| 1 | // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "platform/utils.h" |
| 6 | |
| 7 | namespace dart { |
| 8 | |
| 9 | // Implementation is from "Hacker's Delight" by Henry S. Warren, Jr., |
| 10 | // figure 3-3, page 48, where the function is called clp2. |
| 11 | uintptr_t Utils::RoundUpToPowerOfTwo(uintptr_t x) { |
| 12 | x = x - 1; |
| 13 | x = x | (x >> 1); |
| 14 | x = x | (x >> 2); |
| 15 | x = x | (x >> 4); |
| 16 | x = x | (x >> 8); |
| 17 | x = x | (x >> 16); |
| 18 | #if defined(ARCH_IS_64_BIT) |
| 19 | x = x | (x >> 32); |
| 20 | #endif // defined(ARCH_IS_64_BIT) |
| 21 | return x + 1; |
| 22 | } |
| 23 | |
| 24 | int Utils::CountOneBits64(uint64_t x) { |
| 25 | // Apparently there are x64 chips without popcount. |
| 26 | #if __GNUC__ && !defined(HOST_ARCH_IA32) && !defined(HOST_ARCH_X64) |
| 27 | return __builtin_popcountll(x); |
| 28 | #else |
| 29 | return CountOneBits32(static_cast<uint32_t>(x)) + |
| 30 | CountOneBits32(static_cast<uint32_t>(x >> 32)); |
| 31 | #endif |
| 32 | } |
| 33 | |
| 34 | int Utils::CountOneBits32(uint32_t x) { |
| 35 | // Apparently there are x64 chips without popcount. |
| 36 | #if __GNUC__ && !defined(HOST_ARCH_IA32) && !defined(HOST_ARCH_X64) |
| 37 | return __builtin_popcount(x); |
| 38 | #else |
| 39 | // Implementation is from "Hacker's Delight" by Henry S. Warren, Jr., |
| 40 | // figure 5-2, page 66, where the function is called pop. |
| 41 | x = x - ((x >> 1) & 0x55555555); |
| 42 | x = (x & 0x33333333) + ((x >> 2) & 0x33333333); |
| 43 | x = (x + (x >> 4)) & 0x0F0F0F0F; |
| 44 | x = x + (x >> 8); |
| 45 | x = x + (x >> 16); |
| 46 | return static_cast<int>(x & 0x0000003F); |
| 47 | #endif |
| 48 | } |
| 49 | |
| 50 | // TODO(koda): Compare to flsll call/intrinsic. |
| 51 | int Utils::HighestBit(int64_t v) { |
| 52 | uint64_t x = static_cast<uint64_t>((v > 0) ? v : -v); |
| 53 | uint64_t t; |
| 54 | int r = 0; |
| 55 | if ((t = x >> 32) != 0) { |
| 56 | x = t; |
| 57 | r += 32; |
| 58 | } |
| 59 | if ((t = x >> 16) != 0) { |
| 60 | x = t; |
| 61 | r += 16; |
| 62 | } |
| 63 | if ((t = x >> 8) != 0) { |
| 64 | x = t; |
| 65 | r += 8; |
| 66 | } |
| 67 | if ((t = x >> 4) != 0) { |
| 68 | x = t; |
| 69 | r += 4; |
| 70 | } |
| 71 | if ((t = x >> 2) != 0) { |
| 72 | x = t; |
| 73 | r += 2; |
| 74 | } |
| 75 | if (x > 1) r += 1; |
| 76 | return r; |
| 77 | } |
| 78 | |
| 79 | int Utils::CountLeadingZeros64(uint64_t x) { |
| 80 | #if defined(ARCH_IS_32_BIT) |
| 81 | const uint32_t x_hi = static_cast<uint32_t>(x >> 32); |
| 82 | if (x_hi != 0) { |
| 83 | return CountLeadingZeros32(x_hi); |
| 84 | } |
| 85 | return 32 + CountLeadingZeros32(static_cast<uint32_t>(x)); |
| 86 | #elif defined(HOST_OS_WINDOWS) |
| 87 | unsigned long position; // NOLINT |
| 88 | return (_BitScanReverse64(&position, x) == 0) |
| 89 | ? 64 |
| 90 | : 63 - static_cast<int>(position); |
| 91 | #else |
| 92 | return x == 0 ? 64 : __builtin_clzll(x); |
| 93 | #endif |
| 94 | } |
| 95 | |
| 96 | int Utils::CountLeadingZeros32(uint32_t x) { |
| 97 | #if defined(HOST_OS_WINDOWS) |
| 98 | unsigned long position; // NOLINT |
| 99 | return (_BitScanReverse(&position, x) == 0) ? 32 |
| 100 | : 31 - static_cast<int>(position); |
| 101 | #else |
| 102 | return x == 0 ? 32 : __builtin_clz(x); |
| 103 | #endif |
| 104 | } |
| 105 | |
| 106 | int Utils::CountTrailingZeros64(uint64_t x) { |
| 107 | #if defined(ARCH_IS_32_BIT) |
| 108 | const uint32_t x_lo = static_cast<uint32_t>(x); |
| 109 | if (x_lo != 0) { |
| 110 | return CountTrailingZeros32(x_lo); |
| 111 | } |
| 112 | return 32 + CountTrailingZeros32(static_cast<uint32_t>(x >> 32)); |
| 113 | #elif defined(HOST_OS_WINDOWS) |
| 114 | unsigned long position; // NOLINT |
| 115 | return (_BitScanForward64(&position, x) == 0) ? 64 |
| 116 | : static_cast<int>(position); |
| 117 | #else |
| 118 | return x == 0 ? 64 : __builtin_ctzll(x); |
| 119 | #endif |
| 120 | } |
| 121 | |
| 122 | int Utils::CountTrailingZeros32(uint32_t x) { |
| 123 | #if defined(HOST_OS_WINDOWS) |
| 124 | unsigned long position; // NOLINT |
| 125 | return (_BitScanForward(&position, x) == 0) ? 32 : static_cast<int>(position); |
| 126 | #else |
| 127 | return x == 0 ? 32 : __builtin_ctz(x); |
| 128 | #endif |
| 129 | } |
| 130 | |
| 131 | uint64_t Utils::ReverseBits64(uint64_t x) { |
| 132 | const uint64_t one = static_cast<uint64_t>(1); |
| 133 | uint64_t result = 0; |
| 134 | for (uint64_t rbit = one << 63; x != 0; x >>= 1) { |
| 135 | if ((x & one) != 0) result |= rbit; |
| 136 | rbit >>= 1; |
| 137 | } |
| 138 | return result; |
| 139 | } |
| 140 | |
| 141 | uint32_t Utils::ReverseBits32(uint32_t x) { |
| 142 | const uint32_t one = static_cast<uint32_t>(1); |
| 143 | uint32_t result = 0; |
| 144 | for (uint32_t rbit = one << 31; x != 0; x >>= 1) { |
| 145 | if ((x & one) != 0) result |= rbit; |
| 146 | rbit >>= 1; |
| 147 | } |
| 148 | return result; |
| 149 | } |
| 150 | |
| 151 | // Implementation according to H.S.Warren's "Hacker's Delight" |
| 152 | // (Addison Wesley, 2002) Chapter 10 and T.Grablund, P.L.Montogomery's |
| 153 | // "Division by Invariant Integers Using Multiplication" (PLDI 1994). |
| 154 | void Utils::CalculateMagicAndShiftForDivRem(int64_t divisor, |
| 155 | int64_t* magic, |
| 156 | int64_t* shift) { |
| 157 | ASSERT(divisor <= -2 || divisor >= 2); |
| 158 | /* The magic number M and shift S can be calculated in the following way: |
| 159 | * Let nc be the most positive value of numerator(n) such that nc = kd - 1, |
| 160 | * where divisor(d) >= 2. |
| 161 | * Let nc be the most negative value of numerator(n) such that nc = kd + 1, |
| 162 | * where divisor(d) <= -2. |
| 163 | * Thus nc can be calculated like: |
| 164 | * nc = exp + exp % d - 1, where d >= 2 and exp = 2^63. |
| 165 | * nc = -exp + (exp + 1) % d, where d >= 2 and exp = 2^63. |
| 166 | * |
| 167 | * So the shift p is the smallest p satisfying |
| 168 | * 2^p > nc * (d - 2^p % d), where d >= 2 |
| 169 | * 2^p > nc * (d + 2^p % d), where d <= -2. |
| 170 | * |
| 171 | * The magic number M is calculated by |
| 172 | * M = (2^p + d - 2^p % d) / d, where d >= 2 |
| 173 | * M = (2^p - d - 2^p % d) / d, where d <= -2. |
| 174 | */ |
| 175 | int64_t p = 63; |
| 176 | const uint64_t exp = 1LL << 63; |
| 177 | |
| 178 | // Initialize the computations. |
| 179 | uint64_t abs_d = (divisor >= 0) ? divisor : -static_cast<uint64_t>(divisor); |
| 180 | uint64_t sign_bit = static_cast<uint64_t>(divisor) >> 63; |
| 181 | uint64_t tmp = exp + sign_bit; |
| 182 | uint64_t abs_nc = tmp - 1 - (tmp % abs_d); |
| 183 | uint64_t quotient1 = exp / abs_nc; |
| 184 | uint64_t remainder1 = exp % abs_nc; |
| 185 | uint64_t quotient2 = exp / abs_d; |
| 186 | uint64_t remainder2 = exp % abs_d; |
| 187 | |
| 188 | // To avoid handling both positive and negative divisor, |
| 189 | // "Hacker's Delight" introduces a method to handle these |
| 190 | // two cases together to avoid duplication. |
| 191 | uint64_t delta; |
| 192 | do { |
| 193 | p++; |
| 194 | quotient1 = 2 * quotient1; |
| 195 | remainder1 = 2 * remainder1; |
| 196 | if (remainder1 >= abs_nc) { |
| 197 | quotient1++; |
| 198 | remainder1 = remainder1 - abs_nc; |
| 199 | } |
| 200 | quotient2 = 2 * quotient2; |
| 201 | remainder2 = 2 * remainder2; |
| 202 | if (remainder2 >= abs_d) { |
| 203 | quotient2++; |
| 204 | remainder2 = remainder2 - abs_d; |
| 205 | } |
| 206 | delta = abs_d - remainder2; |
| 207 | } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0)); |
| 208 | |
| 209 | *magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1); |
| 210 | *shift = p - 64; |
| 211 | } |
| 212 | |
| 213 | uint32_t Utils::StringHash(const char* data, int length) { |
| 214 | // This implementation is based on the public domain MurmurHash |
| 215 | // version 2.0. It assumes that the underlying CPU can read from |
| 216 | // unaligned addresses. The constants M and R have been determined |
| 217 | // to work well experimentally. |
| 218 | // TODO(3158902): need to account for unaligned address access on ARM. |
| 219 | const uint32_t M = 0x5bd1e995; |
| 220 | const int R = 24; |
| 221 | int size = length; |
| 222 | uint32_t hash = size; |
| 223 | |
| 224 | // Mix four bytes at a time into the hash. |
| 225 | const uint8_t* cursor = reinterpret_cast<const uint8_t*>(data); |
| 226 | while (size >= 4) { |
| 227 | uint32_t part = *reinterpret_cast<const uint32_t*>(cursor); |
| 228 | part *= M; |
| 229 | part ^= part >> R; |
| 230 | part *= M; |
| 231 | hash *= M; |
| 232 | hash ^= part; |
| 233 | cursor += 4; |
| 234 | size -= 4; |
| 235 | } |
| 236 | |
| 237 | // Handle the last few bytes of the string. |
| 238 | switch (size) { |
| 239 | case 3: |
| 240 | hash ^= cursor[2] << 16; |
| 241 | FALL_THROUGH; |
| 242 | case 2: |
| 243 | hash ^= cursor[1] << 8; |
| 244 | FALL_THROUGH; |
| 245 | case 1: |
| 246 | hash ^= cursor[0]; |
| 247 | hash *= M; |
| 248 | } |
| 249 | |
| 250 | // Do a few final mixes of the hash to ensure the last few bytes are |
| 251 | // well-incorporated. |
| 252 | hash ^= hash >> 13; |
| 253 | hash *= M; |
| 254 | hash ^= hash >> 15; |
| 255 | return hash; |
| 256 | } |
| 257 | |
| 258 | uint32_t Utils::WordHash(intptr_t key) { |
| 259 | // TODO(iposva): Need to check hash spreading. |
| 260 | // This example is from http://www.concentric.net/~Ttwang/tech/inthash.htm |
| 261 | // via. http://web.archive.org/web/20071223173210/http://www.concentric.net/~Ttwang/tech/inthash.htm |
| 262 | uword a = static_cast<uword>(key); |
| 263 | a = (a + 0x7ed55d16) + (a << 12); |
| 264 | a = (a ^ 0xc761c23c) ^ (a >> 19); |
| 265 | a = (a + 0x165667b1) + (a << 5); |
| 266 | a = (a + 0xd3a2646c) ^ (a << 9); |
| 267 | a = (a + 0xfd7046c5) + (a << 3); |
| 268 | a = (a ^ 0xb55a4f09) ^ (a >> 16); |
| 269 | return static_cast<uint32_t>(a); |
| 270 | } |
| 271 | |
| 272 | char* Utils::SCreate(const char* format, ...) { |
| 273 | va_list args; |
| 274 | va_start(args, format); |
| 275 | char* buffer = VSCreate(format, args); |
| 276 | va_end(args); |
| 277 | return buffer; |
| 278 | } |
| 279 | |
| 280 | char* Utils::VSCreate(const char* format, va_list args) { |
| 281 | // Measure. |
| 282 | va_list measure_args; |
| 283 | va_copy(measure_args, args); |
| 284 | intptr_t len = VSNPrint(NULL, 0, format, measure_args); |
| 285 | va_end(measure_args); |
| 286 | |
| 287 | char* buffer = reinterpret_cast<char*>(malloc(len + 1)); |
| 288 | ASSERT(buffer != NULL); |
| 289 | |
| 290 | // Print. |
| 291 | va_list print_args; |
| 292 | va_copy(print_args, args); |
| 293 | VSNPrint(buffer, len + 1, format, print_args); |
| 294 | va_end(print_args); |
| 295 | return buffer; |
| 296 | } |
| 297 | |
| 298 | Utils::CStringUniquePtr Utils::CreateCStringUniquePtr(char* str) { |
| 299 | return std::unique_ptr<char, decltype(std::free)*>{str, std::free}; |
| 300 | } |
| 301 | |
| 302 | } // namespace dart |
| 303 | |