1 | // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
2 | // for details. All rights reserved. Use of this source code is governed by a |
3 | // BSD-style license that can be found in the LICENSE file. |
4 | |
5 | #include "platform/globals.h" |
6 | #if defined(HOST_OS_WINDOWS) |
7 | |
8 | #include "bin/process.h" |
9 | |
10 | #include <process.h> // NOLINT |
11 | #include <psapi.h> // NOLINT |
12 | #include <vector> |
13 | |
14 | #include "bin/builtin.h" |
15 | #include "bin/dartutils.h" |
16 | #include "bin/eventhandler.h" |
17 | #include "bin/lockers.h" |
18 | #include "bin/socket.h" |
19 | #include "bin/thread.h" |
20 | #include "bin/utils.h" |
21 | #include "bin/utils_win.h" |
22 | #include "platform/syslog.h" |
23 | |
24 | namespace dart { |
25 | namespace bin { |
26 | |
27 | static const int kReadHandle = 0; |
28 | static const int kWriteHandle = 1; |
29 | |
30 | int Process::global_exit_code_ = 0; |
31 | Mutex* Process::global_exit_code_mutex_ = nullptr; |
32 | Process::ExitHook Process::exit_hook_ = NULL; |
33 | |
34 | // ProcessInfo is used to map a process id to the process handle, |
35 | // wait handle for registered exit code event and the pipe used to |
36 | // communicate the exit code of the process to Dart. |
37 | // ProcessInfo objects are kept in the static singly-linked |
38 | // ProcessInfoList. |
39 | class ProcessInfo { |
40 | public: |
41 | ProcessInfo(DWORD process_id, |
42 | HANDLE process_handle, |
43 | HANDLE wait_handle, |
44 | HANDLE exit_pipe) |
45 | : process_id_(process_id), |
46 | process_handle_(process_handle), |
47 | wait_handle_(wait_handle), |
48 | exit_pipe_(exit_pipe) {} |
49 | |
50 | ~ProcessInfo() { |
51 | BOOL success = CloseHandle(process_handle_); |
52 | if (!success) { |
53 | FATAL("Failed to close process handle" ); |
54 | } |
55 | success = CloseHandle(exit_pipe_); |
56 | if (!success) { |
57 | FATAL("Failed to close process exit code pipe" ); |
58 | } |
59 | } |
60 | |
61 | DWORD pid() { return process_id_; } |
62 | HANDLE process_handle() { return process_handle_; } |
63 | HANDLE wait_handle() { return wait_handle_; } |
64 | HANDLE exit_pipe() { return exit_pipe_; } |
65 | ProcessInfo* next() { return next_; } |
66 | void set_next(ProcessInfo* next) { next_ = next; } |
67 | |
68 | private: |
69 | // Process id. |
70 | DWORD process_id_; |
71 | // Process handle. |
72 | HANDLE process_handle_; |
73 | // Wait handle identifying the exit-code wait operation registered |
74 | // with RegisterWaitForSingleObject. |
75 | HANDLE wait_handle_; |
76 | // File descriptor for pipe to report exit code. |
77 | HANDLE exit_pipe_; |
78 | // Link to next ProcessInfo object in the singly-linked list. |
79 | ProcessInfo* next_; |
80 | |
81 | DISALLOW_COPY_AND_ASSIGN(ProcessInfo); |
82 | }; |
83 | |
84 | // Singly-linked list of ProcessInfo objects for all active processes |
85 | // started from Dart. |
86 | class ProcessInfoList { |
87 | public: |
88 | static void Init(); |
89 | static void Cleanup(); |
90 | |
91 | static void AddProcess(DWORD pid, HANDLE handle, HANDLE pipe) { |
92 | // Register a callback to extract the exit code, when the process |
93 | // is signaled. The callback runs in a independent thread from the OS pool. |
94 | // Because the callback depends on the process list containing |
95 | // the process, lock the mutex until the process is added to the list. |
96 | MutexLocker locker(mutex_); |
97 | HANDLE wait_handle = INVALID_HANDLE_VALUE; |
98 | BOOL success = RegisterWaitForSingleObject( |
99 | &wait_handle, handle, &ExitCodeCallback, reinterpret_cast<void*>(pid), |
100 | INFINITE, WT_EXECUTEONLYONCE); |
101 | if (!success) { |
102 | FATAL("Failed to register exit code wait operation." ); |
103 | } |
104 | ProcessInfo* info = new ProcessInfo(pid, handle, wait_handle, pipe); |
105 | // Mutate the process list under the mutex. |
106 | info->set_next(active_processes_); |
107 | active_processes_ = info; |
108 | } |
109 | |
110 | static bool LookupProcess(DWORD pid, |
111 | HANDLE* handle, |
112 | HANDLE* wait_handle, |
113 | HANDLE* pipe) { |
114 | MutexLocker locker(mutex_); |
115 | ProcessInfo* current = active_processes_; |
116 | while (current != NULL) { |
117 | if (current->pid() == pid) { |
118 | *handle = current->process_handle(); |
119 | *wait_handle = current->wait_handle(); |
120 | *pipe = current->exit_pipe(); |
121 | return true; |
122 | } |
123 | current = current->next(); |
124 | } |
125 | return false; |
126 | } |
127 | |
128 | static void RemoveProcess(DWORD pid) { |
129 | MutexLocker locker(mutex_); |
130 | ProcessInfo* prev = NULL; |
131 | ProcessInfo* current = active_processes_; |
132 | while (current != NULL) { |
133 | if (current->pid() == pid) { |
134 | if (prev == NULL) { |
135 | active_processes_ = current->next(); |
136 | } else { |
137 | prev->set_next(current->next()); |
138 | } |
139 | delete current; |
140 | return; |
141 | } |
142 | prev = current; |
143 | current = current->next(); |
144 | } |
145 | } |
146 | |
147 | private: |
148 | // Callback called when an exit code is available from one of the |
149 | // processes in the list. |
150 | static void CALLBACK ExitCodeCallback(PVOID data, BOOLEAN timed_out) { |
151 | if (timed_out) { |
152 | return; |
153 | } |
154 | DWORD pid = reinterpret_cast<DWORD>(data); |
155 | HANDLE handle; |
156 | HANDLE wait_handle; |
157 | HANDLE exit_pipe; |
158 | bool success = LookupProcess(pid, &handle, &wait_handle, &exit_pipe); |
159 | if (!success) { |
160 | FATAL("Failed to lookup process in list of active processes" ); |
161 | } |
162 | // Unregister the event in a non-blocking way. |
163 | BOOL ok = UnregisterWait(wait_handle); |
164 | if (!ok && (GetLastError() != ERROR_IO_PENDING)) { |
165 | FATAL("Failed unregistering wait operation" ); |
166 | } |
167 | // Get and report the exit code to Dart. |
168 | int exit_code; |
169 | ok = GetExitCodeProcess(handle, reinterpret_cast<DWORD*>(&exit_code)); |
170 | if (!ok) { |
171 | FATAL1("GetExitCodeProcess failed %d\n" , GetLastError()); |
172 | } |
173 | int negative = 0; |
174 | if (exit_code < 0) { |
175 | exit_code = abs(exit_code); |
176 | negative = 1; |
177 | } |
178 | int message[2] = {exit_code, negative}; |
179 | DWORD written; |
180 | ok = WriteFile(exit_pipe, message, sizeof(message), &written, NULL); |
181 | // If the process has been closed, the read end of the exit |
182 | // pipe has been closed. It is therefore not a problem that |
183 | // WriteFile fails with a closed pipe error |
184 | // (ERROR_NO_DATA). Other errors should not happen. |
185 | if (ok && (written != sizeof(message))) { |
186 | FATAL("Failed to write entire process exit message" ); |
187 | } else if (!ok && (GetLastError() != ERROR_NO_DATA)) { |
188 | FATAL1("Failed to write exit code: %d" , GetLastError()); |
189 | } |
190 | // Remove the process from the list of active processes. |
191 | RemoveProcess(pid); |
192 | } |
193 | |
194 | // Linked list of ProcessInfo objects for all active processes |
195 | // started from Dart code. |
196 | static ProcessInfo* active_processes_; |
197 | // Mutex protecting all accesses to the linked list of active |
198 | // processes. |
199 | static Mutex* mutex_; |
200 | |
201 | DISALLOW_ALLOCATION(); |
202 | DISALLOW_IMPLICIT_CONSTRUCTORS(ProcessInfoList); |
203 | }; |
204 | |
205 | ProcessInfo* ProcessInfoList::active_processes_ = NULL; |
206 | Mutex* ProcessInfoList::mutex_ = nullptr; |
207 | |
208 | // Types of pipes to create. |
209 | enum NamedPipeType { kInheritRead, kInheritWrite, kInheritNone }; |
210 | |
211 | // Create a pipe for communicating with a new process. The handles array |
212 | // will contain the read and write ends of the pipe. Based on the type |
213 | // one of the handles will be inheritable. |
214 | // NOTE: If this function returns false the handles might have been allocated |
215 | // and the caller should make sure to close them in case of an error. |
216 | static bool CreateProcessPipe(HANDLE handles[2], |
217 | wchar_t* pipe_name, |
218 | NamedPipeType type) { |
219 | // Security attributes describing an inheritable handle. |
220 | SECURITY_ATTRIBUTES inherit_handle; |
221 | inherit_handle.nLength = sizeof(SECURITY_ATTRIBUTES); |
222 | inherit_handle.bInheritHandle = TRUE; |
223 | inherit_handle.lpSecurityDescriptor = NULL; |
224 | |
225 | if (type == kInheritRead) { |
226 | handles[kWriteHandle] = |
227 | CreateNamedPipeW(pipe_name, PIPE_ACCESS_OUTBOUND | FILE_FLAG_OVERLAPPED, |
228 | PIPE_TYPE_BYTE | PIPE_WAIT, |
229 | 1, // Number of pipes |
230 | 1024, // Out buffer size |
231 | 1024, // In buffer size |
232 | 0, // Timeout in ms |
233 | NULL); |
234 | |
235 | if (handles[kWriteHandle] == INVALID_HANDLE_VALUE) { |
236 | Syslog::PrintErr("CreateNamedPipe failed %d\n" , GetLastError()); |
237 | return false; |
238 | } |
239 | |
240 | handles[kReadHandle] = |
241 | CreateFileW(pipe_name, GENERIC_READ, 0, &inherit_handle, OPEN_EXISTING, |
242 | FILE_READ_ATTRIBUTES | FILE_FLAG_OVERLAPPED, NULL); |
243 | if (handles[kReadHandle] == INVALID_HANDLE_VALUE) { |
244 | Syslog::PrintErr("CreateFile failed %d\n" , GetLastError()); |
245 | return false; |
246 | } |
247 | } else { |
248 | ASSERT((type == kInheritWrite) || (type == kInheritNone)); |
249 | handles[kReadHandle] = |
250 | CreateNamedPipeW(pipe_name, PIPE_ACCESS_INBOUND | FILE_FLAG_OVERLAPPED, |
251 | PIPE_TYPE_BYTE | PIPE_WAIT, |
252 | 1, // Number of pipes |
253 | 1024, // Out buffer size |
254 | 1024, // In buffer size |
255 | 0, // Timeout in ms |
256 | NULL); |
257 | |
258 | if (handles[kReadHandle] == INVALID_HANDLE_VALUE) { |
259 | Syslog::PrintErr("CreateNamedPipe failed %d\n" , GetLastError()); |
260 | return false; |
261 | } |
262 | |
263 | handles[kWriteHandle] = CreateFileW( |
264 | pipe_name, GENERIC_WRITE, 0, |
265 | (type == kInheritWrite) ? &inherit_handle : NULL, OPEN_EXISTING, |
266 | FILE_WRITE_ATTRIBUTES | FILE_FLAG_OVERLAPPED, NULL); |
267 | if (handles[kWriteHandle] == INVALID_HANDLE_VALUE) { |
268 | Syslog::PrintErr("CreateFile failed %d\n" , GetLastError()); |
269 | return false; |
270 | } |
271 | } |
272 | return true; |
273 | } |
274 | |
275 | static void CloseProcessPipe(HANDLE handles[2]) { |
276 | for (int i = kReadHandle; i < kWriteHandle; i++) { |
277 | if (handles[i] != INVALID_HANDLE_VALUE) { |
278 | if (!CloseHandle(handles[i])) { |
279 | Syslog::PrintErr("CloseHandle failed %d\n" , GetLastError()); |
280 | } |
281 | handles[i] = INVALID_HANDLE_VALUE; |
282 | } |
283 | } |
284 | } |
285 | |
286 | static void CloseProcessPipes(HANDLE handles1[2], |
287 | HANDLE handles2[2], |
288 | HANDLE handles3[2], |
289 | HANDLE handles4[2]) { |
290 | CloseProcessPipe(handles1); |
291 | CloseProcessPipe(handles2); |
292 | CloseProcessPipe(handles3); |
293 | CloseProcessPipe(handles4); |
294 | } |
295 | |
296 | static int SetOsErrorMessage(char** os_error_message) { |
297 | int error_code = GetLastError(); |
298 | const int kMaxMessageLength = 256; |
299 | wchar_t message[kMaxMessageLength]; |
300 | FormatMessageIntoBuffer(error_code, message, kMaxMessageLength); |
301 | *os_error_message = StringUtilsWin::WideToUtf8(message); |
302 | return error_code; |
303 | } |
304 | |
305 | // Open an inheritable handle to NUL. |
306 | static HANDLE OpenNul() { |
307 | SECURITY_ATTRIBUTES inherit_handle; |
308 | inherit_handle.nLength = sizeof(SECURITY_ATTRIBUTES); |
309 | inherit_handle.bInheritHandle = TRUE; |
310 | inherit_handle.lpSecurityDescriptor = NULL; |
311 | HANDLE nul = CreateFile(L"NUL" , GENERIC_READ | GENERIC_WRITE, 0, |
312 | &inherit_handle, OPEN_EXISTING, 0, NULL); |
313 | if (nul == INVALID_HANDLE_VALUE) { |
314 | Syslog::PrintErr("CloseHandle failed %d\n" , GetLastError()); |
315 | } |
316 | return nul; |
317 | } |
318 | |
319 | typedef BOOL(WINAPI* InitProcThreadAttrListFn)(LPPROC_THREAD_ATTRIBUTE_LIST, |
320 | DWORD, |
321 | DWORD, |
322 | PSIZE_T); |
323 | |
324 | typedef BOOL(WINAPI* UpdateProcThreadAttrFn)(LPPROC_THREAD_ATTRIBUTE_LIST, |
325 | DWORD, |
326 | DWORD_PTR, |
327 | PVOID, |
328 | SIZE_T, |
329 | PVOID, |
330 | PSIZE_T); |
331 | |
332 | typedef VOID(WINAPI* DeleteProcThreadAttrListFn)(LPPROC_THREAD_ATTRIBUTE_LIST); |
333 | |
334 | static InitProcThreadAttrListFn init_proc_thread_attr_list = NULL; |
335 | static UpdateProcThreadAttrFn update_proc_thread_attr = NULL; |
336 | static DeleteProcThreadAttrListFn delete_proc_thread_attr_list = NULL; |
337 | |
338 | static Mutex* initialized_mutex = nullptr; |
339 | static bool load_attempted = false; |
340 | |
341 | static bool EnsureInitialized() { |
342 | HMODULE kernel32_module = GetModuleHandleW(L"kernel32.dll" ); |
343 | if (!load_attempted) { |
344 | MutexLocker locker(initialized_mutex); |
345 | if (load_attempted) { |
346 | return (delete_proc_thread_attr_list != NULL); |
347 | } |
348 | init_proc_thread_attr_list = reinterpret_cast<InitProcThreadAttrListFn>( |
349 | GetProcAddress(kernel32_module, "InitializeProcThreadAttributeList" )); |
350 | update_proc_thread_attr = reinterpret_cast<UpdateProcThreadAttrFn>( |
351 | GetProcAddress(kernel32_module, "UpdateProcThreadAttribute" )); |
352 | delete_proc_thread_attr_list = reinterpret_cast<DeleteProcThreadAttrListFn>( |
353 | GetProcAddress(kernel32_module, "DeleteProcThreadAttributeList" )); |
354 | load_attempted = true; |
355 | return (delete_proc_thread_attr_list != NULL); |
356 | } |
357 | return (delete_proc_thread_attr_list != NULL); |
358 | } |
359 | |
360 | const int kMaxPipeNameSize = 80; |
361 | template <int Count> |
362 | static int GenerateNames(wchar_t pipe_names[Count][kMaxPipeNameSize]) { |
363 | UUID uuid; |
364 | RPC_STATUS status = UuidCreateSequential(&uuid); |
365 | if ((status != RPC_S_OK) && (status != RPC_S_UUID_LOCAL_ONLY)) { |
366 | return status; |
367 | } |
368 | RPC_WSTR uuid_string; |
369 | status = UuidToStringW(&uuid, &uuid_string); |
370 | if (status != RPC_S_OK) { |
371 | return status; |
372 | } |
373 | for (int i = 0; i < Count; i++) { |
374 | static const wchar_t* prefix = L"\\\\.\\Pipe\\dart" ; |
375 | _snwprintf(pipe_names[i], kMaxPipeNameSize, L"%s_%s_%d" , prefix, |
376 | uuid_string, i + 1); |
377 | } |
378 | status = RpcStringFreeW(&uuid_string); |
379 | if (status != RPC_S_OK) { |
380 | return status; |
381 | } |
382 | return 0; |
383 | } |
384 | |
385 | class ProcessStarter { |
386 | public: |
387 | ProcessStarter(const char* path, |
388 | char* arguments[], |
389 | intptr_t arguments_length, |
390 | const char* working_directory, |
391 | char* environment[], |
392 | intptr_t environment_length, |
393 | ProcessStartMode mode, |
394 | intptr_t* in, |
395 | intptr_t* out, |
396 | intptr_t* err, |
397 | intptr_t* id, |
398 | intptr_t* exit_handler, |
399 | char** os_error_message) |
400 | : path_(path), |
401 | working_directory_(working_directory), |
402 | mode_(mode), |
403 | in_(in), |
404 | out_(out), |
405 | err_(err), |
406 | id_(id), |
407 | exit_handler_(exit_handler), |
408 | os_error_message_(os_error_message) { |
409 | stdin_handles_[kReadHandle] = INVALID_HANDLE_VALUE; |
410 | stdin_handles_[kWriteHandle] = INVALID_HANDLE_VALUE; |
411 | stdout_handles_[kReadHandle] = INVALID_HANDLE_VALUE; |
412 | stdout_handles_[kWriteHandle] = INVALID_HANDLE_VALUE; |
413 | stderr_handles_[kReadHandle] = INVALID_HANDLE_VALUE; |
414 | stderr_handles_[kWriteHandle] = INVALID_HANDLE_VALUE; |
415 | exit_handles_[kReadHandle] = INVALID_HANDLE_VALUE; |
416 | exit_handles_[kWriteHandle] = INVALID_HANDLE_VALUE; |
417 | |
418 | // Transform input strings to system format. |
419 | const wchar_t* system_path = StringUtilsWin::Utf8ToWide(path_); |
420 | wchar_t** system_arguments; |
421 | system_arguments = reinterpret_cast<wchar_t**>( |
422 | Dart_ScopeAllocate(arguments_length * sizeof(*system_arguments))); |
423 | for (int i = 0; i < arguments_length; i++) { |
424 | system_arguments[i] = StringUtilsWin::Utf8ToWide(arguments[i]); |
425 | } |
426 | |
427 | // Compute command-line length. |
428 | int command_line_length = wcslen(system_path); |
429 | for (int i = 0; i < arguments_length; i++) { |
430 | command_line_length += wcslen(system_arguments[i]); |
431 | } |
432 | // Account for null termination and one space per argument. |
433 | command_line_length += arguments_length + 1; |
434 | |
435 | // Put together command-line string. |
436 | command_line_ = reinterpret_cast<wchar_t*>( |
437 | Dart_ScopeAllocate(command_line_length * sizeof(*command_line_))); |
438 | int len = 0; |
439 | int remaining = command_line_length; |
440 | int written = |
441 | _snwprintf(command_line_ + len, remaining, L"%s" , system_path); |
442 | len += written; |
443 | remaining -= written; |
444 | ASSERT(remaining >= 0); |
445 | for (int i = 0; i < arguments_length; i++) { |
446 | written = _snwprintf(command_line_ + len, remaining, L" %s" , |
447 | system_arguments[i]); |
448 | len += written; |
449 | remaining -= written; |
450 | ASSERT(remaining >= 0); |
451 | } |
452 | |
453 | // Create environment block if an environment is supplied. |
454 | environment_block_ = NULL; |
455 | if (environment != NULL) { |
456 | wchar_t** system_environment; |
457 | system_environment = reinterpret_cast<wchar_t**>( |
458 | Dart_ScopeAllocate(environment_length * sizeof(*system_environment))); |
459 | // Convert environment strings to system strings. |
460 | for (intptr_t i = 0; i < environment_length; i++) { |
461 | system_environment[i] = StringUtilsWin::Utf8ToWide(environment[i]); |
462 | } |
463 | |
464 | // An environment block is a sequence of zero-terminated strings |
465 | // followed by a block-terminating zero char. |
466 | intptr_t block_size = 1; |
467 | for (intptr_t i = 0; i < environment_length; i++) { |
468 | block_size += wcslen(system_environment[i]) + 1; |
469 | } |
470 | environment_block_ = reinterpret_cast<wchar_t*>( |
471 | Dart_ScopeAllocate(block_size * sizeof(*environment_block_))); |
472 | intptr_t block_index = 0; |
473 | for (intptr_t i = 0; i < environment_length; i++) { |
474 | intptr_t len = wcslen(system_environment[i]); |
475 | intptr_t result = _snwprintf(environment_block_ + block_index, len, |
476 | L"%s" , system_environment[i]); |
477 | ASSERT(result == len); |
478 | block_index += len; |
479 | environment_block_[block_index++] = '\0'; |
480 | } |
481 | // Block-terminating zero char. |
482 | environment_block_[block_index++] = '\0'; |
483 | ASSERT(block_index == block_size); |
484 | } |
485 | |
486 | system_working_directory_ = NULL; |
487 | if (working_directory_ != NULL) { |
488 | system_working_directory_ = |
489 | StringUtilsWin::Utf8ToWide(working_directory_); |
490 | } |
491 | |
492 | attribute_list_ = NULL; |
493 | } |
494 | |
495 | ~ProcessStarter() { |
496 | if (attribute_list_ != NULL) { |
497 | delete_proc_thread_attr_list(attribute_list_); |
498 | } |
499 | } |
500 | |
501 | int Start() { |
502 | // Create pipes required. |
503 | int err = CreatePipes(); |
504 | if (err != 0) { |
505 | return err; |
506 | } |
507 | |
508 | // Setup info structures. |
509 | STARTUPINFOEXW startup_info; |
510 | ZeroMemory(&startup_info, sizeof(startup_info)); |
511 | startup_info.StartupInfo.cb = sizeof(startup_info); |
512 | if (mode_ != kInheritStdio) { |
513 | startup_info.StartupInfo.hStdInput = stdin_handles_[kReadHandle]; |
514 | startup_info.StartupInfo.hStdOutput = stdout_handles_[kWriteHandle]; |
515 | startup_info.StartupInfo.hStdError = stderr_handles_[kWriteHandle]; |
516 | startup_info.StartupInfo.dwFlags = STARTF_USESTDHANDLES; |
517 | |
518 | bool supports_proc_thread_attr_lists = EnsureInitialized(); |
519 | if (supports_proc_thread_attr_lists) { |
520 | // Setup the handles to inherit. We only want to inherit the three |
521 | // handles for stdin, stdout and stderr. |
522 | SIZE_T size = 0; |
523 | // The call to determine the size of an attribute list always fails with |
524 | // ERROR_INSUFFICIENT_BUFFER and that error should be ignored. |
525 | if (!init_proc_thread_attr_list(NULL, 1, 0, &size) && |
526 | (GetLastError() != ERROR_INSUFFICIENT_BUFFER)) { |
527 | return CleanupAndReturnError(); |
528 | } |
529 | attribute_list_ = reinterpret_cast<LPPROC_THREAD_ATTRIBUTE_LIST>( |
530 | Dart_ScopeAllocate(size)); |
531 | ZeroMemory(attribute_list_, size); |
532 | if (!init_proc_thread_attr_list(attribute_list_, 1, 0, &size)) { |
533 | return CleanupAndReturnError(); |
534 | } |
535 | inherited_handles_ = {stdin_handles_[kReadHandle], |
536 | stdout_handles_[kWriteHandle], |
537 | stderr_handles_[kWriteHandle]}; |
538 | if (!update_proc_thread_attr( |
539 | attribute_list_, 0, PROC_THREAD_ATTRIBUTE_HANDLE_LIST, |
540 | inherited_handles_.data(), |
541 | inherited_handles_.size() * sizeof(HANDLE), NULL, NULL)) { |
542 | return CleanupAndReturnError(); |
543 | } |
544 | startup_info.lpAttributeList = attribute_list_; |
545 | } |
546 | } |
547 | |
548 | PROCESS_INFORMATION process_info; |
549 | ZeroMemory(&process_info, sizeof(process_info)); |
550 | |
551 | // Create process. |
552 | DWORD creation_flags = |
553 | EXTENDED_STARTUPINFO_PRESENT | CREATE_UNICODE_ENVIRONMENT; |
554 | if (!Process::ModeIsAttached(mode_)) { |
555 | creation_flags |= DETACHED_PROCESS; |
556 | } |
557 | BOOL result = CreateProcessW( |
558 | NULL, // ApplicationName |
559 | command_line_, |
560 | NULL, // ProcessAttributes |
561 | NULL, // ThreadAttributes |
562 | TRUE, // InheritHandles |
563 | creation_flags, environment_block_, system_working_directory_, |
564 | reinterpret_cast<STARTUPINFOW*>(&startup_info), &process_info); |
565 | |
566 | if (result == 0) { |
567 | Syslog::PrintErr("CreateProcessW failed %d\n" , GetLastError()); |
568 | return CleanupAndReturnError(); |
569 | } |
570 | |
571 | if (mode_ != kInheritStdio) { |
572 | CloseHandle(stdin_handles_[kReadHandle]); |
573 | CloseHandle(stdout_handles_[kWriteHandle]); |
574 | CloseHandle(stderr_handles_[kWriteHandle]); |
575 | } |
576 | if (Process::ModeIsAttached(mode_)) { |
577 | ProcessInfoList::AddProcess(process_info.dwProcessId, |
578 | process_info.hProcess, |
579 | exit_handles_[kWriteHandle]); |
580 | } |
581 | if (mode_ != kDetached) { |
582 | // Connect the three stdio streams. |
583 | if (Process::ModeHasStdio(mode_)) { |
584 | FileHandle* stdin_handle = new FileHandle(stdin_handles_[kWriteHandle]); |
585 | FileHandle* stdout_handle = |
586 | new FileHandle(stdout_handles_[kReadHandle]); |
587 | FileHandle* stderr_handle = |
588 | new FileHandle(stderr_handles_[kReadHandle]); |
589 | *in_ = reinterpret_cast<intptr_t>(stdout_handle); |
590 | *out_ = reinterpret_cast<intptr_t>(stdin_handle); |
591 | *err_ = reinterpret_cast<intptr_t>(stderr_handle); |
592 | } |
593 | if (Process::ModeIsAttached(mode_)) { |
594 | FileHandle* exit_handle = new FileHandle(exit_handles_[kReadHandle]); |
595 | *exit_handler_ = reinterpret_cast<intptr_t>(exit_handle); |
596 | } |
597 | } |
598 | |
599 | CloseHandle(process_info.hThread); |
600 | |
601 | // Return process id. |
602 | *id_ = process_info.dwProcessId; |
603 | return 0; |
604 | } |
605 | |
606 | int CreatePipes() { |
607 | // Generate unique pipe names for the four named pipes needed. |
608 | wchar_t pipe_names[4][kMaxPipeNameSize]; |
609 | int status = GenerateNames<4>(pipe_names); |
610 | if (status != 0) { |
611 | SetOsErrorMessage(os_error_message_); |
612 | Syslog::PrintErr("UuidCreateSequential failed %d\n" , status); |
613 | return status; |
614 | } |
615 | |
616 | if (mode_ != kDetached) { |
617 | // Open pipes for stdin, stdout, stderr and for communicating the exit |
618 | // code. |
619 | if (Process::ModeHasStdio(mode_)) { |
620 | if (!CreateProcessPipe(stdin_handles_, pipe_names[0], kInheritRead) || |
621 | !CreateProcessPipe(stdout_handles_, pipe_names[1], kInheritWrite) || |
622 | !CreateProcessPipe(stderr_handles_, pipe_names[2], kInheritWrite)) { |
623 | return CleanupAndReturnError(); |
624 | } |
625 | } |
626 | // Only open exit code pipe for non detached processes. |
627 | if (Process::ModeIsAttached(mode_)) { |
628 | if (!CreateProcessPipe(exit_handles_, pipe_names[3], kInheritNone)) { |
629 | return CleanupAndReturnError(); |
630 | } |
631 | } |
632 | } else { |
633 | // Open NUL for stdin, stdout, and stderr. |
634 | stdin_handles_[kReadHandle] = OpenNul(); |
635 | if (stdin_handles_[kReadHandle] == INVALID_HANDLE_VALUE) { |
636 | return CleanupAndReturnError(); |
637 | } |
638 | |
639 | stdout_handles_[kWriteHandle] = OpenNul(); |
640 | if (stdout_handles_[kWriteHandle] == INVALID_HANDLE_VALUE) { |
641 | return CleanupAndReturnError(); |
642 | } |
643 | |
644 | stderr_handles_[kWriteHandle] = OpenNul(); |
645 | if (stderr_handles_[kWriteHandle] == INVALID_HANDLE_VALUE) { |
646 | return CleanupAndReturnError(); |
647 | } |
648 | } |
649 | return 0; |
650 | } |
651 | |
652 | int CleanupAndReturnError() { |
653 | int error_code = SetOsErrorMessage(os_error_message_); |
654 | CloseProcessPipes(stdin_handles_, stdout_handles_, stderr_handles_, |
655 | exit_handles_); |
656 | return error_code; |
657 | } |
658 | |
659 | HANDLE stdin_handles_[2]; |
660 | HANDLE stdout_handles_[2]; |
661 | HANDLE stderr_handles_[2]; |
662 | HANDLE exit_handles_[2]; |
663 | |
664 | const wchar_t* system_working_directory_; |
665 | wchar_t* command_line_; |
666 | wchar_t* environment_block_; |
667 | std::vector<HANDLE> inherited_handles_; |
668 | LPPROC_THREAD_ATTRIBUTE_LIST attribute_list_; |
669 | |
670 | const char* path_; |
671 | const char* working_directory_; |
672 | ProcessStartMode mode_; |
673 | intptr_t* in_; |
674 | intptr_t* out_; |
675 | intptr_t* err_; |
676 | intptr_t* id_; |
677 | intptr_t* exit_handler_; |
678 | char** os_error_message_; |
679 | |
680 | private: |
681 | DISALLOW_ALLOCATION(); |
682 | DISALLOW_IMPLICIT_CONSTRUCTORS(ProcessStarter); |
683 | }; |
684 | |
685 | int Process::Start(Namespace* namespc, |
686 | const char* path, |
687 | char* arguments[], |
688 | intptr_t arguments_length, |
689 | const char* working_directory, |
690 | char* environment[], |
691 | intptr_t environment_length, |
692 | ProcessStartMode mode, |
693 | intptr_t* in, |
694 | intptr_t* out, |
695 | intptr_t* err, |
696 | intptr_t* id, |
697 | intptr_t* exit_handler, |
698 | char** os_error_message) { |
699 | ProcessStarter starter(path, arguments, arguments_length, working_directory, |
700 | environment, environment_length, mode, in, out, err, |
701 | id, exit_handler, os_error_message); |
702 | return starter.Start(); |
703 | } |
704 | |
705 | class BufferList : public BufferListBase { |
706 | public: |
707 | BufferList() : read_pending_(true) {} |
708 | |
709 | // Indicate that data has been read into the buffer provided to |
710 | // overlapped read. |
711 | void DataIsRead(intptr_t size) { |
712 | ASSERT(read_pending_ == true); |
713 | set_data_size(data_size() + size); |
714 | set_free_size(free_size() - size); |
715 | ASSERT(free_size() >= 0); |
716 | read_pending_ = false; |
717 | } |
718 | |
719 | // The access to the read buffer for overlapped read. |
720 | bool GetReadBuffer(uint8_t** buffer, intptr_t* size) { |
721 | ASSERT(!read_pending_); |
722 | if (free_size() == 0) { |
723 | if (!Allocate()) { |
724 | return false; |
725 | } |
726 | } |
727 | ASSERT(free_size() > 0); |
728 | ASSERT(free_size() <= kBufferSize); |
729 | *buffer = FreeSpaceAddress(); |
730 | *size = free_size(); |
731 | read_pending_ = true; |
732 | return true; |
733 | } |
734 | |
735 | intptr_t GetDataSize() { return data_size(); } |
736 | |
737 | uint8_t* GetFirstDataBuffer() { |
738 | ASSERT(head() != NULL); |
739 | ASSERT(head() == tail()); |
740 | ASSERT(data_size() <= kBufferSize); |
741 | return head()->data(); |
742 | } |
743 | |
744 | void FreeDataBuffer() { Free(); } |
745 | |
746 | private: |
747 | bool read_pending_; |
748 | |
749 | DISALLOW_COPY_AND_ASSIGN(BufferList); |
750 | }; |
751 | |
752 | class OverlappedHandle { |
753 | public: |
754 | OverlappedHandle() {} |
755 | |
756 | void Init(HANDLE handle, HANDLE event) { |
757 | handle_ = handle; |
758 | event_ = event; |
759 | ClearOverlapped(); |
760 | } |
761 | |
762 | bool HasEvent(HANDLE event) { return (event_ == event); } |
763 | |
764 | bool Read() { |
765 | // Get the data read as a result of a completed overlapped operation. |
766 | if (overlapped_.InternalHigh > 0) { |
767 | buffer_.DataIsRead(overlapped_.InternalHigh); |
768 | } else { |
769 | buffer_.DataIsRead(0); |
770 | } |
771 | |
772 | // Keep reading until error or pending operation. |
773 | while (true) { |
774 | ClearOverlapped(); |
775 | uint8_t* buffer; |
776 | intptr_t buffer_size; |
777 | if (!buffer_.GetReadBuffer(&buffer, &buffer_size)) { |
778 | return false; |
779 | } |
780 | BOOL ok = ReadFile(handle_, buffer, buffer_size, NULL, &overlapped_); |
781 | if (!ok) { |
782 | return (GetLastError() == ERROR_IO_PENDING); |
783 | } |
784 | buffer_.DataIsRead(overlapped_.InternalHigh); |
785 | } |
786 | } |
787 | |
788 | Dart_Handle GetData() { return buffer_.GetData(); } |
789 | |
790 | intptr_t GetDataSize() { return buffer_.GetDataSize(); } |
791 | |
792 | uint8_t* GetFirstDataBuffer() { return buffer_.GetFirstDataBuffer(); } |
793 | |
794 | void FreeDataBuffer() { return buffer_.FreeDataBuffer(); } |
795 | |
796 | #if defined(DEBUG) |
797 | bool IsEmpty() const { return buffer_.IsEmpty(); } |
798 | #endif |
799 | |
800 | void Close() { |
801 | CloseHandle(handle_); |
802 | CloseHandle(event_); |
803 | handle_ = INVALID_HANDLE_VALUE; |
804 | overlapped_.hEvent = INVALID_HANDLE_VALUE; |
805 | } |
806 | |
807 | private: |
808 | void ClearOverlapped() { |
809 | memset(&overlapped_, 0, sizeof(overlapped_)); |
810 | overlapped_.hEvent = event_; |
811 | } |
812 | |
813 | OVERLAPPED overlapped_; |
814 | HANDLE handle_; |
815 | HANDLE event_; |
816 | BufferList buffer_; |
817 | |
818 | DISALLOW_ALLOCATION(); |
819 | DISALLOW_COPY_AND_ASSIGN(OverlappedHandle); |
820 | }; |
821 | |
822 | bool Process::Wait(intptr_t pid, |
823 | intptr_t in, |
824 | intptr_t out, |
825 | intptr_t err, |
826 | intptr_t exit_event, |
827 | ProcessResult* result) { |
828 | // Close input to the process right away. |
829 | reinterpret_cast<FileHandle*>(in)->Close(); |
830 | |
831 | // All pipes created to the sub-process support overlapped IO. |
832 | FileHandle* stdout_handle = reinterpret_cast<FileHandle*>(out); |
833 | ASSERT(stdout_handle->SupportsOverlappedIO()); |
834 | FileHandle* stderr_handle = reinterpret_cast<FileHandle*>(err); |
835 | ASSERT(stderr_handle->SupportsOverlappedIO()); |
836 | FileHandle* exit_handle = reinterpret_cast<FileHandle*>(exit_event); |
837 | ASSERT(exit_handle->SupportsOverlappedIO()); |
838 | |
839 | // Create three events for overlapped IO. These are created as already |
840 | // signalled to ensure they have read called at least once. |
841 | static const int kHandles = 3; |
842 | HANDLE events[kHandles]; |
843 | for (int i = 0; i < kHandles; i++) { |
844 | events[i] = CreateEvent(NULL, FALSE, TRUE, NULL); |
845 | } |
846 | |
847 | // Setup the structure for handling overlapped IO. |
848 | OverlappedHandle oh[kHandles]; |
849 | oh[0].Init(stdout_handle->handle(), events[0]); |
850 | oh[1].Init(stderr_handle->handle(), events[1]); |
851 | oh[2].Init(exit_handle->handle(), events[2]); |
852 | |
853 | // Continue until all handles are closed. |
854 | int alive = kHandles; |
855 | while (alive > 0) { |
856 | // Blocking call waiting for events from the child process. |
857 | DWORD wait_result = WaitForMultipleObjects(alive, events, FALSE, INFINITE); |
858 | |
859 | // Find the handle signalled. |
860 | int index = wait_result - WAIT_OBJECT_0; |
861 | for (int i = 0; i < kHandles; i++) { |
862 | if (oh[i].HasEvent(events[index])) { |
863 | bool ok = oh[i].Read(); |
864 | if (!ok) { |
865 | if (GetLastError() == ERROR_BROKEN_PIPE) { |
866 | oh[i].Close(); |
867 | alive--; |
868 | if (index < alive) { |
869 | events[index] = events[alive]; |
870 | } |
871 | } else if (err != ERROR_IO_PENDING) { |
872 | DWORD e = GetLastError(); |
873 | oh[0].Close(); |
874 | oh[1].Close(); |
875 | oh[2].Close(); |
876 | SetLastError(e); |
877 | return false; |
878 | } |
879 | } |
880 | break; |
881 | } |
882 | } |
883 | } |
884 | |
885 | // All handles closed and all data read. |
886 | result->set_stdout_data(oh[0].GetData()); |
887 | result->set_stderr_data(oh[1].GetData()); |
888 | DEBUG_ASSERT(oh[0].IsEmpty()); |
889 | DEBUG_ASSERT(oh[1].IsEmpty()); |
890 | |
891 | // Calculate the exit code. |
892 | ASSERT(oh[2].GetDataSize() == 8); |
893 | uint32_t exit_codes[2]; |
894 | memmove(&exit_codes, oh[2].GetFirstDataBuffer(), sizeof(exit_codes)); |
895 | oh[2].FreeDataBuffer(); |
896 | intptr_t exit_code = exit_codes[0]; |
897 | intptr_t negative = exit_codes[1]; |
898 | if (negative != 0) { |
899 | exit_code = -exit_code; |
900 | } |
901 | result->set_exit_code(exit_code); |
902 | return true; |
903 | } |
904 | |
905 | bool Process::Kill(intptr_t id, int signal) { |
906 | USE(signal); // signal is not used on Windows. |
907 | HANDLE process_handle; |
908 | HANDLE wait_handle; |
909 | HANDLE exit_pipe; |
910 | // First check the process info list for the process to get a handle to it. |
911 | bool success = ProcessInfoList::LookupProcess(id, &process_handle, |
912 | &wait_handle, &exit_pipe); |
913 | // For detached processes we don't have the process registered in the |
914 | // process info list. Try to look it up through the OS. |
915 | if (!success) { |
916 | process_handle = OpenProcess(PROCESS_TERMINATE, FALSE, id); |
917 | // The process is already dead. |
918 | if (process_handle == INVALID_HANDLE_VALUE) { |
919 | return false; |
920 | } |
921 | } |
922 | BOOL result = TerminateProcess(process_handle, -1); |
923 | return result ? true : false; |
924 | } |
925 | |
926 | void Process::TerminateExitCodeHandler() { |
927 | // Nothing needs to be done on Windows. |
928 | } |
929 | |
930 | intptr_t Process::CurrentProcessId() { |
931 | return static_cast<intptr_t>(GetCurrentProcessId()); |
932 | } |
933 | |
934 | int64_t Process::CurrentRSS() { |
935 | PROCESS_MEMORY_COUNTERS pmc; |
936 | if (!GetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc))) { |
937 | return -1; |
938 | } |
939 | return pmc.WorkingSetSize; |
940 | } |
941 | |
942 | int64_t Process::MaxRSS() { |
943 | PROCESS_MEMORY_COUNTERS pmc; |
944 | if (!GetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc))) { |
945 | return -1; |
946 | } |
947 | return pmc.PeakWorkingSetSize; |
948 | } |
949 | |
950 | static SignalInfo* signal_handlers = NULL; |
951 | static Mutex* signal_mutex = nullptr; |
952 | |
953 | SignalInfo::~SignalInfo() { |
954 | FileHandle* file_handle = reinterpret_cast<FileHandle*>(fd_); |
955 | file_handle->Close(); |
956 | file_handle->Release(); |
957 | } |
958 | |
959 | BOOL WINAPI SignalHandler(DWORD signal) { |
960 | MutexLocker lock(signal_mutex); |
961 | const SignalInfo* handler = signal_handlers; |
962 | bool handled = false; |
963 | while (handler != NULL) { |
964 | if (handler->signal() == signal) { |
965 | int value = 0; |
966 | SocketBase::Write(handler->fd(), &value, 1, SocketBase::kAsync); |
967 | handled = true; |
968 | } |
969 | handler = handler->next(); |
970 | } |
971 | return handled; |
972 | } |
973 | |
974 | intptr_t GetWinSignal(intptr_t signal) { |
975 | switch (signal) { |
976 | case kSighup: |
977 | return CTRL_CLOSE_EVENT; |
978 | case kSigint: |
979 | return CTRL_C_EVENT; |
980 | default: |
981 | return -1; |
982 | } |
983 | } |
984 | |
985 | intptr_t Process::SetSignalHandler(intptr_t signal) { |
986 | signal = GetWinSignal(signal); |
987 | if (signal == -1) { |
988 | SetLastError(ERROR_NOT_SUPPORTED); |
989 | return -1; |
990 | } |
991 | |
992 | // Generate a unique pipe name for the named pipe. |
993 | wchar_t pipe_name[kMaxPipeNameSize]; |
994 | int status = GenerateNames<1>(&pipe_name); |
995 | if (status != 0) { |
996 | return status; |
997 | } |
998 | |
999 | HANDLE fds[2]; |
1000 | if (!CreateProcessPipe(fds, pipe_name, kInheritNone)) { |
1001 | int error_code = GetLastError(); |
1002 | CloseProcessPipe(fds); |
1003 | SetLastError(error_code); |
1004 | return -1; |
1005 | } |
1006 | MutexLocker lock(signal_mutex); |
1007 | FileHandle* write_handle = new FileHandle(fds[kWriteHandle]); |
1008 | write_handle->EnsureInitialized(EventHandler::delegate()); |
1009 | intptr_t write_fd = reinterpret_cast<intptr_t>(write_handle); |
1010 | if (signal_handlers == NULL) { |
1011 | if (SetConsoleCtrlHandler(SignalHandler, true) == 0) { |
1012 | int error_code = GetLastError(); |
1013 | // Since SetConsoleCtrlHandler failed, the IO completion port will |
1014 | // never receive an event for this handle, and will therefore never |
1015 | // release the reference Retained by EnsureInitialized(). So, we |
1016 | // have to do a second Release() here. |
1017 | write_handle->Release(); |
1018 | write_handle->Release(); |
1019 | CloseProcessPipe(fds); |
1020 | SetLastError(error_code); |
1021 | return -1; |
1022 | } |
1023 | } |
1024 | signal_handlers = new SignalInfo(write_fd, signal, signal_handlers); |
1025 | return reinterpret_cast<intptr_t>(new FileHandle(fds[kReadHandle])); |
1026 | } |
1027 | |
1028 | void Process::ClearSignalHandler(intptr_t signal, Dart_Port port) { |
1029 | signal = GetWinSignal(signal); |
1030 | if (signal == -1) { |
1031 | return; |
1032 | } |
1033 | MutexLocker lock(signal_mutex); |
1034 | SignalInfo* handler = signal_handlers; |
1035 | while (handler != NULL) { |
1036 | bool remove = false; |
1037 | if (handler->signal() == signal) { |
1038 | if ((port == ILLEGAL_PORT) || (handler->port() == port)) { |
1039 | if (signal_handlers == handler) { |
1040 | signal_handlers = handler->next(); |
1041 | } |
1042 | handler->Unlink(); |
1043 | FileHandle* file_handle = reinterpret_cast<FileHandle*>(handler->fd()); |
1044 | file_handle->Release(); |
1045 | remove = true; |
1046 | } |
1047 | } |
1048 | SignalInfo* next = handler->next(); |
1049 | if (remove) { |
1050 | delete handler; |
1051 | } |
1052 | handler = next; |
1053 | } |
1054 | if (signal_handlers == NULL) { |
1055 | USE(SetConsoleCtrlHandler(SignalHandler, false)); |
1056 | } |
1057 | } |
1058 | |
1059 | void Process::ClearSignalHandlerByFd(intptr_t fd, Dart_Port port) { |
1060 | MutexLocker lock(signal_mutex); |
1061 | SignalInfo* handler = signal_handlers; |
1062 | while (handler != NULL) { |
1063 | bool remove = false; |
1064 | if (handler->fd() == fd) { |
1065 | if ((port == ILLEGAL_PORT) || (handler->port() == port)) { |
1066 | if (signal_handlers == handler) { |
1067 | signal_handlers = handler->next(); |
1068 | } |
1069 | handler->Unlink(); |
1070 | FileHandle* file_handle = reinterpret_cast<FileHandle*>(handler->fd()); |
1071 | file_handle->Release(); |
1072 | remove = true; |
1073 | } |
1074 | } |
1075 | SignalInfo* next = handler->next(); |
1076 | if (remove) { |
1077 | delete handler; |
1078 | } |
1079 | handler = next; |
1080 | } |
1081 | if (signal_handlers == NULL) { |
1082 | USE(SetConsoleCtrlHandler(SignalHandler, false)); |
1083 | } |
1084 | } |
1085 | |
1086 | void ProcessInfoList::Init() { |
1087 | ASSERT(ProcessInfoList::mutex_ == nullptr); |
1088 | ProcessInfoList::mutex_ = new Mutex(); |
1089 | } |
1090 | |
1091 | void ProcessInfoList::Cleanup() { |
1092 | ASSERT(ProcessInfoList::mutex_ != nullptr); |
1093 | delete ProcessInfoList::mutex_; |
1094 | ProcessInfoList::mutex_ = nullptr; |
1095 | } |
1096 | |
1097 | void Process::Init() { |
1098 | ProcessInfoList::Init(); |
1099 | |
1100 | ASSERT(signal_mutex == nullptr); |
1101 | signal_mutex = new Mutex(); |
1102 | |
1103 | ASSERT(initialized_mutex == nullptr); |
1104 | initialized_mutex = new Mutex(); |
1105 | |
1106 | ASSERT(Process::global_exit_code_mutex_ == nullptr); |
1107 | Process::global_exit_code_mutex_ = new Mutex(); |
1108 | } |
1109 | |
1110 | void Process::Cleanup() { |
1111 | ClearAllSignalHandlers(); |
1112 | |
1113 | ASSERT(signal_mutex != nullptr); |
1114 | delete signal_mutex; |
1115 | signal_mutex = nullptr; |
1116 | |
1117 | ASSERT(initialized_mutex != nullptr); |
1118 | delete initialized_mutex; |
1119 | initialized_mutex = nullptr; |
1120 | |
1121 | ASSERT(Process::global_exit_code_mutex_ != nullptr); |
1122 | delete Process::global_exit_code_mutex_; |
1123 | Process::global_exit_code_mutex_ = nullptr; |
1124 | |
1125 | ProcessInfoList::Cleanup(); |
1126 | } |
1127 | |
1128 | } // namespace bin |
1129 | } // namespace dart |
1130 | |
1131 | #endif // defined(HOST_OS_WINDOWS) |
1132 | |