1 | // Copyright (c) 2016, the Dart project authors. Please see the AUTHORS file |
2 | // for details. All rights reserved. Use of this source code is governed by a |
3 | // BSD-style license that can be found in the LICENSE file. |
4 | |
5 | #include "platform/globals.h" |
6 | #if defined(HOST_OS_FUCHSIA) |
7 | |
8 | #include "bin/eventhandler.h" |
9 | #include "bin/eventhandler_fuchsia.h" |
10 | |
11 | #include <errno.h> |
12 | #include <fcntl.h> |
13 | #include <poll.h> |
14 | #include <pthread.h> |
15 | #include <stdio.h> |
16 | #include <string.h> |
17 | #include <sys/socket.h> |
18 | #include <sys/stat.h> |
19 | #include <unistd.h> |
20 | #include <zircon/status.h> |
21 | #include <zircon/syscalls.h> |
22 | #include <zircon/syscalls/object.h> |
23 | #include <zircon/syscalls/port.h> |
24 | |
25 | #include "bin/fdutils.h" |
26 | #include "bin/lockers.h" |
27 | #include "bin/socket.h" |
28 | #include "bin/thread.h" |
29 | #include "bin/utils.h" |
30 | #include "platform/hashmap.h" |
31 | #include "platform/syslog.h" |
32 | #include "platform/utils.h" |
33 | |
34 | // The EventHandler for Fuchsia uses its "ports v2" API: |
35 | // https://fuchsia.googlesource.com/fuchsia/+/HEAD/zircon/docs/syscalls/port_create.md |
36 | // This API does not have epoll()-like edge triggering (EPOLLET). Since clients |
37 | // of the EventHandler expect edge-triggered notifications, we must simulate it. |
38 | // When a packet from zx_port_wait() indicates that a signal is asserted for a |
39 | // handle, we unsubscribe from that signal until the event that asserted the |
40 | // signal can be processed. For example: |
41 | // |
42 | // 1. We get ZX_SOCKET_WRITABLE from zx_port_wait() for a handle. |
43 | // 2. We send kOutEvent to the Dart thread. |
44 | // 3. We unsubscribe from further ZX_SOCKET_WRITABLE signals for the handle. |
45 | // 4. Some time later the Dart thread actually does a write(). |
46 | // 5. After writing, the Dart thread resubscribes to write events. |
47 | // |
48 | // We use the same procedure for ZX_SOCKET_READABLE, and read()/accept(). |
49 | |
50 | // define EVENTHANDLER_LOG_ERROR to get log messages only for errors. |
51 | // define EVENTHANDLER_LOG_INFO to get log messages for both information and |
52 | // errors. |
53 | // #define EVENTHANDLER_LOG_INFO 1 |
54 | #define EVENTHANDLER_LOG_ERROR 1 |
55 | #if defined(EVENTHANDLER_LOG_INFO) || defined(EVENTHANDLER_LOG_ERROR) |
56 | #define LOG_ERR(msg, ...) \ |
57 | { \ |
58 | int err = errno; \ |
59 | Syslog::PrintErr("Dart EventHandler ERROR: %s:%d: " msg, __FILE__, \ |
60 | __LINE__, ##__VA_ARGS__); \ |
61 | errno = err; \ |
62 | } |
63 | #if defined(EVENTHANDLER_LOG_INFO) |
64 | #define LOG_INFO(msg, ...) \ |
65 | Syslog::Print("Dart EventHandler INFO: %s:%d: " msg, __FILE__, __LINE__, \ |
66 | ##__VA_ARGS__) |
67 | #else |
68 | #define LOG_INFO(msg, ...) |
69 | #endif // defined(EVENTHANDLER_LOG_INFO) |
70 | #else |
71 | #define LOG_ERR(msg, ...) |
72 | #define LOG_INFO(msg, ...) |
73 | #endif // defined(EVENTHANDLER_LOG_INFO) || defined(EVENTHANDLER_LOG_ERROR) |
74 | |
75 | namespace dart { |
76 | namespace bin { |
77 | |
78 | intptr_t IOHandle::Read(void* buffer, intptr_t num_bytes) { |
79 | MutexLocker ml(&mutex_); |
80 | const ssize_t read_bytes = NO_RETRY_EXPECTED(read(fd_, buffer, num_bytes)); |
81 | const int err = errno; |
82 | LOG_INFO("IOHandle::Read: fd = %ld. read %ld bytes\n" , fd_, read_bytes); |
83 | |
84 | // Track the number of bytes available to read. |
85 | if (read_bytes > 0) { |
86 | available_bytes_ -= |
87 | (available_bytes_ >= read_bytes) ? read_bytes : available_bytes_; |
88 | } |
89 | |
90 | // If we have read all available bytes, or if there was an error, then |
91 | // re-enable read events. We re-enable read events even if read() returns |
92 | // an error. The error might be, e.g. EWOULDBLOCK, in which case |
93 | // resubscription is necessary. Logic in the caller decides which errors |
94 | // are real, and which are ignore-and-continue. |
95 | if ((available_bytes_ == 0) || (read_bytes < 0)) { |
96 | // Resubscribe to read events. |
97 | read_events_enabled_ = true; |
98 | if (!AsyncWaitLocked(ZX_HANDLE_INVALID, POLLIN, wait_key_)) { |
99 | LOG_ERR("IOHandle::AsyncWait failed for fd = %ld\n" , fd_); |
100 | } |
101 | } |
102 | |
103 | errno = err; |
104 | return read_bytes; |
105 | } |
106 | |
107 | intptr_t IOHandle::Write(const void* buffer, intptr_t num_bytes) { |
108 | MutexLocker ml(&mutex_); |
109 | const ssize_t written_bytes = |
110 | NO_RETRY_EXPECTED(write(fd_, buffer, num_bytes)); |
111 | const int err = errno; |
112 | LOG_INFO("IOHandle::Write: fd = %ld. wrote %ld bytes\n" , fd_, written_bytes); |
113 | |
114 | // Resubscribe to write events. |
115 | write_events_enabled_ = true; |
116 | if (!AsyncWaitLocked(ZX_HANDLE_INVALID, POLLOUT, wait_key_)) { |
117 | LOG_ERR("IOHandle::AsyncWait failed for fd = %ld\n" , fd_); |
118 | } |
119 | |
120 | errno = err; |
121 | return written_bytes; |
122 | } |
123 | |
124 | intptr_t IOHandle::Accept(struct sockaddr* addr, socklen_t* addrlen) { |
125 | MutexLocker ml(&mutex_); |
126 | const intptr_t socket = NO_RETRY_EXPECTED(accept(fd_, addr, addrlen)); |
127 | const int err = errno; |
128 | LOG_INFO("IOHandle::Accept: fd = %ld. socket = %ld\n" , fd_, socket); |
129 | |
130 | // Re-subscribe to read events. |
131 | read_events_enabled_ = true; |
132 | if (!AsyncWaitLocked(ZX_HANDLE_INVALID, POLLIN, wait_key_)) { |
133 | LOG_ERR("IOHandle::AsyncWait failed for fd = %ld\n" , fd_); |
134 | } |
135 | |
136 | errno = err; |
137 | return socket; |
138 | } |
139 | |
140 | intptr_t IOHandle::AvailableBytes() { |
141 | MutexLocker ml(&mutex_); |
142 | ASSERT(fd_ >= 0); |
143 | intptr_t available = FDUtils::AvailableBytes(fd_); |
144 | LOG_INFO("IOHandle::AvailableBytes(): fd = %ld, bytes = %ld\n" , fd_, |
145 | available); |
146 | if (available < 0) { |
147 | // If there is an error, we set available to 1 to trigger a read event that |
148 | // then propagates the error. |
149 | available = 1; |
150 | } |
151 | available_bytes_ = available; |
152 | return available; |
153 | } |
154 | |
155 | void IOHandle::Close() { |
156 | MutexLocker ml(&mutex_); |
157 | VOID_NO_RETRY_EXPECTED(close(fd_)); |
158 | } |
159 | |
160 | uint32_t IOHandle::MaskToEpollEvents(intptr_t mask) { |
161 | MutexLocker ml(&mutex_); |
162 | // Do not ask for POLLERR and POLLHUP explicitly as they are |
163 | // triggered anyway. |
164 | uint32_t events = 0; |
165 | // Do not subscribe to read closed events when kCloseEvent has already been |
166 | // sent to the Dart thread. |
167 | if (close_events_enabled_) { |
168 | events |= POLLRDHUP; |
169 | } |
170 | if (read_events_enabled_ && ((mask & (1 << kInEvent)) != 0)) { |
171 | events |= POLLIN; |
172 | } |
173 | if (write_events_enabled_ && ((mask & (1 << kOutEvent)) != 0)) { |
174 | events |= POLLOUT; |
175 | } |
176 | return events; |
177 | } |
178 | |
179 | intptr_t IOHandle::EpollEventsToMask(intptr_t events) { |
180 | if ((events & POLLERR) != 0) { |
181 | // Return error only if POLLIN is present. |
182 | return ((events & POLLIN) != 0) ? (1 << kErrorEvent) : 0; |
183 | } |
184 | intptr_t event_mask = 0; |
185 | if ((events & POLLIN) != 0) { |
186 | event_mask |= (1 << kInEvent); |
187 | } |
188 | if ((events & POLLOUT) != 0) { |
189 | event_mask |= (1 << kOutEvent); |
190 | } |
191 | if ((events & (POLLHUP | POLLRDHUP)) != 0) { |
192 | event_mask |= (1 << kCloseEvent); |
193 | } |
194 | return event_mask; |
195 | } |
196 | |
197 | bool IOHandle::AsyncWaitLocked(zx_handle_t port, |
198 | uint32_t events, |
199 | uint64_t key) { |
200 | LOG_INFO("IOHandle::AsyncWait: fd = %ld\n" , fd_); |
201 | // The call to fdio_unsafe_fd_to_io() in the DescriptorInfo constructor may |
202 | // have returned NULL. If it did, propagate the problem up to Dart. |
203 | if (fdio_ == NULL) { |
204 | LOG_ERR("fdio_unsafe_fd_to_io(%ld) returned NULL\n" , fd_); |
205 | return false; |
206 | } |
207 | |
208 | zx_handle_t handle; |
209 | zx_signals_t signals; |
210 | fdio_unsafe_wait_begin(fdio_, events, &handle, &signals); |
211 | if (handle == ZX_HANDLE_INVALID) { |
212 | LOG_ERR("fd = %ld fdio_unsafe_wait_begin returned an invalid handle\n" , |
213 | fd_); |
214 | return false; |
215 | } |
216 | |
217 | // Remember the port. Use the remembered port if the argument "port" is |
218 | // ZX_HANDLE_INVALID. |
219 | ASSERT((port != ZX_HANDLE_INVALID) || (port_ != ZX_HANDLE_INVALID)); |
220 | if ((port_ == ZX_HANDLE_INVALID) || (port != ZX_HANDLE_INVALID)) { |
221 | port_ = port; |
222 | } |
223 | |
224 | handle_ = handle; |
225 | wait_key_ = key; |
226 | LOG_INFO("zx_object_wait_async(fd = %ld, signals = %x)\n" , fd_, signals); |
227 | zx_status_t status = |
228 | zx_object_wait_async(handle_, port_, key, signals, ZX_WAIT_ASYNC_ONCE); |
229 | if (status != ZX_OK) { |
230 | LOG_ERR("zx_object_wait_async failed: %s\n" , zx_status_get_string(status)); |
231 | return false; |
232 | } |
233 | |
234 | return true; |
235 | } |
236 | |
237 | bool IOHandle::AsyncWait(zx_handle_t port, uint32_t events, uint64_t key) { |
238 | MutexLocker ml(&mutex_); |
239 | return AsyncWaitLocked(port, events, key); |
240 | } |
241 | |
242 | void IOHandle::CancelWait(zx_handle_t port, uint64_t key) { |
243 | MutexLocker ml(&mutex_); |
244 | LOG_INFO("IOHandle::CancelWait: fd = %ld\n" , fd_); |
245 | ASSERT(port != ZX_HANDLE_INVALID); |
246 | ASSERT(handle_ != ZX_HANDLE_INVALID); |
247 | zx_status_t status = zx_port_cancel(port, handle_, key); |
248 | if ((status != ZX_OK) && (status != ZX_ERR_NOT_FOUND)) { |
249 | LOG_ERR("zx_port_cancel failed: %s\n" , zx_status_get_string(status)); |
250 | } |
251 | } |
252 | |
253 | uint32_t IOHandle::WaitEnd(zx_signals_t observed) { |
254 | MutexLocker ml(&mutex_); |
255 | uint32_t events = 0; |
256 | fdio_unsafe_wait_end(fdio_, observed, &events); |
257 | LOG_INFO("IOHandle::WaitEnd: fd = %ld, events = %x\n" , fd_, events); |
258 | return events; |
259 | } |
260 | |
261 | // This function controls the simulation of edge-triggering. It is responsible |
262 | // for removing events from the event mask when they should be supressed, and |
263 | // for supressing future events. Events are unsupressed by their respective |
264 | // operations by the Dart thread on the socket---that is, where the |
265 | // *_events_enabled_ flags are set to true. |
266 | intptr_t IOHandle::ToggleEvents(intptr_t event_mask) { |
267 | MutexLocker ml(&mutex_); |
268 | // If write events are disabled, then remove the kOutEvent bit from the |
269 | // event mask. |
270 | if (!write_events_enabled_) { |
271 | LOG_INFO( |
272 | "IOHandle::ToggleEvents: fd = %ld " |
273 | "de-asserting kOutEvent\n" , |
274 | fd_); |
275 | event_mask = event_mask & ~(1 << kOutEvent); |
276 | } |
277 | // If the kOutEvent bit is set, then supress future write events until the |
278 | // Dart thread writes. |
279 | if ((event_mask & (1 << kOutEvent)) != 0) { |
280 | LOG_INFO( |
281 | "IOHandle::ToggleEvents: fd = %ld " |
282 | "asserting kOutEvent and disabling\n" , |
283 | fd_); |
284 | write_events_enabled_ = false; |
285 | } |
286 | |
287 | // If read events are disabled, then remove the kInEvent bit from the event |
288 | // mask. |
289 | if (!read_events_enabled_) { |
290 | LOG_INFO( |
291 | "IOHandle::ToggleEvents: fd = %ld " |
292 | "de-asserting kInEvent\n" , |
293 | fd_); |
294 | event_mask = event_mask & ~(1 << kInEvent); |
295 | } |
296 | // We may get In events without available bytes, so we must make sure there |
297 | // are actually bytes, or we will never resubscribe (due to a short-circuit |
298 | // on the Dart side). |
299 | // |
300 | // This happens due to how packets get enqueued on the port with all signals |
301 | // asserted at that time. Sometimes we enqueue a packet due to |
302 | // zx_object_wait_async e.g. for POLLOUT (writability) while the socket is |
303 | // readable and while we have a Read queued up on the Dart side. This packet |
304 | // will also have POLLIN (readable) asserted. We may then perform the Read |
305 | // and drain the socket before our zx_port_wait is serviced, at which point |
306 | // when we process the packet for POLLOUT with its stale POLLIN (readable) |
307 | // signal, the socket is no longer actually readable. |
308 | // |
309 | // As a detail, negative available bytes (errors) are handled specially; see |
310 | // IOHandle::AvailableBytes for more information. |
311 | if ((event_mask & (1 << kInEvent)) != 0) { |
312 | if (FDUtils::AvailableBytes(fd_) != 0) { |
313 | LOG_INFO( |
314 | "IOHandle::ToggleEvents: fd = %ld " |
315 | "asserting kInEvent and disabling with bytes available\n" , |
316 | fd_); |
317 | read_events_enabled_ = false; |
318 | } |
319 | // Also supress future read events if we get a kCloseEvent. This is to |
320 | // account for POLLIN being set by Fuchsia when the socket is read-closed. |
321 | if ((event_mask & (1 << kCloseEvent)) != 0) { |
322 | LOG_INFO( |
323 | "IOHandle::ToggleEvents: fd = %ld " |
324 | "asserting kInEvent and disabling due to a close event\n" , |
325 | fd_); |
326 | read_events_enabled_ = false; |
327 | } |
328 | } |
329 | |
330 | // If the close events are disabled, then remove the kCloseEvent bit from the |
331 | // event mask. |
332 | if (!close_events_enabled_) { |
333 | LOG_INFO( |
334 | "IOHandle::ToggleEvents: fd = %ld " |
335 | "de-asserting kCloseEvent\n" , |
336 | fd_); |
337 | event_mask = event_mask & ~(1 << kCloseEvent); |
338 | } |
339 | // If the kCloseEvent bit is set, then supress future close events, they will |
340 | // be ignored by the Dart thread. See _NativeSocket.multiplex in |
341 | // socket_patch.dart. |
342 | if ((event_mask & (1 << kCloseEvent)) != 0) { |
343 | LOG_INFO( |
344 | "IOHandle::ToggleEvents: fd = %ld " |
345 | "asserting kCloseEvent and disabling\n" , |
346 | fd_); |
347 | close_events_enabled_ = false; |
348 | } |
349 | return event_mask; |
350 | } |
351 | |
352 | void EventHandlerImplementation::AddToPort(zx_handle_t port_handle, |
353 | DescriptorInfo* di) { |
354 | const uint32_t events = di->io_handle()->MaskToEpollEvents(di->Mask()); |
355 | const uint64_t key = reinterpret_cast<uint64_t>(di); |
356 | if (!di->io_handle()->AsyncWait(port_handle, events, key)) { |
357 | di->NotifyAllDartPorts(1 << kCloseEvent); |
358 | } |
359 | } |
360 | |
361 | void EventHandlerImplementation::RemoveFromPort(zx_handle_t port_handle, |
362 | DescriptorInfo* di) { |
363 | const uint64_t key = reinterpret_cast<uint64_t>(di); |
364 | di->io_handle()->CancelWait(port_handle, key); |
365 | } |
366 | |
367 | EventHandlerImplementation::EventHandlerImplementation() |
368 | : socket_map_(&SimpleHashMap::SamePointerValue, 16) { |
369 | shutdown_ = false; |
370 | // Create the port. |
371 | port_handle_ = ZX_HANDLE_INVALID; |
372 | zx_status_t status = zx_port_create(0, &port_handle_); |
373 | if (status != ZX_OK) { |
374 | // This is a FATAL because the VM won't work at all if we can't create this |
375 | // port. |
376 | FATAL1("zx_port_create failed: %s\n" , zx_status_get_string(status)); |
377 | } |
378 | ASSERT(port_handle_ != ZX_HANDLE_INVALID); |
379 | } |
380 | |
381 | static void DeleteDescriptorInfo(void* info) { |
382 | DescriptorInfo* di = reinterpret_cast<DescriptorInfo*>(info); |
383 | LOG_INFO("Closed %ld\n" , di->io_handle()->fd()); |
384 | di->Close(); |
385 | delete di; |
386 | } |
387 | |
388 | EventHandlerImplementation::~EventHandlerImplementation() { |
389 | socket_map_.Clear(DeleteDescriptorInfo); |
390 | zx_handle_close(port_handle_); |
391 | port_handle_ = ZX_HANDLE_INVALID; |
392 | } |
393 | |
394 | void EventHandlerImplementation::UpdatePort(intptr_t old_mask, |
395 | DescriptorInfo* di) { |
396 | const intptr_t new_mask = di->Mask(); |
397 | if ((old_mask != 0) && (new_mask == 0)) { |
398 | RemoveFromPort(port_handle_, di); |
399 | } else if ((old_mask == 0) && (new_mask != 0)) { |
400 | AddToPort(port_handle_, di); |
401 | } else if ((old_mask != 0) && (new_mask != 0)) { |
402 | ASSERT((old_mask == new_mask) || !di->IsListeningSocket()); |
403 | RemoveFromPort(port_handle_, di); |
404 | AddToPort(port_handle_, di); |
405 | } |
406 | } |
407 | |
408 | DescriptorInfo* EventHandlerImplementation::GetDescriptorInfo( |
409 | intptr_t fd, |
410 | bool is_listening) { |
411 | IOHandle* handle = reinterpret_cast<IOHandle*>(fd); |
412 | ASSERT(handle->fd() >= 0); |
413 | SimpleHashMap::Entry* entry = |
414 | socket_map_.Lookup(GetHashmapKeyFromFd(handle->fd()), |
415 | GetHashmapHashFromFd(handle->fd()), true); |
416 | ASSERT(entry != NULL); |
417 | DescriptorInfo* di = reinterpret_cast<DescriptorInfo*>(entry->value); |
418 | if (di == NULL) { |
419 | // If there is no data in the hash map for this file descriptor a |
420 | // new DescriptorInfo for the file descriptor is inserted. |
421 | if (is_listening) { |
422 | di = new DescriptorInfoMultiple(fd); |
423 | } else { |
424 | di = new DescriptorInfoSingle(fd); |
425 | } |
426 | entry->value = di; |
427 | } |
428 | ASSERT(fd == di->fd()); |
429 | return di; |
430 | } |
431 | |
432 | void EventHandlerImplementation::WakeupHandler(intptr_t id, |
433 | Dart_Port dart_port, |
434 | int64_t data) { |
435 | COMPILE_ASSERT(sizeof(InterruptMessage) <= sizeof(zx_packet_user_t)); |
436 | zx_port_packet_t pkt; |
437 | InterruptMessage* msg = reinterpret_cast<InterruptMessage*>(&pkt.user); |
438 | pkt.key = kInterruptPacketKey; |
439 | msg->id = id; |
440 | msg->dart_port = dart_port; |
441 | msg->data = data; |
442 | zx_status_t status = zx_port_queue(port_handle_, &pkt); |
443 | if (status != ZX_OK) { |
444 | // This is a FATAL because the VM won't work at all if we can't send any |
445 | // messages to the EventHandler thread. |
446 | FATAL1("zx_port_queue failed: %s\n" , zx_status_get_string(status)); |
447 | } |
448 | } |
449 | |
450 | void EventHandlerImplementation::HandleInterrupt(InterruptMessage* msg) { |
451 | if (msg->id == kTimerId) { |
452 | LOG_INFO("HandleInterrupt read timer update\n" ); |
453 | timeout_queue_.UpdateTimeout(msg->dart_port, msg->data); |
454 | return; |
455 | } else if (msg->id == kShutdownId) { |
456 | LOG_INFO("HandleInterrupt read shutdown\n" ); |
457 | shutdown_ = true; |
458 | return; |
459 | } |
460 | ASSERT((msg->data & COMMAND_MASK) != 0); |
461 | LOG_INFO("HandleInterrupt command:\n" ); |
462 | Socket* socket = reinterpret_cast<Socket*>(msg->id); |
463 | RefCntReleaseScope<Socket> rs(socket); |
464 | if (socket->fd() == -1) { |
465 | return; |
466 | } |
467 | IOHandle* io_handle = reinterpret_cast<IOHandle*>(socket->fd()); |
468 | const intptr_t fd = io_handle->fd(); |
469 | DescriptorInfo* di = |
470 | GetDescriptorInfo(socket->fd(), IS_LISTENING_SOCKET(msg->data)); |
471 | ASSERT(io_handle == di->io_handle()); |
472 | if (IS_COMMAND(msg->data, kShutdownReadCommand)) { |
473 | ASSERT(!di->IsListeningSocket()); |
474 | // Close the socket for reading. |
475 | LOG_INFO("\tSHUT_RD: %ld\n" , fd); |
476 | VOID_NO_RETRY_EXPECTED(shutdown(fd, SHUT_RD)); |
477 | } else if (IS_COMMAND(msg->data, kShutdownWriteCommand)) { |
478 | ASSERT(!di->IsListeningSocket()); |
479 | // Close the socket for writing. |
480 | LOG_INFO("\tSHUT_WR: %ld\n" , fd); |
481 | VOID_NO_RETRY_EXPECTED(shutdown(fd, SHUT_WR)); |
482 | } else if (IS_COMMAND(msg->data, kCloseCommand)) { |
483 | // Close the socket and free system resources and move on to next |
484 | // message. |
485 | const intptr_t old_mask = di->Mask(); |
486 | Dart_Port port = msg->dart_port; |
487 | if (port != ILLEGAL_PORT) { |
488 | di->RemovePort(port); |
489 | } |
490 | const intptr_t new_mask = di->Mask(); |
491 | UpdatePort(old_mask, di); |
492 | |
493 | LOG_INFO("\tCLOSE: %ld: %lx -> %lx\n" , fd, old_mask, new_mask); |
494 | if (di->IsListeningSocket()) { |
495 | // We only close the socket file descriptor from the operating |
496 | // system if there are no other dart socket objects which |
497 | // are listening on the same (address, port) combination. |
498 | ListeningSocketRegistry* registry = ListeningSocketRegistry::Instance(); |
499 | |
500 | MutexLocker locker(registry->mutex()); |
501 | |
502 | if (registry->CloseSafe(socket)) { |
503 | ASSERT(new_mask == 0); |
504 | socket_map_.Remove(GetHashmapKeyFromFd(fd), GetHashmapHashFromFd(fd)); |
505 | di->Close(); |
506 | delete di; |
507 | socket->CloseFd(); |
508 | } |
509 | socket->SetClosedFd(); |
510 | } else { |
511 | ASSERT(new_mask == 0); |
512 | socket_map_.Remove(GetHashmapKeyFromFd(fd), GetHashmapHashFromFd(fd)); |
513 | di->Close(); |
514 | delete di; |
515 | socket->CloseFd(); |
516 | } |
517 | if (port != 0) { |
518 | const bool success = DartUtils::PostInt32(port, 1 << kDestroyedEvent); |
519 | if (!success) { |
520 | LOG_INFO("Failed to post destroy event to port %ld\n" , port); |
521 | } |
522 | } |
523 | } else if (IS_COMMAND(msg->data, kReturnTokenCommand)) { |
524 | const int count = TOKEN_COUNT(msg->data); |
525 | const intptr_t old_mask = di->Mask(); |
526 | LOG_INFO("\t Return Token: %ld: %lx\n" , fd, old_mask); |
527 | di->ReturnTokens(msg->dart_port, count); |
528 | UpdatePort(old_mask, di); |
529 | } else if (IS_COMMAND(msg->data, kSetEventMaskCommand)) { |
530 | // `events` can only have kInEvent/kOutEvent flags set. |
531 | const intptr_t events = msg->data & EVENT_MASK; |
532 | ASSERT(0 == (events & ~(1 << kInEvent | 1 << kOutEvent))); |
533 | |
534 | const intptr_t old_mask = di->Mask(); |
535 | LOG_INFO("\t Set Event Mask: %ld: %lx %lx\n" , fd, old_mask, |
536 | msg->data & EVENT_MASK); |
537 | di->SetPortAndMask(msg->dart_port, msg->data & EVENT_MASK); |
538 | UpdatePort(old_mask, di); |
539 | } else { |
540 | UNREACHABLE(); |
541 | } |
542 | } |
543 | |
544 | void EventHandlerImplementation::HandlePacket(zx_port_packet_t* pkt) { |
545 | LOG_INFO("HandlePacket: Got event packet: key=%lx\n" , pkt->key); |
546 | LOG_INFO("HandlePacket: Got event packet: type=%x\n" , pkt->type); |
547 | LOG_INFO("HandlePacket: Got event packet: status=%d\n" , pkt->status); |
548 | if (pkt->type == ZX_PKT_TYPE_USER) { |
549 | ASSERT(pkt->key == kInterruptPacketKey); |
550 | InterruptMessage* msg = reinterpret_cast<InterruptMessage*>(&pkt->user); |
551 | HandleInterrupt(msg); |
552 | return; |
553 | } |
554 | LOG_INFO("HandlePacket: Got event packet: observed = %x\n" , |
555 | pkt->signal.observed); |
556 | LOG_INFO("HandlePacket: Got event packet: count = %ld\n" , pkt->signal.count); |
557 | |
558 | DescriptorInfo* di = reinterpret_cast<DescriptorInfo*>(pkt->key); |
559 | zx_signals_t observed = pkt->signal.observed; |
560 | const intptr_t old_mask = di->Mask(); |
561 | const uint32_t epoll_event = di->io_handle()->WaitEnd(observed); |
562 | intptr_t event_mask = IOHandle::EpollEventsToMask(epoll_event); |
563 | if ((event_mask & (1 << kErrorEvent)) != 0) { |
564 | di->NotifyAllDartPorts(event_mask); |
565 | } else if (event_mask != 0) { |
566 | event_mask = di->io_handle()->ToggleEvents(event_mask); |
567 | if (event_mask != 0) { |
568 | Dart_Port port = di->NextNotifyDartPort(event_mask); |
569 | ASSERT(port != 0); |
570 | bool success = DartUtils::PostInt32(port, event_mask); |
571 | if (!success) { |
572 | // This can happen if e.g. the isolate that owns the port has died |
573 | // for some reason. |
574 | LOG_INFO("Failed to post event to port %ld\n" , port); |
575 | } |
576 | } |
577 | } |
578 | UpdatePort(old_mask, di); |
579 | } |
580 | |
581 | int64_t EventHandlerImplementation::GetTimeout() const { |
582 | if (!timeout_queue_.HasTimeout()) { |
583 | return kInfinityTimeout; |
584 | } |
585 | int64_t millis = |
586 | timeout_queue_.CurrentTimeout() - TimerUtils::GetCurrentMonotonicMillis(); |
587 | return (millis < 0) ? 0 : millis; |
588 | } |
589 | |
590 | void EventHandlerImplementation::HandleTimeout() { |
591 | if (timeout_queue_.HasTimeout()) { |
592 | int64_t millis = timeout_queue_.CurrentTimeout() - |
593 | TimerUtils::GetCurrentMonotonicMillis(); |
594 | if (millis <= 0) { |
595 | DartUtils::PostNull(timeout_queue_.CurrentPort()); |
596 | timeout_queue_.RemoveCurrent(); |
597 | } |
598 | } |
599 | } |
600 | |
601 | void EventHandlerImplementation::Poll(uword args) { |
602 | EventHandler* handler = reinterpret_cast<EventHandler*>(args); |
603 | EventHandlerImplementation* handler_impl = &handler->delegate_; |
604 | ASSERT(handler_impl != NULL); |
605 | |
606 | zx_port_packet_t pkt; |
607 | while (!handler_impl->shutdown_) { |
608 | int64_t millis = handler_impl->GetTimeout(); |
609 | ASSERT((millis == kInfinityTimeout) || (millis >= 0)); |
610 | |
611 | LOG_INFO("zx_port_wait(millis = %ld)\n" , millis); |
612 | zx_status_t status = zx_port_wait(handler_impl->port_handle_, |
613 | millis == kInfinityTimeout |
614 | ? ZX_TIME_INFINITE |
615 | : zx_deadline_after(ZX_MSEC(millis)), |
616 | &pkt); |
617 | if (status == ZX_ERR_TIMED_OUT) { |
618 | handler_impl->HandleTimeout(); |
619 | } else if (status != ZX_OK) { |
620 | FATAL1("zx_port_wait failed: %s\n" , zx_status_get_string(status)); |
621 | } else { |
622 | handler_impl->HandleTimeout(); |
623 | handler_impl->HandlePacket(&pkt); |
624 | } |
625 | } |
626 | DEBUG_ASSERT(ReferenceCounted<Socket>::instances() == 0); |
627 | handler->NotifyShutdownDone(); |
628 | } |
629 | |
630 | void EventHandlerImplementation::Start(EventHandler* handler) { |
631 | int result = |
632 | Thread::Start("dart:io EventHandler" , &EventHandlerImplementation::Poll, |
633 | reinterpret_cast<uword>(handler)); |
634 | if (result != 0) { |
635 | FATAL1("Failed to start event handler thread %d" , result); |
636 | } |
637 | } |
638 | |
639 | void EventHandlerImplementation::Shutdown() { |
640 | SendData(kShutdownId, 0, 0); |
641 | } |
642 | |
643 | void EventHandlerImplementation::SendData(intptr_t id, |
644 | Dart_Port dart_port, |
645 | int64_t data) { |
646 | WakeupHandler(id, dart_port, data); |
647 | } |
648 | |
649 | void* EventHandlerImplementation::GetHashmapKeyFromFd(intptr_t fd) { |
650 | // The hashmap does not support keys with value 0. |
651 | return reinterpret_cast<void*>(fd + 1); |
652 | } |
653 | |
654 | uint32_t EventHandlerImplementation::GetHashmapHashFromFd(intptr_t fd) { |
655 | // The hashmap does not support keys with value 0. |
656 | return dart::Utils::WordHash(fd + 1); |
657 | } |
658 | |
659 | } // namespace bin |
660 | } // namespace dart |
661 | |
662 | #endif // defined(HOST_OS_FUCHSIA) |
663 | |