| 1 | /* Copyright (c) 2016, Google Inc. |
| 2 | * |
| 3 | * Permission to use, copy, modify, and/or distribute this software for any |
| 4 | * purpose with or without fee is hereby granted, provided that the above |
| 5 | * copyright notice and this permission notice appear in all copies. |
| 6 | * |
| 7 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 8 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 9 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| 10 | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 11 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| 12 | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| 13 | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| 14 | |
| 15 | #include <openssl/pool.h> |
| 16 | |
| 17 | #include <assert.h> |
| 18 | #include <string.h> |
| 19 | |
| 20 | #include <openssl/buf.h> |
| 21 | #include <openssl/bytestring.h> |
| 22 | #include <openssl/mem.h> |
| 23 | #include <openssl/thread.h> |
| 24 | |
| 25 | #include "../internal.h" |
| 26 | #include "internal.h" |
| 27 | |
| 28 | |
| 29 | DEFINE_LHASH_OF(CRYPTO_BUFFER) |
| 30 | |
| 31 | static uint32_t CRYPTO_BUFFER_hash(const CRYPTO_BUFFER *buf) { |
| 32 | return OPENSSL_hash32(buf->data, buf->len); |
| 33 | } |
| 34 | |
| 35 | static int CRYPTO_BUFFER_cmp(const CRYPTO_BUFFER *a, const CRYPTO_BUFFER *b) { |
| 36 | if (a->len != b->len) { |
| 37 | return 1; |
| 38 | } |
| 39 | return OPENSSL_memcmp(a->data, b->data, a->len); |
| 40 | } |
| 41 | |
| 42 | CRYPTO_BUFFER_POOL* CRYPTO_BUFFER_POOL_new(void) { |
| 43 | CRYPTO_BUFFER_POOL *pool = OPENSSL_malloc(sizeof(CRYPTO_BUFFER_POOL)); |
| 44 | if (pool == NULL) { |
| 45 | return NULL; |
| 46 | } |
| 47 | |
| 48 | OPENSSL_memset(pool, 0, sizeof(CRYPTO_BUFFER_POOL)); |
| 49 | pool->bufs = lh_CRYPTO_BUFFER_new(CRYPTO_BUFFER_hash, CRYPTO_BUFFER_cmp); |
| 50 | if (pool->bufs == NULL) { |
| 51 | OPENSSL_free(pool); |
| 52 | return NULL; |
| 53 | } |
| 54 | |
| 55 | CRYPTO_MUTEX_init(&pool->lock); |
| 56 | |
| 57 | return pool; |
| 58 | } |
| 59 | |
| 60 | void CRYPTO_BUFFER_POOL_free(CRYPTO_BUFFER_POOL *pool) { |
| 61 | if (pool == NULL) { |
| 62 | return; |
| 63 | } |
| 64 | |
| 65 | #if !defined(NDEBUG) |
| 66 | CRYPTO_MUTEX_lock_write(&pool->lock); |
| 67 | assert(lh_CRYPTO_BUFFER_num_items(pool->bufs) == 0); |
| 68 | CRYPTO_MUTEX_unlock_write(&pool->lock); |
| 69 | #endif |
| 70 | |
| 71 | lh_CRYPTO_BUFFER_free(pool->bufs); |
| 72 | CRYPTO_MUTEX_cleanup(&pool->lock); |
| 73 | OPENSSL_free(pool); |
| 74 | } |
| 75 | |
| 76 | CRYPTO_BUFFER *CRYPTO_BUFFER_new(const uint8_t *data, size_t len, |
| 77 | CRYPTO_BUFFER_POOL *pool) { |
| 78 | if (pool != NULL) { |
| 79 | CRYPTO_BUFFER tmp; |
| 80 | tmp.data = (uint8_t *) data; |
| 81 | tmp.len = len; |
| 82 | |
| 83 | CRYPTO_MUTEX_lock_read(&pool->lock); |
| 84 | CRYPTO_BUFFER *const duplicate = |
| 85 | lh_CRYPTO_BUFFER_retrieve(pool->bufs, &tmp); |
| 86 | if (duplicate != NULL) { |
| 87 | CRYPTO_refcount_inc(&duplicate->references); |
| 88 | } |
| 89 | CRYPTO_MUTEX_unlock_read(&pool->lock); |
| 90 | |
| 91 | if (duplicate != NULL) { |
| 92 | return duplicate; |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | CRYPTO_BUFFER *const buf = OPENSSL_malloc(sizeof(CRYPTO_BUFFER)); |
| 97 | if (buf == NULL) { |
| 98 | return NULL; |
| 99 | } |
| 100 | OPENSSL_memset(buf, 0, sizeof(CRYPTO_BUFFER)); |
| 101 | |
| 102 | buf->data = BUF_memdup(data, len); |
| 103 | if (len != 0 && buf->data == NULL) { |
| 104 | OPENSSL_free(buf); |
| 105 | return NULL; |
| 106 | } |
| 107 | |
| 108 | buf->len = len; |
| 109 | buf->references = 1; |
| 110 | |
| 111 | if (pool == NULL) { |
| 112 | return buf; |
| 113 | } |
| 114 | |
| 115 | buf->pool = pool; |
| 116 | |
| 117 | CRYPTO_MUTEX_lock_write(&pool->lock); |
| 118 | CRYPTO_BUFFER *duplicate = lh_CRYPTO_BUFFER_retrieve(pool->bufs, buf); |
| 119 | int inserted = 0; |
| 120 | if (duplicate == NULL) { |
| 121 | CRYPTO_BUFFER *old = NULL; |
| 122 | inserted = lh_CRYPTO_BUFFER_insert(pool->bufs, &old, buf); |
| 123 | assert(old == NULL); |
| 124 | } else { |
| 125 | CRYPTO_refcount_inc(&duplicate->references); |
| 126 | } |
| 127 | CRYPTO_MUTEX_unlock_write(&pool->lock); |
| 128 | |
| 129 | if (!inserted) { |
| 130 | // We raced to insert |buf| into the pool and lost, or else there was an |
| 131 | // error inserting. |
| 132 | OPENSSL_free(buf->data); |
| 133 | OPENSSL_free(buf); |
| 134 | return duplicate; |
| 135 | } |
| 136 | |
| 137 | return buf; |
| 138 | } |
| 139 | |
| 140 | CRYPTO_BUFFER *CRYPTO_BUFFER_alloc(uint8_t **out_data, size_t len) { |
| 141 | CRYPTO_BUFFER *const buf = OPENSSL_malloc(sizeof(CRYPTO_BUFFER)); |
| 142 | if (buf == NULL) { |
| 143 | return NULL; |
| 144 | } |
| 145 | OPENSSL_memset(buf, 0, sizeof(CRYPTO_BUFFER)); |
| 146 | |
| 147 | buf->data = OPENSSL_malloc(len); |
| 148 | if (len != 0 && buf->data == NULL) { |
| 149 | OPENSSL_free(buf); |
| 150 | return NULL; |
| 151 | } |
| 152 | buf->len = len; |
| 153 | buf->references = 1; |
| 154 | |
| 155 | *out_data = buf->data; |
| 156 | return buf; |
| 157 | } |
| 158 | |
| 159 | CRYPTO_BUFFER* CRYPTO_BUFFER_new_from_CBS(CBS *cbs, CRYPTO_BUFFER_POOL *pool) { |
| 160 | return CRYPTO_BUFFER_new(CBS_data(cbs), CBS_len(cbs), pool); |
| 161 | } |
| 162 | |
| 163 | void CRYPTO_BUFFER_free(CRYPTO_BUFFER *buf) { |
| 164 | if (buf == NULL) { |
| 165 | return; |
| 166 | } |
| 167 | |
| 168 | CRYPTO_BUFFER_POOL *const pool = buf->pool; |
| 169 | if (pool == NULL) { |
| 170 | if (CRYPTO_refcount_dec_and_test_zero(&buf->references)) { |
| 171 | // If a reference count of zero is observed, there cannot be a reference |
| 172 | // from any pool to this buffer and thus we are able to free this |
| 173 | // buffer. |
| 174 | OPENSSL_free(buf->data); |
| 175 | OPENSSL_free(buf); |
| 176 | } |
| 177 | |
| 178 | return; |
| 179 | } |
| 180 | |
| 181 | CRYPTO_MUTEX_lock_write(&pool->lock); |
| 182 | if (!CRYPTO_refcount_dec_and_test_zero(&buf->references)) { |
| 183 | CRYPTO_MUTEX_unlock_write(&buf->pool->lock); |
| 184 | return; |
| 185 | } |
| 186 | |
| 187 | // We have an exclusive lock on the pool, therefore no concurrent lookups can |
| 188 | // find this buffer and increment the reference count. Thus, if the count is |
| 189 | // zero there are and can never be any more references and thus we can free |
| 190 | // this buffer. |
| 191 | void *found = lh_CRYPTO_BUFFER_delete(pool->bufs, buf); |
| 192 | assert(found != NULL); |
| 193 | assert(found == buf); |
| 194 | (void)found; |
| 195 | CRYPTO_MUTEX_unlock_write(&buf->pool->lock); |
| 196 | OPENSSL_free(buf->data); |
| 197 | OPENSSL_free(buf); |
| 198 | } |
| 199 | |
| 200 | int CRYPTO_BUFFER_up_ref(CRYPTO_BUFFER *buf) { |
| 201 | // This is safe in the case that |buf->pool| is NULL because it's just |
| 202 | // standard reference counting in that case. |
| 203 | // |
| 204 | // This is also safe if |buf->pool| is non-NULL because, if it were racing |
| 205 | // with |CRYPTO_BUFFER_free| then the two callers must have independent |
| 206 | // references already and so the reference count will never hit zero. |
| 207 | CRYPTO_refcount_inc(&buf->references); |
| 208 | return 1; |
| 209 | } |
| 210 | |
| 211 | const uint8_t *CRYPTO_BUFFER_data(const CRYPTO_BUFFER *buf) { |
| 212 | return buf->data; |
| 213 | } |
| 214 | |
| 215 | size_t CRYPTO_BUFFER_len(const CRYPTO_BUFFER *buf) { |
| 216 | return buf->len; |
| 217 | } |
| 218 | |
| 219 | void CRYPTO_BUFFER_init_CBS(const CRYPTO_BUFFER *buf, CBS *out) { |
| 220 | CBS_init(out, buf->data, buf->len); |
| 221 | } |
| 222 | |