| 1 | // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "vm/globals.h" // NOLINT |
| 6 | #if defined(TARGET_ARCH_X64) |
| 7 | |
| 8 | #define SHOULD_NOT_INCLUDE_RUNTIME |
| 9 | |
| 10 | #include "vm/class_id.h" |
| 11 | #include "vm/compiler/assembler/assembler.h" |
| 12 | #include "vm/compiler/backend/locations.h" |
| 13 | #include "vm/instructions.h" |
| 14 | |
| 15 | namespace dart { |
| 16 | |
| 17 | DECLARE_FLAG(bool, check_code_pointer); |
| 18 | DECLARE_FLAG(bool, inline_alloc); |
| 19 | DECLARE_FLAG(bool, precompiled_mode); |
| 20 | DECLARE_FLAG(bool, use_slow_path); |
| 21 | |
| 22 | namespace compiler { |
| 23 | |
| 24 | Assembler::Assembler(ObjectPoolBuilder* object_pool_builder, |
| 25 | bool use_far_branches) |
| 26 | : AssemblerBase(object_pool_builder), constant_pool_allowed_(false) { |
| 27 | // Far branching mode is only needed and implemented for ARM. |
| 28 | ASSERT(!use_far_branches); |
| 29 | |
| 30 | generate_invoke_write_barrier_wrapper_ = [&](Register reg) { |
| 31 | call(Address(THR, |
| 32 | target::Thread::write_barrier_wrappers_thread_offset(reg))); |
| 33 | }; |
| 34 | generate_invoke_array_write_barrier_ = [&]() { |
| 35 | call( |
| 36 | Address(THR, target::Thread::array_write_barrier_entry_point_offset())); |
| 37 | }; |
| 38 | } |
| 39 | |
| 40 | void Assembler::call(Label* label) { |
| 41 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 42 | static const int kSize = 5; |
| 43 | EmitUint8(0xE8); |
| 44 | EmitLabel(label, kSize); |
| 45 | } |
| 46 | |
| 47 | void Assembler::LoadNativeEntry( |
| 48 | Register dst, |
| 49 | const ExternalLabel* label, |
| 50 | ObjectPoolBuilderEntry::Patchability patchable) { |
| 51 | const int32_t offset = target::ObjectPool::element_offset( |
| 52 | object_pool_builder().FindNativeFunction(label, patchable)); |
| 53 | LoadWordFromPoolOffset(dst, offset - kHeapObjectTag); |
| 54 | } |
| 55 | |
| 56 | void Assembler::call(const ExternalLabel* label) { |
| 57 | { // Encode movq(TMP, Immediate(label->address())), but always as imm64. |
| 58 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 59 | EmitRegisterREX(TMP, REX_W); |
| 60 | EmitUint8(0xB8 | (TMP & 7)); |
| 61 | EmitInt64(label->address()); |
| 62 | } |
| 63 | call(TMP); |
| 64 | } |
| 65 | |
| 66 | void Assembler::CallPatchable(const Code& target, CodeEntryKind entry_kind) { |
| 67 | ASSERT(constant_pool_allowed()); |
| 68 | const intptr_t idx = object_pool_builder().AddObject( |
| 69 | ToObject(target), ObjectPoolBuilderEntry::kPatchable); |
| 70 | const int32_t offset = target::ObjectPool::element_offset(idx); |
| 71 | LoadWordFromPoolOffset(CODE_REG, offset - kHeapObjectTag); |
| 72 | call(FieldAddress(CODE_REG, target::Code::entry_point_offset(entry_kind))); |
| 73 | } |
| 74 | |
| 75 | void Assembler::CallWithEquivalence(const Code& target, |
| 76 | const Object& equivalence, |
| 77 | CodeEntryKind entry_kind) { |
| 78 | ASSERT(constant_pool_allowed()); |
| 79 | const intptr_t idx = |
| 80 | object_pool_builder().FindObject(ToObject(target), equivalence); |
| 81 | const int32_t offset = target::ObjectPool::element_offset(idx); |
| 82 | LoadWordFromPoolOffset(CODE_REG, offset - kHeapObjectTag); |
| 83 | call(FieldAddress(CODE_REG, target::Code::entry_point_offset(entry_kind))); |
| 84 | } |
| 85 | |
| 86 | void Assembler::Call(const Code& target) { |
| 87 | ASSERT(constant_pool_allowed()); |
| 88 | const intptr_t idx = object_pool_builder().FindObject( |
| 89 | ToObject(target), ObjectPoolBuilderEntry::kNotPatchable); |
| 90 | const int32_t offset = target::ObjectPool::element_offset(idx); |
| 91 | LoadWordFromPoolOffset(CODE_REG, offset - kHeapObjectTag); |
| 92 | call(FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| 93 | } |
| 94 | |
| 95 | void Assembler::CallToRuntime() { |
| 96 | call(Address(THR, target::Thread::call_to_runtime_entry_point_offset())); |
| 97 | } |
| 98 | |
| 99 | void Assembler::pushq(Register reg) { |
| 100 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 101 | EmitRegisterREX(reg, REX_NONE); |
| 102 | EmitUint8(0x50 | (reg & 7)); |
| 103 | } |
| 104 | |
| 105 | void Assembler::pushq(const Immediate& imm) { |
| 106 | if (imm.is_int8()) { |
| 107 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 108 | EmitUint8(0x6A); |
| 109 | EmitUint8(imm.value() & 0xFF); |
| 110 | } else if (imm.is_int32()) { |
| 111 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 112 | EmitUint8(0x68); |
| 113 | EmitImmediate(imm); |
| 114 | } else { |
| 115 | movq(TMP, imm); |
| 116 | pushq(TMP); |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | void Assembler::PushImmediate(const Immediate& imm) { |
| 121 | if (imm.is_int32()) { |
| 122 | pushq(imm); |
| 123 | } else { |
| 124 | LoadImmediate(TMP, imm); |
| 125 | pushq(TMP); |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | void Assembler::popq(Register reg) { |
| 130 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 131 | EmitRegisterREX(reg, REX_NONE); |
| 132 | EmitUint8(0x58 | (reg & 7)); |
| 133 | } |
| 134 | |
| 135 | void Assembler::setcc(Condition condition, ByteRegister dst) { |
| 136 | ASSERT(dst != kNoByteRegister); |
| 137 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 138 | if (dst >= 8) { |
| 139 | EmitUint8(REX_PREFIX | (((dst & 0x08) != 0) ? REX_B : REX_NONE)); |
| 140 | } |
| 141 | EmitUint8(0x0F); |
| 142 | EmitUint8(0x90 + condition); |
| 143 | EmitUint8(0xC0 + (dst & 0x07)); |
| 144 | } |
| 145 | |
| 146 | void Assembler::EnterSafepoint() { |
| 147 | // We generate the same number of instructions whether or not the slow-path is |
| 148 | // forced, to simplify GenerateJitCallbackTrampolines. |
| 149 | Label done, slow_path; |
| 150 | if (FLAG_use_slow_path) { |
| 151 | jmp(&slow_path); |
| 152 | } |
| 153 | |
| 154 | // Compare and swap the value at Thread::safepoint_state from unacquired to |
| 155 | // acquired. If the CAS fails, go to a slow-path stub. |
| 156 | pushq(RAX); |
| 157 | movq(RAX, Immediate(target::Thread::safepoint_state_unacquired())); |
| 158 | movq(TMP, Immediate(target::Thread::safepoint_state_acquired())); |
| 159 | LockCmpxchgq(Address(THR, target::Thread::safepoint_state_offset()), TMP); |
| 160 | movq(TMP, RAX); |
| 161 | popq(RAX); |
| 162 | cmpq(TMP, Immediate(target::Thread::safepoint_state_unacquired())); |
| 163 | |
| 164 | if (!FLAG_use_slow_path) { |
| 165 | j(EQUAL, &done); |
| 166 | } |
| 167 | |
| 168 | Bind(&slow_path); |
| 169 | movq(TMP, Address(THR, target::Thread::enter_safepoint_stub_offset())); |
| 170 | movq(TMP, FieldAddress(TMP, target::Code::entry_point_offset())); |
| 171 | |
| 172 | // Use call instead of CallCFunction to avoid having to clean up shadow space |
| 173 | // afterwards. This is possible because the safepoint stub does not use the |
| 174 | // shadow space as scratch and has no arguments. |
| 175 | call(TMP); |
| 176 | |
| 177 | Bind(&done); |
| 178 | } |
| 179 | |
| 180 | void Assembler::TransitionGeneratedToNative(Register destination_address, |
| 181 | Register new_exit_frame, |
| 182 | Register new_exit_through_ffi, |
| 183 | bool enter_safepoint) { |
| 184 | // Save exit frame information to enable stack walking. |
| 185 | movq(Address(THR, target::Thread::top_exit_frame_info_offset()), |
| 186 | new_exit_frame); |
| 187 | |
| 188 | movq(compiler::Address(THR, |
| 189 | compiler::target::Thread::exit_through_ffi_offset()), |
| 190 | new_exit_through_ffi); |
| 191 | |
| 192 | movq(Assembler::VMTagAddress(), destination_address); |
| 193 | movq(Address(THR, target::Thread::execution_state_offset()), |
| 194 | Immediate(target::Thread::native_execution_state())); |
| 195 | |
| 196 | if (enter_safepoint) { |
| 197 | EnterSafepoint(); |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | void Assembler::LeaveSafepoint() { |
| 202 | // We generate the same number of instructions whether or not the slow-path is |
| 203 | // forced, for consistency with EnterSafepoint. |
| 204 | Label done, slow_path; |
| 205 | if (FLAG_use_slow_path) { |
| 206 | jmp(&slow_path); |
| 207 | } |
| 208 | |
| 209 | // Compare and swap the value at Thread::safepoint_state from acquired to |
| 210 | // unacquired. On success, jump to 'success'; otherwise, fallthrough. |
| 211 | |
| 212 | pushq(RAX); |
| 213 | movq(RAX, Immediate(target::Thread::safepoint_state_acquired())); |
| 214 | movq(TMP, Immediate(target::Thread::safepoint_state_unacquired())); |
| 215 | LockCmpxchgq(Address(THR, target::Thread::safepoint_state_offset()), TMP); |
| 216 | movq(TMP, RAX); |
| 217 | popq(RAX); |
| 218 | cmpq(TMP, Immediate(target::Thread::safepoint_state_acquired())); |
| 219 | |
| 220 | if (!FLAG_use_slow_path) { |
| 221 | j(EQUAL, &done); |
| 222 | } |
| 223 | |
| 224 | Bind(&slow_path); |
| 225 | movq(TMP, Address(THR, target::Thread::exit_safepoint_stub_offset())); |
| 226 | movq(TMP, FieldAddress(TMP, target::Code::entry_point_offset())); |
| 227 | |
| 228 | // Use call instead of CallCFunction to avoid having to clean up shadow space |
| 229 | // afterwards. This is possible because the safepoint stub does not use the |
| 230 | // shadow space as scratch and has no arguments. |
| 231 | call(TMP); |
| 232 | |
| 233 | Bind(&done); |
| 234 | } |
| 235 | |
| 236 | void Assembler::TransitionNativeToGenerated(bool leave_safepoint) { |
| 237 | if (leave_safepoint) { |
| 238 | LeaveSafepoint(); |
| 239 | } else { |
| 240 | #if defined(DEBUG) |
| 241 | // Ensure we've already left the safepoint. |
| 242 | movq(TMP, Address(THR, target::Thread::safepoint_state_offset())); |
| 243 | andq(TMP, Immediate((1 << target::Thread::safepoint_state_inside_bit()))); |
| 244 | Label ok; |
| 245 | j(ZERO, &ok); |
| 246 | Breakpoint(); |
| 247 | Bind(&ok); |
| 248 | #endif |
| 249 | } |
| 250 | |
| 251 | movq(Assembler::VMTagAddress(), |
| 252 | Immediate(target::Thread::vm_tag_compiled_id())); |
| 253 | movq(Address(THR, target::Thread::execution_state_offset()), |
| 254 | Immediate(target::Thread::generated_execution_state())); |
| 255 | |
| 256 | // Reset exit frame information in Isolate's mutator thread structure. |
| 257 | movq(Address(THR, target::Thread::top_exit_frame_info_offset()), |
| 258 | Immediate(0)); |
| 259 | movq(compiler::Address(THR, |
| 260 | compiler::target::Thread::exit_through_ffi_offset()), |
| 261 | compiler::Immediate(0)); |
| 262 | } |
| 263 | |
| 264 | void Assembler::EmitQ(int reg, |
| 265 | const Address& address, |
| 266 | int opcode, |
| 267 | int prefix2, |
| 268 | int prefix1) { |
| 269 | ASSERT(reg <= XMM15); |
| 270 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 271 | if (prefix1 >= 0) { |
| 272 | EmitUint8(prefix1); |
| 273 | } |
| 274 | EmitOperandREX(reg, address, REX_W); |
| 275 | if (prefix2 >= 0) { |
| 276 | EmitUint8(prefix2); |
| 277 | } |
| 278 | EmitUint8(opcode); |
| 279 | EmitOperand(reg & 7, address); |
| 280 | } |
| 281 | |
| 282 | void Assembler::EmitL(int reg, |
| 283 | const Address& address, |
| 284 | int opcode, |
| 285 | int prefix2, |
| 286 | int prefix1) { |
| 287 | ASSERT(reg <= XMM15); |
| 288 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 289 | if (prefix1 >= 0) { |
| 290 | EmitUint8(prefix1); |
| 291 | } |
| 292 | EmitOperandREX(reg, address, REX_NONE); |
| 293 | if (prefix2 >= 0) { |
| 294 | EmitUint8(prefix2); |
| 295 | } |
| 296 | EmitUint8(opcode); |
| 297 | EmitOperand(reg & 7, address); |
| 298 | } |
| 299 | |
| 300 | void Assembler::EmitW(Register reg, |
| 301 | const Address& address, |
| 302 | int opcode, |
| 303 | int prefix2, |
| 304 | int prefix1) { |
| 305 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 306 | if (prefix1 >= 0) { |
| 307 | EmitUint8(prefix1); |
| 308 | } |
| 309 | EmitOperandSizeOverride(); |
| 310 | EmitOperandREX(reg, address, REX_NONE); |
| 311 | if (prefix2 >= 0) { |
| 312 | EmitUint8(prefix2); |
| 313 | } |
| 314 | EmitUint8(opcode); |
| 315 | EmitOperand(reg & 7, address); |
| 316 | } |
| 317 | |
| 318 | void Assembler::movl(Register dst, const Immediate& imm) { |
| 319 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 320 | Operand operand(dst); |
| 321 | EmitOperandREX(0, operand, REX_NONE); |
| 322 | EmitUint8(0xC7); |
| 323 | EmitOperand(0, operand); |
| 324 | ASSERT(imm.is_int32()); |
| 325 | EmitImmediate(imm); |
| 326 | } |
| 327 | |
| 328 | void Assembler::movl(const Address& dst, const Immediate& imm) { |
| 329 | movl(TMP, imm); |
| 330 | movl(dst, TMP); |
| 331 | } |
| 332 | |
| 333 | void Assembler::movb(const Address& dst, const Immediate& imm) { |
| 334 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 335 | EmitOperandREX(0, dst, REX_NONE); |
| 336 | EmitUint8(0xC6); |
| 337 | EmitOperand(0, dst); |
| 338 | ASSERT(imm.is_int8()); |
| 339 | EmitUint8(imm.value() & 0xFF); |
| 340 | } |
| 341 | |
| 342 | void Assembler::movw(Register dst, const Address& src) { |
| 343 | // This would leave 16 bits above the 2 byte value undefined. |
| 344 | // If we ever want to purposefully have those undefined, remove this. |
| 345 | // TODO(40210): Allow this. |
| 346 | FATAL("Use movzxw or movsxw instead." ); |
| 347 | } |
| 348 | |
| 349 | void Assembler::movw(const Address& dst, const Immediate& imm) { |
| 350 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 351 | EmitOperandSizeOverride(); |
| 352 | EmitOperandREX(0, dst, REX_NONE); |
| 353 | EmitUint8(0xC7); |
| 354 | EmitOperand(0, dst); |
| 355 | EmitUint8(imm.value() & 0xFF); |
| 356 | EmitUint8((imm.value() >> 8) & 0xFF); |
| 357 | } |
| 358 | |
| 359 | void Assembler::movq(Register dst, const Immediate& imm) { |
| 360 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 361 | if (imm.is_uint32()) { |
| 362 | // Pick single byte B8 encoding if possible. If dst < 8 then we also omit |
| 363 | // the Rex byte. |
| 364 | EmitRegisterREX(dst, REX_NONE); |
| 365 | EmitUint8(0xB8 | (dst & 7)); |
| 366 | EmitUInt32(imm.value()); |
| 367 | } else if (imm.is_int32()) { |
| 368 | // Sign extended C7 Cx encoding if we have a negative input. |
| 369 | Operand operand(dst); |
| 370 | EmitOperandREX(0, operand, REX_W); |
| 371 | EmitUint8(0xC7); |
| 372 | EmitOperand(0, operand); |
| 373 | EmitImmediate(imm); |
| 374 | } else { |
| 375 | // Full 64 bit immediate encoding. |
| 376 | EmitRegisterREX(dst, REX_W); |
| 377 | EmitUint8(0xB8 | (dst & 7)); |
| 378 | EmitImmediate(imm); |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | void Assembler::movq(const Address& dst, const Immediate& imm) { |
| 383 | if (imm.is_int32()) { |
| 384 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 385 | EmitOperandREX(0, dst, REX_W); |
| 386 | EmitUint8(0xC7); |
| 387 | EmitOperand(0, dst); |
| 388 | EmitImmediate(imm); |
| 389 | } else { |
| 390 | movq(TMP, imm); |
| 391 | movq(dst, TMP); |
| 392 | } |
| 393 | } |
| 394 | |
| 395 | void Assembler::EmitSimple(int opcode, int opcode2, int opcode3) { |
| 396 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 397 | EmitUint8(opcode); |
| 398 | if (opcode2 != -1) { |
| 399 | EmitUint8(opcode2); |
| 400 | if (opcode3 != -1) { |
| 401 | EmitUint8(opcode3); |
| 402 | } |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | void Assembler::EmitQ(int dst, int src, int opcode, int prefix2, int prefix1) { |
| 407 | ASSERT(src <= XMM15); |
| 408 | ASSERT(dst <= XMM15); |
| 409 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 410 | if (prefix1 >= 0) { |
| 411 | EmitUint8(prefix1); |
| 412 | } |
| 413 | EmitRegRegRex(dst, src, REX_W); |
| 414 | if (prefix2 >= 0) { |
| 415 | EmitUint8(prefix2); |
| 416 | } |
| 417 | EmitUint8(opcode); |
| 418 | EmitRegisterOperand(dst & 7, src); |
| 419 | } |
| 420 | |
| 421 | void Assembler::EmitL(int dst, int src, int opcode, int prefix2, int prefix1) { |
| 422 | ASSERT(src <= XMM15); |
| 423 | ASSERT(dst <= XMM15); |
| 424 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 425 | if (prefix1 >= 0) { |
| 426 | EmitUint8(prefix1); |
| 427 | } |
| 428 | EmitRegRegRex(dst, src); |
| 429 | if (prefix2 >= 0) { |
| 430 | EmitUint8(prefix2); |
| 431 | } |
| 432 | EmitUint8(opcode); |
| 433 | EmitRegisterOperand(dst & 7, src); |
| 434 | } |
| 435 | |
| 436 | void Assembler::EmitW(Register dst, |
| 437 | Register src, |
| 438 | int opcode, |
| 439 | int prefix2, |
| 440 | int prefix1) { |
| 441 | ASSERT(src <= R15); |
| 442 | ASSERT(dst <= R15); |
| 443 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 444 | if (prefix1 >= 0) { |
| 445 | EmitUint8(prefix1); |
| 446 | } |
| 447 | EmitOperandSizeOverride(); |
| 448 | EmitRegRegRex(dst, src); |
| 449 | if (prefix2 >= 0) { |
| 450 | EmitUint8(prefix2); |
| 451 | } |
| 452 | EmitUint8(opcode); |
| 453 | EmitRegisterOperand(dst & 7, src); |
| 454 | } |
| 455 | |
| 456 | #define UNARY_XMM_WITH_CONSTANT(name, constant, op) \ |
| 457 | void Assembler::name(XmmRegister dst, XmmRegister src) { \ |
| 458 | movq(TMP, Address(THR, target::Thread::constant##_address_offset())); \ |
| 459 | if (dst == src) { \ |
| 460 | op(dst, Address(TMP, 0)); \ |
| 461 | } else { \ |
| 462 | movups(dst, Address(TMP, 0)); \ |
| 463 | op(dst, src); \ |
| 464 | } \ |
| 465 | } |
| 466 | |
| 467 | // TODO(erikcorry): For the case where dst != src, we could construct these |
| 468 | // with pcmpeqw xmm0,xmm0 followed by left and right shifts. This would avoid |
| 469 | // memory traffic. |
| 470 | // { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; |
| 471 | UNARY_XMM_WITH_CONSTANT(notps, float_not, xorps) |
| 472 | // { 0x80000000, 0x80000000, 0x80000000, 0x80000000 } |
| 473 | UNARY_XMM_WITH_CONSTANT(negateps, float_negate, xorps) |
| 474 | // { 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF } |
| 475 | UNARY_XMM_WITH_CONSTANT(absps, float_absolute, andps) |
| 476 | // { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000 } |
| 477 | UNARY_XMM_WITH_CONSTANT(zerowps, float_zerow, andps) |
| 478 | // { 0x8000000000000000LL, 0x8000000000000000LL } |
| 479 | UNARY_XMM_WITH_CONSTANT(negatepd, double_negate, xorpd) |
| 480 | // { 0x7FFFFFFFFFFFFFFFLL, 0x7FFFFFFFFFFFFFFFLL } |
| 481 | UNARY_XMM_WITH_CONSTANT(abspd, double_abs, andpd) |
| 482 | // {0x8000000000000000LL, 0x8000000000000000LL} |
| 483 | UNARY_XMM_WITH_CONSTANT(DoubleNegate, double_negate, xorpd) |
| 484 | // {0x7FFFFFFFFFFFFFFFLL, 0x7FFFFFFFFFFFFFFFLL} |
| 485 | UNARY_XMM_WITH_CONSTANT(DoubleAbs, double_abs, andpd) |
| 486 | |
| 487 | #undef UNARY_XMM_WITH_CONSTANT |
| 488 | |
| 489 | void Assembler::CmpPS(XmmRegister dst, XmmRegister src, int condition) { |
| 490 | EmitL(dst, src, 0xC2, 0x0F); |
| 491 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 492 | EmitUint8(condition); |
| 493 | } |
| 494 | |
| 495 | void Assembler::set1ps(XmmRegister dst, Register tmp1, const Immediate& imm) { |
| 496 | // Load 32-bit immediate value into tmp1. |
| 497 | movl(tmp1, imm); |
| 498 | // Move value from tmp1 into dst. |
| 499 | movd(dst, tmp1); |
| 500 | // Broadcast low lane into other three lanes. |
| 501 | shufps(dst, dst, Immediate(0x0)); |
| 502 | } |
| 503 | |
| 504 | void Assembler::shufps(XmmRegister dst, XmmRegister src, const Immediate& imm) { |
| 505 | EmitL(dst, src, 0xC6, 0x0F); |
| 506 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 507 | ASSERT(imm.is_uint8()); |
| 508 | EmitUint8(imm.value()); |
| 509 | } |
| 510 | |
| 511 | void Assembler::shufpd(XmmRegister dst, XmmRegister src, const Immediate& imm) { |
| 512 | EmitL(dst, src, 0xC6, 0x0F, 0x66); |
| 513 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 514 | ASSERT(imm.is_uint8()); |
| 515 | EmitUint8(imm.value()); |
| 516 | } |
| 517 | |
| 518 | void Assembler::roundsd(XmmRegister dst, XmmRegister src, RoundingMode mode) { |
| 519 | ASSERT(src <= XMM15); |
| 520 | ASSERT(dst <= XMM15); |
| 521 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 522 | EmitUint8(0x66); |
| 523 | EmitRegRegRex(dst, src); |
| 524 | EmitUint8(0x0F); |
| 525 | EmitUint8(0x3A); |
| 526 | EmitUint8(0x0B); |
| 527 | EmitRegisterOperand(dst & 7, src); |
| 528 | // Mask precision exeption. |
| 529 | EmitUint8(static_cast<uint8_t>(mode) | 0x8); |
| 530 | } |
| 531 | |
| 532 | void Assembler::fldl(const Address& src) { |
| 533 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 534 | EmitUint8(0xDD); |
| 535 | EmitOperand(0, src); |
| 536 | } |
| 537 | |
| 538 | void Assembler::fstpl(const Address& dst) { |
| 539 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 540 | EmitUint8(0xDD); |
| 541 | EmitOperand(3, dst); |
| 542 | } |
| 543 | |
| 544 | void Assembler::ffree(intptr_t value) { |
| 545 | ASSERT(value < 7); |
| 546 | EmitSimple(0xDD, 0xC0 + value); |
| 547 | } |
| 548 | |
| 549 | void Assembler::CompareImmediate(Register reg, const Immediate& imm) { |
| 550 | if (imm.is_int32()) { |
| 551 | cmpq(reg, imm); |
| 552 | } else { |
| 553 | ASSERT(reg != TMP); |
| 554 | LoadImmediate(TMP, imm); |
| 555 | cmpq(reg, TMP); |
| 556 | } |
| 557 | } |
| 558 | |
| 559 | void Assembler::CompareImmediate(const Address& address, const Immediate& imm) { |
| 560 | if (imm.is_int32()) { |
| 561 | cmpq(address, imm); |
| 562 | } else { |
| 563 | LoadImmediate(TMP, imm); |
| 564 | cmpq(address, TMP); |
| 565 | } |
| 566 | } |
| 567 | |
| 568 | void Assembler::testb(const Address& address, const Immediate& imm) { |
| 569 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 570 | EmitOperandREX(0, address, REX_NONE); |
| 571 | EmitUint8(0xF6); |
| 572 | EmitOperand(0, address); |
| 573 | ASSERT(imm.is_int8()); |
| 574 | EmitUint8(imm.value() & 0xFF); |
| 575 | } |
| 576 | |
| 577 | void Assembler::testb(const Address& address, Register reg) { |
| 578 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 579 | EmitOperandREX(reg, address, REX_NONE); |
| 580 | EmitUint8(0x84); |
| 581 | EmitOperand(reg & 7, address); |
| 582 | } |
| 583 | |
| 584 | void Assembler::testq(Register reg, const Immediate& imm) { |
| 585 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 586 | if (imm.is_uint8()) { |
| 587 | // Use zero-extended 8-bit immediate. |
| 588 | if (reg >= 4) { |
| 589 | // We need the Rex byte to give access to the SIL and DIL registers (the |
| 590 | // low bytes of RSI and RDI). |
| 591 | EmitRegisterREX(reg, REX_NONE, /* force = */ true); |
| 592 | } |
| 593 | if (reg == RAX) { |
| 594 | EmitUint8(0xA8); |
| 595 | } else { |
| 596 | EmitUint8(0xF6); |
| 597 | EmitUint8(0xC0 + (reg & 7)); |
| 598 | } |
| 599 | EmitUint8(imm.value() & 0xFF); |
| 600 | } else if (imm.is_uint32()) { |
| 601 | if (reg == RAX) { |
| 602 | EmitUint8(0xA9); |
| 603 | } else { |
| 604 | EmitRegisterREX(reg, REX_NONE); |
| 605 | EmitUint8(0xF7); |
| 606 | EmitUint8(0xC0 | (reg & 7)); |
| 607 | } |
| 608 | EmitUInt32(imm.value()); |
| 609 | } else { |
| 610 | // Sign extended version of 32 bit test. |
| 611 | ASSERT(imm.is_int32()); |
| 612 | EmitRegisterREX(reg, REX_W); |
| 613 | if (reg == RAX) { |
| 614 | EmitUint8(0xA9); |
| 615 | } else { |
| 616 | EmitUint8(0xF7); |
| 617 | EmitUint8(0xC0 | (reg & 7)); |
| 618 | } |
| 619 | EmitImmediate(imm); |
| 620 | } |
| 621 | } |
| 622 | |
| 623 | void Assembler::TestImmediate(Register dst, const Immediate& imm) { |
| 624 | if (imm.is_int32() || imm.is_uint32()) { |
| 625 | testq(dst, imm); |
| 626 | } else { |
| 627 | ASSERT(dst != TMP); |
| 628 | LoadImmediate(TMP, imm); |
| 629 | testq(dst, TMP); |
| 630 | } |
| 631 | } |
| 632 | |
| 633 | void Assembler::AluL(uint8_t modrm_opcode, Register dst, const Immediate& imm) { |
| 634 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 635 | EmitRegisterREX(dst, REX_NONE); |
| 636 | EmitComplex(modrm_opcode, Operand(dst), imm); |
| 637 | } |
| 638 | |
| 639 | void Assembler::AluB(uint8_t modrm_opcode, |
| 640 | const Address& dst, |
| 641 | const Immediate& imm) { |
| 642 | ASSERT(imm.is_uint8() || imm.is_int8()); |
| 643 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 644 | EmitOperandREX(modrm_opcode, dst, REX_NONE); |
| 645 | EmitUint8(0x80); |
| 646 | EmitOperand(modrm_opcode, dst); |
| 647 | EmitUint8(imm.value() & 0xFF); |
| 648 | } |
| 649 | |
| 650 | void Assembler::AluW(uint8_t modrm_opcode, |
| 651 | const Address& dst, |
| 652 | const Immediate& imm) { |
| 653 | ASSERT(imm.is_int16() || imm.is_uint16()); |
| 654 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 655 | EmitOperandSizeOverride(); |
| 656 | EmitOperandREX(modrm_opcode, dst, REX_NONE); |
| 657 | if (imm.is_int8()) { |
| 658 | EmitSignExtendedInt8(modrm_opcode, dst, imm); |
| 659 | } else { |
| 660 | EmitUint8(0x81); |
| 661 | EmitOperand(modrm_opcode, dst); |
| 662 | EmitUint8(imm.value() & 0xFF); |
| 663 | EmitUint8((imm.value() >> 8) & 0xFF); |
| 664 | } |
| 665 | } |
| 666 | |
| 667 | void Assembler::AluL(uint8_t modrm_opcode, |
| 668 | const Address& dst, |
| 669 | const Immediate& imm) { |
| 670 | ASSERT(imm.is_int32()); |
| 671 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 672 | EmitOperandREX(modrm_opcode, dst, REX_NONE); |
| 673 | EmitComplex(modrm_opcode, dst, imm); |
| 674 | } |
| 675 | |
| 676 | void Assembler::AluQ(uint8_t modrm_opcode, |
| 677 | uint8_t opcode, |
| 678 | Register dst, |
| 679 | const Immediate& imm) { |
| 680 | Operand operand(dst); |
| 681 | if (modrm_opcode == 4 && imm.is_uint32()) { |
| 682 | // We can use andl for andq. |
| 683 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 684 | EmitRegisterREX(dst, REX_NONE); |
| 685 | // Would like to use EmitComplex here, but it doesn't like uint32 |
| 686 | // immediates. |
| 687 | if (imm.is_int8()) { |
| 688 | EmitSignExtendedInt8(modrm_opcode, operand, imm); |
| 689 | } else { |
| 690 | if (dst == RAX) { |
| 691 | EmitUint8(0x25); |
| 692 | } else { |
| 693 | EmitUint8(0x81); |
| 694 | EmitOperand(modrm_opcode, operand); |
| 695 | } |
| 696 | EmitUInt32(imm.value()); |
| 697 | } |
| 698 | } else if (imm.is_int32()) { |
| 699 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 700 | EmitRegisterREX(dst, REX_W); |
| 701 | EmitComplex(modrm_opcode, operand, imm); |
| 702 | } else { |
| 703 | ASSERT(dst != TMP); |
| 704 | movq(TMP, imm); |
| 705 | EmitQ(dst, TMP, opcode); |
| 706 | } |
| 707 | } |
| 708 | |
| 709 | void Assembler::AluQ(uint8_t modrm_opcode, |
| 710 | uint8_t opcode, |
| 711 | const Address& dst, |
| 712 | const Immediate& imm) { |
| 713 | if (imm.is_int32()) { |
| 714 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 715 | EmitOperandREX(modrm_opcode, dst, REX_W); |
| 716 | EmitComplex(modrm_opcode, dst, imm); |
| 717 | } else { |
| 718 | movq(TMP, imm); |
| 719 | EmitQ(TMP, dst, opcode); |
| 720 | } |
| 721 | } |
| 722 | |
| 723 | void Assembler::AndImmediate(Register dst, const Immediate& imm) { |
| 724 | if (imm.is_int32() || imm.is_uint32()) { |
| 725 | andq(dst, imm); |
| 726 | } else { |
| 727 | ASSERT(dst != TMP); |
| 728 | LoadImmediate(TMP, imm); |
| 729 | andq(dst, TMP); |
| 730 | } |
| 731 | } |
| 732 | |
| 733 | void Assembler::OrImmediate(Register dst, const Immediate& imm) { |
| 734 | if (imm.is_int32()) { |
| 735 | orq(dst, imm); |
| 736 | } else { |
| 737 | ASSERT(dst != TMP); |
| 738 | LoadImmediate(TMP, imm); |
| 739 | orq(dst, TMP); |
| 740 | } |
| 741 | } |
| 742 | |
| 743 | void Assembler::XorImmediate(Register dst, const Immediate& imm) { |
| 744 | if (imm.is_int32()) { |
| 745 | xorq(dst, imm); |
| 746 | } else { |
| 747 | ASSERT(dst != TMP); |
| 748 | LoadImmediate(TMP, imm); |
| 749 | xorq(dst, TMP); |
| 750 | } |
| 751 | } |
| 752 | |
| 753 | void Assembler::cqo() { |
| 754 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 755 | EmitRegisterREX(RAX, REX_W); |
| 756 | EmitUint8(0x99); |
| 757 | } |
| 758 | |
| 759 | void Assembler::EmitUnaryQ(Register reg, int opcode, int modrm_code) { |
| 760 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 761 | EmitRegisterREX(reg, REX_W); |
| 762 | EmitUint8(opcode); |
| 763 | EmitOperand(modrm_code, Operand(reg)); |
| 764 | } |
| 765 | |
| 766 | void Assembler::EmitUnaryL(Register reg, int opcode, int modrm_code) { |
| 767 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 768 | EmitRegisterREX(reg, REX_NONE); |
| 769 | EmitUint8(opcode); |
| 770 | EmitOperand(modrm_code, Operand(reg)); |
| 771 | } |
| 772 | |
| 773 | void Assembler::EmitUnaryQ(const Address& address, int opcode, int modrm_code) { |
| 774 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 775 | Operand operand(address); |
| 776 | EmitOperandREX(modrm_code, operand, REX_W); |
| 777 | EmitUint8(opcode); |
| 778 | EmitOperand(modrm_code, operand); |
| 779 | } |
| 780 | |
| 781 | void Assembler::EmitUnaryL(const Address& address, int opcode, int modrm_code) { |
| 782 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 783 | Operand operand(address); |
| 784 | EmitOperandREX(modrm_code, operand, REX_NONE); |
| 785 | EmitUint8(opcode); |
| 786 | EmitOperand(modrm_code, operand); |
| 787 | } |
| 788 | |
| 789 | void Assembler::imull(Register reg, const Immediate& imm) { |
| 790 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 791 | Operand operand(reg); |
| 792 | EmitOperandREX(reg, operand, REX_NONE); |
| 793 | EmitUint8(0x69); |
| 794 | EmitOperand(reg & 7, Operand(reg)); |
| 795 | EmitImmediate(imm); |
| 796 | } |
| 797 | |
| 798 | void Assembler::imulq(Register reg, const Immediate& imm) { |
| 799 | if (imm.is_int32()) { |
| 800 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 801 | Operand operand(reg); |
| 802 | EmitOperandREX(reg, operand, REX_W); |
| 803 | EmitUint8(0x69); |
| 804 | EmitOperand(reg & 7, Operand(reg)); |
| 805 | EmitImmediate(imm); |
| 806 | } else { |
| 807 | ASSERT(reg != TMP); |
| 808 | movq(TMP, imm); |
| 809 | imulq(reg, TMP); |
| 810 | } |
| 811 | } |
| 812 | |
| 813 | void Assembler::MulImmediate(Register reg, |
| 814 | const Immediate& imm, |
| 815 | OperandWidth width) { |
| 816 | if (imm.is_int32()) { |
| 817 | if (width == k32Bit) { |
| 818 | imull(reg, imm); |
| 819 | } else { |
| 820 | imulq(reg, imm); |
| 821 | } |
| 822 | } else { |
| 823 | ASSERT(reg != TMP); |
| 824 | ASSERT(width != k32Bit); |
| 825 | movq(TMP, imm); |
| 826 | imulq(reg, TMP); |
| 827 | } |
| 828 | } |
| 829 | |
| 830 | void Assembler::shll(Register reg, const Immediate& imm) { |
| 831 | EmitGenericShift(false, 4, reg, imm); |
| 832 | } |
| 833 | |
| 834 | void Assembler::shll(Register operand, Register shifter) { |
| 835 | EmitGenericShift(false, 4, operand, shifter); |
| 836 | } |
| 837 | |
| 838 | void Assembler::shrl(Register reg, const Immediate& imm) { |
| 839 | EmitGenericShift(false, 5, reg, imm); |
| 840 | } |
| 841 | |
| 842 | void Assembler::shrl(Register operand, Register shifter) { |
| 843 | EmitGenericShift(false, 5, operand, shifter); |
| 844 | } |
| 845 | |
| 846 | void Assembler::sarl(Register reg, const Immediate& imm) { |
| 847 | EmitGenericShift(false, 7, reg, imm); |
| 848 | } |
| 849 | |
| 850 | void Assembler::sarl(Register operand, Register shifter) { |
| 851 | EmitGenericShift(false, 7, operand, shifter); |
| 852 | } |
| 853 | |
| 854 | void Assembler::shldl(Register dst, Register src, const Immediate& imm) { |
| 855 | EmitL(src, dst, 0xA4, 0x0F); |
| 856 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 857 | ASSERT(imm.is_int8()); |
| 858 | EmitUint8(imm.value() & 0xFF); |
| 859 | } |
| 860 | |
| 861 | void Assembler::shlq(Register reg, const Immediate& imm) { |
| 862 | EmitGenericShift(true, 4, reg, imm); |
| 863 | } |
| 864 | |
| 865 | void Assembler::shlq(Register operand, Register shifter) { |
| 866 | EmitGenericShift(true, 4, operand, shifter); |
| 867 | } |
| 868 | |
| 869 | void Assembler::shrq(Register reg, const Immediate& imm) { |
| 870 | EmitGenericShift(true, 5, reg, imm); |
| 871 | } |
| 872 | |
| 873 | void Assembler::shrq(Register operand, Register shifter) { |
| 874 | EmitGenericShift(true, 5, operand, shifter); |
| 875 | } |
| 876 | |
| 877 | void Assembler::sarq(Register reg, const Immediate& imm) { |
| 878 | EmitGenericShift(true, 7, reg, imm); |
| 879 | } |
| 880 | |
| 881 | void Assembler::sarq(Register operand, Register shifter) { |
| 882 | EmitGenericShift(true, 7, operand, shifter); |
| 883 | } |
| 884 | |
| 885 | void Assembler::shldq(Register dst, Register src, const Immediate& imm) { |
| 886 | EmitQ(src, dst, 0xA4, 0x0F); |
| 887 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 888 | ASSERT(imm.is_int8()); |
| 889 | EmitUint8(imm.value() & 0xFF); |
| 890 | } |
| 891 | |
| 892 | void Assembler::btq(Register base, int bit) { |
| 893 | ASSERT(bit >= 0 && bit < 64); |
| 894 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 895 | Operand operand(base); |
| 896 | EmitOperandREX(4, operand, bit >= 32 ? REX_W : REX_NONE); |
| 897 | EmitUint8(0x0F); |
| 898 | EmitUint8(0xBA); |
| 899 | EmitOperand(4, operand); |
| 900 | EmitUint8(bit); |
| 901 | } |
| 902 | |
| 903 | void Assembler::enter(const Immediate& imm) { |
| 904 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 905 | EmitUint8(0xC8); |
| 906 | ASSERT(imm.is_uint16()); |
| 907 | EmitUint8(imm.value() & 0xFF); |
| 908 | EmitUint8((imm.value() >> 8) & 0xFF); |
| 909 | EmitUint8(0x00); |
| 910 | } |
| 911 | |
| 912 | void Assembler::nop(int size) { |
| 913 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 914 | // There are nops up to size 15, but for now just provide up to size 8. |
| 915 | ASSERT(0 < size && size <= MAX_NOP_SIZE); |
| 916 | switch (size) { |
| 917 | case 1: |
| 918 | EmitUint8(0x90); |
| 919 | break; |
| 920 | case 2: |
| 921 | EmitUint8(0x66); |
| 922 | EmitUint8(0x90); |
| 923 | break; |
| 924 | case 3: |
| 925 | EmitUint8(0x0F); |
| 926 | EmitUint8(0x1F); |
| 927 | EmitUint8(0x00); |
| 928 | break; |
| 929 | case 4: |
| 930 | EmitUint8(0x0F); |
| 931 | EmitUint8(0x1F); |
| 932 | EmitUint8(0x40); |
| 933 | EmitUint8(0x00); |
| 934 | break; |
| 935 | case 5: |
| 936 | EmitUint8(0x0F); |
| 937 | EmitUint8(0x1F); |
| 938 | EmitUint8(0x44); |
| 939 | EmitUint8(0x00); |
| 940 | EmitUint8(0x00); |
| 941 | break; |
| 942 | case 6: |
| 943 | EmitUint8(0x66); |
| 944 | EmitUint8(0x0F); |
| 945 | EmitUint8(0x1F); |
| 946 | EmitUint8(0x44); |
| 947 | EmitUint8(0x00); |
| 948 | EmitUint8(0x00); |
| 949 | break; |
| 950 | case 7: |
| 951 | EmitUint8(0x0F); |
| 952 | EmitUint8(0x1F); |
| 953 | EmitUint8(0x80); |
| 954 | EmitUint8(0x00); |
| 955 | EmitUint8(0x00); |
| 956 | EmitUint8(0x00); |
| 957 | EmitUint8(0x00); |
| 958 | break; |
| 959 | case 8: |
| 960 | EmitUint8(0x0F); |
| 961 | EmitUint8(0x1F); |
| 962 | EmitUint8(0x84); |
| 963 | EmitUint8(0x00); |
| 964 | EmitUint8(0x00); |
| 965 | EmitUint8(0x00); |
| 966 | EmitUint8(0x00); |
| 967 | EmitUint8(0x00); |
| 968 | break; |
| 969 | default: |
| 970 | UNIMPLEMENTED(); |
| 971 | } |
| 972 | } |
| 973 | |
| 974 | void Assembler::j(Condition condition, Label* label, bool near) { |
| 975 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 976 | if (label->IsBound()) { |
| 977 | static const int kShortSize = 2; |
| 978 | static const int kLongSize = 6; |
| 979 | intptr_t offset = label->Position() - buffer_.Size(); |
| 980 | ASSERT(offset <= 0); |
| 981 | if (Utils::IsInt(8, offset - kShortSize)) { |
| 982 | EmitUint8(0x70 + condition); |
| 983 | EmitUint8((offset - kShortSize) & 0xFF); |
| 984 | } else { |
| 985 | EmitUint8(0x0F); |
| 986 | EmitUint8(0x80 + condition); |
| 987 | EmitInt32(offset - kLongSize); |
| 988 | } |
| 989 | } else if (near) { |
| 990 | EmitUint8(0x70 + condition); |
| 991 | EmitNearLabelLink(label); |
| 992 | } else { |
| 993 | EmitUint8(0x0F); |
| 994 | EmitUint8(0x80 + condition); |
| 995 | EmitLabelLink(label); |
| 996 | } |
| 997 | } |
| 998 | |
| 999 | void Assembler::J(Condition condition, const Code& target, Register pp) { |
| 1000 | Label no_jump; |
| 1001 | // Negate condition. |
| 1002 | j(static_cast<Condition>(condition ^ 1), &no_jump, kNearJump); |
| 1003 | Jmp(target, pp); |
| 1004 | Bind(&no_jump); |
| 1005 | } |
| 1006 | |
| 1007 | void Assembler::jmp(Label* label, bool near) { |
| 1008 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 1009 | if (label->IsBound()) { |
| 1010 | static const int kShortSize = 2; |
| 1011 | static const int kLongSize = 5; |
| 1012 | intptr_t offset = label->Position() - buffer_.Size(); |
| 1013 | ASSERT(offset <= 0); |
| 1014 | if (Utils::IsInt(8, offset - kShortSize)) { |
| 1015 | EmitUint8(0xEB); |
| 1016 | EmitUint8((offset - kShortSize) & 0xFF); |
| 1017 | } else { |
| 1018 | EmitUint8(0xE9); |
| 1019 | EmitInt32(offset - kLongSize); |
| 1020 | } |
| 1021 | } else if (near) { |
| 1022 | EmitUint8(0xEB); |
| 1023 | EmitNearLabelLink(label); |
| 1024 | } else { |
| 1025 | EmitUint8(0xE9); |
| 1026 | EmitLabelLink(label); |
| 1027 | } |
| 1028 | } |
| 1029 | |
| 1030 | void Assembler::jmp(const ExternalLabel* label) { |
| 1031 | { // Encode movq(TMP, Immediate(label->address())), but always as imm64. |
| 1032 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 1033 | EmitRegisterREX(TMP, REX_W); |
| 1034 | EmitUint8(0xB8 | (TMP & 7)); |
| 1035 | EmitInt64(label->address()); |
| 1036 | } |
| 1037 | jmp(TMP); |
| 1038 | } |
| 1039 | |
| 1040 | void Assembler::JmpPatchable(const Code& target, Register pp) { |
| 1041 | ASSERT((pp != PP) || constant_pool_allowed()); |
| 1042 | const intptr_t idx = object_pool_builder().AddObject( |
| 1043 | ToObject(target), ObjectPoolBuilderEntry::kPatchable); |
| 1044 | const int32_t offset = target::ObjectPool::element_offset(idx); |
| 1045 | movq(CODE_REG, Address(pp, offset - kHeapObjectTag)); |
| 1046 | movq(TMP, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| 1047 | jmp(TMP); |
| 1048 | } |
| 1049 | |
| 1050 | void Assembler::Jmp(const Code& target, Register pp) { |
| 1051 | ASSERT((pp != PP) || constant_pool_allowed()); |
| 1052 | const intptr_t idx = object_pool_builder().FindObject( |
| 1053 | ToObject(target), ObjectPoolBuilderEntry::kNotPatchable); |
| 1054 | const int32_t offset = target::ObjectPool::element_offset(idx); |
| 1055 | movq(CODE_REG, FieldAddress(pp, offset)); |
| 1056 | jmp(FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| 1057 | } |
| 1058 | |
| 1059 | void Assembler::CompareRegisters(Register a, Register b) { |
| 1060 | cmpq(a, b); |
| 1061 | } |
| 1062 | |
| 1063 | void Assembler::MoveRegister(Register to, Register from) { |
| 1064 | if (to != from) { |
| 1065 | movq(to, from); |
| 1066 | } |
| 1067 | } |
| 1068 | |
| 1069 | void Assembler::PushRegister(Register r) { |
| 1070 | pushq(r); |
| 1071 | } |
| 1072 | |
| 1073 | void Assembler::PopRegister(Register r) { |
| 1074 | popq(r); |
| 1075 | } |
| 1076 | |
| 1077 | void Assembler::AddImmediate(Register reg, |
| 1078 | const Immediate& imm, |
| 1079 | OperandWidth width) { |
| 1080 | const int64_t value = imm.value(); |
| 1081 | if (value == 0) { |
| 1082 | return; |
| 1083 | } |
| 1084 | if ((value > 0) || (value == kMinInt64)) { |
| 1085 | if (value == 1) { |
| 1086 | if (width == k32Bit) { |
| 1087 | incl(reg); |
| 1088 | } else { |
| 1089 | incq(reg); |
| 1090 | } |
| 1091 | } else { |
| 1092 | if (imm.is_int32() || (width == k32Bit && imm.is_uint32())) { |
| 1093 | if (width == k32Bit) { |
| 1094 | addl(reg, imm); |
| 1095 | } else { |
| 1096 | addq(reg, imm); |
| 1097 | } |
| 1098 | } else { |
| 1099 | ASSERT(reg != TMP); |
| 1100 | ASSERT(width != k32Bit); |
| 1101 | LoadImmediate(TMP, imm); |
| 1102 | addq(reg, TMP); |
| 1103 | } |
| 1104 | } |
| 1105 | } else { |
| 1106 | SubImmediate(reg, Immediate(-value), width); |
| 1107 | } |
| 1108 | } |
| 1109 | |
| 1110 | void Assembler::AddImmediate(const Address& address, const Immediate& imm) { |
| 1111 | const int64_t value = imm.value(); |
| 1112 | if (value == 0) { |
| 1113 | return; |
| 1114 | } |
| 1115 | if ((value > 0) || (value == kMinInt64)) { |
| 1116 | if (value == 1) { |
| 1117 | incq(address); |
| 1118 | } else { |
| 1119 | if (imm.is_int32()) { |
| 1120 | addq(address, imm); |
| 1121 | } else { |
| 1122 | LoadImmediate(TMP, imm); |
| 1123 | addq(address, TMP); |
| 1124 | } |
| 1125 | } |
| 1126 | } else { |
| 1127 | SubImmediate(address, Immediate(-value)); |
| 1128 | } |
| 1129 | } |
| 1130 | |
| 1131 | void Assembler::SubImmediate(Register reg, |
| 1132 | const Immediate& imm, |
| 1133 | OperandWidth width) { |
| 1134 | const int64_t value = imm.value(); |
| 1135 | if (value == 0) { |
| 1136 | return; |
| 1137 | } |
| 1138 | if ((value > 0) || (value == kMinInt64) || |
| 1139 | (value == kMinInt32 && width == k32Bit)) { |
| 1140 | if (value == 1) { |
| 1141 | if (width == k32Bit) { |
| 1142 | decl(reg); |
| 1143 | } else { |
| 1144 | decq(reg); |
| 1145 | } |
| 1146 | } else { |
| 1147 | if (imm.is_int32()) { |
| 1148 | if (width == k32Bit) { |
| 1149 | subl(reg, imm); |
| 1150 | } else { |
| 1151 | subq(reg, imm); |
| 1152 | } |
| 1153 | } else { |
| 1154 | ASSERT(reg != TMP); |
| 1155 | ASSERT(width != k32Bit); |
| 1156 | LoadImmediate(TMP, imm); |
| 1157 | subq(reg, TMP); |
| 1158 | } |
| 1159 | } |
| 1160 | } else { |
| 1161 | AddImmediate(reg, Immediate(-value), width); |
| 1162 | } |
| 1163 | } |
| 1164 | |
| 1165 | void Assembler::SubImmediate(const Address& address, const Immediate& imm) { |
| 1166 | const int64_t value = imm.value(); |
| 1167 | if (value == 0) { |
| 1168 | return; |
| 1169 | } |
| 1170 | if ((value > 0) || (value == kMinInt64)) { |
| 1171 | if (value == 1) { |
| 1172 | decq(address); |
| 1173 | } else { |
| 1174 | if (imm.is_int32()) { |
| 1175 | subq(address, imm); |
| 1176 | } else { |
| 1177 | LoadImmediate(TMP, imm); |
| 1178 | subq(address, TMP); |
| 1179 | } |
| 1180 | } |
| 1181 | } else { |
| 1182 | AddImmediate(address, Immediate(-value)); |
| 1183 | } |
| 1184 | } |
| 1185 | |
| 1186 | void Assembler::Drop(intptr_t stack_elements, Register tmp) { |
| 1187 | ASSERT(stack_elements >= 0); |
| 1188 | if (stack_elements <= 4) { |
| 1189 | for (intptr_t i = 0; i < stack_elements; i++) { |
| 1190 | popq(tmp); |
| 1191 | } |
| 1192 | return; |
| 1193 | } |
| 1194 | addq(RSP, Immediate(stack_elements * target::kWordSize)); |
| 1195 | } |
| 1196 | |
| 1197 | bool Assembler::CanLoadFromObjectPool(const Object& object) const { |
| 1198 | ASSERT(IsOriginalObject(object)); |
| 1199 | if (!constant_pool_allowed()) { |
| 1200 | return false; |
| 1201 | } |
| 1202 | |
| 1203 | if (target::IsSmi(object)) { |
| 1204 | // If the raw smi does not fit into a 32-bit signed int, then we'll keep |
| 1205 | // the raw value in the object pool. |
| 1206 | return !Utils::IsInt(32, target::ToRawSmi(object)); |
| 1207 | } |
| 1208 | ASSERT(IsNotTemporaryScopedHandle(object)); |
| 1209 | ASSERT(IsInOldSpace(object)); |
| 1210 | return true; |
| 1211 | } |
| 1212 | |
| 1213 | void Assembler::LoadWordFromPoolOffset(Register dst, int32_t offset) { |
| 1214 | ASSERT(constant_pool_allowed()); |
| 1215 | ASSERT(dst != PP); |
| 1216 | // This sequence must be decodable by code_patcher_x64.cc. |
| 1217 | movq(dst, Address(PP, offset)); |
| 1218 | } |
| 1219 | |
| 1220 | void Assembler::LoadIsolate(Register dst) { |
| 1221 | movq(dst, Address(THR, target::Thread::isolate_offset())); |
| 1222 | } |
| 1223 | |
| 1224 | void Assembler::LoadDispatchTable(Register dst) { |
| 1225 | movq(dst, Address(THR, target::Thread::dispatch_table_array_offset())); |
| 1226 | } |
| 1227 | |
| 1228 | void Assembler::LoadObjectHelper(Register dst, |
| 1229 | const Object& object, |
| 1230 | bool is_unique) { |
| 1231 | ASSERT(IsOriginalObject(object)); |
| 1232 | |
| 1233 | // `is_unique == true` effectively means object has to be patchable. |
| 1234 | if (!is_unique) { |
| 1235 | intptr_t offset; |
| 1236 | if (target::CanLoadFromThread(object, &offset)) { |
| 1237 | movq(dst, Address(THR, offset)); |
| 1238 | return; |
| 1239 | } |
| 1240 | } |
| 1241 | if (CanLoadFromObjectPool(object)) { |
| 1242 | const int32_t offset = target::ObjectPool::element_offset( |
| 1243 | is_unique ? object_pool_builder().AddObject(object) |
| 1244 | : object_pool_builder().FindObject(object)); |
| 1245 | LoadWordFromPoolOffset(dst, offset - kHeapObjectTag); |
| 1246 | return; |
| 1247 | } |
| 1248 | ASSERT(target::IsSmi(object)); |
| 1249 | LoadImmediate(dst, Immediate(target::ToRawSmi(object))); |
| 1250 | } |
| 1251 | |
| 1252 | void Assembler::LoadObject(Register dst, const Object& object) { |
| 1253 | LoadObjectHelper(dst, object, false); |
| 1254 | } |
| 1255 | |
| 1256 | void Assembler::LoadUniqueObject(Register dst, const Object& object) { |
| 1257 | LoadObjectHelper(dst, object, true); |
| 1258 | } |
| 1259 | |
| 1260 | void Assembler::StoreObject(const Address& dst, const Object& object) { |
| 1261 | ASSERT(IsOriginalObject(object)); |
| 1262 | |
| 1263 | intptr_t offset_from_thread; |
| 1264 | if (target::CanLoadFromThread(object, &offset_from_thread)) { |
| 1265 | movq(TMP, Address(THR, offset_from_thread)); |
| 1266 | movq(dst, TMP); |
| 1267 | } else if (CanLoadFromObjectPool(object)) { |
| 1268 | LoadObject(TMP, object); |
| 1269 | movq(dst, TMP); |
| 1270 | } else { |
| 1271 | ASSERT(target::IsSmi(object)); |
| 1272 | MoveImmediate(dst, Immediate(target::ToRawSmi(object))); |
| 1273 | } |
| 1274 | } |
| 1275 | |
| 1276 | void Assembler::PushObject(const Object& object) { |
| 1277 | ASSERT(IsOriginalObject(object)); |
| 1278 | |
| 1279 | intptr_t offset_from_thread; |
| 1280 | if (target::CanLoadFromThread(object, &offset_from_thread)) { |
| 1281 | pushq(Address(THR, offset_from_thread)); |
| 1282 | } else if (CanLoadFromObjectPool(object)) { |
| 1283 | LoadObject(TMP, object); |
| 1284 | pushq(TMP); |
| 1285 | } else { |
| 1286 | ASSERT(target::IsSmi(object)); |
| 1287 | PushImmediate(Immediate(target::ToRawSmi(object))); |
| 1288 | } |
| 1289 | } |
| 1290 | |
| 1291 | void Assembler::CompareObject(Register reg, const Object& object) { |
| 1292 | ASSERT(IsOriginalObject(object)); |
| 1293 | |
| 1294 | intptr_t offset_from_thread; |
| 1295 | if (target::CanLoadFromThread(object, &offset_from_thread)) { |
| 1296 | cmpq(reg, Address(THR, offset_from_thread)); |
| 1297 | } else if (CanLoadFromObjectPool(object)) { |
| 1298 | const intptr_t idx = object_pool_builder().FindObject( |
| 1299 | object, ObjectPoolBuilderEntry::kNotPatchable); |
| 1300 | const int32_t offset = target::ObjectPool::element_offset(idx); |
| 1301 | cmpq(reg, Address(PP, offset - kHeapObjectTag)); |
| 1302 | } else { |
| 1303 | ASSERT(target::IsSmi(object)); |
| 1304 | CompareImmediate(reg, Immediate(target::ToRawSmi(object))); |
| 1305 | } |
| 1306 | } |
| 1307 | |
| 1308 | intptr_t Assembler::FindImmediate(int64_t imm) { |
| 1309 | return object_pool_builder().FindImmediate(imm); |
| 1310 | } |
| 1311 | |
| 1312 | void Assembler::LoadImmediate(Register reg, const Immediate& imm) { |
| 1313 | if (imm.value() == 0) { |
| 1314 | xorl(reg, reg); |
| 1315 | } else if (imm.is_int32() || !constant_pool_allowed()) { |
| 1316 | movq(reg, imm); |
| 1317 | } else { |
| 1318 | int32_t offset = |
| 1319 | target::ObjectPool::element_offset(FindImmediate(imm.value())); |
| 1320 | LoadWordFromPoolOffset(reg, offset - kHeapObjectTag); |
| 1321 | } |
| 1322 | } |
| 1323 | |
| 1324 | void Assembler::MoveImmediate(const Address& dst, const Immediate& imm) { |
| 1325 | if (imm.is_int32()) { |
| 1326 | movq(dst, imm); |
| 1327 | } else { |
| 1328 | LoadImmediate(TMP, imm); |
| 1329 | movq(dst, TMP); |
| 1330 | } |
| 1331 | } |
| 1332 | |
| 1333 | // Destroys the value register. |
| 1334 | void Assembler::StoreIntoObjectFilter(Register object, |
| 1335 | Register value, |
| 1336 | Label* label, |
| 1337 | CanBeSmi can_be_smi, |
| 1338 | BarrierFilterMode how_to_jump) { |
| 1339 | COMPILE_ASSERT((target::ObjectAlignment::kNewObjectAlignmentOffset == |
| 1340 | target::kWordSize) && |
| 1341 | (target::ObjectAlignment::kOldObjectAlignmentOffset == 0)); |
| 1342 | |
| 1343 | if (can_be_smi == kValueIsNotSmi) { |
| 1344 | #if defined(DEBUG) |
| 1345 | Label okay; |
| 1346 | BranchIfNotSmi(value, &okay); |
| 1347 | Stop("Unexpected Smi!" ); |
| 1348 | Bind(&okay); |
| 1349 | #endif |
| 1350 | // Write-barrier triggers if the value is in the new space (has bit set) and |
| 1351 | // the object is in the old space (has bit cleared). |
| 1352 | // To check that we could compute value & ~object and skip the write barrier |
| 1353 | // if the bit is not set. However we can't destroy the object. |
| 1354 | // However to preserve the object we compute negated expression |
| 1355 | // ~value | object instead and skip the write barrier if the bit is set. |
| 1356 | notl(value); |
| 1357 | orl(value, object); |
| 1358 | testl(value, Immediate(target::ObjectAlignment::kNewObjectAlignmentOffset)); |
| 1359 | } else { |
| 1360 | ASSERT(kHeapObjectTag == 1); |
| 1361 | // Detect value being ...1001 and object being ...0001. |
| 1362 | andl(value, Immediate(0xf)); |
| 1363 | leal(value, Address(value, object, TIMES_2, 0x15)); |
| 1364 | testl(value, Immediate(0x1f)); |
| 1365 | } |
| 1366 | Condition condition = how_to_jump == kJumpToNoUpdate ? NOT_ZERO : ZERO; |
| 1367 | bool distance = how_to_jump == kJumpToNoUpdate ? kNearJump : kFarJump; |
| 1368 | j(condition, label, distance); |
| 1369 | } |
| 1370 | |
| 1371 | void Assembler::StoreIntoObject(Register object, |
| 1372 | const Address& dest, |
| 1373 | Register value, |
| 1374 | CanBeSmi can_be_smi) { |
| 1375 | // x.slot = x. Barrier should have be removed at the IL level. |
| 1376 | ASSERT(object != value); |
| 1377 | ASSERT(object != TMP); |
| 1378 | ASSERT(value != TMP); |
| 1379 | |
| 1380 | movq(dest, value); |
| 1381 | |
| 1382 | // In parallel, test whether |
| 1383 | // - object is old and not remembered and value is new, or |
| 1384 | // - object is old and value is old and not marked and concurrent marking is |
| 1385 | // in progress |
| 1386 | // If so, call the WriteBarrier stub, which will either add object to the |
| 1387 | // store buffer (case 1) or add value to the marking stack (case 2). |
| 1388 | // Compare ObjectLayout::StorePointer. |
| 1389 | Label done; |
| 1390 | if (can_be_smi == kValueCanBeSmi) { |
| 1391 | testq(value, Immediate(kSmiTagMask)); |
| 1392 | j(ZERO, &done, kNearJump); |
| 1393 | } |
| 1394 | movb(TMP, FieldAddress(object, target::Object::tags_offset())); |
| 1395 | shrl(TMP, Immediate(target::ObjectLayout::kBarrierOverlapShift)); |
| 1396 | andl(TMP, Address(THR, target::Thread::write_barrier_mask_offset())); |
| 1397 | testb(FieldAddress(value, target::Object::tags_offset()), TMP); |
| 1398 | j(ZERO, &done, kNearJump); |
| 1399 | |
| 1400 | Register object_for_call = object; |
| 1401 | if (value != kWriteBarrierValueReg) { |
| 1402 | // Unlikely. Only non-graph intrinsics. |
| 1403 | // TODO(rmacnak): Shuffle registers in intrinsics. |
| 1404 | pushq(kWriteBarrierValueReg); |
| 1405 | if (object == kWriteBarrierValueReg) { |
| 1406 | COMPILE_ASSERT(RBX != kWriteBarrierValueReg); |
| 1407 | COMPILE_ASSERT(RCX != kWriteBarrierValueReg); |
| 1408 | object_for_call = (value == RBX) ? RCX : RBX; |
| 1409 | pushq(object_for_call); |
| 1410 | movq(object_for_call, object); |
| 1411 | } |
| 1412 | movq(kWriteBarrierValueReg, value); |
| 1413 | } |
| 1414 | generate_invoke_write_barrier_wrapper_(object_for_call); |
| 1415 | if (value != kWriteBarrierValueReg) { |
| 1416 | if (object == kWriteBarrierValueReg) { |
| 1417 | popq(object_for_call); |
| 1418 | } |
| 1419 | popq(kWriteBarrierValueReg); |
| 1420 | } |
| 1421 | Bind(&done); |
| 1422 | } |
| 1423 | |
| 1424 | void Assembler::StoreIntoArray(Register object, |
| 1425 | Register slot, |
| 1426 | Register value, |
| 1427 | CanBeSmi can_be_smi) { |
| 1428 | ASSERT(object != TMP); |
| 1429 | ASSERT(value != TMP); |
| 1430 | ASSERT(slot != TMP); |
| 1431 | |
| 1432 | movq(Address(slot, 0), value); |
| 1433 | |
| 1434 | // In parallel, test whether |
| 1435 | // - object is old and not remembered and value is new, or |
| 1436 | // - object is old and value is old and not marked and concurrent marking is |
| 1437 | // in progress |
| 1438 | // If so, call the WriteBarrier stub, which will either add object to the |
| 1439 | // store buffer (case 1) or add value to the marking stack (case 2). |
| 1440 | // Compare ObjectLayout::StorePointer. |
| 1441 | Label done; |
| 1442 | if (can_be_smi == kValueCanBeSmi) { |
| 1443 | testq(value, Immediate(kSmiTagMask)); |
| 1444 | j(ZERO, &done, kNearJump); |
| 1445 | } |
| 1446 | movb(TMP, FieldAddress(object, target::Object::tags_offset())); |
| 1447 | shrl(TMP, Immediate(target::ObjectLayout::kBarrierOverlapShift)); |
| 1448 | andl(TMP, Address(THR, target::Thread::write_barrier_mask_offset())); |
| 1449 | testb(FieldAddress(value, target::Object::tags_offset()), TMP); |
| 1450 | j(ZERO, &done, kNearJump); |
| 1451 | |
| 1452 | if ((object != kWriteBarrierObjectReg) || (value != kWriteBarrierValueReg) || |
| 1453 | (slot != kWriteBarrierSlotReg)) { |
| 1454 | // Spill and shuffle unimplemented. Currently StoreIntoArray is only used |
| 1455 | // from StoreIndexInstr, which gets these exact registers from the register |
| 1456 | // allocator. |
| 1457 | UNIMPLEMENTED(); |
| 1458 | } |
| 1459 | |
| 1460 | generate_invoke_array_write_barrier_(); |
| 1461 | |
| 1462 | Bind(&done); |
| 1463 | } |
| 1464 | |
| 1465 | void Assembler::StoreIntoObjectNoBarrier(Register object, |
| 1466 | const Address& dest, |
| 1467 | Register value) { |
| 1468 | movq(dest, value); |
| 1469 | #if defined(DEBUG) |
| 1470 | Label done; |
| 1471 | pushq(value); |
| 1472 | StoreIntoObjectFilter(object, value, &done, kValueCanBeSmi, kJumpToNoUpdate); |
| 1473 | |
| 1474 | testb(FieldAddress(object, target::Object::tags_offset()), |
| 1475 | Immediate(1 << target::ObjectLayout::kOldAndNotRememberedBit)); |
| 1476 | j(ZERO, &done, Assembler::kNearJump); |
| 1477 | |
| 1478 | Stop("Store buffer update is required" ); |
| 1479 | Bind(&done); |
| 1480 | popq(value); |
| 1481 | #endif // defined(DEBUG) |
| 1482 | // No store buffer update. |
| 1483 | } |
| 1484 | |
| 1485 | void Assembler::StoreIntoObjectNoBarrier(Register object, |
| 1486 | const Address& dest, |
| 1487 | const Object& value) { |
| 1488 | StoreObject(dest, value); |
| 1489 | } |
| 1490 | |
| 1491 | void Assembler::StoreInternalPointer(Register object, |
| 1492 | const Address& dest, |
| 1493 | Register value) { |
| 1494 | movq(dest, value); |
| 1495 | } |
| 1496 | |
| 1497 | void Assembler::StoreIntoSmiField(const Address& dest, Register value) { |
| 1498 | #if defined(DEBUG) |
| 1499 | Label done; |
| 1500 | testq(value, Immediate(kHeapObjectTag)); |
| 1501 | j(ZERO, &done); |
| 1502 | Stop("New value must be Smi." ); |
| 1503 | Bind(&done); |
| 1504 | #endif // defined(DEBUG) |
| 1505 | movq(dest, value); |
| 1506 | } |
| 1507 | |
| 1508 | void Assembler::ZeroInitSmiField(const Address& dest) { |
| 1509 | Immediate zero(target::ToRawSmi(0)); |
| 1510 | movq(dest, zero); |
| 1511 | } |
| 1512 | |
| 1513 | void Assembler::IncrementSmiField(const Address& dest, int64_t increment) { |
| 1514 | // Note: FlowGraphCompiler::EdgeCounterIncrementSizeInBytes depends on |
| 1515 | // the length of this instruction sequence. |
| 1516 | Immediate inc_imm(target::ToRawSmi(increment)); |
| 1517 | addq(dest, inc_imm); |
| 1518 | } |
| 1519 | |
| 1520 | void Assembler::Bind(Label* label) { |
| 1521 | intptr_t bound = buffer_.Size(); |
| 1522 | ASSERT(!label->IsBound()); // Labels can only be bound once. |
| 1523 | while (label->IsLinked()) { |
| 1524 | intptr_t position = label->LinkPosition(); |
| 1525 | intptr_t next = buffer_.Load<int32_t>(position); |
| 1526 | buffer_.Store<int32_t>(position, bound - (position + 4)); |
| 1527 | label->position_ = next; |
| 1528 | } |
| 1529 | while (label->HasNear()) { |
| 1530 | intptr_t position = label->NearPosition(); |
| 1531 | intptr_t offset = bound - (position + 1); |
| 1532 | ASSERT(Utils::IsInt(8, offset)); |
| 1533 | buffer_.Store<int8_t>(position, offset); |
| 1534 | } |
| 1535 | label->BindTo(bound); |
| 1536 | } |
| 1537 | |
| 1538 | void Assembler::EnterFrame(intptr_t frame_size) { |
| 1539 | if (prologue_offset_ == -1) { |
| 1540 | prologue_offset_ = CodeSize(); |
| 1541 | Comment("PrologueOffset = %" Pd "" , CodeSize()); |
| 1542 | } |
| 1543 | #ifdef DEBUG |
| 1544 | intptr_t check_offset = CodeSize(); |
| 1545 | #endif |
| 1546 | pushq(RBP); |
| 1547 | movq(RBP, RSP); |
| 1548 | #ifdef DEBUG |
| 1549 | ProloguePattern pp(CodeAddress(check_offset)); |
| 1550 | ASSERT(pp.IsValid()); |
| 1551 | #endif |
| 1552 | if (frame_size != 0) { |
| 1553 | Immediate frame_space(frame_size); |
| 1554 | subq(RSP, frame_space); |
| 1555 | } |
| 1556 | } |
| 1557 | |
| 1558 | void Assembler::LeaveFrame() { |
| 1559 | movq(RSP, RBP); |
| 1560 | popq(RBP); |
| 1561 | } |
| 1562 | |
| 1563 | void Assembler::ReserveAlignedFrameSpace(intptr_t frame_space) { |
| 1564 | // Reserve space for arguments and align frame before entering |
| 1565 | // the C++ world. |
| 1566 | if (frame_space != 0) { |
| 1567 | subq(RSP, Immediate(frame_space)); |
| 1568 | } |
| 1569 | if (OS::ActivationFrameAlignment() > 1) { |
| 1570 | andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1))); |
| 1571 | } |
| 1572 | } |
| 1573 | |
| 1574 | void Assembler::EmitEntryFrameVerification() { |
| 1575 | #if defined(DEBUG) |
| 1576 | Label ok; |
| 1577 | leaq(RAX, Address(RBP, target::frame_layout.exit_link_slot_from_entry_fp * |
| 1578 | target::kWordSize)); |
| 1579 | cmpq(RAX, RSP); |
| 1580 | j(EQUAL, &ok); |
| 1581 | Stop("target::frame_layout.exit_link_slot_from_entry_fp mismatch" ); |
| 1582 | Bind(&ok); |
| 1583 | #endif |
| 1584 | } |
| 1585 | |
| 1586 | void Assembler::PushRegisters(intptr_t cpu_register_set, |
| 1587 | intptr_t xmm_register_set) { |
| 1588 | const intptr_t xmm_regs_count = RegisterSet::RegisterCount(xmm_register_set); |
| 1589 | if (xmm_regs_count > 0) { |
| 1590 | AddImmediate(RSP, Immediate(-xmm_regs_count * kFpuRegisterSize)); |
| 1591 | // Store XMM registers with the lowest register number at the lowest |
| 1592 | // address. |
| 1593 | intptr_t offset = 0; |
| 1594 | for (intptr_t i = 0; i < kNumberOfXmmRegisters; ++i) { |
| 1595 | XmmRegister xmm_reg = static_cast<XmmRegister>(i); |
| 1596 | if (RegisterSet::Contains(xmm_register_set, xmm_reg)) { |
| 1597 | movups(Address(RSP, offset), xmm_reg); |
| 1598 | offset += kFpuRegisterSize; |
| 1599 | } |
| 1600 | } |
| 1601 | ASSERT(offset == (xmm_regs_count * kFpuRegisterSize)); |
| 1602 | } |
| 1603 | |
| 1604 | // The order in which the registers are pushed must match the order |
| 1605 | // in which the registers are encoded in the safe point's stack map. |
| 1606 | for (intptr_t i = kNumberOfCpuRegisters - 1; i >= 0; --i) { |
| 1607 | Register reg = static_cast<Register>(i); |
| 1608 | if (RegisterSet::Contains(cpu_register_set, reg)) { |
| 1609 | pushq(reg); |
| 1610 | } |
| 1611 | } |
| 1612 | } |
| 1613 | |
| 1614 | void Assembler::PopRegisters(intptr_t cpu_register_set, |
| 1615 | intptr_t xmm_register_set) { |
| 1616 | for (intptr_t i = 0; i < kNumberOfCpuRegisters; ++i) { |
| 1617 | Register reg = static_cast<Register>(i); |
| 1618 | if (RegisterSet::Contains(cpu_register_set, reg)) { |
| 1619 | popq(reg); |
| 1620 | } |
| 1621 | } |
| 1622 | |
| 1623 | const intptr_t xmm_regs_count = RegisterSet::RegisterCount(xmm_register_set); |
| 1624 | if (xmm_regs_count > 0) { |
| 1625 | // XMM registers have the lowest register number at the lowest address. |
| 1626 | intptr_t offset = 0; |
| 1627 | for (intptr_t i = 0; i < kNumberOfXmmRegisters; ++i) { |
| 1628 | XmmRegister xmm_reg = static_cast<XmmRegister>(i); |
| 1629 | if (RegisterSet::Contains(xmm_register_set, xmm_reg)) { |
| 1630 | movups(xmm_reg, Address(RSP, offset)); |
| 1631 | offset += kFpuRegisterSize; |
| 1632 | } |
| 1633 | } |
| 1634 | ASSERT(offset == (xmm_regs_count * kFpuRegisterSize)); |
| 1635 | AddImmediate(RSP, Immediate(offset)); |
| 1636 | } |
| 1637 | } |
| 1638 | |
| 1639 | void Assembler::EnterCallRuntimeFrame(intptr_t frame_space) { |
| 1640 | Comment("EnterCallRuntimeFrame" ); |
| 1641 | EnterFrame(0); |
| 1642 | if (!(FLAG_precompiled_mode && FLAG_use_bare_instructions)) { |
| 1643 | pushq(CODE_REG); |
| 1644 | pushq(PP); |
| 1645 | } |
| 1646 | |
| 1647 | // TODO(vegorov): avoid saving FpuTMP, it is used only as scratch. |
| 1648 | PushRegisters(CallingConventions::kVolatileCpuRegisters, |
| 1649 | CallingConventions::kVolatileXmmRegisters); |
| 1650 | |
| 1651 | ReserveAlignedFrameSpace(frame_space); |
| 1652 | } |
| 1653 | |
| 1654 | void Assembler::LeaveCallRuntimeFrame() { |
| 1655 | // RSP might have been modified to reserve space for arguments |
| 1656 | // and ensure proper alignment of the stack frame. |
| 1657 | // We need to restore it before restoring registers. |
| 1658 | const intptr_t kPushedCpuRegistersCount = |
| 1659 | RegisterSet::RegisterCount(CallingConventions::kVolatileCpuRegisters); |
| 1660 | const intptr_t kPushedXmmRegistersCount = |
| 1661 | RegisterSet::RegisterCount(CallingConventions::kVolatileXmmRegisters); |
| 1662 | const intptr_t = |
| 1663 | kPushedCpuRegistersCount * target::kWordSize + |
| 1664 | kPushedXmmRegistersCount * kFpuRegisterSize + |
| 1665 | (target::frame_layout.dart_fixed_frame_size - 2) * |
| 1666 | target::kWordSize; // From EnterStubFrame (excluding PC / FP) |
| 1667 | |
| 1668 | leaq(RSP, Address(RBP, -kPushedRegistersSize)); |
| 1669 | |
| 1670 | // TODO(vegorov): avoid saving FpuTMP, it is used only as scratch. |
| 1671 | PopRegisters(CallingConventions::kVolatileCpuRegisters, |
| 1672 | CallingConventions::kVolatileXmmRegisters); |
| 1673 | |
| 1674 | LeaveStubFrame(); |
| 1675 | } |
| 1676 | |
| 1677 | void Assembler::CallCFunction(Register reg) { |
| 1678 | // Reserve shadow space for outgoing arguments. |
| 1679 | if (CallingConventions::kShadowSpaceBytes != 0) { |
| 1680 | subq(RSP, Immediate(CallingConventions::kShadowSpaceBytes)); |
| 1681 | } |
| 1682 | call(reg); |
| 1683 | } |
| 1684 | void Assembler::CallCFunction(Address address) { |
| 1685 | // Reserve shadow space for outgoing arguments. |
| 1686 | if (CallingConventions::kShadowSpaceBytes != 0) { |
| 1687 | subq(RSP, Immediate(CallingConventions::kShadowSpaceBytes)); |
| 1688 | } |
| 1689 | call(address); |
| 1690 | } |
| 1691 | |
| 1692 | void Assembler::CallRuntime(const RuntimeEntry& entry, |
| 1693 | intptr_t argument_count) { |
| 1694 | entry.Call(this, argument_count); |
| 1695 | } |
| 1696 | |
| 1697 | void Assembler::RestoreCodePointer() { |
| 1698 | movq(CODE_REG, |
| 1699 | Address(RBP, target::frame_layout.code_from_fp * target::kWordSize)); |
| 1700 | } |
| 1701 | |
| 1702 | void Assembler::LoadPoolPointer(Register pp) { |
| 1703 | // Load new pool pointer. |
| 1704 | CheckCodePointer(); |
| 1705 | movq(pp, FieldAddress(CODE_REG, target::Code::object_pool_offset())); |
| 1706 | set_constant_pool_allowed(pp == PP); |
| 1707 | } |
| 1708 | |
| 1709 | void Assembler::EnterDartFrame(intptr_t frame_size, Register new_pp) { |
| 1710 | ASSERT(!constant_pool_allowed()); |
| 1711 | EnterFrame(0); |
| 1712 | if (!(FLAG_precompiled_mode && FLAG_use_bare_instructions)) { |
| 1713 | pushq(CODE_REG); |
| 1714 | pushq(PP); |
| 1715 | if (new_pp == kNoRegister) { |
| 1716 | LoadPoolPointer(PP); |
| 1717 | } else { |
| 1718 | movq(PP, new_pp); |
| 1719 | } |
| 1720 | } |
| 1721 | set_constant_pool_allowed(true); |
| 1722 | if (frame_size != 0) { |
| 1723 | subq(RSP, Immediate(frame_size)); |
| 1724 | } |
| 1725 | } |
| 1726 | |
| 1727 | void Assembler::LeaveDartFrame(RestorePP restore_pp) { |
| 1728 | // Restore caller's PP register that was pushed in EnterDartFrame. |
| 1729 | if (!(FLAG_precompiled_mode && FLAG_use_bare_instructions)) { |
| 1730 | if (restore_pp == kRestoreCallerPP) { |
| 1731 | movq(PP, Address(RBP, (target::frame_layout.saved_caller_pp_from_fp * |
| 1732 | target::kWordSize))); |
| 1733 | } |
| 1734 | } |
| 1735 | set_constant_pool_allowed(false); |
| 1736 | LeaveFrame(); |
| 1737 | } |
| 1738 | |
| 1739 | void Assembler::CheckCodePointer() { |
| 1740 | #ifdef DEBUG |
| 1741 | if (!FLAG_check_code_pointer) { |
| 1742 | return; |
| 1743 | } |
| 1744 | Comment("CheckCodePointer" ); |
| 1745 | Label cid_ok, instructions_ok; |
| 1746 | pushq(RAX); |
| 1747 | LoadClassId(RAX, CODE_REG); |
| 1748 | cmpq(RAX, Immediate(kCodeCid)); |
| 1749 | j(EQUAL, &cid_ok); |
| 1750 | int3(); |
| 1751 | Bind(&cid_ok); |
| 1752 | { |
| 1753 | const intptr_t kRIPRelativeLeaqSize = 7; |
| 1754 | const intptr_t header_to_entry_offset = |
| 1755 | (target::Instructions::HeaderSize() - kHeapObjectTag); |
| 1756 | const intptr_t header_to_rip_offset = |
| 1757 | CodeSize() + kRIPRelativeLeaqSize + header_to_entry_offset; |
| 1758 | leaq(RAX, Address::AddressRIPRelative(-header_to_rip_offset)); |
| 1759 | ASSERT(CodeSize() == (header_to_rip_offset - header_to_entry_offset)); |
| 1760 | } |
| 1761 | cmpq(RAX, FieldAddress(CODE_REG, target::Code::saved_instructions_offset())); |
| 1762 | j(EQUAL, &instructions_ok); |
| 1763 | int3(); |
| 1764 | Bind(&instructions_ok); |
| 1765 | popq(RAX); |
| 1766 | #endif |
| 1767 | } |
| 1768 | |
| 1769 | // On entry to a function compiled for OSR, the caller's frame pointer, the |
| 1770 | // stack locals, and any copied parameters are already in place. The frame |
| 1771 | // pointer is already set up. The PC marker is not correct for the |
| 1772 | // optimized function and there may be extra space for spill slots to |
| 1773 | // allocate. |
| 1774 | void Assembler::EnterOsrFrame(intptr_t ) { |
| 1775 | ASSERT(!constant_pool_allowed()); |
| 1776 | if (prologue_offset_ == -1) { |
| 1777 | Comment("PrologueOffset = %" Pd "" , CodeSize()); |
| 1778 | prologue_offset_ = CodeSize(); |
| 1779 | } |
| 1780 | RestoreCodePointer(); |
| 1781 | LoadPoolPointer(); |
| 1782 | |
| 1783 | if (extra_size != 0) { |
| 1784 | subq(RSP, Immediate(extra_size)); |
| 1785 | } |
| 1786 | } |
| 1787 | |
| 1788 | void Assembler::EnterStubFrame() { |
| 1789 | EnterDartFrame(0, kNoRegister); |
| 1790 | } |
| 1791 | |
| 1792 | void Assembler::LeaveStubFrame() { |
| 1793 | LeaveDartFrame(); |
| 1794 | } |
| 1795 | |
| 1796 | void Assembler::EnterCFrame(intptr_t frame_space) { |
| 1797 | EnterFrame(0); |
| 1798 | ReserveAlignedFrameSpace(frame_space); |
| 1799 | } |
| 1800 | |
| 1801 | void Assembler::LeaveCFrame() { |
| 1802 | LeaveFrame(); |
| 1803 | } |
| 1804 | |
| 1805 | // RDX receiver, RBX ICData entries array |
| 1806 | // Preserve R10 (ARGS_DESC_REG), not required today, but maybe later. |
| 1807 | void Assembler::MonomorphicCheckedEntryJIT() { |
| 1808 | has_monomorphic_entry_ = true; |
| 1809 | intptr_t start = CodeSize(); |
| 1810 | Label have_cid, miss; |
| 1811 | Bind(&miss); |
| 1812 | jmp(Address(THR, target::Thread::switchable_call_miss_entry_offset())); |
| 1813 | |
| 1814 | // Ensure the monomorphic entry is 2-byte aligned (so GC can see them if we |
| 1815 | // store them in ICData / MegamorphicCache arrays) |
| 1816 | nop(1); |
| 1817 | |
| 1818 | Comment("MonomorphicCheckedEntry" ); |
| 1819 | ASSERT_EQUAL(CodeSize() - start, |
| 1820 | target::Instructions::kMonomorphicEntryOffsetJIT); |
| 1821 | ASSERT((CodeSize() & kSmiTagMask) == kSmiTag); |
| 1822 | |
| 1823 | const intptr_t cid_offset = target::Array::element_offset(0); |
| 1824 | const intptr_t count_offset = target::Array::element_offset(1); |
| 1825 | |
| 1826 | LoadTaggedClassIdMayBeSmi(RAX, RDX); |
| 1827 | |
| 1828 | cmpq(RAX, FieldAddress(RBX, cid_offset)); |
| 1829 | j(NOT_EQUAL, &miss, Assembler::kNearJump); |
| 1830 | addl(FieldAddress(RBX, count_offset), Immediate(target::ToRawSmi(1))); |
| 1831 | xorq(R10, R10); // GC-safe for OptimizeInvokedFunction. |
| 1832 | nop(1); |
| 1833 | |
| 1834 | // Fall through to unchecked entry. |
| 1835 | ASSERT_EQUAL(CodeSize() - start, |
| 1836 | target::Instructions::kPolymorphicEntryOffsetJIT); |
| 1837 | ASSERT(((CodeSize() - start) & kSmiTagMask) == kSmiTag); |
| 1838 | } |
| 1839 | |
| 1840 | // RBX - input: class id smi |
| 1841 | // RDX - input: receiver object |
| 1842 | void Assembler::MonomorphicCheckedEntryAOT() { |
| 1843 | has_monomorphic_entry_ = true; |
| 1844 | intptr_t start = CodeSize(); |
| 1845 | Label have_cid, miss; |
| 1846 | Bind(&miss); |
| 1847 | jmp(Address(THR, target::Thread::switchable_call_miss_entry_offset())); |
| 1848 | |
| 1849 | // Ensure the monomorphic entry is 2-byte aligned (so GC can see them if we |
| 1850 | // store them in ICData / MegamorphicCache arrays) |
| 1851 | nop(1); |
| 1852 | |
| 1853 | Comment("MonomorphicCheckedEntry" ); |
| 1854 | ASSERT_EQUAL(CodeSize() - start, |
| 1855 | target::Instructions::kMonomorphicEntryOffsetAOT); |
| 1856 | ASSERT((CodeSize() & kSmiTagMask) == kSmiTag); |
| 1857 | |
| 1858 | SmiUntag(RBX); |
| 1859 | LoadClassId(RAX, RDX); |
| 1860 | cmpq(RAX, RBX); |
| 1861 | j(NOT_EQUAL, &miss, Assembler::kNearJump); |
| 1862 | |
| 1863 | // Ensure the unchecked entry is 2-byte aligned (so GC can see them if we |
| 1864 | // store them in ICData / MegamorphicCache arrays). |
| 1865 | nop(1); |
| 1866 | |
| 1867 | // Fall through to unchecked entry. |
| 1868 | ASSERT_EQUAL(CodeSize() - start, |
| 1869 | target::Instructions::kPolymorphicEntryOffsetAOT); |
| 1870 | ASSERT(((CodeSize() - start) & kSmiTagMask) == kSmiTag); |
| 1871 | } |
| 1872 | |
| 1873 | void Assembler::BranchOnMonomorphicCheckedEntryJIT(Label* label) { |
| 1874 | has_monomorphic_entry_ = true; |
| 1875 | while (CodeSize() < target::Instructions::kMonomorphicEntryOffsetJIT) { |
| 1876 | int3(); |
| 1877 | } |
| 1878 | jmp(label); |
| 1879 | while (CodeSize() < target::Instructions::kPolymorphicEntryOffsetJIT) { |
| 1880 | int3(); |
| 1881 | } |
| 1882 | } |
| 1883 | |
| 1884 | #ifndef PRODUCT |
| 1885 | void Assembler::MaybeTraceAllocation(intptr_t cid, |
| 1886 | Label* trace, |
| 1887 | bool near_jump) { |
| 1888 | ASSERT(cid > 0); |
| 1889 | const intptr_t shared_table_offset = |
| 1890 | target::Isolate::shared_class_table_offset(); |
| 1891 | const intptr_t table_offset = |
| 1892 | target::SharedClassTable::class_heap_stats_table_offset(); |
| 1893 | const intptr_t class_offset = target::ClassTable::ClassOffsetFor(cid); |
| 1894 | |
| 1895 | Register temp_reg = TMP; |
| 1896 | LoadIsolate(temp_reg); |
| 1897 | movq(temp_reg, Address(temp_reg, shared_table_offset)); |
| 1898 | movq(temp_reg, Address(temp_reg, table_offset)); |
| 1899 | cmpb(Address(temp_reg, class_offset), Immediate(0)); |
| 1900 | // We are tracing for this class, jump to the trace label which will use |
| 1901 | // the allocation stub. |
| 1902 | j(NOT_ZERO, trace, near_jump); |
| 1903 | } |
| 1904 | #endif // !PRODUCT |
| 1905 | |
| 1906 | void Assembler::TryAllocate(const Class& cls, |
| 1907 | Label* failure, |
| 1908 | bool near_jump, |
| 1909 | Register instance_reg, |
| 1910 | Register temp) { |
| 1911 | ASSERT(failure != NULL); |
| 1912 | const intptr_t instance_size = target::Class::GetInstanceSize(cls); |
| 1913 | if (FLAG_inline_alloc && |
| 1914 | target::Heap::IsAllocatableInNewSpace(instance_size)) { |
| 1915 | const classid_t cid = target::Class::GetId(cls); |
| 1916 | // If this allocation is traced, program will jump to failure path |
| 1917 | // (i.e. the allocation stub) which will allocate the object and trace the |
| 1918 | // allocation call site. |
| 1919 | NOT_IN_PRODUCT(MaybeTraceAllocation(cid, failure, near_jump)); |
| 1920 | movq(instance_reg, Address(THR, target::Thread::top_offset())); |
| 1921 | addq(instance_reg, Immediate(instance_size)); |
| 1922 | // instance_reg: potential next object start. |
| 1923 | cmpq(instance_reg, Address(THR, target::Thread::end_offset())); |
| 1924 | j(ABOVE_EQUAL, failure, near_jump); |
| 1925 | // Successfully allocated the object, now update top to point to |
| 1926 | // next object start and store the class in the class field of object. |
| 1927 | movq(Address(THR, target::Thread::top_offset()), instance_reg); |
| 1928 | ASSERT(instance_size >= kHeapObjectTag); |
| 1929 | AddImmediate(instance_reg, Immediate(kHeapObjectTag - instance_size)); |
| 1930 | const uint32_t tags = |
| 1931 | target::MakeTagWordForNewSpaceObject(cid, instance_size); |
| 1932 | // Extends the 32 bit tags with zeros, which is the uninitialized |
| 1933 | // hash code. |
| 1934 | MoveImmediate(FieldAddress(instance_reg, target::Object::tags_offset()), |
| 1935 | Immediate(tags)); |
| 1936 | } else { |
| 1937 | jmp(failure); |
| 1938 | } |
| 1939 | } |
| 1940 | |
| 1941 | void Assembler::TryAllocateArray(intptr_t cid, |
| 1942 | intptr_t instance_size, |
| 1943 | Label* failure, |
| 1944 | bool near_jump, |
| 1945 | Register instance, |
| 1946 | Register end_address, |
| 1947 | Register temp) { |
| 1948 | ASSERT(failure != NULL); |
| 1949 | if (FLAG_inline_alloc && |
| 1950 | target::Heap::IsAllocatableInNewSpace(instance_size)) { |
| 1951 | // If this allocation is traced, program will jump to failure path |
| 1952 | // (i.e. the allocation stub) which will allocate the object and trace the |
| 1953 | // allocation call site. |
| 1954 | NOT_IN_PRODUCT(MaybeTraceAllocation(cid, failure, near_jump)); |
| 1955 | movq(instance, Address(THR, target::Thread::top_offset())); |
| 1956 | movq(end_address, instance); |
| 1957 | |
| 1958 | addq(end_address, Immediate(instance_size)); |
| 1959 | j(CARRY, failure); |
| 1960 | |
| 1961 | // Check if the allocation fits into the remaining space. |
| 1962 | // instance: potential new object start. |
| 1963 | // end_address: potential next object start. |
| 1964 | cmpq(end_address, Address(THR, target::Thread::end_offset())); |
| 1965 | j(ABOVE_EQUAL, failure); |
| 1966 | |
| 1967 | // Successfully allocated the object(s), now update top to point to |
| 1968 | // next object start and initialize the object. |
| 1969 | movq(Address(THR, target::Thread::top_offset()), end_address); |
| 1970 | addq(instance, Immediate(kHeapObjectTag)); |
| 1971 | |
| 1972 | // Initialize the tags. |
| 1973 | // instance: new object start as a tagged pointer. |
| 1974 | const uint32_t tags = |
| 1975 | target::MakeTagWordForNewSpaceObject(cid, instance_size); |
| 1976 | // Extends the 32 bit tags with zeros, which is the uninitialized |
| 1977 | // hash code. |
| 1978 | movq(FieldAddress(instance, target::Object::tags_offset()), |
| 1979 | Immediate(tags)); |
| 1980 | } else { |
| 1981 | jmp(failure); |
| 1982 | } |
| 1983 | } |
| 1984 | |
| 1985 | void Assembler::GenerateUnRelocatedPcRelativeCall(intptr_t offset_into_target) { |
| 1986 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 1987 | buffer_.Emit<uint8_t>(0xe8); |
| 1988 | buffer_.Emit<int32_t>(0); |
| 1989 | |
| 1990 | PcRelativeCallPattern pattern(buffer_.contents() + buffer_.Size() - |
| 1991 | PcRelativeCallPattern::kLengthInBytes); |
| 1992 | pattern.set_distance(offset_into_target); |
| 1993 | } |
| 1994 | |
| 1995 | void Assembler::GenerateUnRelocatedPcRelativeTailCall( |
| 1996 | intptr_t offset_into_target) { |
| 1997 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 1998 | buffer_.Emit<uint8_t>(0xe9); |
| 1999 | buffer_.Emit<int32_t>(0); |
| 2000 | |
| 2001 | PcRelativeCallPattern pattern(buffer_.contents() + buffer_.Size() - |
| 2002 | PcRelativeCallPattern::kLengthInBytes); |
| 2003 | pattern.set_distance(offset_into_target); |
| 2004 | } |
| 2005 | |
| 2006 | void Assembler::Align(int alignment, intptr_t offset) { |
| 2007 | ASSERT(Utils::IsPowerOfTwo(alignment)); |
| 2008 | intptr_t pos = offset + buffer_.GetPosition(); |
| 2009 | int mod = pos & (alignment - 1); |
| 2010 | if (mod == 0) { |
| 2011 | return; |
| 2012 | } |
| 2013 | intptr_t bytes_needed = alignment - mod; |
| 2014 | while (bytes_needed > MAX_NOP_SIZE) { |
| 2015 | nop(MAX_NOP_SIZE); |
| 2016 | bytes_needed -= MAX_NOP_SIZE; |
| 2017 | } |
| 2018 | if (bytes_needed != 0) { |
| 2019 | nop(bytes_needed); |
| 2020 | } |
| 2021 | ASSERT(((offset + buffer_.GetPosition()) & (alignment - 1)) == 0); |
| 2022 | } |
| 2023 | |
| 2024 | void Assembler::EmitOperand(int rm, const Operand& operand) { |
| 2025 | ASSERT(rm >= 0 && rm < 8); |
| 2026 | const intptr_t length = operand.length_; |
| 2027 | ASSERT(length > 0); |
| 2028 | // Emit the ModRM byte updated with the given RM value. |
| 2029 | ASSERT((operand.encoding_[0] & 0x38) == 0); |
| 2030 | EmitUint8(operand.encoding_[0] + (rm << 3)); |
| 2031 | // Emit the rest of the encoded operand. |
| 2032 | for (intptr_t i = 1; i < length; i++) { |
| 2033 | EmitUint8(operand.encoding_[i]); |
| 2034 | } |
| 2035 | } |
| 2036 | |
| 2037 | void Assembler::EmitRegisterOperand(int rm, int reg) { |
| 2038 | Operand operand; |
| 2039 | operand.SetModRM(3, static_cast<Register>(reg)); |
| 2040 | EmitOperand(rm, operand); |
| 2041 | } |
| 2042 | |
| 2043 | void Assembler::EmitImmediate(const Immediate& imm) { |
| 2044 | if (imm.is_int32()) { |
| 2045 | EmitInt32(static_cast<int32_t>(imm.value())); |
| 2046 | } else { |
| 2047 | EmitInt64(imm.value()); |
| 2048 | } |
| 2049 | } |
| 2050 | |
| 2051 | void Assembler::EmitSignExtendedInt8(int rm, |
| 2052 | const Operand& operand, |
| 2053 | const Immediate& immediate) { |
| 2054 | EmitUint8(0x83); |
| 2055 | EmitOperand(rm, operand); |
| 2056 | EmitUint8(immediate.value() & 0xFF); |
| 2057 | } |
| 2058 | |
| 2059 | void Assembler::EmitComplex(int rm, |
| 2060 | const Operand& operand, |
| 2061 | const Immediate& immediate) { |
| 2062 | ASSERT(rm >= 0 && rm < 8); |
| 2063 | ASSERT(immediate.is_int32()); |
| 2064 | if (immediate.is_int8()) { |
| 2065 | EmitSignExtendedInt8(rm, operand, immediate); |
| 2066 | } else if (operand.IsRegister(RAX)) { |
| 2067 | // Use short form if the destination is rax. |
| 2068 | EmitUint8(0x05 + (rm << 3)); |
| 2069 | EmitImmediate(immediate); |
| 2070 | } else { |
| 2071 | EmitUint8(0x81); |
| 2072 | EmitOperand(rm, operand); |
| 2073 | EmitImmediate(immediate); |
| 2074 | } |
| 2075 | } |
| 2076 | |
| 2077 | void Assembler::EmitLabel(Label* label, intptr_t instruction_size) { |
| 2078 | if (label->IsBound()) { |
| 2079 | intptr_t offset = label->Position() - buffer_.Size(); |
| 2080 | ASSERT(offset <= 0); |
| 2081 | EmitInt32(offset - instruction_size); |
| 2082 | } else { |
| 2083 | EmitLabelLink(label); |
| 2084 | } |
| 2085 | } |
| 2086 | |
| 2087 | void Assembler::EmitLabelLink(Label* label) { |
| 2088 | ASSERT(!label->IsBound()); |
| 2089 | intptr_t position = buffer_.Size(); |
| 2090 | EmitInt32(label->position_); |
| 2091 | label->LinkTo(position); |
| 2092 | } |
| 2093 | |
| 2094 | void Assembler::EmitNearLabelLink(Label* label) { |
| 2095 | ASSERT(!label->IsBound()); |
| 2096 | intptr_t position = buffer_.Size(); |
| 2097 | EmitUint8(0); |
| 2098 | label->NearLinkTo(position); |
| 2099 | } |
| 2100 | |
| 2101 | void Assembler::EmitGenericShift(bool wide, |
| 2102 | int rm, |
| 2103 | Register reg, |
| 2104 | const Immediate& imm) { |
| 2105 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 2106 | ASSERT(imm.is_int8()); |
| 2107 | if (wide) { |
| 2108 | EmitRegisterREX(reg, REX_W); |
| 2109 | } else { |
| 2110 | EmitRegisterREX(reg, REX_NONE); |
| 2111 | } |
| 2112 | if (imm.value() == 1) { |
| 2113 | EmitUint8(0xD1); |
| 2114 | EmitOperand(rm, Operand(reg)); |
| 2115 | } else { |
| 2116 | EmitUint8(0xC1); |
| 2117 | EmitOperand(rm, Operand(reg)); |
| 2118 | EmitUint8(imm.value() & 0xFF); |
| 2119 | } |
| 2120 | } |
| 2121 | |
| 2122 | void Assembler::EmitGenericShift(bool wide, |
| 2123 | int rm, |
| 2124 | Register operand, |
| 2125 | Register shifter) { |
| 2126 | AssemblerBuffer::EnsureCapacity ensured(&buffer_); |
| 2127 | ASSERT(shifter == RCX); |
| 2128 | EmitRegisterREX(operand, wide ? REX_W : REX_NONE); |
| 2129 | EmitUint8(0xD3); |
| 2130 | EmitOperand(rm, Operand(operand)); |
| 2131 | } |
| 2132 | |
| 2133 | void Assembler::(Register result, Register tags) { |
| 2134 | ASSERT(target::ObjectLayout::kClassIdTagPos == 16); |
| 2135 | ASSERT(target::ObjectLayout::kClassIdTagSize == 16); |
| 2136 | movl(result, tags); |
| 2137 | shrl(result, Immediate(target::ObjectLayout::kClassIdTagPos)); |
| 2138 | } |
| 2139 | |
| 2140 | void Assembler::(Register result, Register tags) { |
| 2141 | ASSERT(target::ObjectLayout::kSizeTagPos == 8); |
| 2142 | ASSERT(target::ObjectLayout::kSizeTagSize == 8); |
| 2143 | movzxw(result, tags); |
| 2144 | shrl(result, Immediate(target::ObjectLayout::kSizeTagPos - |
| 2145 | target::ObjectAlignment::kObjectAlignmentLog2)); |
| 2146 | AndImmediate(result, |
| 2147 | Immediate(Utils::NBitMask(target::ObjectLayout::kSizeTagSize) |
| 2148 | << target::ObjectAlignment::kObjectAlignmentLog2)); |
| 2149 | } |
| 2150 | |
| 2151 | void Assembler::LoadClassId(Register result, Register object) { |
| 2152 | ASSERT(target::ObjectLayout::kClassIdTagPos == 16); |
| 2153 | ASSERT(target::ObjectLayout::kClassIdTagSize == 16); |
| 2154 | const intptr_t class_id_offset = |
| 2155 | target::Object::tags_offset() + |
| 2156 | target::ObjectLayout::kClassIdTagPos / kBitsPerByte; |
| 2157 | movzxw(result, FieldAddress(object, class_id_offset)); |
| 2158 | } |
| 2159 | |
| 2160 | void Assembler::LoadClassById(Register result, Register class_id) { |
| 2161 | ASSERT(result != class_id); |
| 2162 | const intptr_t table_offset = |
| 2163 | target::Isolate::cached_class_table_table_offset(); |
| 2164 | |
| 2165 | LoadIsolate(result); |
| 2166 | movq(result, Address(result, table_offset)); |
| 2167 | movq(result, Address(result, class_id, TIMES_8, 0)); |
| 2168 | } |
| 2169 | |
| 2170 | void Assembler::CompareClassId(Register object, |
| 2171 | intptr_t class_id, |
| 2172 | Register scratch) { |
| 2173 | ASSERT(scratch == kNoRegister); |
| 2174 | LoadClassId(TMP, object); |
| 2175 | cmpl(TMP, Immediate(class_id)); |
| 2176 | } |
| 2177 | |
| 2178 | void Assembler::SmiUntagOrCheckClass(Register object, |
| 2179 | intptr_t class_id, |
| 2180 | Label* is_smi) { |
| 2181 | ASSERT(kSmiTagShift == 1); |
| 2182 | ASSERT(target::ObjectLayout::kClassIdTagPos == 16); |
| 2183 | ASSERT(target::ObjectLayout::kClassIdTagSize == 16); |
| 2184 | const intptr_t class_id_offset = |
| 2185 | target::Object::tags_offset() + |
| 2186 | target::ObjectLayout::kClassIdTagPos / kBitsPerByte; |
| 2187 | |
| 2188 | // Untag optimistically. Tag bit is shifted into the CARRY. |
| 2189 | SmiUntag(object); |
| 2190 | j(NOT_CARRY, is_smi, kNearJump); |
| 2191 | // Load cid: can't use LoadClassId, object is untagged. Use TIMES_2 scale |
| 2192 | // factor in the addressing mode to compensate for this. |
| 2193 | movzxw(TMP, Address(object, TIMES_2, class_id_offset)); |
| 2194 | cmpl(TMP, Immediate(class_id)); |
| 2195 | } |
| 2196 | |
| 2197 | void Assembler::LoadClassIdMayBeSmi(Register result, Register object) { |
| 2198 | Label smi; |
| 2199 | |
| 2200 | if (result == object) { |
| 2201 | Label join; |
| 2202 | |
| 2203 | testq(object, Immediate(kSmiTagMask)); |
| 2204 | j(EQUAL, &smi, Assembler::kNearJump); |
| 2205 | LoadClassId(result, object); |
| 2206 | jmp(&join, Assembler::kNearJump); |
| 2207 | |
| 2208 | Bind(&smi); |
| 2209 | movq(result, Immediate(kSmiCid)); |
| 2210 | |
| 2211 | Bind(&join); |
| 2212 | } else { |
| 2213 | testq(object, Immediate(kSmiTagMask)); |
| 2214 | movq(result, Immediate(kSmiCid)); |
| 2215 | j(EQUAL, &smi, Assembler::kNearJump); |
| 2216 | LoadClassId(result, object); |
| 2217 | |
| 2218 | Bind(&smi); |
| 2219 | } |
| 2220 | } |
| 2221 | |
| 2222 | void Assembler::LoadTaggedClassIdMayBeSmi(Register result, Register object) { |
| 2223 | Label smi; |
| 2224 | |
| 2225 | if (result == object) { |
| 2226 | Label join; |
| 2227 | |
| 2228 | testq(object, Immediate(kSmiTagMask)); |
| 2229 | j(EQUAL, &smi, Assembler::kNearJump); |
| 2230 | LoadClassId(result, object); |
| 2231 | SmiTag(result); |
| 2232 | jmp(&join, Assembler::kNearJump); |
| 2233 | |
| 2234 | Bind(&smi); |
| 2235 | movq(result, Immediate(target::ToRawSmi(kSmiCid))); |
| 2236 | |
| 2237 | Bind(&join); |
| 2238 | } else { |
| 2239 | testq(object, Immediate(kSmiTagMask)); |
| 2240 | movq(result, Immediate(target::ToRawSmi(kSmiCid))); |
| 2241 | j(EQUAL, &smi, Assembler::kNearJump); |
| 2242 | LoadClassId(result, object); |
| 2243 | SmiTag(result); |
| 2244 | |
| 2245 | Bind(&smi); |
| 2246 | } |
| 2247 | } |
| 2248 | |
| 2249 | Address Assembler::VMTagAddress() { |
| 2250 | return Address(THR, target::Thread::vm_tag_offset()); |
| 2251 | } |
| 2252 | |
| 2253 | Address Assembler::ElementAddressForIntIndex(bool is_external, |
| 2254 | intptr_t cid, |
| 2255 | intptr_t index_scale, |
| 2256 | Register array, |
| 2257 | intptr_t index) { |
| 2258 | if (is_external) { |
| 2259 | return Address(array, index * index_scale); |
| 2260 | } else { |
| 2261 | const int64_t disp = static_cast<int64_t>(index) * index_scale + |
| 2262 | target::Instance::DataOffsetFor(cid); |
| 2263 | ASSERT(Utils::IsInt(32, disp)); |
| 2264 | return FieldAddress(array, static_cast<int32_t>(disp)); |
| 2265 | } |
| 2266 | } |
| 2267 | |
| 2268 | static ScaleFactor ToScaleFactor(intptr_t index_scale, bool index_unboxed) { |
| 2269 | if (index_unboxed) { |
| 2270 | switch (index_scale) { |
| 2271 | case 1: |
| 2272 | return TIMES_1; |
| 2273 | case 2: |
| 2274 | return TIMES_2; |
| 2275 | case 4: |
| 2276 | return TIMES_4; |
| 2277 | case 8: |
| 2278 | return TIMES_8; |
| 2279 | case 16: |
| 2280 | return TIMES_16; |
| 2281 | default: |
| 2282 | UNREACHABLE(); |
| 2283 | return TIMES_1; |
| 2284 | } |
| 2285 | } else { |
| 2286 | // Note that index is expected smi-tagged, (i.e, times 2) for all arrays |
| 2287 | // with index scale factor > 1. E.g., for Uint8Array and OneByteString the |
| 2288 | // index is expected to be untagged before accessing. |
| 2289 | ASSERT(kSmiTagShift == 1); |
| 2290 | switch (index_scale) { |
| 2291 | case 1: |
| 2292 | return TIMES_1; |
| 2293 | case 2: |
| 2294 | return TIMES_1; |
| 2295 | case 4: |
| 2296 | return TIMES_2; |
| 2297 | case 8: |
| 2298 | return TIMES_4; |
| 2299 | case 16: |
| 2300 | return TIMES_8; |
| 2301 | default: |
| 2302 | UNREACHABLE(); |
| 2303 | return TIMES_1; |
| 2304 | } |
| 2305 | } |
| 2306 | } |
| 2307 | |
| 2308 | Address Assembler::ElementAddressForRegIndex(bool is_external, |
| 2309 | intptr_t cid, |
| 2310 | intptr_t index_scale, |
| 2311 | bool index_unboxed, |
| 2312 | Register array, |
| 2313 | Register index) { |
| 2314 | if (is_external) { |
| 2315 | return Address(array, index, ToScaleFactor(index_scale, index_unboxed), 0); |
| 2316 | } else { |
| 2317 | return FieldAddress(array, index, ToScaleFactor(index_scale, index_unboxed), |
| 2318 | target::Instance::DataOffsetFor(cid)); |
| 2319 | } |
| 2320 | } |
| 2321 | |
| 2322 | } // namespace compiler |
| 2323 | } // namespace dart |
| 2324 | |
| 2325 | #endif // defined(TARGET_ARCH_X64) |
| 2326 | |