1 | // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
2 | // for details. All rights reserved. Use of this source code is governed by a |
3 | // BSD-style license that can be found in the LICENSE file. |
4 | |
5 | #include "platform/globals.h" |
6 | #if defined(HOST_OS_ANDROID) |
7 | |
8 | #include "bin/process.h" |
9 | |
10 | #include <errno.h> // NOLINT |
11 | #include <fcntl.h> // NOLINT |
12 | #include <poll.h> // NOLINT |
13 | #include <stdio.h> // NOLINT |
14 | #include <stdlib.h> // NOLINT |
15 | #include <string.h> // NOLINT |
16 | #include <sys/wait.h> // NOLINT |
17 | #include <unistd.h> // NOLINT |
18 | |
19 | #include "bin/dartutils.h" |
20 | #include "bin/directory.h" |
21 | #include "bin/fdutils.h" |
22 | #include "bin/file.h" |
23 | #include "bin/lockers.h" |
24 | #include "bin/namespace.h" |
25 | #include "bin/reference_counting.h" |
26 | #include "bin/thread.h" |
27 | #include "platform/syslog.h" |
28 | |
29 | #include "platform/signal_blocker.h" |
30 | #include "platform/utils.h" |
31 | |
32 | extern char** environ; |
33 | |
34 | namespace dart { |
35 | namespace bin { |
36 | |
37 | int Process::global_exit_code_ = 0; |
38 | Mutex* Process::global_exit_code_mutex_ = nullptr; |
39 | Process::ExitHook Process::exit_hook_ = NULL; |
40 | |
41 | // ProcessInfo is used to map a process id to the file descriptor for |
42 | // the pipe used to communicate the exit code of the process to Dart. |
43 | // ProcessInfo objects are kept in the static singly-linked |
44 | // ProcessInfoList. |
45 | class ProcessInfo { |
46 | public: |
47 | ProcessInfo(pid_t pid, intptr_t fd) : pid_(pid), fd_(fd) {} |
48 | ~ProcessInfo() { |
49 | int closed = close(fd_); |
50 | if (closed != 0) { |
51 | FATAL("Failed to close process exit code pipe" ); |
52 | } |
53 | } |
54 | pid_t pid() { return pid_; } |
55 | intptr_t fd() { return fd_; } |
56 | ProcessInfo* next() { return next_; } |
57 | void set_next(ProcessInfo* info) { next_ = info; } |
58 | |
59 | private: |
60 | pid_t pid_; |
61 | intptr_t fd_; |
62 | ProcessInfo* next_; |
63 | |
64 | DISALLOW_COPY_AND_ASSIGN(ProcessInfo); |
65 | }; |
66 | |
67 | // Singly-linked list of ProcessInfo objects for all active processes |
68 | // started from Dart. |
69 | class ProcessInfoList { |
70 | public: |
71 | static void Init(); |
72 | static void Cleanup(); |
73 | |
74 | static void AddProcess(pid_t pid, intptr_t fd) { |
75 | MutexLocker locker(mutex_); |
76 | ProcessInfo* info = new ProcessInfo(pid, fd); |
77 | info->set_next(active_processes_); |
78 | active_processes_ = info; |
79 | } |
80 | |
81 | static intptr_t LookupProcessExitFd(pid_t pid) { |
82 | MutexLocker locker(mutex_); |
83 | ProcessInfo* current = active_processes_; |
84 | while (current != NULL) { |
85 | if (current->pid() == pid) { |
86 | return current->fd(); |
87 | } |
88 | current = current->next(); |
89 | } |
90 | return 0; |
91 | } |
92 | |
93 | static void RemoveProcess(pid_t pid) { |
94 | MutexLocker locker(mutex_); |
95 | ProcessInfo* prev = NULL; |
96 | ProcessInfo* current = active_processes_; |
97 | while (current != NULL) { |
98 | if (current->pid() == pid) { |
99 | if (prev == NULL) { |
100 | active_processes_ = current->next(); |
101 | } else { |
102 | prev->set_next(current->next()); |
103 | } |
104 | delete current; |
105 | return; |
106 | } |
107 | prev = current; |
108 | current = current->next(); |
109 | } |
110 | } |
111 | |
112 | private: |
113 | // Linked list of ProcessInfo objects for all active processes |
114 | // started from Dart code. |
115 | static ProcessInfo* active_processes_; |
116 | // Mutex protecting all accesses to the linked list of active |
117 | // processes. |
118 | static Mutex* mutex_; |
119 | |
120 | DISALLOW_ALLOCATION(); |
121 | DISALLOW_IMPLICIT_CONSTRUCTORS(ProcessInfoList); |
122 | }; |
123 | |
124 | ProcessInfo* ProcessInfoList::active_processes_ = NULL; |
125 | Mutex* ProcessInfoList::mutex_ = nullptr; |
126 | |
127 | // The exit code handler sets up a separate thread which waits for child |
128 | // processes to terminate. That separate thread can then get the exit code from |
129 | // processes that have exited and communicate it to Dart through the |
130 | // event loop. |
131 | class ExitCodeHandler { |
132 | public: |
133 | static void Init(); |
134 | static void Cleanup(); |
135 | |
136 | // Notify the ExitCodeHandler that another process exists. |
137 | static void ProcessStarted() { |
138 | // Multiple isolates could be starting processes at the same |
139 | // time. Make sure that only one ExitCodeHandler thread exists. |
140 | MonitorLocker locker(monitor_); |
141 | process_count_++; |
142 | |
143 | monitor_->Notify(); |
144 | |
145 | if (running_) { |
146 | return; |
147 | } |
148 | |
149 | // Start thread that handles process exits when wait returns. |
150 | int result = |
151 | Thread::Start("dart:io Process.start" , ExitCodeHandlerEntry, 0); |
152 | if (result != 0) { |
153 | FATAL1("Failed to start exit code handler worker thread %d" , result); |
154 | } |
155 | |
156 | running_ = true; |
157 | } |
158 | |
159 | static void TerminateExitCodeThread() { |
160 | MonitorLocker locker(monitor_); |
161 | |
162 | if (!running_) { |
163 | return; |
164 | } |
165 | |
166 | // Set terminate_done_ to false, so we can use it as a guard for our |
167 | // monitor. |
168 | running_ = false; |
169 | |
170 | // Wake up the [ExitCodeHandler] thread which is blocked on `wait()` (see |
171 | // [ExitCodeHandlerEntry]). |
172 | if (TEMP_FAILURE_RETRY(fork()) == 0) { |
173 | // We avoid running through registered atexit() handlers because that is |
174 | // unnecessary work. |
175 | _exit(0); |
176 | } |
177 | |
178 | monitor_->Notify(); |
179 | |
180 | while (!terminate_done_) { |
181 | monitor_->Wait(Monitor::kNoTimeout); |
182 | } |
183 | } |
184 | |
185 | private: |
186 | // Entry point for the separate exit code handler thread started by |
187 | // the ExitCodeHandler. |
188 | static void ExitCodeHandlerEntry(uword param) { |
189 | pid_t pid = 0; |
190 | int status = 0; |
191 | while (true) { |
192 | { |
193 | MonitorLocker locker(monitor_); |
194 | while (running_ && (process_count_ == 0)) { |
195 | monitor_->Wait(Monitor::kNoTimeout); |
196 | } |
197 | if (!running_) { |
198 | terminate_done_ = true; |
199 | monitor_->Notify(); |
200 | return; |
201 | } |
202 | } |
203 | |
204 | if ((pid = TEMP_FAILURE_RETRY(wait(&status))) > 0) { |
205 | int exit_code = 0; |
206 | int negative = 0; |
207 | if (WIFEXITED(status)) { |
208 | exit_code = WEXITSTATUS(status); |
209 | } |
210 | if (WIFSIGNALED(status)) { |
211 | exit_code = WTERMSIG(status); |
212 | negative = 1; |
213 | } |
214 | intptr_t exit_code_fd = ProcessInfoList::LookupProcessExitFd(pid); |
215 | if (exit_code_fd != 0) { |
216 | int message[2] = {exit_code, negative}; |
217 | ssize_t result = |
218 | FDUtils::WriteToBlocking(exit_code_fd, &message, sizeof(message)); |
219 | // If the process has been closed, the read end of the exit |
220 | // pipe has been closed. It is therefore not a problem that |
221 | // write fails with a broken pipe error. Other errors should |
222 | // not happen. |
223 | if ((result != -1) && (result != sizeof(message))) { |
224 | FATAL("Failed to write entire process exit message" ); |
225 | } else if ((result == -1) && (errno != EPIPE)) { |
226 | FATAL1("Failed to write exit code: %d" , errno); |
227 | } |
228 | ProcessInfoList::RemoveProcess(pid); |
229 | { |
230 | MonitorLocker locker(monitor_); |
231 | process_count_--; |
232 | } |
233 | } |
234 | } else if (pid < 0) { |
235 | FATAL1("Wait for process exit failed: %d" , errno); |
236 | } |
237 | } |
238 | } |
239 | |
240 | static bool terminate_done_; |
241 | static int process_count_; |
242 | static bool running_; |
243 | static Monitor* monitor_; |
244 | |
245 | DISALLOW_ALLOCATION(); |
246 | DISALLOW_IMPLICIT_CONSTRUCTORS(ExitCodeHandler); |
247 | }; |
248 | |
249 | bool ExitCodeHandler::running_ = false; |
250 | int ExitCodeHandler::process_count_ = 0; |
251 | bool ExitCodeHandler::terminate_done_ = false; |
252 | Monitor* ExitCodeHandler::monitor_ = nullptr; |
253 | |
254 | class ProcessStarter { |
255 | public: |
256 | ProcessStarter(Namespace* namespc, |
257 | const char* path, |
258 | char* arguments[], |
259 | intptr_t arguments_length, |
260 | const char* working_directory, |
261 | char* environment[], |
262 | intptr_t environment_length, |
263 | ProcessStartMode mode, |
264 | intptr_t* in, |
265 | intptr_t* out, |
266 | intptr_t* err, |
267 | intptr_t* id, |
268 | intptr_t* exit_event, |
269 | char** os_error_message) |
270 | : namespc_(namespc), |
271 | path_(path), |
272 | working_directory_(working_directory), |
273 | mode_(mode), |
274 | in_(in), |
275 | out_(out), |
276 | err_(err), |
277 | id_(id), |
278 | exit_event_(exit_event), |
279 | os_error_message_(os_error_message) { |
280 | read_in_[0] = -1; |
281 | read_in_[1] = -1; |
282 | read_err_[0] = -1; |
283 | read_err_[1] = -1; |
284 | write_out_[0] = -1; |
285 | write_out_[1] = -1; |
286 | exec_control_[0] = -1; |
287 | exec_control_[1] = -1; |
288 | |
289 | program_arguments_ = reinterpret_cast<char**>(Dart_ScopeAllocate( |
290 | (arguments_length + 2) * sizeof(*program_arguments_))); |
291 | program_arguments_[0] = const_cast<char*>(path_); |
292 | for (int i = 0; i < arguments_length; i++) { |
293 | program_arguments_[i + 1] = arguments[i]; |
294 | } |
295 | program_arguments_[arguments_length + 1] = NULL; |
296 | |
297 | program_environment_ = NULL; |
298 | if (environment != NULL) { |
299 | program_environment_ = reinterpret_cast<char**>(Dart_ScopeAllocate( |
300 | (environment_length + 1) * sizeof(*program_environment_))); |
301 | for (int i = 0; i < environment_length; i++) { |
302 | program_environment_[i] = environment[i]; |
303 | } |
304 | program_environment_[environment_length] = NULL; |
305 | } |
306 | } |
307 | |
308 | int Start() { |
309 | // Create pipes required. |
310 | int err = CreatePipes(); |
311 | if (err != 0) { |
312 | return err; |
313 | } |
314 | |
315 | // Fork to create the new process. |
316 | pid_t pid = TEMP_FAILURE_RETRY(fork()); |
317 | if (pid < 0) { |
318 | // Failed to fork. |
319 | return CleanupAndReturnError(); |
320 | } else if (pid == 0) { |
321 | // This runs in the new process. |
322 | NewProcess(); |
323 | } |
324 | |
325 | // This runs in the original process. |
326 | |
327 | // If the child process is not started in detached mode, be sure to |
328 | // listen for exit-codes, now that we have a non detached child process |
329 | // and also Register this child process. |
330 | if (Process::ModeIsAttached(mode_)) { |
331 | ExitCodeHandler::ProcessStarted(); |
332 | err = RegisterProcess(pid); |
333 | if (err != 0) { |
334 | return err; |
335 | } |
336 | } |
337 | |
338 | // Notify child process to start. This is done to delay the call to exec |
339 | // until the process is registered above, and we are ready to receive the |
340 | // exit code. |
341 | char msg = '1'; |
342 | int bytes_written = |
343 | FDUtils::WriteToBlocking(read_in_[1], &msg, sizeof(msg)); |
344 | if (bytes_written != sizeof(msg)) { |
345 | return CleanupAndReturnError(); |
346 | } |
347 | |
348 | // Read the result of executing the child process. |
349 | close(exec_control_[1]); |
350 | exec_control_[1] = -1; |
351 | if (Process::ModeIsAttached(mode_)) { |
352 | err = ReadExecResult(); |
353 | } else { |
354 | err = ReadDetachedExecResult(&pid); |
355 | } |
356 | close(exec_control_[0]); |
357 | exec_control_[0] = -1; |
358 | |
359 | // Return error code if any failures. |
360 | if (err != 0) { |
361 | if (Process::ModeIsAttached(mode_)) { |
362 | // Since exec() failed, we're not interested in the exit code. |
363 | // We close the reading side of the exit code pipe here. |
364 | // GetProcessExitCodes will get a broken pipe error when it |
365 | // tries to write to the writing side of the pipe and it will |
366 | // ignore the error. |
367 | close(*exit_event_); |
368 | *exit_event_ = -1; |
369 | } |
370 | CloseAllPipes(); |
371 | return err; |
372 | } |
373 | |
374 | if (Process::ModeHasStdio(mode_)) { |
375 | // Connect stdio, stdout and stderr. |
376 | FDUtils::SetNonBlocking(read_in_[0]); |
377 | *in_ = read_in_[0]; |
378 | close(read_in_[1]); |
379 | FDUtils::SetNonBlocking(write_out_[1]); |
380 | *out_ = write_out_[1]; |
381 | close(write_out_[0]); |
382 | FDUtils::SetNonBlocking(read_err_[0]); |
383 | *err_ = read_err_[0]; |
384 | close(read_err_[1]); |
385 | } else { |
386 | // Close all fds. |
387 | close(read_in_[0]); |
388 | close(read_in_[1]); |
389 | ASSERT(write_out_[0] == -1); |
390 | ASSERT(write_out_[1] == -1); |
391 | ASSERT(read_err_[0] == -1); |
392 | ASSERT(read_err_[1] == -1); |
393 | } |
394 | ASSERT(exec_control_[0] == -1); |
395 | ASSERT(exec_control_[1] == -1); |
396 | |
397 | *id_ = pid; |
398 | return 0; |
399 | } |
400 | |
401 | private: |
402 | int CreatePipes() { |
403 | int result; |
404 | result = TEMP_FAILURE_RETRY(pipe2(exec_control_, O_CLOEXEC)); |
405 | if (result < 0) { |
406 | return CleanupAndReturnError(); |
407 | } |
408 | |
409 | // For a detached process the pipe to connect stdout is still used for |
410 | // signaling when to do the first fork. |
411 | result = TEMP_FAILURE_RETRY(pipe2(read_in_, O_CLOEXEC)); |
412 | if (result < 0) { |
413 | return CleanupAndReturnError(); |
414 | } |
415 | |
416 | // For detached processes the pipe to connect stderr and stdin are not used. |
417 | if (Process::ModeHasStdio(mode_)) { |
418 | result = TEMP_FAILURE_RETRY(pipe2(read_err_, O_CLOEXEC)); |
419 | if (result < 0) { |
420 | return CleanupAndReturnError(); |
421 | } |
422 | |
423 | result = TEMP_FAILURE_RETRY(pipe2(write_out_, O_CLOEXEC)); |
424 | if (result < 0) { |
425 | return CleanupAndReturnError(); |
426 | } |
427 | } |
428 | |
429 | return 0; |
430 | } |
431 | |
432 | void NewProcess() { |
433 | // Wait for parent process before setting up the child process. |
434 | char msg; |
435 | int bytes_read = FDUtils::ReadFromBlocking(read_in_[0], &msg, sizeof(msg)); |
436 | if (bytes_read != sizeof(msg)) { |
437 | perror("Failed receiving notification message" ); |
438 | exit(1); |
439 | } |
440 | if (Process::ModeIsAttached(mode_)) { |
441 | ExecProcess(); |
442 | } else { |
443 | ExecDetachedProcess(); |
444 | } |
445 | } |
446 | |
447 | // Tries to find path_ relative to the current namespace unless it should be |
448 | // searched in the PATH. |
449 | // The path that should be passed to exec is returned in realpath. |
450 | // Returns true on success, and false if there was an error that should |
451 | // be reported to the parent. |
452 | bool FindPathInNamespace(char* realpath, intptr_t realpath_size) { |
453 | // Perform a PATH search if there's no slash in the path. |
454 | if (strchr(path_, '/') == NULL) { |
455 | // TODO(zra): If there is a non-default namespace, the entries in PATH |
456 | // should be treated as relative to the namespace. |
457 | strncpy(realpath, path_, realpath_size); |
458 | realpath[realpath_size - 1] = '\0'; |
459 | return true; |
460 | } |
461 | NamespaceScope ns(namespc_, path_); |
462 | const int fd = |
463 | TEMP_FAILURE_RETRY(openat(ns.fd(), ns.path(), O_RDONLY | O_CLOEXEC)); |
464 | if (fd == -1) { |
465 | return false; |
466 | } |
467 | char procpath[PATH_MAX]; |
468 | snprintf(procpath, PATH_MAX, "/proc/self/fd/%d" , fd); |
469 | const intptr_t length = |
470 | TEMP_FAILURE_RETRY(readlink(procpath, realpath, realpath_size)); |
471 | if (length < 0) { |
472 | FDUtils::SaveErrorAndClose(fd); |
473 | return false; |
474 | } |
475 | realpath[length] = '\0'; |
476 | FDUtils::SaveErrorAndClose(fd); |
477 | return true; |
478 | } |
479 | |
480 | void ExecProcess() { |
481 | if (mode_ == kNormal) { |
482 | if (TEMP_FAILURE_RETRY(dup2(write_out_[0], STDIN_FILENO)) == -1) { |
483 | ReportChildError(); |
484 | } |
485 | |
486 | if (TEMP_FAILURE_RETRY(dup2(read_in_[1], STDOUT_FILENO)) == -1) { |
487 | ReportChildError(); |
488 | } |
489 | |
490 | if (TEMP_FAILURE_RETRY(dup2(read_err_[1], STDERR_FILENO)) == -1) { |
491 | ReportChildError(); |
492 | } |
493 | } else { |
494 | ASSERT(mode_ == kInheritStdio); |
495 | } |
496 | |
497 | if (working_directory_ != NULL && |
498 | !Directory::SetCurrent(namespc_, working_directory_)) { |
499 | ReportChildError(); |
500 | } |
501 | |
502 | if (program_environment_ != NULL) { |
503 | environ = program_environment_; |
504 | } |
505 | |
506 | char realpath[PATH_MAX]; |
507 | if (!FindPathInNamespace(realpath, PATH_MAX)) { |
508 | ReportChildError(); |
509 | } |
510 | // TODO(dart:io) Test for the existence of execveat, and use it instead. |
511 | execvp(realpath, const_cast<char* const*>(program_arguments_)); |
512 | ReportChildError(); |
513 | } |
514 | |
515 | void ExecDetachedProcess() { |
516 | if (mode_ == kDetached) { |
517 | ASSERT(write_out_[0] == -1); |
518 | ASSERT(write_out_[1] == -1); |
519 | ASSERT(read_err_[0] == -1); |
520 | ASSERT(read_err_[1] == -1); |
521 | // For a detached process the pipe to connect stdout is only used for |
522 | // signaling when to do the first fork. |
523 | close(read_in_[0]); |
524 | read_in_[0] = -1; |
525 | close(read_in_[1]); |
526 | read_in_[1] = -1; |
527 | } else { |
528 | // Don't close any fds if keeping stdio open to the detached process. |
529 | ASSERT(mode_ == kDetachedWithStdio); |
530 | } |
531 | // Fork once more to start a new session. |
532 | pid_t pid = TEMP_FAILURE_RETRY(fork()); |
533 | if (pid < 0) { |
534 | ReportChildError(); |
535 | } else if (pid == 0) { |
536 | // Start a new session. |
537 | if (TEMP_FAILURE_RETRY(setsid()) == -1) { |
538 | ReportChildError(); |
539 | } else { |
540 | // Do a final fork to not be the session leader. |
541 | pid = TEMP_FAILURE_RETRY(fork()); |
542 | if (pid < 0) { |
543 | ReportChildError(); |
544 | } else if (pid == 0) { |
545 | if (mode_ == kDetached) { |
546 | SetupDetached(); |
547 | } else { |
548 | SetupDetachedWithStdio(); |
549 | } |
550 | |
551 | if ((working_directory_ != NULL) && |
552 | !Directory::SetCurrent(namespc_, working_directory_)) { |
553 | ReportChildError(); |
554 | } |
555 | |
556 | if (program_environment_ != NULL) { |
557 | environ = program_environment_; |
558 | } |
559 | |
560 | // Report the final PID and do the exec. |
561 | ReportPid(getpid()); // getpid cannot fail. |
562 | char realpath[PATH_MAX]; |
563 | if (!FindPathInNamespace(realpath, PATH_MAX)) { |
564 | ReportChildError(); |
565 | } |
566 | // TODO(dart:io) Test for the existence of execveat, and use it |
567 | // instead. |
568 | execvp(realpath, const_cast<char* const*>(program_arguments_)); |
569 | ReportChildError(); |
570 | } else { |
571 | // Exit the intermediate process. |
572 | exit(0); |
573 | } |
574 | } |
575 | } else { |
576 | // Exit the intermediate process. |
577 | exit(0); |
578 | } |
579 | } |
580 | |
581 | int RegisterProcess(pid_t pid) { |
582 | int result; |
583 | int event_fds[2]; |
584 | result = TEMP_FAILURE_RETRY(pipe2(event_fds, O_CLOEXEC)); |
585 | if (result < 0) { |
586 | return CleanupAndReturnError(); |
587 | } |
588 | |
589 | ProcessInfoList::AddProcess(pid, event_fds[1]); |
590 | *exit_event_ = event_fds[0]; |
591 | FDUtils::SetNonBlocking(event_fds[0]); |
592 | return 0; |
593 | } |
594 | |
595 | int ReadExecResult() { |
596 | int child_errno; |
597 | int bytes_read = -1; |
598 | // Read exec result from child. If no data is returned the exec was |
599 | // successful and the exec call closed the pipe. Otherwise the errno |
600 | // is written to the pipe. |
601 | bytes_read = FDUtils::ReadFromBlocking(exec_control_[0], &child_errno, |
602 | sizeof(child_errno)); |
603 | if (bytes_read == sizeof(child_errno)) { |
604 | ReadChildError(); |
605 | return child_errno; |
606 | } else if (bytes_read == -1) { |
607 | return errno; |
608 | } |
609 | return 0; |
610 | } |
611 | |
612 | int ReadDetachedExecResult(pid_t* pid) { |
613 | int child_errno; |
614 | int bytes_read = -1; |
615 | // Read exec result from child. If only pid data is returned the exec was |
616 | // successful and the exec call closed the pipe. Otherwise the errno |
617 | // is written to the pipe as well. |
618 | int result[2]; |
619 | bytes_read = |
620 | FDUtils::ReadFromBlocking(exec_control_[0], result, sizeof(result)); |
621 | if (bytes_read == sizeof(int)) { |
622 | *pid = result[0]; |
623 | } else if (bytes_read == 2 * sizeof(int)) { |
624 | *pid = result[0]; |
625 | child_errno = result[1]; |
626 | ReadChildError(); |
627 | return child_errno; |
628 | } else if (bytes_read == -1) { |
629 | return errno; |
630 | } |
631 | return 0; |
632 | } |
633 | |
634 | void SetupDetached() { |
635 | ASSERT(mode_ == kDetached); |
636 | |
637 | // Close all open file descriptors except for exec_control_[1]. |
638 | int max_fds = sysconf(_SC_OPEN_MAX); |
639 | if (max_fds == -1) { |
640 | max_fds = _POSIX_OPEN_MAX; |
641 | } |
642 | for (int fd = 0; fd < max_fds; fd++) { |
643 | if (fd != exec_control_[1]) { |
644 | close(fd); |
645 | } |
646 | } |
647 | |
648 | // Re-open stdin, stdout and stderr and connect them to /dev/null. |
649 | // The loop above should already have closed all of them, so |
650 | // creating new file descriptors should start at STDIN_FILENO. |
651 | int fd = TEMP_FAILURE_RETRY(open("/dev/null" , O_RDWR)); |
652 | if (fd != STDIN_FILENO) { |
653 | ReportChildError(); |
654 | } |
655 | if (TEMP_FAILURE_RETRY(dup2(STDIN_FILENO, STDOUT_FILENO)) != |
656 | STDOUT_FILENO) { |
657 | ReportChildError(); |
658 | } |
659 | if (TEMP_FAILURE_RETRY(dup2(STDIN_FILENO, STDERR_FILENO)) != |
660 | STDERR_FILENO) { |
661 | ReportChildError(); |
662 | } |
663 | } |
664 | |
665 | void SetupDetachedWithStdio() { |
666 | // Close all open file descriptors except for |
667 | // exec_control_[1], write_out_[0], read_in_[1] and |
668 | // read_err_[1]. |
669 | int max_fds = sysconf(_SC_OPEN_MAX); |
670 | if (max_fds == -1) { |
671 | max_fds = _POSIX_OPEN_MAX; |
672 | } |
673 | for (int fd = 0; fd < max_fds; fd++) { |
674 | if ((fd != exec_control_[1]) && (fd != write_out_[0]) && |
675 | (fd != read_in_[1]) && (fd != read_err_[1])) { |
676 | close(fd); |
677 | } |
678 | } |
679 | |
680 | if (TEMP_FAILURE_RETRY(dup2(write_out_[0], STDIN_FILENO)) == -1) { |
681 | ReportChildError(); |
682 | } |
683 | close(write_out_[0]); |
684 | |
685 | if (TEMP_FAILURE_RETRY(dup2(read_in_[1], STDOUT_FILENO)) == -1) { |
686 | ReportChildError(); |
687 | } |
688 | close(read_in_[1]); |
689 | |
690 | if (TEMP_FAILURE_RETRY(dup2(read_err_[1], STDERR_FILENO)) == -1) { |
691 | ReportChildError(); |
692 | } |
693 | close(read_err_[1]); |
694 | } |
695 | |
696 | int CleanupAndReturnError() { |
697 | int actual_errno = errno; |
698 | // If CleanupAndReturnError is called without an actual errno make |
699 | // sure to return an error anyway. |
700 | if (actual_errno == 0) { |
701 | actual_errno = EPERM; |
702 | } |
703 | SetChildOsErrorMessage(); |
704 | CloseAllPipes(); |
705 | return actual_errno; |
706 | } |
707 | |
708 | void SetChildOsErrorMessage() { |
709 | const int kBufferSize = 1024; |
710 | char* error_message = DartUtils::ScopedCString(kBufferSize); |
711 | Utils::StrError(errno, error_message, kBufferSize); |
712 | *os_error_message_ = error_message; |
713 | } |
714 | |
715 | void ReportChildError() { |
716 | // In the case of failure in the child process write the errno and |
717 | // the OS error message to the exec control pipe and exit. |
718 | int child_errno = errno; |
719 | const int kBufferSize = 1024; |
720 | char error_buf[kBufferSize]; |
721 | char* os_error_message = Utils::StrError(errno, error_buf, kBufferSize); |
722 | int bytes_written = FDUtils::WriteToBlocking(exec_control_[1], &child_errno, |
723 | sizeof(child_errno)); |
724 | if (bytes_written == sizeof(child_errno)) { |
725 | FDUtils::WriteToBlocking(exec_control_[1], os_error_message, |
726 | strlen(os_error_message) + 1); |
727 | } |
728 | close(exec_control_[1]); |
729 | |
730 | // We avoid running through registered atexit() handlers because that is |
731 | // unnecessary work. |
732 | _exit(1); |
733 | } |
734 | |
735 | void ReportPid(int pid) { |
736 | // In the case of starting a detached process the actual pid of that process |
737 | // is communicated using the exec control pipe. |
738 | int bytes_written = |
739 | FDUtils::WriteToBlocking(exec_control_[1], &pid, sizeof(pid)); |
740 | ASSERT(bytes_written == sizeof(int)); |
741 | USE(bytes_written); |
742 | } |
743 | |
744 | void ReadChildError() { |
745 | const int kMaxMessageSize = 256; |
746 | char* message = DartUtils::ScopedCString(kMaxMessageSize); |
747 | if (message != NULL) { |
748 | FDUtils::ReadFromBlocking(exec_control_[0], message, kMaxMessageSize); |
749 | message[kMaxMessageSize - 1] = '\0'; |
750 | *os_error_message_ = message; |
751 | } else { |
752 | // Could not get error message. It will be NULL. |
753 | ASSERT(*os_error_message_ == NULL); |
754 | } |
755 | } |
756 | |
757 | void ClosePipe(int* fds) { |
758 | for (int i = 0; i < 2; i++) { |
759 | if (fds[i] != -1) { |
760 | close(fds[i]); |
761 | fds[i] = -1; |
762 | } |
763 | } |
764 | } |
765 | |
766 | void CloseAllPipes() { |
767 | ClosePipe(exec_control_); |
768 | ClosePipe(read_in_); |
769 | ClosePipe(read_err_); |
770 | ClosePipe(write_out_); |
771 | } |
772 | |
773 | int read_in_[2]; // Pipe for stdout to child process. |
774 | int read_err_[2]; // Pipe for stderr to child process. |
775 | int write_out_[2]; // Pipe for stdin to child process. |
776 | int exec_control_[2]; // Pipe to get the result from exec. |
777 | |
778 | char** program_arguments_; |
779 | char** program_environment_; |
780 | |
781 | Namespace* namespc_; |
782 | const char* path_; |
783 | const char* working_directory_; |
784 | ProcessStartMode mode_; |
785 | intptr_t* in_; |
786 | intptr_t* out_; |
787 | intptr_t* err_; |
788 | intptr_t* id_; |
789 | intptr_t* exit_event_; |
790 | char** os_error_message_; |
791 | |
792 | DISALLOW_ALLOCATION(); |
793 | DISALLOW_IMPLICIT_CONSTRUCTORS(ProcessStarter); |
794 | }; |
795 | |
796 | int Process::Start(Namespace* namespc, |
797 | const char* path, |
798 | char* arguments[], |
799 | intptr_t arguments_length, |
800 | const char* working_directory, |
801 | char* environment[], |
802 | intptr_t environment_length, |
803 | ProcessStartMode mode, |
804 | intptr_t* in, |
805 | intptr_t* out, |
806 | intptr_t* err, |
807 | intptr_t* id, |
808 | intptr_t* exit_event, |
809 | char** os_error_message) { |
810 | ProcessStarter starter(namespc, path, arguments, arguments_length, |
811 | working_directory, environment, environment_length, |
812 | mode, in, out, err, id, exit_event, os_error_message); |
813 | return starter.Start(); |
814 | } |
815 | |
816 | static bool CloseProcessBuffers(struct pollfd* fds, int alive) { |
817 | int e = errno; |
818 | for (int i = 0; i < alive; i++) { |
819 | close(fds[i].fd); |
820 | } |
821 | errno = e; |
822 | return false; |
823 | } |
824 | |
825 | bool Process::Wait(intptr_t pid, |
826 | intptr_t in, |
827 | intptr_t out, |
828 | intptr_t err, |
829 | intptr_t exit_event, |
830 | ProcessResult* result) { |
831 | // Close input to the process right away. |
832 | close(in); |
833 | |
834 | // There is no return from this function using Dart_PropagateError |
835 | // as memory used by the buffer lists is freed through their |
836 | // destructors. |
837 | BufferList out_data; |
838 | BufferList err_data; |
839 | union { |
840 | uint8_t bytes[8]; |
841 | int32_t ints[2]; |
842 | } exit_code_data; |
843 | |
844 | struct pollfd fds[3]; |
845 | fds[0].fd = out; |
846 | fds[1].fd = err; |
847 | fds[2].fd = exit_event; |
848 | |
849 | for (int i = 0; i < 3; i++) { |
850 | fds[i].events = POLLIN; |
851 | } |
852 | |
853 | int alive = 3; |
854 | while (alive > 0) { |
855 | // Blocking call waiting for events from the child process. |
856 | if (TEMP_FAILURE_RETRY(poll(fds, alive, -1)) <= 0) { |
857 | return CloseProcessBuffers(fds, alive); |
858 | } |
859 | |
860 | // Process incoming data. |
861 | for (int i = 0; i < alive; i++) { |
862 | if ((fds[i].revents & (POLLNVAL | POLLERR)) != 0) { |
863 | return CloseProcessBuffers(fds, alive); |
864 | } |
865 | if ((fds[i].revents & POLLIN) != 0) { |
866 | intptr_t avail = FDUtils::AvailableBytes(fds[i].fd); |
867 | if (fds[i].fd == out) { |
868 | if (!out_data.Read(out, avail)) { |
869 | return CloseProcessBuffers(fds, alive); |
870 | } |
871 | } else if (fds[i].fd == err) { |
872 | if (!err_data.Read(err, avail)) { |
873 | return CloseProcessBuffers(fds, alive); |
874 | } |
875 | } else if (fds[i].fd == exit_event) { |
876 | if (avail == 8) { |
877 | intptr_t b = |
878 | TEMP_FAILURE_RETRY(read(exit_event, exit_code_data.bytes, 8)); |
879 | if (b != 8) { |
880 | return CloseProcessBuffers(fds, alive); |
881 | } |
882 | } |
883 | } else { |
884 | UNREACHABLE(); |
885 | } |
886 | } |
887 | if ((fds[i].revents & POLLHUP) != 0) { |
888 | // Remove the pollfd from the list of pollfds. |
889 | close(fds[i].fd); |
890 | alive--; |
891 | if (i < alive) { |
892 | fds[i] = fds[alive]; |
893 | } |
894 | // Process the same index again. |
895 | i--; |
896 | continue; |
897 | } |
898 | } |
899 | } |
900 | |
901 | // All handles closed and all data read. |
902 | result->set_stdout_data(out_data.GetData()); |
903 | result->set_stderr_data(err_data.GetData()); |
904 | DEBUG_ASSERT(out_data.IsEmpty()); |
905 | DEBUG_ASSERT(err_data.IsEmpty()); |
906 | |
907 | // Calculate the exit code. |
908 | intptr_t exit_code = exit_code_data.ints[0]; |
909 | intptr_t negative = exit_code_data.ints[1]; |
910 | if (negative != 0) { |
911 | exit_code = -exit_code; |
912 | } |
913 | result->set_exit_code(exit_code); |
914 | |
915 | return true; |
916 | } |
917 | |
918 | bool Process::Kill(intptr_t id, int signal) { |
919 | return (TEMP_FAILURE_RETRY(kill(id, signal)) != -1); |
920 | } |
921 | |
922 | void Process::TerminateExitCodeHandler() { |
923 | ExitCodeHandler::TerminateExitCodeThread(); |
924 | } |
925 | |
926 | intptr_t Process::CurrentProcessId() { |
927 | return static_cast<intptr_t>(getpid()); |
928 | } |
929 | |
930 | static void SaveErrorAndClose(FILE* file) { |
931 | int actual_errno = errno; |
932 | fclose(file); |
933 | errno = actual_errno; |
934 | } |
935 | |
936 | int64_t Process::CurrentRSS() { |
937 | // The second value in /proc/self/statm is the current RSS in pages. |
938 | // It is not possible to use getrusage() because the interested fields are not |
939 | // implemented by the linux kernel. |
940 | FILE* statm = fopen("/proc/self/statm" , "r" ); |
941 | if (statm == NULL) { |
942 | return -1; |
943 | } |
944 | int64_t current_rss_pages = 0; |
945 | int matches = fscanf(statm, "%*s%" Pd64 "" , ¤t_rss_pages); |
946 | if (matches != 1) { |
947 | SaveErrorAndClose(statm); |
948 | return -1; |
949 | } |
950 | fclose(statm); |
951 | return current_rss_pages * getpagesize(); |
952 | } |
953 | |
954 | int64_t Process::MaxRSS() { |
955 | struct rusage usage; |
956 | usage.ru_maxrss = 0; |
957 | int r = getrusage(RUSAGE_SELF, &usage); |
958 | if (r < 0) { |
959 | return -1; |
960 | } |
961 | return usage.ru_maxrss * KB; |
962 | } |
963 | |
964 | static Mutex* signal_mutex = nullptr; |
965 | static SignalInfo* signal_handlers = NULL; |
966 | static const int kSignalsCount = 7; |
967 | static const int kSignals[kSignalsCount] = { |
968 | SIGHUP, SIGINT, SIGTERM, SIGUSR1, SIGUSR2, SIGWINCH, |
969 | SIGQUIT // Allow VMService to listen on SIGQUIT. |
970 | }; |
971 | |
972 | SignalInfo::~SignalInfo() { |
973 | close(fd_); |
974 | } |
975 | |
976 | static void SignalHandler(int signal) { |
977 | MutexLocker lock(signal_mutex); |
978 | const SignalInfo* handler = signal_handlers; |
979 | while (handler != NULL) { |
980 | if (handler->signal() == signal) { |
981 | int value = 0; |
982 | VOID_TEMP_FAILURE_RETRY(write(handler->fd(), &value, 1)); |
983 | } |
984 | handler = handler->next(); |
985 | } |
986 | } |
987 | |
988 | intptr_t Process::SetSignalHandler(intptr_t signal) { |
989 | bool found = false; |
990 | for (int i = 0; i < kSignalsCount; i++) { |
991 | if (kSignals[i] == signal) { |
992 | found = true; |
993 | break; |
994 | } |
995 | } |
996 | if (!found) { |
997 | return -1; |
998 | } |
999 | int fds[2]; |
1000 | if (NO_RETRY_EXPECTED(pipe2(fds, O_CLOEXEC)) != 0) { |
1001 | return -1; |
1002 | } |
1003 | if (!FDUtils::SetNonBlocking(fds[0])) { |
1004 | close(fds[0]); |
1005 | close(fds[1]); |
1006 | return -1; |
1007 | } |
1008 | ThreadSignalBlocker blocker(kSignalsCount, kSignals); |
1009 | MutexLocker lock(signal_mutex); |
1010 | SignalInfo* handler = signal_handlers; |
1011 | bool listen = true; |
1012 | while (handler != NULL) { |
1013 | if (handler->signal() == signal) { |
1014 | listen = false; |
1015 | break; |
1016 | } |
1017 | handler = handler->next(); |
1018 | } |
1019 | if (listen) { |
1020 | struct sigaction act = {}; |
1021 | act.sa_handler = SignalHandler; |
1022 | sigemptyset(&act.sa_mask); |
1023 | for (int i = 0; i < kSignalsCount; i++) { |
1024 | sigaddset(&act.sa_mask, kSignals[i]); |
1025 | } |
1026 | int status = NO_RETRY_EXPECTED(sigaction(signal, &act, NULL)); |
1027 | if (status < 0) { |
1028 | close(fds[0]); |
1029 | close(fds[1]); |
1030 | return -1; |
1031 | } |
1032 | } |
1033 | signal_handlers = new SignalInfo(fds[1], signal, signal_handlers); |
1034 | return fds[0]; |
1035 | } |
1036 | |
1037 | void Process::ClearSignalHandler(intptr_t signal, Dart_Port port) { |
1038 | ThreadSignalBlocker blocker(kSignalsCount, kSignals); |
1039 | MutexLocker lock(signal_mutex); |
1040 | SignalInfo* handler = signal_handlers; |
1041 | bool unlisten = true; |
1042 | while (handler != NULL) { |
1043 | bool remove = false; |
1044 | if (handler->signal() == signal) { |
1045 | if ((port == ILLEGAL_PORT) || (handler->port() == port)) { |
1046 | if (signal_handlers == handler) { |
1047 | signal_handlers = handler->next(); |
1048 | } |
1049 | handler->Unlink(); |
1050 | remove = true; |
1051 | } else { |
1052 | unlisten = false; |
1053 | } |
1054 | } |
1055 | SignalInfo* next = handler->next(); |
1056 | if (remove) { |
1057 | delete handler; |
1058 | } |
1059 | handler = next; |
1060 | } |
1061 | if (unlisten) { |
1062 | struct sigaction act = {}; |
1063 | act.sa_handler = SIG_DFL; |
1064 | VOID_NO_RETRY_EXPECTED(sigaction(signal, &act, NULL)); |
1065 | } |
1066 | } |
1067 | |
1068 | void Process::ClearSignalHandlerByFd(intptr_t fd, Dart_Port port) { |
1069 | ThreadSignalBlocker blocker(kSignalsCount, kSignals); |
1070 | MutexLocker lock(signal_mutex); |
1071 | SignalInfo* handler = signal_handlers; |
1072 | bool unlisten = true; |
1073 | intptr_t signal = -1; |
1074 | while (handler != NULL) { |
1075 | bool remove = false; |
1076 | if (handler->fd() == fd) { |
1077 | if ((port == ILLEGAL_PORT) || (handler->port() == port)) { |
1078 | if (signal_handlers == handler) { |
1079 | signal_handlers = handler->next(); |
1080 | } |
1081 | handler->Unlink(); |
1082 | remove = true; |
1083 | signal = handler->signal(); |
1084 | } else { |
1085 | unlisten = false; |
1086 | } |
1087 | } |
1088 | SignalInfo* next = handler->next(); |
1089 | if (remove) { |
1090 | delete handler; |
1091 | } |
1092 | handler = next; |
1093 | } |
1094 | if (unlisten && (signal != -1)) { |
1095 | struct sigaction act = {}; |
1096 | act.sa_handler = SIG_DFL; |
1097 | VOID_NO_RETRY_EXPECTED(sigaction(signal, &act, NULL)); |
1098 | } |
1099 | } |
1100 | |
1101 | void ProcessInfoList::Init() { |
1102 | ASSERT(ProcessInfoList::mutex_ == nullptr); |
1103 | ProcessInfoList::mutex_ = new Mutex(); |
1104 | } |
1105 | |
1106 | void ProcessInfoList::Cleanup() { |
1107 | ASSERT(ProcessInfoList::mutex_ != nullptr); |
1108 | delete ProcessInfoList::mutex_; |
1109 | ProcessInfoList::mutex_ = nullptr; |
1110 | } |
1111 | |
1112 | void ExitCodeHandler::Init() { |
1113 | ASSERT(ExitCodeHandler::monitor_ == nullptr); |
1114 | ExitCodeHandler::monitor_ = new Monitor(); |
1115 | } |
1116 | |
1117 | void ExitCodeHandler::Cleanup() { |
1118 | ASSERT(ExitCodeHandler::monitor_ != nullptr); |
1119 | delete ExitCodeHandler::monitor_; |
1120 | ExitCodeHandler::monitor_ = nullptr; |
1121 | } |
1122 | |
1123 | void Process::Init() { |
1124 | ExitCodeHandler::Init(); |
1125 | ProcessInfoList::Init(); |
1126 | |
1127 | ASSERT(signal_mutex == nullptr); |
1128 | signal_mutex = new Mutex(); |
1129 | |
1130 | ASSERT(Process::global_exit_code_mutex_ == nullptr); |
1131 | Process::global_exit_code_mutex_ = new Mutex(); |
1132 | } |
1133 | |
1134 | void Process::Cleanup() { |
1135 | ClearAllSignalHandlers(); |
1136 | |
1137 | ASSERT(signal_mutex != nullptr); |
1138 | delete signal_mutex; |
1139 | signal_mutex = nullptr; |
1140 | |
1141 | ASSERT(Process::global_exit_code_mutex_ != nullptr); |
1142 | delete Process::global_exit_code_mutex_; |
1143 | Process::global_exit_code_mutex_ = nullptr; |
1144 | |
1145 | ProcessInfoList::Cleanup(); |
1146 | ExitCodeHandler::Cleanup(); |
1147 | } |
1148 | |
1149 | } // namespace bin |
1150 | } // namespace dart |
1151 | |
1152 | #endif // defined(HOST_OS_ANDROID) |
1153 | |