASK); |
380 | T3 = _mm_and_si128(T3, MMASK); |
381 | T1 = _mm_add_epi64(T1, C1); |
382 | T4 = _mm_add_epi64(T4, C2); |
383 | C1 = _mm_srli_epi64(T1, 26); |
384 | C2 = _mm_srli_epi64(T4, 26); |
385 | T1 = _mm_and_si128(T1, MMASK); |
386 | T4 = _mm_and_si128(T4, MMASK); |
387 | T2 = _mm_add_epi64(T2, C1); |
388 | T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE)); |
389 | C1 = _mm_srli_epi64(T2, 26); |
390 | C2 = _mm_srli_epi64(T0, 26); |
391 | T2 = _mm_and_si128(T2, MMASK); |
392 | T0 = _mm_and_si128(T0, MMASK); |
393 | T3 = _mm_add_epi64(T3, C1); |
394 | T1 = _mm_add_epi64(T1, C2); |
395 | C1 = _mm_srli_epi64(T3, 26); |
396 | T3 = _mm_and_si128(T3, MMASK); |
397 | T4 = _mm_add_epi64(T4, C1); |
398 | |
399 | // H = (H*[r^4,r^4] + [Mx,My]*[r^2,r^2] + [Mx,My]) |
400 | H0 = T0; |
401 | H1 = T1; |
402 | H2 = T2; |
403 | H3 = T3; |
404 | H4 = T4; |
405 | |
406 | m += 64; |
407 | bytes -= 64; |
408 | } |
409 | |
410 | st->H[0] = H0; |
411 | st->H[1] = H1; |
412 | st->H[2] = H2; |
413 | st->H[3] = H3; |
414 | st->H[4] = H4; |
415 | } |
416 | |
417 | static size_t poly1305_combine(poly1305_state_internal *st, const uint8_t *m, |
418 | size_t bytes) { |
419 | const xmmi MMASK = _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask); |
420 | const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128); |
421 | const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5); |
422 | |
423 | poly1305_power *p; |
424 | xmmi H0, H1, H2, H3, H4; |
425 | xmmi M0, M1, M2, M3, M4; |
426 | xmmi T0, T1, T2, T3, T4, T5, T6; |
427 | xmmi C1, C2; |
428 | |
429 | uint64_t r0, r1, r2; |
430 | uint64_t t0, t1, t2, t3, t4; |
431 | uint64_t c; |
432 | size_t consumed = 0; |
433 | |
434 | H0 = st->H[0]; |
435 | H1 = st->H[1]; |
436 | H2 = st->H[2]; |
437 | H3 = st->H[3]; |
438 | H4 = st->H[4]; |
439 | |
440 | // p = [r^2,r^2] |
441 | p = &st->P[1]; |
442 | |
443 | if (bytes >= 32) { |
444 | // H *= [r^2,r^2] |
445 | T0 = _mm_mul_epu32(H0, p->R20.v); |
446 | T1 = _mm_mul_epu32(H0, p->R21.v); |
447 | T2 = _mm_mul_epu32(H0, p->R22.v); |
448 | T3 = _mm_mul_epu32(H0, p->R23.v); |
449 | T4 = _mm_mul_epu32(H0, p->R24.v); |
450 | T5 = _mm_mul_epu32(H1, p->S24.v); |
451 | T6 = _mm_mul_epu32(H1, p->R20.v); |
452 | T0 = _mm_add_epi64(T0, T5); |
453 | T1 = _mm_add_epi64(T1, T6); |
454 | T5 = _mm_mul_epu32(H2, p->S23.v); |
455 | T6 = _mm_mul_epu32(H2, p->S24.v); |
456 | T0 = _mm_add_epi64(T0, T5); |
457 | T1 = _mm_add_epi64(T1, T6); |
458 | T5 = _mm_mul_epu32(H3, p->S22.v); |
459 | T6 = _mm_mul_epu32(H3, p->S23.v); |
460 | T0 = _mm_add_epi64(T0, T5); |
461 | T1 = _mm_add_epi64(T1, T6); |
462 | T5 = _mm_mul_epu32(H4, p->S21.v); |
463 | T6 = _mm_mul_epu32(H4, p->S22.v); |
464 | T0 = _mm_add_epi64(T0, T5); |
465 | T1 = _mm_add_epi64(T1, T6); |
466 | T5 = _mm_mul_epu32(H1, p->R21.v); |
467 | T6 = _mm_mul_epu32(H1, p->R22.v); |
468 | T2 = _mm_add_epi64(T2, T5); |
469 | T3 = _mm_add_epi64(T3, T6); |
470 | T5 = _mm_mul_epu32(H2, p->R20.v); |
471 | T6 = _mm_mul_epu32(H2, p->R21.v); |
472 | T2 = _mm_add_epi64(T2, T5); |
473 | T3 = _mm_add_epi64(T3, T6); |
474 | T5 = _mm_mul_epu32(H3, p->S24.v); |
475 | T6 = _mm_mul_epu32(H3, p->R20.v); |
476 | T2 = _mm_add_epi64(T2, T5); |
477 | T3 = _mm_add_epi64(T3, T6); |
478 | T5 = _mm_mul_epu32(H4, p->S23.v); |
479 | T6 = _mm_mul_epu32(H4, p->S24.v); |
480 | T2 = _mm_add_epi64(T2, T5); |
481 | T3 = _mm_add_epi64(T3, T6); |
482 | T5 = _mm_mul_epu32(H1, p->R23.v); |
483 | T4 = _mm_add_epi64(T4, T5); |
484 | T5 = _mm_mul_epu32(H2, p->R22.v); |
485 | T4 = _mm_add_epi64(T4, T5); |
486 | T5 = _mm_mul_epu32(H3, p->R21.v); |
487 | T4 = _mm_add_epi64(T4, T5); |
488 | T5 = _mm_mul_epu32(H4, p->R20.v); |
489 | T4 = _mm_add_epi64(T4, T5); |
490 | |
491 | // H += [Mx,My] |
492 | T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)), |
493 | _mm_loadl_epi64((const xmmi *)(m + 16))); |
494 | T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)), |
495 | _mm_loadl_epi64((const xmmi *)(m + 24))); |
496 | M0 = _mm_and_si128(MMASK, T5); |
497 | M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
498 | T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12)); |
499 | M2 = _mm_and_si128(MMASK, T5); |
500 | M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
501 | M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT); |
502 | |
503 | T0 = _mm_add_epi64(T0, M0); |
504 | T1 = _mm_add_epi64(T1, M1); |
505 | T2 = _mm_add_epi64(T2, M2); |
506 | T3 = _mm_add_epi64(T3, M3); |
507 | T4 = _mm_add_epi64(T4, M4); |
508 | |
509 | // reduce |
510 | C1 = _mm_srli_epi64(T0, 26); |
511 | C2 = _mm_srli_epi64(T3, 26); |
512 | T0 = _mm_and_si128(T0, MMASK); |
513 | T3 = _mm_and_si128(T3, MMASK); |
514 | T1 = _mm_add_epi64(T1, C1); |
515 | T4 = _mm_add_epi64(T4, C2); |
516 | C1 = _mm_srli_epi64(T1, 26); |
517 | C2 = _mm_srli_epi64(T4, 26); |
518 | T1 = _mm_and_si128(T1, MMASK); |
519 | T4 = _mm_and_si128(T4, MMASK); |
520 | T2 = _mm_add_epi64(T2, C1); |
521 | T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE)); |
522 | C1 = _mm_srli_epi64(T2, 26); |
523 | C2 = _mm_srli_epi64(T0, 26); |
524 | T2 = _mm_and_si128(T2, MMASK); |
525 | T0 = _mm_and_si128(T0, MMASK); |
526 | T3 = _mm_add_epi64(T3, C1); |
527 | T1 = _mm_add_epi64(T1, C2); |
528 | C1 = _mm_srli_epi64(T3, 26); |
529 | T3 = _mm_and_si128(T3, MMASK); |
530 | T4 = _mm_add_epi64(T4, C1); |
531 | |
532 | // H = (H*[r^2,r^2] + [Mx,My]) |
533 | H0 = T0; |
534 | H1 = T1; |
535 | H2 = T2; |
536 | H3 = T3; |
537 | H4 = T4; |
538 | |
539 | consumed = 32; |
540 | } |
541 | |
542 | // finalize, H *= [r^2,r] |
543 | r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1]; |
544 | r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1]; |
545 | r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1]; |
546 | |
547 | p->R20.d[2] = (uint32_t)(r0)&0x3ffffff; |
548 | p->R21.d[2] = (uint32_t)((r0 >> 26) | (r1 << 18)) & 0x3ffffff; |
549 | p->R22.d[2] = (uint32_t)((r1 >> 8)) & 0x3ffffff; |
550 | p->R23.d[2] = (uint32_t)((r1 >> 34) | (r2 << 10)) & 0x3ffffff; |
551 | p->R24.d[2] = (uint32_t)((r2 >> 16)); |
552 | p->S21.d[2] = p->R21.d[2] * 5; |
553 | p->S22.d[2] = p->R22.d[2] * 5; |
554 | p->S23.d[2] = p->R23.d[2] * 5; |
555 | p->S24.d[2] = p->R24.d[2] * 5; |
556 | |
557 | // H *= [r^2,r] |
558 | T0 = _mm_mul_epu32(H0, p->R20.v); |
559 | T1 = _mm_mul_epu32(H0, p->R21.v); |
560 | T2 = _mm_mul_epu32(H0, p->R22.v); |
561 | T3 = _mm_mul_epu32(H0, p->R23.v); |
562 | T4 = _mm_mul_epu32(H0, p->R24.v); |
563 | T5 = _mm_mul_epu32(H1, p->S24.v); |
564 | T6 = _mm_mul_epu32(H1, p->R20.v); |
565 | T0 = _mm_add_epi64(T0, T5); |
566 | T1 = _mm_add_epi64(T1, T6); |
567 | T5 = _mm_mul_epu32(H2, p->S23.v); |
568 | T6 = _mm_mul_epu32(H2, p->S24.v); |
569 | T0 = _mm_add_epi64(T0, T5); |
570 | T1 = _mm_add_epi64(T1, T6); |
571 | T5 = _mm_mul_epu32(H3, p->S22.v); |
572 | T6 = _mm_mul_epu32(H3, p->S23.v); |
573 | T0 = _mm_add_epi64(T0, T5); |
574 | T1 = _mm_add_epi64(T1, T6); |
575 | T5 = _mm_mul_epu32(H4, p->S21.v); |
576 | T6 = _mm_mul_epu32(H4, p->S22.v); |
577 | T0 = _mm_add_epi64(T0, T5); |
578 | T1 = _mm_add_epi64(T1, T6); |
579 | T5 = _mm_mul_epu32(H1, p->R21.v); |
580 | T6 = _mm_mul_epu32(H1, p->R22.v); |
581 | T2 = _mm_add_epi64(T2, T5); |
582 | T3 = _mm_add_epi64(T3, T6); |
583 | T5 = _mm_mul_epu32(H2, p->R20.v); |
584 | T6 = _mm_mul_epu32(H2, p->R21.v); |
585 | T2 = _mm_add_epi64(T2, T5); |
586 | T3 = _mm_add_epi64(T3, T6); |
587 | T5 = _mm_mul_epu32(H3, p->S24.v); |
588 | T6 = _mm_mul_epu32(H3, p->R20.v); |
589 | T2 = _mm_add_epi64(T2, T5); |
590 | T3 = _mm_add_epi64(T3, T6); |
591 | T5 = _mm_mul_epu32(H4, p->S23.v); |
592 | T6 = _mm_mul_epu32(H4, p->S24.v); |
593 | T2 = _mm_add_epi64(T2, T5); |
594 | T3 = _mm_add_epi64(T3, T6); |
595 | T5 = _mm_mul_epu32(H1, p->R23.v); |
596 | T4 = _mm_add_epi64(T4, T5); |
597 | T5 = _mm_mul_epu32(H2, p->R22.v); |
598 | T4 = _mm_add_epi64(T4, T5); |
599 | T5 = _mm_mul_epu32(H3, p->R21.v); |
600 | T4 = _mm_add_epi64(T4, T5); |
601 | T5 = _mm_mul_epu32(H4, p->R20.v); |
602 | T4 = _mm_add_epi64(T4, T5); |
603 | |
604 | C1 = _mm_srli_epi64(T0, 26); |
605 | C2 = _mm_srli_epi64(T3, 26); |
606 | T0 = _mm_and_si128(T0, MMASK); |
607 | T3 = _mm_and_si128(T3, MMASK); |
608 | T1 = _mm_add_epi64(T1, C1); |
609 | T4 = _mm_add_epi64(T4, C2); |
610 | C1 = _mm_srli_epi64(T1, 26); |
611 | C2 = _mm_srli_epi64(T4, 26); |
612 | T1 = _mm_and_si128(T1, MMASK); |
613 | T4 = _mm_and_si128(T4, MMASK); |
614 | T2 = _mm_add_epi64(T2, C1); |
615 | T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE)); |
616 | C1 = _mm_srli_epi64(T2, 26); |
617 | C2 = _mm_srli_epi64(T0, 26); |
618 | T2 = _mm_and_si128(T2, MMASK); |
619 | T0 = _mm_and_si128(T0, MMASK); |
620 | T3 = _mm_add_epi64(T3, C1); |
621 | T1 = _mm_add_epi64(T1, C2); |
622 | C1 = _mm_srli_epi64(T3, 26); |
623 | T3 = _mm_and_si128(T3, MMASK); |
624 | T4 = _mm_add_epi64(T4, C1); |
625 | |
626 | // H = H[0]+H[1] |
627 | H0 = _mm_add_epi64(T0, _mm_srli_si128(T0, 8)); |
628 | H1 = _mm_add_epi64(T1, _mm_srli_si128(T1, 8)); |
629 | H2 = _mm_add_epi64(T2, _mm_srli_si128(T2, 8)); |
630 | H3 = _mm_add_epi64(T3, _mm_srli_si128(T3, 8)); |
631 | H4 = _mm_add_epi64(T4, _mm_srli_si128(T4, 8)); |
632 | |
633 | t0 = _mm_cvtsi128_si32(H0); |
634 | c = (t0 >> 26); |
635 | t0 &= 0x3ffffff; |
636 | t1 = _mm_cvtsi128_si32(H1) + c; |
637 | c = (t1 >> 26); |
638 | t1 &= 0x3ffffff; |
639 | t2 = _mm_cvtsi128_si32(H2) + c; |
640 | c = (t2 >> 26); |
641 | t2 &= 0x3ffffff; |
642 | t3 = _mm_cvtsi128_si32(H3) + c; |
643 | c = (t3 >> 26); |
644 | t3 &= 0x3ffffff; |
645 | t4 = _mm_cvtsi128_si32(H4) + c; |
646 | c = (t4 >> 26); |
647 | t4 &= 0x3ffffff; |
648 | t0 = t0 + (c * 5); |
649 | c = (t0 >> 26); |
650 | t0 &= 0x3ffffff; |
651 | t1 = t1 + c; |
652 | |
653 | st->HH[0] = ((t0) | (t1 << 26)) & UINT64_C(0xfffffffffff); |
654 | st->HH[1] = ((t1 >> 18) | (t2 << 8) | (t3 << 34)) & UINT64_C(0xfffffffffff); |
655 | st->HH[2] = ((t3 >> 10) | (t4 << 16)) & UINT64_C(0x3ffffffffff); |
656 | |
657 | return consumed; |
658 | } |
659 | |
660 | void CRYPTO_poly1305_update(poly1305_state *state, const uint8_t *m, |
661 | size_t bytes) { |
662 | poly1305_state_internal *st = poly1305_aligned_state(state); |
663 | size_t want; |
664 | |
665 | // need at least 32 initial bytes to start the accelerated branch |
666 | if (!st->started) { |
667 | if ((st->leftover == 0) && (bytes > 32)) { |
668 | poly1305_first_block(st, m); |
669 | m += 32; |
670 | bytes -= 32; |
671 | } else { |
672 | want = poly1305_min(32 - st->leftover, bytes); |
673 | OPENSSL_memcpy(st->buffer + st->leftover, m, want); |
674 | bytes -= want; |
675 | m += want; |
676 | st->leftover += want; |
677 | if ((st->leftover < 32) || (bytes == 0)) { |
678 | return; |
679 | } |
680 | poly1305_first_block(st, st->buffer); |
681 | st->leftover = 0; |
682 | } |
683 | st->started = 1; |
684 | } |
685 | |
686 | // handle leftover |
687 | if (st->leftover) { |
688 | want = poly1305_min(64 - st->leftover, bytes); |
689 | OPENSSL_memcpy(st->buffer + st->leftover, m, want); |
690 | bytes -= want; |
691 | m += want; |
692 | st->leftover += want; |
693 | if (st->leftover < 64) { |
694 | return; |
695 | } |
696 | poly1305_blocks(st, st->buffer, 64); |
697 | st->leftover = 0; |
698 | } |
699 | |
700 | // process 64 byte blocks |
701 | if (bytes >= 64) { |
702 | want = (bytes & ~63); |
703 | poly1305_blocks(st, m, want); |
704 | m += want; |
705 | bytes -= want; |
706 | } |
707 | |
708 | if (bytes) { |
709 | OPENSSL_memcpy(st->buffer + st->leftover, m, bytes); |
710 | st->leftover += bytes; |
711 | } |
712 | } |
713 | |
714 | void CRYPTO_poly1305_finish(poly1305_state *state, uint8_t mac[16]) { |
715 | poly1305_state_internal *st = poly1305_aligned_state(state); |
716 | size_t leftover = st->leftover; |
717 | uint8_t *m = st->buffer; |
718 | uint128_t d[3]; |
719 | uint64_t h0, h1, h2; |
720 | uint64_t t0, t1; |
721 | uint64_t g0, g1, g2, c, nc; |
722 | uint64_t r0, r1, r2, s1, s2; |
723 | poly1305_power *p; |
724 | |
725 | if (st->started) { |
726 | size_t consumed = poly1305_combine(st, m, leftover); |
727 | leftover -= consumed; |
728 | m += consumed; |
729 | } |
730 | |
731 | // st->HH will either be 0 or have the combined result |
732 | h0 = st->HH[0]; |
733 | h1 = st->HH[1]; |
734 | h2 = st->HH[2]; |
735 | |
736 | p = &st->P[1]; |
737 | r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1]; |
738 | r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1]; |
739 | r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1]; |
740 | s1 = r1 * (5 << 2); |
741 | s2 = r2 * (5 << 2); |
742 | |
743 | if (leftover < 16) { |
744 | goto poly1305_donna_atmost15bytes; |
745 | } |
746 | |
747 | poly1305_donna_atleast16bytes: |
748 | t0 = U8TO64_LE(m + 0); |
749 | t1 = U8TO64_LE(m + 8); |
750 | h0 += t0 & 0xfffffffffff; |
751 | t0 = shr128_pair(t1, t0, 44); |
752 | h1 += t0 & 0xfffffffffff; |
753 | h2 += (t1 >> 24) | ((uint64_t)1 << 40); |
754 | |
755 | poly1305_donna_mul: |
756 | d[0] = add128(add128(mul64x64_128(h0, r0), mul64x64_128(h1, s2)), |
757 | mul64x64_128(h2, s1)); |
758 | d[1] = add128(add128(mul64x64_128(h0, r1), mul64x64_128(h1, r0)), |
759 | mul64x64_128(h2, s2)); |
760 | d[2] = add128(add128(mul64x64_128(h0, r2), mul64x64_128(h1, r1)), |
761 | mul64x64_128(h2, r0)); |
762 | h0 = lo128(d[0]) & 0xfffffffffff; |
763 | c = shr128(d[0], 44); |
764 | d[1] = add128_64(d[1], c); |
765 | h1 = lo128(d[1]) & 0xfffffffffff; |
766 | c = shr128(d[1], 44); |
767 | d[2] = add128_64(d[2], c); |
768 | h2 = lo128(d[2]) & 0x3ffffffffff; |
769 | c = shr128(d[2], 42); |
770 | h0 += c * 5; |
771 | |
772 | m += 16; |
773 | leftover -= 16; |
774 | if (leftover >= 16) { |
775 | goto poly1305_donna_atleast16bytes; |
776 | } |
777 | |
778 | // final bytes |
779 | poly1305_donna_atmost15bytes: |
780 | if (!leftover) { |
781 | goto poly1305_donna_finish; |
782 | } |
783 | |
784 | m[leftover++] = 1; |
785 | OPENSSL_memset(m + leftover, 0, 16 - leftover); |
786 | leftover = 16; |
787 | |
788 | t0 = U8TO64_LE(m + 0); |
789 | t1 = U8TO64_LE(m + 8); |
790 | h0 += t0 & 0xfffffffffff; |
791 | t0 = shr128_pair(t1, t0, 44); |
792 | h1 += t0 & 0xfffffffffff; |
793 | h2 += (t1 >> 24); |
794 | |
795 | goto poly1305_donna_mul; |
796 | |
797 | poly1305_donna_finish: |
798 | c = (h0 >> 44); |
799 | h0 &= 0xfffffffffff; |
800 | h1 += c; |
801 | c = (h1 >> 44); |
802 | h1 &= 0xfffffffffff; |
803 | h2 += c; |
804 | c = (h2 >> 42); |
805 | h2 &= 0x3ffffffffff; |
806 | h0 += c * 5; |
807 | |
808 | g0 = h0 + 5; |
809 | c = (g0 >> 44); |
810 | g0 &= 0xfffffffffff; |
811 | g1 = h1 + c; |
812 | c = (g1 >> 44); |
813 | g1 &= 0xfffffffffff; |
814 | g2 = h2 + c - ((uint64_t)1 << 42); |
815 | |
816 | c = (g2 >> 63) - 1; |
817 | nc = ~c; |
818 | h0 = (h0 & nc) | (g0 & c); |
819 | h1 = (h1 & nc) | (g1 & c); |
820 | h2 = (h2 & nc) | (g2 & c); |
821 | |
822 | // pad |
823 | t0 = ((uint64_t)p->R23.d[3] << 32) | (uint64_t)p->R23.d[1]; |
824 | t1 = ((uint64_t)p->R24.d[3] << 32) | (uint64_t)p->R24.d[1]; |
825 | h0 += (t0 & 0xfffffffffff); |
826 | c = (h0 >> 44); |
827 | h0 &= 0xfffffffffff; |
828 | t0 = shr128_pair(t1, t0, 44); |
829 | h1 += (t0 & 0xfffffffffff) + c; |
830 | c = (h1 >> 44); |
831 | h1 &= 0xfffffffffff; |
832 | t1 = (t1 >> 24); |
833 | h2 += (t1)+c; |
834 | |
835 | U64TO8_LE(mac + 0, ((h0) | (h1 << 44))); |
836 | U64TO8_LE(mac + 8, ((h1 >> 20) | (h2 << 24))); |
837 | } |
838 | |
839 | #endif // !OPENSSL_WINDOWS && OPENSSL_X86_64 |
840 | |