| 1 | // Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "vm/globals.h" // Needed here to get TARGET_ARCH_X64. |
| 6 | #if defined(TARGET_ARCH_X64) |
| 7 | |
| 8 | #define SHOULD_NOT_INCLUDE_RUNTIME |
| 9 | |
| 10 | #include "vm/class_id.h" |
| 11 | #include "vm/compiler/asm_intrinsifier.h" |
| 12 | #include "vm/compiler/assembler/assembler.h" |
| 13 | |
| 14 | namespace dart { |
| 15 | namespace compiler { |
| 16 | |
| 17 | // When entering intrinsics code: |
| 18 | // R10: Arguments descriptor |
| 19 | // TOS: Return address |
| 20 | // The R10 registers can be destroyed only if there is no slow-path, i.e. |
| 21 | // if the intrinsified method always executes a return. |
| 22 | // The RBP register should not be modified, because it is used by the profiler. |
| 23 | // The PP and THR registers (see constants_x64.h) must be preserved. |
| 24 | |
| 25 | #define __ assembler-> |
| 26 | |
| 27 | intptr_t AsmIntrinsifier::ParameterSlotFromSp() { |
| 28 | return 0; |
| 29 | } |
| 30 | |
| 31 | static bool IsABIPreservedRegister(Register reg) { |
| 32 | return ((1 << reg) & CallingConventions::kCalleeSaveCpuRegisters) != 0; |
| 33 | } |
| 34 | |
| 35 | void AsmIntrinsifier::IntrinsicCallPrologue(Assembler* assembler) { |
| 36 | ASSERT(IsABIPreservedRegister(CODE_REG)); |
| 37 | ASSERT(!IsABIPreservedRegister(ARGS_DESC_REG)); |
| 38 | ASSERT(IsABIPreservedRegister(CALLEE_SAVED_TEMP)); |
| 39 | ASSERT(CALLEE_SAVED_TEMP != CODE_REG); |
| 40 | ASSERT(CALLEE_SAVED_TEMP != ARGS_DESC_REG); |
| 41 | |
| 42 | assembler->Comment("IntrinsicCallPrologue" ); |
| 43 | assembler->movq(CALLEE_SAVED_TEMP, ARGS_DESC_REG); |
| 44 | } |
| 45 | |
| 46 | void AsmIntrinsifier::IntrinsicCallEpilogue(Assembler* assembler) { |
| 47 | assembler->Comment("IntrinsicCallEpilogue" ); |
| 48 | assembler->movq(ARGS_DESC_REG, CALLEE_SAVED_TEMP); |
| 49 | } |
| 50 | |
| 51 | // Allocate a GrowableObjectArray using the backing array specified. |
| 52 | // On stack: type argument (+2), data (+1), return-address (+0). |
| 53 | void AsmIntrinsifier::GrowableArray_Allocate(Assembler* assembler, |
| 54 | Label* normal_ir_body) { |
| 55 | // This snippet of inlined code uses the following registers: |
| 56 | // RAX, RCX, R13 |
| 57 | // and the newly allocated object is returned in RAX. |
| 58 | const intptr_t kTypeArgumentsOffset = 2 * target::kWordSize; |
| 59 | const intptr_t kArrayOffset = 1 * target::kWordSize; |
| 60 | |
| 61 | // Try allocating in new space. |
| 62 | const Class& cls = GrowableObjectArrayClass(); |
| 63 | __ TryAllocate(cls, normal_ir_body, Assembler::kFarJump, RAX, R13); |
| 64 | |
| 65 | // Store backing array object in growable array object. |
| 66 | __ movq(RCX, Address(RSP, kArrayOffset)); // data argument. |
| 67 | // RAX is new, no barrier needed. |
| 68 | __ StoreIntoObjectNoBarrier( |
| 69 | RAX, FieldAddress(RAX, target::GrowableObjectArray::data_offset()), RCX); |
| 70 | |
| 71 | // RAX: new growable array object start as a tagged pointer. |
| 72 | // Store the type argument field in the growable array object. |
| 73 | __ movq(RCX, Address(RSP, kTypeArgumentsOffset)); // type argument. |
| 74 | __ StoreIntoObjectNoBarrier( |
| 75 | RAX, |
| 76 | FieldAddress(RAX, target::GrowableObjectArray::type_arguments_offset()), |
| 77 | RCX); |
| 78 | |
| 79 | // Set the length field in the growable array object to 0. |
| 80 | __ ZeroInitSmiField( |
| 81 | FieldAddress(RAX, target::GrowableObjectArray::length_offset())); |
| 82 | __ ret(); // returns the newly allocated object in RAX. |
| 83 | |
| 84 | __ Bind(normal_ir_body); |
| 85 | } |
| 86 | |
| 87 | #define TYPED_ARRAY_ALLOCATION(cid, max_len, scale_factor) \ |
| 88 | Label fall_through; \ |
| 89 | const intptr_t kArrayLengthStackOffset = 1 * target::kWordSize; \ |
| 90 | NOT_IN_PRODUCT(__ MaybeTraceAllocation(cid, normal_ir_body, false)); \ |
| 91 | __ movq(RDI, Address(RSP, kArrayLengthStackOffset)); /* Array length. */ \ |
| 92 | /* Check that length is a positive Smi. */ \ |
| 93 | /* RDI: requested array length argument. */ \ |
| 94 | __ testq(RDI, Immediate(kSmiTagMask)); \ |
| 95 | __ j(NOT_ZERO, normal_ir_body); \ |
| 96 | __ cmpq(RDI, Immediate(0)); \ |
| 97 | __ j(LESS, normal_ir_body); \ |
| 98 | __ SmiUntag(RDI); \ |
| 99 | /* Check for maximum allowed length. */ \ |
| 100 | /* RDI: untagged array length. */ \ |
| 101 | __ cmpq(RDI, Immediate(max_len)); \ |
| 102 | __ j(GREATER, normal_ir_body); \ |
| 103 | /* Special case for scaling by 16. */ \ |
| 104 | if (scale_factor == TIMES_16) { \ |
| 105 | /* double length of array. */ \ |
| 106 | __ addq(RDI, RDI); \ |
| 107 | /* only scale by 8. */ \ |
| 108 | scale_factor = TIMES_8; \ |
| 109 | } \ |
| 110 | const intptr_t fixed_size_plus_alignment_padding = \ |
| 111 | target::TypedData::InstanceSize() + \ |
| 112 | target::ObjectAlignment::kObjectAlignment - 1; \ |
| 113 | __ leaq(RDI, Address(RDI, scale_factor, fixed_size_plus_alignment_padding)); \ |
| 114 | __ andq(RDI, Immediate(-target::ObjectAlignment::kObjectAlignment)); \ |
| 115 | __ movq(RAX, Address(THR, target::Thread::top_offset())); \ |
| 116 | __ movq(RCX, RAX); \ |
| 117 | \ |
| 118 | /* RDI: allocation size. */ \ |
| 119 | __ addq(RCX, RDI); \ |
| 120 | __ j(CARRY, normal_ir_body); \ |
| 121 | \ |
| 122 | /* Check if the allocation fits into the remaining space. */ \ |
| 123 | /* RAX: potential new object start. */ \ |
| 124 | /* RCX: potential next object start. */ \ |
| 125 | /* RDI: allocation size. */ \ |
| 126 | __ cmpq(RCX, Address(THR, target::Thread::end_offset())); \ |
| 127 | __ j(ABOVE_EQUAL, normal_ir_body); \ |
| 128 | \ |
| 129 | /* Successfully allocated the object(s), now update top to point to */ \ |
| 130 | /* next object start and initialize the object. */ \ |
| 131 | __ movq(Address(THR, target::Thread::top_offset()), RCX); \ |
| 132 | __ addq(RAX, Immediate(kHeapObjectTag)); \ |
| 133 | /* Initialize the tags. */ \ |
| 134 | /* RAX: new object start as a tagged pointer. */ \ |
| 135 | /* RCX: new object end address. */ \ |
| 136 | /* RDI: allocation size. */ \ |
| 137 | /* R13: scratch register. */ \ |
| 138 | { \ |
| 139 | Label size_tag_overflow, done; \ |
| 140 | __ cmpq(RDI, Immediate(target::ObjectLayout::kSizeTagMaxSizeTag)); \ |
| 141 | __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); \ |
| 142 | __ shlq(RDI, Immediate(target::ObjectLayout::kTagBitsSizeTagPos - \ |
| 143 | target::ObjectAlignment::kObjectAlignmentLog2)); \ |
| 144 | __ jmp(&done, Assembler::kNearJump); \ |
| 145 | \ |
| 146 | __ Bind(&size_tag_overflow); \ |
| 147 | __ LoadImmediate(RDI, Immediate(0)); \ |
| 148 | __ Bind(&done); \ |
| 149 | \ |
| 150 | /* Get the class index and insert it into the tags. */ \ |
| 151 | uint32_t tags = \ |
| 152 | target::MakeTagWordForNewSpaceObject(cid, /*instance_size=*/0); \ |
| 153 | __ orq(RDI, Immediate(tags)); \ |
| 154 | __ movq(FieldAddress(RAX, target::Object::tags_offset()), \ |
| 155 | RDI); /* Tags. */ \ |
| 156 | } \ |
| 157 | /* Set the length field. */ \ |
| 158 | /* RAX: new object start as a tagged pointer. */ \ |
| 159 | /* RCX: new object end address. */ \ |
| 160 | __ movq(RDI, Address(RSP, kArrayLengthStackOffset)); /* Array length. */ \ |
| 161 | __ StoreIntoObjectNoBarrier( \ |
| 162 | RAX, FieldAddress(RAX, target::TypedDataBase::length_offset()), RDI); \ |
| 163 | /* Initialize all array elements to 0. */ \ |
| 164 | /* RAX: new object start as a tagged pointer. */ \ |
| 165 | /* RCX: new object end address. */ \ |
| 166 | /* RDI: iterator which initially points to the start of the variable */ \ |
| 167 | /* RBX: scratch register. */ \ |
| 168 | /* data area to be initialized. */ \ |
| 169 | __ xorq(RBX, RBX); /* Zero. */ \ |
| 170 | __ leaq(RDI, FieldAddress(RAX, target::TypedData::InstanceSize())); \ |
| 171 | __ StoreInternalPointer( \ |
| 172 | RAX, FieldAddress(RAX, target::TypedDataBase::data_field_offset()), \ |
| 173 | RDI); \ |
| 174 | Label done, init_loop; \ |
| 175 | __ Bind(&init_loop); \ |
| 176 | __ cmpq(RDI, RCX); \ |
| 177 | __ j(ABOVE_EQUAL, &done, Assembler::kNearJump); \ |
| 178 | __ movq(Address(RDI, 0), RBX); \ |
| 179 | __ addq(RDI, Immediate(target::kWordSize)); \ |
| 180 | __ jmp(&init_loop, Assembler::kNearJump); \ |
| 181 | __ Bind(&done); \ |
| 182 | \ |
| 183 | __ ret(); \ |
| 184 | __ Bind(normal_ir_body); |
| 185 | |
| 186 | static ScaleFactor GetScaleFactor(intptr_t size) { |
| 187 | switch (size) { |
| 188 | case 1: |
| 189 | return TIMES_1; |
| 190 | case 2: |
| 191 | return TIMES_2; |
| 192 | case 4: |
| 193 | return TIMES_4; |
| 194 | case 8: |
| 195 | return TIMES_8; |
| 196 | case 16: |
| 197 | return TIMES_16; |
| 198 | } |
| 199 | UNREACHABLE(); |
| 200 | return static_cast<ScaleFactor>(0); |
| 201 | } |
| 202 | |
| 203 | #define TYPED_DATA_ALLOCATOR(clazz) \ |
| 204 | void AsmIntrinsifier::TypedData_##clazz##_factory(Assembler* assembler, \ |
| 205 | Label* normal_ir_body) { \ |
| 206 | intptr_t size = TypedDataElementSizeInBytes(kTypedData##clazz##Cid); \ |
| 207 | intptr_t max_len = TypedDataMaxNewSpaceElements(kTypedData##clazz##Cid); \ |
| 208 | ScaleFactor scale = GetScaleFactor(size); \ |
| 209 | TYPED_ARRAY_ALLOCATION(kTypedData##clazz##Cid, max_len, scale); \ |
| 210 | } |
| 211 | CLASS_LIST_TYPED_DATA(TYPED_DATA_ALLOCATOR) |
| 212 | #undef TYPED_DATA_ALLOCATOR |
| 213 | |
| 214 | // Tests if two top most arguments are smis, jumps to label not_smi if not. |
| 215 | // Topmost argument is in RAX. |
| 216 | static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) { |
| 217 | __ movq(RAX, Address(RSP, +1 * target::kWordSize)); |
| 218 | __ movq(RCX, Address(RSP, +2 * target::kWordSize)); |
| 219 | __ orq(RCX, RAX); |
| 220 | __ testq(RCX, Immediate(kSmiTagMask)); |
| 221 | __ j(NOT_ZERO, not_smi); |
| 222 | } |
| 223 | |
| 224 | void AsmIntrinsifier::Integer_addFromInteger(Assembler* assembler, |
| 225 | Label* normal_ir_body) { |
| 226 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 227 | // RAX contains right argument. |
| 228 | __ addq(RAX, Address(RSP, +2 * target::kWordSize)); |
| 229 | __ j(OVERFLOW, normal_ir_body, Assembler::kNearJump); |
| 230 | // Result is in RAX. |
| 231 | __ ret(); |
| 232 | __ Bind(normal_ir_body); |
| 233 | } |
| 234 | |
| 235 | void AsmIntrinsifier::Integer_add(Assembler* assembler, Label* normal_ir_body) { |
| 236 | Integer_addFromInteger(assembler, normal_ir_body); |
| 237 | } |
| 238 | |
| 239 | void AsmIntrinsifier::Integer_subFromInteger(Assembler* assembler, |
| 240 | Label* normal_ir_body) { |
| 241 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 242 | // RAX contains right argument, which is the actual minuend of subtraction. |
| 243 | __ subq(RAX, Address(RSP, +2 * target::kWordSize)); |
| 244 | __ j(OVERFLOW, normal_ir_body, Assembler::kNearJump); |
| 245 | // Result is in RAX. |
| 246 | __ ret(); |
| 247 | __ Bind(normal_ir_body); |
| 248 | } |
| 249 | |
| 250 | void AsmIntrinsifier::Integer_sub(Assembler* assembler, Label* normal_ir_body) { |
| 251 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 252 | // RAX contains right argument, which is the actual subtrahend of subtraction. |
| 253 | __ movq(RCX, RAX); |
| 254 | __ movq(RAX, Address(RSP, +2 * target::kWordSize)); |
| 255 | __ subq(RAX, RCX); |
| 256 | __ j(OVERFLOW, normal_ir_body, Assembler::kNearJump); |
| 257 | // Result is in RAX. |
| 258 | __ ret(); |
| 259 | __ Bind(normal_ir_body); |
| 260 | } |
| 261 | |
| 262 | void AsmIntrinsifier::Integer_mulFromInteger(Assembler* assembler, |
| 263 | Label* normal_ir_body) { |
| 264 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 265 | // RAX is the right argument. |
| 266 | ASSERT(kSmiTag == 0); // Adjust code below if not the case. |
| 267 | __ SmiUntag(RAX); |
| 268 | __ imulq(RAX, Address(RSP, +2 * target::kWordSize)); |
| 269 | __ j(OVERFLOW, normal_ir_body, Assembler::kNearJump); |
| 270 | // Result is in RAX. |
| 271 | __ ret(); |
| 272 | __ Bind(normal_ir_body); |
| 273 | } |
| 274 | |
| 275 | void AsmIntrinsifier::Integer_mul(Assembler* assembler, Label* normal_ir_body) { |
| 276 | Integer_mulFromInteger(assembler, normal_ir_body); |
| 277 | } |
| 278 | |
| 279 | // Optimizations: |
| 280 | // - result is 0 if: |
| 281 | // - left is 0 |
| 282 | // - left equals right |
| 283 | // - result is left if |
| 284 | // - left > 0 && left < right |
| 285 | // RAX: Tagged left (dividend). |
| 286 | // RCX: Tagged right (divisor). |
| 287 | // Returns: |
| 288 | // RAX: Untagged fallthrough result (remainder to be adjusted), or |
| 289 | // RAX: Tagged return result (remainder). |
| 290 | static void EmitRemainderOperation(Assembler* assembler) { |
| 291 | Label return_zero, try_modulo, not_32bit, done; |
| 292 | // Check for quick zero results. |
| 293 | __ cmpq(RAX, Immediate(0)); |
| 294 | __ j(EQUAL, &return_zero, Assembler::kNearJump); |
| 295 | __ cmpq(RAX, RCX); |
| 296 | __ j(EQUAL, &return_zero, Assembler::kNearJump); |
| 297 | |
| 298 | // Check if result equals left. |
| 299 | __ cmpq(RAX, Immediate(0)); |
| 300 | __ j(LESS, &try_modulo, Assembler::kNearJump); |
| 301 | // left is positive. |
| 302 | __ cmpq(RAX, RCX); |
| 303 | __ j(GREATER, &try_modulo, Assembler::kNearJump); |
| 304 | // left is less than right, result is left (RAX). |
| 305 | __ ret(); |
| 306 | |
| 307 | __ Bind(&return_zero); |
| 308 | __ xorq(RAX, RAX); |
| 309 | __ ret(); |
| 310 | |
| 311 | __ Bind(&try_modulo); |
| 312 | |
| 313 | // Check if both operands fit into 32bits as idiv with 64bit operands |
| 314 | // requires twice as many cycles and has much higher latency. We are checking |
| 315 | // this before untagging them to avoid corner case dividing INT_MAX by -1 that |
| 316 | // raises exception because quotient is too large for 32bit register. |
| 317 | __ movsxd(RBX, RAX); |
| 318 | __ cmpq(RBX, RAX); |
| 319 | __ j(NOT_EQUAL, ¬_32bit, Assembler::kNearJump); |
| 320 | __ movsxd(RBX, RCX); |
| 321 | __ cmpq(RBX, RCX); |
| 322 | __ j(NOT_EQUAL, ¬_32bit, Assembler::kNearJump); |
| 323 | |
| 324 | // Both operands are 31bit smis. Divide using 32bit idiv. |
| 325 | __ SmiUntag(RAX); |
| 326 | __ SmiUntag(RCX); |
| 327 | __ cdq(); |
| 328 | __ idivl(RCX); |
| 329 | __ movsxd(RAX, RDX); |
| 330 | __ jmp(&done, Assembler::kNearJump); |
| 331 | |
| 332 | // Divide using 64bit idiv. |
| 333 | __ Bind(¬_32bit); |
| 334 | __ SmiUntag(RAX); |
| 335 | __ SmiUntag(RCX); |
| 336 | __ cqo(); |
| 337 | __ idivq(RCX); |
| 338 | __ movq(RAX, RDX); |
| 339 | __ Bind(&done); |
| 340 | } |
| 341 | |
| 342 | // Implementation: |
| 343 | // res = left % right; |
| 344 | // if (res < 0) { |
| 345 | // if (right < 0) { |
| 346 | // res = res - right; |
| 347 | // } else { |
| 348 | // res = res + right; |
| 349 | // } |
| 350 | // } |
| 351 | void AsmIntrinsifier::Integer_moduloFromInteger(Assembler* assembler, |
| 352 | Label* normal_ir_body) { |
| 353 | Label negative_result; |
| 354 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 355 | __ movq(RCX, Address(RSP, +2 * target::kWordSize)); |
| 356 | // RAX: Tagged left (dividend). |
| 357 | // RCX: Tagged right (divisor). |
| 358 | __ cmpq(RCX, Immediate(0)); |
| 359 | __ j(EQUAL, normal_ir_body); |
| 360 | EmitRemainderOperation(assembler); |
| 361 | // Untagged remainder result in RAX. |
| 362 | __ cmpq(RAX, Immediate(0)); |
| 363 | __ j(LESS, &negative_result, Assembler::kNearJump); |
| 364 | __ SmiTag(RAX); |
| 365 | __ ret(); |
| 366 | |
| 367 | __ Bind(&negative_result); |
| 368 | Label subtract; |
| 369 | // RAX: Untagged result. |
| 370 | // RCX: Untagged right. |
| 371 | __ cmpq(RCX, Immediate(0)); |
| 372 | __ j(LESS, &subtract, Assembler::kNearJump); |
| 373 | __ addq(RAX, RCX); |
| 374 | __ SmiTag(RAX); |
| 375 | __ ret(); |
| 376 | |
| 377 | __ Bind(&subtract); |
| 378 | __ subq(RAX, RCX); |
| 379 | __ SmiTag(RAX); |
| 380 | __ ret(); |
| 381 | |
| 382 | __ Bind(normal_ir_body); |
| 383 | } |
| 384 | |
| 385 | void AsmIntrinsifier::Integer_truncDivide(Assembler* assembler, |
| 386 | Label* normal_ir_body) { |
| 387 | Label not_32bit; |
| 388 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 389 | // RAX: right argument (divisor) |
| 390 | __ cmpq(RAX, Immediate(0)); |
| 391 | __ j(EQUAL, normal_ir_body, Assembler::kNearJump); |
| 392 | __ movq(RCX, RAX); |
| 393 | __ movq(RAX, |
| 394 | Address(RSP, +2 * target::kWordSize)); // Left argument (dividend). |
| 395 | |
| 396 | // Check if both operands fit into 32bits as idiv with 64bit operands |
| 397 | // requires twice as many cycles and has much higher latency. We are checking |
| 398 | // this before untagging them to avoid corner case dividing INT_MAX by -1 that |
| 399 | // raises exception because quotient is too large for 32bit register. |
| 400 | __ movsxd(RBX, RAX); |
| 401 | __ cmpq(RBX, RAX); |
| 402 | __ j(NOT_EQUAL, ¬_32bit); |
| 403 | __ movsxd(RBX, RCX); |
| 404 | __ cmpq(RBX, RCX); |
| 405 | __ j(NOT_EQUAL, ¬_32bit); |
| 406 | |
| 407 | // Both operands are 31bit smis. Divide using 32bit idiv. |
| 408 | __ SmiUntag(RAX); |
| 409 | __ SmiUntag(RCX); |
| 410 | __ cdq(); |
| 411 | __ idivl(RCX); |
| 412 | __ movsxd(RAX, RAX); |
| 413 | __ SmiTag(RAX); // Result is guaranteed to fit into a smi. |
| 414 | __ ret(); |
| 415 | |
| 416 | // Divide using 64bit idiv. |
| 417 | __ Bind(¬_32bit); |
| 418 | __ SmiUntag(RAX); |
| 419 | __ SmiUntag(RCX); |
| 420 | __ pushq(RDX); // Preserve RDX in case of 'fall_through'. |
| 421 | __ cqo(); |
| 422 | __ idivq(RCX); |
| 423 | __ popq(RDX); |
| 424 | // Check the corner case of dividing the 'MIN_SMI' with -1, in which case we |
| 425 | // cannot tag the result. |
| 426 | __ cmpq(RAX, Immediate(0x4000000000000000)); |
| 427 | __ j(EQUAL, normal_ir_body); |
| 428 | __ SmiTag(RAX); |
| 429 | __ ret(); |
| 430 | __ Bind(normal_ir_body); |
| 431 | } |
| 432 | |
| 433 | void AsmIntrinsifier::Integer_negate(Assembler* assembler, |
| 434 | Label* normal_ir_body) { |
| 435 | __ movq(RAX, Address(RSP, +1 * target::kWordSize)); |
| 436 | __ testq(RAX, Immediate(kSmiTagMask)); |
| 437 | __ j(NOT_ZERO, normal_ir_body, Assembler::kNearJump); // Non-smi value. |
| 438 | __ negq(RAX); |
| 439 | __ j(OVERFLOW, normal_ir_body, Assembler::kNearJump); |
| 440 | // Result is in RAX. |
| 441 | __ ret(); |
| 442 | __ Bind(normal_ir_body); |
| 443 | } |
| 444 | |
| 445 | void AsmIntrinsifier::Integer_bitAndFromInteger(Assembler* assembler, |
| 446 | Label* normal_ir_body) { |
| 447 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 448 | // RAX is the right argument. |
| 449 | __ andq(RAX, Address(RSP, +2 * target::kWordSize)); |
| 450 | // Result is in RAX. |
| 451 | __ ret(); |
| 452 | __ Bind(normal_ir_body); |
| 453 | } |
| 454 | |
| 455 | void AsmIntrinsifier::Integer_bitAnd(Assembler* assembler, |
| 456 | Label* normal_ir_body) { |
| 457 | Integer_bitAndFromInteger(assembler, normal_ir_body); |
| 458 | } |
| 459 | |
| 460 | void AsmIntrinsifier::Integer_bitOrFromInteger(Assembler* assembler, |
| 461 | Label* normal_ir_body) { |
| 462 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 463 | // RAX is the right argument. |
| 464 | __ orq(RAX, Address(RSP, +2 * target::kWordSize)); |
| 465 | // Result is in RAX. |
| 466 | __ ret(); |
| 467 | __ Bind(normal_ir_body); |
| 468 | } |
| 469 | |
| 470 | void AsmIntrinsifier::Integer_bitOr(Assembler* assembler, |
| 471 | Label* normal_ir_body) { |
| 472 | Integer_bitOrFromInteger(assembler, normal_ir_body); |
| 473 | } |
| 474 | |
| 475 | void AsmIntrinsifier::Integer_bitXorFromInteger(Assembler* assembler, |
| 476 | Label* normal_ir_body) { |
| 477 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 478 | // RAX is the right argument. |
| 479 | __ xorq(RAX, Address(RSP, +2 * target::kWordSize)); |
| 480 | // Result is in RAX. |
| 481 | __ ret(); |
| 482 | __ Bind(normal_ir_body); |
| 483 | } |
| 484 | |
| 485 | void AsmIntrinsifier::Integer_bitXor(Assembler* assembler, |
| 486 | Label* normal_ir_body) { |
| 487 | Integer_bitXorFromInteger(assembler, normal_ir_body); |
| 488 | } |
| 489 | |
| 490 | void AsmIntrinsifier::Integer_shl(Assembler* assembler, Label* normal_ir_body) { |
| 491 | ASSERT(kSmiTagShift == 1); |
| 492 | ASSERT(kSmiTag == 0); |
| 493 | Label overflow; |
| 494 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 495 | // Shift value is in RAX. Compare with tagged Smi. |
| 496 | __ cmpq(RAX, Immediate(target::ToRawSmi(target::kSmiBits))); |
| 497 | __ j(ABOVE_EQUAL, normal_ir_body, Assembler::kNearJump); |
| 498 | |
| 499 | __ SmiUntag(RAX); |
| 500 | __ movq(RCX, RAX); // Shift amount must be in RCX. |
| 501 | __ movq(RAX, Address(RSP, +2 * target::kWordSize)); // Value. |
| 502 | |
| 503 | // Overflow test - all the shifted-out bits must be same as the sign bit. |
| 504 | __ movq(RDI, RAX); |
| 505 | __ shlq(RAX, RCX); |
| 506 | __ sarq(RAX, RCX); |
| 507 | __ cmpq(RAX, RDI); |
| 508 | __ j(NOT_EQUAL, &overflow, Assembler::kNearJump); |
| 509 | |
| 510 | __ shlq(RAX, RCX); // Shift for result now we know there is no overflow. |
| 511 | |
| 512 | // RAX is a correctly tagged Smi. |
| 513 | __ ret(); |
| 514 | |
| 515 | __ Bind(&overflow); |
| 516 | // Mint is rarely used on x64 (only for integers requiring 64 bit instead of |
| 517 | // 63 bits as represented by Smi). |
| 518 | __ Bind(normal_ir_body); |
| 519 | } |
| 520 | |
| 521 | static void CompareIntegers(Assembler* assembler, |
| 522 | Label* normal_ir_body, |
| 523 | Condition true_condition) { |
| 524 | Label true_label; |
| 525 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 526 | // RAX contains the right argument. |
| 527 | __ cmpq(Address(RSP, +2 * target::kWordSize), RAX); |
| 528 | __ j(true_condition, &true_label, Assembler::kNearJump); |
| 529 | __ LoadObject(RAX, CastHandle<Object>(FalseObject())); |
| 530 | __ ret(); |
| 531 | __ Bind(&true_label); |
| 532 | __ LoadObject(RAX, CastHandle<Object>(TrueObject())); |
| 533 | __ ret(); |
| 534 | __ Bind(normal_ir_body); |
| 535 | } |
| 536 | |
| 537 | void AsmIntrinsifier::Integer_lessThan(Assembler* assembler, |
| 538 | Label* normal_ir_body) { |
| 539 | CompareIntegers(assembler, normal_ir_body, LESS); |
| 540 | } |
| 541 | |
| 542 | void AsmIntrinsifier::Integer_greaterThanFromInt(Assembler* assembler, |
| 543 | Label* normal_ir_body) { |
| 544 | CompareIntegers(assembler, normal_ir_body, LESS); |
| 545 | } |
| 546 | |
| 547 | void AsmIntrinsifier::Integer_greaterThan(Assembler* assembler, |
| 548 | Label* normal_ir_body) { |
| 549 | CompareIntegers(assembler, normal_ir_body, GREATER); |
| 550 | } |
| 551 | |
| 552 | void AsmIntrinsifier::Integer_lessEqualThan(Assembler* assembler, |
| 553 | Label* normal_ir_body) { |
| 554 | CompareIntegers(assembler, normal_ir_body, LESS_EQUAL); |
| 555 | } |
| 556 | |
| 557 | void AsmIntrinsifier::Integer_greaterEqualThan(Assembler* assembler, |
| 558 | Label* normal_ir_body) { |
| 559 | CompareIntegers(assembler, normal_ir_body, GREATER_EQUAL); |
| 560 | } |
| 561 | |
| 562 | // This is called for Smi and Mint receivers. The right argument |
| 563 | // can be Smi, Mint or double. |
| 564 | void AsmIntrinsifier::Integer_equalToInteger(Assembler* assembler, |
| 565 | Label* normal_ir_body) { |
| 566 | Label true_label, check_for_mint; |
| 567 | const intptr_t kReceiverOffset = 2; |
| 568 | const intptr_t kArgumentOffset = 1; |
| 569 | |
| 570 | // For integer receiver '===' check first. |
| 571 | __ movq(RAX, Address(RSP, +kArgumentOffset * target::kWordSize)); |
| 572 | __ movq(RCX, Address(RSP, +kReceiverOffset * target::kWordSize)); |
| 573 | __ cmpq(RAX, RCX); |
| 574 | __ j(EQUAL, &true_label, Assembler::kNearJump); |
| 575 | __ orq(RAX, RCX); |
| 576 | __ testq(RAX, Immediate(kSmiTagMask)); |
| 577 | __ j(NOT_ZERO, &check_for_mint, Assembler::kNearJump); |
| 578 | // Both arguments are smi, '===' is good enough. |
| 579 | __ LoadObject(RAX, CastHandle<Object>(FalseObject())); |
| 580 | __ ret(); |
| 581 | __ Bind(&true_label); |
| 582 | __ LoadObject(RAX, CastHandle<Object>(TrueObject())); |
| 583 | __ ret(); |
| 584 | |
| 585 | // At least one of the arguments was not Smi. |
| 586 | Label receiver_not_smi; |
| 587 | __ Bind(&check_for_mint); |
| 588 | __ movq(RAX, Address(RSP, +kReceiverOffset * target::kWordSize)); |
| 589 | __ testq(RAX, Immediate(kSmiTagMask)); |
| 590 | __ j(NOT_ZERO, &receiver_not_smi); |
| 591 | |
| 592 | // Left (receiver) is Smi, return false if right is not Double. |
| 593 | // Note that an instance of Mint never contains a value that can be |
| 594 | // represented by Smi. |
| 595 | __ movq(RAX, Address(RSP, +kArgumentOffset * target::kWordSize)); |
| 596 | __ CompareClassId(RAX, kDoubleCid); |
| 597 | __ j(EQUAL, normal_ir_body); |
| 598 | __ LoadObject(RAX, CastHandle<Object>(FalseObject())); |
| 599 | __ ret(); |
| 600 | |
| 601 | __ Bind(&receiver_not_smi); |
| 602 | // RAX:: receiver. |
| 603 | __ CompareClassId(RAX, kMintCid); |
| 604 | __ j(NOT_EQUAL, normal_ir_body); |
| 605 | // Receiver is Mint, return false if right is Smi. |
| 606 | __ movq(RAX, Address(RSP, +kArgumentOffset * target::kWordSize)); |
| 607 | __ testq(RAX, Immediate(kSmiTagMask)); |
| 608 | __ j(NOT_ZERO, normal_ir_body); |
| 609 | // Smi == Mint -> false. |
| 610 | __ LoadObject(RAX, CastHandle<Object>(FalseObject())); |
| 611 | __ ret(); |
| 612 | // TODO(srdjan): Implement Mint == Mint comparison. |
| 613 | |
| 614 | __ Bind(normal_ir_body); |
| 615 | } |
| 616 | |
| 617 | void AsmIntrinsifier::Integer_equal(Assembler* assembler, |
| 618 | Label* normal_ir_body) { |
| 619 | Integer_equalToInteger(assembler, normal_ir_body); |
| 620 | } |
| 621 | |
| 622 | void AsmIntrinsifier::Integer_sar(Assembler* assembler, Label* normal_ir_body) { |
| 623 | Label shift_count_ok; |
| 624 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 625 | const Immediate& count_limit = Immediate(0x3F); |
| 626 | // Check that the count is not larger than what the hardware can handle. |
| 627 | // For shifting right a Smi the result is the same for all numbers |
| 628 | // >= count_limit. |
| 629 | __ SmiUntag(RAX); |
| 630 | // Negative counts throw exception. |
| 631 | __ cmpq(RAX, Immediate(0)); |
| 632 | __ j(LESS, normal_ir_body, Assembler::kNearJump); |
| 633 | __ cmpq(RAX, count_limit); |
| 634 | __ j(LESS_EQUAL, &shift_count_ok, Assembler::kNearJump); |
| 635 | __ movq(RAX, count_limit); |
| 636 | __ Bind(&shift_count_ok); |
| 637 | __ movq(RCX, RAX); // Shift amount must be in RCX. |
| 638 | __ movq(RAX, Address(RSP, +2 * target::kWordSize)); // Value. |
| 639 | __ SmiUntag(RAX); // Value. |
| 640 | __ sarq(RAX, RCX); |
| 641 | __ SmiTag(RAX); |
| 642 | __ ret(); |
| 643 | __ Bind(normal_ir_body); |
| 644 | } |
| 645 | |
| 646 | // Argument is Smi (receiver). |
| 647 | void AsmIntrinsifier::Smi_bitNegate(Assembler* assembler, |
| 648 | Label* normal_ir_body) { |
| 649 | __ movq(RAX, Address(RSP, +1 * target::kWordSize)); // Index. |
| 650 | __ notq(RAX); |
| 651 | __ andq(RAX, Immediate(~kSmiTagMask)); // Remove inverted smi-tag. |
| 652 | __ ret(); |
| 653 | } |
| 654 | |
| 655 | void AsmIntrinsifier::Smi_bitLength(Assembler* assembler, |
| 656 | Label* normal_ir_body) { |
| 657 | ASSERT(kSmiTagShift == 1); |
| 658 | __ movq(RAX, Address(RSP, +1 * target::kWordSize)); // Index. |
| 659 | // XOR with sign bit to complement bits if value is negative. |
| 660 | __ movq(RCX, RAX); |
| 661 | __ sarq(RCX, Immediate(63)); // All 0 or all 1. |
| 662 | __ xorq(RAX, RCX); |
| 663 | // BSR does not write the destination register if source is zero. Put a 1 in |
| 664 | // the Smi tag bit to ensure BSR writes to destination register. |
| 665 | __ orq(RAX, Immediate(kSmiTagMask)); |
| 666 | __ bsrq(RAX, RAX); |
| 667 | __ SmiTag(RAX); |
| 668 | __ ret(); |
| 669 | } |
| 670 | |
| 671 | void AsmIntrinsifier::Smi_bitAndFromSmi(Assembler* assembler, |
| 672 | Label* normal_ir_body) { |
| 673 | Integer_bitAndFromInteger(assembler, normal_ir_body); |
| 674 | } |
| 675 | |
| 676 | void AsmIntrinsifier::Bigint_lsh(Assembler* assembler, Label* normal_ir_body) { |
| 677 | // static void _lsh(Uint32List x_digits, int x_used, int n, |
| 678 | // Uint32List r_digits) |
| 679 | |
| 680 | __ movq(RDI, Address(RSP, 4 * target::kWordSize)); // x_digits |
| 681 | __ movq(R8, Address(RSP, 3 * target::kWordSize)); // x_used is Smi |
| 682 | __ subq(R8, Immediate(2)); // x_used > 0, Smi. R8 = x_used - 1, round up. |
| 683 | __ sarq(R8, Immediate(2)); // R8 + 1 = number of digit pairs to read. |
| 684 | __ movq(RCX, Address(RSP, 2 * target::kWordSize)); // n is Smi |
| 685 | __ SmiUntag(RCX); |
| 686 | __ movq(RBX, Address(RSP, 1 * target::kWordSize)); // r_digits |
| 687 | __ movq(RSI, RCX); |
| 688 | __ sarq(RSI, Immediate(6)); // RSI = n ~/ (2*_DIGIT_BITS). |
| 689 | __ leaq(RBX, |
| 690 | FieldAddress(RBX, RSI, TIMES_8, target::TypedData::data_offset())); |
| 691 | __ xorq(RAX, RAX); // RAX = 0. |
| 692 | __ movq(RDX, |
| 693 | FieldAddress(RDI, R8, TIMES_8, target::TypedData::data_offset())); |
| 694 | __ shldq(RAX, RDX, RCX); |
| 695 | __ movq(Address(RBX, R8, TIMES_8, 2 * kBytesPerBigIntDigit), RAX); |
| 696 | Label last; |
| 697 | __ cmpq(R8, Immediate(0)); |
| 698 | __ j(EQUAL, &last, Assembler::kNearJump); |
| 699 | Label loop; |
| 700 | __ Bind(&loop); |
| 701 | __ movq(RAX, RDX); |
| 702 | __ movq(RDX, FieldAddress(RDI, R8, TIMES_8, |
| 703 | target::TypedData::data_offset() - |
| 704 | 2 * kBytesPerBigIntDigit)); |
| 705 | __ shldq(RAX, RDX, RCX); |
| 706 | __ movq(Address(RBX, R8, TIMES_8, 0), RAX); |
| 707 | __ decq(R8); |
| 708 | __ j(NOT_ZERO, &loop, Assembler::kNearJump); |
| 709 | __ Bind(&last); |
| 710 | __ shldq(RDX, R8, RCX); // R8 == 0. |
| 711 | __ movq(Address(RBX, 0), RDX); |
| 712 | __ LoadObject(RAX, NullObject()); |
| 713 | __ ret(); |
| 714 | } |
| 715 | |
| 716 | void AsmIntrinsifier::Bigint_rsh(Assembler* assembler, Label* normal_ir_body) { |
| 717 | // static void _rsh(Uint32List x_digits, int x_used, int n, |
| 718 | // Uint32List r_digits) |
| 719 | |
| 720 | __ movq(RDI, Address(RSP, 4 * target::kWordSize)); // x_digits |
| 721 | __ movq(RCX, Address(RSP, 2 * target::kWordSize)); // n is Smi |
| 722 | __ SmiUntag(RCX); |
| 723 | __ movq(RBX, Address(RSP, 1 * target::kWordSize)); // r_digits |
| 724 | __ movq(RDX, RCX); |
| 725 | __ sarq(RDX, Immediate(6)); // RDX = n ~/ (2*_DIGIT_BITS). |
| 726 | __ movq(RSI, Address(RSP, 3 * target::kWordSize)); // x_used is Smi |
| 727 | __ subq(RSI, Immediate(2)); // x_used > 0, Smi. RSI = x_used - 1, round up. |
| 728 | __ sarq(RSI, Immediate(2)); |
| 729 | __ leaq(RDI, |
| 730 | FieldAddress(RDI, RSI, TIMES_8, target::TypedData::data_offset())); |
| 731 | __ subq(RSI, RDX); // RSI + 1 = number of digit pairs to read. |
| 732 | __ leaq(RBX, |
| 733 | FieldAddress(RBX, RSI, TIMES_8, target::TypedData::data_offset())); |
| 734 | __ negq(RSI); |
| 735 | __ movq(RDX, Address(RDI, RSI, TIMES_8, 0)); |
| 736 | Label last; |
| 737 | __ cmpq(RSI, Immediate(0)); |
| 738 | __ j(EQUAL, &last, Assembler::kNearJump); |
| 739 | Label loop; |
| 740 | __ Bind(&loop); |
| 741 | __ movq(RAX, RDX); |
| 742 | __ movq(RDX, Address(RDI, RSI, TIMES_8, 2 * kBytesPerBigIntDigit)); |
| 743 | __ shrdq(RAX, RDX, RCX); |
| 744 | __ movq(Address(RBX, RSI, TIMES_8, 0), RAX); |
| 745 | __ incq(RSI); |
| 746 | __ j(NOT_ZERO, &loop, Assembler::kNearJump); |
| 747 | __ Bind(&last); |
| 748 | __ shrdq(RDX, RSI, RCX); // RSI == 0. |
| 749 | __ movq(Address(RBX, 0), RDX); |
| 750 | __ LoadObject(RAX, NullObject()); |
| 751 | __ ret(); |
| 752 | } |
| 753 | |
| 754 | void AsmIntrinsifier::Bigint_absAdd(Assembler* assembler, |
| 755 | Label* normal_ir_body) { |
| 756 | // static void _absAdd(Uint32List digits, int used, |
| 757 | // Uint32List a_digits, int a_used, |
| 758 | // Uint32List r_digits) |
| 759 | |
| 760 | __ movq(RDI, Address(RSP, 5 * target::kWordSize)); // digits |
| 761 | __ movq(R8, Address(RSP, 4 * target::kWordSize)); // used is Smi |
| 762 | __ addq(R8, Immediate(2)); // used > 0, Smi. R8 = used + 1, round up. |
| 763 | __ sarq(R8, Immediate(2)); // R8 = number of digit pairs to process. |
| 764 | __ movq(RSI, Address(RSP, 3 * target::kWordSize)); // a_digits |
| 765 | __ movq(RCX, Address(RSP, 2 * target::kWordSize)); // a_used is Smi |
| 766 | __ addq(RCX, Immediate(2)); // a_used > 0, Smi. R8 = a_used + 1, round up. |
| 767 | __ sarq(RCX, Immediate(2)); // R8 = number of digit pairs to process. |
| 768 | __ movq(RBX, Address(RSP, 1 * target::kWordSize)); // r_digits |
| 769 | |
| 770 | // Precompute 'used - a_used' now so that carry flag is not lost later. |
| 771 | __ subq(R8, RCX); |
| 772 | __ incq(R8); // To account for the extra test between loops. |
| 773 | |
| 774 | __ xorq(RDX, RDX); // RDX = 0, carry flag = 0. |
| 775 | Label add_loop; |
| 776 | __ Bind(&add_loop); |
| 777 | // Loop (a_used+1)/2 times, RCX > 0. |
| 778 | __ movq(RAX, |
| 779 | FieldAddress(RDI, RDX, TIMES_8, target::TypedData::data_offset())); |
| 780 | __ adcq(RAX, |
| 781 | FieldAddress(RSI, RDX, TIMES_8, target::TypedData::data_offset())); |
| 782 | __ movq(FieldAddress(RBX, RDX, TIMES_8, target::TypedData::data_offset()), |
| 783 | RAX); |
| 784 | __ incq(RDX); // Does not affect carry flag. |
| 785 | __ decq(RCX); // Does not affect carry flag. |
| 786 | __ j(NOT_ZERO, &add_loop, Assembler::kNearJump); |
| 787 | |
| 788 | Label last_carry; |
| 789 | __ decq(R8); // Does not affect carry flag. |
| 790 | __ j(ZERO, &last_carry, Assembler::kNearJump); // If used - a_used == 0. |
| 791 | |
| 792 | Label carry_loop; |
| 793 | __ Bind(&carry_loop); |
| 794 | // Loop (used+1)/2 - (a_used+1)/2 times, R8 > 0. |
| 795 | __ movq(RAX, |
| 796 | FieldAddress(RDI, RDX, TIMES_8, target::TypedData::data_offset())); |
| 797 | __ adcq(RAX, Immediate(0)); |
| 798 | __ movq(FieldAddress(RBX, RDX, TIMES_8, target::TypedData::data_offset()), |
| 799 | RAX); |
| 800 | __ incq(RDX); // Does not affect carry flag. |
| 801 | __ decq(R8); // Does not affect carry flag. |
| 802 | __ j(NOT_ZERO, &carry_loop, Assembler::kNearJump); |
| 803 | |
| 804 | __ Bind(&last_carry); |
| 805 | Label done; |
| 806 | __ j(NOT_CARRY, &done); |
| 807 | __ movq(FieldAddress(RBX, RDX, TIMES_8, target::TypedData::data_offset()), |
| 808 | Immediate(1)); |
| 809 | |
| 810 | __ Bind(&done); |
| 811 | __ LoadObject(RAX, NullObject()); |
| 812 | __ ret(); |
| 813 | } |
| 814 | |
| 815 | void AsmIntrinsifier::Bigint_absSub(Assembler* assembler, |
| 816 | Label* normal_ir_body) { |
| 817 | // static void _absSub(Uint32List digits, int used, |
| 818 | // Uint32List a_digits, int a_used, |
| 819 | // Uint32List r_digits) |
| 820 | |
| 821 | __ movq(RDI, Address(RSP, 5 * target::kWordSize)); // digits |
| 822 | __ movq(R8, Address(RSP, 4 * target::kWordSize)); // used is Smi |
| 823 | __ addq(R8, Immediate(2)); // used > 0, Smi. R8 = used + 1, round up. |
| 824 | __ sarq(R8, Immediate(2)); // R8 = number of digit pairs to process. |
| 825 | __ movq(RSI, Address(RSP, 3 * target::kWordSize)); // a_digits |
| 826 | __ movq(RCX, Address(RSP, 2 * target::kWordSize)); // a_used is Smi |
| 827 | __ addq(RCX, Immediate(2)); // a_used > 0, Smi. R8 = a_used + 1, round up. |
| 828 | __ sarq(RCX, Immediate(2)); // R8 = number of digit pairs to process. |
| 829 | __ movq(RBX, Address(RSP, 1 * target::kWordSize)); // r_digits |
| 830 | |
| 831 | // Precompute 'used - a_used' now so that carry flag is not lost later. |
| 832 | __ subq(R8, RCX); |
| 833 | __ incq(R8); // To account for the extra test between loops. |
| 834 | |
| 835 | __ xorq(RDX, RDX); // RDX = 0, carry flag = 0. |
| 836 | Label sub_loop; |
| 837 | __ Bind(&sub_loop); |
| 838 | // Loop (a_used+1)/2 times, RCX > 0. |
| 839 | __ movq(RAX, |
| 840 | FieldAddress(RDI, RDX, TIMES_8, target::TypedData::data_offset())); |
| 841 | __ sbbq(RAX, |
| 842 | FieldAddress(RSI, RDX, TIMES_8, target::TypedData::data_offset())); |
| 843 | __ movq(FieldAddress(RBX, RDX, TIMES_8, target::TypedData::data_offset()), |
| 844 | RAX); |
| 845 | __ incq(RDX); // Does not affect carry flag. |
| 846 | __ decq(RCX); // Does not affect carry flag. |
| 847 | __ j(NOT_ZERO, &sub_loop, Assembler::kNearJump); |
| 848 | |
| 849 | Label done; |
| 850 | __ decq(R8); // Does not affect carry flag. |
| 851 | __ j(ZERO, &done, Assembler::kNearJump); // If used - a_used == 0. |
| 852 | |
| 853 | Label carry_loop; |
| 854 | __ Bind(&carry_loop); |
| 855 | // Loop (used+1)/2 - (a_used+1)/2 times, R8 > 0. |
| 856 | __ movq(RAX, |
| 857 | FieldAddress(RDI, RDX, TIMES_8, target::TypedData::data_offset())); |
| 858 | __ sbbq(RAX, Immediate(0)); |
| 859 | __ movq(FieldAddress(RBX, RDX, TIMES_8, target::TypedData::data_offset()), |
| 860 | RAX); |
| 861 | __ incq(RDX); // Does not affect carry flag. |
| 862 | __ decq(R8); // Does not affect carry flag. |
| 863 | __ j(NOT_ZERO, &carry_loop, Assembler::kNearJump); |
| 864 | |
| 865 | __ Bind(&done); |
| 866 | __ LoadObject(RAX, NullObject()); |
| 867 | __ ret(); |
| 868 | } |
| 869 | |
| 870 | void AsmIntrinsifier::Bigint_mulAdd(Assembler* assembler, |
| 871 | Label* normal_ir_body) { |
| 872 | // Pseudo code: |
| 873 | // static int _mulAdd(Uint32List x_digits, int xi, |
| 874 | // Uint32List m_digits, int i, |
| 875 | // Uint32List a_digits, int j, int n) { |
| 876 | // uint64_t x = x_digits[xi >> 1 .. (xi >> 1) + 1]; // xi is Smi and even. |
| 877 | // if (x == 0 || n == 0) { |
| 878 | // return 2; |
| 879 | // } |
| 880 | // uint64_t* mip = &m_digits[i >> 1]; // i is Smi and even. |
| 881 | // uint64_t* ajp = &a_digits[j >> 1]; // j is Smi and even. |
| 882 | // uint64_t c = 0; |
| 883 | // SmiUntag(n); // n is Smi and even. |
| 884 | // n = (n + 1)/2; // Number of pairs to process. |
| 885 | // do { |
| 886 | // uint64_t mi = *mip++; |
| 887 | // uint64_t aj = *ajp; |
| 888 | // uint128_t t = x*mi + aj + c; // 64-bit * 64-bit -> 128-bit. |
| 889 | // *ajp++ = low64(t); |
| 890 | // c = high64(t); |
| 891 | // } while (--n > 0); |
| 892 | // while (c != 0) { |
| 893 | // uint128_t t = *ajp + c; |
| 894 | // *ajp++ = low64(t); |
| 895 | // c = high64(t); // c == 0 or 1. |
| 896 | // } |
| 897 | // return 2; |
| 898 | // } |
| 899 | |
| 900 | Label done; |
| 901 | // RBX = x, done if x == 0 |
| 902 | __ movq(RCX, Address(RSP, 7 * target::kWordSize)); // x_digits |
| 903 | __ movq(RAX, Address(RSP, 6 * target::kWordSize)); // xi is Smi |
| 904 | __ movq(RBX, |
| 905 | FieldAddress(RCX, RAX, TIMES_2, target::TypedData::data_offset())); |
| 906 | __ testq(RBX, RBX); |
| 907 | __ j(ZERO, &done, Assembler::kNearJump); |
| 908 | |
| 909 | // R8 = (SmiUntag(n) + 1)/2, no_op if n == 0 |
| 910 | __ movq(R8, Address(RSP, 1 * target::kWordSize)); |
| 911 | __ addq(R8, Immediate(2)); |
| 912 | __ sarq(R8, Immediate(2)); // R8 = number of digit pairs to process. |
| 913 | __ j(ZERO, &done, Assembler::kNearJump); |
| 914 | |
| 915 | // RDI = mip = &m_digits[i >> 1] |
| 916 | __ movq(RDI, Address(RSP, 5 * target::kWordSize)); // m_digits |
| 917 | __ movq(RAX, Address(RSP, 4 * target::kWordSize)); // i is Smi |
| 918 | __ leaq(RDI, |
| 919 | FieldAddress(RDI, RAX, TIMES_2, target::TypedData::data_offset())); |
| 920 | |
| 921 | // RSI = ajp = &a_digits[j >> 1] |
| 922 | __ movq(RSI, Address(RSP, 3 * target::kWordSize)); // a_digits |
| 923 | __ movq(RAX, Address(RSP, 2 * target::kWordSize)); // j is Smi |
| 924 | __ leaq(RSI, |
| 925 | FieldAddress(RSI, RAX, TIMES_2, target::TypedData::data_offset())); |
| 926 | |
| 927 | // RCX = c = 0 |
| 928 | __ xorq(RCX, RCX); |
| 929 | |
| 930 | Label muladd_loop; |
| 931 | __ Bind(&muladd_loop); |
| 932 | // x: RBX |
| 933 | // mip: RDI |
| 934 | // ajp: RSI |
| 935 | // c: RCX |
| 936 | // t: RDX:RAX (not live at loop entry) |
| 937 | // n: R8 |
| 938 | |
| 939 | // uint64_t mi = *mip++ |
| 940 | __ movq(RAX, Address(RDI, 0)); |
| 941 | __ addq(RDI, Immediate(2 * kBytesPerBigIntDigit)); |
| 942 | |
| 943 | // uint128_t t = x*mi |
| 944 | __ mulq(RBX); // t = RDX:RAX = RAX * RBX, 64-bit * 64-bit -> 64-bit |
| 945 | __ addq(RAX, RCX); // t += c |
| 946 | __ adcq(RDX, Immediate(0)); |
| 947 | |
| 948 | // uint64_t aj = *ajp; t += aj |
| 949 | __ addq(RAX, Address(RSI, 0)); |
| 950 | __ adcq(RDX, Immediate(0)); |
| 951 | |
| 952 | // *ajp++ = low64(t) |
| 953 | __ movq(Address(RSI, 0), RAX); |
| 954 | __ addq(RSI, Immediate(2 * kBytesPerBigIntDigit)); |
| 955 | |
| 956 | // c = high64(t) |
| 957 | __ movq(RCX, RDX); |
| 958 | |
| 959 | // while (--n > 0) |
| 960 | __ decq(R8); // --n |
| 961 | __ j(NOT_ZERO, &muladd_loop, Assembler::kNearJump); |
| 962 | |
| 963 | __ testq(RCX, RCX); |
| 964 | __ j(ZERO, &done, Assembler::kNearJump); |
| 965 | |
| 966 | // *ajp += c |
| 967 | __ addq(Address(RSI, 0), RCX); |
| 968 | __ j(NOT_CARRY, &done, Assembler::kNearJump); |
| 969 | |
| 970 | Label propagate_carry_loop; |
| 971 | __ Bind(&propagate_carry_loop); |
| 972 | __ addq(RSI, Immediate(2 * kBytesPerBigIntDigit)); |
| 973 | __ incq(Address(RSI, 0)); // c == 0 or 1 |
| 974 | __ j(CARRY, &propagate_carry_loop, Assembler::kNearJump); |
| 975 | |
| 976 | __ Bind(&done); |
| 977 | __ movq(RAX, Immediate(target::ToRawSmi(2))); // Two digits processed. |
| 978 | __ ret(); |
| 979 | } |
| 980 | |
| 981 | void AsmIntrinsifier::Bigint_sqrAdd(Assembler* assembler, |
| 982 | Label* normal_ir_body) { |
| 983 | // Pseudo code: |
| 984 | // static int _sqrAdd(Uint32List x_digits, int i, |
| 985 | // Uint32List a_digits, int used) { |
| 986 | // uint64_t* xip = &x_digits[i >> 1]; // i is Smi and even. |
| 987 | // uint64_t x = *xip++; |
| 988 | // if (x == 0) return 2; |
| 989 | // uint64_t* ajp = &a_digits[i]; // j == 2*i, i is Smi. |
| 990 | // uint64_t aj = *ajp; |
| 991 | // uint128_t t = x*x + aj; |
| 992 | // *ajp++ = low64(t); |
| 993 | // uint128_t c = high64(t); |
| 994 | // int n = ((used - i + 2) >> 2) - 1; // used and i are Smi. n: num pairs. |
| 995 | // while (--n >= 0) { |
| 996 | // uint64_t xi = *xip++; |
| 997 | // uint64_t aj = *ajp; |
| 998 | // uint192_t t = 2*x*xi + aj + c; // 2-bit * 64-bit * 64-bit -> 129-bit. |
| 999 | // *ajp++ = low64(t); |
| 1000 | // c = high128(t); // 65-bit. |
| 1001 | // } |
| 1002 | // uint64_t aj = *ajp; |
| 1003 | // uint128_t t = aj + c; // 64-bit + 65-bit -> 66-bit. |
| 1004 | // *ajp++ = low64(t); |
| 1005 | // *ajp = high64(t); |
| 1006 | // return 2; |
| 1007 | // } |
| 1008 | |
| 1009 | // RDI = xip = &x_digits[i >> 1] |
| 1010 | __ movq(RDI, Address(RSP, 4 * target::kWordSize)); // x_digits |
| 1011 | __ movq(RAX, Address(RSP, 3 * target::kWordSize)); // i is Smi |
| 1012 | __ leaq(RDI, |
| 1013 | FieldAddress(RDI, RAX, TIMES_2, target::TypedData::data_offset())); |
| 1014 | |
| 1015 | // RBX = x = *xip++, return if x == 0 |
| 1016 | Label x_zero; |
| 1017 | __ movq(RBX, Address(RDI, 0)); |
| 1018 | __ cmpq(RBX, Immediate(0)); |
| 1019 | __ j(EQUAL, &x_zero); |
| 1020 | __ addq(RDI, Immediate(2 * kBytesPerBigIntDigit)); |
| 1021 | |
| 1022 | // RSI = ajp = &a_digits[i] |
| 1023 | __ movq(RSI, Address(RSP, 2 * target::kWordSize)); // a_digits |
| 1024 | __ leaq(RSI, |
| 1025 | FieldAddress(RSI, RAX, TIMES_4, target::TypedData::data_offset())); |
| 1026 | |
| 1027 | // RDX:RAX = t = x*x + *ajp |
| 1028 | __ movq(RAX, RBX); |
| 1029 | __ mulq(RBX); |
| 1030 | __ addq(RAX, Address(RSI, 0)); |
| 1031 | __ adcq(RDX, Immediate(0)); |
| 1032 | |
| 1033 | // *ajp++ = low64(t) |
| 1034 | __ movq(Address(RSI, 0), RAX); |
| 1035 | __ addq(RSI, Immediate(2 * kBytesPerBigIntDigit)); |
| 1036 | |
| 1037 | // int n = (used - i + 1)/2 - 1 |
| 1038 | __ movq(R8, Address(RSP, 1 * target::kWordSize)); // used is Smi |
| 1039 | __ subq(R8, Address(RSP, 3 * target::kWordSize)); // i is Smi |
| 1040 | __ addq(R8, Immediate(2)); |
| 1041 | __ sarq(R8, Immediate(2)); |
| 1042 | __ decq(R8); // R8 = number of digit pairs to process. |
| 1043 | |
| 1044 | // uint128_t c = high64(t) |
| 1045 | __ xorq(R13, R13); // R13 = high64(c) == 0 |
| 1046 | __ movq(R12, RDX); // R12 = low64(c) == high64(t) |
| 1047 | |
| 1048 | Label loop, done; |
| 1049 | __ Bind(&loop); |
| 1050 | // x: RBX |
| 1051 | // xip: RDI |
| 1052 | // ajp: RSI |
| 1053 | // c: R13:R12 |
| 1054 | // t: RCX:RDX:RAX (not live at loop entry) |
| 1055 | // n: R8 |
| 1056 | |
| 1057 | // while (--n >= 0) |
| 1058 | __ decq(R8); // --n |
| 1059 | __ j(NEGATIVE, &done, Assembler::kNearJump); |
| 1060 | |
| 1061 | // uint64_t xi = *xip++ |
| 1062 | __ movq(RAX, Address(RDI, 0)); |
| 1063 | __ addq(RDI, Immediate(2 * kBytesPerBigIntDigit)); |
| 1064 | |
| 1065 | // uint192_t t = RCX:RDX:RAX = 2*x*xi + aj + c |
| 1066 | __ mulq(RBX); // RDX:RAX = RAX * RBX |
| 1067 | __ xorq(RCX, RCX); // RCX = 0 |
| 1068 | __ shldq(RCX, RDX, Immediate(1)); |
| 1069 | __ shldq(RDX, RAX, Immediate(1)); |
| 1070 | __ shlq(RAX, Immediate(1)); // RCX:RDX:RAX <<= 1 |
| 1071 | __ addq(RAX, Address(RSI, 0)); // t += aj |
| 1072 | __ adcq(RDX, Immediate(0)); |
| 1073 | __ adcq(RCX, Immediate(0)); |
| 1074 | __ addq(RAX, R12); // t += low64(c) |
| 1075 | __ adcq(RDX, R13); // t += high64(c) << 64 |
| 1076 | __ adcq(RCX, Immediate(0)); |
| 1077 | |
| 1078 | // *ajp++ = low64(t) |
| 1079 | __ movq(Address(RSI, 0), RAX); |
| 1080 | __ addq(RSI, Immediate(2 * kBytesPerBigIntDigit)); |
| 1081 | |
| 1082 | // c = high128(t) |
| 1083 | __ movq(R12, RDX); |
| 1084 | __ movq(R13, RCX); |
| 1085 | |
| 1086 | __ jmp(&loop, Assembler::kNearJump); |
| 1087 | |
| 1088 | __ Bind(&done); |
| 1089 | // uint128_t t = aj + c |
| 1090 | __ addq(R12, Address(RSI, 0)); // t = c, t += *ajp |
| 1091 | __ adcq(R13, Immediate(0)); |
| 1092 | |
| 1093 | // *ajp++ = low64(t) |
| 1094 | // *ajp = high64(t) |
| 1095 | __ movq(Address(RSI, 0), R12); |
| 1096 | __ movq(Address(RSI, 2 * kBytesPerBigIntDigit), R13); |
| 1097 | |
| 1098 | __ Bind(&x_zero); |
| 1099 | __ movq(RAX, Immediate(target::ToRawSmi(2))); // Two digits processed. |
| 1100 | __ ret(); |
| 1101 | } |
| 1102 | |
| 1103 | void AsmIntrinsifier::Bigint_estimateQuotientDigit(Assembler* assembler, |
| 1104 | Label* normal_ir_body) { |
| 1105 | // Pseudo code: |
| 1106 | // static int _estQuotientDigit(Uint32List args, Uint32List digits, int i) { |
| 1107 | // uint64_t yt = args[_YT_LO .. _YT]; // _YT_LO == 0, _YT == 1. |
| 1108 | // uint64_t* dp = &digits[(i >> 1) - 1]; // i is Smi. |
| 1109 | // uint64_t dh = dp[0]; // dh == digits[(i >> 1) - 1 .. i >> 1]. |
| 1110 | // uint64_t qd; |
| 1111 | // if (dh == yt) { |
| 1112 | // qd = (DIGIT_MASK << 32) | DIGIT_MASK; |
| 1113 | // } else { |
| 1114 | // dl = dp[-1]; // dl == digits[(i >> 1) - 3 .. (i >> 1) - 2]. |
| 1115 | // qd = dh:dl / yt; // No overflow possible, because dh < yt. |
| 1116 | // } |
| 1117 | // args[_QD .. _QD_HI] = qd; // _QD == 2, _QD_HI == 3. |
| 1118 | // return 2; |
| 1119 | // } |
| 1120 | |
| 1121 | // RDI = args |
| 1122 | __ movq(RDI, Address(RSP, 3 * target::kWordSize)); // args |
| 1123 | |
| 1124 | // RCX = yt = args[0..1] |
| 1125 | __ movq(RCX, FieldAddress(RDI, target::TypedData::data_offset())); |
| 1126 | |
| 1127 | // RBX = dp = &digits[(i >> 1) - 1] |
| 1128 | __ movq(RBX, Address(RSP, 2 * target::kWordSize)); // digits |
| 1129 | __ movq(RAX, Address(RSP, 1 * target::kWordSize)); // i is Smi and odd. |
| 1130 | __ leaq(RBX, FieldAddress( |
| 1131 | RBX, RAX, TIMES_2, |
| 1132 | target::TypedData::data_offset() - kBytesPerBigIntDigit)); |
| 1133 | |
| 1134 | // RDX = dh = dp[0] |
| 1135 | __ movq(RDX, Address(RBX, 0)); |
| 1136 | |
| 1137 | // RAX = qd = (DIGIT_MASK << 32) | DIGIT_MASK = -1 |
| 1138 | __ movq(RAX, Immediate(-1)); |
| 1139 | |
| 1140 | // Return qd if dh == yt |
| 1141 | Label return_qd; |
| 1142 | __ cmpq(RDX, RCX); |
| 1143 | __ j(EQUAL, &return_qd, Assembler::kNearJump); |
| 1144 | |
| 1145 | // RAX = dl = dp[-1] |
| 1146 | __ movq(RAX, Address(RBX, -2 * kBytesPerBigIntDigit)); |
| 1147 | |
| 1148 | // RAX = qd = dh:dl / yt = RDX:RAX / RCX |
| 1149 | __ divq(RCX); |
| 1150 | |
| 1151 | __ Bind(&return_qd); |
| 1152 | // args[2..3] = qd |
| 1153 | __ movq(FieldAddress( |
| 1154 | RDI, target::TypedData::data_offset() + 2 * kBytesPerBigIntDigit), |
| 1155 | RAX); |
| 1156 | |
| 1157 | __ movq(RAX, Immediate(target::ToRawSmi(2))); // Two digits processed. |
| 1158 | __ ret(); |
| 1159 | } |
| 1160 | |
| 1161 | void AsmIntrinsifier::Montgomery_mulMod(Assembler* assembler, |
| 1162 | Label* normal_ir_body) { |
| 1163 | // Pseudo code: |
| 1164 | // static int _mulMod(Uint32List args, Uint32List digits, int i) { |
| 1165 | // uint64_t rho = args[_RHO .. _RHO_HI]; // _RHO == 2, _RHO_HI == 3. |
| 1166 | // uint64_t d = digits[i >> 1 .. (i >> 1) + 1]; // i is Smi and even. |
| 1167 | // uint128_t t = rho*d; |
| 1168 | // args[_MU .. _MU_HI] = t mod DIGIT_BASE^2; // _MU == 4, _MU_HI == 5. |
| 1169 | // return 2; |
| 1170 | // } |
| 1171 | |
| 1172 | // RDI = args |
| 1173 | __ movq(RDI, Address(RSP, 3 * target::kWordSize)); // args |
| 1174 | |
| 1175 | // RCX = rho = args[2 .. 3] |
| 1176 | __ movq(RCX, FieldAddress(RDI, target::TypedData::data_offset() + |
| 1177 | 2 * kBytesPerBigIntDigit)); |
| 1178 | |
| 1179 | // RAX = digits[i >> 1 .. (i >> 1) + 1] |
| 1180 | __ movq(RBX, Address(RSP, 2 * target::kWordSize)); // digits |
| 1181 | __ movq(RAX, Address(RSP, 1 * target::kWordSize)); // i is Smi |
| 1182 | __ movq(RAX, |
| 1183 | FieldAddress(RBX, RAX, TIMES_2, target::TypedData::data_offset())); |
| 1184 | |
| 1185 | // RDX:RAX = t = rho*d |
| 1186 | __ mulq(RCX); |
| 1187 | |
| 1188 | // args[4 .. 5] = t mod DIGIT_BASE^2 = low64(t) |
| 1189 | __ movq(FieldAddress( |
| 1190 | RDI, target::TypedData::data_offset() + 4 * kBytesPerBigIntDigit), |
| 1191 | RAX); |
| 1192 | |
| 1193 | __ movq(RAX, Immediate(target::ToRawSmi(2))); // Two digits processed. |
| 1194 | __ ret(); |
| 1195 | } |
| 1196 | |
| 1197 | // Check if the last argument is a double, jump to label 'is_smi' if smi |
| 1198 | // (easy to convert to double), otherwise jump to label 'not_double_smi', |
| 1199 | // Returns the last argument in RAX. |
| 1200 | static void TestLastArgumentIsDouble(Assembler* assembler, |
| 1201 | Label* is_smi, |
| 1202 | Label* not_double_smi) { |
| 1203 | __ movq(RAX, Address(RSP, +1 * target::kWordSize)); |
| 1204 | __ testq(RAX, Immediate(kSmiTagMask)); |
| 1205 | __ j(ZERO, is_smi); // Jump if Smi. |
| 1206 | __ CompareClassId(RAX, kDoubleCid); |
| 1207 | __ j(NOT_EQUAL, not_double_smi); |
| 1208 | // Fall through if double. |
| 1209 | } |
| 1210 | |
| 1211 | // Both arguments on stack, left argument is a double, right argument is of |
| 1212 | // unknown type. Return true or false object in RAX. Any NaN argument |
| 1213 | // returns false. Any non-double argument causes control flow to fall through |
| 1214 | // to the slow case (compiled method body). |
| 1215 | static void CompareDoubles(Assembler* assembler, |
| 1216 | Label* normal_ir_body, |
| 1217 | Condition true_condition) { |
| 1218 | Label is_false, is_true, is_smi, double_op; |
| 1219 | TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); |
| 1220 | // Both arguments are double, right operand is in RAX. |
| 1221 | __ movsd(XMM1, FieldAddress(RAX, target::Double::value_offset())); |
| 1222 | __ Bind(&double_op); |
| 1223 | __ movq(RAX, Address(RSP, +2 * target::kWordSize)); // Left argument. |
| 1224 | __ movsd(XMM0, FieldAddress(RAX, target::Double::value_offset())); |
| 1225 | __ comisd(XMM0, XMM1); |
| 1226 | __ j(PARITY_EVEN, &is_false, Assembler::kNearJump); // NaN -> false; |
| 1227 | __ j(true_condition, &is_true, Assembler::kNearJump); |
| 1228 | // Fall through false. |
| 1229 | __ Bind(&is_false); |
| 1230 | __ LoadObject(RAX, CastHandle<Object>(FalseObject())); |
| 1231 | __ ret(); |
| 1232 | __ Bind(&is_true); |
| 1233 | __ LoadObject(RAX, CastHandle<Object>(TrueObject())); |
| 1234 | __ ret(); |
| 1235 | __ Bind(&is_smi); |
| 1236 | __ SmiUntag(RAX); |
| 1237 | __ cvtsi2sdq(XMM1, RAX); |
| 1238 | __ jmp(&double_op); |
| 1239 | __ Bind(normal_ir_body); |
| 1240 | } |
| 1241 | |
| 1242 | void AsmIntrinsifier::Double_greaterThan(Assembler* assembler, |
| 1243 | Label* normal_ir_body) { |
| 1244 | CompareDoubles(assembler, normal_ir_body, ABOVE); |
| 1245 | } |
| 1246 | |
| 1247 | void AsmIntrinsifier::Double_greaterEqualThan(Assembler* assembler, |
| 1248 | Label* normal_ir_body) { |
| 1249 | CompareDoubles(assembler, normal_ir_body, ABOVE_EQUAL); |
| 1250 | } |
| 1251 | |
| 1252 | void AsmIntrinsifier::Double_lessThan(Assembler* assembler, |
| 1253 | Label* normal_ir_body) { |
| 1254 | CompareDoubles(assembler, normal_ir_body, BELOW); |
| 1255 | } |
| 1256 | |
| 1257 | void AsmIntrinsifier::Double_equal(Assembler* assembler, |
| 1258 | Label* normal_ir_body) { |
| 1259 | CompareDoubles(assembler, normal_ir_body, EQUAL); |
| 1260 | } |
| 1261 | |
| 1262 | void AsmIntrinsifier::Double_lessEqualThan(Assembler* assembler, |
| 1263 | Label* normal_ir_body) { |
| 1264 | CompareDoubles(assembler, normal_ir_body, BELOW_EQUAL); |
| 1265 | } |
| 1266 | |
| 1267 | // Expects left argument to be double (receiver). Right argument is unknown. |
| 1268 | // Both arguments are on stack. |
| 1269 | static void DoubleArithmeticOperations(Assembler* assembler, |
| 1270 | Label* normal_ir_body, |
| 1271 | Token::Kind kind) { |
| 1272 | Label is_smi, double_op; |
| 1273 | TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); |
| 1274 | // Both arguments are double, right operand is in RAX. |
| 1275 | __ movsd(XMM1, FieldAddress(RAX, target::Double::value_offset())); |
| 1276 | __ Bind(&double_op); |
| 1277 | __ movq(RAX, Address(RSP, +2 * target::kWordSize)); // Left argument. |
| 1278 | __ movsd(XMM0, FieldAddress(RAX, target::Double::value_offset())); |
| 1279 | switch (kind) { |
| 1280 | case Token::kADD: |
| 1281 | __ addsd(XMM0, XMM1); |
| 1282 | break; |
| 1283 | case Token::kSUB: |
| 1284 | __ subsd(XMM0, XMM1); |
| 1285 | break; |
| 1286 | case Token::kMUL: |
| 1287 | __ mulsd(XMM0, XMM1); |
| 1288 | break; |
| 1289 | case Token::kDIV: |
| 1290 | __ divsd(XMM0, XMM1); |
| 1291 | break; |
| 1292 | default: |
| 1293 | UNREACHABLE(); |
| 1294 | } |
| 1295 | const Class& double_class = DoubleClass(); |
| 1296 | __ TryAllocate(double_class, normal_ir_body, Assembler::kFarJump, |
| 1297 | RAX, // Result register. |
| 1298 | R13); |
| 1299 | __ movsd(FieldAddress(RAX, target::Double::value_offset()), XMM0); |
| 1300 | __ ret(); |
| 1301 | __ Bind(&is_smi); |
| 1302 | __ SmiUntag(RAX); |
| 1303 | __ cvtsi2sdq(XMM1, RAX); |
| 1304 | __ jmp(&double_op); |
| 1305 | __ Bind(normal_ir_body); |
| 1306 | } |
| 1307 | |
| 1308 | void AsmIntrinsifier::Double_add(Assembler* assembler, Label* normal_ir_body) { |
| 1309 | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kADD); |
| 1310 | } |
| 1311 | |
| 1312 | void AsmIntrinsifier::Double_mul(Assembler* assembler, Label* normal_ir_body) { |
| 1313 | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kMUL); |
| 1314 | } |
| 1315 | |
| 1316 | void AsmIntrinsifier::Double_sub(Assembler* assembler, Label* normal_ir_body) { |
| 1317 | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kSUB); |
| 1318 | } |
| 1319 | |
| 1320 | void AsmIntrinsifier::Double_div(Assembler* assembler, Label* normal_ir_body) { |
| 1321 | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kDIV); |
| 1322 | } |
| 1323 | |
| 1324 | void AsmIntrinsifier::Double_mulFromInteger(Assembler* assembler, |
| 1325 | Label* normal_ir_body) { |
| 1326 | // Only smis allowed. |
| 1327 | __ movq(RAX, Address(RSP, +1 * target::kWordSize)); |
| 1328 | __ testq(RAX, Immediate(kSmiTagMask)); |
| 1329 | __ j(NOT_ZERO, normal_ir_body); |
| 1330 | // Is Smi. |
| 1331 | __ SmiUntag(RAX); |
| 1332 | __ cvtsi2sdq(XMM1, RAX); |
| 1333 | __ movq(RAX, Address(RSP, +2 * target::kWordSize)); |
| 1334 | __ movsd(XMM0, FieldAddress(RAX, target::Double::value_offset())); |
| 1335 | __ mulsd(XMM0, XMM1); |
| 1336 | const Class& double_class = DoubleClass(); |
| 1337 | __ TryAllocate(double_class, normal_ir_body, Assembler::kFarJump, |
| 1338 | RAX, // Result register. |
| 1339 | R13); |
| 1340 | __ movsd(FieldAddress(RAX, target::Double::value_offset()), XMM0); |
| 1341 | __ ret(); |
| 1342 | __ Bind(normal_ir_body); |
| 1343 | } |
| 1344 | |
| 1345 | // Left is double, right is integer (Mint or Smi) |
| 1346 | void AsmIntrinsifier::DoubleFromInteger(Assembler* assembler, |
| 1347 | Label* normal_ir_body) { |
| 1348 | __ movq(RAX, Address(RSP, +1 * target::kWordSize)); |
| 1349 | __ testq(RAX, Immediate(kSmiTagMask)); |
| 1350 | __ j(NOT_ZERO, normal_ir_body); |
| 1351 | // Is Smi. |
| 1352 | __ SmiUntag(RAX); |
| 1353 | __ cvtsi2sdq(XMM0, RAX); |
| 1354 | const Class& double_class = DoubleClass(); |
| 1355 | __ TryAllocate(double_class, normal_ir_body, Assembler::kFarJump, |
| 1356 | RAX, // Result register. |
| 1357 | R13); |
| 1358 | __ movsd(FieldAddress(RAX, target::Double::value_offset()), XMM0); |
| 1359 | __ ret(); |
| 1360 | __ Bind(normal_ir_body); |
| 1361 | } |
| 1362 | |
| 1363 | void AsmIntrinsifier::Double_getIsNaN(Assembler* assembler, |
| 1364 | Label* normal_ir_body) { |
| 1365 | Label is_true; |
| 1366 | __ movq(RAX, Address(RSP, +1 * target::kWordSize)); |
| 1367 | __ movsd(XMM0, FieldAddress(RAX, target::Double::value_offset())); |
| 1368 | __ comisd(XMM0, XMM0); |
| 1369 | __ j(PARITY_EVEN, &is_true, Assembler::kNearJump); // NaN -> true; |
| 1370 | __ LoadObject(RAX, CastHandle<Object>(FalseObject())); |
| 1371 | __ ret(); |
| 1372 | __ Bind(&is_true); |
| 1373 | __ LoadObject(RAX, CastHandle<Object>(TrueObject())); |
| 1374 | __ ret(); |
| 1375 | } |
| 1376 | |
| 1377 | void AsmIntrinsifier::Double_getIsInfinite(Assembler* assembler, |
| 1378 | Label* normal_ir_body) { |
| 1379 | Label is_inf, done; |
| 1380 | __ movq(RAX, Address(RSP, +1 * target::kWordSize)); |
| 1381 | __ movq(RAX, FieldAddress(RAX, target::Double::value_offset())); |
| 1382 | // Mask off the sign. |
| 1383 | __ AndImmediate(RAX, Immediate(0x7FFFFFFFFFFFFFFFLL)); |
| 1384 | // Compare with +infinity. |
| 1385 | __ CompareImmediate(RAX, Immediate(0x7FF0000000000000LL)); |
| 1386 | __ j(EQUAL, &is_inf, Assembler::kNearJump); |
| 1387 | __ LoadObject(RAX, CastHandle<Object>(FalseObject())); |
| 1388 | __ jmp(&done); |
| 1389 | |
| 1390 | __ Bind(&is_inf); |
| 1391 | __ LoadObject(RAX, CastHandle<Object>(TrueObject())); |
| 1392 | |
| 1393 | __ Bind(&done); |
| 1394 | __ ret(); |
| 1395 | } |
| 1396 | |
| 1397 | void AsmIntrinsifier::Double_getIsNegative(Assembler* assembler, |
| 1398 | Label* normal_ir_body) { |
| 1399 | Label is_false, is_true, is_zero; |
| 1400 | __ movq(RAX, Address(RSP, +1 * target::kWordSize)); |
| 1401 | __ movsd(XMM0, FieldAddress(RAX, target::Double::value_offset())); |
| 1402 | __ xorpd(XMM1, XMM1); // 0.0 -> XMM1. |
| 1403 | __ comisd(XMM0, XMM1); |
| 1404 | __ j(PARITY_EVEN, &is_false, Assembler::kNearJump); // NaN -> false. |
| 1405 | __ j(EQUAL, &is_zero, Assembler::kNearJump); // Check for negative zero. |
| 1406 | __ j(ABOVE_EQUAL, &is_false, Assembler::kNearJump); // >= 0 -> false. |
| 1407 | __ Bind(&is_true); |
| 1408 | __ LoadObject(RAX, CastHandle<Object>(TrueObject())); |
| 1409 | __ ret(); |
| 1410 | __ Bind(&is_false); |
| 1411 | __ LoadObject(RAX, CastHandle<Object>(FalseObject())); |
| 1412 | __ ret(); |
| 1413 | __ Bind(&is_zero); |
| 1414 | // Check for negative zero (get the sign bit). |
| 1415 | __ movmskpd(RAX, XMM0); |
| 1416 | __ testq(RAX, Immediate(1)); |
| 1417 | __ j(NOT_ZERO, &is_true, Assembler::kNearJump); |
| 1418 | __ jmp(&is_false, Assembler::kNearJump); |
| 1419 | } |
| 1420 | |
| 1421 | void AsmIntrinsifier::DoubleToInteger(Assembler* assembler, |
| 1422 | Label* normal_ir_body) { |
| 1423 | __ movq(RAX, Address(RSP, +1 * target::kWordSize)); |
| 1424 | __ movsd(XMM0, FieldAddress(RAX, target::Double::value_offset())); |
| 1425 | __ cvttsd2siq(RAX, XMM0); |
| 1426 | // Overflow is signalled with minint. |
| 1427 | // Check for overflow and that it fits into Smi. |
| 1428 | __ movq(RCX, RAX); |
| 1429 | __ shlq(RCX, Immediate(1)); |
| 1430 | __ j(OVERFLOW, normal_ir_body, Assembler::kNearJump); |
| 1431 | __ SmiTag(RAX); |
| 1432 | __ ret(); |
| 1433 | __ Bind(normal_ir_body); |
| 1434 | } |
| 1435 | |
| 1436 | void AsmIntrinsifier::Double_hashCode(Assembler* assembler, |
| 1437 | Label* normal_ir_body) { |
| 1438 | // TODO(dartbug.com/31174): Convert this to a graph intrinsic. |
| 1439 | |
| 1440 | // Convert double value to signed 64-bit int in RAX and |
| 1441 | // back to a double in XMM1. |
| 1442 | __ movq(RCX, Address(RSP, +1 * target::kWordSize)); |
| 1443 | __ movsd(XMM0, FieldAddress(RCX, target::Double::value_offset())); |
| 1444 | __ cvttsd2siq(RAX, XMM0); |
| 1445 | __ cvtsi2sdq(XMM1, RAX); |
| 1446 | |
| 1447 | // Tag the int as a Smi, making sure that it fits; this checks for |
| 1448 | // overflow and NaN in the conversion from double to int. Conversion |
| 1449 | // overflow from cvttsd2si is signalled with an INT64_MIN value. |
| 1450 | ASSERT(kSmiTag == 0 && kSmiTagShift == 1); |
| 1451 | __ addq(RAX, RAX); |
| 1452 | __ j(OVERFLOW, normal_ir_body, Assembler::kNearJump); |
| 1453 | |
| 1454 | // Compare the two double values. If they are equal, we return the |
| 1455 | // Smi tagged result immediately as the hash code. |
| 1456 | Label double_hash; |
| 1457 | __ comisd(XMM0, XMM1); |
| 1458 | __ j(NOT_EQUAL, &double_hash, Assembler::kNearJump); |
| 1459 | __ ret(); |
| 1460 | |
| 1461 | // Convert the double bits to a hash code that fits in a Smi. |
| 1462 | __ Bind(&double_hash); |
| 1463 | __ movq(RAX, FieldAddress(RCX, target::Double::value_offset())); |
| 1464 | __ movq(RCX, RAX); |
| 1465 | __ shrq(RCX, Immediate(32)); |
| 1466 | __ xorq(RAX, RCX); |
| 1467 | __ andq(RAX, Immediate(target::kSmiMax)); |
| 1468 | __ SmiTag(RAX); |
| 1469 | __ ret(); |
| 1470 | |
| 1471 | // Fall into the native C++ implementation. |
| 1472 | __ Bind(normal_ir_body); |
| 1473 | } |
| 1474 | |
| 1475 | void AsmIntrinsifier::MathSqrt(Assembler* assembler, Label* normal_ir_body) { |
| 1476 | Label is_smi, double_op; |
| 1477 | TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); |
| 1478 | // Argument is double and is in RAX. |
| 1479 | __ movsd(XMM1, FieldAddress(RAX, target::Double::value_offset())); |
| 1480 | __ Bind(&double_op); |
| 1481 | __ sqrtsd(XMM0, XMM1); |
| 1482 | const Class& double_class = DoubleClass(); |
| 1483 | __ TryAllocate(double_class, normal_ir_body, Assembler::kFarJump, |
| 1484 | RAX, // Result register. |
| 1485 | R13); |
| 1486 | __ movsd(FieldAddress(RAX, target::Double::value_offset()), XMM0); |
| 1487 | __ ret(); |
| 1488 | __ Bind(&is_smi); |
| 1489 | __ SmiUntag(RAX); |
| 1490 | __ cvtsi2sdq(XMM1, RAX); |
| 1491 | __ jmp(&double_op); |
| 1492 | __ Bind(normal_ir_body); |
| 1493 | } |
| 1494 | |
| 1495 | // var state = ((_A * (_state[kSTATE_LO])) + _state[kSTATE_HI]) & _MASK_64; |
| 1496 | // _state[kSTATE_LO] = state & _MASK_32; |
| 1497 | // _state[kSTATE_HI] = state >> 32; |
| 1498 | void AsmIntrinsifier::Random_nextState(Assembler* assembler, |
| 1499 | Label* normal_ir_body) { |
| 1500 | const Field& state_field = LookupMathRandomStateFieldOffset(); |
| 1501 | const int64_t a_int_value = AsmIntrinsifier::kRandomAValue; |
| 1502 | |
| 1503 | // Receiver. |
| 1504 | __ movq(RAX, Address(RSP, +1 * target::kWordSize)); |
| 1505 | // Field '_state'. |
| 1506 | __ movq(RBX, FieldAddress(RAX, LookupFieldOffsetInBytes(state_field))); |
| 1507 | // Addresses of _state[0] and _state[1]. |
| 1508 | const intptr_t scale = |
| 1509 | target::Instance::ElementSizeFor(kTypedDataUint32ArrayCid); |
| 1510 | const intptr_t offset = |
| 1511 | target::Instance::DataOffsetFor(kTypedDataUint32ArrayCid); |
| 1512 | Address addr_0 = FieldAddress(RBX, 0 * scale + offset); |
| 1513 | Address addr_1 = FieldAddress(RBX, 1 * scale + offset); |
| 1514 | __ movq(RAX, Immediate(a_int_value)); |
| 1515 | __ movl(RCX, addr_0); |
| 1516 | __ imulq(RCX, RAX); |
| 1517 | __ movl(RDX, addr_1); |
| 1518 | __ addq(RDX, RCX); |
| 1519 | __ movl(addr_0, RDX); |
| 1520 | __ shrq(RDX, Immediate(32)); |
| 1521 | __ movl(addr_1, RDX); |
| 1522 | ASSERT(target::ToRawSmi(0) == 0); |
| 1523 | __ xorq(RAX, RAX); |
| 1524 | __ ret(); |
| 1525 | } |
| 1526 | |
| 1527 | // Identity comparison. |
| 1528 | void AsmIntrinsifier::ObjectEquals(Assembler* assembler, |
| 1529 | Label* normal_ir_body) { |
| 1530 | Label is_true; |
| 1531 | const intptr_t kReceiverOffset = 2; |
| 1532 | const intptr_t kArgumentOffset = 1; |
| 1533 | |
| 1534 | __ movq(RAX, Address(RSP, +kArgumentOffset * target::kWordSize)); |
| 1535 | __ cmpq(RAX, Address(RSP, +kReceiverOffset * target::kWordSize)); |
| 1536 | __ j(EQUAL, &is_true, Assembler::kNearJump); |
| 1537 | __ LoadObject(RAX, CastHandle<Object>(FalseObject())); |
| 1538 | __ ret(); |
| 1539 | __ Bind(&is_true); |
| 1540 | __ LoadObject(RAX, CastHandle<Object>(TrueObject())); |
| 1541 | __ ret(); |
| 1542 | } |
| 1543 | |
| 1544 | static void RangeCheck(Assembler* assembler, |
| 1545 | Register reg, |
| 1546 | intptr_t low, |
| 1547 | intptr_t high, |
| 1548 | Condition cc, |
| 1549 | Label* target) { |
| 1550 | __ subq(reg, Immediate(low)); |
| 1551 | __ cmpq(reg, Immediate(high - low)); |
| 1552 | __ j(cc, target); |
| 1553 | } |
| 1554 | |
| 1555 | const Condition kIfNotInRange = ABOVE; |
| 1556 | const Condition kIfInRange = BELOW_EQUAL; |
| 1557 | |
| 1558 | static void JumpIfInteger(Assembler* assembler, Register cid, Label* target) { |
| 1559 | RangeCheck(assembler, cid, kSmiCid, kMintCid, kIfInRange, target); |
| 1560 | } |
| 1561 | |
| 1562 | static void JumpIfNotInteger(Assembler* assembler, |
| 1563 | Register cid, |
| 1564 | Label* target) { |
| 1565 | RangeCheck(assembler, cid, kSmiCid, kMintCid, kIfNotInRange, target); |
| 1566 | } |
| 1567 | |
| 1568 | static void JumpIfString(Assembler* assembler, Register cid, Label* target) { |
| 1569 | RangeCheck(assembler, cid, kOneByteStringCid, kExternalTwoByteStringCid, |
| 1570 | kIfInRange, target); |
| 1571 | } |
| 1572 | |
| 1573 | static void JumpIfNotString(Assembler* assembler, Register cid, Label* target) { |
| 1574 | RangeCheck(assembler, cid, kOneByteStringCid, kExternalTwoByteStringCid, |
| 1575 | kIfNotInRange, target); |
| 1576 | } |
| 1577 | |
| 1578 | // Return type quickly for simple types (not parameterized and not signature). |
| 1579 | void AsmIntrinsifier::ObjectRuntimeType(Assembler* assembler, |
| 1580 | Label* normal_ir_body) { |
| 1581 | Label use_declaration_type, not_integer, not_double; |
| 1582 | __ movq(RAX, Address(RSP, +1 * target::kWordSize)); |
| 1583 | __ LoadClassIdMayBeSmi(RCX, RAX); |
| 1584 | |
| 1585 | // RCX: untagged cid of instance (RAX). |
| 1586 | __ cmpq(RCX, Immediate(kClosureCid)); |
| 1587 | __ j(EQUAL, normal_ir_body); // Instance is a closure. |
| 1588 | |
| 1589 | __ cmpl(RCX, Immediate(kNumPredefinedCids)); |
| 1590 | __ j(ABOVE, &use_declaration_type); |
| 1591 | |
| 1592 | // If object is a instance of _Double return double type. |
| 1593 | __ cmpl(RCX, Immediate(kDoubleCid)); |
| 1594 | __ j(NOT_EQUAL, ¬_double); |
| 1595 | |
| 1596 | __ LoadIsolate(RAX); |
| 1597 | __ movq(RAX, Address(RAX, target::Isolate::cached_object_store_offset())); |
| 1598 | __ movq(RAX, Address(RAX, target::ObjectStore::double_type_offset())); |
| 1599 | __ ret(); |
| 1600 | |
| 1601 | __ Bind(¬_double); |
| 1602 | // If object is an integer (smi, mint or bigint) return int type. |
| 1603 | __ movl(RAX, RCX); |
| 1604 | JumpIfNotInteger(assembler, RAX, ¬_integer); |
| 1605 | |
| 1606 | __ LoadIsolate(RAX); |
| 1607 | __ movq(RAX, Address(RAX, target::Isolate::cached_object_store_offset())); |
| 1608 | __ movq(RAX, Address(RAX, target::ObjectStore::int_type_offset())); |
| 1609 | __ ret(); |
| 1610 | |
| 1611 | __ Bind(¬_integer); |
| 1612 | // If object is a string (one byte, two byte or external variants) return |
| 1613 | // string type. |
| 1614 | __ movq(RAX, RCX); |
| 1615 | JumpIfNotString(assembler, RAX, &use_declaration_type); |
| 1616 | |
| 1617 | __ LoadIsolate(RAX); |
| 1618 | __ movq(RAX, Address(RAX, target::Isolate::cached_object_store_offset())); |
| 1619 | __ movq(RAX, Address(RAX, target::ObjectStore::string_type_offset())); |
| 1620 | __ ret(); |
| 1621 | |
| 1622 | // Object is neither double, nor integer, nor string. |
| 1623 | __ Bind(&use_declaration_type); |
| 1624 | __ LoadClassById(RDI, RCX); |
| 1625 | __ movzxw(RCX, FieldAddress(RDI, target::Class::num_type_arguments_offset())); |
| 1626 | __ cmpq(RCX, Immediate(0)); |
| 1627 | __ j(NOT_EQUAL, normal_ir_body, Assembler::kNearJump); |
| 1628 | __ movq(RAX, FieldAddress(RDI, target::Class::declaration_type_offset())); |
| 1629 | __ CompareObject(RAX, NullObject()); |
| 1630 | __ j(EQUAL, normal_ir_body, Assembler::kNearJump); // Not yet set. |
| 1631 | __ ret(); |
| 1632 | |
| 1633 | __ Bind(normal_ir_body); |
| 1634 | } |
| 1635 | |
| 1636 | // Compares cid1 and cid2 to see if they're syntactically equivalent. If this |
| 1637 | // can be determined by this fast path, it jumps to either equal or not_equal, |
| 1638 | // otherwise it jumps to normal_ir_body. May clobber cid1, cid2, and scratch. |
| 1639 | static void EquivalentClassIds(Assembler* assembler, |
| 1640 | Label* normal_ir_body, |
| 1641 | Label* equal, |
| 1642 | Label* not_equal, |
| 1643 | Register cid1, |
| 1644 | Register cid2, |
| 1645 | Register scratch) { |
| 1646 | Label different_cids, not_integer; |
| 1647 | |
| 1648 | // Check if left hand side is a closure. Closures are handled in the runtime. |
| 1649 | __ cmpq(cid1, Immediate(kClosureCid)); |
| 1650 | __ j(EQUAL, normal_ir_body); |
| 1651 | |
| 1652 | // Check whether class ids match. If class ids don't match types may still be |
| 1653 | // considered equivalent (e.g. multiple string implementation classes map to a |
| 1654 | // single String type). |
| 1655 | __ cmpq(cid1, cid2); |
| 1656 | __ j(NOT_EQUAL, &different_cids); |
| 1657 | |
| 1658 | // Types have the same class and neither is a closure type. |
| 1659 | // Check if there are no type arguments. In this case we can return true. |
| 1660 | // Otherwise fall through into the runtime to handle comparison. |
| 1661 | __ LoadClassById(scratch, cid1); |
| 1662 | __ movzxw(scratch, |
| 1663 | FieldAddress(scratch, target::Class::num_type_arguments_offset())); |
| 1664 | __ cmpq(scratch, Immediate(0)); |
| 1665 | __ j(NOT_EQUAL, normal_ir_body); |
| 1666 | __ jmp(equal); |
| 1667 | |
| 1668 | // Class ids are different. Check if we are comparing two string types (with |
| 1669 | // different representations) or two integer types. |
| 1670 | __ Bind(&different_cids); |
| 1671 | __ cmpq(cid1, Immediate(kNumPredefinedCids)); |
| 1672 | __ j(ABOVE_EQUAL, not_equal); |
| 1673 | |
| 1674 | // Check if both are integer types. |
| 1675 | __ movq(scratch, cid1); |
| 1676 | JumpIfNotInteger(assembler, scratch, ¬_integer); |
| 1677 | |
| 1678 | // First type is an integer. Check if the second is an integer too. |
| 1679 | // Otherwise types are unequiv because only integers have the same runtime |
| 1680 | // type as other integers. |
| 1681 | JumpIfInteger(assembler, cid2, equal); |
| 1682 | __ jmp(not_equal); |
| 1683 | |
| 1684 | __ Bind(¬_integer); |
| 1685 | // Check if the first type is String. If it is not then types are not |
| 1686 | // equivalent because they have different class ids and they are not strings |
| 1687 | // or integers. |
| 1688 | JumpIfNotString(assembler, cid1, not_equal); |
| 1689 | // First type is String. Check if the second is a string too. |
| 1690 | JumpIfString(assembler, cid2, equal); |
| 1691 | // String types are only equivalent to other String types. |
| 1692 | __ jmp(not_equal); |
| 1693 | } |
| 1694 | |
| 1695 | void AsmIntrinsifier::ObjectHaveSameRuntimeType(Assembler* assembler, |
| 1696 | Label* normal_ir_body) { |
| 1697 | __ movq(RAX, Address(RSP, +1 * target::kWordSize)); |
| 1698 | __ LoadClassIdMayBeSmi(RCX, RAX); |
| 1699 | |
| 1700 | __ movq(RAX, Address(RSP, +2 * target::kWordSize)); |
| 1701 | __ LoadClassIdMayBeSmi(RDX, RAX); |
| 1702 | |
| 1703 | Label equal, not_equal; |
| 1704 | EquivalentClassIds(assembler, normal_ir_body, &equal, ¬_equal, RCX, RDX, |
| 1705 | RAX); |
| 1706 | |
| 1707 | __ Bind(&equal); |
| 1708 | __ LoadObject(RAX, CastHandle<Object>(TrueObject())); |
| 1709 | __ ret(); |
| 1710 | |
| 1711 | __ Bind(¬_equal); |
| 1712 | __ LoadObject(RAX, CastHandle<Object>(FalseObject())); |
| 1713 | __ ret(); |
| 1714 | |
| 1715 | __ Bind(normal_ir_body); |
| 1716 | } |
| 1717 | |
| 1718 | void AsmIntrinsifier::String_getHashCode(Assembler* assembler, |
| 1719 | Label* normal_ir_body) { |
| 1720 | __ movq(RAX, Address(RSP, +1 * target::kWordSize)); // String object. |
| 1721 | __ movl(RAX, FieldAddress(RAX, target::String::hash_offset())); |
| 1722 | ASSERT(kSmiTag == 0); |
| 1723 | ASSERT(kSmiTagShift == 1); |
| 1724 | __ addq(RAX, RAX); // Smi tag RAX, setting Z flag. |
| 1725 | __ j(ZERO, normal_ir_body, Assembler::kNearJump); |
| 1726 | __ ret(); |
| 1727 | __ Bind(normal_ir_body); |
| 1728 | // Hash not yet computed. |
| 1729 | } |
| 1730 | |
| 1731 | void AsmIntrinsifier::Type_getHashCode(Assembler* assembler, |
| 1732 | Label* normal_ir_body) { |
| 1733 | __ movq(RAX, Address(RSP, +1 * target::kWordSize)); // Type object. |
| 1734 | __ movq(RAX, FieldAddress(RAX, target::Type::hash_offset())); |
| 1735 | ASSERT(kSmiTag == 0); |
| 1736 | ASSERT(kSmiTagShift == 1); |
| 1737 | __ testq(RAX, RAX); |
| 1738 | __ j(ZERO, normal_ir_body, Assembler::kNearJump); |
| 1739 | __ ret(); |
| 1740 | __ Bind(normal_ir_body); |
| 1741 | // Hash not yet computed. |
| 1742 | } |
| 1743 | |
| 1744 | void AsmIntrinsifier::Type_equality(Assembler* assembler, |
| 1745 | Label* normal_ir_body) { |
| 1746 | Label equal, not_equal, equiv_cids, check_legacy; |
| 1747 | |
| 1748 | __ movq(RCX, Address(RSP, +1 * target::kWordSize)); |
| 1749 | __ movq(RDX, Address(RSP, +2 * target::kWordSize)); |
| 1750 | __ cmpq(RCX, RDX); |
| 1751 | __ j(EQUAL, &equal); |
| 1752 | |
| 1753 | // RCX might not be a Type object, so check that first (RDX should be though, |
| 1754 | // since this is a method on the Type class). |
| 1755 | __ LoadClassIdMayBeSmi(RAX, RCX); |
| 1756 | __ cmpq(RAX, Immediate(kTypeCid)); |
| 1757 | __ j(NOT_EQUAL, normal_ir_body); |
| 1758 | |
| 1759 | // Check if types are syntactically equal. |
| 1760 | __ movq(RDI, FieldAddress(RCX, target::Type::type_class_id_offset())); |
| 1761 | __ SmiUntag(RDI); |
| 1762 | __ movq(RSI, FieldAddress(RDX, target::Type::type_class_id_offset())); |
| 1763 | __ SmiUntag(RSI); |
| 1764 | EquivalentClassIds(assembler, normal_ir_body, &equiv_cids, ¬_equal, RDI, |
| 1765 | RSI, RAX); |
| 1766 | |
| 1767 | // Check nullability. |
| 1768 | __ Bind(&equiv_cids); |
| 1769 | __ movzxb(RCX, FieldAddress(RCX, target::Type::nullability_offset())); |
| 1770 | __ movzxb(RDX, FieldAddress(RDX, target::Type::nullability_offset())); |
| 1771 | __ cmpq(RCX, RDX); |
| 1772 | __ j(NOT_EQUAL, &check_legacy, Assembler::kNearJump); |
| 1773 | // Fall through to equal case if nullability is strictly equal. |
| 1774 | |
| 1775 | __ Bind(&equal); |
| 1776 | __ LoadObject(RAX, CastHandle<Object>(TrueObject())); |
| 1777 | __ ret(); |
| 1778 | |
| 1779 | // At this point the nullabilities are different, so they can only be |
| 1780 | // syntactically equivalent if they're both either kNonNullable or kLegacy. |
| 1781 | // These are the two largest values of the enum, so we can just do a < check. |
| 1782 | ASSERT(target::Nullability::kNullable < target::Nullability::kNonNullable && |
| 1783 | target::Nullability::kNonNullable < target::Nullability::kLegacy); |
| 1784 | __ Bind(&check_legacy); |
| 1785 | __ cmpq(RCX, Immediate(target::Nullability::kNonNullable)); |
| 1786 | __ j(LESS, ¬_equal, Assembler::kNearJump); |
| 1787 | __ cmpq(RDX, Immediate(target::Nullability::kNonNullable)); |
| 1788 | __ j(GREATER_EQUAL, &equal, Assembler::kNearJump); |
| 1789 | |
| 1790 | __ Bind(¬_equal); |
| 1791 | __ LoadObject(RAX, CastHandle<Object>(FalseObject())); |
| 1792 | __ ret(); |
| 1793 | |
| 1794 | __ Bind(normal_ir_body); |
| 1795 | } |
| 1796 | |
| 1797 | void AsmIntrinsifier::Object_getHash(Assembler* assembler, |
| 1798 | Label* normal_ir_body) { |
| 1799 | __ movq(RAX, Address(RSP, +1 * target::kWordSize)); // Object. |
| 1800 | __ movl(RAX, FieldAddress(RAX, target::String::hash_offset())); |
| 1801 | __ SmiTag(RAX); |
| 1802 | __ ret(); |
| 1803 | } |
| 1804 | |
| 1805 | void AsmIntrinsifier::Object_setHash(Assembler* assembler, |
| 1806 | Label* normal_ir_body) { |
| 1807 | __ movq(RAX, Address(RSP, +2 * target::kWordSize)); // Object. |
| 1808 | __ movq(RDX, Address(RSP, +1 * target::kWordSize)); // Value. |
| 1809 | __ SmiUntag(RDX); |
| 1810 | __ movl(FieldAddress(RAX, target::String::hash_offset()), RDX); |
| 1811 | __ ret(); |
| 1812 | } |
| 1813 | |
| 1814 | void GenerateSubstringMatchesSpecialization(Assembler* assembler, |
| 1815 | intptr_t receiver_cid, |
| 1816 | intptr_t other_cid, |
| 1817 | Label* return_true, |
| 1818 | Label* return_false) { |
| 1819 | __ movq(R8, FieldAddress(RAX, target::String::length_offset())); |
| 1820 | __ movq(R9, FieldAddress(RCX, target::String::length_offset())); |
| 1821 | |
| 1822 | // if (other.length == 0) return true; |
| 1823 | __ testq(R9, R9); |
| 1824 | __ j(ZERO, return_true); |
| 1825 | |
| 1826 | // if (start < 0) return false; |
| 1827 | __ testq(RBX, RBX); |
| 1828 | __ j(SIGN, return_false); |
| 1829 | |
| 1830 | // if (start + other.length > this.length) return false; |
| 1831 | __ movq(R11, RBX); |
| 1832 | __ addq(R11, R9); |
| 1833 | __ cmpq(R11, R8); |
| 1834 | __ j(GREATER, return_false); |
| 1835 | |
| 1836 | __ SmiUntag(RBX); // start |
| 1837 | __ SmiUntag(R9); // other.length |
| 1838 | __ LoadImmediate(R11, Immediate(0)); // i = 0 |
| 1839 | |
| 1840 | // do |
| 1841 | Label loop; |
| 1842 | __ Bind(&loop); |
| 1843 | |
| 1844 | // this.codeUnitAt(i + start) |
| 1845 | // clobbering this.length |
| 1846 | __ movq(R8, R11); |
| 1847 | __ addq(R8, RBX); |
| 1848 | if (receiver_cid == kOneByteStringCid) { |
| 1849 | __ movzxb(R12, FieldAddress(RAX, R8, TIMES_1, |
| 1850 | target::OneByteString::data_offset())); |
| 1851 | } else { |
| 1852 | ASSERT(receiver_cid == kTwoByteStringCid); |
| 1853 | __ movzxw(R12, FieldAddress(RAX, R8, TIMES_2, |
| 1854 | target::TwoByteString::data_offset())); |
| 1855 | } |
| 1856 | // other.codeUnitAt(i) |
| 1857 | if (other_cid == kOneByteStringCid) { |
| 1858 | __ movzxb(R13, FieldAddress(RCX, R11, TIMES_1, |
| 1859 | target::OneByteString::data_offset())); |
| 1860 | } else { |
| 1861 | ASSERT(other_cid == kTwoByteStringCid); |
| 1862 | __ movzxw(R13, FieldAddress(RCX, R11, TIMES_2, |
| 1863 | target::TwoByteString::data_offset())); |
| 1864 | } |
| 1865 | __ cmpq(R12, R13); |
| 1866 | __ j(NOT_EQUAL, return_false); |
| 1867 | |
| 1868 | // i++, while (i < len) |
| 1869 | __ addq(R11, Immediate(1)); |
| 1870 | __ cmpq(R11, R9); |
| 1871 | __ j(LESS, &loop, Assembler::kNearJump); |
| 1872 | |
| 1873 | __ jmp(return_true); |
| 1874 | } |
| 1875 | |
| 1876 | // bool _substringMatches(int start, String other) |
| 1877 | // This intrinsic handles a OneByteString or TwoByteString receiver with a |
| 1878 | // OneByteString other. |
| 1879 | void AsmIntrinsifier::StringBaseSubstringMatches(Assembler* assembler, |
| 1880 | Label* normal_ir_body) { |
| 1881 | Label return_true, return_false, try_two_byte; |
| 1882 | __ movq(RAX, Address(RSP, +3 * target::kWordSize)); // receiver |
| 1883 | __ movq(RBX, Address(RSP, +2 * target::kWordSize)); // start |
| 1884 | __ movq(RCX, Address(RSP, +1 * target::kWordSize)); // other |
| 1885 | |
| 1886 | __ testq(RBX, Immediate(kSmiTagMask)); |
| 1887 | __ j(NOT_ZERO, normal_ir_body); // 'start' is not Smi. |
| 1888 | |
| 1889 | __ CompareClassId(RCX, kOneByteStringCid); |
| 1890 | __ j(NOT_EQUAL, normal_ir_body); |
| 1891 | |
| 1892 | __ CompareClassId(RAX, kOneByteStringCid); |
| 1893 | __ j(NOT_EQUAL, &try_two_byte); |
| 1894 | |
| 1895 | GenerateSubstringMatchesSpecialization(assembler, kOneByteStringCid, |
| 1896 | kOneByteStringCid, &return_true, |
| 1897 | &return_false); |
| 1898 | |
| 1899 | __ Bind(&try_two_byte); |
| 1900 | __ CompareClassId(RAX, kTwoByteStringCid); |
| 1901 | __ j(NOT_EQUAL, normal_ir_body); |
| 1902 | |
| 1903 | GenerateSubstringMatchesSpecialization(assembler, kTwoByteStringCid, |
| 1904 | kOneByteStringCid, &return_true, |
| 1905 | &return_false); |
| 1906 | |
| 1907 | __ Bind(&return_true); |
| 1908 | __ LoadObject(RAX, CastHandle<Object>(TrueObject())); |
| 1909 | __ ret(); |
| 1910 | |
| 1911 | __ Bind(&return_false); |
| 1912 | __ LoadObject(RAX, CastHandle<Object>(FalseObject())); |
| 1913 | __ ret(); |
| 1914 | |
| 1915 | __ Bind(normal_ir_body); |
| 1916 | } |
| 1917 | |
| 1918 | void AsmIntrinsifier::StringBaseCharAt(Assembler* assembler, |
| 1919 | Label* normal_ir_body) { |
| 1920 | Label try_two_byte_string; |
| 1921 | __ movq(RCX, Address(RSP, +1 * target::kWordSize)); // Index. |
| 1922 | __ movq(RAX, Address(RSP, +2 * target::kWordSize)); // String. |
| 1923 | __ testq(RCX, Immediate(kSmiTagMask)); |
| 1924 | __ j(NOT_ZERO, normal_ir_body); // Non-smi index. |
| 1925 | // Range check. |
| 1926 | __ cmpq(RCX, FieldAddress(RAX, target::String::length_offset())); |
| 1927 | // Runtime throws exception. |
| 1928 | __ j(ABOVE_EQUAL, normal_ir_body); |
| 1929 | __ CompareClassId(RAX, kOneByteStringCid); |
| 1930 | __ j(NOT_EQUAL, &try_two_byte_string, Assembler::kNearJump); |
| 1931 | __ SmiUntag(RCX); |
| 1932 | __ movzxb(RCX, FieldAddress(RAX, RCX, TIMES_1, |
| 1933 | target::OneByteString::data_offset())); |
| 1934 | __ cmpq(RCX, Immediate(target::Symbols::kNumberOfOneCharCodeSymbols)); |
| 1935 | __ j(GREATER_EQUAL, normal_ir_body); |
| 1936 | __ movq(RAX, |
| 1937 | Address(THR, target::Thread::predefined_symbols_address_offset())); |
| 1938 | __ movq(RAX, Address(RAX, RCX, TIMES_8, |
| 1939 | target::Symbols::kNullCharCodeSymbolOffset * |
| 1940 | target::kWordSize)); |
| 1941 | __ ret(); |
| 1942 | |
| 1943 | __ Bind(&try_two_byte_string); |
| 1944 | __ CompareClassId(RAX, kTwoByteStringCid); |
| 1945 | __ j(NOT_EQUAL, normal_ir_body); |
| 1946 | ASSERT(kSmiTagShift == 1); |
| 1947 | __ movzxw(RCX, FieldAddress(RAX, RCX, TIMES_1, |
| 1948 | target::OneByteString::data_offset())); |
| 1949 | __ cmpq(RCX, Immediate(target::Symbols::kNumberOfOneCharCodeSymbols)); |
| 1950 | __ j(GREATER_EQUAL, normal_ir_body); |
| 1951 | __ movq(RAX, |
| 1952 | Address(THR, target::Thread::predefined_symbols_address_offset())); |
| 1953 | __ movq(RAX, Address(RAX, RCX, TIMES_8, |
| 1954 | target::Symbols::kNullCharCodeSymbolOffset * |
| 1955 | target::kWordSize)); |
| 1956 | __ ret(); |
| 1957 | |
| 1958 | __ Bind(normal_ir_body); |
| 1959 | } |
| 1960 | |
| 1961 | void AsmIntrinsifier::StringBaseIsEmpty(Assembler* assembler, |
| 1962 | Label* normal_ir_body) { |
| 1963 | Label is_true; |
| 1964 | // Get length. |
| 1965 | __ movq(RAX, Address(RSP, +1 * target::kWordSize)); // String object. |
| 1966 | __ movq(RAX, FieldAddress(RAX, target::String::length_offset())); |
| 1967 | __ cmpq(RAX, Immediate(target::ToRawSmi(0))); |
| 1968 | __ j(EQUAL, &is_true, Assembler::kNearJump); |
| 1969 | __ LoadObject(RAX, CastHandle<Object>(FalseObject())); |
| 1970 | __ ret(); |
| 1971 | __ Bind(&is_true); |
| 1972 | __ LoadObject(RAX, CastHandle<Object>(TrueObject())); |
| 1973 | __ ret(); |
| 1974 | } |
| 1975 | |
| 1976 | void AsmIntrinsifier::OneByteString_getHashCode(Assembler* assembler, |
| 1977 | Label* normal_ir_body) { |
| 1978 | Label compute_hash; |
| 1979 | __ movq( |
| 1980 | RBX, |
| 1981 | Address(RSP, +1 * target::kWordSize)); // target::OneByteString object. |
| 1982 | __ movl(RAX, FieldAddress(RBX, target::String::hash_offset())); |
| 1983 | __ cmpq(RAX, Immediate(0)); |
| 1984 | __ j(EQUAL, &compute_hash, Assembler::kNearJump); |
| 1985 | __ SmiTag(RAX); |
| 1986 | __ ret(); |
| 1987 | |
| 1988 | __ Bind(&compute_hash); |
| 1989 | // Hash not yet computed, use algorithm of class StringHasher. |
| 1990 | __ movq(RCX, FieldAddress(RBX, target::String::length_offset())); |
| 1991 | __ SmiUntag(RCX); |
| 1992 | __ xorq(RAX, RAX); |
| 1993 | __ xorq(RDI, RDI); |
| 1994 | // RBX: Instance of target::OneByteString. |
| 1995 | // RCX: String length, untagged integer. |
| 1996 | // RDI: Loop counter, untagged integer. |
| 1997 | // RAX: Hash code, untagged integer. |
| 1998 | Label loop, done, set_hash_code; |
| 1999 | __ Bind(&loop); |
| 2000 | __ cmpq(RDI, RCX); |
| 2001 | __ j(EQUAL, &done, Assembler::kNearJump); |
| 2002 | // Add to hash code: (hash_ is uint32) |
| 2003 | // hash_ += ch; |
| 2004 | // hash_ += hash_ << 10; |
| 2005 | // hash_ ^= hash_ >> 6; |
| 2006 | // Get one characters (ch). |
| 2007 | __ movzxb(RDX, FieldAddress(RBX, RDI, TIMES_1, |
| 2008 | target::OneByteString::data_offset())); |
| 2009 | // RDX: ch and temporary. |
| 2010 | __ addl(RAX, RDX); |
| 2011 | __ movq(RDX, RAX); |
| 2012 | __ shll(RDX, Immediate(10)); |
| 2013 | __ addl(RAX, RDX); |
| 2014 | __ movq(RDX, RAX); |
| 2015 | __ shrl(RDX, Immediate(6)); |
| 2016 | __ xorl(RAX, RDX); |
| 2017 | |
| 2018 | __ incq(RDI); |
| 2019 | __ jmp(&loop, Assembler::kNearJump); |
| 2020 | |
| 2021 | __ Bind(&done); |
| 2022 | // Finalize: |
| 2023 | // hash_ += hash_ << 3; |
| 2024 | // hash_ ^= hash_ >> 11; |
| 2025 | // hash_ += hash_ << 15; |
| 2026 | __ movq(RDX, RAX); |
| 2027 | __ shll(RDX, Immediate(3)); |
| 2028 | __ addl(RAX, RDX); |
| 2029 | __ movq(RDX, RAX); |
| 2030 | __ shrl(RDX, Immediate(11)); |
| 2031 | __ xorl(RAX, RDX); |
| 2032 | __ movq(RDX, RAX); |
| 2033 | __ shll(RDX, Immediate(15)); |
| 2034 | __ addl(RAX, RDX); |
| 2035 | // hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1); |
| 2036 | __ andl( |
| 2037 | RAX, |
| 2038 | Immediate(((static_cast<intptr_t>(1) << target::String::kHashBits) - 1))); |
| 2039 | |
| 2040 | // return hash_ == 0 ? 1 : hash_; |
| 2041 | __ cmpq(RAX, Immediate(0)); |
| 2042 | __ j(NOT_EQUAL, &set_hash_code, Assembler::kNearJump); |
| 2043 | __ incq(RAX); |
| 2044 | __ Bind(&set_hash_code); |
| 2045 | __ movl(FieldAddress(RBX, target::String::hash_offset()), RAX); |
| 2046 | __ SmiTag(RAX); |
| 2047 | __ ret(); |
| 2048 | } |
| 2049 | |
| 2050 | // Allocates a _OneByteString or _TwoByteString. The content is not initialized. |
| 2051 | // 'length_reg' contains the desired length as a _Smi or _Mint. |
| 2052 | // Returns new string as tagged pointer in RAX. |
| 2053 | static void TryAllocateString(Assembler* assembler, |
| 2054 | classid_t cid, |
| 2055 | Label* ok, |
| 2056 | Label* failure, |
| 2057 | Register length_reg) { |
| 2058 | ASSERT(cid == kOneByteStringCid || cid == kTwoByteStringCid); |
| 2059 | // _Mint length: call to runtime to produce error. |
| 2060 | __ BranchIfNotSmi(length_reg, failure); |
| 2061 | // negative length: call to runtime to produce error. |
| 2062 | __ cmpq(length_reg, Immediate(0)); |
| 2063 | __ j(LESS, failure); |
| 2064 | |
| 2065 | NOT_IN_PRODUCT(__ MaybeTraceAllocation(cid, failure, false)); |
| 2066 | if (length_reg != RDI) { |
| 2067 | __ movq(RDI, length_reg); |
| 2068 | } |
| 2069 | Label pop_and_fail, not_zero_length; |
| 2070 | __ pushq(RDI); // Preserve length. |
| 2071 | if (cid == kOneByteStringCid) { |
| 2072 | // Untag length. |
| 2073 | __ sarq(RDI, Immediate(kSmiTagShift)); |
| 2074 | } else { |
| 2075 | // Untag length and multiply by element size -> no-op. |
| 2076 | __ testq(RDI, RDI); |
| 2077 | } |
| 2078 | // If the length is 0 then we have to make the allocated size a bit bigger, |
| 2079 | // otherwise the string takes up less space than an ExternalOneByteString, |
| 2080 | // and cannot be externalized. TODO(erikcorry): We should probably just |
| 2081 | // return a static zero length string here instead. |
| 2082 | __ j(NOT_ZERO, ¬_zero_length); |
| 2083 | __ addq(RDI, Immediate(1)); |
| 2084 | __ Bind(¬_zero_length); |
| 2085 | const intptr_t fixed_size_plus_alignment_padding = |
| 2086 | target::String::InstanceSize() + |
| 2087 | target::ObjectAlignment::kObjectAlignment - 1; |
| 2088 | __ addq(RDI, Immediate(fixed_size_plus_alignment_padding)); |
| 2089 | __ andq(RDI, Immediate(-target::ObjectAlignment::kObjectAlignment)); |
| 2090 | |
| 2091 | __ movq(RAX, Address(THR, target::Thread::top_offset())); |
| 2092 | |
| 2093 | // RDI: allocation size. |
| 2094 | __ movq(RCX, RAX); |
| 2095 | __ addq(RCX, RDI); |
| 2096 | __ j(CARRY, &pop_and_fail); |
| 2097 | |
| 2098 | // Check if the allocation fits into the remaining space. |
| 2099 | // RAX: potential new object start. |
| 2100 | // RCX: potential next object start. |
| 2101 | // RDI: allocation size. |
| 2102 | __ cmpq(RCX, Address(THR, target::Thread::end_offset())); |
| 2103 | __ j(ABOVE_EQUAL, &pop_and_fail); |
| 2104 | |
| 2105 | // Successfully allocated the object(s), now update top to point to |
| 2106 | // next object start and initialize the object. |
| 2107 | __ movq(Address(THR, target::Thread::top_offset()), RCX); |
| 2108 | __ addq(RAX, Immediate(kHeapObjectTag)); |
| 2109 | |
| 2110 | // Initialize the tags. |
| 2111 | // RAX: new object start as a tagged pointer. |
| 2112 | // RDI: allocation size. |
| 2113 | { |
| 2114 | Label size_tag_overflow, done; |
| 2115 | __ cmpq(RDI, Immediate(target::ObjectLayout::kSizeTagMaxSizeTag)); |
| 2116 | __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); |
| 2117 | __ shlq(RDI, Immediate(target::ObjectLayout::kTagBitsSizeTagPos - |
| 2118 | target::ObjectAlignment::kObjectAlignmentLog2)); |
| 2119 | __ jmp(&done, Assembler::kNearJump); |
| 2120 | |
| 2121 | __ Bind(&size_tag_overflow); |
| 2122 | __ xorq(RDI, RDI); |
| 2123 | __ Bind(&done); |
| 2124 | |
| 2125 | // Get the class index and insert it into the tags. |
| 2126 | // This also clears the hash, which is in the high bits of the tags. |
| 2127 | const uint32_t tags = |
| 2128 | target::MakeTagWordForNewSpaceObject(cid, /*instance_size=*/0); |
| 2129 | __ orq(RDI, Immediate(tags)); |
| 2130 | __ movq(FieldAddress(RAX, target::Object::tags_offset()), RDI); // Tags. |
| 2131 | } |
| 2132 | |
| 2133 | // Set the length field. |
| 2134 | __ popq(RDI); |
| 2135 | __ StoreIntoObjectNoBarrier( |
| 2136 | RAX, FieldAddress(RAX, target::String::length_offset()), RDI); |
| 2137 | __ jmp(ok, Assembler::kNearJump); |
| 2138 | |
| 2139 | __ Bind(&pop_and_fail); |
| 2140 | __ popq(RDI); |
| 2141 | __ jmp(failure); |
| 2142 | } |
| 2143 | |
| 2144 | // Arg0: target::OneByteString (receiver). |
| 2145 | // Arg1: Start index as Smi. |
| 2146 | // Arg2: End index as Smi. |
| 2147 | // The indexes must be valid. |
| 2148 | void AsmIntrinsifier::OneByteString_substringUnchecked(Assembler* assembler, |
| 2149 | Label* normal_ir_body) { |
| 2150 | const intptr_t kStringOffset = 3 * target::kWordSize; |
| 2151 | const intptr_t kStartIndexOffset = 2 * target::kWordSize; |
| 2152 | const intptr_t kEndIndexOffset = 1 * target::kWordSize; |
| 2153 | Label ok; |
| 2154 | __ movq(RSI, Address(RSP, +kStartIndexOffset)); |
| 2155 | __ movq(RDI, Address(RSP, +kEndIndexOffset)); |
| 2156 | __ orq(RSI, RDI); |
| 2157 | __ testq(RSI, Immediate(kSmiTagMask)); |
| 2158 | __ j(NOT_ZERO, normal_ir_body); // 'start', 'end' not Smi. |
| 2159 | |
| 2160 | __ subq(RDI, Address(RSP, +kStartIndexOffset)); |
| 2161 | TryAllocateString(assembler, kOneByteStringCid, &ok, normal_ir_body, RDI); |
| 2162 | __ Bind(&ok); |
| 2163 | // RAX: new string as tagged pointer. |
| 2164 | // Copy string. |
| 2165 | __ movq(RSI, Address(RSP, +kStringOffset)); |
| 2166 | __ movq(RBX, Address(RSP, +kStartIndexOffset)); |
| 2167 | __ SmiUntag(RBX); |
| 2168 | __ leaq(RSI, FieldAddress(RSI, RBX, TIMES_1, |
| 2169 | target::OneByteString::data_offset())); |
| 2170 | // RSI: Start address to copy from (untagged). |
| 2171 | // RBX: Untagged start index. |
| 2172 | __ movq(RCX, Address(RSP, +kEndIndexOffset)); |
| 2173 | __ SmiUntag(RCX); |
| 2174 | __ subq(RCX, RBX); |
| 2175 | __ xorq(RDX, RDX); |
| 2176 | // RSI: Start address to copy from (untagged). |
| 2177 | // RCX: Untagged number of bytes to copy. |
| 2178 | // RAX: Tagged result string |
| 2179 | // RDX: Loop counter. |
| 2180 | // RBX: Scratch register. |
| 2181 | Label loop, check; |
| 2182 | __ jmp(&check, Assembler::kNearJump); |
| 2183 | __ Bind(&loop); |
| 2184 | __ movzxb(RBX, Address(RSI, RDX, TIMES_1, 0)); |
| 2185 | __ movb(FieldAddress(RAX, RDX, TIMES_1, target::OneByteString::data_offset()), |
| 2186 | RBX); |
| 2187 | __ incq(RDX); |
| 2188 | __ Bind(&check); |
| 2189 | __ cmpq(RDX, RCX); |
| 2190 | __ j(LESS, &loop, Assembler::kNearJump); |
| 2191 | __ ret(); |
| 2192 | __ Bind(normal_ir_body); |
| 2193 | } |
| 2194 | |
| 2195 | void AsmIntrinsifier::WriteIntoOneByteString(Assembler* assembler, |
| 2196 | Label* normal_ir_body) { |
| 2197 | __ movq(RCX, Address(RSP, +1 * target::kWordSize)); // Value. |
| 2198 | __ movq(RBX, Address(RSP, +2 * target::kWordSize)); // Index. |
| 2199 | __ movq(RAX, Address(RSP, +3 * target::kWordSize)); // target::OneByteString. |
| 2200 | __ SmiUntag(RBX); |
| 2201 | __ SmiUntag(RCX); |
| 2202 | __ movb(FieldAddress(RAX, RBX, TIMES_1, target::OneByteString::data_offset()), |
| 2203 | RCX); |
| 2204 | __ ret(); |
| 2205 | } |
| 2206 | |
| 2207 | void AsmIntrinsifier::WriteIntoTwoByteString(Assembler* assembler, |
| 2208 | Label* normal_ir_body) { |
| 2209 | __ movq(RCX, Address(RSP, +1 * target::kWordSize)); // Value. |
| 2210 | __ movq(RBX, Address(RSP, +2 * target::kWordSize)); // Index. |
| 2211 | __ movq(RAX, Address(RSP, +3 * target::kWordSize)); // target::TwoByteString. |
| 2212 | // Untag index and multiply by element size -> no-op. |
| 2213 | __ SmiUntag(RCX); |
| 2214 | __ movw(FieldAddress(RAX, RBX, TIMES_1, target::TwoByteString::data_offset()), |
| 2215 | RCX); |
| 2216 | __ ret(); |
| 2217 | } |
| 2218 | |
| 2219 | void AsmIntrinsifier::AllocateOneByteString(Assembler* assembler, |
| 2220 | Label* normal_ir_body) { |
| 2221 | __ movq(RDI, Address(RSP, +1 * target::kWordSize)); // Length.v= |
| 2222 | Label ok; |
| 2223 | TryAllocateString(assembler, kOneByteStringCid, &ok, normal_ir_body, RDI); |
| 2224 | // RDI: Start address to copy from (untagged). |
| 2225 | |
| 2226 | __ Bind(&ok); |
| 2227 | __ ret(); |
| 2228 | |
| 2229 | __ Bind(normal_ir_body); |
| 2230 | } |
| 2231 | |
| 2232 | void AsmIntrinsifier::AllocateTwoByteString(Assembler* assembler, |
| 2233 | Label* normal_ir_body) { |
| 2234 | __ movq(RDI, Address(RSP, +1 * target::kWordSize)); // Length.v= |
| 2235 | Label ok; |
| 2236 | TryAllocateString(assembler, kTwoByteStringCid, &ok, normal_ir_body, RDI); |
| 2237 | // RDI: Start address to copy from (untagged). |
| 2238 | |
| 2239 | __ Bind(&ok); |
| 2240 | __ ret(); |
| 2241 | |
| 2242 | __ Bind(normal_ir_body); |
| 2243 | } |
| 2244 | |
| 2245 | // TODO(srdjan): Add combinations (one-byte/two-byte/external strings). |
| 2246 | static void StringEquality(Assembler* assembler, |
| 2247 | Label* normal_ir_body, |
| 2248 | intptr_t string_cid) { |
| 2249 | Label is_true, is_false, loop; |
| 2250 | __ movq(RAX, Address(RSP, +2 * target::kWordSize)); // This. |
| 2251 | __ movq(RCX, Address(RSP, +1 * target::kWordSize)); // Other. |
| 2252 | |
| 2253 | // Are identical? |
| 2254 | __ cmpq(RAX, RCX); |
| 2255 | __ j(EQUAL, &is_true, Assembler::kNearJump); |
| 2256 | |
| 2257 | // Is other target::OneByteString? |
| 2258 | __ testq(RCX, Immediate(kSmiTagMask)); |
| 2259 | __ j(ZERO, &is_false); // Smi |
| 2260 | __ CompareClassId(RCX, string_cid); |
| 2261 | __ j(NOT_EQUAL, normal_ir_body, Assembler::kNearJump); |
| 2262 | |
| 2263 | // Have same length? |
| 2264 | __ movq(RDI, FieldAddress(RAX, target::String::length_offset())); |
| 2265 | __ cmpq(RDI, FieldAddress(RCX, target::String::length_offset())); |
| 2266 | __ j(NOT_EQUAL, &is_false, Assembler::kNearJump); |
| 2267 | |
| 2268 | // Check contents, no fall-through possible. |
| 2269 | // TODO(srdjan): write a faster check. |
| 2270 | __ SmiUntag(RDI); |
| 2271 | __ Bind(&loop); |
| 2272 | __ decq(RDI); |
| 2273 | __ cmpq(RDI, Immediate(0)); |
| 2274 | __ j(LESS, &is_true, Assembler::kNearJump); |
| 2275 | if (string_cid == kOneByteStringCid) { |
| 2276 | __ movzxb(RBX, FieldAddress(RAX, RDI, TIMES_1, |
| 2277 | target::OneByteString::data_offset())); |
| 2278 | __ movzxb(RDX, FieldAddress(RCX, RDI, TIMES_1, |
| 2279 | target::OneByteString::data_offset())); |
| 2280 | } else if (string_cid == kTwoByteStringCid) { |
| 2281 | __ movzxw(RBX, FieldAddress(RAX, RDI, TIMES_2, |
| 2282 | target::TwoByteString::data_offset())); |
| 2283 | __ movzxw(RDX, FieldAddress(RCX, RDI, TIMES_2, |
| 2284 | target::TwoByteString::data_offset())); |
| 2285 | } else { |
| 2286 | UNIMPLEMENTED(); |
| 2287 | } |
| 2288 | __ cmpq(RBX, RDX); |
| 2289 | __ j(NOT_EQUAL, &is_false, Assembler::kNearJump); |
| 2290 | __ jmp(&loop, Assembler::kNearJump); |
| 2291 | |
| 2292 | __ Bind(&is_true); |
| 2293 | __ LoadObject(RAX, CastHandle<Object>(TrueObject())); |
| 2294 | __ ret(); |
| 2295 | |
| 2296 | __ Bind(&is_false); |
| 2297 | __ LoadObject(RAX, CastHandle<Object>(FalseObject())); |
| 2298 | __ ret(); |
| 2299 | |
| 2300 | __ Bind(normal_ir_body); |
| 2301 | } |
| 2302 | |
| 2303 | void AsmIntrinsifier::OneByteString_equality(Assembler* assembler, |
| 2304 | Label* normal_ir_body) { |
| 2305 | StringEquality(assembler, normal_ir_body, kOneByteStringCid); |
| 2306 | } |
| 2307 | |
| 2308 | void AsmIntrinsifier::TwoByteString_equality(Assembler* assembler, |
| 2309 | Label* normal_ir_body) { |
| 2310 | StringEquality(assembler, normal_ir_body, kTwoByteStringCid); |
| 2311 | } |
| 2312 | |
| 2313 | void AsmIntrinsifier::IntrinsifyRegExpExecuteMatch(Assembler* assembler, |
| 2314 | Label* normal_ir_body, |
| 2315 | bool sticky) { |
| 2316 | if (FLAG_interpret_irregexp) return; |
| 2317 | |
| 2318 | static const intptr_t kRegExpParamOffset = 3 * target::kWordSize; |
| 2319 | static const intptr_t kStringParamOffset = 2 * target::kWordSize; |
| 2320 | // start_index smi is located at offset 1. |
| 2321 | |
| 2322 | // Incoming registers: |
| 2323 | // RAX: Function. (Will be loaded with the specialized matcher function.) |
| 2324 | // RCX: Unknown. (Must be GC safe on tail call.) |
| 2325 | // R10: Arguments descriptor. (Will be preserved.) |
| 2326 | |
| 2327 | // Load the specialized function pointer into RAX. Leverage the fact the |
| 2328 | // string CIDs as well as stored function pointers are in sequence. |
| 2329 | __ movq(RBX, Address(RSP, kRegExpParamOffset)); |
| 2330 | __ movq(RDI, Address(RSP, kStringParamOffset)); |
| 2331 | __ LoadClassId(RDI, RDI); |
| 2332 | __ SubImmediate(RDI, Immediate(kOneByteStringCid)); |
| 2333 | __ movq(RAX, FieldAddress( |
| 2334 | RBX, RDI, TIMES_8, |
| 2335 | target::RegExp::function_offset(kOneByteStringCid, sticky))); |
| 2336 | |
| 2337 | // Registers are now set up for the lazy compile stub. It expects the function |
| 2338 | // in RAX, the argument descriptor in R10, and IC-Data in RCX. |
| 2339 | __ xorq(RCX, RCX); |
| 2340 | |
| 2341 | // Tail-call the function. |
| 2342 | __ movq(CODE_REG, FieldAddress(RAX, target::Function::code_offset())); |
| 2343 | __ movq(RDI, FieldAddress(RAX, target::Function::entry_point_offset())); |
| 2344 | __ jmp(RDI); |
| 2345 | } |
| 2346 | |
| 2347 | // On stack: user tag (+1), return-address (+0). |
| 2348 | void AsmIntrinsifier::UserTag_makeCurrent(Assembler* assembler, |
| 2349 | Label* normal_ir_body) { |
| 2350 | // RBX: Isolate. |
| 2351 | __ LoadIsolate(RBX); |
| 2352 | // RAX: Current user tag. |
| 2353 | __ movq(RAX, Address(RBX, target::Isolate::current_tag_offset())); |
| 2354 | // R10: UserTag. |
| 2355 | __ movq(R10, Address(RSP, +1 * target::kWordSize)); |
| 2356 | // Set Isolate::current_tag_. |
| 2357 | __ movq(Address(RBX, target::Isolate::current_tag_offset()), R10); |
| 2358 | // R10: UserTag's tag. |
| 2359 | __ movq(R10, FieldAddress(R10, target::UserTag::tag_offset())); |
| 2360 | // Set Isolate::user_tag_. |
| 2361 | __ movq(Address(RBX, target::Isolate::user_tag_offset()), R10); |
| 2362 | __ ret(); |
| 2363 | } |
| 2364 | |
| 2365 | void AsmIntrinsifier::UserTag_defaultTag(Assembler* assembler, |
| 2366 | Label* normal_ir_body) { |
| 2367 | __ LoadIsolate(RAX); |
| 2368 | __ movq(RAX, Address(RAX, target::Isolate::default_tag_offset())); |
| 2369 | __ ret(); |
| 2370 | } |
| 2371 | |
| 2372 | void AsmIntrinsifier::Profiler_getCurrentTag(Assembler* assembler, |
| 2373 | Label* normal_ir_body) { |
| 2374 | __ LoadIsolate(RAX); |
| 2375 | __ movq(RAX, Address(RAX, target::Isolate::current_tag_offset())); |
| 2376 | __ ret(); |
| 2377 | } |
| 2378 | |
| 2379 | void AsmIntrinsifier::Timeline_isDartStreamEnabled(Assembler* assembler, |
| 2380 | Label* normal_ir_body) { |
| 2381 | #if !defined(SUPPORT_TIMELINE) |
| 2382 | __ LoadObject(RAX, CastHandle<Object>(FalseObject())); |
| 2383 | __ ret(); |
| 2384 | #else |
| 2385 | Label true_label; |
| 2386 | // Load TimelineStream*. |
| 2387 | __ movq(RAX, Address(THR, target::Thread::dart_stream_offset())); |
| 2388 | // Load uintptr_t from TimelineStream*. |
| 2389 | __ movq(RAX, Address(RAX, target::TimelineStream::enabled_offset())); |
| 2390 | __ cmpq(RAX, Immediate(0)); |
| 2391 | __ j(NOT_ZERO, &true_label, Assembler::kNearJump); |
| 2392 | // Not enabled. |
| 2393 | __ LoadObject(RAX, CastHandle<Object>(FalseObject())); |
| 2394 | __ ret(); |
| 2395 | // Enabled. |
| 2396 | __ Bind(&true_label); |
| 2397 | __ LoadObject(RAX, CastHandle<Object>(TrueObject())); |
| 2398 | __ ret(); |
| 2399 | #endif |
| 2400 | } |
| 2401 | |
| 2402 | void AsmIntrinsifier::ClearAsyncThreadStackTrace(Assembler* assembler, |
| 2403 | Label* normal_ir_body) { |
| 2404 | __ LoadObject(RAX, NullObject()); |
| 2405 | __ movq(Address(THR, target::Thread::async_stack_trace_offset()), RAX); |
| 2406 | __ ret(); |
| 2407 | } |
| 2408 | |
| 2409 | void AsmIntrinsifier::SetAsyncThreadStackTrace(Assembler* assembler, |
| 2410 | Label* normal_ir_body) { |
| 2411 | __ movq(Address(THR, target::Thread::async_stack_trace_offset()), RAX); |
| 2412 | __ LoadObject(RAX, NullObject()); |
| 2413 | __ ret(); |
| 2414 | } |
| 2415 | |
| 2416 | #undef __ |
| 2417 | |
| 2418 | } // namespace compiler |
| 2419 | } // namespace dart |
| 2420 | |
| 2421 | #endif // defined(TARGET_ARCH_X64) |
| 2422 | |