1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
2 | * All rights reserved. |
3 | * |
4 | * This package is an SSL implementation written |
5 | * by Eric Young (eay@cryptsoft.com). |
6 | * The implementation was written so as to conform with Netscapes SSL. |
7 | * |
8 | * This library is free for commercial and non-commercial use as long as |
9 | * the following conditions are aheared to. The following conditions |
10 | * apply to all code found in this distribution, be it the RC4, RSA, |
11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
12 | * included with this distribution is covered by the same copyright terms |
13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
14 | * |
15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
16 | * the code are not to be removed. |
17 | * If this package is used in a product, Eric Young should be given attribution |
18 | * as the author of the parts of the library used. |
19 | * This can be in the form of a textual message at program startup or |
20 | * in documentation (online or textual) provided with the package. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 3. All advertising materials mentioning features or use of this software |
31 | * must display the following acknowledgement: |
32 | * "This product includes cryptographic software written by |
33 | * Eric Young (eay@cryptsoft.com)" |
34 | * The word 'cryptographic' can be left out if the rouines from the library |
35 | * being used are not cryptographic related :-). |
36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
37 | * the apps directory (application code) you must include an acknowledgement: |
38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
39 | * |
40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | * SUCH DAMAGE. |
51 | * |
52 | * The licence and distribution terms for any publically available version or |
53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
54 | * copied and put under another distribution licence |
55 | * [including the GNU Public Licence.] */ |
56 | |
57 | #include <openssl/x509.h> |
58 | |
59 | #include <limits.h> |
60 | |
61 | #include <openssl/asn1.h> |
62 | #include <openssl/asn1t.h> |
63 | #include <openssl/bytestring.h> |
64 | #include <openssl/err.h> |
65 | #include <openssl/evp.h> |
66 | #include <openssl/mem.h> |
67 | #include <openssl/obj.h> |
68 | #include <openssl/thread.h> |
69 | |
70 | #include "../internal.h" |
71 | |
72 | /* Minor tweak to operation: free up EVP_PKEY */ |
73 | static int pubkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, |
74 | void *exarg) |
75 | { |
76 | if (operation == ASN1_OP_FREE_POST) { |
77 | X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval; |
78 | EVP_PKEY_free(pubkey->pkey); |
79 | } |
80 | return 1; |
81 | } |
82 | |
83 | ASN1_SEQUENCE_cb(X509_PUBKEY, pubkey_cb) = { |
84 | ASN1_SIMPLE(X509_PUBKEY, algor, X509_ALGOR), |
85 | ASN1_SIMPLE(X509_PUBKEY, public_key, ASN1_BIT_STRING) |
86 | } ASN1_SEQUENCE_END_cb(X509_PUBKEY, X509_PUBKEY) |
87 | |
88 | IMPLEMENT_ASN1_FUNCTIONS(X509_PUBKEY) |
89 | |
90 | int X509_PUBKEY_set(X509_PUBKEY **x, EVP_PKEY *pkey) |
91 | { |
92 | X509_PUBKEY *pk = NULL; |
93 | uint8_t *spki = NULL; |
94 | size_t spki_len; |
95 | |
96 | if (x == NULL) |
97 | return (0); |
98 | |
99 | CBB cbb; |
100 | if (!CBB_init(&cbb, 0) || |
101 | !EVP_marshal_public_key(&cbb, pkey) || |
102 | !CBB_finish(&cbb, &spki, &spki_len) || |
103 | spki_len > LONG_MAX) { |
104 | CBB_cleanup(&cbb); |
105 | OPENSSL_PUT_ERROR(X509, X509_R_PUBLIC_KEY_ENCODE_ERROR); |
106 | goto error; |
107 | } |
108 | |
109 | const uint8_t *p = spki; |
110 | pk = d2i_X509_PUBKEY(NULL, &p, (long)spki_len); |
111 | if (pk == NULL || p != spki + spki_len) { |
112 | OPENSSL_PUT_ERROR(X509, X509_R_PUBLIC_KEY_DECODE_ERROR); |
113 | goto error; |
114 | } |
115 | |
116 | OPENSSL_free(spki); |
117 | X509_PUBKEY_free(*x); |
118 | *x = pk; |
119 | |
120 | return 1; |
121 | error: |
122 | X509_PUBKEY_free(pk); |
123 | OPENSSL_free(spki); |
124 | return 0; |
125 | } |
126 | |
127 | /* g_pubkey_lock is used to protect the initialisation of the |pkey| member of |
128 | * |X509_PUBKEY| objects. Really |X509_PUBKEY| should have a |CRYPTO_once_t| |
129 | * inside it for this, but |CRYPTO_once_t| is private and |X509_PUBKEY| is |
130 | * not. */ |
131 | static struct CRYPTO_STATIC_MUTEX g_pubkey_lock = CRYPTO_STATIC_MUTEX_INIT; |
132 | |
133 | EVP_PKEY *X509_PUBKEY_get(X509_PUBKEY *key) |
134 | { |
135 | EVP_PKEY *ret = NULL; |
136 | uint8_t *spki = NULL; |
137 | |
138 | if (key == NULL) |
139 | goto error; |
140 | |
141 | CRYPTO_STATIC_MUTEX_lock_read(&g_pubkey_lock); |
142 | if (key->pkey != NULL) { |
143 | CRYPTO_STATIC_MUTEX_unlock_read(&g_pubkey_lock); |
144 | EVP_PKEY_up_ref(key->pkey); |
145 | return key->pkey; |
146 | } |
147 | CRYPTO_STATIC_MUTEX_unlock_read(&g_pubkey_lock); |
148 | |
149 | /* Re-encode the |X509_PUBKEY| to DER and parse it. */ |
150 | int spki_len = i2d_X509_PUBKEY(key, &spki); |
151 | if (spki_len < 0) { |
152 | goto error; |
153 | } |
154 | CBS cbs; |
155 | CBS_init(&cbs, spki, (size_t)spki_len); |
156 | ret = EVP_parse_public_key(&cbs); |
157 | if (ret == NULL || CBS_len(&cbs) != 0) { |
158 | OPENSSL_PUT_ERROR(X509, X509_R_PUBLIC_KEY_DECODE_ERROR); |
159 | goto error; |
160 | } |
161 | |
162 | /* Check to see if another thread set key->pkey first */ |
163 | CRYPTO_STATIC_MUTEX_lock_write(&g_pubkey_lock); |
164 | if (key->pkey) { |
165 | CRYPTO_STATIC_MUTEX_unlock_write(&g_pubkey_lock); |
166 | EVP_PKEY_free(ret); |
167 | ret = key->pkey; |
168 | } else { |
169 | key->pkey = ret; |
170 | CRYPTO_STATIC_MUTEX_unlock_write(&g_pubkey_lock); |
171 | } |
172 | |
173 | OPENSSL_free(spki); |
174 | EVP_PKEY_up_ref(ret); |
175 | return ret; |
176 | |
177 | error: |
178 | OPENSSL_free(spki); |
179 | EVP_PKEY_free(ret); |
180 | return NULL; |
181 | } |
182 | |
183 | /* |
184 | * Now two pseudo ASN1 routines that take an EVP_PKEY structure and encode or |
185 | * decode as X509_PUBKEY |
186 | */ |
187 | |
188 | EVP_PKEY *d2i_PUBKEY(EVP_PKEY **a, const unsigned char **pp, long length) |
189 | { |
190 | X509_PUBKEY *xpk; |
191 | EVP_PKEY *pktmp; |
192 | xpk = d2i_X509_PUBKEY(NULL, pp, length); |
193 | if (!xpk) |
194 | return NULL; |
195 | pktmp = X509_PUBKEY_get(xpk); |
196 | X509_PUBKEY_free(xpk); |
197 | if (!pktmp) |
198 | return NULL; |
199 | if (a) { |
200 | EVP_PKEY_free(*a); |
201 | *a = pktmp; |
202 | } |
203 | return pktmp; |
204 | } |
205 | |
206 | int i2d_PUBKEY(const EVP_PKEY *a, unsigned char **pp) |
207 | { |
208 | X509_PUBKEY *xpk = NULL; |
209 | int ret; |
210 | if (!a) |
211 | return 0; |
212 | if (!X509_PUBKEY_set(&xpk, (EVP_PKEY *)a)) |
213 | return 0; |
214 | ret = i2d_X509_PUBKEY(xpk, pp); |
215 | X509_PUBKEY_free(xpk); |
216 | return ret; |
217 | } |
218 | |
219 | /* |
220 | * The following are equivalents but which return RSA and DSA keys |
221 | */ |
222 | RSA *d2i_RSA_PUBKEY(RSA **a, const unsigned char **pp, long length) |
223 | { |
224 | EVP_PKEY *pkey; |
225 | RSA *key; |
226 | const unsigned char *q; |
227 | q = *pp; |
228 | pkey = d2i_PUBKEY(NULL, &q, length); |
229 | if (!pkey) |
230 | return NULL; |
231 | key = EVP_PKEY_get1_RSA(pkey); |
232 | EVP_PKEY_free(pkey); |
233 | if (!key) |
234 | return NULL; |
235 | *pp = q; |
236 | if (a) { |
237 | RSA_free(*a); |
238 | *a = key; |
239 | } |
240 | return key; |
241 | } |
242 | |
243 | int i2d_RSA_PUBKEY(const RSA *a, unsigned char **pp) |
244 | { |
245 | EVP_PKEY *pktmp; |
246 | int ret; |
247 | if (!a) |
248 | return 0; |
249 | pktmp = EVP_PKEY_new(); |
250 | if (!pktmp) { |
251 | OPENSSL_PUT_ERROR(X509, ERR_R_MALLOC_FAILURE); |
252 | return 0; |
253 | } |
254 | EVP_PKEY_set1_RSA(pktmp, (RSA *)a); |
255 | ret = i2d_PUBKEY(pktmp, pp); |
256 | EVP_PKEY_free(pktmp); |
257 | return ret; |
258 | } |
259 | |
260 | #ifndef OPENSSL_NO_DSA |
261 | DSA *d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length) |
262 | { |
263 | EVP_PKEY *pkey; |
264 | DSA *key; |
265 | const unsigned char *q; |
266 | q = *pp; |
267 | pkey = d2i_PUBKEY(NULL, &q, length); |
268 | if (!pkey) |
269 | return NULL; |
270 | key = EVP_PKEY_get1_DSA(pkey); |
271 | EVP_PKEY_free(pkey); |
272 | if (!key) |
273 | return NULL; |
274 | *pp = q; |
275 | if (a) { |
276 | DSA_free(*a); |
277 | *a = key; |
278 | } |
279 | return key; |
280 | } |
281 | |
282 | int i2d_DSA_PUBKEY(const DSA *a, unsigned char **pp) |
283 | { |
284 | EVP_PKEY *pktmp; |
285 | int ret; |
286 | if (!a) |
287 | return 0; |
288 | pktmp = EVP_PKEY_new(); |
289 | if (!pktmp) { |
290 | OPENSSL_PUT_ERROR(X509, ERR_R_MALLOC_FAILURE); |
291 | return 0; |
292 | } |
293 | EVP_PKEY_set1_DSA(pktmp, (DSA *)a); |
294 | ret = i2d_PUBKEY(pktmp, pp); |
295 | EVP_PKEY_free(pktmp); |
296 | return ret; |
297 | } |
298 | #endif |
299 | |
300 | EC_KEY *d2i_EC_PUBKEY(EC_KEY **a, const unsigned char **pp, long length) |
301 | { |
302 | EVP_PKEY *pkey; |
303 | EC_KEY *key; |
304 | const unsigned char *q; |
305 | q = *pp; |
306 | pkey = d2i_PUBKEY(NULL, &q, length); |
307 | if (!pkey) |
308 | return (NULL); |
309 | key = EVP_PKEY_get1_EC_KEY(pkey); |
310 | EVP_PKEY_free(pkey); |
311 | if (!key) |
312 | return (NULL); |
313 | *pp = q; |
314 | if (a) { |
315 | EC_KEY_free(*a); |
316 | *a = key; |
317 | } |
318 | return (key); |
319 | } |
320 | |
321 | int i2d_EC_PUBKEY(const EC_KEY *a, unsigned char **pp) |
322 | { |
323 | EVP_PKEY *pktmp; |
324 | int ret; |
325 | if (!a) |
326 | return (0); |
327 | if ((pktmp = EVP_PKEY_new()) == NULL) { |
328 | OPENSSL_PUT_ERROR(X509, ERR_R_MALLOC_FAILURE); |
329 | return (0); |
330 | } |
331 | EVP_PKEY_set1_EC_KEY(pktmp, (EC_KEY *)a); |
332 | ret = i2d_PUBKEY(pktmp, pp); |
333 | EVP_PKEY_free(pktmp); |
334 | return (ret); |
335 | } |
336 | |
337 | int X509_PUBKEY_set0_param(X509_PUBKEY *pub, const ASN1_OBJECT *aobj, |
338 | int ptype, void *pval, |
339 | unsigned char *penc, int penclen) |
340 | { |
341 | if (!X509_ALGOR_set0(pub->algor, aobj, ptype, pval)) |
342 | return 0; |
343 | if (penc) { |
344 | if (pub->public_key->data) |
345 | OPENSSL_free(pub->public_key->data); |
346 | pub->public_key->data = penc; |
347 | pub->public_key->length = penclen; |
348 | /* Set number of unused bits to zero */ |
349 | pub->public_key->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07); |
350 | pub->public_key->flags |= ASN1_STRING_FLAG_BITS_LEFT; |
351 | } |
352 | return 1; |
353 | } |
354 | |
355 | int X509_PUBKEY_get0_param(ASN1_OBJECT **ppkalg, |
356 | const unsigned char **pk, int *ppklen, |
357 | X509_ALGOR **pa, X509_PUBKEY *pub) |
358 | { |
359 | if (ppkalg) |
360 | *ppkalg = pub->algor->algorithm; |
361 | if (pk) { |
362 | *pk = pub->public_key->data; |
363 | *ppklen = pub->public_key->length; |
364 | } |
365 | if (pa) |
366 | *pa = pub->algor; |
367 | return 1; |
368 | } |
369 | |