| 1 | // Copyright (c) 2016, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "platform/globals.h" |
| 6 | #if defined(HOST_OS_FUCHSIA) |
| 7 | |
| 8 | #include "bin/eventhandler.h" |
| 9 | #include "bin/eventhandler_fuchsia.h" |
| 10 | |
| 11 | #include <errno.h> |
| 12 | #include <fcntl.h> |
| 13 | #include <poll.h> |
| 14 | #include <pthread.h> |
| 15 | #include <stdio.h> |
| 16 | #include <string.h> |
| 17 | #include <sys/socket.h> |
| 18 | #include <sys/stat.h> |
| 19 | #include <unistd.h> |
| 20 | #include <zircon/status.h> |
| 21 | #include <zircon/syscalls.h> |
| 22 | #include <zircon/syscalls/object.h> |
| 23 | #include <zircon/syscalls/port.h> |
| 24 | |
| 25 | #include "bin/fdutils.h" |
| 26 | #include "bin/lockers.h" |
| 27 | #include "bin/socket.h" |
| 28 | #include "bin/thread.h" |
| 29 | #include "bin/utils.h" |
| 30 | #include "platform/hashmap.h" |
| 31 | #include "platform/syslog.h" |
| 32 | #include "platform/utils.h" |
| 33 | |
| 34 | // The EventHandler for Fuchsia uses its "ports v2" API: |
| 35 | // https://fuchsia.googlesource.com/fuchsia/+/HEAD/zircon/docs/syscalls/port_create.md |
| 36 | // This API does not have epoll()-like edge triggering (EPOLLET). Since clients |
| 37 | // of the EventHandler expect edge-triggered notifications, we must simulate it. |
| 38 | // When a packet from zx_port_wait() indicates that a signal is asserted for a |
| 39 | // handle, we unsubscribe from that signal until the event that asserted the |
| 40 | // signal can be processed. For example: |
| 41 | // |
| 42 | // 1. We get ZX_SOCKET_WRITABLE from zx_port_wait() for a handle. |
| 43 | // 2. We send kOutEvent to the Dart thread. |
| 44 | // 3. We unsubscribe from further ZX_SOCKET_WRITABLE signals for the handle. |
| 45 | // 4. Some time later the Dart thread actually does a write(). |
| 46 | // 5. After writing, the Dart thread resubscribes to write events. |
| 47 | // |
| 48 | // We use the same procedure for ZX_SOCKET_READABLE, and read()/accept(). |
| 49 | |
| 50 | // define EVENTHANDLER_LOG_ERROR to get log messages only for errors. |
| 51 | // define EVENTHANDLER_LOG_INFO to get log messages for both information and |
| 52 | // errors. |
| 53 | // #define EVENTHANDLER_LOG_INFO 1 |
| 54 | #define EVENTHANDLER_LOG_ERROR 1 |
| 55 | #if defined(EVENTHANDLER_LOG_INFO) || defined(EVENTHANDLER_LOG_ERROR) |
| 56 | #define LOG_ERR(msg, ...) \ |
| 57 | { \ |
| 58 | int err = errno; \ |
| 59 | Syslog::PrintErr("Dart EventHandler ERROR: %s:%d: " msg, __FILE__, \ |
| 60 | __LINE__, ##__VA_ARGS__); \ |
| 61 | errno = err; \ |
| 62 | } |
| 63 | #if defined(EVENTHANDLER_LOG_INFO) |
| 64 | #define LOG_INFO(msg, ...) \ |
| 65 | Syslog::Print("Dart EventHandler INFO: %s:%d: " msg, __FILE__, __LINE__, \ |
| 66 | ##__VA_ARGS__) |
| 67 | #else |
| 68 | #define LOG_INFO(msg, ...) |
| 69 | #endif // defined(EVENTHANDLER_LOG_INFO) |
| 70 | #else |
| 71 | #define LOG_ERR(msg, ...) |
| 72 | #define LOG_INFO(msg, ...) |
| 73 | #endif // defined(EVENTHANDLER_LOG_INFO) || defined(EVENTHANDLER_LOG_ERROR) |
| 74 | |
| 75 | namespace dart { |
| 76 | namespace bin { |
| 77 | |
| 78 | intptr_t IOHandle::Read(void* buffer, intptr_t num_bytes) { |
| 79 | MutexLocker ml(&mutex_); |
| 80 | const ssize_t read_bytes = NO_RETRY_EXPECTED(read(fd_, buffer, num_bytes)); |
| 81 | const int err = errno; |
| 82 | LOG_INFO("IOHandle::Read: fd = %ld. read %ld bytes\n" , fd_, read_bytes); |
| 83 | |
| 84 | // Track the number of bytes available to read. |
| 85 | if (read_bytes > 0) { |
| 86 | available_bytes_ -= |
| 87 | (available_bytes_ >= read_bytes) ? read_bytes : available_bytes_; |
| 88 | } |
| 89 | |
| 90 | // If we have read all available bytes, or if there was an error, then |
| 91 | // re-enable read events. We re-enable read events even if read() returns |
| 92 | // an error. The error might be, e.g. EWOULDBLOCK, in which case |
| 93 | // resubscription is necessary. Logic in the caller decides which errors |
| 94 | // are real, and which are ignore-and-continue. |
| 95 | if ((available_bytes_ == 0) || (read_bytes < 0)) { |
| 96 | // Resubscribe to read events. |
| 97 | read_events_enabled_ = true; |
| 98 | if (!AsyncWaitLocked(ZX_HANDLE_INVALID, POLLIN, wait_key_)) { |
| 99 | LOG_ERR("IOHandle::AsyncWait failed for fd = %ld\n" , fd_); |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | errno = err; |
| 104 | return read_bytes; |
| 105 | } |
| 106 | |
| 107 | intptr_t IOHandle::Write(const void* buffer, intptr_t num_bytes) { |
| 108 | MutexLocker ml(&mutex_); |
| 109 | const ssize_t written_bytes = |
| 110 | NO_RETRY_EXPECTED(write(fd_, buffer, num_bytes)); |
| 111 | const int err = errno; |
| 112 | LOG_INFO("IOHandle::Write: fd = %ld. wrote %ld bytes\n" , fd_, written_bytes); |
| 113 | |
| 114 | // Resubscribe to write events. |
| 115 | write_events_enabled_ = true; |
| 116 | if (!AsyncWaitLocked(ZX_HANDLE_INVALID, POLLOUT, wait_key_)) { |
| 117 | LOG_ERR("IOHandle::AsyncWait failed for fd = %ld\n" , fd_); |
| 118 | } |
| 119 | |
| 120 | errno = err; |
| 121 | return written_bytes; |
| 122 | } |
| 123 | |
| 124 | intptr_t IOHandle::Accept(struct sockaddr* addr, socklen_t* addrlen) { |
| 125 | MutexLocker ml(&mutex_); |
| 126 | const intptr_t socket = NO_RETRY_EXPECTED(accept(fd_, addr, addrlen)); |
| 127 | const int err = errno; |
| 128 | LOG_INFO("IOHandle::Accept: fd = %ld. socket = %ld\n" , fd_, socket); |
| 129 | |
| 130 | // Re-subscribe to read events. |
| 131 | read_events_enabled_ = true; |
| 132 | if (!AsyncWaitLocked(ZX_HANDLE_INVALID, POLLIN, wait_key_)) { |
| 133 | LOG_ERR("IOHandle::AsyncWait failed for fd = %ld\n" , fd_); |
| 134 | } |
| 135 | |
| 136 | errno = err; |
| 137 | return socket; |
| 138 | } |
| 139 | |
| 140 | intptr_t IOHandle::AvailableBytes() { |
| 141 | MutexLocker ml(&mutex_); |
| 142 | ASSERT(fd_ >= 0); |
| 143 | intptr_t available = FDUtils::AvailableBytes(fd_); |
| 144 | LOG_INFO("IOHandle::AvailableBytes(): fd = %ld, bytes = %ld\n" , fd_, |
| 145 | available); |
| 146 | if (available < 0) { |
| 147 | // If there is an error, we set available to 1 to trigger a read event that |
| 148 | // then propagates the error. |
| 149 | available = 1; |
| 150 | } |
| 151 | available_bytes_ = available; |
| 152 | return available; |
| 153 | } |
| 154 | |
| 155 | void IOHandle::Close() { |
| 156 | MutexLocker ml(&mutex_); |
| 157 | VOID_NO_RETRY_EXPECTED(close(fd_)); |
| 158 | } |
| 159 | |
| 160 | uint32_t IOHandle::MaskToEpollEvents(intptr_t mask) { |
| 161 | MutexLocker ml(&mutex_); |
| 162 | // Do not ask for POLLERR and POLLHUP explicitly as they are |
| 163 | // triggered anyway. |
| 164 | uint32_t events = 0; |
| 165 | // Do not subscribe to read closed events when kCloseEvent has already been |
| 166 | // sent to the Dart thread. |
| 167 | if (close_events_enabled_) { |
| 168 | events |= POLLRDHUP; |
| 169 | } |
| 170 | if (read_events_enabled_ && ((mask & (1 << kInEvent)) != 0)) { |
| 171 | events |= POLLIN; |
| 172 | } |
| 173 | if (write_events_enabled_ && ((mask & (1 << kOutEvent)) != 0)) { |
| 174 | events |= POLLOUT; |
| 175 | } |
| 176 | return events; |
| 177 | } |
| 178 | |
| 179 | intptr_t IOHandle::EpollEventsToMask(intptr_t events) { |
| 180 | if ((events & POLLERR) != 0) { |
| 181 | // Return error only if POLLIN is present. |
| 182 | return ((events & POLLIN) != 0) ? (1 << kErrorEvent) : 0; |
| 183 | } |
| 184 | intptr_t event_mask = 0; |
| 185 | if ((events & POLLIN) != 0) { |
| 186 | event_mask |= (1 << kInEvent); |
| 187 | } |
| 188 | if ((events & POLLOUT) != 0) { |
| 189 | event_mask |= (1 << kOutEvent); |
| 190 | } |
| 191 | if ((events & (POLLHUP | POLLRDHUP)) != 0) { |
| 192 | event_mask |= (1 << kCloseEvent); |
| 193 | } |
| 194 | return event_mask; |
| 195 | } |
| 196 | |
| 197 | bool IOHandle::AsyncWaitLocked(zx_handle_t port, |
| 198 | uint32_t events, |
| 199 | uint64_t key) { |
| 200 | LOG_INFO("IOHandle::AsyncWait: fd = %ld\n" , fd_); |
| 201 | // The call to fdio_unsafe_fd_to_io() in the DescriptorInfo constructor may |
| 202 | // have returned NULL. If it did, propagate the problem up to Dart. |
| 203 | if (fdio_ == NULL) { |
| 204 | LOG_ERR("fdio_unsafe_fd_to_io(%ld) returned NULL\n" , fd_); |
| 205 | return false; |
| 206 | } |
| 207 | |
| 208 | zx_handle_t handle; |
| 209 | zx_signals_t signals; |
| 210 | fdio_unsafe_wait_begin(fdio_, events, &handle, &signals); |
| 211 | if (handle == ZX_HANDLE_INVALID) { |
| 212 | LOG_ERR("fd = %ld fdio_unsafe_wait_begin returned an invalid handle\n" , |
| 213 | fd_); |
| 214 | return false; |
| 215 | } |
| 216 | |
| 217 | // Remember the port. Use the remembered port if the argument "port" is |
| 218 | // ZX_HANDLE_INVALID. |
| 219 | ASSERT((port != ZX_HANDLE_INVALID) || (port_ != ZX_HANDLE_INVALID)); |
| 220 | if ((port_ == ZX_HANDLE_INVALID) || (port != ZX_HANDLE_INVALID)) { |
| 221 | port_ = port; |
| 222 | } |
| 223 | |
| 224 | handle_ = handle; |
| 225 | wait_key_ = key; |
| 226 | LOG_INFO("zx_object_wait_async(fd = %ld, signals = %x)\n" , fd_, signals); |
| 227 | zx_status_t status = |
| 228 | zx_object_wait_async(handle_, port_, key, signals, ZX_WAIT_ASYNC_ONCE); |
| 229 | if (status != ZX_OK) { |
| 230 | LOG_ERR("zx_object_wait_async failed: %s\n" , zx_status_get_string(status)); |
| 231 | return false; |
| 232 | } |
| 233 | |
| 234 | return true; |
| 235 | } |
| 236 | |
| 237 | bool IOHandle::AsyncWait(zx_handle_t port, uint32_t events, uint64_t key) { |
| 238 | MutexLocker ml(&mutex_); |
| 239 | return AsyncWaitLocked(port, events, key); |
| 240 | } |
| 241 | |
| 242 | void IOHandle::CancelWait(zx_handle_t port, uint64_t key) { |
| 243 | MutexLocker ml(&mutex_); |
| 244 | LOG_INFO("IOHandle::CancelWait: fd = %ld\n" , fd_); |
| 245 | ASSERT(port != ZX_HANDLE_INVALID); |
| 246 | ASSERT(handle_ != ZX_HANDLE_INVALID); |
| 247 | zx_status_t status = zx_port_cancel(port, handle_, key); |
| 248 | if ((status != ZX_OK) && (status != ZX_ERR_NOT_FOUND)) { |
| 249 | LOG_ERR("zx_port_cancel failed: %s\n" , zx_status_get_string(status)); |
| 250 | } |
| 251 | } |
| 252 | |
| 253 | uint32_t IOHandle::WaitEnd(zx_signals_t observed) { |
| 254 | MutexLocker ml(&mutex_); |
| 255 | uint32_t events = 0; |
| 256 | fdio_unsafe_wait_end(fdio_, observed, &events); |
| 257 | LOG_INFO("IOHandle::WaitEnd: fd = %ld, events = %x\n" , fd_, events); |
| 258 | return events; |
| 259 | } |
| 260 | |
| 261 | // This function controls the simulation of edge-triggering. It is responsible |
| 262 | // for removing events from the event mask when they should be supressed, and |
| 263 | // for supressing future events. Events are unsupressed by their respective |
| 264 | // operations by the Dart thread on the socket---that is, where the |
| 265 | // *_events_enabled_ flags are set to true. |
| 266 | intptr_t IOHandle::ToggleEvents(intptr_t event_mask) { |
| 267 | MutexLocker ml(&mutex_); |
| 268 | // If write events are disabled, then remove the kOutEvent bit from the |
| 269 | // event mask. |
| 270 | if (!write_events_enabled_) { |
| 271 | LOG_INFO( |
| 272 | "IOHandle::ToggleEvents: fd = %ld " |
| 273 | "de-asserting kOutEvent\n" , |
| 274 | fd_); |
| 275 | event_mask = event_mask & ~(1 << kOutEvent); |
| 276 | } |
| 277 | // If the kOutEvent bit is set, then supress future write events until the |
| 278 | // Dart thread writes. |
| 279 | if ((event_mask & (1 << kOutEvent)) != 0) { |
| 280 | LOG_INFO( |
| 281 | "IOHandle::ToggleEvents: fd = %ld " |
| 282 | "asserting kOutEvent and disabling\n" , |
| 283 | fd_); |
| 284 | write_events_enabled_ = false; |
| 285 | } |
| 286 | |
| 287 | // If read events are disabled, then remove the kInEvent bit from the event |
| 288 | // mask. |
| 289 | if (!read_events_enabled_) { |
| 290 | LOG_INFO( |
| 291 | "IOHandle::ToggleEvents: fd = %ld " |
| 292 | "de-asserting kInEvent\n" , |
| 293 | fd_); |
| 294 | event_mask = event_mask & ~(1 << kInEvent); |
| 295 | } |
| 296 | // We may get In events without available bytes, so we must make sure there |
| 297 | // are actually bytes, or we will never resubscribe (due to a short-circuit |
| 298 | // on the Dart side). |
| 299 | // |
| 300 | // This happens due to how packets get enqueued on the port with all signals |
| 301 | // asserted at that time. Sometimes we enqueue a packet due to |
| 302 | // zx_object_wait_async e.g. for POLLOUT (writability) while the socket is |
| 303 | // readable and while we have a Read queued up on the Dart side. This packet |
| 304 | // will also have POLLIN (readable) asserted. We may then perform the Read |
| 305 | // and drain the socket before our zx_port_wait is serviced, at which point |
| 306 | // when we process the packet for POLLOUT with its stale POLLIN (readable) |
| 307 | // signal, the socket is no longer actually readable. |
| 308 | // |
| 309 | // As a detail, negative available bytes (errors) are handled specially; see |
| 310 | // IOHandle::AvailableBytes for more information. |
| 311 | if ((event_mask & (1 << kInEvent)) != 0) { |
| 312 | if (FDUtils::AvailableBytes(fd_) != 0) { |
| 313 | LOG_INFO( |
| 314 | "IOHandle::ToggleEvents: fd = %ld " |
| 315 | "asserting kInEvent and disabling with bytes available\n" , |
| 316 | fd_); |
| 317 | read_events_enabled_ = false; |
| 318 | } |
| 319 | // Also supress future read events if we get a kCloseEvent. This is to |
| 320 | // account for POLLIN being set by Fuchsia when the socket is read-closed. |
| 321 | if ((event_mask & (1 << kCloseEvent)) != 0) { |
| 322 | LOG_INFO( |
| 323 | "IOHandle::ToggleEvents: fd = %ld " |
| 324 | "asserting kInEvent and disabling due to a close event\n" , |
| 325 | fd_); |
| 326 | read_events_enabled_ = false; |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | // If the close events are disabled, then remove the kCloseEvent bit from the |
| 331 | // event mask. |
| 332 | if (!close_events_enabled_) { |
| 333 | LOG_INFO( |
| 334 | "IOHandle::ToggleEvents: fd = %ld " |
| 335 | "de-asserting kCloseEvent\n" , |
| 336 | fd_); |
| 337 | event_mask = event_mask & ~(1 << kCloseEvent); |
| 338 | } |
| 339 | // If the kCloseEvent bit is set, then supress future close events, they will |
| 340 | // be ignored by the Dart thread. See _NativeSocket.multiplex in |
| 341 | // socket_patch.dart. |
| 342 | if ((event_mask & (1 << kCloseEvent)) != 0) { |
| 343 | LOG_INFO( |
| 344 | "IOHandle::ToggleEvents: fd = %ld " |
| 345 | "asserting kCloseEvent and disabling\n" , |
| 346 | fd_); |
| 347 | close_events_enabled_ = false; |
| 348 | } |
| 349 | return event_mask; |
| 350 | } |
| 351 | |
| 352 | void EventHandlerImplementation::AddToPort(zx_handle_t port_handle, |
| 353 | DescriptorInfo* di) { |
| 354 | const uint32_t events = di->io_handle()->MaskToEpollEvents(di->Mask()); |
| 355 | const uint64_t key = reinterpret_cast<uint64_t>(di); |
| 356 | if (!di->io_handle()->AsyncWait(port_handle, events, key)) { |
| 357 | di->NotifyAllDartPorts(1 << kCloseEvent); |
| 358 | } |
| 359 | } |
| 360 | |
| 361 | void EventHandlerImplementation::RemoveFromPort(zx_handle_t port_handle, |
| 362 | DescriptorInfo* di) { |
| 363 | const uint64_t key = reinterpret_cast<uint64_t>(di); |
| 364 | di->io_handle()->CancelWait(port_handle, key); |
| 365 | } |
| 366 | |
| 367 | EventHandlerImplementation::EventHandlerImplementation() |
| 368 | : socket_map_(&SimpleHashMap::SamePointerValue, 16) { |
| 369 | shutdown_ = false; |
| 370 | // Create the port. |
| 371 | port_handle_ = ZX_HANDLE_INVALID; |
| 372 | zx_status_t status = zx_port_create(0, &port_handle_); |
| 373 | if (status != ZX_OK) { |
| 374 | // This is a FATAL because the VM won't work at all if we can't create this |
| 375 | // port. |
| 376 | FATAL1("zx_port_create failed: %s\n" , zx_status_get_string(status)); |
| 377 | } |
| 378 | ASSERT(port_handle_ != ZX_HANDLE_INVALID); |
| 379 | } |
| 380 | |
| 381 | static void DeleteDescriptorInfo(void* info) { |
| 382 | DescriptorInfo* di = reinterpret_cast<DescriptorInfo*>(info); |
| 383 | LOG_INFO("Closed %ld\n" , di->io_handle()->fd()); |
| 384 | di->Close(); |
| 385 | delete di; |
| 386 | } |
| 387 | |
| 388 | EventHandlerImplementation::~EventHandlerImplementation() { |
| 389 | socket_map_.Clear(DeleteDescriptorInfo); |
| 390 | zx_handle_close(port_handle_); |
| 391 | port_handle_ = ZX_HANDLE_INVALID; |
| 392 | } |
| 393 | |
| 394 | void EventHandlerImplementation::UpdatePort(intptr_t old_mask, |
| 395 | DescriptorInfo* di) { |
| 396 | const intptr_t new_mask = di->Mask(); |
| 397 | if ((old_mask != 0) && (new_mask == 0)) { |
| 398 | RemoveFromPort(port_handle_, di); |
| 399 | } else if ((old_mask == 0) && (new_mask != 0)) { |
| 400 | AddToPort(port_handle_, di); |
| 401 | } else if ((old_mask != 0) && (new_mask != 0)) { |
| 402 | ASSERT((old_mask == new_mask) || !di->IsListeningSocket()); |
| 403 | RemoveFromPort(port_handle_, di); |
| 404 | AddToPort(port_handle_, di); |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | DescriptorInfo* EventHandlerImplementation::GetDescriptorInfo( |
| 409 | intptr_t fd, |
| 410 | bool is_listening) { |
| 411 | IOHandle* handle = reinterpret_cast<IOHandle*>(fd); |
| 412 | ASSERT(handle->fd() >= 0); |
| 413 | SimpleHashMap::Entry* entry = |
| 414 | socket_map_.Lookup(GetHashmapKeyFromFd(handle->fd()), |
| 415 | GetHashmapHashFromFd(handle->fd()), true); |
| 416 | ASSERT(entry != NULL); |
| 417 | DescriptorInfo* di = reinterpret_cast<DescriptorInfo*>(entry->value); |
| 418 | if (di == NULL) { |
| 419 | // If there is no data in the hash map for this file descriptor a |
| 420 | // new DescriptorInfo for the file descriptor is inserted. |
| 421 | if (is_listening) { |
| 422 | di = new DescriptorInfoMultiple(fd); |
| 423 | } else { |
| 424 | di = new DescriptorInfoSingle(fd); |
| 425 | } |
| 426 | entry->value = di; |
| 427 | } |
| 428 | ASSERT(fd == di->fd()); |
| 429 | return di; |
| 430 | } |
| 431 | |
| 432 | void EventHandlerImplementation::WakeupHandler(intptr_t id, |
| 433 | Dart_Port dart_port, |
| 434 | int64_t data) { |
| 435 | COMPILE_ASSERT(sizeof(InterruptMessage) <= sizeof(zx_packet_user_t)); |
| 436 | zx_port_packet_t pkt; |
| 437 | InterruptMessage* msg = reinterpret_cast<InterruptMessage*>(&pkt.user); |
| 438 | pkt.key = kInterruptPacketKey; |
| 439 | msg->id = id; |
| 440 | msg->dart_port = dart_port; |
| 441 | msg->data = data; |
| 442 | zx_status_t status = zx_port_queue(port_handle_, &pkt); |
| 443 | if (status != ZX_OK) { |
| 444 | // This is a FATAL because the VM won't work at all if we can't send any |
| 445 | // messages to the EventHandler thread. |
| 446 | FATAL1("zx_port_queue failed: %s\n" , zx_status_get_string(status)); |
| 447 | } |
| 448 | } |
| 449 | |
| 450 | void EventHandlerImplementation::HandleInterrupt(InterruptMessage* msg) { |
| 451 | if (msg->id == kTimerId) { |
| 452 | LOG_INFO("HandleInterrupt read timer update\n" ); |
| 453 | timeout_queue_.UpdateTimeout(msg->dart_port, msg->data); |
| 454 | return; |
| 455 | } else if (msg->id == kShutdownId) { |
| 456 | LOG_INFO("HandleInterrupt read shutdown\n" ); |
| 457 | shutdown_ = true; |
| 458 | return; |
| 459 | } |
| 460 | ASSERT((msg->data & COMMAND_MASK) != 0); |
| 461 | LOG_INFO("HandleInterrupt command:\n" ); |
| 462 | Socket* socket = reinterpret_cast<Socket*>(msg->id); |
| 463 | RefCntReleaseScope<Socket> rs(socket); |
| 464 | if (socket->fd() == -1) { |
| 465 | return; |
| 466 | } |
| 467 | IOHandle* io_handle = reinterpret_cast<IOHandle*>(socket->fd()); |
| 468 | const intptr_t fd = io_handle->fd(); |
| 469 | DescriptorInfo* di = |
| 470 | GetDescriptorInfo(socket->fd(), IS_LISTENING_SOCKET(msg->data)); |
| 471 | ASSERT(io_handle == di->io_handle()); |
| 472 | if (IS_COMMAND(msg->data, kShutdownReadCommand)) { |
| 473 | ASSERT(!di->IsListeningSocket()); |
| 474 | // Close the socket for reading. |
| 475 | LOG_INFO("\tSHUT_RD: %ld\n" , fd); |
| 476 | VOID_NO_RETRY_EXPECTED(shutdown(fd, SHUT_RD)); |
| 477 | } else if (IS_COMMAND(msg->data, kShutdownWriteCommand)) { |
| 478 | ASSERT(!di->IsListeningSocket()); |
| 479 | // Close the socket for writing. |
| 480 | LOG_INFO("\tSHUT_WR: %ld\n" , fd); |
| 481 | VOID_NO_RETRY_EXPECTED(shutdown(fd, SHUT_WR)); |
| 482 | } else if (IS_COMMAND(msg->data, kCloseCommand)) { |
| 483 | // Close the socket and free system resources and move on to next |
| 484 | // message. |
| 485 | const intptr_t old_mask = di->Mask(); |
| 486 | Dart_Port port = msg->dart_port; |
| 487 | if (port != ILLEGAL_PORT) { |
| 488 | di->RemovePort(port); |
| 489 | } |
| 490 | const intptr_t new_mask = di->Mask(); |
| 491 | UpdatePort(old_mask, di); |
| 492 | |
| 493 | LOG_INFO("\tCLOSE: %ld: %lx -> %lx\n" , fd, old_mask, new_mask); |
| 494 | if (di->IsListeningSocket()) { |
| 495 | // We only close the socket file descriptor from the operating |
| 496 | // system if there are no other dart socket objects which |
| 497 | // are listening on the same (address, port) combination. |
| 498 | ListeningSocketRegistry* registry = ListeningSocketRegistry::Instance(); |
| 499 | |
| 500 | MutexLocker locker(registry->mutex()); |
| 501 | |
| 502 | if (registry->CloseSafe(socket)) { |
| 503 | ASSERT(new_mask == 0); |
| 504 | socket_map_.Remove(GetHashmapKeyFromFd(fd), GetHashmapHashFromFd(fd)); |
| 505 | di->Close(); |
| 506 | delete di; |
| 507 | socket->CloseFd(); |
| 508 | } |
| 509 | socket->SetClosedFd(); |
| 510 | } else { |
| 511 | ASSERT(new_mask == 0); |
| 512 | socket_map_.Remove(GetHashmapKeyFromFd(fd), GetHashmapHashFromFd(fd)); |
| 513 | di->Close(); |
| 514 | delete di; |
| 515 | socket->CloseFd(); |
| 516 | } |
| 517 | if (port != 0) { |
| 518 | const bool success = DartUtils::PostInt32(port, 1 << kDestroyedEvent); |
| 519 | if (!success) { |
| 520 | LOG_INFO("Failed to post destroy event to port %ld\n" , port); |
| 521 | } |
| 522 | } |
| 523 | } else if (IS_COMMAND(msg->data, kReturnTokenCommand)) { |
| 524 | const int count = TOKEN_COUNT(msg->data); |
| 525 | const intptr_t old_mask = di->Mask(); |
| 526 | LOG_INFO("\t Return Token: %ld: %lx\n" , fd, old_mask); |
| 527 | di->ReturnTokens(msg->dart_port, count); |
| 528 | UpdatePort(old_mask, di); |
| 529 | } else if (IS_COMMAND(msg->data, kSetEventMaskCommand)) { |
| 530 | // `events` can only have kInEvent/kOutEvent flags set. |
| 531 | const intptr_t events = msg->data & EVENT_MASK; |
| 532 | ASSERT(0 == (events & ~(1 << kInEvent | 1 << kOutEvent))); |
| 533 | |
| 534 | const intptr_t old_mask = di->Mask(); |
| 535 | LOG_INFO("\t Set Event Mask: %ld: %lx %lx\n" , fd, old_mask, |
| 536 | msg->data & EVENT_MASK); |
| 537 | di->SetPortAndMask(msg->dart_port, msg->data & EVENT_MASK); |
| 538 | UpdatePort(old_mask, di); |
| 539 | } else { |
| 540 | UNREACHABLE(); |
| 541 | } |
| 542 | } |
| 543 | |
| 544 | void EventHandlerImplementation::HandlePacket(zx_port_packet_t* pkt) { |
| 545 | LOG_INFO("HandlePacket: Got event packet: key=%lx\n" , pkt->key); |
| 546 | LOG_INFO("HandlePacket: Got event packet: type=%x\n" , pkt->type); |
| 547 | LOG_INFO("HandlePacket: Got event packet: status=%d\n" , pkt->status); |
| 548 | if (pkt->type == ZX_PKT_TYPE_USER) { |
| 549 | ASSERT(pkt->key == kInterruptPacketKey); |
| 550 | InterruptMessage* msg = reinterpret_cast<InterruptMessage*>(&pkt->user); |
| 551 | HandleInterrupt(msg); |
| 552 | return; |
| 553 | } |
| 554 | LOG_INFO("HandlePacket: Got event packet: observed = %x\n" , |
| 555 | pkt->signal.observed); |
| 556 | LOG_INFO("HandlePacket: Got event packet: count = %ld\n" , pkt->signal.count); |
| 557 | |
| 558 | DescriptorInfo* di = reinterpret_cast<DescriptorInfo*>(pkt->key); |
| 559 | zx_signals_t observed = pkt->signal.observed; |
| 560 | const intptr_t old_mask = di->Mask(); |
| 561 | const uint32_t epoll_event = di->io_handle()->WaitEnd(observed); |
| 562 | intptr_t event_mask = IOHandle::EpollEventsToMask(epoll_event); |
| 563 | if ((event_mask & (1 << kErrorEvent)) != 0) { |
| 564 | di->NotifyAllDartPorts(event_mask); |
| 565 | } else if (event_mask != 0) { |
| 566 | event_mask = di->io_handle()->ToggleEvents(event_mask); |
| 567 | if (event_mask != 0) { |
| 568 | Dart_Port port = di->NextNotifyDartPort(event_mask); |
| 569 | ASSERT(port != 0); |
| 570 | bool success = DartUtils::PostInt32(port, event_mask); |
| 571 | if (!success) { |
| 572 | // This can happen if e.g. the isolate that owns the port has died |
| 573 | // for some reason. |
| 574 | LOG_INFO("Failed to post event to port %ld\n" , port); |
| 575 | } |
| 576 | } |
| 577 | } |
| 578 | UpdatePort(old_mask, di); |
| 579 | } |
| 580 | |
| 581 | int64_t EventHandlerImplementation::GetTimeout() const { |
| 582 | if (!timeout_queue_.HasTimeout()) { |
| 583 | return kInfinityTimeout; |
| 584 | } |
| 585 | int64_t millis = |
| 586 | timeout_queue_.CurrentTimeout() - TimerUtils::GetCurrentMonotonicMillis(); |
| 587 | return (millis < 0) ? 0 : millis; |
| 588 | } |
| 589 | |
| 590 | void EventHandlerImplementation::HandleTimeout() { |
| 591 | if (timeout_queue_.HasTimeout()) { |
| 592 | int64_t millis = timeout_queue_.CurrentTimeout() - |
| 593 | TimerUtils::GetCurrentMonotonicMillis(); |
| 594 | if (millis <= 0) { |
| 595 | DartUtils::PostNull(timeout_queue_.CurrentPort()); |
| 596 | timeout_queue_.RemoveCurrent(); |
| 597 | } |
| 598 | } |
| 599 | } |
| 600 | |
| 601 | void EventHandlerImplementation::Poll(uword args) { |
| 602 | EventHandler* handler = reinterpret_cast<EventHandler*>(args); |
| 603 | EventHandlerImplementation* handler_impl = &handler->delegate_; |
| 604 | ASSERT(handler_impl != NULL); |
| 605 | |
| 606 | zx_port_packet_t pkt; |
| 607 | while (!handler_impl->shutdown_) { |
| 608 | int64_t millis = handler_impl->GetTimeout(); |
| 609 | ASSERT((millis == kInfinityTimeout) || (millis >= 0)); |
| 610 | |
| 611 | LOG_INFO("zx_port_wait(millis = %ld)\n" , millis); |
| 612 | zx_status_t status = zx_port_wait(handler_impl->port_handle_, |
| 613 | millis == kInfinityTimeout |
| 614 | ? ZX_TIME_INFINITE |
| 615 | : zx_deadline_after(ZX_MSEC(millis)), |
| 616 | &pkt); |
| 617 | if (status == ZX_ERR_TIMED_OUT) { |
| 618 | handler_impl->HandleTimeout(); |
| 619 | } else if (status != ZX_OK) { |
| 620 | FATAL1("zx_port_wait failed: %s\n" , zx_status_get_string(status)); |
| 621 | } else { |
| 622 | handler_impl->HandleTimeout(); |
| 623 | handler_impl->HandlePacket(&pkt); |
| 624 | } |
| 625 | } |
| 626 | DEBUG_ASSERT(ReferenceCounted<Socket>::instances() == 0); |
| 627 | handler->NotifyShutdownDone(); |
| 628 | } |
| 629 | |
| 630 | void EventHandlerImplementation::Start(EventHandler* handler) { |
| 631 | int result = |
| 632 | Thread::Start("dart:io EventHandler" , &EventHandlerImplementation::Poll, |
| 633 | reinterpret_cast<uword>(handler)); |
| 634 | if (result != 0) { |
| 635 | FATAL1("Failed to start event handler thread %d" , result); |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | void EventHandlerImplementation::Shutdown() { |
| 640 | SendData(kShutdownId, 0, 0); |
| 641 | } |
| 642 | |
| 643 | void EventHandlerImplementation::SendData(intptr_t id, |
| 644 | Dart_Port dart_port, |
| 645 | int64_t data) { |
| 646 | WakeupHandler(id, dart_port, data); |
| 647 | } |
| 648 | |
| 649 | void* EventHandlerImplementation::GetHashmapKeyFromFd(intptr_t fd) { |
| 650 | // The hashmap does not support keys with value 0. |
| 651 | return reinterpret_cast<void*>(fd + 1); |
| 652 | } |
| 653 | |
| 654 | uint32_t EventHandlerImplementation::GetHashmapHashFromFd(intptr_t fd) { |
| 655 | // The hashmap does not support keys with value 0. |
| 656 | return dart::Utils::WordHash(fd + 1); |
| 657 | } |
| 658 | |
| 659 | } // namespace bin |
| 660 | } // namespace dart |
| 661 | |
| 662 | #endif // defined(HOST_OS_FUCHSIA) |
| 663 | |