| 1 | // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "platform/globals.h" |
| 6 | #if defined(HOST_OS_WINDOWS) |
| 7 | |
| 8 | #include "bin/process.h" |
| 9 | |
| 10 | #include <process.h> // NOLINT |
| 11 | #include <psapi.h> // NOLINT |
| 12 | #include <vector> |
| 13 | |
| 14 | #include "bin/builtin.h" |
| 15 | #include "bin/dartutils.h" |
| 16 | #include "bin/eventhandler.h" |
| 17 | #include "bin/lockers.h" |
| 18 | #include "bin/socket.h" |
| 19 | #include "bin/thread.h" |
| 20 | #include "bin/utils.h" |
| 21 | #include "bin/utils_win.h" |
| 22 | #include "platform/syslog.h" |
| 23 | |
| 24 | namespace dart { |
| 25 | namespace bin { |
| 26 | |
| 27 | static const int kReadHandle = 0; |
| 28 | static const int kWriteHandle = 1; |
| 29 | |
| 30 | int Process::global_exit_code_ = 0; |
| 31 | Mutex* Process::global_exit_code_mutex_ = nullptr; |
| 32 | Process::ExitHook Process::exit_hook_ = NULL; |
| 33 | |
| 34 | // ProcessInfo is used to map a process id to the process handle, |
| 35 | // wait handle for registered exit code event and the pipe used to |
| 36 | // communicate the exit code of the process to Dart. |
| 37 | // ProcessInfo objects are kept in the static singly-linked |
| 38 | // ProcessInfoList. |
| 39 | class ProcessInfo { |
| 40 | public: |
| 41 | ProcessInfo(DWORD process_id, |
| 42 | HANDLE process_handle, |
| 43 | HANDLE wait_handle, |
| 44 | HANDLE exit_pipe) |
| 45 | : process_id_(process_id), |
| 46 | process_handle_(process_handle), |
| 47 | wait_handle_(wait_handle), |
| 48 | exit_pipe_(exit_pipe) {} |
| 49 | |
| 50 | ~ProcessInfo() { |
| 51 | BOOL success = CloseHandle(process_handle_); |
| 52 | if (!success) { |
| 53 | FATAL("Failed to close process handle" ); |
| 54 | } |
| 55 | success = CloseHandle(exit_pipe_); |
| 56 | if (!success) { |
| 57 | FATAL("Failed to close process exit code pipe" ); |
| 58 | } |
| 59 | } |
| 60 | |
| 61 | DWORD pid() { return process_id_; } |
| 62 | HANDLE process_handle() { return process_handle_; } |
| 63 | HANDLE wait_handle() { return wait_handle_; } |
| 64 | HANDLE exit_pipe() { return exit_pipe_; } |
| 65 | ProcessInfo* next() { return next_; } |
| 66 | void set_next(ProcessInfo* next) { next_ = next; } |
| 67 | |
| 68 | private: |
| 69 | // Process id. |
| 70 | DWORD process_id_; |
| 71 | // Process handle. |
| 72 | HANDLE process_handle_; |
| 73 | // Wait handle identifying the exit-code wait operation registered |
| 74 | // with RegisterWaitForSingleObject. |
| 75 | HANDLE wait_handle_; |
| 76 | // File descriptor for pipe to report exit code. |
| 77 | HANDLE exit_pipe_; |
| 78 | // Link to next ProcessInfo object in the singly-linked list. |
| 79 | ProcessInfo* next_; |
| 80 | |
| 81 | DISALLOW_COPY_AND_ASSIGN(ProcessInfo); |
| 82 | }; |
| 83 | |
| 84 | // Singly-linked list of ProcessInfo objects for all active processes |
| 85 | // started from Dart. |
| 86 | class ProcessInfoList { |
| 87 | public: |
| 88 | static void Init(); |
| 89 | static void Cleanup(); |
| 90 | |
| 91 | static void AddProcess(DWORD pid, HANDLE handle, HANDLE pipe) { |
| 92 | // Register a callback to extract the exit code, when the process |
| 93 | // is signaled. The callback runs in a independent thread from the OS pool. |
| 94 | // Because the callback depends on the process list containing |
| 95 | // the process, lock the mutex until the process is added to the list. |
| 96 | MutexLocker locker(mutex_); |
| 97 | HANDLE wait_handle = INVALID_HANDLE_VALUE; |
| 98 | BOOL success = RegisterWaitForSingleObject( |
| 99 | &wait_handle, handle, &ExitCodeCallback, reinterpret_cast<void*>(pid), |
| 100 | INFINITE, WT_EXECUTEONLYONCE); |
| 101 | if (!success) { |
| 102 | FATAL("Failed to register exit code wait operation." ); |
| 103 | } |
| 104 | ProcessInfo* info = new ProcessInfo(pid, handle, wait_handle, pipe); |
| 105 | // Mutate the process list under the mutex. |
| 106 | info->set_next(active_processes_); |
| 107 | active_processes_ = info; |
| 108 | } |
| 109 | |
| 110 | static bool LookupProcess(DWORD pid, |
| 111 | HANDLE* handle, |
| 112 | HANDLE* wait_handle, |
| 113 | HANDLE* pipe) { |
| 114 | MutexLocker locker(mutex_); |
| 115 | ProcessInfo* current = active_processes_; |
| 116 | while (current != NULL) { |
| 117 | if (current->pid() == pid) { |
| 118 | *handle = current->process_handle(); |
| 119 | *wait_handle = current->wait_handle(); |
| 120 | *pipe = current->exit_pipe(); |
| 121 | return true; |
| 122 | } |
| 123 | current = current->next(); |
| 124 | } |
| 125 | return false; |
| 126 | } |
| 127 | |
| 128 | static void RemoveProcess(DWORD pid) { |
| 129 | MutexLocker locker(mutex_); |
| 130 | ProcessInfo* prev = NULL; |
| 131 | ProcessInfo* current = active_processes_; |
| 132 | while (current != NULL) { |
| 133 | if (current->pid() == pid) { |
| 134 | if (prev == NULL) { |
| 135 | active_processes_ = current->next(); |
| 136 | } else { |
| 137 | prev->set_next(current->next()); |
| 138 | } |
| 139 | delete current; |
| 140 | return; |
| 141 | } |
| 142 | prev = current; |
| 143 | current = current->next(); |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | private: |
| 148 | // Callback called when an exit code is available from one of the |
| 149 | // processes in the list. |
| 150 | static void CALLBACK ExitCodeCallback(PVOID data, BOOLEAN timed_out) { |
| 151 | if (timed_out) { |
| 152 | return; |
| 153 | } |
| 154 | DWORD pid = reinterpret_cast<DWORD>(data); |
| 155 | HANDLE handle; |
| 156 | HANDLE wait_handle; |
| 157 | HANDLE exit_pipe; |
| 158 | bool success = LookupProcess(pid, &handle, &wait_handle, &exit_pipe); |
| 159 | if (!success) { |
| 160 | FATAL("Failed to lookup process in list of active processes" ); |
| 161 | } |
| 162 | // Unregister the event in a non-blocking way. |
| 163 | BOOL ok = UnregisterWait(wait_handle); |
| 164 | if (!ok && (GetLastError() != ERROR_IO_PENDING)) { |
| 165 | FATAL("Failed unregistering wait operation" ); |
| 166 | } |
| 167 | // Get and report the exit code to Dart. |
| 168 | int exit_code; |
| 169 | ok = GetExitCodeProcess(handle, reinterpret_cast<DWORD*>(&exit_code)); |
| 170 | if (!ok) { |
| 171 | FATAL1("GetExitCodeProcess failed %d\n" , GetLastError()); |
| 172 | } |
| 173 | int negative = 0; |
| 174 | if (exit_code < 0) { |
| 175 | exit_code = abs(exit_code); |
| 176 | negative = 1; |
| 177 | } |
| 178 | int message[2] = {exit_code, negative}; |
| 179 | DWORD written; |
| 180 | ok = WriteFile(exit_pipe, message, sizeof(message), &written, NULL); |
| 181 | // If the process has been closed, the read end of the exit |
| 182 | // pipe has been closed. It is therefore not a problem that |
| 183 | // WriteFile fails with a closed pipe error |
| 184 | // (ERROR_NO_DATA). Other errors should not happen. |
| 185 | if (ok && (written != sizeof(message))) { |
| 186 | FATAL("Failed to write entire process exit message" ); |
| 187 | } else if (!ok && (GetLastError() != ERROR_NO_DATA)) { |
| 188 | FATAL1("Failed to write exit code: %d" , GetLastError()); |
| 189 | } |
| 190 | // Remove the process from the list of active processes. |
| 191 | RemoveProcess(pid); |
| 192 | } |
| 193 | |
| 194 | // Linked list of ProcessInfo objects for all active processes |
| 195 | // started from Dart code. |
| 196 | static ProcessInfo* active_processes_; |
| 197 | // Mutex protecting all accesses to the linked list of active |
| 198 | // processes. |
| 199 | static Mutex* mutex_; |
| 200 | |
| 201 | DISALLOW_ALLOCATION(); |
| 202 | DISALLOW_IMPLICIT_CONSTRUCTORS(ProcessInfoList); |
| 203 | }; |
| 204 | |
| 205 | ProcessInfo* ProcessInfoList::active_processes_ = NULL; |
| 206 | Mutex* ProcessInfoList::mutex_ = nullptr; |
| 207 | |
| 208 | // Types of pipes to create. |
| 209 | enum NamedPipeType { kInheritRead, kInheritWrite, kInheritNone }; |
| 210 | |
| 211 | // Create a pipe for communicating with a new process. The handles array |
| 212 | // will contain the read and write ends of the pipe. Based on the type |
| 213 | // one of the handles will be inheritable. |
| 214 | // NOTE: If this function returns false the handles might have been allocated |
| 215 | // and the caller should make sure to close them in case of an error. |
| 216 | static bool CreateProcessPipe(HANDLE handles[2], |
| 217 | wchar_t* pipe_name, |
| 218 | NamedPipeType type) { |
| 219 | // Security attributes describing an inheritable handle. |
| 220 | SECURITY_ATTRIBUTES inherit_handle; |
| 221 | inherit_handle.nLength = sizeof(SECURITY_ATTRIBUTES); |
| 222 | inherit_handle.bInheritHandle = TRUE; |
| 223 | inherit_handle.lpSecurityDescriptor = NULL; |
| 224 | |
| 225 | if (type == kInheritRead) { |
| 226 | handles[kWriteHandle] = |
| 227 | CreateNamedPipeW(pipe_name, PIPE_ACCESS_OUTBOUND | FILE_FLAG_OVERLAPPED, |
| 228 | PIPE_TYPE_BYTE | PIPE_WAIT, |
| 229 | 1, // Number of pipes |
| 230 | 1024, // Out buffer size |
| 231 | 1024, // In buffer size |
| 232 | 0, // Timeout in ms |
| 233 | NULL); |
| 234 | |
| 235 | if (handles[kWriteHandle] == INVALID_HANDLE_VALUE) { |
| 236 | Syslog::PrintErr("CreateNamedPipe failed %d\n" , GetLastError()); |
| 237 | return false; |
| 238 | } |
| 239 | |
| 240 | handles[kReadHandle] = |
| 241 | CreateFileW(pipe_name, GENERIC_READ, 0, &inherit_handle, OPEN_EXISTING, |
| 242 | FILE_READ_ATTRIBUTES | FILE_FLAG_OVERLAPPED, NULL); |
| 243 | if (handles[kReadHandle] == INVALID_HANDLE_VALUE) { |
| 244 | Syslog::PrintErr("CreateFile failed %d\n" , GetLastError()); |
| 245 | return false; |
| 246 | } |
| 247 | } else { |
| 248 | ASSERT((type == kInheritWrite) || (type == kInheritNone)); |
| 249 | handles[kReadHandle] = |
| 250 | CreateNamedPipeW(pipe_name, PIPE_ACCESS_INBOUND | FILE_FLAG_OVERLAPPED, |
| 251 | PIPE_TYPE_BYTE | PIPE_WAIT, |
| 252 | 1, // Number of pipes |
| 253 | 1024, // Out buffer size |
| 254 | 1024, // In buffer size |
| 255 | 0, // Timeout in ms |
| 256 | NULL); |
| 257 | |
| 258 | if (handles[kReadHandle] == INVALID_HANDLE_VALUE) { |
| 259 | Syslog::PrintErr("CreateNamedPipe failed %d\n" , GetLastError()); |
| 260 | return false; |
| 261 | } |
| 262 | |
| 263 | handles[kWriteHandle] = CreateFileW( |
| 264 | pipe_name, GENERIC_WRITE, 0, |
| 265 | (type == kInheritWrite) ? &inherit_handle : NULL, OPEN_EXISTING, |
| 266 | FILE_WRITE_ATTRIBUTES | FILE_FLAG_OVERLAPPED, NULL); |
| 267 | if (handles[kWriteHandle] == INVALID_HANDLE_VALUE) { |
| 268 | Syslog::PrintErr("CreateFile failed %d\n" , GetLastError()); |
| 269 | return false; |
| 270 | } |
| 271 | } |
| 272 | return true; |
| 273 | } |
| 274 | |
| 275 | static void CloseProcessPipe(HANDLE handles[2]) { |
| 276 | for (int i = kReadHandle; i < kWriteHandle; i++) { |
| 277 | if (handles[i] != INVALID_HANDLE_VALUE) { |
| 278 | if (!CloseHandle(handles[i])) { |
| 279 | Syslog::PrintErr("CloseHandle failed %d\n" , GetLastError()); |
| 280 | } |
| 281 | handles[i] = INVALID_HANDLE_VALUE; |
| 282 | } |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | static void CloseProcessPipes(HANDLE handles1[2], |
| 287 | HANDLE handles2[2], |
| 288 | HANDLE handles3[2], |
| 289 | HANDLE handles4[2]) { |
| 290 | CloseProcessPipe(handles1); |
| 291 | CloseProcessPipe(handles2); |
| 292 | CloseProcessPipe(handles3); |
| 293 | CloseProcessPipe(handles4); |
| 294 | } |
| 295 | |
| 296 | static int SetOsErrorMessage(char** os_error_message) { |
| 297 | int error_code = GetLastError(); |
| 298 | const int kMaxMessageLength = 256; |
| 299 | wchar_t message[kMaxMessageLength]; |
| 300 | FormatMessageIntoBuffer(error_code, message, kMaxMessageLength); |
| 301 | *os_error_message = StringUtilsWin::WideToUtf8(message); |
| 302 | return error_code; |
| 303 | } |
| 304 | |
| 305 | // Open an inheritable handle to NUL. |
| 306 | static HANDLE OpenNul() { |
| 307 | SECURITY_ATTRIBUTES inherit_handle; |
| 308 | inherit_handle.nLength = sizeof(SECURITY_ATTRIBUTES); |
| 309 | inherit_handle.bInheritHandle = TRUE; |
| 310 | inherit_handle.lpSecurityDescriptor = NULL; |
| 311 | HANDLE nul = CreateFile(L"NUL" , GENERIC_READ | GENERIC_WRITE, 0, |
| 312 | &inherit_handle, OPEN_EXISTING, 0, NULL); |
| 313 | if (nul == INVALID_HANDLE_VALUE) { |
| 314 | Syslog::PrintErr("CloseHandle failed %d\n" , GetLastError()); |
| 315 | } |
| 316 | return nul; |
| 317 | } |
| 318 | |
| 319 | typedef BOOL(WINAPI* InitProcThreadAttrListFn)(LPPROC_THREAD_ATTRIBUTE_LIST, |
| 320 | DWORD, |
| 321 | DWORD, |
| 322 | PSIZE_T); |
| 323 | |
| 324 | typedef BOOL(WINAPI* UpdateProcThreadAttrFn)(LPPROC_THREAD_ATTRIBUTE_LIST, |
| 325 | DWORD, |
| 326 | DWORD_PTR, |
| 327 | PVOID, |
| 328 | SIZE_T, |
| 329 | PVOID, |
| 330 | PSIZE_T); |
| 331 | |
| 332 | typedef VOID(WINAPI* DeleteProcThreadAttrListFn)(LPPROC_THREAD_ATTRIBUTE_LIST); |
| 333 | |
| 334 | static InitProcThreadAttrListFn init_proc_thread_attr_list = NULL; |
| 335 | static UpdateProcThreadAttrFn update_proc_thread_attr = NULL; |
| 336 | static DeleteProcThreadAttrListFn delete_proc_thread_attr_list = NULL; |
| 337 | |
| 338 | static Mutex* initialized_mutex = nullptr; |
| 339 | static bool load_attempted = false; |
| 340 | |
| 341 | static bool EnsureInitialized() { |
| 342 | HMODULE kernel32_module = GetModuleHandleW(L"kernel32.dll" ); |
| 343 | if (!load_attempted) { |
| 344 | MutexLocker locker(initialized_mutex); |
| 345 | if (load_attempted) { |
| 346 | return (delete_proc_thread_attr_list != NULL); |
| 347 | } |
| 348 | init_proc_thread_attr_list = reinterpret_cast<InitProcThreadAttrListFn>( |
| 349 | GetProcAddress(kernel32_module, "InitializeProcThreadAttributeList" )); |
| 350 | update_proc_thread_attr = reinterpret_cast<UpdateProcThreadAttrFn>( |
| 351 | GetProcAddress(kernel32_module, "UpdateProcThreadAttribute" )); |
| 352 | delete_proc_thread_attr_list = reinterpret_cast<DeleteProcThreadAttrListFn>( |
| 353 | GetProcAddress(kernel32_module, "DeleteProcThreadAttributeList" )); |
| 354 | load_attempted = true; |
| 355 | return (delete_proc_thread_attr_list != NULL); |
| 356 | } |
| 357 | return (delete_proc_thread_attr_list != NULL); |
| 358 | } |
| 359 | |
| 360 | const int kMaxPipeNameSize = 80; |
| 361 | template <int Count> |
| 362 | static int GenerateNames(wchar_t pipe_names[Count][kMaxPipeNameSize]) { |
| 363 | UUID uuid; |
| 364 | RPC_STATUS status = UuidCreateSequential(&uuid); |
| 365 | if ((status != RPC_S_OK) && (status != RPC_S_UUID_LOCAL_ONLY)) { |
| 366 | return status; |
| 367 | } |
| 368 | RPC_WSTR uuid_string; |
| 369 | status = UuidToStringW(&uuid, &uuid_string); |
| 370 | if (status != RPC_S_OK) { |
| 371 | return status; |
| 372 | } |
| 373 | for (int i = 0; i < Count; i++) { |
| 374 | static const wchar_t* prefix = L"\\\\.\\Pipe\\dart" ; |
| 375 | _snwprintf(pipe_names[i], kMaxPipeNameSize, L"%s_%s_%d" , prefix, |
| 376 | uuid_string, i + 1); |
| 377 | } |
| 378 | status = RpcStringFreeW(&uuid_string); |
| 379 | if (status != RPC_S_OK) { |
| 380 | return status; |
| 381 | } |
| 382 | return 0; |
| 383 | } |
| 384 | |
| 385 | class ProcessStarter { |
| 386 | public: |
| 387 | ProcessStarter(const char* path, |
| 388 | char* arguments[], |
| 389 | intptr_t arguments_length, |
| 390 | const char* working_directory, |
| 391 | char* environment[], |
| 392 | intptr_t environment_length, |
| 393 | ProcessStartMode mode, |
| 394 | intptr_t* in, |
| 395 | intptr_t* out, |
| 396 | intptr_t* err, |
| 397 | intptr_t* id, |
| 398 | intptr_t* exit_handler, |
| 399 | char** os_error_message) |
| 400 | : path_(path), |
| 401 | working_directory_(working_directory), |
| 402 | mode_(mode), |
| 403 | in_(in), |
| 404 | out_(out), |
| 405 | err_(err), |
| 406 | id_(id), |
| 407 | exit_handler_(exit_handler), |
| 408 | os_error_message_(os_error_message) { |
| 409 | stdin_handles_[kReadHandle] = INVALID_HANDLE_VALUE; |
| 410 | stdin_handles_[kWriteHandle] = INVALID_HANDLE_VALUE; |
| 411 | stdout_handles_[kReadHandle] = INVALID_HANDLE_VALUE; |
| 412 | stdout_handles_[kWriteHandle] = INVALID_HANDLE_VALUE; |
| 413 | stderr_handles_[kReadHandle] = INVALID_HANDLE_VALUE; |
| 414 | stderr_handles_[kWriteHandle] = INVALID_HANDLE_VALUE; |
| 415 | exit_handles_[kReadHandle] = INVALID_HANDLE_VALUE; |
| 416 | exit_handles_[kWriteHandle] = INVALID_HANDLE_VALUE; |
| 417 | |
| 418 | // Transform input strings to system format. |
| 419 | const wchar_t* system_path = StringUtilsWin::Utf8ToWide(path_); |
| 420 | wchar_t** system_arguments; |
| 421 | system_arguments = reinterpret_cast<wchar_t**>( |
| 422 | Dart_ScopeAllocate(arguments_length * sizeof(*system_arguments))); |
| 423 | for (int i = 0; i < arguments_length; i++) { |
| 424 | system_arguments[i] = StringUtilsWin::Utf8ToWide(arguments[i]); |
| 425 | } |
| 426 | |
| 427 | // Compute command-line length. |
| 428 | int command_line_length = wcslen(system_path); |
| 429 | for (int i = 0; i < arguments_length; i++) { |
| 430 | command_line_length += wcslen(system_arguments[i]); |
| 431 | } |
| 432 | // Account for null termination and one space per argument. |
| 433 | command_line_length += arguments_length + 1; |
| 434 | |
| 435 | // Put together command-line string. |
| 436 | command_line_ = reinterpret_cast<wchar_t*>( |
| 437 | Dart_ScopeAllocate(command_line_length * sizeof(*command_line_))); |
| 438 | int len = 0; |
| 439 | int remaining = command_line_length; |
| 440 | int written = |
| 441 | _snwprintf(command_line_ + len, remaining, L"%s" , system_path); |
| 442 | len += written; |
| 443 | remaining -= written; |
| 444 | ASSERT(remaining >= 0); |
| 445 | for (int i = 0; i < arguments_length; i++) { |
| 446 | written = _snwprintf(command_line_ + len, remaining, L" %s" , |
| 447 | system_arguments[i]); |
| 448 | len += written; |
| 449 | remaining -= written; |
| 450 | ASSERT(remaining >= 0); |
| 451 | } |
| 452 | |
| 453 | // Create environment block if an environment is supplied. |
| 454 | environment_block_ = NULL; |
| 455 | if (environment != NULL) { |
| 456 | wchar_t** system_environment; |
| 457 | system_environment = reinterpret_cast<wchar_t**>( |
| 458 | Dart_ScopeAllocate(environment_length * sizeof(*system_environment))); |
| 459 | // Convert environment strings to system strings. |
| 460 | for (intptr_t i = 0; i < environment_length; i++) { |
| 461 | system_environment[i] = StringUtilsWin::Utf8ToWide(environment[i]); |
| 462 | } |
| 463 | |
| 464 | // An environment block is a sequence of zero-terminated strings |
| 465 | // followed by a block-terminating zero char. |
| 466 | intptr_t block_size = 1; |
| 467 | for (intptr_t i = 0; i < environment_length; i++) { |
| 468 | block_size += wcslen(system_environment[i]) + 1; |
| 469 | } |
| 470 | environment_block_ = reinterpret_cast<wchar_t*>( |
| 471 | Dart_ScopeAllocate(block_size * sizeof(*environment_block_))); |
| 472 | intptr_t block_index = 0; |
| 473 | for (intptr_t i = 0; i < environment_length; i++) { |
| 474 | intptr_t len = wcslen(system_environment[i]); |
| 475 | intptr_t result = _snwprintf(environment_block_ + block_index, len, |
| 476 | L"%s" , system_environment[i]); |
| 477 | ASSERT(result == len); |
| 478 | block_index += len; |
| 479 | environment_block_[block_index++] = '\0'; |
| 480 | } |
| 481 | // Block-terminating zero char. |
| 482 | environment_block_[block_index++] = '\0'; |
| 483 | ASSERT(block_index == block_size); |
| 484 | } |
| 485 | |
| 486 | system_working_directory_ = NULL; |
| 487 | if (working_directory_ != NULL) { |
| 488 | system_working_directory_ = |
| 489 | StringUtilsWin::Utf8ToWide(working_directory_); |
| 490 | } |
| 491 | |
| 492 | attribute_list_ = NULL; |
| 493 | } |
| 494 | |
| 495 | ~ProcessStarter() { |
| 496 | if (attribute_list_ != NULL) { |
| 497 | delete_proc_thread_attr_list(attribute_list_); |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | int Start() { |
| 502 | // Create pipes required. |
| 503 | int err = CreatePipes(); |
| 504 | if (err != 0) { |
| 505 | return err; |
| 506 | } |
| 507 | |
| 508 | // Setup info structures. |
| 509 | STARTUPINFOEXW startup_info; |
| 510 | ZeroMemory(&startup_info, sizeof(startup_info)); |
| 511 | startup_info.StartupInfo.cb = sizeof(startup_info); |
| 512 | if (mode_ != kInheritStdio) { |
| 513 | startup_info.StartupInfo.hStdInput = stdin_handles_[kReadHandle]; |
| 514 | startup_info.StartupInfo.hStdOutput = stdout_handles_[kWriteHandle]; |
| 515 | startup_info.StartupInfo.hStdError = stderr_handles_[kWriteHandle]; |
| 516 | startup_info.StartupInfo.dwFlags = STARTF_USESTDHANDLES; |
| 517 | |
| 518 | bool supports_proc_thread_attr_lists = EnsureInitialized(); |
| 519 | if (supports_proc_thread_attr_lists) { |
| 520 | // Setup the handles to inherit. We only want to inherit the three |
| 521 | // handles for stdin, stdout and stderr. |
| 522 | SIZE_T size = 0; |
| 523 | // The call to determine the size of an attribute list always fails with |
| 524 | // ERROR_INSUFFICIENT_BUFFER and that error should be ignored. |
| 525 | if (!init_proc_thread_attr_list(NULL, 1, 0, &size) && |
| 526 | (GetLastError() != ERROR_INSUFFICIENT_BUFFER)) { |
| 527 | return CleanupAndReturnError(); |
| 528 | } |
| 529 | attribute_list_ = reinterpret_cast<LPPROC_THREAD_ATTRIBUTE_LIST>( |
| 530 | Dart_ScopeAllocate(size)); |
| 531 | ZeroMemory(attribute_list_, size); |
| 532 | if (!init_proc_thread_attr_list(attribute_list_, 1, 0, &size)) { |
| 533 | return CleanupAndReturnError(); |
| 534 | } |
| 535 | inherited_handles_ = {stdin_handles_[kReadHandle], |
| 536 | stdout_handles_[kWriteHandle], |
| 537 | stderr_handles_[kWriteHandle]}; |
| 538 | if (!update_proc_thread_attr( |
| 539 | attribute_list_, 0, PROC_THREAD_ATTRIBUTE_HANDLE_LIST, |
| 540 | inherited_handles_.data(), |
| 541 | inherited_handles_.size() * sizeof(HANDLE), NULL, NULL)) { |
| 542 | return CleanupAndReturnError(); |
| 543 | } |
| 544 | startup_info.lpAttributeList = attribute_list_; |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | PROCESS_INFORMATION process_info; |
| 549 | ZeroMemory(&process_info, sizeof(process_info)); |
| 550 | |
| 551 | // Create process. |
| 552 | DWORD creation_flags = |
| 553 | EXTENDED_STARTUPINFO_PRESENT | CREATE_UNICODE_ENVIRONMENT; |
| 554 | if (!Process::ModeIsAttached(mode_)) { |
| 555 | creation_flags |= DETACHED_PROCESS; |
| 556 | } |
| 557 | BOOL result = CreateProcessW( |
| 558 | NULL, // ApplicationName |
| 559 | command_line_, |
| 560 | NULL, // ProcessAttributes |
| 561 | NULL, // ThreadAttributes |
| 562 | TRUE, // InheritHandles |
| 563 | creation_flags, environment_block_, system_working_directory_, |
| 564 | reinterpret_cast<STARTUPINFOW*>(&startup_info), &process_info); |
| 565 | |
| 566 | if (result == 0) { |
| 567 | Syslog::PrintErr("CreateProcessW failed %d\n" , GetLastError()); |
| 568 | return CleanupAndReturnError(); |
| 569 | } |
| 570 | |
| 571 | if (mode_ != kInheritStdio) { |
| 572 | CloseHandle(stdin_handles_[kReadHandle]); |
| 573 | CloseHandle(stdout_handles_[kWriteHandle]); |
| 574 | CloseHandle(stderr_handles_[kWriteHandle]); |
| 575 | } |
| 576 | if (Process::ModeIsAttached(mode_)) { |
| 577 | ProcessInfoList::AddProcess(process_info.dwProcessId, |
| 578 | process_info.hProcess, |
| 579 | exit_handles_[kWriteHandle]); |
| 580 | } |
| 581 | if (mode_ != kDetached) { |
| 582 | // Connect the three stdio streams. |
| 583 | if (Process::ModeHasStdio(mode_)) { |
| 584 | FileHandle* stdin_handle = new FileHandle(stdin_handles_[kWriteHandle]); |
| 585 | FileHandle* stdout_handle = |
| 586 | new FileHandle(stdout_handles_[kReadHandle]); |
| 587 | FileHandle* stderr_handle = |
| 588 | new FileHandle(stderr_handles_[kReadHandle]); |
| 589 | *in_ = reinterpret_cast<intptr_t>(stdout_handle); |
| 590 | *out_ = reinterpret_cast<intptr_t>(stdin_handle); |
| 591 | *err_ = reinterpret_cast<intptr_t>(stderr_handle); |
| 592 | } |
| 593 | if (Process::ModeIsAttached(mode_)) { |
| 594 | FileHandle* exit_handle = new FileHandle(exit_handles_[kReadHandle]); |
| 595 | *exit_handler_ = reinterpret_cast<intptr_t>(exit_handle); |
| 596 | } |
| 597 | } |
| 598 | |
| 599 | CloseHandle(process_info.hThread); |
| 600 | |
| 601 | // Return process id. |
| 602 | *id_ = process_info.dwProcessId; |
| 603 | return 0; |
| 604 | } |
| 605 | |
| 606 | int CreatePipes() { |
| 607 | // Generate unique pipe names for the four named pipes needed. |
| 608 | wchar_t pipe_names[4][kMaxPipeNameSize]; |
| 609 | int status = GenerateNames<4>(pipe_names); |
| 610 | if (status != 0) { |
| 611 | SetOsErrorMessage(os_error_message_); |
| 612 | Syslog::PrintErr("UuidCreateSequential failed %d\n" , status); |
| 613 | return status; |
| 614 | } |
| 615 | |
| 616 | if (mode_ != kDetached) { |
| 617 | // Open pipes for stdin, stdout, stderr and for communicating the exit |
| 618 | // code. |
| 619 | if (Process::ModeHasStdio(mode_)) { |
| 620 | if (!CreateProcessPipe(stdin_handles_, pipe_names[0], kInheritRead) || |
| 621 | !CreateProcessPipe(stdout_handles_, pipe_names[1], kInheritWrite) || |
| 622 | !CreateProcessPipe(stderr_handles_, pipe_names[2], kInheritWrite)) { |
| 623 | return CleanupAndReturnError(); |
| 624 | } |
| 625 | } |
| 626 | // Only open exit code pipe for non detached processes. |
| 627 | if (Process::ModeIsAttached(mode_)) { |
| 628 | if (!CreateProcessPipe(exit_handles_, pipe_names[3], kInheritNone)) { |
| 629 | return CleanupAndReturnError(); |
| 630 | } |
| 631 | } |
| 632 | } else { |
| 633 | // Open NUL for stdin, stdout, and stderr. |
| 634 | stdin_handles_[kReadHandle] = OpenNul(); |
| 635 | if (stdin_handles_[kReadHandle] == INVALID_HANDLE_VALUE) { |
| 636 | return CleanupAndReturnError(); |
| 637 | } |
| 638 | |
| 639 | stdout_handles_[kWriteHandle] = OpenNul(); |
| 640 | if (stdout_handles_[kWriteHandle] == INVALID_HANDLE_VALUE) { |
| 641 | return CleanupAndReturnError(); |
| 642 | } |
| 643 | |
| 644 | stderr_handles_[kWriteHandle] = OpenNul(); |
| 645 | if (stderr_handles_[kWriteHandle] == INVALID_HANDLE_VALUE) { |
| 646 | return CleanupAndReturnError(); |
| 647 | } |
| 648 | } |
| 649 | return 0; |
| 650 | } |
| 651 | |
| 652 | int CleanupAndReturnError() { |
| 653 | int error_code = SetOsErrorMessage(os_error_message_); |
| 654 | CloseProcessPipes(stdin_handles_, stdout_handles_, stderr_handles_, |
| 655 | exit_handles_); |
| 656 | return error_code; |
| 657 | } |
| 658 | |
| 659 | HANDLE stdin_handles_[2]; |
| 660 | HANDLE stdout_handles_[2]; |
| 661 | HANDLE stderr_handles_[2]; |
| 662 | HANDLE exit_handles_[2]; |
| 663 | |
| 664 | const wchar_t* system_working_directory_; |
| 665 | wchar_t* command_line_; |
| 666 | wchar_t* environment_block_; |
| 667 | std::vector<HANDLE> inherited_handles_; |
| 668 | LPPROC_THREAD_ATTRIBUTE_LIST attribute_list_; |
| 669 | |
| 670 | const char* path_; |
| 671 | const char* working_directory_; |
| 672 | ProcessStartMode mode_; |
| 673 | intptr_t* in_; |
| 674 | intptr_t* out_; |
| 675 | intptr_t* err_; |
| 676 | intptr_t* id_; |
| 677 | intptr_t* exit_handler_; |
| 678 | char** os_error_message_; |
| 679 | |
| 680 | private: |
| 681 | DISALLOW_ALLOCATION(); |
| 682 | DISALLOW_IMPLICIT_CONSTRUCTORS(ProcessStarter); |
| 683 | }; |
| 684 | |
| 685 | int Process::Start(Namespace* namespc, |
| 686 | const char* path, |
| 687 | char* arguments[], |
| 688 | intptr_t arguments_length, |
| 689 | const char* working_directory, |
| 690 | char* environment[], |
| 691 | intptr_t environment_length, |
| 692 | ProcessStartMode mode, |
| 693 | intptr_t* in, |
| 694 | intptr_t* out, |
| 695 | intptr_t* err, |
| 696 | intptr_t* id, |
| 697 | intptr_t* exit_handler, |
| 698 | char** os_error_message) { |
| 699 | ProcessStarter starter(path, arguments, arguments_length, working_directory, |
| 700 | environment, environment_length, mode, in, out, err, |
| 701 | id, exit_handler, os_error_message); |
| 702 | return starter.Start(); |
| 703 | } |
| 704 | |
| 705 | class BufferList : public BufferListBase { |
| 706 | public: |
| 707 | BufferList() : read_pending_(true) {} |
| 708 | |
| 709 | // Indicate that data has been read into the buffer provided to |
| 710 | // overlapped read. |
| 711 | void DataIsRead(intptr_t size) { |
| 712 | ASSERT(read_pending_ == true); |
| 713 | set_data_size(data_size() + size); |
| 714 | set_free_size(free_size() - size); |
| 715 | ASSERT(free_size() >= 0); |
| 716 | read_pending_ = false; |
| 717 | } |
| 718 | |
| 719 | // The access to the read buffer for overlapped read. |
| 720 | bool GetReadBuffer(uint8_t** buffer, intptr_t* size) { |
| 721 | ASSERT(!read_pending_); |
| 722 | if (free_size() == 0) { |
| 723 | if (!Allocate()) { |
| 724 | return false; |
| 725 | } |
| 726 | } |
| 727 | ASSERT(free_size() > 0); |
| 728 | ASSERT(free_size() <= kBufferSize); |
| 729 | *buffer = FreeSpaceAddress(); |
| 730 | *size = free_size(); |
| 731 | read_pending_ = true; |
| 732 | return true; |
| 733 | } |
| 734 | |
| 735 | intptr_t GetDataSize() { return data_size(); } |
| 736 | |
| 737 | uint8_t* GetFirstDataBuffer() { |
| 738 | ASSERT(head() != NULL); |
| 739 | ASSERT(head() == tail()); |
| 740 | ASSERT(data_size() <= kBufferSize); |
| 741 | return head()->data(); |
| 742 | } |
| 743 | |
| 744 | void FreeDataBuffer() { Free(); } |
| 745 | |
| 746 | private: |
| 747 | bool read_pending_; |
| 748 | |
| 749 | DISALLOW_COPY_AND_ASSIGN(BufferList); |
| 750 | }; |
| 751 | |
| 752 | class OverlappedHandle { |
| 753 | public: |
| 754 | OverlappedHandle() {} |
| 755 | |
| 756 | void Init(HANDLE handle, HANDLE event) { |
| 757 | handle_ = handle; |
| 758 | event_ = event; |
| 759 | ClearOverlapped(); |
| 760 | } |
| 761 | |
| 762 | bool HasEvent(HANDLE event) { return (event_ == event); } |
| 763 | |
| 764 | bool Read() { |
| 765 | // Get the data read as a result of a completed overlapped operation. |
| 766 | if (overlapped_.InternalHigh > 0) { |
| 767 | buffer_.DataIsRead(overlapped_.InternalHigh); |
| 768 | } else { |
| 769 | buffer_.DataIsRead(0); |
| 770 | } |
| 771 | |
| 772 | // Keep reading until error or pending operation. |
| 773 | while (true) { |
| 774 | ClearOverlapped(); |
| 775 | uint8_t* buffer; |
| 776 | intptr_t buffer_size; |
| 777 | if (!buffer_.GetReadBuffer(&buffer, &buffer_size)) { |
| 778 | return false; |
| 779 | } |
| 780 | BOOL ok = ReadFile(handle_, buffer, buffer_size, NULL, &overlapped_); |
| 781 | if (!ok) { |
| 782 | return (GetLastError() == ERROR_IO_PENDING); |
| 783 | } |
| 784 | buffer_.DataIsRead(overlapped_.InternalHigh); |
| 785 | } |
| 786 | } |
| 787 | |
| 788 | Dart_Handle GetData() { return buffer_.GetData(); } |
| 789 | |
| 790 | intptr_t GetDataSize() { return buffer_.GetDataSize(); } |
| 791 | |
| 792 | uint8_t* GetFirstDataBuffer() { return buffer_.GetFirstDataBuffer(); } |
| 793 | |
| 794 | void FreeDataBuffer() { return buffer_.FreeDataBuffer(); } |
| 795 | |
| 796 | #if defined(DEBUG) |
| 797 | bool IsEmpty() const { return buffer_.IsEmpty(); } |
| 798 | #endif |
| 799 | |
| 800 | void Close() { |
| 801 | CloseHandle(handle_); |
| 802 | CloseHandle(event_); |
| 803 | handle_ = INVALID_HANDLE_VALUE; |
| 804 | overlapped_.hEvent = INVALID_HANDLE_VALUE; |
| 805 | } |
| 806 | |
| 807 | private: |
| 808 | void ClearOverlapped() { |
| 809 | memset(&overlapped_, 0, sizeof(overlapped_)); |
| 810 | overlapped_.hEvent = event_; |
| 811 | } |
| 812 | |
| 813 | OVERLAPPED overlapped_; |
| 814 | HANDLE handle_; |
| 815 | HANDLE event_; |
| 816 | BufferList buffer_; |
| 817 | |
| 818 | DISALLOW_ALLOCATION(); |
| 819 | DISALLOW_COPY_AND_ASSIGN(OverlappedHandle); |
| 820 | }; |
| 821 | |
| 822 | bool Process::Wait(intptr_t pid, |
| 823 | intptr_t in, |
| 824 | intptr_t out, |
| 825 | intptr_t err, |
| 826 | intptr_t exit_event, |
| 827 | ProcessResult* result) { |
| 828 | // Close input to the process right away. |
| 829 | reinterpret_cast<FileHandle*>(in)->Close(); |
| 830 | |
| 831 | // All pipes created to the sub-process support overlapped IO. |
| 832 | FileHandle* stdout_handle = reinterpret_cast<FileHandle*>(out); |
| 833 | ASSERT(stdout_handle->SupportsOverlappedIO()); |
| 834 | FileHandle* stderr_handle = reinterpret_cast<FileHandle*>(err); |
| 835 | ASSERT(stderr_handle->SupportsOverlappedIO()); |
| 836 | FileHandle* exit_handle = reinterpret_cast<FileHandle*>(exit_event); |
| 837 | ASSERT(exit_handle->SupportsOverlappedIO()); |
| 838 | |
| 839 | // Create three events for overlapped IO. These are created as already |
| 840 | // signalled to ensure they have read called at least once. |
| 841 | static const int kHandles = 3; |
| 842 | HANDLE events[kHandles]; |
| 843 | for (int i = 0; i < kHandles; i++) { |
| 844 | events[i] = CreateEvent(NULL, FALSE, TRUE, NULL); |
| 845 | } |
| 846 | |
| 847 | // Setup the structure for handling overlapped IO. |
| 848 | OverlappedHandle oh[kHandles]; |
| 849 | oh[0].Init(stdout_handle->handle(), events[0]); |
| 850 | oh[1].Init(stderr_handle->handle(), events[1]); |
| 851 | oh[2].Init(exit_handle->handle(), events[2]); |
| 852 | |
| 853 | // Continue until all handles are closed. |
| 854 | int alive = kHandles; |
| 855 | while (alive > 0) { |
| 856 | // Blocking call waiting for events from the child process. |
| 857 | DWORD wait_result = WaitForMultipleObjects(alive, events, FALSE, INFINITE); |
| 858 | |
| 859 | // Find the handle signalled. |
| 860 | int index = wait_result - WAIT_OBJECT_0; |
| 861 | for (int i = 0; i < kHandles; i++) { |
| 862 | if (oh[i].HasEvent(events[index])) { |
| 863 | bool ok = oh[i].Read(); |
| 864 | if (!ok) { |
| 865 | if (GetLastError() == ERROR_BROKEN_PIPE) { |
| 866 | oh[i].Close(); |
| 867 | alive--; |
| 868 | if (index < alive) { |
| 869 | events[index] = events[alive]; |
| 870 | } |
| 871 | } else if (err != ERROR_IO_PENDING) { |
| 872 | DWORD e = GetLastError(); |
| 873 | oh[0].Close(); |
| 874 | oh[1].Close(); |
| 875 | oh[2].Close(); |
| 876 | SetLastError(e); |
| 877 | return false; |
| 878 | } |
| 879 | } |
| 880 | break; |
| 881 | } |
| 882 | } |
| 883 | } |
| 884 | |
| 885 | // All handles closed and all data read. |
| 886 | result->set_stdout_data(oh[0].GetData()); |
| 887 | result->set_stderr_data(oh[1].GetData()); |
| 888 | DEBUG_ASSERT(oh[0].IsEmpty()); |
| 889 | DEBUG_ASSERT(oh[1].IsEmpty()); |
| 890 | |
| 891 | // Calculate the exit code. |
| 892 | ASSERT(oh[2].GetDataSize() == 8); |
| 893 | uint32_t exit_codes[2]; |
| 894 | memmove(&exit_codes, oh[2].GetFirstDataBuffer(), sizeof(exit_codes)); |
| 895 | oh[2].FreeDataBuffer(); |
| 896 | intptr_t exit_code = exit_codes[0]; |
| 897 | intptr_t negative = exit_codes[1]; |
| 898 | if (negative != 0) { |
| 899 | exit_code = -exit_code; |
| 900 | } |
| 901 | result->set_exit_code(exit_code); |
| 902 | return true; |
| 903 | } |
| 904 | |
| 905 | bool Process::Kill(intptr_t id, int signal) { |
| 906 | USE(signal); // signal is not used on Windows. |
| 907 | HANDLE process_handle; |
| 908 | HANDLE wait_handle; |
| 909 | HANDLE exit_pipe; |
| 910 | // First check the process info list for the process to get a handle to it. |
| 911 | bool success = ProcessInfoList::LookupProcess(id, &process_handle, |
| 912 | &wait_handle, &exit_pipe); |
| 913 | // For detached processes we don't have the process registered in the |
| 914 | // process info list. Try to look it up through the OS. |
| 915 | if (!success) { |
| 916 | process_handle = OpenProcess(PROCESS_TERMINATE, FALSE, id); |
| 917 | // The process is already dead. |
| 918 | if (process_handle == INVALID_HANDLE_VALUE) { |
| 919 | return false; |
| 920 | } |
| 921 | } |
| 922 | BOOL result = TerminateProcess(process_handle, -1); |
| 923 | return result ? true : false; |
| 924 | } |
| 925 | |
| 926 | void Process::TerminateExitCodeHandler() { |
| 927 | // Nothing needs to be done on Windows. |
| 928 | } |
| 929 | |
| 930 | intptr_t Process::CurrentProcessId() { |
| 931 | return static_cast<intptr_t>(GetCurrentProcessId()); |
| 932 | } |
| 933 | |
| 934 | int64_t Process::CurrentRSS() { |
| 935 | PROCESS_MEMORY_COUNTERS pmc; |
| 936 | if (!GetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc))) { |
| 937 | return -1; |
| 938 | } |
| 939 | return pmc.WorkingSetSize; |
| 940 | } |
| 941 | |
| 942 | int64_t Process::MaxRSS() { |
| 943 | PROCESS_MEMORY_COUNTERS pmc; |
| 944 | if (!GetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc))) { |
| 945 | return -1; |
| 946 | } |
| 947 | return pmc.PeakWorkingSetSize; |
| 948 | } |
| 949 | |
| 950 | static SignalInfo* signal_handlers = NULL; |
| 951 | static Mutex* signal_mutex = nullptr; |
| 952 | |
| 953 | SignalInfo::~SignalInfo() { |
| 954 | FileHandle* file_handle = reinterpret_cast<FileHandle*>(fd_); |
| 955 | file_handle->Close(); |
| 956 | file_handle->Release(); |
| 957 | } |
| 958 | |
| 959 | BOOL WINAPI SignalHandler(DWORD signal) { |
| 960 | MutexLocker lock(signal_mutex); |
| 961 | const SignalInfo* handler = signal_handlers; |
| 962 | bool handled = false; |
| 963 | while (handler != NULL) { |
| 964 | if (handler->signal() == signal) { |
| 965 | int value = 0; |
| 966 | SocketBase::Write(handler->fd(), &value, 1, SocketBase::kAsync); |
| 967 | handled = true; |
| 968 | } |
| 969 | handler = handler->next(); |
| 970 | } |
| 971 | return handled; |
| 972 | } |
| 973 | |
| 974 | intptr_t GetWinSignal(intptr_t signal) { |
| 975 | switch (signal) { |
| 976 | case kSighup: |
| 977 | return CTRL_CLOSE_EVENT; |
| 978 | case kSigint: |
| 979 | return CTRL_C_EVENT; |
| 980 | default: |
| 981 | return -1; |
| 982 | } |
| 983 | } |
| 984 | |
| 985 | intptr_t Process::SetSignalHandler(intptr_t signal) { |
| 986 | signal = GetWinSignal(signal); |
| 987 | if (signal == -1) { |
| 988 | SetLastError(ERROR_NOT_SUPPORTED); |
| 989 | return -1; |
| 990 | } |
| 991 | |
| 992 | // Generate a unique pipe name for the named pipe. |
| 993 | wchar_t pipe_name[kMaxPipeNameSize]; |
| 994 | int status = GenerateNames<1>(&pipe_name); |
| 995 | if (status != 0) { |
| 996 | return status; |
| 997 | } |
| 998 | |
| 999 | HANDLE fds[2]; |
| 1000 | if (!CreateProcessPipe(fds, pipe_name, kInheritNone)) { |
| 1001 | int error_code = GetLastError(); |
| 1002 | CloseProcessPipe(fds); |
| 1003 | SetLastError(error_code); |
| 1004 | return -1; |
| 1005 | } |
| 1006 | MutexLocker lock(signal_mutex); |
| 1007 | FileHandle* write_handle = new FileHandle(fds[kWriteHandle]); |
| 1008 | write_handle->EnsureInitialized(EventHandler::delegate()); |
| 1009 | intptr_t write_fd = reinterpret_cast<intptr_t>(write_handle); |
| 1010 | if (signal_handlers == NULL) { |
| 1011 | if (SetConsoleCtrlHandler(SignalHandler, true) == 0) { |
| 1012 | int error_code = GetLastError(); |
| 1013 | // Since SetConsoleCtrlHandler failed, the IO completion port will |
| 1014 | // never receive an event for this handle, and will therefore never |
| 1015 | // release the reference Retained by EnsureInitialized(). So, we |
| 1016 | // have to do a second Release() here. |
| 1017 | write_handle->Release(); |
| 1018 | write_handle->Release(); |
| 1019 | CloseProcessPipe(fds); |
| 1020 | SetLastError(error_code); |
| 1021 | return -1; |
| 1022 | } |
| 1023 | } |
| 1024 | signal_handlers = new SignalInfo(write_fd, signal, signal_handlers); |
| 1025 | return reinterpret_cast<intptr_t>(new FileHandle(fds[kReadHandle])); |
| 1026 | } |
| 1027 | |
| 1028 | void Process::ClearSignalHandler(intptr_t signal, Dart_Port port) { |
| 1029 | signal = GetWinSignal(signal); |
| 1030 | if (signal == -1) { |
| 1031 | return; |
| 1032 | } |
| 1033 | MutexLocker lock(signal_mutex); |
| 1034 | SignalInfo* handler = signal_handlers; |
| 1035 | while (handler != NULL) { |
| 1036 | bool remove = false; |
| 1037 | if (handler->signal() == signal) { |
| 1038 | if ((port == ILLEGAL_PORT) || (handler->port() == port)) { |
| 1039 | if (signal_handlers == handler) { |
| 1040 | signal_handlers = handler->next(); |
| 1041 | } |
| 1042 | handler->Unlink(); |
| 1043 | FileHandle* file_handle = reinterpret_cast<FileHandle*>(handler->fd()); |
| 1044 | file_handle->Release(); |
| 1045 | remove = true; |
| 1046 | } |
| 1047 | } |
| 1048 | SignalInfo* next = handler->next(); |
| 1049 | if (remove) { |
| 1050 | delete handler; |
| 1051 | } |
| 1052 | handler = next; |
| 1053 | } |
| 1054 | if (signal_handlers == NULL) { |
| 1055 | USE(SetConsoleCtrlHandler(SignalHandler, false)); |
| 1056 | } |
| 1057 | } |
| 1058 | |
| 1059 | void Process::ClearSignalHandlerByFd(intptr_t fd, Dart_Port port) { |
| 1060 | MutexLocker lock(signal_mutex); |
| 1061 | SignalInfo* handler = signal_handlers; |
| 1062 | while (handler != NULL) { |
| 1063 | bool remove = false; |
| 1064 | if (handler->fd() == fd) { |
| 1065 | if ((port == ILLEGAL_PORT) || (handler->port() == port)) { |
| 1066 | if (signal_handlers == handler) { |
| 1067 | signal_handlers = handler->next(); |
| 1068 | } |
| 1069 | handler->Unlink(); |
| 1070 | FileHandle* file_handle = reinterpret_cast<FileHandle*>(handler->fd()); |
| 1071 | file_handle->Release(); |
| 1072 | remove = true; |
| 1073 | } |
| 1074 | } |
| 1075 | SignalInfo* next = handler->next(); |
| 1076 | if (remove) { |
| 1077 | delete handler; |
| 1078 | } |
| 1079 | handler = next; |
| 1080 | } |
| 1081 | if (signal_handlers == NULL) { |
| 1082 | USE(SetConsoleCtrlHandler(SignalHandler, false)); |
| 1083 | } |
| 1084 | } |
| 1085 | |
| 1086 | void ProcessInfoList::Init() { |
| 1087 | ASSERT(ProcessInfoList::mutex_ == nullptr); |
| 1088 | ProcessInfoList::mutex_ = new Mutex(); |
| 1089 | } |
| 1090 | |
| 1091 | void ProcessInfoList::Cleanup() { |
| 1092 | ASSERT(ProcessInfoList::mutex_ != nullptr); |
| 1093 | delete ProcessInfoList::mutex_; |
| 1094 | ProcessInfoList::mutex_ = nullptr; |
| 1095 | } |
| 1096 | |
| 1097 | void Process::Init() { |
| 1098 | ProcessInfoList::Init(); |
| 1099 | |
| 1100 | ASSERT(signal_mutex == nullptr); |
| 1101 | signal_mutex = new Mutex(); |
| 1102 | |
| 1103 | ASSERT(initialized_mutex == nullptr); |
| 1104 | initialized_mutex = new Mutex(); |
| 1105 | |
| 1106 | ASSERT(Process::global_exit_code_mutex_ == nullptr); |
| 1107 | Process::global_exit_code_mutex_ = new Mutex(); |
| 1108 | } |
| 1109 | |
| 1110 | void Process::Cleanup() { |
| 1111 | ClearAllSignalHandlers(); |
| 1112 | |
| 1113 | ASSERT(signal_mutex != nullptr); |
| 1114 | delete signal_mutex; |
| 1115 | signal_mutex = nullptr; |
| 1116 | |
| 1117 | ASSERT(initialized_mutex != nullptr); |
| 1118 | delete initialized_mutex; |
| 1119 | initialized_mutex = nullptr; |
| 1120 | |
| 1121 | ASSERT(Process::global_exit_code_mutex_ != nullptr); |
| 1122 | delete Process::global_exit_code_mutex_; |
| 1123 | Process::global_exit_code_mutex_ = nullptr; |
| 1124 | |
| 1125 | ProcessInfoList::Cleanup(); |
| 1126 | } |
| 1127 | |
| 1128 | } // namespace bin |
| 1129 | } // namespace dart |
| 1130 | |
| 1131 | #endif // defined(HOST_OS_WINDOWS) |
| 1132 | |