1 | // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
2 | // for details. All rights reserved. Use of this source code is governed by a |
3 | // BSD-style license that can be found in the LICENSE file. |
4 | |
5 | #ifndef RUNTIME_VM_COMPILER_BACKEND_LINEARSCAN_H_ |
6 | #define RUNTIME_VM_COMPILER_BACKEND_LINEARSCAN_H_ |
7 | |
8 | #if defined(DART_PRECOMPILED_RUNTIME) |
9 | #error "AOT runtime should not use compiler sources (including header files)" |
10 | #endif // defined(DART_PRECOMPILED_RUNTIME) |
11 | |
12 | #include "vm/compiler/backend/flow_graph.h" |
13 | #include "vm/compiler/backend/il.h" |
14 | #include "vm/growable_array.h" |
15 | |
16 | namespace dart { |
17 | |
18 | class AllocationFinger; |
19 | class FlowGraph; |
20 | class LiveRange; |
21 | class UseInterval; |
22 | class UsePosition; |
23 | |
24 | class ReachingDefs : public ValueObject { |
25 | public: |
26 | explicit ReachingDefs(const FlowGraph& flow_graph) |
27 | : flow_graph_(flow_graph), phis_(10) {} |
28 | |
29 | BitVector* Get(PhiInstr* phi); |
30 | |
31 | private: |
32 | void AddPhi(PhiInstr* phi); |
33 | void Compute(); |
34 | |
35 | const FlowGraph& flow_graph_; |
36 | GrowableArray<PhiInstr*> phis_; |
37 | }; |
38 | |
39 | class SSALivenessAnalysis : public LivenessAnalysis { |
40 | public: |
41 | explicit SSALivenessAnalysis(const FlowGraph& flow_graph) |
42 | : LivenessAnalysis(flow_graph.max_virtual_register_number(), |
43 | flow_graph.postorder()), |
44 | graph_entry_(flow_graph.graph_entry()) {} |
45 | |
46 | private: |
47 | // Compute initial values for live-out, kill and live-in sets. |
48 | virtual void ComputeInitialSets(); |
49 | |
50 | GraphEntryInstr* graph_entry_; |
51 | }; |
52 | |
53 | // Forward. |
54 | struct ; |
55 | |
56 | class FlowGraphAllocator : public ValueObject { |
57 | public: |
58 | // Number of stack slots needed for a fpu register spill slot. |
59 | static const intptr_t kDoubleSpillFactor = |
60 | kDoubleSize / compiler::target::kWordSize; |
61 | |
62 | explicit FlowGraphAllocator(const FlowGraph& flow_graph, |
63 | bool intrinsic_mode = false); |
64 | |
65 | void AllocateRegisters(); |
66 | |
67 | // Map a virtual register number to its live range. |
68 | LiveRange* GetLiveRange(intptr_t vreg); |
69 | |
70 | DART_FORCE_INLINE static void SetLifetimePosition(Instruction* instr, |
71 | intptr_t pos) { |
72 | instr->SetPassSpecificId(CompilerPass::kAllocateRegisters, pos); |
73 | } |
74 | |
75 | DART_FORCE_INLINE static bool HasLifetimePosition(Instruction* instr) { |
76 | return instr->HasPassSpecificId(CompilerPass::kAllocateRegisters); |
77 | } |
78 | |
79 | DART_FORCE_INLINE static intptr_t GetLifetimePosition( |
80 | const Instruction* instr) { |
81 | return instr->GetPassSpecificId(CompilerPass::kAllocateRegisters); |
82 | } |
83 | |
84 | private: |
85 | void CollectRepresentations(); |
86 | |
87 | // Visit blocks in the code generation order (reverse post order) and |
88 | // linearly assign consequent lifetime positions to every instruction. |
89 | // We assign position as follows: |
90 | // |
91 | // 2 * n - even position corresponding to instruction's start; |
92 | // |
93 | // 2 * n + 1 - odd position corresponding to instruction's end; |
94 | // |
95 | // Having two positions per instruction allows us to capture non-trivial |
96 | // shapes of use intervals: e.g. by placing a use at the start or the |
97 | // end position we can distinguish between instructions that need value |
98 | // at the register only at their start and those instructions that |
99 | // need value in the register until the end of instruction's body. |
100 | // Register allocator can perform splitting of live ranges at any position. |
101 | // An implicit ParallelMove will be inserted by ConnectSplitSiblings where |
102 | // required to resolve data flow between split siblings when allocation |
103 | // is finished. |
104 | // For specific examples see comments inside ProcessOneInstruction. |
105 | // Additionally creates parallel moves at the joins' predecessors |
106 | // that will be used for phi resolution. |
107 | void NumberInstructions(); |
108 | Instruction* InstructionAt(intptr_t pos) const; |
109 | BlockEntryInstr* BlockEntryAt(intptr_t pos) const; |
110 | bool IsBlockEntry(intptr_t pos) const; |
111 | |
112 | LiveRange* MakeLiveRangeForTemporary(); |
113 | |
114 | // Visit instructions in the postorder and build live ranges for |
115 | // all SSA values. |
116 | void BuildLiveRanges(); |
117 | |
118 | Instruction* ConnectOutgoingPhiMoves(BlockEntryInstr* block, |
119 | BitVector* interference_set); |
120 | void ProcessEnvironmentUses(BlockEntryInstr* block, Instruction* current); |
121 | void ProcessMaterializationUses(BlockEntryInstr* block, |
122 | const intptr_t block_start_pos, |
123 | const intptr_t use_pos, |
124 | MaterializeObjectInstr* mat); |
125 | void ProcessOneInput(BlockEntryInstr* block, |
126 | intptr_t pos, |
127 | Location* in_ref, |
128 | Value* input, |
129 | intptr_t vreg, |
130 | RegisterSet* live_registers); |
131 | void ProcessOneOutput(BlockEntryInstr* block, |
132 | intptr_t pos, |
133 | Location* out, |
134 | Definition* def, |
135 | intptr_t vreg, |
136 | bool output_same_as_first_input, |
137 | Location* in_ref, |
138 | Definition* input, |
139 | intptr_t input_vreg, |
140 | BitVector* interference_set); |
141 | void ProcessOneInstruction(BlockEntryInstr* block, |
142 | Instruction* instr, |
143 | BitVector* interference_set); |
144 | |
145 | static const intptr_t kNormalEntryPos = 2; |
146 | |
147 | void ProcessInitialDefinition(Definition* defn, |
148 | LiveRange* range, |
149 | BlockEntryInstr* block, |
150 | bool second_location_for_definition = false); |
151 | void ConnectIncomingPhiMoves(JoinEntryInstr* join); |
152 | void BlockLocation(Location loc, intptr_t from, intptr_t to); |
153 | void BlockRegisterLocation(Location loc, |
154 | intptr_t from, |
155 | intptr_t to, |
156 | bool* blocked_registers, |
157 | LiveRange** blocking_ranges); |
158 | |
159 | intptr_t NumberOfRegisters() const { return number_of_registers_; } |
160 | |
161 | // Find all safepoints that are covered by this live range. |
162 | void AssignSafepoints(Definition* defn, LiveRange* range); |
163 | |
164 | void PrepareForAllocation(Location::Kind register_kind, |
165 | intptr_t number_of_registers, |
166 | const GrowableArray<LiveRange*>& unallocated, |
167 | LiveRange** blocking_ranges, |
168 | bool* blocked_registers); |
169 | |
170 | // Process live ranges sorted by their start and assign registers |
171 | // to them |
172 | void AllocateUnallocatedRanges(); |
173 | void AdvanceActiveIntervals(const intptr_t start); |
174 | |
175 | // Connect split siblings over non-linear control flow edges. |
176 | void ResolveControlFlow(); |
177 | void ConnectSplitSiblings(LiveRange* range, |
178 | BlockEntryInstr* source_block, |
179 | BlockEntryInstr* target_block); |
180 | |
181 | // Returns true if the target location is the spill slot for the given range. |
182 | bool TargetLocationIsSpillSlot(LiveRange* range, Location target); |
183 | |
184 | // Update location slot corresponding to the use with location allocated for |
185 | // the use's live range. |
186 | void ConvertUseTo(UsePosition* use, Location loc); |
187 | void ConvertAllUses(LiveRange* range); |
188 | |
189 | // Add live range to the list of unallocated live ranges to be processed |
190 | // by the allocator. |
191 | void AddToUnallocated(LiveRange* range); |
192 | void CompleteRange(LiveRange* range, Location::Kind kind); |
193 | #if defined(DEBUG) |
194 | bool UnallocatedIsSorted(); |
195 | #endif |
196 | |
197 | // Try to find a free register for an unallocated live range. |
198 | bool AllocateFreeRegister(LiveRange* unallocated); |
199 | |
200 | // Try to find a register that can be used by a given live range. |
201 | // If all registers are occupied consider evicting interference for |
202 | // a register that is going to be used as far from the start of |
203 | // the unallocated live range as possible. |
204 | void AllocateAnyRegister(LiveRange* unallocated); |
205 | |
206 | // Returns true if the given range has only unconstrained uses in |
207 | // the given loop. |
208 | bool RangeHasOnlyUnconstrainedUsesInLoop(LiveRange* range, intptr_t loop_id); |
209 | |
210 | // Returns true if there is a register blocked by a range that |
211 | // has only unconstrained uses in the loop. Such range is a good |
212 | // eviction candidate when allocator tries to allocate loop phi. |
213 | // Spilling loop phi will have a bigger negative impact on the |
214 | // performance because it introduces multiple operations with memory |
215 | // inside the loop body and on the back edge. |
216 | bool HasCheapEvictionCandidate(LiveRange* phi_range); |
217 | bool IsCheapToEvictRegisterInLoop(LoopInfo* loop_info, intptr_t reg); |
218 | |
219 | // Assign selected non-free register to an unallocated live range and |
220 | // evict any interference that can be evicted by splitting and spilling |
221 | // parts of interfering live ranges. Place non-spilled parts into |
222 | // the list of unallocated ranges. |
223 | void AssignNonFreeRegister(LiveRange* unallocated, intptr_t reg); |
224 | bool EvictIntersection(LiveRange* allocated, LiveRange* unallocated); |
225 | void RemoveEvicted(intptr_t reg, intptr_t first_evicted); |
226 | |
227 | // Find first intersection between unallocated live range and |
228 | // live ranges currently allocated to the given register. |
229 | intptr_t FirstIntersectionWithAllocated(intptr_t reg, LiveRange* unallocated); |
230 | |
231 | bool UpdateFreeUntil(intptr_t reg, |
232 | LiveRange* unallocated, |
233 | intptr_t* cur_free_until, |
234 | intptr_t* cur_blocked_at); |
235 | |
236 | // Split given live range in an optimal position between given positions. |
237 | LiveRange* SplitBetween(LiveRange* range, intptr_t from, intptr_t to); |
238 | |
239 | // Find a spill slot that can be used by the given live range. |
240 | void AllocateSpillSlotFor(LiveRange* range); |
241 | |
242 | // Allocate the given live range to a spill slot. |
243 | void Spill(LiveRange* range); |
244 | |
245 | // Spill the given live range from the given position onwards. |
246 | void SpillAfter(LiveRange* range, intptr_t from); |
247 | |
248 | // Spill the given live range from the given position until some |
249 | // position preceding the to position. |
250 | void SpillBetween(LiveRange* range, intptr_t from, intptr_t to); |
251 | |
252 | // Mark the live range as a live object pointer at all safepoints |
253 | // contained in the range. |
254 | void MarkAsObjectAtSafepoints(LiveRange* range); |
255 | |
256 | MoveOperands* AddMoveAt(intptr_t pos, Location to, Location from); |
257 | |
258 | Location MakeRegisterLocation(intptr_t reg) { |
259 | return Location::MachineRegisterLocation(register_kind_, reg); |
260 | } |
261 | |
262 | void SplitInitialDefinitionAt(LiveRange* range, intptr_t pos); |
263 | |
264 | void PrintLiveRanges(); |
265 | |
266 | const FlowGraph& flow_graph_; |
267 | |
268 | ReachingDefs reaching_defs_; |
269 | |
270 | // Representation for SSA values indexed by SSA temp index. |
271 | GrowableArray<Representation> value_representations_; |
272 | |
273 | const GrowableArray<BlockEntryInstr*>& block_order_; |
274 | const GrowableArray<BlockEntryInstr*>& postorder_; |
275 | |
276 | // Mapping between lifetime positions and instructions. |
277 | GrowableArray<Instruction*> instructions_; |
278 | |
279 | // Mapping between lifetime positions and block entries. |
280 | GrowableArray<BlockEntryInstr*> block_entries_; |
281 | |
282 | // Mapping between loops and additional information. |
283 | GrowableArray<ExtraLoopInfo*> ; |
284 | |
285 | SSALivenessAnalysis liveness_; |
286 | |
287 | // Number of virtual registers. Currently equal to the number of |
288 | // SSA values. |
289 | const intptr_t vreg_count_; |
290 | |
291 | // LiveRanges corresponding to SSA values. |
292 | GrowableArray<LiveRange*> live_ranges_; |
293 | |
294 | GrowableArray<LiveRange*> unallocated_cpu_; |
295 | GrowableArray<LiveRange*> unallocated_xmm_; |
296 | |
297 | LiveRange* cpu_regs_[kNumberOfCpuRegisters]; |
298 | LiveRange* fpu_regs_[kNumberOfFpuRegisters]; |
299 | |
300 | bool blocked_cpu_registers_[kNumberOfCpuRegisters]; |
301 | bool blocked_fpu_registers_[kNumberOfFpuRegisters]; |
302 | |
303 | #if defined(DEBUG) |
304 | GrowableArray<LiveRange*> temporaries_; |
305 | #endif |
306 | |
307 | // List of spilled live ranges. |
308 | GrowableArray<LiveRange*> spilled_; |
309 | |
310 | // List of instructions containing calls. |
311 | GrowableArray<Instruction*> safepoints_; |
312 | |
313 | Location::Kind register_kind_; |
314 | |
315 | intptr_t number_of_registers_; |
316 | |
317 | // Per register lists of allocated live ranges. Contain only those |
318 | // ranges that can be affected by future allocation decisions. |
319 | // Those live ranges that end before the start of the current live range are |
320 | // removed from the list and will not be affected. |
321 | // The length of both arrays is 'number_of_registers_' |
322 | GrowableArray<ZoneGrowableArray<LiveRange*>*> registers_; |
323 | |
324 | GrowableArray<bool> blocked_registers_; |
325 | |
326 | // Worklist for register allocator. Always maintained sorted according |
327 | // to ShouldBeAllocatedBefore predicate. |
328 | GrowableArray<LiveRange*> unallocated_; |
329 | |
330 | // List of used spill slots. Contains positions after which spill slots |
331 | // become free and can be reused for allocation. |
332 | GrowableArray<intptr_t> spill_slots_; |
333 | |
334 | // For every used spill slot contains a flag determines whether it is |
335 | // QuadSpillSlot to ensure that indexes of quad and double spill slots |
336 | // are disjoint. |
337 | GrowableArray<bool> quad_spill_slots_; |
338 | |
339 | // Track whether a spill slot is expected to hold a tagged or untagged value. |
340 | // This is used to keep tagged and untagged spill slots disjoint. See bug |
341 | // #18955 for details. |
342 | GrowableArray<bool> untagged_spill_slots_; |
343 | |
344 | intptr_t cpu_spill_slot_count_; |
345 | |
346 | const bool intrinsic_mode_; |
347 | |
348 | DISALLOW_COPY_AND_ASSIGN(FlowGraphAllocator); |
349 | }; |
350 | |
351 | // UsePosition represents a single use of an SSA value by some instruction. |
352 | // It points to a location slot which either tells register allocator |
353 | // where instruction expects the value (if slot contains a fixed location) or |
354 | // asks register allocator to allocate storage (register or spill slot) for |
355 | // this use with certain properties (if slot contains an unallocated location). |
356 | class UsePosition : public ZoneAllocated { |
357 | public: |
358 | UsePosition(intptr_t pos, UsePosition* next, Location* location_slot) |
359 | : pos_(pos), location_slot_(location_slot), hint_(NULL), next_(next) { |
360 | ASSERT(location_slot != NULL); |
361 | } |
362 | |
363 | Location* location_slot() const { return location_slot_; } |
364 | void set_location_slot(Location* location_slot) { |
365 | location_slot_ = location_slot; |
366 | } |
367 | |
368 | Location hint() const { |
369 | ASSERT(HasHint()); |
370 | return *hint_; |
371 | } |
372 | |
373 | void set_hint(Location* hint) { hint_ = hint; } |
374 | |
375 | bool HasHint() const { return (hint_ != NULL) && !hint_->IsUnallocated(); } |
376 | |
377 | void set_next(UsePosition* next) { next_ = next; } |
378 | UsePosition* next() const { return next_; } |
379 | |
380 | intptr_t pos() const { return pos_; } |
381 | |
382 | private: |
383 | const intptr_t pos_; |
384 | Location* location_slot_; |
385 | Location* hint_; |
386 | UsePosition* next_; |
387 | |
388 | DISALLOW_COPY_AND_ASSIGN(UsePosition); |
389 | }; |
390 | |
391 | // UseInterval represents a holeless half open interval of liveness for a given |
392 | // SSA value: [start, end) in terms of lifetime positions that |
393 | // NumberInstructions assigns to instructions. Register allocator has to keep |
394 | // a value live in the register or in a spill slot from start position and until |
395 | // the end position. The interval can cover zero or more uses. |
396 | // Note: currently all uses of the same SSA value are linked together into a |
397 | // single list (and not split between UseIntervals). |
398 | class UseInterval : public ZoneAllocated { |
399 | public: |
400 | UseInterval(intptr_t start, intptr_t end, UseInterval* next) |
401 | : start_(start), end_(end), next_(next) {} |
402 | |
403 | void Print(); |
404 | |
405 | intptr_t start() const { return start_; } |
406 | intptr_t end() const { return end_; } |
407 | UseInterval* next() const { return next_; } |
408 | |
409 | bool Contains(intptr_t pos) const { |
410 | return (start() <= pos) && (pos < end()); |
411 | } |
412 | |
413 | // Return the smallest position that is covered by both UseIntervals or |
414 | // kIllegalPosition if intervals do not intersect. |
415 | intptr_t Intersect(UseInterval* other); |
416 | |
417 | private: |
418 | friend class LiveRange; |
419 | |
420 | intptr_t start_; |
421 | intptr_t end_; |
422 | UseInterval* next_; |
423 | |
424 | DISALLOW_COPY_AND_ASSIGN(UseInterval); |
425 | }; |
426 | |
427 | // AllocationFinger is used to keep track of currently active position |
428 | // for the register allocator and cache lookup results. |
429 | class AllocationFinger : public ValueObject { |
430 | public: |
431 | AllocationFinger() |
432 | : first_pending_use_interval_(NULL), |
433 | first_register_use_(NULL), |
434 | first_register_beneficial_use_(NULL), |
435 | first_hinted_use_(NULL) {} |
436 | |
437 | void Initialize(LiveRange* range); |
438 | void UpdateAfterSplit(intptr_t first_use_after_split_pos); |
439 | bool Advance(intptr_t start); |
440 | |
441 | UseInterval* first_pending_use_interval() const { |
442 | return first_pending_use_interval_; |
443 | } |
444 | |
445 | Location FirstHint(); |
446 | UsePosition* FirstRegisterUse(intptr_t after_pos); |
447 | UsePosition* FirstRegisterBeneficialUse(intptr_t after_pos); |
448 | UsePosition* FirstInterferingUse(intptr_t after_pos); |
449 | |
450 | private: |
451 | UseInterval* first_pending_use_interval_; |
452 | UsePosition* first_register_use_; |
453 | UsePosition* first_register_beneficial_use_; |
454 | UsePosition* first_hinted_use_; |
455 | |
456 | DISALLOW_COPY_AND_ASSIGN(AllocationFinger); |
457 | }; |
458 | |
459 | class SafepointPosition : public ZoneAllocated { |
460 | public: |
461 | SafepointPosition(intptr_t pos, LocationSummary* locs) |
462 | : pos_(pos), locs_(locs), next_(NULL) {} |
463 | |
464 | void set_next(SafepointPosition* next) { next_ = next; } |
465 | SafepointPosition* next() const { return next_; } |
466 | |
467 | intptr_t pos() const { return pos_; } |
468 | |
469 | LocationSummary* locs() const { return locs_; } |
470 | |
471 | private: |
472 | const intptr_t pos_; |
473 | LocationSummary* const locs_; |
474 | |
475 | SafepointPosition* next_; |
476 | }; |
477 | |
478 | // LiveRange represents a sequence of UseIntervals for a given SSA value. |
479 | class LiveRange : public ZoneAllocated { |
480 | public: |
481 | explicit LiveRange(intptr_t vreg, Representation rep) |
482 | : vreg_(vreg), |
483 | representation_(rep), |
484 | assigned_location_(), |
485 | spill_slot_(), |
486 | uses_(NULL), |
487 | first_use_interval_(NULL), |
488 | last_use_interval_(NULL), |
489 | first_safepoint_(NULL), |
490 | last_safepoint_(NULL), |
491 | next_sibling_(NULL), |
492 | has_only_any_uses_in_loops_(0), |
493 | is_loop_phi_(false), |
494 | finger_() {} |
495 | |
496 | intptr_t vreg() const { return vreg_; } |
497 | Representation representation() const { return representation_; } |
498 | LiveRange* next_sibling() const { return next_sibling_; } |
499 | UsePosition* first_use() const { return uses_; } |
500 | void set_first_use(UsePosition* use) { uses_ = use; } |
501 | UseInterval* first_use_interval() const { return first_use_interval_; } |
502 | UseInterval* last_use_interval() const { return last_use_interval_; } |
503 | Location assigned_location() const { return assigned_location_; } |
504 | Location* assigned_location_slot() { return &assigned_location_; } |
505 | intptr_t Start() const { return first_use_interval()->start(); } |
506 | intptr_t End() const { return last_use_interval()->end(); } |
507 | |
508 | SafepointPosition* first_safepoint() const { return first_safepoint_; } |
509 | |
510 | AllocationFinger* finger() { return &finger_; } |
511 | |
512 | void set_assigned_location(Location location) { |
513 | assigned_location_ = location; |
514 | } |
515 | |
516 | void set_spill_slot(Location spill_slot) { spill_slot_ = spill_slot; } |
517 | |
518 | void DefineAt(intptr_t pos); |
519 | |
520 | void AddSafepoint(intptr_t pos, LocationSummary* locs); |
521 | |
522 | UsePosition* AddUse(intptr_t pos, Location* location_slot); |
523 | void AddHintedUse(intptr_t pos, Location* location_slot, Location* hint); |
524 | |
525 | void AddUseInterval(intptr_t start, intptr_t end); |
526 | |
527 | void Print(); |
528 | |
529 | LiveRange* SplitAt(intptr_t pos); |
530 | |
531 | // A fast conservative check if the range might contain a given position |
532 | // -- can return true when the range does not contain the position (e.g., |
533 | // the position lies in a lifetime hole between range start and end). |
534 | bool CanCover(intptr_t pos) const { |
535 | return (Start() <= pos) && (pos < End()); |
536 | } |
537 | |
538 | // True if the range contains the given position. |
539 | bool Contains(intptr_t pos) const; |
540 | |
541 | Location spill_slot() const { return spill_slot_; } |
542 | |
543 | bool HasOnlyUnconstrainedUsesInLoop(intptr_t loop_id) const { |
544 | if (loop_id < kMaxLoops) { |
545 | const uint64_t mask = static_cast<uint64_t>(1) << loop_id; |
546 | return (has_only_any_uses_in_loops_ & mask) != 0; |
547 | } |
548 | return false; |
549 | } |
550 | |
551 | void MarkHasOnlyUnconstrainedUsesInLoop(intptr_t loop_id) { |
552 | if (loop_id < kMaxLoops) { |
553 | has_only_any_uses_in_loops_ |= static_cast<uint64_t>(1) << loop_id; |
554 | } |
555 | } |
556 | |
557 | bool is_loop_phi() const { return is_loop_phi_; } |
558 | void mark_loop_phi() { is_loop_phi_ = true; } |
559 | |
560 | private: |
561 | LiveRange(intptr_t vreg, |
562 | Representation rep, |
563 | UsePosition* uses, |
564 | UseInterval* first_use_interval, |
565 | UseInterval* last_use_interval, |
566 | SafepointPosition* first_safepoint, |
567 | LiveRange* next_sibling) |
568 | : vreg_(vreg), |
569 | representation_(rep), |
570 | assigned_location_(), |
571 | uses_(uses), |
572 | first_use_interval_(first_use_interval), |
573 | last_use_interval_(last_use_interval), |
574 | first_safepoint_(first_safepoint), |
575 | last_safepoint_(NULL), |
576 | next_sibling_(next_sibling), |
577 | has_only_any_uses_in_loops_(0), |
578 | is_loop_phi_(false), |
579 | finger_() {} |
580 | |
581 | const intptr_t vreg_; |
582 | Representation representation_; |
583 | Location assigned_location_; |
584 | Location spill_slot_; |
585 | |
586 | UsePosition* uses_; |
587 | UseInterval* first_use_interval_; |
588 | UseInterval* last_use_interval_; |
589 | |
590 | SafepointPosition* first_safepoint_; |
591 | SafepointPosition* last_safepoint_; |
592 | |
593 | LiveRange* next_sibling_; |
594 | |
595 | static constexpr intptr_t kMaxLoops = sizeof(uint64_t) * kBitsPerByte; |
596 | uint64_t has_only_any_uses_in_loops_; |
597 | bool is_loop_phi_; |
598 | |
599 | AllocationFinger finger_; |
600 | |
601 | DISALLOW_COPY_AND_ASSIGN(LiveRange); |
602 | }; |
603 | |
604 | } // namespace dart |
605 | |
606 | #endif // RUNTIME_VM_COMPILER_BACKEND_LINEARSCAN_H_ |
607 | |